CSI

Informaticky tustav
Univerzity Karlovy (IUUK)

Computer Science Institute
IUUK of Charles University (CSI)

Malostranské nam. 25 * 11800 Praha 1 + Czech Republic
tel.: (+420)221914 230 « fax: (+420)257531014
e-mail: nana@kam.mff.cuni.cz ¢ url: http:/iuuk.mff.cuni.cz

August 26, 2013

Review of the doctoral thesis of Milan Straka “Functional
Data Structures and Algorithms”

1 Thesis content

The thesis has two parts. The first part deals with design of persistent data structures
that is data structures which allow access and modification of all historical versions
of the structure, and with design of data structures that have good worst-case perfor-
mance. The second part of the thesis contains analysis, implementation in the functional
language Haskell and experimental comparison of several data structures.

The main contributions of the first part are in Chapters 2 and 5.

Chapter 2 explores the possibility of building persistent data structures using op-
erations rebuild and undo. The rebuild operation rebuilds the data structure into a
“minimal potential” state, the undo operation undoes previously performed operations
on the data structure. The goal is to build a persistent data structure with good amor-
tized performance from ordinary data structure with good amortized performance. This
is not trivial as one can repeatedly invoke an operation with low amortized cost but high
actual cost. This chapter shows that any general transformation of a data structure into
a persistent one that relies solely on either the rebuild operation or on the undo oper-
ation has to incur large amortized cost. For the rebuild operation, the established cost
increase is optimal as demonstrated in the thesis.

In Chapter 5, the author develops several variants of persistent array data struc-
ture that supports update and lookup operations with worst-case time bounds either
O(loglogm) or O((loglogm)?/logloglogm). The only disadvantage of the faster one
is that it uses non-linear space. This extends the previous results of Dietz (1989) who
designed a persistent array with O(loglogm) time bounds for both operations but the
time bound was only amortized for the update operation. It is known that (log log m)
time is the best possible time bound for operations on a persistent array. Persistent
arrays could be thought of as the ultimate persistent data structures as any other data
structure could be made persistent using them.



Beside the actual data structures the chapter also proposes new algorithms for iden-
tifying inaccessible data by garbage collection in the context of persistent arrays.

Chapter 5 builds on Chapters 3 and 4 which present solutions to the List ordering
and the Dynamic dictionary problems. These are mainly known results but the the-
sis also presents several minor improvements and simplifications of known results and
techniques.

The second part of the thesis contains theoretical and practical contributions.

The most important theoretical contribution is the analysis of BB-w trees in Chapter
7. BB-w trees are balanced search trees that have been analyzed previously most notably
by Adams (1992, 1993). However, the analysis of Adams is flawed and it claims that
BB-w trees behave balanced for certain setting of parameters. There are various libraries
in functional languages such as Haskell that rely on and implement BB-w trees using the
flawed parameters. This leads to their sub-optimal behavior which was independently
observed by various researchers, the thesis’ author being one of them. In Chapter
7, Straka provides a correct analysis of BB-w trees and establishes which setting of
parameters guarantees their balanced behavior. He also provides an implementation for
them which became a part of the standard Haskell Container library where it is used to
implement various data structures.

In Chapter 8, the author describes further improvements to the Haskell Container
library, and provides experimental comparison of the performance of the library with
other existing implementations. The new implementation leads to improved running
time and smaller memory foot-print.

Chapter 6 provides implementation of persistent arrays in Haskell and experimental
comparison with other solutions.

2 My opinion

In my view the most significant contribution of the thesis lies in the analysis and im-
plementation of BB-w trees in the later chapters. The analysis itself is a non-trivial
multi-page analysis of various cases supported by computer exploration of trees up-to
size 1 million. This analysis directly contributes to the new implementation of Haskell
Container library on which at least one third of other Haskell libraries relies. Hence,
the analysis provides a real world impact beyond what is typical for a theoretical work.

The results in Chapter 2 regarding the rebuild and undo operations constitute origi-
nal results and an interesting research direction. I find them non-trivial and interesting.
This part of the thesis was not published, yet.

The results in Chapters 3-5 taken together form a substantial contribution. The
reason why I am less excited about them is that they don’t bring many new ideas to the



table. They mostly rely on combination and modification of known techniques. Despite
that combining them together is non-trivial so this part also has its merits.

To sum-up, the author demonstrates the ability to carry out independent
research, and some of his theoretical contributions have a significant practical
impact. The work meets the usual criteria for Ph.D. thesis.

3 Technical comments

The thesis is written using a fairly good English. There are only occasional small
language issues, and overall the thesis reads well.

e My major complaint is about imprecision and sometimes missing details. For exam-
ple the author frequently uses expressions like ”Even if the update step has amortized
complexity, the complexity of the whole operation [...] is worst-case.” (page 25-26) and
”[SJuppose that update has amortized complexity.” (page 30). Like every body has
a mass, every operation has its amortized complexity, and its worst-case complexity.
Thus, the correct questions are: what is the worst-case complexity, what is the amor-
tized complexity, and what is the relationship between them. This issue appears quite
frequently throughout the thesis.

e Word “common” should be replaced by word “usual” in many instances.
e The example on page 30 for amortized complexity is not quite accurate.

e There are various things that are not completely explained. For example, I have no
idea what is fold which is referred to in Chapters 7 and 8. I can only see that you can
measure it (Table 7.6).

e I lack some deeper discussion why does the thesis focus only on rebuild and undo
operations in Chapter 2. Are there some other operations one could possibly use? What
about the combination of rebuild and undo? Also I would appreciate a comparison with
what can be achieved using other than generic methods.

e In Chapter 3, on page 42, I wonder how much is your algorithm similar to [BCD+02].
Do you use techniques other that the one suggested in [BCD+02]? This should have
been explained in more detail.

e In Chapters 6-8, I lack detailed explanation of the methodology used for measure-
ments, like how many samples were taken, how the results were aggregated, etc. For
example you consistently claim that you use “uniformly random samples”. But you say
at some point that in reality you use just one sequence generated by a pseudo-random
generator with one fized specific seed. This cannot be classified as measurements on
uniformly random samples by any means. This can be exhibited in Table 7.4 which con-
tains integral outcomes of measurements for random samples. I would expect averages



of several trials for randomly generated sequences that would lead to outcomes being
reals.

Another issue is the presentation of the results and the scope of measurements. I
would prefer much rather a plotted graph of the time versus instance size for different
methods. That would allow to show much more data. For example Table 7.4 would be
much more illustrative. I don’t need to know the actual results to 8 digit precision but
I want to understand the shape of the curve. This becomes significant in tables like 8.6
which exhibit results only for something like two or three input sizes. For these input
sizes one gets very different relative results so one has to wonder when does one method
overtakes the other, what is the trend, etc. Is there some unexpected behavior at some
point?

e All the measurements use instance sizes at most 1 million. This happens to coincide
with the bound of how far was the correctness of the parameters for BB-w trees tested
by computer. Is this a coincidence?

e Figure 7.3 would be easier to read if it were separated into four different figures, one
for each value of 4.

e In Table 7.4, Balance calls either double rotation or single rotation, the former doing
less pointer updates. What is the fraction of these calls. The number of Balance calls
does not give the whole story, or does it?

e My understanding is that some of the measurements in Tables 8.6 and 8.12 are the
same. Looking at the results for RBSet in Set:union the relative numbers are different
in these two tables. What is the reason?

Sincerely,

Malostranské n
118 00 Praha 1
Czech Republic



