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Abstract

The Logic of Hybrid Action Models is presented in this thesis along
with a sound and complete Hilbert style calculus. It is an original
multimodal epistemic logic that tries to give the agents (i) a strong
method of communication and (ii) a rich vocabulary to communicate
about by combining action models with hybrid logics. The language of
the resulting logic is rather complex and includes common knowledge,
deterministic action updates and all three commonly used hybrid op-
erators @, | and E. An overview of both action models and hybrid
logics is included. The Hybrid Logic with Partial Denoting Nominals
is briefly described and used as a stepping stone. The semantics and
the Completeness Theorem of the Logic of Hybrid Action Models form
the backbone of this work.
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1 Introduction

The main goal of this thesis is to introduce the notion of Hybrid Action
Models (HAM) and a logic associated with them. The logic of Hybrid Action
Models is a dynamic epistemic logic standing on two legs—Action Models
and Hybrid Logics.

Action Models were first introduced in [1]. Their role in this paper is
to generalize a Public Announcement Logic because it gives our agents a
much broader scope of communication than public announcements. This
is caused by the fact that agents can now communicate through actions
instead of announcements. These actions can be public but they can also be
semi-private (other agents know some action came to pass but are unaware
which one) or completely private (other agents have no idea that some action
happened). It is however important to note that these actions cannot change
the facts about our world. The atomical sentences will keep their validity for
example. Talking, reading a letter, showing your cards in a game or sending
a mail are all different types of actions.

Hybrid Logics are the invention of Arthur Prior although they travelled
a long way since then. A great summary of history of Hybrid Logics can
be found in [2]. The basic idea behind them is to introduce a way to talk
about particular states in models into a language itself. They introduce a
second sort of atoms into a modal language, a set of nominals, that serves as
a set of names for our states. This allows the agents to agree on a particular
state and talk about their knowledge or beliefs relating to that state. They
will also be able to refer to other states or talk about states even without
knowing their names. This gives the agents a great expression power.

We will first introduce Action Models, and discuss and contrast them
with another notion of dynamization—Public Announcement Logic. The
definition of Hybrid Logics will follow as well as an attempt to hybridize the
Action Models. We shall do this with the help of the Hybrid Logic with
Partial Denoting Nominals, first presented in [3]. This mixing of logics will
introduce several problems, some of which were already solved. The result of
solving all of them will be the main scope of this thesis—the Logic of Hybrid
Action Models, and its sound and complete axiomatics. This logic is, to the
knowledge of the author, original and was never published before. A similar
approach was presented in [4] but language, semantics and axiomatics used
in there are quite different.

The Logic of Hybrid Action Models has no ambition to become a ‘logic of
reality’. The agents are infallible and logically omniscient, no misunderstand-
ing due to ambiguity of words is possible. It does however present a closer
look on the communication of these perfect agents in the form of actions.



This paper assumes a general knowledge of dynamic epistemic logics,
especially the Logic of Public Announcements. Reader can find more infor-
mation on them in [5] or [6] for example. Knowledge of Classical First Order
Logic is also assumed.

1.1 Used Symbols

There are several symbols used throughout this work that are not defined
anywhere. We list them here, along with a brief description, to prevent any
confusion.

V, 3  The symbols for metaquantification.
—>  The symbol for the act of updating models with a restricted
modal product. M ® M = (M ® M). See also Definition

3.

H The relation of provability. I' F ¢ means there exists a proof
of ¢ from I' in a given calculus.

I The relation of satisfaction in a model-state pair or a model-

state-assignment triple. M, w IF ¢ means that ¢ is satisfied
by a given valuation in state w of model M.

F The relation of satisfaction in a whole model. M E ¢ means
M,w IF ¢ for any state w in the domain of M while F ¢
means M F ¢ for any model M. We will work in the S5
multimodal logic. So F will mean Fg5 unless noted otherwise.

= The symbol for metaimplication.

&, or The symbols for metaconjunction and metadisjunction.

=, iff The symbols for metaequivalence. = is used as an equiv-
alence of formulas or pseudoformulas, iff as an equivalence
of statements or metaformulas. Writing ¢ = 1 means
M, w Ik ¢ iff M, w IF Y for any M, w.

M For a given model M, M designates its domain set.

K,p Agent a knows ; the universal modality, also known as [, ¢,
[Ra]ep or [a]e.

M,p Agent a admits ¢; the existential modality, also known as
Oupy (Rap) or (a)p. It is dual to K, that is M,p = ~K,—p.



Epp Each agent in group B knows ¢. It is equal to A K,p. Note
aEB

that we will also use the symbol E without any index. This
will however mean the existential operator as described in
Section 3.1.3.

Cpp ¢ is acommon knowledge for agents in group B. Cpyp is equal

to \ BB, where E%¢ = ¢ and Ex o = EgERo.
n=0
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2 Action Models

The most common way to dynamize a given epistemic logic is with the use
of public announcements. Public Announcement Logic (PAL) introduces the
symbols of [ and | into the language. The meaning of a formula [p]v is that
‘formula ¢ must hold after the public announcement of a formula ¢’. This
announcement is truly public—all agents must hear it and must be able to
understand and comprehend it. This greatly limits what our agents can do.
Imagine agents Alice, Bob and Carol in a situation where Alice wants to tell
Bob she loves him but she doesn’t want Carol to overhear it. The system of
public announcements doesn’t give her such an option. Let’s say however that
such a message does get through without Carol knowing it. Imagine further
that everything that Carol knew before this private announcement was true.
This suddenly stops being the case after the ‘private announcement’. For
instance Carol is still certain that Alice didn’t communicate with Bob in
any way or that Bob doesn’t know that Alice loves him. This is however
impossible to do in the system of public announcements.*

There is a second important limitation of Public Announcement Logic.
Take the same situation as before. Let’s say that Carol has stalked Alice for
days and is sure that Alice didn’t get a chance to talk with Bob. But one day
Carol sees Alice saying something to Bob but is too far to hear them. Before
this happened Carol knew that Alice didn’t tell Bob she loved him. But
now Carol stops knowing this. Alice and Bob may have talked about this or
about something else instead. This ‘semi-private’ announcement increased
Bob’s knowledge while simultaneously decreasing that of Carol’s.

These two limitations of PAL (true knowledge cannot be changed into
a false one and knowledge can never decrease) are overcome with action
models.? We will base our definitions on [6].

2.1 Action Updates

Definition 1. Let A and P be subsets of a language L such that A, P are
non-empty sets, A is finite, P is countably infinite and AN P = () and all

!There are many other logics of private or semi-private communication. One can, for
example, replace the public announcement with a group announcement. But the author
chose the system of Action Models for its generality and customizability.

2We will use S5 Action Models which do not allow the first thing to occur. This
doesn’t need to concern us though. Our intent is to model the communication of agents’
knowledge, not beliefs. And due to an S5 tautology K,p — ¢ all knowledge is true.
Moreover the agents will be infallible and perfect logicians. They will know all tautologies
and they will be capable of both a positive and a negative introspection. However weaker
action models can be used instead, see [1].



other members of L are members of neither A nor P. An S5 Action Model
is any structure M = (S, R, pre) where S is a finite non-empty set, for any
a € A R, is an equivalence relation on S and pre: S — FLA is a total
function from S to a set of all formulas of language L. A Pointed S5 Action
Model is an ordered couple (M, s) where M is an S5 Action Model and s is
a member of its domain.

This is a general definition independent on the language.®> A denotes a
set of agents and P a set of propositional atoms. One can view an action
model as a set of interconnected actions. Agents may or may not be able
to distinguish between them, depending on their accessibility relations inside
the action model.

Our choice of the modal logic will influence the properties of the action
models. Whatever the requirements for the accessibility relation in epistemic
models are, the same must hold for action models as well. In our case the S5
action model relation R, must be an equivalence relation for all agents a € A.
For a given action model M = (S, R,, pre) we will call pre the prerequisite
or precondition function and members of S action states. In the case of a
pointed action model (M, s) s will be called a designated action state. Each
of these action states in .S can be viewed as an action that may or may not
happen. The designated action state in a pointed action model denotes the
action that really came to pass. The prerequisite function defines conditions
that have to be true for an action to be even considered happening.

Let’s now define the language we will be using.

Definition 2. Call Lxcey = {A,V,—,—, K., Cp, [(M,s)]} UAU P an Ac-
tion Model Language if {\,V,—,—, K,,Cg} U A is a multimodal epistemic
language with common knowledge and (M, s) is an S5 pointed action model.
Define formulas in the action model language in the following way

o = plWAX)|@WVX)| @ —=x) || Kap| Cpt| [(M,s)]

where 1 and x are well-formed formulas, p € P, a € A, B C A and (M, s) is
a pointed S5 action model such that for allt € S, pre(t) is an already formed
formula.

Since we allow only finite action models there is only countably many dif-
ferent pointed action models. Thus the language Lxcg stays countable. The
meaning of formula [(M, s)]¢) is that the formula ) holds after updating by

3The reason for this generality is that action models require some language to be defined
but action model language needs a definition of action models first.



the pointed model (M, s).* This update takes place thanks to a metaoperator
of a restricted modal product ®.

Definition 3 (Restricted Modal Product). Let M = (W, R,, V) be an
S5 epistemic model and M = (S, R,, pre) an S5 action model. A Restricted
Modal Product (M & M) is an ordered triple (W', R, V') where

W' ={(w,s);weW &seS & M,wl pre(s)}

Va € AV(w, s), (w',s") € W' (((w, )R, (w', ") iff wRw' & sRys"))
V(w,s) € W'Vp e P (w,s) € V'(p) iff we V(p)

The basic idea is that ® creates a cartesian product of an epistemic model
with an action model, removes the impermissible world-state combinations
according to the precondition function and defines the accessibility relations
and valuation. It can be easily verified that the new model is again an S5
epistemic model (or its domain is empty) and thus can be updated again.

Lemma 1. Let M = (W,R,,V) be an S5 epistemic model and let
M = (S, R, pre) an S5 action model. If the domain of (M ® M) is non-

empty then it is an S5 epistemic model.

Proof. 1t is obvious that V' is a valuation function. All we need to verify is
that R, is an equivalence relation for any agent a € A. Let’s check that it is
transitive and leave the reflexivity and symmetry to the reader.

Let (wy, $1)RL(wa, s2) and (we, $2)R., (ws, s3). By definition wyR,we and
weoR,ws. From transitivity of R, we have w;R,ws. A similar reasoning gives
us s1R,s3 as well. Thus by Definition 3 (wy, $1)R,, (w3, s3). O

It is quite evident that if we didn’t force the accessibility relations on
action models to be equivalence relations the result of a restricted modal
product need not be an S5 Epistemic Model. Analogous results can be
stated for different epistemic logics.

Example 1. An example of the restricted modal product in work can be
seen in Figure 1. M is an S5 epistemic model, M is an S5 action model.
Relations forced by transitivity and reflexivity are omitted for better clarity.

This picture can be used for an earlier example with Alice, Bob and
Carol. Let us designate the fact that Alice loves Bob with atom p. Before

4The common definition of updates allows for non-deterministic updating, that is up-
dating with action models that need not have a designated action state. We will however
omit this for the sake of simplicity. For more information about non-deterministic updates
see [6].



MM

M M (")l p (w',s") I p
s b,c
b,c ® c c = c c
wlFp w' ¥ p
S s’ c

(w, ) IFp  (w's) Wp

Figure 1: An example of creating a new epistemic model. pre(s) = p,
pre(s’) = —p and pre(s”) = pV —p.

Alice’s and Bob’s meeting only Alice knows whether p holds or —p holds.
The action states s, s’ and s” correspond to actions ‘Alice tells Bob that
p’, ‘Alice tells Bob that —p’ and ‘Alice and Bob talk about something else’
respectively. Both Alice and Bob can differentiate between all three actions
while Carol cannot. The result matches our intuition. Not only Carol doesn’t
know whether p or —p, she doesn’t know whether Bob knows either! This is
because Alice and Bob could have talked about weather instead of love. If
that was true Bob couldn’t get to know p or —p as well.

This example shows a crucial difference between public announcements
and action updates—the resulting epistemic model can have more states than
the original one. This property is the main reason behind the power of action
models; M E K.~ K,p while (M ® M) ¥ K.~ K,p. The update caused Carol
to lose a part of her knowledge. This expansion of models is also the cause
of the biggest obstacle in creating the Logic of Hybrid Action Models. More
on this will be said in Section 4.2

It is interesting to note that action models can simulate public announce-
ments. The corresponding action model for a public announcement of for-
mula ¢ is a model P, = ({s}, ((s,5))aca, {(s,¢)}). Ppv-p) creates an iso-
morphic copy of the original model, much like a public announcement of a
tautology does. This simulation lets us pronounce the Logic of Action Models
(AML) not closed under substitution for free. Public Announcement Logic
is not closed under substitution because [p|p is a tautology while [¢]¢p is not.
[p]p is equal to p — p by one of the reduction axioms. A counterexample to
[¢]p is the well-known formula [p A =K,p](p A =K,p). Thus neither AML is
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closed under substitution.

Let us present one more example before moving on to the next part. It
is known as the Coordinated Attack Problem or Two Generals’ Problem. It
deals with the problem of communicating via an unreliable connection.

Example 2. There are two armies in this scenario. One of them is split
in half by the second. Each of these halves is led by one general. They
want to agree on a coordinated attack on the opposing army. If only one of
the generals attacked his half of the army would be decimated. If however
the generals manage to agree on a time of the attack they will have enough
manpower to defeat the enemy. The only way for them to communicate is
through a messenger. This messenger can be caught by the enemy when
trying to travel from one general to the other. The generals will only attack
if they become one hundred percent sure that the other one attacks as well.
Will the generals ever agree on an attack? If so then when?

The answer is no, they will never attack. The problem lies in the unre-
liability of the messenger. Let’s say the first general sends a message ‘We
will attack tomorrow at 6 a.m. Send a confirmation’. Let’s also say that the
messenger does get through and delivers this message to the second general.
This is however not known to the first general. The second one will write
a confirmation message and send it back. Again even though the messenger
might have gotten through the second general cannot know this and will re-
quire a confirmation from the first one. This goes on and on until the next
morning when neither of them attacks.

The reason for this is that both generals require a common knowledge
of the message. The unreliable communication can never let them achieve
it though. What is interesting however is that unlike the Logic of Public
Announcements the Logic of Action Models allows us to model this example.

Let us denote the generals as agents a and b and the fact that the content
of the message is ‘We will attack tomorrow at 6 a.m.” as atom p. The
situation starts with agent a knowing p and agent b not knowing it. This
means we need at least two epistemic states, one satisfying p and the other
not. Let us also underline the designated state for better clarity.

.#.
wlkp w' W p

Agent a sends the message containing p. This message may or may not
have been intercepted. This means our action model needs at least two action
states s; and t;—omne corresponding to the action ‘the message containing p
got through’ and the other one ‘the message didn’t get through, no matter

11



the content’ respectively. Clearly pre(s;) = p and pre(ty) = p vV —p. Let us
see how the resulting epistemic model looks.

(w,t1) IFp (W, t)) ¥ p
b

wlkp w' ¥ p S1 t

(U}, 81) I p

Now in our new designated state both generals know p but a doesn’t know
that b knows it. This is because a doesn’t know whether the message got
through or not. That’s why there’s an accessibility relation for a between s;
and ¢; in the action model.

Sending the confirmation message behaves in the same way as sending
a regular message, only the content of the message changes. Agent b wants
to send back ‘I recieved your message so I know that p’. This means that
pre(s2) = Kyp and pre(tz) = p V —p.

(w,t1) IFp (W t)) ¥ p ((w,tl),tg) Fp (W' ty),ta) ¥ p
b b
a (2 b - a
52 to
(w, s1) IFp (w,51),t2) IFp  (w,51),82) I p

Now agent a knows that b knows that p because he just got the confir-
mation. But b doesn’t know that a knows that b knows that p, in symbols
Ky K, Kyp. If a wanted to send a confirmation of a confirmation, the content
of this message (and precondition of the action of sending this message) will
be K,Kyp. But it is clear that these two agents can never achieve a common
knowledge of p in this way. ¢; will always have a precondition of p V —p and
whenever such action states are present in an action model they simply copy
the original model. And since it is always accessible from s; by some relation
there is no way to (i) get rid of a state that does not satisfy p or (ii) cut
the accessibility relation leading to it. Thus a state that doesn’t satisfy p

12



will always be accessible by (R{qs})* from everywhere in the model, where
(Rapy)” is a transitive closure of the union of relations R, and Ry and so
achieving Cy,pyp is impossible.

2.2 Semantics

We’ve been using the |- symbol without properly defining it. This doesn’t
need to bother us much. Its definition is the same for non-dynamic formulas
as in other epistemic logics. The important part of the definition lies in for-
mulas of the form [(M, s)]¢). Let us give a full definition for further reference
though.

Definition 4. Let M = (W, R,, V) be an S5 epistemic model in the language
Lrce and w € W. Let M = (S, Ry, pre) be an S5 action model and s € S.
Finally let a € A, B C A, p € P and ¢,¢ be arbitrary formulas in the
language Lixcg. We define satisfaction relation I as follows:

Mowlkp iff weV(p)

Myiwl-p VvV iff Miwlk e or Myw -y
MwlFo =Y iff Mywl¥ ¢ or M,wlkF 1
MowlEpeANY diff Miwlke & Mwlk-

Mwlk=p iff M,wlFp

MowlE Ky iff Yuw' € W (wRw' = M w' I+ ¢)
M,wlFCgy iff Yw' e W (w(Rp)'w = M,w' Ik p)

Mw - [(M,s)]e iff M,wlk pre(s) = (M® M), (w,s) - ¢

where Rp = |J Ry and * is a transitive closure.
beB

Recall the condition from Definition 2 that says that for any formula of the
form [(M, s)] and for any t € S, pre(t) is an already formed formula. This
is to prevent degenerated formulas from being created. Imagine a formula
[(M, s)]p such that pre(s) = [(M,s)]p. By definition M,w I+ [(M,s)]p iff
(M,w IF [(M,s)]p = M ® M), (w,s) Ik p). The problems become more
apparent when one tries to use the reduction axiom [(M, s)|p < (pre(s) — p).
In this case [(M, s)]p is equivalent to [(M,s)]p — p, which is equivalent to
([(M,s)]p — p) — p...Proof of completeness by translation would stop
working because there is no way to get rid of the action update. There are
even worse offenders out there, for instance a formula [(M, s)](p A —p), where
pre(s) = [(M, s)](p A —p). Is this formula satisfiable?

There is a clear parallel between the definition of M, w Ik [(M, s)]e in
Action Model Logic and M, w IF [¢)]p in Public Announcement Logic. The
crucial difference is between the way the updated models are created. Where

13



PAL updates models by cutting away states that don’t satisfy the announced
formula, AML creates a cartesian product and then cuts away the illegal
states.

2.3 Axiomatics

It is interesting that in a language without common knowledge the Logic
of Action Models has a sound and complete axiomatics for the same reason
that Public Announcement Logic does—both logics have reduction axioms
for all formulas of the form [(M, s)]¢ and [¢]e respectively. The axioms of
AML are very similar to those of PAL. We need one more definition before
presenting the axiomatics of AML though.

Definition 5 (Composition). Let M = (S, R, pre) and M' = (S', R., pre’)
be two S5 Action Models in language Lxcg. Call (M;M') = (S”, R, pre”)
a Composition Action Model if

S"=8 x5
Va € A (s,8")RI(t,t') iff sR.t & s'R,t’

pre’((s,s")) = =[(M, 5)]-pre (s')

Moreover given two Pointed Action Models (M,t) and (M’ t") define their
composition ((M,t); (M',t")) as a pointed action model ((M; M), (t,t')).

We will now compare the axiomatics of Action Model Logic with the ax-
iomatics of Public Announcement Logic. Let us first give the axiom schemas
and derivation rules that are common for both systems. These are the axioms
and rules of the system S5 or more precisely S5, where n corresponds to
the number of agents. CPL stands for all instantiations of classical proposi-
tional tautologies in the corresponding languages.

CPL
(A1) F Kol — ) — (Koo — Kat)
(A2) F Kup— ¢
(AB) - K(ZSO - KaKaSO
(Ad) F-K,p— K,~Kup
(A5) F Cglp — ) — (Cpyp — Cpy)
(A6) FCpp — (p A EpCpp)
(A7) FCg(p — Epp) — (¢ — Crp)
(R1) If Fpand ¢ — 4 then 1
(R2) If F ¢ then F K,p
(R3) If F ¢ then F Cpy

14



Adding the following axioms and rules creates the Logic of Public An-
nouncement with common knowledge:

(A8) ko]

(A9)  F o] )

(A10) F [a](p Aep) < [a]p Ala]d

(Al1l) F o]

(A12) F o]

(R4) If F ¢ then F [a]e

(R5) If Fx —[a]pand F x Aa — Epx then + y — [a|Cpp

While adding the following will result in the Logic of Action Models with
common knowledge:

(A8)  F[(M,s)]p — (pre(s) — p)

(A9)  F[(M,s)]~p < (pre(s) — —[(M, s)|p)

(A10) = [(M,5)](o Ap) = [(M,5)] N [(M, s)]b
(A1) F [(M, s)]Kap < (pre(s) — té\sK“[(M’ )
(A12) = [(M, 8)][[(M, s")]p = [(M; M), (s,5'))]

(R4) If ¢ then F [(M,s)]e

(R5)  For a given (M, s) and formulas y; for all ¢ such that ¢t(Rp)*s,
if for all @ € B and w such that wR,t it holds that:
- Xt — [(M7 t)]‘ﬂ and Xt A pre(t) — DNaXu,
then F x5 — [(M,s)|Cpe.

The axiomatics of AML showed above is sound and complete. The proof
can be found in [6]. We will later base our axiomatics of the Logic of Hybrid
Action Models on this one. The axioms and deductive rules of HAM will be
given in Section 4.2.2.

The non-dynamic part is the same for both logics. But all the reduction
axioms share the same difference—the announced formula « gets replaced
with the precondition of the designated action state pre(s) while the an-
nouncement [o] itself is replaced by an update with a pointed action model
[(M,s)]. There are three more important changes concerning the reduc-
tion axioms for knowledge, iterated actions and a rule dealing with common
knowledge. Each of these warrants a short commentary.

15



2.3.1 Knowledge

(M, )| Kap = (pre(s) — J\ Ku[(M,1)]¢)
tRas
The purpose of the change is that we have to take into account that agent a
may not be able to distinguish between action s and other actions. Since he
doesn’t know whether it was action s or ¢ that happened (if ¢R,s) he has to
take both possibilities into consideration. Thus a simple translation of the
axiom of PAL
[a]Kap > (0 — Ka[aly)

to
(M, 5)][Kap < (pre(s) — Ka[(M, s)]¢)

won’t do. We can show this with the following counterexample.

M M M@ M
a a a
— — o
wlkp v p @ s t (w,s)IFp (v, t) ¥ p

Figure 2: pre(s) = p and pre(t) = —p. Agent a cannot distinguish between
actions s and ¢ and therefore he cannot distinguish between updates [(M, )]
and [(M,t)]. M,w IF (pre(s) — K,[(M,s)]p) while M,w ¥ [(M,s)|K.p
which is easy to verify.

2.3.2 Composition
(M, $)][(M',8")]  [(M; M), (s, )]

This axiom is the main reason for the introduction of the composition oper-
ation. Its behavior is very similar to the corresponding PAL axiom. Since
in PAL (¢ A [@]t)) < (@), we get [a][Sle < [(a)B]e. If we were to define
(M, s))p as —=[(M, s)]—p we would get that pre’(s,s’) = (M, s))pré(s') as
in the definition of composition. Now notice that from the semantic point of
view M, w I [(a)B]p means in PAL

M, w - {) B = Mjs, w Ik o,

16



where M) is the model M reduced to those states that satisfy («)3 (along
with a proper reduction on accessibility relations and valuation). On the
other hand M, w - [(M; M’), (s,s")]¢ in AML is equal to

M,w - (M, s))pré(s') = (M@ (M; M), (w, (s,s)) IF ¢,

where (M ® (M;M')) is a model whose domain is a cartesian product of
M and (M; M’) reduced to those states that satisfy ((M, s))pre/(s’) (again
with a corresponding reduction of accessibility relations and valuation). If
the domains of both M and M’ were singletons we could simplify it to

M, w lE (M, s))pre'(s") = M,s)ypre(s), W IF @,

which gives us a clear paralel with the corresponding PAL axiom.

2.3.3 Common Knowledge
If Fx;— [(M,t)]pand F x; Apre(t) — Egx, then F xs — [(M,s)]Cpep

The change to this rule is analogous to the change of the axiom of knowledge,
described in Section 2.3.1. When talking about a satisfaction of common
knowledge of group B in some state we need to look at all states accessible
by a transitive closure of a union of all accissibility relations of all agents in
group B, that is all states accessible by (|JRg)* as defined earlier. However
a similar approach must be applied to action models as well. We have to
look at all the action states accessible by (| Rp)* from the designated state.
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3 Hybrid Logic

The action models give our agents a strong tool for communication. They
also expand what the agents can communicate about—other actions. This
expansion is, with the exception of actions pertaining common knowledge,
illusory since these actions can be translated to the original non-dynamic
language with the use of reduction axioms. It is the Hybrid Logic that truly
gives the agents something to talk about. They redefine the language of a
given (modal) logic by introducing a new set of propositional atoms called
nominals. These nominals behave in the same way as regular atoms but for
one crucial difference. Each nominal can be satisfied in only a single state
of a given model. This means that if we were given a hybrid logic model, a
nominal ¢ and a w member of the domain of the model such that w IF i we
would immediatelly know that for all v from the same model disctinct from
w it must hold that v W 7. In this case ¢ serves as an internal name for the
state w, in the sense that it is inside the language itself. We will however
allow a state to have several different names and we’ll also allow nameless
states. This language expansion itself permits us to define new classes of
frames with modal formulas. For example the formula ¢ — K,—% holds only
in frames where R, is an antireflexive relation while M,i holds only in frames
with a universal accessibility relation for agent a, that is Yw wR,w. More
information on defining new frame classes can be found in [2] while other
interesting examples are in [7]. Let us give a first draft of what a hybrid
language and an epistemic model in such a language are.

Definition 6. Let £ = {A,V,—,—, K,} UAU P be a multimodal epistemic
language. Call Ly = {A\,V,—,—, K,} UAUPUNOM a Hybrid Language if
NOMN L =0 and NOM is countably infinite. A formula ¢ in language L is
inductively defined as follows:

o = plilWAX)WVX)| @ —x) || Ky
where 1, x are well-formed formulas, p € P, 1 € NOM and a € A.

As stated earlier the nominals act very much like propositional atoms.
They have the same syntax and a very similar semantics. The only difference
is that for any valuation V', V' | NOM is a total function that always assigns
singletons.

Definition 7. A Hybrid Model in a hybrid language Ly is an ordered triple
M = (W, R,,V) where W is a non-empty set, Va € A R, is a binary relation
and V: PUNOM — (W) is a partial function such that for all nominals i
it holds that |V ()| = 1.
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3.1 Semantics

The assignment of nominals to states is provided by the valuation function
in the same way as assignment of atoms to states. The only difference is that
for any i € NOM |V (i)| = 1.5 The definition of the satisfaction relation I is
as usual with the addition of

Mw ki iff w e V(i)

There is a great synergy between Hybrid and Epistemic Logics, especially
the system S5. Knowing the name of a state means knowing everything
about it. When M, w I K,i, the only state accessible by R, from w is
w itself; there are no other states that agent a finds possible. And when
M, w IF K, i, agent a also knows all truths that hold in that state—mot only
atomic facts but also all epistemic formulas. For example he may know that
another agent b finds it possible that —¢ and therefore has less information
about the current state of affairs than a. Agent a has in that state complete
information about the state. It is not surprising then that if agents a and b
have complete information about a state, their knowledge coincides, that is
K i N Kyi — (K9 < Kyp) is a tautology.

w k1 w' Wi
w'lFp

Figure 3: M, w I K,i implies that all information about the state is known
to a in w, such as K,Myp or K, M,K,—i.

There exists no translation from a hybrid language to a corresponding
epistemic language. There are hybrid formulas that cannot be expressed
in the non-hybrid language. The easiest example would be formula ¢ for
1 € NOM which defines a class of all frames with a single state. There is a
simple proof of this.

5Since NOM is countably infinite it will be very common for a state to have infinitely
many names. We will omit most of them in our examples in the same way that we omit
most atoms that are satisfied in these states. It is also important to note that unlike
propositional atoms it is required for all nominals and every model that there must be a
state that satisfies that nominal. This condition will come into play later on.
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Lemma 2. Let i € NOM and F be a hybrid frame. Then F & i iff | F| = 1.

Proof.

(<) i must be satisfied in some state in every model no matter the valuation.
If F has only a single state it has to satisfy .
(=) Let F Ei and let |F| > 1. Because i cannot be satisfied in two distinct
states regardless of valuation, there must exist a state that doesn’t satisfy ¢

in every model M = (F,V). Thus M F i and F ¥ i. O

We will show another example of a formula defining new a frame class,
the antireflexivity that was mentioned earlier. Let the underlaying logic be
K instead of S5 for the following lemma.

Lemma 3. Let 1 € NOM and F be a hybrid frame. Then F E i — K, iff
R in F is antireflexive, that is Vw ~wR w.

Proof.

(=) Let F E i — K,~i and let w be any state in F. We will show that
—wR,w. F E i — K,—i means it holds for any valuation; let’s choose
the valuation V' such that V(i) = {w}. Since (F,V),w IF i — K,—i
we get (F,V),w Ik K,—i, that is all accessible states must not be mem-
bers of V(i) = {w}. Thus w must not be accessible by R, from itself.
(<) Now let R, be antireflexive and let V' be any valuation on F and w any
state in F. If (F, V), w W i it trivially holds that (F,V),w IF i — K,—i so
let (F,V),w IFi. Because i € NOM, w is the only state that satisfies 7. So
all we need to check is that w doesn’t access itself with R, but that is true
due to the assumption that R, is antireflexive. O

The so called pure formulas, formulas without any propositional atoms,
are very important from the frame defining point of view. Details can be
found in Section 3 of [2].

The addition of nominals allows agents to truly agree on a state. An agent
can know all the truths that hold in a given state but he can never be sure
there aren’t any other states that hold the same truths. This uncertainty
disappears once he learns the name of the state.

We will add three new operators as well: the reference operator @, the
naming operator | along with state variables and the existential operator E.
Let us discuss each of these operators separately.
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3.1.1 Reference Operator

Agents may ask not only what is true in the current state. They might also
be interested in other states. Let’s look at the following example.

wll—.p,i w’J.J‘p
w' Ik j

In state w agent a knows p. He also knows ¢ and —j. He might be curious
whether p also holds in a state named j (as mentioned earlier such a state
must exist somewhere). However he cannot check this directly because the
state named j is inaccessible; M, w I C,3—j. But this is what the reference
operator allows him to ask. At state named j the atom p does not hold; in
symbols =@;p. And agent a knows this in the whole model.

When checking whether @;p holds in a state we look for the state named ¢
and ask whether ¢ holds there. This intuition gives us a fairly straightforward
extension of the definition of IF.

M w IF @ iff Fuw' € V(i) M,w' Ik ¢

It is easy to see that the existential quantifier in the above definition can be
replaced with a universal one without changing the meaning of the definition.
This is caused by V(i) always being a singleton. This gives the reference
operator an interesting property—it is auto-dual, that is Q;p = —@;—p.
Another interesting fact is that for any model M and state w it holds that
M w IF @Qp it M E @;p. It is also a normal modal operator, that is
FQ(p — 1) — (Qp — Q) and if F ¢ then F @Q;p.

Note that formulas @;p and ¢ — ¢ behave very similarly but there is a
curious difference between them. It holds that for any model M F @, iff
M E i — . This is not true once we fix a state though— M, w I+ @;p
implies M, w I 7 — ¢ but not the other way around.

3.1.2 Binder Arrow Operator

The binder arrow operator | allows us to give an internal name to the current
state for further reference. It works as a quantifier. The proper syntax for
it is | ¢ ¢ where x is a state variable—a member of a new parametre set
called SVAR. The meaning of such a formula is ‘Name the current state x
and ask whether a formula ¢ holds in it’. This allows us to create complex
formulas that talk about accessibility relations, especially with the help of
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the reference operator. Consider the following formula:

Lo (Ma(p A My Ly (g A Qu(Mo(=p A Myy)))))°
One of the models that satisfies such a formula (in state wy) is:

M
Wa H‘p

w3 K p

The question is: how do we assign these variables to states? If we used
the valuation function we would get some unwanted results. Let us return
to the previous model and fix the state variables.

M
Wa H‘p

ws ¥ p

Figure 4: The earlier model with state variables fixed by valuation.

It is still true that
M/? w1 “‘lfl? (Ma(p A Mbly (q A @I<Ma<_'p A Mb?J)))))

but
M w Wy (Mu(p A My |z (g AQy(My(—p A Myz))))).

This would defeat the purpose of variables. We do not want their names
to matter. They are only agents’ labels, not true names of the states. This

6Name the current state x. It can access via R, a state that both satisfies p and can
access via Ry a state, called y, that satisfies q. Looking back at the state = we also see
another state via R, which doesn’t satisfy p but this one can also access state y via Ry.
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is the reason for having a new function, the assignment function g, such
that ¢: SVAR — M which is independent on a model. Writing M, w IF ¢
will then mean M, w, g IF ¢ for any assignment function g. And fixing the
name of the current state with the binder arrow simply means changing the
assignment function to one that assigns the variable x to the current state.

M, w, gtz o iff M, w,q IF ¢

where ¢'(z) = w and ¢'(y) = g(y) for all y # z.

Syntactically, state variables behave in a similar way as nominals. x and
@,p are both well-formed formulas. Their semantics will be given in Section
3.2. We can distinguish between bound and free state variables, similarly to
variables in the first order logic, but this distinction is mostly unimportant
for this thesis.

Our assignment function is partial. It doesn’t need to assign anything
until we force it to.” The binder arrow is also a normal modal operator.

3.1.3 Existential Operator

The existential operator E allows us to jump all over the model regardless of
accessibility relations and names. It works like a diamond-style modality for
an agent who can access any state. Its definition is pretty straightforward.

M,wlF Ep iff 3w’ € M M, w' IF o

It is interesting to note that E(i A ¢) = @;p. Thus, in some sense, the
existential operator is stronger than the reference one since E can define Q.

Same as for the reference operator, for any model M and state w it holds
that M,w I Ey iff M F Ey. The existential operator is not a normal
modal operator however.® Let us show a counterexample for the formula

E(p — ) — (Ep — E).

wH‘.p,q w’l.l-p
w' W q

Figure 5: In the whole model E(p — ¢) and Ep hold while Eq does not.

"There is little difference between having a partial or total assignment function in
Hybrid Logics. It will become important later though. See Section 4.1 for more details.
8But its dual Uy = =E- is normal.
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3.2 Bringing Them All Together

We can now proceed to the full definition of a hybrid language and well-
formed formulas.

Definition 8. Call
Lu@,e) ={NV,—, 7, K,,Qy, |,E}UAUPUNOMU SVAR,

where u € NOMUSVAR, x € SVAR a Hybrid Language, if {\,V,—, -, K,}U
AU PUNOM is a hybrid language, all the symbols Q,, | and E are new
and SVAR is a countably infinite set disjoint from Ly and does not contain

the symbols Q,, | nor E. A formula ¢ in language Lr@a,| gy 15 inductively
defined as follows:

o = plul(WAX)|WVX)| @ —=x) || Kp| Quip |l ) | B

where 1, x are well-formed formulas, p € P, a € A, i € NOM, x € SVAR
and uw € NOMU SVAR.

We can define the notions of free and bounded variables in the same way
as in quantified logic with | being the only quantifier.

The definition of satisfaction in a model is slightly complicated by the
assignment function. Let us base our definition on [3].

Definition 9. Let M = (W, R,, V) be a hybrid model in a hybrid language
Lra,),r) and let g be an assignment function on M. The satisfaction relation
I is inductively defined as follows

Mow,glkp iff weV(p)

Mow,glki iff we V(i)

Mow,glFx iff € dom(g) & g(x) =w
Mow,gl-p ANV iff Mow,gl-p & Miw, gk
Miw,gl-p VY iff Miw,glk@ or M,w,g -
Mow, gl =Y iff Myw,gF ¢ or M,w, gl

Mw, glF=p aiff Mow, g ¢

Mow, gk Ky iff V' e W (wR,w' = M,w', gl ¢)
Mw, gl Qe iff Jw e V(i) Myw',glk e
Mow,glFQup iff =€ dom(g) & M,g(x),glF ¢
Miw,gl-lze iff Myw, ¢ IF @

Miw,gl- Ep dff Fw' e W M,w' glk ¢

where p € P, a € A, w e W, x € SVAR and ¢ is such that ¢'(z) = w and
9'(y) = g(y) for ally # z.
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We mentioned that £ can define @. This means that the language Ly (| k)
is as expressive as Ly (a,|,p) and Ly (g) is as expressive as Ly (a,g)-

An interesting application of the existential operator in conjunction with
the binder arrow operator is in creating the backwards modalities. K,
means that all the R, accessible states satisfy . But what if we wanted to say
that every R, predecessor satisfies ¢ instead? Such a question makes no sense
in the S5 system due to the symmetry condition of all accessibility relations.
But this predecessor modality would be very useful in other systems though.

Lemma 4. For any agent a, model M without any constrains on the ac-
cessibility relation R,, state w € M, assignment function g and any ¢ not
containing x

M w, gz UMz — @) iff V' (w'Rew = M, w', g IF )

Proof. Note that M, w, g I+ ¢ ifft M,w, g |F ¢. This is because the only
difference between g and ¢’ is in the value of the state variable x and ¢ does
not contain x.

(=) The following statements are equivalent:

Mow, gz UMz — )

M,w, ¢ |FU(Mux — ¢)
Yo M, v, ¢ Ik M,z — ¢
Yo (M, v, ' ¥ Myx or M, v, g" I ) (1)
Now let w’ be any state such that w'R,w. Since by definition ¢'(z) = w we
know that M, w, ¢ I z. It follows that M, w’, ¢’ I+ M,x. This, along with
(1), gives us M, w', ¢' IF ¢ and thus M, w', g IF ¢ as we wanted.
(<) All we need to prove is the statement (1). So let us have any state v
such that M, v, ¢ I+ M,z and we’ll show that M, v, ¢" IF ¢. The following
are again equivalent:
M, v, ¢ |+ M,z
' (VR & M,V ¢ IF )
T (VR & x € dom(g') & ¢'(x) =)

Let us fix any such state v'. Since ¢'(z) = w, we know that w = v’. By

the assumption Vw'(w'R,w = M,w', g IF ¢) we know that M, v, g IF ¢ and
therefore M, v, ¢’ I+ . O]
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Notice that the limitation of ¢ not containing z needs not bother us.
SVAR is infinite so there are always state variables not occuring in ¢ so if ¢
did contain x, we could just pick one of the infinitely many variables y not
in ¢ and replace all occurances of x in ¢ with y.

Unlike for the Logic of Action Models we will not present the sound
and complete axiomatics of Hybrid Logic. It is not important for this work
because we will base our system on a somewhat different axiomatics in a
different language created by Jens Ulrik Hansen in [3]. This system will be
shown in Section 4.1.
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4 Logic of Hybrid Action Models

Let’s briefly describe the Hybrid Logic with Partial Denoting Nominals before
presenting the Logic of Hybrid Action Models. This detour will be useful for
introducing some ideas behind HAM.

4.1 Hybrid Logic with Partial Denoting Nominals

The Hybrid Logic with Partial Denoting Nominals was created by Jens Ulrik
Hansen and was first published in [3]. The purpose of this logic was to create
a working combination of Hybrid Logic with Public Announcement Logic. It
will serve us as a stepping stone towards the Logic of Hybrid Action Models.
Mixing HL with PAL is a more difficult task than it might seem at first
glance. That is because the very basis of Hybrid Logic is compromised.

Publicly announcing a formula ¢ basically cuts a model in two halves—
one where ¢ holds and the other where it doesn’t. The updated model looks
just like the original but some states and accessibility relations may have
gone missing (states that didn’t satisfy ¢ and relations that led to those
states).

M M

12 ]
—_—

P

But what if one of those states had an internal name, say ¢? The up-
dated model wouldn’t satisfy ¢ anywhere which is in direct conflict with the
requirement that all nominals have to be assigned. We could force the valu-
ation of the updated model to satisfy ¢ somewhere else, anywhere, but that
would lead to many undesirable results. Another alternative is to cut only
accessibility relations and keep all the states. This however introduces other
problems, such as [p]p not being a tautology anymore.

Hansen’s solution was to relax the condition Vi € NOM |V (i)| = 1. Tt
no longer needs to hold; Vi € NOM |V (i)| < 1 will suffice, that is V' [ NOM
becomes a partial function.” This small change introduces several problems

9A similar reasoning leads to the need of partial assignment functions as well.
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Hansen managed to solve. The reference operator turned out to be the most
problematic. Recall its two possible definitions:

Mw - @ iff Jw' € V(i) M,w' I ¢

M, w - @ iff V' € V(i) M,w' I ¢

Both of them are equal in Hybrid Logic thanks to the fact that for any
nominal ¢, V(i) is always a singleton. This stops being the case once we
relax the condition as Hansen did. What if V(i) = 07 The existential
version of the definition would be satisfied nowhere in the model while the
universal version would be satisfied everywhere. We have to choose one of
these definitions for @, and Hansen chose the existential one. Now let us
look what the universal definition corresponds to.

MowlkF=p iff MywkF e
Mow lF@Q=p iff Juw' e V(i) M,w' ¥ ¢
Mw lF =@Q;=p iff Yu' € V(i) M,w'"IF¢

This means that the reference operator stops being auto-dual although the
formula @Q;p < —@;—¢ will still hold in those models where ¢ € dom(V).
Hansen labelled the dual @;. The axiomatics had to be changed accordingly
to stay sound and complete.

It is still true that knowing the name of a state means knowing everything
about the state. Thus it also means that such a name must be present
in the model somewhere—K,i — FEi is a tautology in the S5 multimodal
variant of Hybrid Logic with Partial Denoting Nominals. This implies that
K,i — (@i +» @) is also a tautology.

The following 12 axiomatic schemas and 5 rules compose the calculus of
the Hybrid Logic with Partially Denoting Nominals (and assignments).

28



CPL

(A1) F Ki(p = ¥) = (Kap — Ko0)
(A2)  F Q0 = ¢) = (Qup — Q1))
(A3) F@Qup— Qup

(A4 FQuu

(A5) F@,Q@,p— Qup

(A6) Fu—(pe Q)

(A7) F M,Q,p — Q,p

(A8) F (Q,M,vAQu,p) — @Q,M,p
(A9) F@Q,p— Qu

(A10) F Quu — (Qup — Q)

(A11) F @,(] ¢ « @[z := u]), where[z := u] means substituting

all free occurrences of x with u in a given formula. Free oc-
currences are those that are not in the scope of any binder
arrow.

(A12) + Qi — Ei

(R1) If Fpand k¢ — 1 then F 4

(R2) If ¢ then F K o

(R3) If F ¢ then F @,

(R4) If F @,p then F ¢, if u does not occur in ¢

(R5) If + (Q,M,vAQup) — ¢ then + Q,M,p — 1, if u# v and

v occurs in neither ¢ nor ¥

where u,v € NOMU SVAR, x € SVAR, i € NOM and a € A.

This axiomatic is sound and complete with respect to the kripke seman-
tics. The completeness proof can be found in [3]. We will prove the soundness
as a part of the soundness proof of the axiomatics of the Logic of Hybrid Ac-
tion Models in Section 4.3.1.

4.2 Hybridizing Action Models

Action models can simulate public announcement as was shown earlier. This
means that once we hybridize them we will have to deal with the same
problem as Hansen. We will use his solution and assign names and variables
only partially. There is one crucial difference between public announcements
and action models however—the latter can not only reduce the size of models,
it can also expand them as shown in earlier examples. This problem cannot
be solved by relaxing the condition |V (#)| < 1 for any nominal i even further.
If we allowed more states to have the same internal name we would just get
a second sort of atoms, no different from the first one. The original intent
was to give the agents a way for agreeing on a state without any doubt.
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For example we still want a public announcement of a nominal to reduce a
model to a single state (if such a nominal is present in the model at all). The
problem lies in the definition of the restricted modal product ®. Given an
epistemic model M and an action model M their update M ® M can have
up to | M| - | M| states in total. The valuation of atoms depends only on the
epistemic model and its valuation function. If we were to introduce nominals
and keep this definition as it is we would get just the undesirable results we
mentioned. This is shown in the following example.

M M M@ M
° ® . ° e ° °
w ki s t (w,s) IFi (w,t)IFq

Figure 6: pre(s) = pre(t) = p V —p.

The solution presented in this thesis is to not only change the definition
of ® but also that of an action model. We have given internal names to
epistemic states so why not give internal names to action states as well? It is
a sensible thing to do from the philosophical point of view. Agents can fully
describe a state of the world by pronouncing its name; now they can fully
describe actions by giving their names too.!® The definition of action models
will now include a naming function for action states. Language will also have
to be expanded by another set, that of action nominals NOM,. And the set
of epistemic nominals will have to change to include complex names. These
complex names will either be simple names or ordered pairs where the first
member is an already formed complex name and the second member is an
action name.

10We will have to be careful with this though. We do not allow action models to stand
alone as a formula and we won’t allow the same for action names. The proper syntax will
become clear in Definition 12.
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M M Mo M

w ki ® 5 i :>(w,s) I (i,8)  (w,t) I (i,t")

Figure 7: A proposed solution to the problem presented in Figure 6. In this
example action states s and ¢ have action names s’ and t' respectively.

4.2.1 Semantics

We have many disjoint sets of parametres mixed in with several different
sets of metanames. Let us agree on the following denotation to prevent
any confusion. We will denote agents with letters a, b, ¢, propositional atoms
with letters p, ¢, r, simple nominals with letters 7, j, k, complex nominals with
capitalized I, J, K, state variables with x,y, z and action names with s, ¢, u.!
with indexes and primes when necessary. Metanames for epistemic states will
be denoted w, v as usual. Let’s define the complex name set now.

Definition 10. Let NOM and NOMy be two countably infinite disjoint sets.
Define a set of Complex Nominals CNOM as the smallest set satisfying the
following two conditions:

NOM C CNOM
VI, s (I € CNOM & s € NOM, = (I,s) € CNOM)

This means that the members of CNOM will be simple names or ordered
pairs where the second member is an action name and the first member is an
already formed complex name. This will create a nested structure of names
where the rightmost action name corresponds to the latest action state with
which we updated. Since both NOM and NOM, sets are countably infinite,
CNOM is countably infinite as well.

We will use the symbols for complex names I, J, K, ... in a similar way
that we use the symbols for formulas ¢, 9, x, ... They will symbolize names
whose internal structure is either irrelevant or unknown to us or both.

Similarly to how we defined a language and action models in Section
2.1 we need to give a general definition of an action model independent on
language first and only then define the language we will be using.

HThe action names coincide with their metanames. This needs not bother us. Context
will make it clear whether we mean a metaname or an internal name in most cases.
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Definition 11. Let £ be any language which contains sets A, P, CNOM,
SVAR, NOM4 as subsets such that A is finite, P, CNOM, SVAR and NOM4
are countably infinite and all five sets are pairwise disjoint. An S5 Hybrid
Action Model is any structure M = (S, R,, pre, N) where S is a finite non-
empty set, for any a € A, the relation R, is an equivalence relation on S,
pre: S — FLA is a total function from S to a set of all formulas of language
L and N: NOMy — S is a total function on S. A Pointed S5 Hybrid Action
Model is an ordered couple (M, s) where M is an S5 hybrid action model and
s is a member of its domain.

The Logic of Hybrid Action Models will have two separate classes of
models, same as the Logic of Action Models. Epistemic models will change
only slightly (we expand the domains of valuations from subsets of PUNOM
to subsets of P U CNOM) while the change to action models is described in
Definition 11.

The naming function N is defined in such a way that all action names
are assigned to an action state and all action states have a name. Note that
it is total, unlike V' | CNOM. This turned out to be the least problematic
way to assign names to action states. Another difference between N and
V' is that the naming function doesn’t range over sets of states but rather
over states themselves; rng(V) C o(M) while rng(N) = M. This might
seem like a technicality but it will prove useful later. The reason is that we
will sometimes want to know the internal name of the designated action state
and use it while updating. For example we will want a formula [(M, N(s))]ep,
where s € NOM to be well-formed while keeping [(M, s)] for s € M the only
syntactically correct way to update a formula.

Definition 12. Call

‘CZ(C@Q?LE) = {/\7\/7—>7 ™ Kaa CB7 [(M7S)]7 @u7 laE}
UAUPUCNOMUNOM,4 U SVAR

a Hybrid Action Model Language if {\,V,—,—, K,,Cg} UAU P is a mul-
timodal epistemic language with common knowledge, (M, s) is a pointed S5
hybrid action model, {\,V,—,—, K,,Q,, |, E} UAUPUNOMUSVAR is a
hybrid language and if CNOM and NOM 4 are both countably infinite sets dis-
joint from {\,V,—,—, K,,Cg, [(M,s)],Q,, |, E}UJAUPUSVAR and CNOM
15 a set of complex nominals, created from NOM and NOM 4 as per Definition
10. Define well-formed formulas in the hybrid action model language in the
following way:

p o= plWAX) WV —=x) ] K [ Cpy |
wl @ [Lz o | EY | [(M,s)l
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where ¥ and x are well-formed formulas, p € P, a € A, BC A, (M,s) is a
pointed S5 hybrid action model, w € CNOMU SVAR and x € SVAR.

These are the formulas we will be working with in our Logic of Hybrid Ac-
tion Models. The action names will be accessible to agents only indirectly—as
a part of a complex name. As we hinted at before we will need to change
the definition of a restricted modal product ® too. The new definition will
be very similar to the old one but we will need to deal with the (complex)
nominal part of the new valuation function. As was stated earlier this part
has to be defined in a different way than the atomic part in order to make
sure the resulting structure is a model.

Definition 13. Let M = (W, R,, V) be an S5 hybrid epistemic model and
M = (S, R,, pre, N) an S5 hybrid action model. A Restricted Modal Product
(M ® M) is an ordered triple (W', R, V') where

W ={(w,s);weW &seS & M,wl pre(s)}

Va € AV(w, s), (w',s") € W' (w, s)R,(w', s') iff wR.w" & sR,s'
V(w,s) €e W'Vpe P (w,s) € V'(p) iff w e V(p)
and for any (w,s) € W', any I € CNOM and any t € NOM,

(w,s) e VI((I,t)) iff we V(I) & s = N(t)

Again, as long as the domain of the restricted modal product is non-
empty, (M ® M) is an S5 hybrid action model.

The definition of satisfaction for complex nominals stays the same as for
simple nominals, that is

M,w, gk Tiff we V(I).

One might ask: ‘If we have a state named (i, s) in a model, does that mean
that this model is a result of updating?”” Not necessarily. We know that
M,w,g I (i,s) iff w € V((i,s)) but that is all. One of the side effects of
this is that there is nothing that prevents names of different complexity to
coexist in the same model. This may seem peculiar at the first glance but it
is not that strange. States with names of different complexity can dwell in
the same model just as people with names of different complexity live in the
same world.

The definition of the satisfaction relation will copy the earlier definitions.
We will need to be careful around assignment functions though. For example
we will want | z [(M,s)]z to be a tautology. x is an agent’s label for the
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current state. That state should not be relabelled by performing actions;
actions that the agent might not even have a clue that are happening. But
g(x) is a metaname and metanames do change when updating. Soif g(z) = w
in M and we update with (M, s), we want g to be modified in such a way
that g(z) = (w,s) in (M ® M).

This behaviour will contrast with the behaviour of nominals. Those
will change by performing updates. And that is exactly what we want to
happen. Imagine that the current state has an internal name of Prague.
An agent performs an action named Moving to Brno. We should not ex-
pect the new state to be still named Prague. The name will instead be
(Prague, Moving to Brno) which contains the original name and the per-
formed action. Thus I — [(M, s)]I won’t be a tautology while x — [(M, s)|x
will be.

Definition 14. Let M = (W, R,, V) be an S5 hybrid epistemic model and
g an assignment function. A satisfaction relation I+ is defined as follows:

Mow,glkp iff weV(p)

Mow,glE T iff weV(I)

Mow,glkx iff € dom(g) & g(x) =w
Mow, gl ANV iff Mow, gk & M w,glF Y
Mow,glFpVy iff Myw,glF @ or M,w,glF Y
Mow, gl = iff M,w,gW¥ o or M,w, gl

M,w,glk=p iff M,w,gW¥ e
Mow, gk Ky iff V' e W (wRw' = M,w', gl @)
M,w, gk Cpp iff Yw' € W (w(Rp)w = M,w' glF p)
Mow,glFQrp iff Fw' e V(I) M,w',glF
Mow,glF Q.o iff =€ dom(g) & M,g(x),glF ¢
Mow,gl-lz ¢ iff Mw, g IF o
M,w,glF Eo iff Jw' e W M,w',glF ¢
Mw, gl [(M,s)]e iff M,w,glF pre(s) = (M M), (w,s),g"IF ¢

where ¥ and x are well-formed formulas, p € P, a € A, BC A, I € CNOM,
x € SVAR, (M,s) is a pointed S5 hybrid action model, ¢'(x) = w, for all
y#xis ¢ (y) = g(y) and ¢" is an assignment function on M & M such that

dom(g") = dom(g) | {x € SVAR; M, g(x), g I pre(s)}

and
Vz € dom(g" Vv e W (¢"(2) = (v,s) iff g(z) = v).

Just like in Hybrid Public Announcement Logic, the reference operator
is not auto-dual. We will use Hansen’s labelling @;¢ = -@Q;—p.
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4.2.2 Axiomatics

The following 29 axiom schemas (plus all instantiations of CPL tautologies
in the language ﬁg(c@%’ E)) and 8 deductive rules form the axiomatics of the
Logic of Hybrid Action Models. Although we should say infinitely many
deductive rules to be more precise. It is quite possible that this axiomatics
is not minimal; there may be axioms or rules that can be left out and we
would still arrive at the same set of provable formulas. Let us first define a

few formula shortcuts to be used in rule (R8)™:
(M, 5)]" = ¢

(M, 5)]"p = [(My, s1)][(Mz, 52)] - - [(Mh, 50)] 0
(Xti)n =Xt N [(Mlvtl)]Xb ARRRNA [(M> t)]n_lxtn
(pre;(t))" = prey(ta) A[(My, t)]prey(ta) A= A [(M,4)]" pre,,(ta)

where n > 1 is a natural number.
The 29 axioms can be separated into three parts—the S5 part, the hybrid
part and the dynamic part.

The axiom schemas (A1)—(A7) and rules (R1)—(R3) compose the S5
part of the axiomatics:

CPL
(Al) FKo(p— ) — (Kap — K1)
(A2) F Kup—¢
(A3) F K.p — K. K9
(Ad) F-K,p— K,~Kup
(A5) F Cglp — ) — (Cpp — Cpy)
(A6) F Crlp — Epp) — (¢ — Cpp)
(A7) FCpp — (p A EpCpyp)
(R1) If Fo—1 and F ¢ then 1
(R2) If F ¢ then F K,p
(R3) If F ¢ then - Cpy

The axiom schemas (A8)—(A19) and rules (R4)—(R6) compose the hy-
brid part of the axiomatics:
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(A8)
(A9)
(A10)
(A1)
(A12)
(A13)
(A14)
(A15)
(A16)
(A17)
(A18)
(A19)
(R4)
(R5)
(R6)

- @u(p = ) = (Qup — Q1)
FQ@up — Qup
- Quu
F@,Q,p — Qup
U (p o Q)
F M,Qup — Qup
- <@uMaU A @UQO) - @uMaSD
F@Q,p — Qu
F Quu — (Qup — Q)
Qu(lz < plr=1u])
- @y — Ev
(@M A @, K ) — @y
If ¢ then F @,
If - @,p then F ¢, if u is not in ¢.
If (@Q,M,vAQup)— 1) then - Q,M,p — 1), where u # v
and v is contained in neither ¢ nor .

And the axiom schemas (A20)—(A29) and rules (R7) and (R8)" compose
the dynamic part of the axiomatics:

D)
(M, 5)]Qup < (pre(s) — Qy(pre(s) A[(M, s)]p))
FM, s)] lx p—lx[(M,s)]p, if z is not contained in pre(s)

[(
(M, 5)|Eg < (pre(s) — Epre(s) A [(M, 5)]9))
If + ¢ then F [(M,s)]p
For given pointed action models (M, s1),...,(My,s,), for-
mulas x¢,, ..., Xy, for all ¢; € M; such that ti(Rp)*s;, and for
any a € B and any rq, ...,r, such that r{R,t; & ... & r,Rut,
it holds that
I = ()t — (M 0)]"¢) and = (((xe)7 A (pre;(t:))1) —
Kalue)f) then F (xa )t — [(M, 5)]"Crs

Where pe P,ae A, BC A, I € CNOM, u,v € CNOMU SVAR, s € M
and s € NOM,4.
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Axiom (A28) has the condition that z must not be contained in pre(s).
To see why this is necessary let pre(s) = z, ¢ = —x and x ¢ dom(g). Then
[(M,s)] |z ¢ would be satisfied while | x [(M, s)]p wouldn’t be.

One of the conditions of rule (R6) is that v must be contained in neither ¢
nor 1. This means that not only is it not a member of a set sub(¢) U sub(1)),
where sub denotes a set of all subformulas.'> But it must not be a part
of a complex name that is a subformula of either of ¢ or ¢ as well. If
W =[(M,N(s))](I,s) then I is not a subformula of 1); yet the valuation of v
does depend on the valuation of /. This has to be prevented in order for the
rule to be sound. For more details, see the Soundness proof for rule (R6),
Lemma 7.

Notice the missing composition axiom

[(M, $)][(M', s")]p = [(M; M), (s,5)]¢

or any variation of it. This has a very good reason. Imagine a situation with
the following action models M; and M.

M, M, (Ml;M2)

(51,.52) (511752)

. . ) ) . -

(t152) (t1, )

And let’s say that the corresponding naming functions N; and Ny are
completely arbitrary (as long as M; and M, stay S5 hybrid action models).
How should we define the naming function N3 of the composition model? It
has to be total and a surjection if we want (M;; Ms) to be a hybrid action
model. There are two ways to deal with this problem, none of them too
attractive. Either we need to devise a way to define N3 based on N; and
N,. And this definition has to be general. And we have to deal with the fact
that ¢ on the left side of the composition axiom is updated twice while ¢ on
the right side only once which becomes problematic in case ¢ contains any
nominals. Or we can redefine the set of action names in a similar fashion to
how we redefined epistemic names—by introducing complex action names.
But this would greatly complicate the already complicated matters.

12A subformula is defined in the usual way. Note that I is not a subformula of (I, s).
On the other hand u is a subformula of @, and z is a subformula of | x .
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There is an alternative though. Yanjing Wang in an article [10] explores
different sound and complete axiomatizations of PAL. Several of the possi-
ble axiomatizations skip the composition axiom [a][B]e < [a A [a]F]e and
instead introduce different axioms or rules. This article was an inspiration
to redefining the axiomatics in such a way as to leave the composition axiom
out.

4.3 Soundness and Completeness

4.3.1 Soundness

We will prove the soundness of the presented calculus in the usual way: by
showing that all axioms hold in all models and that deductive rules preserve
tautologicity. We will not give the whole proof however. Some of the steps
are well known, those of a multimodal logic of S5 with common knowledge
for example, and it’s not necessary to repeat them.

Fact 1. All instances of all classical tautologies in the language of HAM, the
axiomatic schemas (A1)—(A7) are HAM tautologies. Rules (R1), (R2) and
(R3) preserve tautologicity.

Let us have an arbitrary S5 hybrid epistemic model M, a state w in it
and any assignment function g throughout the rest of this section. We will
show that all the axiom schemas are satisfied in M, w, g.

Lemma 5. The axziomatic schemas (A8)—(A19) are HAM tautologies.

Proof.

(A8) N B N
Qu(p = ¥) — (Qup — Q)
If u is not present in the model under the current valuation and assign-

ment then @, holds trivially. If u is present then the corresponding
state must satisfy ¢ — 1 and ¢ and therefore also .

(A12)
u— (p = Qup)

Let M,w, g IF u. If M, w, g IF ¢ it must also be that M, w, g IF @,
and vice versa.
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(A13)
M,Q,p — Q,¢

M, w, gk M,Q,p iff I (WwRw' AM, W', g IF Q,p). However changing
w to w’ does not affect the satisfaction of @,y in any way.

(A14)
(Q,Mv A Qup) — @, M,

We'll do the case for v = I a nominal and v = z a state variable.
Other cases are analogous. Let M, w, g IF @Q;M,x A @Q,p. Then there
must exist w’ € V(I) such that M,w’, g IF M,x, which means that
there exist w’,w”, such that (w' € V(I) A w'Rw" N M,w", g IF x),
that is x € dom(g) A g(z) = w”. From the second conjunct @,
we have M, g(z),g9 IF ¢, that is M,w" g Ik ¢. Since w' R,w" we
know that M,w’, g IF M,p. And because w’ € V(I) we finally have

Mw, glF QM p.

(A17) B
Qu(lz ¢ = plz =)

Again we'll only examine the case for u = I. If V(I) = () all formulas
of the form @) hold in the whole model so let V(I) = {w'}. We want
to show that M, w', g IF|z ¢ iff M, gk @[z :=1I]. M,w' glF]zp
ifft M,w', ¢ IF ¢ where ¢ is the same as g except for ¢’(x) = w’. This
means that all the free occurances of = in ¢ refer to the state w’. On the
other hand since V(1) = {w'} then all the occurances of I in [z := I],
that is all the free occurances of x in @, refer to w’ as well.

(A19)
(Q,M,vANQ,K,p) — Q,p

Let M,w, g IF @Q,M,v and M,w, g IF @, K,p. The state named v must
be accessible from state named u. All states accessible from u must
satisfy ¢. Thus state named v must satisfy ¢. If u is not assigned,
the implication holds trivially. If v is not assigned then u must not be
assigned either because M, w, g IF @, M,v.

The rest of the schemas are trivial or analogous to already shown proofs.
O

We will deal with the dynamic part of the axiomatic system now.
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Lemma 6. The aziomatic schemas (A20)—(A29) are HAM tautologies.
Proof.

(A20)
(M, s)]p < (pre(s) — p)
The following lines are all equivalent:
M, w, g = [(M,s)]p
(M, w, gl pre(s) = M@ M, (w,s),g" IF p)
(M, w, g lF pre(s) = M,w, g - p)
M, w, g I (pre(s) — p)

The equivalence of the second and third line follows from the fact that
the valuation of atoms in the updated model copies the valuation in
the original model.

(A21)
[(M,N(s)I(I,s) < (pre(N(s)) — 1)

(=) Let M,w,g IF [(M,N(s))|(I,s) and M,w,g IF pre(N(s)). This
means (M ®@ M), (w,N(s)),q" IF (I,s), so (w,N(s)) € Vimem(I,s)
and thus from the definition of ® we have w € V(I) which gives us
Mow,glF 1.

(<) If M,w, gl pre(N(s)) then trivially M, w, g |- [(M, N(s))](I, s).
So let M, w, g IF pre(N(s)) which also means M, w, g IF I. Again from
the definition of ® we get (M ® M), (w, N(s)),q” I+ (I,s) and thus
M w, gk [(M,N(s))](1,s).

(A22)
(M, s)]x < (pre(s) — z)
The following lines are equivalent:
M,w, gk [(M,s)]x
(M,w, gl pre(s) = (M M), (w,s),g" IF z)
(M, w, gl pre(s) = (x € dom(g") & ¢"(x) = (w, s))) (2)
(M, w, g lF pre(s) = (z € dom(g) & g(x) = w)) (3)
M, w, gk (pre(s) — x)

The implication from (3) to (2) utilizes the fact that M, g(z), g I+ pre(s)
to conclude that z € dom(g”). If it didn’t then since g(z) = w we’d
have M, w, g ¥ pre(s) and thus M, w, g IF [(M, s)]x trivially.
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(A25)
(M, 5)] Katp < (pre(s) — [\ Ka[(M,1)])

sRat

Again, the case for M, w, g ¥ pre(s) is trivial so let’s assume otherwise.
Then the following lines are equivalent:

M7 w, g “_ [(M7 8)]KGSO

(Mo M), (w,s),q" IF Ky
V(w',s") (w, )R, (w',s) = (Mo M), (w',s),q" IF )

Looking at the right side of the equation, the following lines are again
all equivalent:

Mow, gl- N\ K[(M,t)]g

sRat
Vt (sRot = M, w, g - K [(M,t)]e)
Vo, t (WRav & sRat = M, v, g Ik [(M,1)]p)
Vo, t (wRav & sR.t & M, v, gl pre(t) = (M@ M), (v,t),g" IF ¢)

Since (w, s)RL(w', §') iff (WR,w', sR,s" and M,w', g IF pre(s’)), we get
the desired equivalence.

(A26)

(M, N(s))]Qu .50 < (pre(N(s)) — Qs(pre(N(s)) A [(M, N(s))]p))

Again let M, w, g IF pre(N(s)). Then all the following lines are equiv-
alent.

M, w, g I [(M, N(s))] Qe ¢
(M@ M), (w,N(s)),g" IF Quop
3(0,8) ((0,) € Vineonn (1) & (M M), (0,8)," I )
(v, t) ((v,t) € Vimem (I, s) & M, v, g I pre(t) & (MRM), (v,t), ¢" Ik ¢)
Ju,t(veV(I)&t=N(s)& M,v, gl pre(t) & (MM), (v,t),¢" IF ¢)
v (ve V() & M,v,glF pre(N(s)) & (M@ M), (v, N(s)),g" IF )
v (ve V() & M,v,glF pre(N(s)) & M,v,g - [(M,N(s))]p)
v (veV(I) & M,v,glF pre(N(s)) A [(M, N(s))]p)
M, w, g I @Qp(pre(N(s)) A (M, N(s))]e)
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(A27)
[(M, 5)]@up > (pre(s) — Qu(pre(s) A [(M, s)l¢))

Again let M, w, g IF pre(s). Then all the following lines are equivalent.
Mw, g = [(M, s)]@Q,p
(Me M), (w,s),g" IFQ.p
z € dom(g") & M@ M),q"(x),¢" IF ¢
x € dom(g) & M, g(z),gF pre(s) & (M@ M), ¢"(x),q" IF ¢
x € dom(g) & M, g(x),g Ik pre(s) & (M@ M), (g(x),s),g" IF ¢
x € dom(g) & M, g(z), gl pre(s) A [(M, s)]g
M, w, g Ik Q,(pre(s) A (M, s)]p)

(A28)
(M, s)] Lz ¢ <]z [(M,s)]p

First note that since pre(s) does not contain x it holds that
M, w, g Ik pre(s) ifft M,w,g" Ik pre(s),

where ¢’ is defined as in Definition 14. This means that we may once
again ignore the part where M, w, g ¥ pre(s).
Expanding the left side of the equation gives us

(M M), (w,s),(g") IF ¢
while expanding the right side gives us
(M& M), (w,s),(g)" IF ¢
So all we need to do is prove that
(4" = (g’

We first show that their domains coincide. Let z € SVAR. We prove
that z € dom((¢")) iff z € dom((¢’)"). There are two options—either
z =z or not. First let z = 2. x € dom((¢")") trivially. On the other
had x € dom((¢")") iff (z € dom(g') & M, ¢ (x),¢" IF pre(s)) but this is
always true as well since ¢’'(x) = w. The case of z # x is also easy. By
definition ¢’'(z) = g(z). So the following lines are equivalent:

z € dom((g')")
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(z € dom(g") & M, ¢ (2),d" Ik pre(s))
(z € dom(g) & M, g(z2), g IF pre(s))
z € dom(g")

z € dom((g"))

Now let us show that these two assignment functions always assign the
same state. We are again left with two options.

Let z = z. ¢(x) = w so by definition (¢')"(x) = (w,s). Although
x does not have to be in dom(g”), it is in dom((¢")’). And since we
started with state w, updated with (M, s), our current state is (w, s)
at the time of evaluation of | x . This means that ((¢”))(z) = (w, s).
Finally let z # z and let g(z) = v. This yields ¢'(z) = v and

M., g'(2), 9" I+ pre(s) = (¢')"(2) = (v, 5).

Similarly
M. g(z),g Ik pre(s) = ¢"(2) = (v, s)
and so
M. g(z),g Ik pre(s) = (¢") (z) = (v, ).
Which means we just need to verify that

M, g (2), g IF pre(s) iff M, g(2), gl pre(s).

But this follows from g(z) = ¢/(z) and from the fact that pre(s) does
not contain x which is the only state variable that can differentiate g
from ¢'.

Again, the proofs that were not mentioned are either trivial or analogous.
O

And finally let’s tackle the deductive rules.
Lemma 7. Deductive rules (R4)—(R8)" preserve tautologicity.
Proof.

(R6)
If - (Q,M,vAQup)— 1 then FQ,M,p — 1,

where u # v and v is not in ¢ or ¢». We will prove the soundness of rule
(R6) by contradiction. Let v = I nominal and let (Q,M,I A Qp) — 1)
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be a tautology and let’s have a model-state-assignment triple M, w, g
such that M, w, g IF @, M, while M, w, g ¥ 1. Since

M w, gl (Q,M, I NQrp) — 1

we get that
M, w, g ¥ Q,M,I N Qpp.

From M, w, g IF @, M, we know that there must exist a state named
u that can access a state satisfying ¢ via R,.

/UQ,HZI
v I v IFu

a

w W
Figure 8: A substructure of a model M

Now construct a model M’ such that M and M’ differ only in valua-
tion:

V= (VA\{{I,v);v € W}HU{(I,0)}.

vl I v lFu

a
w kY
Figure 9: The same substructure of a model M’

1 must be satisfied in M’ w, g because M’ w,g I+ Q,M,I N Q.
M, w, g ¥ 1 while M’,w, g IF 1 but the only other difference between
M and M’ is whether v, satisfies I or not. This means that regardless
of the structure of the formula, ¢) has to depend on the satisfaction of
I in vy. But [ is not contained in ¢ which means that we arrive at a
contradiction.
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The case of v = x state variable is even easier—instead of creating a
new model M’ one can take a different assignment function and work
analogously.

(R8)"
If = (Ot = (M, 0)]"p) and = (Ot A (prei(t)1) — Ka(xe)Y)

then £ (xs)7 — [(M, 5)]"Cpp

For given pointed action models (My, s1),. .., (M, s,), given formulas
Xtis - - -5 Xt, for all t; € M; such that ¢;(Rg)*s;, and for any a € B and
any ri,...,7, such that 1 R.,t1 & ... & r,Rut,.

This proof is quite lengthy and doesn’t bring much new to this work.
It does incorporate the idea of paths but we will look into that more
thoroughly in the Truth Lemma. The proof of soundness of (R8)! can
be found in [6] (Proposition 6.37) and while van Ditmarsch et al. work
in the Logic of Action Models with Common Knowledge, the proof can
be taken verbatim and applied to the Logic of Hybrid Action Models.
The proof of soundness of (R8)" for greater n uses the very same steps
as the proof of (R8)*.

The rest are again easy to prove. O

Theorem 1 (Soundness). All the axioms of the Logic of HAM are tautolo-
gies and all deductive rules preserve tautologicity.

Proof. See Lemmas 5, 6 and 7 and Fact 1. n

4.3.2 Completeness

There are two complications when proving a completeness of this system.

First—the logic is not compact. We cannot hope for a strong completeness

and have to settle with the weak one: if F ¢ then F . This is caused by the

operator of common knowledge. The frequently repeated counterexample to

['Eeimplies'F pis ' = {ELp;n € w}U{=Cpp}. I is contradictory since
o

Cgp = A E4p but a contradiction can never be proved from I' in a finite

number Zo? steps.

The second complication is caused by hybridization. The common way
to prove completeness with respect to kripke semantics is through the con-
struction of the canonical model. But in hybrid logics the canonical model
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needs not be a model at all. We will explain the reason for this with the
following sketch of a proof. Start with ¥ ¢. Expand {—¢} to a maximal
consistent set I' with the help of Lindenbaum lemma. Create a canonical
model where states are maximal consistent sets and where satisfaction cor-
responds to belonging to a set. Then since ~¢ € I' and I' is maximal and
consistent, ¢ ¢ I' which means M ' ¥ ¢ and thus we have a model and
a state that doesn’t satisfy ¢ in all states, that is from ¥ ¢ we proved ¥ ¢.
Now let’s examine a situation for ¢ = —i. We want to expand ——, that is ¢,
to a maximal consistent set I'. In the canonical model M€ I'" I i. However
there may exist many other maximal consistent sets that contain ¢ as their
member. All these sets are members of the canonical model, that satisfy 7.
This means that there are many distinct states that satisfy ¢ in M and thus
the canonical model is not a model since |V¢(i)| > 1.

We will solve the first problem by limiting ourselves to consistent sets
that are maximal in a closure of a given formula. This closure can be defined
in virtually any way, as long as it is finite and contains the original formula,
all its subformulas and a specifically selected list of other formulas. Since
this closure is always finite, all consistent sets that are maximal in it will
be finite too and non-compactness won’t bother us. The second problem
will require us to redefine canonical models in such a way that states will
become equivalence classes of members of NOM U SVAR that satisfy certain
conditions instead of maximal consistent sets of formulas. The proof will
incorporate proofs of completeness of the Logic of Action Models with Com-
mon Knowledge from [6] and completeness of the Hybrid Logic with Partial
Denoting Nominals from [3].

Definition 15 (Formula Closure). Let ¢ be an arbitrary formula. A set
of formulas cl(yp) will be called a closure of formula  iff it is the smallest
set satisfying the following

e v €cly)

o Y€ cllp) = suby) C clp), where sub(v) is a set of all subformulas
of ¥

v € cllp) & v is not of the form —x = = € cl(p)

Cpy € cl(p) = {K,Cpy;a € B} C clyp)

M, s)lp € cl(p) = (pre(s) — p) € clp)

M, N(s))|(I,s) € cl(yp) = (pre(N(s)) — I) € clly)

o € cllyp) = (pre(s) — x) € cl(y)

|~ € cllp) = (pre(s) — =[(M, s)[y) € cllp)

W AXx) € cllp) = ([((M, )] A(M, 5)]x) € cllp)

] ) = Ka[(M,1)]ih; sRat} C cllyp)

K, € cl(p) = {pre(s
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o (M)'Cpv € clp) = (M5B E} C clp) &
{K.(M,t)]"Cpyp;a € B & si(Ry)*t:} C cl(p)), where (R) is an ac-
cessibility relation in action model M; for 1 <1 < n.
[(M7 N(S)>]@(I,s)¢ € CZ(QO) =
(pre(N(s)) — @;(pre(N(s)) A (M, N(s))])) € clp)

(M, )| 0,0 € cllg) = (pre(s) — @, (pre(s) A [(M, s)]1) € cl(e)
(M s)] Lz 1 € cllo) =Lz [(M, )l € clp)
(M, s)|E € cllp) = (pre(s) — E(pre(s) A [(M, s)]¢)) € cllp)
Q,Myv € cl(p) = Q,M,u € cl(p)
(Q,Muv € cllp) & Qi € clly)) = Q, M) € cl(p)

o (uecly) & lzecyp)=yr:=ul e clp)
Furthermore given a closure of a formula cl(y), we define an extended closure
clp(p) in this way:

Let cl() = {11, ..., ¥n} and let (I,)ne. be any enumeration of all com-
plex nominals CNOM such that {Iy,..., L1} N cl(p) = 0. Then clg(yp) is
the smallest set satisfying the following

o cllp) U{Ln1} C clu(p)

o Y€ cllp) = Q. ¢ € clp(p)

o € clp(p) = sub(y) S clp(e)

o iy is of the form Q@ M) = {1, @, M.}, Qp ¥} C clg(p)

o {u,v,9¥} C clp(p) & ¥ is not of the form Q,x = @Q,Q,1) € clg(p)

Since an extended closure of a formula is not uniquely defined (it depends
on the enumerations), we will work with an arbitrary one.

It can be proven that an extended closure of any formula ¢ is finite. This
can be done by first proving that cl(p) is finite by the induction on ¢ and
then proving that clg(¢p) is finite directly from the definition of clg(p). The
reason for extending the closure is because (i) we need to be sure that we
have a nominal at hand to keep the canonical model non-empty and (ii) all
formulas of the form @, M,1 need witnessing. And when showing that any
consistent subset of cl(¢) can be extended to a maximal consistent set of
cl(¢), this maximal consistent set won’t be a subset of cl(p) but instead of
clp(¢). And this is a correct procedure because clg(y) is finite.
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Lemma 8 (Lindenbaum). Let ¢ be an arbitrary formula, clg(p) its ez-
tended closure and T" C cl(¢) a consistent set. Then there exists T C clp(y)
such that

1. TV is consistent

rcrr

[ C clg(p)

for any ¢ € cl(p) either p € T" or T" U {9} is inconsistent

Im+1 eI

S v e e

for any member of T'N cl(p) of the form Q, M, there exists a nominal
J & cl(p) such that Q,M,J € I" and Qi) € T”

Proof. Let us have an arbitrary formula ¢ and I' C cl(¢) a consistent set.
Label | clg(p)| = m. Enumerate the extended closure clg(p) set in such a way
that there exists a k such that cl(¢) = {¢1,..., ¥} and (clg(p) \ cl(p)) =
{Urs1, .-, ¥m}. We will define a sequence of sets (I';)o<i<m in such a way
that I',,, will be the desired set I".

Ty =T U {1}

For n < k

(T, U {thns1} if I';, U {41} is consistent and
Y11 is not of the form @, M,

L1 =< Do U{tng, @M1, @Qp b} if Ty U {t)p 41} is consistent

and 1,41 is of the form @, M,

L I, otherwise.
And forn > k
Ly Ui} i Ty U{tyy} is consistent
1—‘n—i-l = .
r, otherwise.

I'="T,.

Most of the things we need to check follow trivially from the construction
of I". The only non-trivial step of the proof is checking that I is consistent.
But this part of the proof can be taken verbatim from [3], proof of Lemma

2.4 and needs not be repeated here.
[
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We will make use of the following five provable formulas. The proofs can
be found in [3], Lemma 2.5.

Fact 2. The following formulas are provable in the axiomatic system of the
Logic of Hybrid Action Models.

L. Qv — (Qup < Q,p)

2. Qv — Q,u

3. (QuuA Q) — (Q,p < @,Q,p)
4. Q@ — (Qup — Qup)

5. (@ A Qu) — Quw

We foreshadowed a change of definition of a canonical model to prevent
nominals and state variables from being satisfied in more states than one. So
instead of taking all maximal consistent sets in a closure of a given formula
and letting each one of those represent a state, we’ll take only one maxi-
mal consistent set and states will be equivalence classes of all nominals and
variables that occur in the maximal consistent set.

Definition 16 (Canonical Model). Let ¢ be an arbitrary formula and T
a subset of clg(p) that satisfies all the conditions of the Lindenbaum lemma.
Define Nr = {u;u € CNOMUSVAR & @Q,u € T'} and a binary relation ~ on
NE such that uw ~ v iff Qv € T' and an equivalence class [u|. = {v;u ~ v}.
Call ME = (WY RE VYY) a canonical model and g& a canonical assignment
if they satisfy these conditions:

we = {[u];@,uel}

RS = {{[u],[v]); @M, € T}
V) = {[u;Q,peT}
velr) = {u];Q,IeT}
gS(x) = [x] for all x € SVARN N

Thus defined canonical model is indeed a model of our logic as stated in
the following lemma.

Lemma 9. Let M be defined as in Definition 16. Then M is an epistemic
model of the Logic of Hybrid Action Models.
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Proof. We need to verify that (i) ~ is an equivalence relation, (ii) for any
nominal I there are no two distinct states that satisfy it, (iii) the same con-
dition holds for any state variable z and (iv) that for any agent a, RS is an
equivalence relation.We prove parts (ii) and (iii) by contradiction, parts (i)
and (iv) have direct proofs.

(i): Let u, v and w be all members of Nr. u ~ u follows trivially from
the definition of Np, u ~ v = v ~ u follows from item 2 of Fact 2 and
u~v&v~w=u~w follows from item 5 of Fact 2.

(ii): Let I be any nominal and let us have two distinct states [u] and [v] such
that MK [u], ¢S IF I and M [v], g€ IF I. By the definition of satisfaction
relation both [u] and [v] are members of V¢ (I) which means that @,/ € T’
and @,I € I'. By item 2 of Fact 2 we get @;v € I and by item 5 of the same
Fact @,v € T'. This means that u ~ v and [u] = [v] which is a contradiction.
(iii): Let 2 be any state variable and let [u] and [v] be two distinct states such
that ME [u], g5 IF 2 and MK, [v], g€ |- 2. This by definition of satisfaction
relation means that z € dom(¢<) and gf(z) = [u] and ¢g&(z) = [v]. Thus
[u] = [v] and we arrive at a contradiction.

(iv): Symmetry of RS follows from axiom (A19):

uw— K, M,u instance of an S5 provable formula 1
Q,(u — K,M,u) (R4) on line 1 2
Quu — Q,K,M,u (A8), (R1) on line 2 3
@, K,M,u (A10), (R1) on line 3 4
Q,u assumption 5
Q,K,M,u (A16), (R1) on lines 4 and 5 6
Q,M,v assumption 7
Q, M,u (A19), (R1) on lines 6 and 7 8

From @,u and @,M,v we proved @, M,u. So for any [u], [v] € W¢ such that
[u] RS [v] we proved that [v]RE[u).

Transitivity follows from the axiom (Al4) and from M,p < M,M,p
being a provable formula of S5.

Reflexivity follows from symmetry and transitivity.
O

The most important part of the completeness proof is, as usual, the Truth
Lemma. However since states are not maximal consistent sets, satisfaction
won’t correspond to belonging to a set. Instead we’ll work with formulas of
the form of @,p. @, € I indicates that at the state [u], ¢ holds.
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Lemma 10 (Truth). Let x be an arbitrary formula and let ¢ € cl(x) and
[' C clp(x) a mazimal consistent set in the closure of x. Then

M Ju], gf I iff @, €T

We will prove the Truth Lemma by the induction on complexity of the
formula ¢ but first we have to define the complexity of a formula and action
models. This definition is taken from [2] and while taken without almost any
change, it will play a crucial role in the proof of the Truth Lemma and that’s
why it’s worth repeating it here.

Definition 17 (Complexity). For any formulas ¢ and ¢ and any action
model M, the complexity function c, ranging over natural numbers, is induc-
tively defined as follows:

c(p) = 1
cl) =1
clx) =1
c(mp) = 14clp)
(e Np) = 14+ mar{c(p), c()}
C(Kagp) = 1+C<90)
c(Cpp) = 1+c(p)
(Qup) = 1+c(p)
c(lz o) = 1+c(p)
c(Bp) = 1+c(yp) _
c(M) = maz{c(pre(s));s € M}

c([(M;9)p) = (4+c(M))-c(p)

Proof of the Truth Lemma. By induction on the complexity of a given for-
mula .

Base case

Cases of ¢ = p or ¢ = I follow directly from the definition of V¢ so let
o= 1.

(=) By definition ME, [u], & I+ x iff (z € dom(g¥) & ¢S (x) = [u]). Since
g5 (x) = [z], we get [u] = [z], that is u ~ z and thus @,z € T

(<) Let @,z € T'. By axiom (A12) @,u € I which means that [u] € W¢. By
item 2 of Fact 2 we also get that @Q,u € I' and @,z € I'. Thus z € NrNSVAR.
This means that g&(z) = [z]. But since @,x € I', u ~ 2 which means that
[u] = [z]. And by the definition of satisfaction it follows that MY [u], g5 IF 2.
Induction Step

Case of ¢ = =)
ME [u], g8 - = iff ME | [u], g5 ¥ ¢ iff by the induction hypothesis
Q. ¢ I'iff ~@, € T"iff @,—p € I by axioms (A9), (A15) and (A16).
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Case of p =9 A x
ME ], g€ IF 1p A x iff by induction hypothesis @, € ' and @, x € T
iff @,(¢» A x) € I'. The last step follows from a provable equivalence
Q. (Y A x) < (@0 A@Q,x). This equivalence utilizes the axioms (AS),
(A9), (A15) and (A16), rule (R4) and Classical Propositional Logic.

Casesof p=¢yYVyand p=v¢ — x
See the cases for negation and conjunction.

Case of ¢ = M,y

ME [u], g8 - Myt iff Jv € WO ([u]RE[v] & MK, [v], g€ IF o) iff by
induction hypothesis Jv (Q,v € ' & @, M,v € ' & @,¢p € I'). This,
by axiom (Al4) implies that @,M,) € I'. On the other hand, let
@, M, € T'. By Lindenbaum Lemma there must exist a nominal J
such that @Q,M,J € I' and Q¢ € I'. This implies that both @,u
and @;J are in T so both [u] and [J] are in W°. Since @,M,J € T
we have that [u]R¢[J] and from @;¢» € T by induction hypothesis
ME 1], g8 IF 4. From this it follows that ME, [u], S I+ M.

Case of ¢ = K,
Since K, = ~M,—) we can refer to earlier cases.

Case of ¢ = Q¢
(<) @,@¢p € T implies by axiom (All) that @) € T" and this by
axiom (A15) that @;I € I'. This, along with the induction hypothesis
gets us ME [I], ¢S IF +p. By the definition of the canonical valuation
@I €T implies [I] € VY(I) which means that M| [u], g& IF Q).
(=) Let ME, [u], g€ IF @¢p. By definition of satisfaction

Ju' ([u] € VO(I) & ME, W], g8 I ).

This yields @, € I and Qi) € I'. By Fact 2, item 4 we get Q¢ € I.
Since @Q,u € T" (by assumption) and @,/ € I" (by axiom (A15)), and
Fact 2, item 3 allows us to finish this case because @,@y) € T'.

Case of ¢ = Q.1
Very similar to the previous case.

Case of p=|x ¢
First note that M, [u], g& -]z ¢ iff MY, [u], g€ - [z := u].
ME ], g€ I+ bz := u] iff by induction hypothesis @, [z := u] € T iff
by axioms (A9), (A15) and (A16) (Quu € T & Q,1p[x :=u] € T) iff by
axioms (A8) and (A17) (Qu €T & @, |z ¢ € T') iff by axioms (A9),
(A15) and (A16) @, |z ¢ € T.
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Case of ¢ = Ev¢

(=) M, [u], g8 - By iff 3’ ([u'] € W & ME,[u], g€ IF 1b). These
by definition of the canonical model and by induction hypothesis yield
Qu eI, Q' €I and @u¢ € I'. By Fact 2, item 3 @,Q,1) € T’
and by axioms (AS8), (A16), (A18) and rule (R4) we get @Q,FE € T
(<) We can freely add new members to our set of agents A, as long
as it stays finite. So let’s add a universal agent U whose accessibility
relation Ry is universal; that is Vw, w’ wRyw’ and follow the lines of
the case of ¢ = M, 1. And because Fv = Myt we can conclude this
case.

Case of ¢ = Cp

(<) Let @,Cpy € T. We'll verify that an arbitrary [v] € W that
is accessible from [u] via (R%)* satisfies ¥. Since model MY is finite
there exists a finite sequence of states [ug], . .., [u,] such that [u] = [u],
[v] = [u,] and for any 0 < i < n, [u;|RG[uis1]. Let a € B be any
agent such that [ug|RS[u;]. Because Cptyp — K,Cpi is a provable
formula for an arbitrary a € B and since Cpty) € cl(x) implies that
K,Cp € cl(x) as well, we get @,K,Cpy € . By definition of RY,
Qo Myuy € T. We defined [ug] as [u] so @, M,u; is also a member of T
by item 4, Fact 2. As stated earlier @,K,Cpt¢ € I' so by axiom (A19)
@,,Cpy € T'. Because [v] is reachable from [u] in n steps, all we need
to do is repeat this argument (n — 1)-times and arrive at @,Cgy € T
from which it follows that @,1) € T' by axiom (A7) and by induction
hypothesis ME, [v], g€ I+ 9.

(=) We will work along the lines of the proof of completeness as stated
in [6]. However we cannot simply copy the proof because there are
two major differences: (i) states in the canonical model are classes of
equivalence on all nominals and variables mentioned in I' instead of
maximal consistent sets and (ii) from this following fact that we built
the canonical model based on one maximal consistent set instead on
all maximal consistent sets of clg(x). The proof in [6] utilizes the fact

that = \/ /A 7 in non-hybrid systems. This is however not true in
Tecl(x) vel

HAM.'® What we have to use instead is (9) on page 55. Assume that
ME [u], g€ IF Cpp. We'll show that @,Cpip € T'. Define

Wg, = {lv] € W ME, o], gf I+ Cpu}

I3Every maximal consistent set of clz () must contain a nominal I, lel(x)|+1 Which would
make this nominal a part of every disjunct. Thus the whole disjunction implies | ¢jy)|+1
which is not a tautology. Yet if the whole disjunction were provable, the nominal would
have to be provable as well. A contradiction with the soundness of the calculus.
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and define

V A«

[v]ew§ , @vael

We'll prove the following three statements about &:

T @& (4)
&= (5)
Tk ¢ FEge (6)

(4): From the provable equivalence
FQu(ar V- Va,) < (Qa V- VQau,) (7)

we get

\/@/\a

[v]e Quael’

Because [u] € WE , we get T' - @u§

(5): Take an arbltrary [v] € W§ . By definition Mf, [v], gf IF Cp.
This yields by semantics and induction hypothesis @vl/J e I'. This
means that for any [v] € W,

Thus F & — .

(6): We'll prove I' - € — Ep& by contradiction so let I' U {{ A = Ep&}
be a consistent set of formulas. This means that there must exist a
state [v] € W, and an agent a € B such that

ru{ /\ anrM~¢
Q,ael
is consistent, in other words

ru{ A\ ernse~ \/ A 8 (8)

Qya€l [wewg , QuBer

is consistent. Every maximal consistent set in ¢lg(x) must contain the
nominal /|¢y)4+1 Which means that specifically I" = I|¢yy)+1. Note that

e A AN

[w]eWC @,,BeT
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holds. This is because Iy +1 is a member of W and because for any
formula 9 € cl(y) it holds that

Qv eliffJ el

r-\ A s (9)
[

w]EWC @Bl

So

and from (8) and (9) it follows that
ru{ A\ anM, \ N\ 8}
@yael [wle(WO\WE ) @uBel
is consistent. By
EMy(ag V- Vay,) < (Myag V-V Myay,)
we get that the following set is consistent as well.

ru{ A\ an \/ M, N\ B}

Q,ael’ [wle(WAWE ) @, pell
We assumed that [v] € W which means that @,v € T'. It follows that

ruf{va \/ M, w}
(WS )

is consistent as well. From axiom (A12) and (7) we get that

I'u {U N \/ @vM(zw}

fle(WOWE )

must be consistent too. So there must exist a state [w'] € (W \Wg )
such that [v]RS[w'] by the definition of RS. Thus we finally arrive
at a contradiction because Cgt) is satisfied in [v] but not in [w'] yet
[ RE [w'].

After verifying that £ satisfies all three conditions (4), (5) and (6) we
can proceed to the final part of the proof of this case. From (6) and
axiom (A6) we get I' F & — Cg€, from (5), rule (R3) and axiom (A5)
I' - Cg¢ — Cpy. By Classical Propositional Logic I' F & — Cp.
By axioms (A8), (A9), (A16) and rule (R4) and fact that @,u € T we
obtain I' + @, — @,Cpvy, so I' F @Q,Cgtp. Because @Q,Cpy) € cl(x),
deductive closure of I' yields at last @,Cgy € T'.
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Case of ¢ = [(M, s)]p
ME [u], g8 IF [(M, s)]p iff by semantics M, [u], g I+ pre(s) — p.
The formula pre(s) — p has a lower complexity than [(M, s)]p so we
can apply the induction hypothesis to obtain @,(pre(s) — p) € '
which, by axioms (A8), (A15), (A16), (A20) and rule (R4) gives us
Q,[(M,s)]p eT.

Case of ¢ = [(M, N(s))](I, s)
ME (], g8 I [(M, N(s))](I, s) iff by semantics

ME ], g€ IF pre(N(s)) — 1.

This formula has again a lower complexity so by the induction hypoth-
esis @, (pre(N(s)) — I) € T iff by axioms (AR), (A15), (A16), (A21)
and rule (R4) yields @,[(M, N(s))]({,s) € I'.

Cases of p = [(M, s)]«
wherea = ), a =YpAx,a =9Vx,a =9 — x, a = K9, a = Qp 1),
a = Q@) or a = E1p are very similar to the earlier cases.

Case of ¢ = [(M, s)|Cy

This case is very similar to the ¢ = Cgvy case. We will not however use
axiom (Ab) to finish this case but instead rule (R8)'. We will also put
the notion of paths to use. The case of ¢ = Cp1) was easy enough not
to need this notion. We don’t need it here either but the proof would
become rather incomprehensible without it. So define a BM st-path of
length n in the model M& as a sequence of states [ug], ..., [u,] and
action states so, ..., s, from M such that sy = s, s, = ¢, for any k <n
there exists an agent a € B such that [us]RS[uy,1] and spRyspy1 and
finally for any k& < n, the formula @,, pre(s;) is a member of I'. First
note that the following equation holds:

Mgv [U], gl'c" I [(Ma S)]CBw
iff
Vt € M, every BM st-path from state [u] ends in a state, that satisfies

(M, 2)].

The following picture may make it clear why the equation holds:
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ME M (ME @ M)

[ua] I (M, )}
o=t (fta), 50) I

T Ml L su) o
el ® s = (wle) Fy
1 o ko

" " So =5 " ([uo], s0) IF Cp1p

[uo] = [u] I [(M, 5)|Crt)

Figure 10: MY, [ug], g5 IF [(M, s)]Cp1 forces ([ug)], so) to satisfy Cptp which
means that ([u,],s,) satisfies ¢ and so MK [u,], ¢S IF [(M,1)]p. On the
other hand [u] lies on a BM ss-path of length 1 so it must satisfy [(M, s)]1.
The similar holds for any state that is reachable from [u] by a BM st-path
for any ¢ € M. The resulting state in the update model must satisfy 1
so all states in the updated model reachable from ([ug], s¢) satisfy ¢. Thus

Mg? [uﬂ]aqu I+ [(M7 S)}CB@D

Thus all we need to prove is that

Vt € M, every BM st-path from state [u] ends in a state, that satisfies
(M, )]y
iff
@u[<M78)]CB77Z) el.

Observe that [(M,t)]y has a lower complexity than [(M, s)|Cpy so we
know that @,[(M,t)]y € T iff ME, [v], g5 IF [(M, 1))y

(<) Let @,[(M,s)]Cpyp € T, we'll show that every BM st-path from
[u] ends in a state (call it [v]) that satisfies [(M,¢)]1) and such that
Q,[(M,t)]Cpy € I'. We'll work by induction on the length of the path.
The base case follows easily from - Cpt) — 1 and rule (R6).

The induction step: Let us have a BM st-path [ug], . . ., [ty4+1], such that
[u] = [ug] This means that there must exist an agent a € B such that
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[, R [ty 1] and s, Rysny1, Where s; is an action state corresponding
to the state [u;] on the BMst-path. [u,|RE [u,11] yields

@y, Mytipy1 € T. (10)
From - Cpy — K,Cpgt, rule (R7) and the fact that
H (M, 8)](¥h1 — 2) — ([(M, 5)]pr — [(M, 5)]tb2)

we get
= (M, 5,)]Cp¢ — [(M, 52)| KaCp¢)

and from the reduction axiom for knowledge (A25),
= (M, 5n)][ KaCpth — (pre(sn) — Ko[(M, 5p.41)]Cp1)).
By rule (R4) and axiom (A16) and @, u, € T,
I'F @, [(M,s$,)]|K.Cpy — (Q pre(s,) — Q, K,[(M, $n+1)|Cp).

By the induction hypothesis @, [(M,s,)]Cpy € T since [u,] lies on a
BM st-path from [u] of length n. And from @, pre(s,) € I' we get

@, Ko[(M, 5351)]Cb € . (11)

From equations (10) and (11) along with axiom (A19) we obtain that
@y, [(M, 5,41)]CpY € T and so @, [(M, s,11)]Yp € T as well and
from induction hypothesis M, [un11], g5 IF [(M, 8,41)]%) which was to
be proven.

(=) We won'’t go into as many details as in the case of ¢ = Cpgt
because of the similarities between them. The major differences include
the redefinition of Wg , set and the change to §. So define

Wi aew = {0V (H(Rp)*t = MG, [v], gF IF [(M,1)]¢)}
and define

c= Vo Ao

PIEWS s, " Quael
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The following three statements hold for a € B and tR,t':

I'-@,& (12)
=& — (M 1))y (13)
[E (& A pre(t)) — K&y (14)

We won’t prove their validity because all the steps are analogous to the
proves of statements (4), (5) and (6). By applying the rule (R8)! to
the equations (13) and (14) we obtain

I'F & — (M, 5)|Cpt

and following the same steps as in the case of C'gyy will, with the help
of equation (12), yield @,[(M, s)]Cpy € T,

Case of ¢ = [(M, s)][(M',s")])

If ¢ is of the form of [(M,s)]"d for any n > 0 and 0 is not of the
form Cpv, we can use the same procedure as in cases of ¢ = [(M, s)]«,
where a = p, o = (SA7) etc. Apply the corresponding reduction axiom
on 9. This lowers the complexity of the formula so use the induction
hypothesis and reapply the reduction axiom.

If however ® is of the form of [(M, s)]"Cgd, follow the lines of the case
of p = [(M, s)]Cpy but instead of using rule (R8)!, use rule (R8)""2.
The set Wg M.t and formulas § have to be changed accordingly. We
will however leave this open as it is still a work in progress.

]

Having proven the Truth Lemma and the Lindenbaum Lemma, nothing
stands in our way to finally prove the Completeness Theorem itself.

Theorem 2 (Completeness). Let ¢ be an arbitrary formula. Then
Feo=Fop

Proof. Let ¥ o; we'll show that # ¢. Since ¥ ¢, the set {—p} is consistent.
Let us create an extended closure of formula —¢ by following the procedure
in the definition of closure. Extend the set {—p} to a maximal consistent
set I in such a way that I' satisfies all the items of the Lindenbaum Lemma.
Construct a canonical model M and a canonical assignment g&. Since
- € I' and T is consistent, ¢ ¢ I". By the construction of I' we know
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that it contains at least one nominal, call it [, and a formula @;I. By
rule (R4) Q¢ ¢ I' and by axiom (A16) Q¢ ¢ I'. By the Truth Lemma
ME (1], 95 ¥ ¢ and thus we have found a model-state-assignment triple

which doesn’t satisfy ¢ so F ¢.
O
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5 Open Questions

All the logics in this work were defined using Kripke semantics. However
algebraic semantic can be hybridized as well. It might be interesting to
check how the logic of HAM looks in algebraic semantic.

A Hilbert style calculus works well for explanation purposes but it’s not
too useful for finding or proving tautologies. A sequent calculus for the Logic
of HAM would be most interesting. Along with all the proof theory that it
brings.

There exists a translation from the hybrid language to the language of
Classical First Order Predicate Logic. It is simply an extension of the stan-
dard translation and it can be found in [2]. However there also exists a back-
wards hybrid translation from a classical predicate language to the hybrid
one, to be found in [2] as well. Hybrid action model language is however more
expressive than that of Hybrid Logic. How do we have to extend the classical
predicate language to get one corresponding to the language of HAM? How
would a corresponding logic look?
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6 Conclusion

We have shown a brand new Logic of Hybrid Action Models in the language
of Eg(%% 5 and its sound and complete axiomatics. This logic is rather
complicated and, admittedly, cuambersome. However it adds new options to
look at the agents’ communications.

While action models are an exciting new way to view the world of these
ideal agents and how they communicate, hybridization gives knowledge its
true power. From allowing agents to truly ‘know’ a state to applying back-
wards modalities to check whether the current state is accessible from another
one. Both parts of the Logic of HAM are very moldable; we can remove the
common knowledge and the axiom K,y — ¢ to get a logic of belief. We can
remove the binder arrow and existential operators and only allow agents to
refer to other states. Or we can strip the logic to its very basis—no restrains
on accessibility relations, no common knowledge and no added hybrid oper-
ators. All these variants bring easily predictable changes to the axiomatics
and the completeness proof.

There’s been a lot of original research done in this work. The whole
Logic of Hybrid Action Models is original—both its semantics and axiomatics
along with solutions to most of the problems that arised from hybridizing
action models. Namely the problem of having one name satisfied in several
states which was overcome by introducing action and complex names. Or
the unique cooperation of updates and nominals/variables. Although our
solution borrowed heavily from [3] it is still a mostly original creation. Adding
common knowledge to Hybrid Logic itself is an original work.

The proof of completeness is not in its final version. As it currently
stands, taking rule (R8)! instead of rules (R8)" will yield a sound and com-
plete axiomatics with respect to the Logic of Hybrid Action Models with the
limitation that any formula that contains [(M, s)]"Cp1) as a subformula for
any n > 2 is forbidden. This limitation is planned to be removed in one of
the upcoming articles.
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