
Univerzita Karlova v Praze
Matematicko-fyzikálńı fakulta

DIPLOMOVÁ PRÁCE

Bc. Martin Hlaváč

Útoky pomoćı postranńıch kanál̊u

Katedra Algebry

Vedoućı diplomové práce: Ing. Tomáš Rosa, Ph.D.

Studijńı program: Matematika

Studijńı obor: Matematické metody informačńı

bezpečnosti



Prohlašuji, že jsem diplomovou práci napsal samostatně a výhradně s použit́ım
citovaných pramen̊u. Souhlaśım se zap̊ujčováńım práce.

V Praze dne 15. dubna 2006 Martin Hlaváč

1



Contents

1 Preface 5

2 Preliminaries 6
2.1 Symbol | · |N . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Basic definition and properties . . . . . . . . . . . . . . 7
2.2.2 Algorithmic problems . . . . . . . . . . . . . . . . . . . 8
2.2.3 LLL algorithm . . . . . . . . . . . . . . . . . . . . . . 9
2.2.4 Babai’s algorithm . . . . . . . . . . . . . . . . . . . . . 9

3 Extended Hidden Number Problem 11
3.1 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Existing solutions . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.1 Nguyen and Shparlinski’s approach . . . . . . . . . . . 12
3.2.2 Howgrave-Graham and Smart’s approach . . . . . . . . 12
3.2.3 Motivation for the new method . . . . . . . . . . . . . 12

3.3 Algorithm solving EHNP . . . . . . . . . . . . . . . . . . . . . 14
3.4 Short vectors in L . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5 Correctness of the solution . . . . . . . . . . . . . . . . . . . . 18

4 Digital Signature Algorithm 20
4.1 Public parameters . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Signing operation . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 Verifying operation . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4 DSA Key Disclosure problem . . . . . . . . . . . . . . . . . . 22

5 Real Scenario Application 24
5.1 Hyper-Threading Technology . . . . . . . . . . . . . . . . . . 24
5.2 Sliding Window Exponentiation . . . . . . . . . . . . . . . . . 25
5.3 Practical Experiments with EHNP . . . . . . . . . . . . . . . 30

6 Conclusion 34

References 35

Appendix A 37

Appendix B 39

Appendix C 45

2



Název práce: Útoky pomoćı postranńıch kanál̊u

Autor: Bc. Martin Hlaváč

Katedra (ústav): Katedra Algebry

Vedoućı diplomové práce: Ing. Tomáš Rosa, Ph.D.

e-mai vedoućıho: trosa@ebanka.cz

Abstrakt: Práce pojednává o rozš́ı̌reńı p̊uvodńıho problému skrytého č́ısla (PSČ)
zavedeného v roce 1996 Bonehem a Venkatesanem. PSČ řeš́ı situaci, kdy
jsou známy aproximace nějakých násobk̊u skrytého č́ısla modulo N , přičemž
neuvažuje př́ıpadnou znalost o něm samotném. V práci je navržena metoda,
která PSČ podstatně zobecňuje - zohledňuje situace, kdy je známa informace
jak o násobćıch, tak i o skrytém č́ısle samotném. Obě informace mohou být
rozděleny do několika d́ılč́ıch část́ı, což p̊uvodńı PSČ neuvažoval. Uvedeno
je praktické využit́ı pro odhaleńı privátńıho kĺıče DSA v př́ıpadě znalosti
postranńı informace o 5 podpisových operaćıch. Ta může být k dispozici
např́ıklad v př́ıpadech, kdy je podpis generován v nezabezpečeném prostřed́ı
- na platformě Pentium 4 s technologíı Hyper-Threading.

Kĺıčová slova: rozš́ı̌rený problém skrytého č́ısla, mř́ıžka, kryptoanalýza, DSA,
sliding window, hyper-threading

Title: Side channel attacks

Author: Bc. Martin Hlaváč

Department: Department of Algebra

Supervisor: Ing. Tomáš Rosa, Ph.D.

Supervisor’s e-mail address: trosa@ebanka.cz

Abstract: The work extends the Hidden Number Problem (HNP) introduced
by Boneh and Venkatesan in 1996. HNP is to find an unknown integer if
several approximations of its multiples modulo N are known. New method
for solving an extension of HNP (EHNP) is elaborated, taking into account
the fragmentation of the information on the multiples and on the hidden
number itself, as well. A real scenario application of the approach is presented
- the private DSA key is extracted with the knowledge of side information on
5 signing operations. Such an information can be obtained if the signatures
are generated in the unsecured environment of a Pentium 4 processor with
Hyper-Threading technology.

Keywords: extended hidden number problem, lattice, cryptanalysis, DSA, sliding
window, hyper-threading

3



Acknowledgment

The author would like to thank Tomáš Rosa for introducing him to the
fascinating area of side channel cryptanalysis and to the basics of the ge-
ometry of numbers and the lattice theory. Numerous helpful discussions are
gratefully appreciated. Thanks also goes to Colin Percival for providing the
source code for his experiments, to Jozef Juŕıček for clarifying several topics
in the probability theory, to Oldřich Ulrych from Mathematical Institute of
Charles University for providing several weeks of computing power needed
for the experiments conducted and to eBanka, a.s. for lending an experimen-
tal hardware for verifying real side channel existence on the Pentium 4 HTT
platform.

4



1 Preface

Motivated by the recently discovered side channel hidden in the design of
modern processors with Hyper-Threading technology, we propose a general
method that solves the abstract problem in the geometry of numbers arising
from Digital Signature Algorithm, the Extended Hidden Number Problem,
with an acceptable probability of success.

We extend the original Hidden Number Problem (HNP) introduced by
Boneh and Venkatesan in 1996 (see [5]). Let N be a prime and let αi, ρi, βi ∈
ZN , 1 ≤ i ≤ d and µ ∈ Q be known values satisfying αix+ρiki ≡ βi(modN)
and ki ≤ 2µ for unknown values of “hidden number” x and nonces ki. HNP
is to find x.

The extension we propose replaces the unknown values x and ki with the
decompositions x̄+

∑d
j=1 2πjxj and k̄i +

∑li
j=1 2λi,jki,j, respectively, where the

only unknowns xj, 1 ≤ j ≤ m and ki,j, 1 ≤ j ≤ li, 1 ≤ i ≤ d are bounded
from above with known constants (equivalent to ki ≤ 2µ in HNP). In other
words, such an extension allows us to make use of eventual information on
individual bits in the original unknown values x and ki. We call the extension
Extended Hidden Number Problem (EHNP), propose a probabilistic polyno-
mial time algorithm to solve its instances and examine the correctness and
probability of success of the algorithm.

The work is organized as follows. Besides several technical lemmas, we
define a full-rank lattice in Qn in Section 2 and demonstrate several of its
properties. We introduce the main algorithmic problems in the lattice theory
and some of their solutions, i.e. LLL lattice basis reduction algorithm and
Babai’s Closest Plane algorithm in the formulations that are widely accepted
in cryptographic community (e.g. [10], [5], [14], etc.).

The Extended Hidden Number Problem is defined in Section 3. We men-
tion two existing approaches solving EHNP or its special cases, point out
their influence on the newly proposed algorithm, and finally investigate its
correctness.

An application to Digital Signature Algorithm is analyzed in Sections 4
and 5 assuming the signatures are generated in the unsecured environment
of Pentium 4 processor with Hyper-Threading technology using Sliding Win-
dow exponentiation. We propose two algorithms to convert the side channel
information to the form suitable for EHNP. We conclude with an extensive
series of experiments supporting the usability of the new approach in the
real-life situations.

5



2 Preliminaries

2.1 Symbol | · |N
Definition 2.1. For a ∈ Z, N ∈ N we define

|a|N = min
z∈Z
|a− zN |.

Lemma 2.2. Let a, b ∈ Z, N ∈ N. Then

(i) |a + b|N ≤ |a|N + |b|N
(ii) |ab|N ≤ |a|N |b|N

Proof. Let ma,mb ∈ Z be such that |a−maN | = |a|N and |b−mbN | = |b|N .
Then

(i) |a|N + |b|N = |a−maN |+ |b−mbN | ≥ |a+ b− (ma +mb)N | ≥ |a+ b|N
(ii) |a|N |b|N = |a−maN ||b−mbN | = |ab− (amb + bma−mamb)N | ≥ |ab|N

Corollary 2.3. Let d ∈ N, a1, . . . , ad ∈ Z, N ∈ N. Then

(i)
∣∣∣∑d

j=1 aj

∣∣∣
N
≤∑d

j=1 |aj|N

(ii)
∣∣∣∏d

j=1 aj

∣∣∣
N
≤∏d

j=1 |aj|N .

Lemma 2.4. Let a, b ∈ Z, N ∈ N. Then

|ab|N =
∣∣a|b|N

∣∣
N

Proof. Let mb ∈ Z be such that |b−mbN | = |b|N . Then
∣∣a|b|N

∣∣
N

=
∣∣a|b−mbN |

∣∣
N

= |ab− (amb)N |N = |ab|N .

Corollary 2.5. Let a, b ∈ Z, N ∈ N. Then

|ab|N =
∣∣|a|N |b|N

∣∣
N

Proof. It suffices to apply Lemma 2.4 twice, i.e.

|ab|N =
∣∣a|b|N

∣∣
N

=
∣∣|a|N

∣∣|b|N
∣∣
N

∣∣
N

=
∣∣|a|N |b|N

∣∣
N

.

6



Corollary 2.6. Let d ∈ N, a1, . . . , ad ∈ Z, N ∈ N. Then
∣∣∣∣∣

d∏
j=1

aj

∣∣∣∣∣
N

=

∣∣∣∣∣
d∏

j=1

|aj|N
∣∣∣∣∣
N

.

Lemma 2.7. Let N ∈ N and a, b ∈ Z. Then statements

(i) |a + b|N = 0

(ii) a ≡ −b (modN)

are equivalent.

Proof. The existence of k ∈ Z such that a+b+kN = 0 is equivalent to both,
(i) and (ii).

2.2 Lattices

Lattices have been successfully employed to attack various cryptographic
algorithms, e.g. Knapsack and DSA-like signature schemes (see [11], [14],
[8]). General definition of a lattice can be found in [11]. For the purpose
of this work however and for the most of the other approaches as well, the
general definition (and the properties related) is unnecessarily wide. Here,
we define a full-rank lattice and for simplicity call it a lattice without further
notice.

2.2.1 Basic definition and properties

Definition 2.8. A lattice L in Qd is a set of lattice vectors
{

d∑
i=1

αibi |αi ∈ Z
}

,

where b1, . . . ,bd ∈ Qd are linearly independent and are called basis vectors
of lattice L. The matrix, which rows are the basis vectors, is called basis
matrix of lattice L. We say the lattice L is generated by the rows of its basis
matrix.

In what follows, we will use symbol B for the set of basis vectors and for
the corresponding basis matrix, as well.

Lemma 2.9. For d ≥ 2, any lattice L in Qd has infinitely many basis.

Proof. Let {u1,u2, . . . ,ud} be a basis of L. Then {u1 + u2,u2, . . . ,ud} is
basis of L, as well.

7



Lemma 2.10. Let B and B′ be two basis matrices of lattice L. Then

| detB| = | detB′|.

Proof. Let B = {b1, . . . ,bd} and B′ = {b′1, . . . ,b′d}. Since B′ is a basis

matrix, we can write bi =
∑d

j=1 ui,jb
′
j for 1 ≤ i ≤ d, where ui,j ∈ Z.

Notation U = (ui,j) gives B = UB′.
Analogically, there exists an integral matrix U′ such that B′ = U′B.

Since B = UB′ = UU′B, it holds UU′ = Id. Finally, matrices U and U′ are
both integral, thus we can write detU = detU′ = ±1.

Definition 2.11. The volume (or determinant) of lattice L is defined as

Vol(L) = | detB|,

where B is a basis matrix of L.

Remark 2.12. From the geometric point of view, the volume of a lattice
corresponds to d-dimensional volume of the parallelepiped spanned by the
vectors of the basis matrix.

Definition 2.13. For a lattice L we define i-th Minkowski’s minimum λi(L)
as the minimum of max1≤j≤i ‖vj‖ over all linearly independent vectors v1,
. . . , vi ∈ L.

First Minkowski’s minimum λ1(L) is often referenced to as the norm of
lattice L, noted ‖L‖. Analogically, symbol ‖L‖∞ is defined if infinity norm
is applied in previous expression.

Remark 2.14. The i-th Minkowski’s minimum can be seen as the radius of the
smallest sphere with the center in origin that contains i linearly independent
lattice vectors.

2.2.2 Algorithmic problems

For a given lattice L in Qd one encounters following problems

SVP Shortest vector problem
Find u ∈ L such that ‖u‖ = ‖L‖.

ASVP Approximate shortest vector problem
For a fixed f(d) find u ∈ L such that ‖u‖ ≤ f(d) ‖L‖.

CVP Closest vector problem

8



For v ∈ Qd find u ∈ L such that ‖u− v‖ = minw∈L ‖w − v‖.

ACVP Approximate closest vector problem
For v ∈ Qd and a fixed f(d) find u ∈ L such that
‖u− v‖ ≤ f(d) minw∈L ‖w − v‖ .

SBP Smallest basis problem

Find a basis B = {b1, . . . ,bd} such that
∏d

i=1 ‖bi‖ is minimal.

The parameter f(d) in the definition of ASVP and ACVP is called the
approximation factor and depends only on dimension d.

2.2.3 LLL algorithm

Theorem 2.15 (LLL algorithm). There exists a polynomial time algorithm,
which given a basis of lattice L in Qd as input returns basis B = {b1, . . . ,bd}
of lattice L that satisfies

‖b1‖ ≤ 2
d−1
4 Vol(L)

1
d

‖bi‖ ≤ 2
d−1
2 λi(L), 1 ≤ i ≤ d

d∏
i=1

‖bi‖ ≤ 2(d
2)/2Vol(L)

Proof. To be found in [9].

Definition 2.16. A basis of lattice L with the properties described in The-
orem 2.15 is called LLL-reduced.

Remark 2.17. Being given a basis of lattice L, one can solve ASVP by finding
its LLL-reduced basis {b1, . . . ,bd}. The first vector b1 solves the problem

with approximation factor f(d) = 2
d−1
2 . It is known LLL algorithm in most

cases coming from practical cryptanalysis performs much better than what
is theoretically guaranteed (see [11]).

2.2.4 Babai’s algorithm

Even though the original Babai’s Closest Plane algorithm described in [3]

solves ACVP with the approximation factor 2
d
2 , we present it here with

slightly better factor 2
d
4 , as is usual in contemporary cryptanalytic prac-

tice (see [5], [14]). As stated in [5], the improvement can be achieved by the
adjustment of the constants in the definition of LLL reduced basis.

9



Theorem 2.18 (Babai’s algorithm). Let L be a lattice in Qd. There exists
a polynomial time algorithm, which given an LLL reduced basis of lattice L
and v ∈ Qd as input returns lattice vector u ∈ L such that

‖u− v‖ ≤ 2
d
4 min

w∈L
‖w − v‖ .

Proof. To be found in [3].

10



3 Extended Hidden Number Problem

The original Hidden Number Problem (HNP) proposed by Boneh and Venkate-
san in [5] can be equivalently formulated as follows: Let N be a prime and
let x, x ∈ ZN be a particular unknown integer that satisfies d congruences

αix + ρiki ≡ βi (modN), 1 ≤ i ≤ d,

where αi, αi 6≡ 0 (modN), ρi and βi, 1 ≤ i ≤ d are known values. The
unknown integers ki satisfy 0 ≤ ki < 2µ, 1 ≤ i ≤ d, where µ is a known
rational constant. The Hidden Number Problem (HNP) is to find x (the
hidden number).

Let us now formulate an extension to HNP and propose a probabilistic
polynomial time algorithm solving its instances.

3.1 Problem definition

Definition 3.1 (Extended hidden number problem). Let N be a prime and
let x, x ∈ ZN , be a particular unknown integer such that

x = x̄ +
m∑

j=1

2πjxj, (1)

where the integers x̄ and πj, 1 ≤ j ≤ m are known. The unknown integers
xj satisfy 0 ≤ xj < 2νj , where νj are known rational constants 1 ≤ j ≤ m.
Furthermore, let us be given d congruences

αi

m∑
j=1

2πjxj +

li∑
j=1

ρi,jki,j ≡ βi − αix̄ (modN), 1 ≤ i ≤ d, (2)

where αi, αi 6≡ 0 (modN), 1 ≤ i ≤ d, πj, 1 ≤ j ≤ m, ρi,j, 1 ≤ i ≤ d,
1 ≤ j ≤ li and βi, 1 ≤ i ≤ d are known values. The unknown integers ki,j

satisfy 0 ≤ ki,j < 2µi,j , where µi,j are known, 1 ≤ i ≤ d, 1 ≤ j ≤ li. We define

τ =
∑m

j=1 νj, ξi =
∑li

j=1 µi,j, 1 ≤ i ≤ d and ξ =
∑d

i=1 ξi.
The Extended Hidden Number Problem (EHNP) is to find (the hidden

number) x and its instance is represented by

(
x̄, N, {πj, νj}mj=1 ,

{
αi, {ρi,j, µi,j}lij=1, βi

}d

i=1

)
. (3)

11



3.2 Existing solutions

Before we introduce the algorithm for solving EHNP, we present two existing
approaches solving the problem or its special cases. It will be shown later on,
the instances of EHNP may arise from Digital Signature Algorithm (DSA)
key disclosure problem when side information about the signing process is
known to the attacker for several signatures. This method of deriving EHNP
instances is used by both approaches we overview here. The difference is the
amount and the fragmentation of the side information they handle.

3.2.1 Nguyen and Shparlinski’s approach

In [10], the authors propose a lattice-based probabilistic polynomial time al-
gorithm that solves a special case of EHNP for li = 1, µi,1 = µ, 1 ≤ i ≤ d and

τ = dlog2 Ne with the probability of success P > 1− 2dµ

(N−1)d−1

(
1 + 2

d+1
4 (1 + d)

1
2

)d

.

Since the dimension of the lattice employed is d + 1, i.e. relatively low, it is
reasonably fast and may use sophisticated lattice reduction techniques.

To support the formal proof of the method the authors conduct several
experiments and are able to solve the instances of the problem with µ = 3
and d = 100. Finally, the algorithm is extended to solve EHNP with li = 2
making use of continued fractions. The extension relies on the conversion to
the original algorithm resulting, however, in worse probability of success.

3.2.2 Howgrave-Graham and Smart’s approach

The approach presented in [8] is on the first view very different from the
one proposed by Nguyen and Shparlinski - the method of Howgrave-Graham
and Smart accepts all of the instances of EHNP on the input, however the
correctness of its potential success is not supported by a formal proof. The
heuristics presented heavily relies on the assumptions about the length of the
shortest vector in a random lattice. To support the method experimentally,
the authors successfully disclose the hidden number for an EHNP instance
with li = 8, ξi = 80 for 1 ≤ i ≤ 2.

On a closer look, however, we can see that the basic algorithmic ideas of
this method are quite similar to the Nguyen-Shparlinski approach.

3.2.3 Motivation for the new method

To summarize, the main drawback of the first approach is its requirement on
the sequence of the indexes of known bits to be “continuous” (i.e. increasing
with factor 1). Real-life scenarios satisfying this requisite are rare, compared

12



to more frequent side channels providing the information in several blocks of
known bits. One such side channel will be shown at the end of the work. On
the other hand, the disadvantage of the second approach is the lack of the
formal proof.

Both methods solve EHNP using a set of diophantine approximations,
i.e. the set of inequalities

−2µi <

li∑
j=1

αi,jyi,j

︸ ︷︷ ︸
“auxiliaries”

+

l0∑
j=1

α0,jy0,j

︸ ︷︷ ︸
hidden number

− βi︸︷︷︸
approximation

< 2µi , 1 ≤ i ≤ d

where αi,j and µi are known values and the solution vector y0 together with
the approximation-supporting vectors yi (“auxiliaries”) are restricted to be
in Zli . Suitable lattices are constructed based on these inequalities, containing
hidden vector that reveals the solution vector y0 and henceforth the hidden
number itself. Hidden vector is hoped to be found by Babai’s algorithm with
its known approximation vector β on input.

In the design of the new method for solving EHNP, we undergo similar
route as the two approaches, with an important modification however - we
construct the set of diophantine equations

(
li∑

j=1

αi,jyi,j +

l0∑
j=1

α0,jy0,j

)
− βi = 0, 1 ≤ i ≤ d

which allow us to formally prove the method with minimal heuristic assump-
tions, as in the first method, while preserving the generality of the second
approach. The lattice employed is inspired by the one used by Howgrave-
Graham and Smart together with the approach used in [4] while the outline
of the proof is strongly motivated by the approach of Nguyen and Shparlin-
ski.

13



3.3 Algorithm solving EHNP

Definition 3.2. For δ > 0 and a given instance I = IEHNP of the EHNP
we define L(I, δ) as the lattice spanned by the rows of the matrix

B = B(I, δ) =




N · Id ∅ ∅

A X ∅

ρT
1

. . . ∅ K
ρT

d




∈ QD×D,

where we define integers L =
∑d

i=1 li and D = d + m + L, vectors

ρi = (ρi,1, . . . , ρi,li) ∈ Zli , 1 ≤ i ≤ d

and matrices

A = (aj,i)1≤i≤d,1≤j≤m ∈ Zm×d, where aj,i = αi2
πj

X = diag

(
δ

2ν1
, . . . ,

δ

2νm

)
∈ Qm×m

K = diag

(
δ

2µ1,1
, . . . ,

δ

2µ1,l1
,

δ

2µ2,1
, . . . ,

δ

2µ2,l2
, . . . ,

δ

2µd,1
. . . ,

δ

2µd,ld

)
∈ QL×L.

3.4 Short vectors in L
Lemma 3.3 (Short solutions). Given prime N and s ∈ ZN , let ρ1, . . . , ρl be
uniformly and independently distributed on ZN . Then the probability that the
congruence

l∑
j=1

ρjxj ≡ s (modN) (4)

has a “short” non-trivial solution (t1, . . . , tl) ∈ (ZN)l satisfying |tj|N < Tj,
1 ≤ j ≤ l is lower than

2l
∏l

j=1 Tj

N
. (5)

14



Algorithm 1 Finding a solution candidate for EHNP

Input: Instance I of EHNP
Output: Solution candidate z ∈ ZN

1: κD ← 2
D
4 (m + L)

1
2 + 1

2: Choose δ ∈ Q such that 0 < κDδ < 1
3: v← ((β1 − α1x̄)modN, . . . , (βd − αdx̄)modN, 0, . . . , 0)
4: find W ∈ L = L(I, δ), W = (W1, . . . ,WD) such that ‖W − v‖ ≤

2
D
4 minB∈L ‖v −B‖ //in polynomial time (Lemma 2.15, 2.18)

5: for j = 1 to m do

6: x′j ← Wd+j2
νj

δ
//x′j ∈ Z

7: end for
8: z ← x̄ +

∑m
j=1 2πjx′j modN

9: return z

Proof. Let t = (t1, . . . , tl) be a non-zero l-tuple in (ZN)l with tk 6= 0. There
exist exactly N l−1 l-tuples

(ρ1, . . . , ρl) =

(
ρ1, . . . , ρk−1, (tk)

−1

(
s−

l∑

j=1,j 6=k

ρjtj

)
modN, ρk+1, . . . , ρl

)

such that t is a solution of (4). Consequently, there exist no more than

N l−1

((
l∏

j=1

(2Tj − 1)

)
− 1

)
< N l−12l

l∏
j=1

Tj

l-tuples (ρ1, . . . , ρl) such that “short” non-trivial solution of (4) exists. Since
N l is total number of all l-tuples on ZN , the lemma follows.

Lemma 3.4. Let I be an instance of the EHNP, where αi, 1 ≤ i ≤ d and
ρi,j, 1 ≤ i ≤ d, 1 ≤ j ≤ li are uniformly and independently distributed on
〈1, N − 1〉. Let δ, κD ∈ Q be such that 0 < δ, 0 < κD and κDδ < 1. Then
with the probability

P > 1− (2κD)L+m 2τ+ξ

Nd
(6)

for each vector ∆ ∈ L = L(I, δ) with coordinates c = (e1, . . . , ed, y1, . . . , ym,
t1,1, . . . , t1,l1, . . . , . . . , td,1, . . . , td,ld) w.r.t. basis B = B(I, δ) (i. e. ∆ = cB),
satisfying ‖∆‖∞ < κDδ

(i) there exists (a witness index) w, 1 ≤ w ≤ d such that

tw,j ≡ 0 (modN), 1 ≤ j ≤ lw, (7)

15



(ii)
∑m

j=1 2πjyj ≡ 0 (modN) holds,

(iii)
∑li

j=1 ρi,jti,j ≡ 0 (modN), 1 ≤ i ≤ d holds.

Proof. Let ∆ ∈ L be such that ‖∆‖∞ < κDδ < 1. Then

∣∣∣∣∣eiN + αi

d∑
j=1

2πjyj +

li∑
j=1

ρi,jti,j

∣∣∣∣∣ = |∆i| < 1, 1 ≤ i ≤ d (8)

∣∣∣∣
δ

2νj
yj

∣∣∣∣ = |∆d+j| < κDδ, 1 ≤ j ≤ m (9)

∣∣∣∣
δ

2µi,j
ti,j

∣∣∣∣ =
∣∣∆γ(i,j)

∣∣ < κDδ,
1 ≤ i ≤ d
1 ≤ j ≤ li

(10)

where γ(i, j) = d + m + j +
∑i−1

u=1 lu, respectively implying

∣∣∣∣∣αi

d∑
j=1

2πjyj +

li∑
j=1

ρi,jti,j

∣∣∣∣∣
N

= 0, 1 ≤ i ≤ d (11)

|yj| < κD2νj , 1 ≤ j ≤ m (12)

|ti,j| < κD2µi,j , 1 ≤ i ≤ d, 1 ≤ j ≤ li, (13)

since the expression on the left-hand side of (8) is an integer. Furthermore,
by Lemma 2.7 (11) is equivalent to the congruence

li∑
j=1

ρi,jti,j ≡ −αi

d∑
j=1

2πjyj (modN), 1 ≤ i ≤ d. (14)

To prove (i), we have to show the probability PF that for all i, 1 ≤ i ≤ d
there exists j, 1 ≤ j ≤ li such that ti,j 6≡ 0(modN) is bounded above as

PF < (2κD)L+m2τ+ξ

Nd . The following probability elaboration is focused on the
event that an “unwanted” vector does exist in the lattice at all, rather than
investigating the properties of a particular vector chosen. The algorithmic
interpretation is then that, obviously, the particular vector computed cannot
have the properties that no such vector in the lattice L(I, δ) has.

16



Fix an m-tuple (y1, . . . , ym) ∈ Zm and define Ri = −αi

∑d
j=1 2πjyj modN .

The substitution to congruence (14) gives

li∑
j=1

ρi,jti,j ≡ Ri (modN), 1 ≤ i ≤ d. (15)

Lemma 3.3 states non-trivial solution of (15) satisfying (13) exists with
the probability

pi(y1, . . . , ym) <
2li

∏li
j=1 κD2µi,j

N
=

(2κD)li 2ξi

N
. (16)

For a fixed m-tuple (y1, . . . , ym), the probability that (15) and (13) can
be non-trivially satisfied for all i, 1 ≤ i ≤ d is

p(y1, . . . , ym) ≤
d∏

i=1

pi(y1, . . . , ym) <

d∏
i=1

(2κD)li 2ξi

N
=

(2κD)L 2ξ

Nd
. (17)

There is no more than
∏m

j=1 2κD2νj = (2κD)m2τ m-tuples (y1, . . . , ym)
that satisfy (12), therefore

PF ≤
∑

y = (y1, . . . , ym)
y satisfies (12)

p(y1, . . . , ym) <
(2κD)L+m 2τ+ξ

Nd
. (18)

To prove the congruence (ii) holds, it suffices to substitute tw,j ≡ 0 (modN),
1 ≤ j ≤ lw from (i) to (14), i.e.

m∑
j=1

2πjyj ≡ −(αw)−1

lw∑
j=1

ρw,jtw,j ≡ 0 (modN), (19)

since (αw)−1 modN exists, because αw 6≡ 0modN and N is a prime.
Finally, substituting (ii) to the congruence (14), i.e.

li∑
j=1

ρi,jti,j ≡ −αi

m∑
j=1

2πjyj ≡ 0 (modN), (20)

finishes the proof of (iii).

17



3.5 Correctness of the solution

Theorem 3.5. Let x be the solution of EHNP specified by the instance I =
IEHNP where N is prime, αi, 1 ≤ i ≤ d and ρi,j, 1 ≤ i ≤ d, 1 ≤ j ≤ li
are uniformly and independently distributed on 〈1, N − 1〉. Then with the
probability

P > 1− (2κD)L+m 2τ+ξ

Nd
, (21)

where κD = 2
D
4 (m + L)

1
2 + 1, Algorithm 1 returns the correct particular

solution of instance I.
Proof. Let δ ∈ Q be such that 0 < κDδ < 1. By Definition 3.1 there exists
vector h = (c1, . . . , cd, x1, . . . , xm, k1,1, . . . , k1,l1 , . . . , . . . , kd,1, . . . , kd,ld) ∈ ZD

such that

ciN + αi

m∑
j=1

2πjxj +

li∑
j=1

ρi,jki,j = βi − αix̄, 1 ≤ i ≤ d, (22)

0 ≤ xj < 2νj , 1 ≤ j ≤ m, (23)

0 ≤ ki,j < 2µi,j , 1 ≤ i ≤ d, 1 ≤ j ≤ li(24)

hold. Let B = B(I, δ) be the matrix defined in Definition 3.2 and let

H = hB ∈ L, L = L(I, δ),
v = ((β1 − α1x̄)modN, . . . , (βd − αdx̄)modN, 0, . . . , 0) ∈ ZD.

Since the vector H− v is equal to

(
0, . . . , 0, δ

x1

2ν1
, . . . , δ

xm

2νm
, δ

k1,1

2µ1,1
, . . . , δ

k1,l1

2µ1,l1
, . . . , . . . , δ

kd,1

2µd,1
, . . . , δ

kd,ld

2µd,ld

)
,

(25)
and the bounds (23), (24) hold, we can write

‖v −H‖∞ < δ.

A lattice vector W found in step 4 of the algorithm satisfies

‖v −W‖ ≤ 2
D
4 min

A∈L
‖v −A‖ ≤ 2

D
4 ‖v −H‖ < 2

D
4 δ(m + L)

1
2 . (26)

Let ∆ = H−W ∈ L. Since ‖a‖∞ ≤ ‖a‖ for all a ∈ ZD, by triangle inequality
we have

‖∆‖∞ ≤ ‖H− v‖∞ + ‖v −W‖ < δ + 2
D
4 δ(m + L)

1
2 = κDδ. (27)

18



Let w, γ be the coordinate vectors of W, ∆, respectively, w.r.t. basis B,

w = (c′1, . . . , c
′
d, x

′
1, . . . , x

′
m, k′1,1, . . . , k

′
1,l1

, . . . , . . . , k′d,1, . . . , k
′
d,ld

)

γ = (e1, . . . , ed, y1, . . . , ym, t1,1, . . . , t1,l1 , . . . , . . . , td,1, . . . , td,ld)

and z = x̄ +
∑m

j=1 2πjx′j be the candidate returned by Algorithm 1. Since
B is nonsingular, γ = h − w. Then with the probability greater than 1 −
(2κD)L+m2τ+ξ

Nd , guaranteed by Lemma 3.4, it holds

x− z ≡
(

x̄ +
m∑

j=1

2πjxj

)
−

(
x̄ +

m∑
j=1

2πjx′j

)
≡

≡
m∑

j=1

2πj(xj − x′j) ≡
m∑

j=1

2πjyj ≡ 0 (modN).

Finally, since x, z ∈ ZN , we have x = z.

19



4 Digital Signature Algorithm

Digital signature algorithm (DSA) is U.S. standard for digital signatures. It
is defined FIPS 186-2 (see [1]) published by National Institute of Standards
and Technology.

4.1 Public parameters

Definition 4.1. DSA public parameters are represented by the triplet (p, q, g)
with the following properties

1. p ∈ P, 21023 < p < 21024

2. q ∈ P, 2159 < q < 2160

3. q |p− 1

4. g ∈ Z∗p, g 6= 1, gq = 1mod p

The private key x is an element of Z∗q chosen randomly with uniform distri-
bution, denoted x ∈r Z∗q. The corresponding public key is y ∈ Z∗p is defined
as y = gx mod p.

Remark 4.2. Originally, the standard FIPS 186 required the prime number
p to be at least 512 bits long. However, in 2001 the second revision of the
standard specified p to be in the range 21023 < p < 21024. This adjustment
aims to harden discrete logarithm problem in Z∗p which resolution discloses
the private key directly (y = gx mod p).

In [7], the author encourages the implementers of security concerned ap-
plications to use prime numbers p and q larger then the ones prescribed by
[1]. Recently, this idea was supported by the third revision of FIPS 186 where
the sizes of primes p and q were raised up to 3072 and 256 bits, respectively.

4.2 Signing operation

Let m, m ∈ {0, 1}∗ be a message to be signed. Let h be hash function SHA-1

defined in [2]. The signature of the message m is the pair (r, s) generated as
follows

1. k ∈R Z∗q

2. r =
(
gk mod p

)
mod q

s = k−1 (h(m) + xr) mod q

20



Remark 4.3. Random integer k is often referenced to as a nonce (number
used once). It is essential to keep this number secret entirely during and
after the signing process. If an attacker gains access to the nonce k, she can
extract the private key x by computing

x = r−1 (sk − h(m)) mod q.

Later on, we shall show the private key can be exposed even if a little
fraction of the nonce k is leaked for multiple signatures.

Remark 4.4. Value of the nonce k should be erased after the signature is
generated. Especially, it should never be reused to sign another message.

Suppose an attacker has knowledge of the messages m1 and m2 with
signatures (r1, s1) and (r2, s2) signed using the same nonce k. Then r1 = r2

and

s1 = k−1 (h(m1) + xr1) mod q

s2 = k−1 (h(m2) + xr1) mod q.

Multiplying both congruences by k and their subtraction give

k(s2 − s1) = h(m2)− h(m1)mod q

diclosing the nonce

k = (s2 − s1)
−1 (h(m2)− h(m1)) mod q

and the private key x, as described in Remark 4.3.

4.3 Verifying operation

To verify the validity of the signature pair (r, s) of message m, verifier first
checks if 0 < r < q and 0 < s < q hold, he rejects the signature otherwise.
Secondly, he computes

1. w = s−1 mod q

2. u1 = h(m)w mod q
u2 = rw mod q

3. v = (gu1yu2 mod p) mod q.

The signature is accepted if and only if v = r.

21



Lemma 4.5. Let (r, s) be a given signature of message m to be verified. If
(r, s) was generated using DSA signing operation described in Section 4.2,
then the value v computed during signature verification is equal to r.

Proof. Definition of s yields l ∈ Z such that k = w(h(m) + xr) − lq. Let
v′ = gu1yu2 mod p. By definition of u1 and u2 there exist l1, l2 ∈ Z such that

v′ = gh(m)w+l1qyrw+l2q mod p = gw(h(m)+l1qgxrw+xl2q mod p =

= gw(h(m)+xr)+(l1+xl2)q mod p = gk+lqg(l1+xl+2)q mod p =

= gk (gq)l+l1+xl2 mod p = gk mod p,

since gq = 1mod p. Finally,

v = v′mod q =
(
gk mod p

)
mod q = r.

4.4 DSA Key Disclosure problem

Definition 4.6 (DSA-KDP problem). Let (p, q, g) be public DSA parameters
and (x, y) DSA key pair. Let (ri, si) where

ri =
(
gki mod p

)
mod q, 1 ≤ i ≤ d (28)

si = k−1
i (h(mi) + xri) mod q, 1 ≤ i ≤ d (29)

be known signature pairs of known hashed messages h(mi). Suppose an ad-
ditional information about the private key x and the nonces ki is known, as
well, i.e.

x = x̄ +
m∑

j=1

2πjxj, 0 ≤ xj < 2νj , 1 ≤ j ≤ m (30)

ki = k̄i +

li∑
j=1

2λi,jki,j, 0 ≤ ki,j < 2µi,j , 1 ≤ i ≤ d, 1 ≤ j ≤ li, (31)

where x̄, {πj, νj}mj=1,
{

k̄i, {λi,j, µi,j}lij=1

}d

i=1
are known integers satisfying

x̄ ∈ Zq, k̄i ∈ Zq, 1 ≤ i ≤ d

2πj ∈ Zq, 1 ≤ j ≤ m, 2λi,j ∈ Zq, 1 ≤ i ≤ d, 1 ≤ j ≤ li

2νj ∈ Zq, 1 ≤ j ≤ m, 2µi,j ∈ Zq, 1 ≤ i ≤ d, 1 ≤ j ≤ li

22



DSA key disclosure problem (DSA-KDP) is to find the private key x and
its instance IDSA is represented by

(
x̄, q, {ri, si, h(mi)}di=1, {πj, νj}mj=1,

{
k̄i, {λi,j, µi,j}lij=1

}d

i=1

)
.

Lemma 4.7 (Transition from DSA-KDP to EHNP). Let x be the particular
solution of the DSA-KDP problem specified by the instance IDSA. Let

N = q,

αi = ri, 1 ≤ i ≤ d

ρi,j =
(−si2

λi,j
)

modN, 1 ≤ i ≤ d, 1 ≤ j ≤ li,

βi =
(
sik̄i − h(mi)

)
modN, 1 ≤ i ≤ d.

Then x can be found as the solution of EHNP specified by the instance

(
x̄, N, {πj, νj}mj=1 ,

{
αi, {ρi,j, µi,j}lij=1, βi

}d

i=1

)
. (32)

Proof. With regard to Heuristic assumption 4.8 the lemma follows directly
when (30) and (31) are substituted into (29) in Definition 4.6.

It is a common practice in theoretical cryptology to conjecture probabilis-
tic properties of certain variables basing on an assumption that the scheme
they come from is computationally unbreakable. Following this approach, we
propose

Heuristic assumption 4.8. Given that DSA is computationally unbreak-
able, we may assume that the values of αi and ρi,j from Lemma 4.7 are compu-
tationally indistinguishable from a sequence representing independent obser-
vations and coming from the uniform distribution of integers on 〈1, N − 1〉.

Justification A possibility to predict the values of αi implies a possibility
to forge signatures by a randomized strategy described e.g. in [6]. Further-
more, let us observe that having given the value of si, we can trivially com-
pute the values of λi,j ∈ 〈0, dlog2 Ne) from ρi,j, henceforth deducing a great
part of the side information. Therefore, a possibility to predict ρi,j implies
a possibility to deduce the side information even without the existence of
the side channel itself, implying an ability to break the DSA regardless its
implementation details. However, we assume that this is impossible.

23



5 Real Scenario Application

5.1 Hyper-Threading Technology

So far, we have seen an additional information about nonces ki and private
key x in DSA scheme can lead to the key disclosure. Now, we will show one
of the possible ways on how to obtain such information.

In [12], the author explores a side channel hidden in certain processors
design employing the Hyper-Threading Technology (HTT). The processors
affected are Intel Pentium 4, Mobile Pentium 4 and Xeon.

The size of L1 cache memory in hyper-threaded Pentium 4 is 8 KB (or 16
KB)1. It is divided into 32 cache address classes consisting of 4 (or 8) cache
lines of 64 bytes and is called 4 (or 8) way associative. When a memory line is
requested by a process, the processor first checks whether the line is already
loaded in L1 cache in the corresponding cache class. In case it is, we say a
cache hit occurs, contrary to a cache miss when the line has to be loaded to
L1 cache. Therefore, a cache miss takes a much longer time than a cache hit
and that can be recognized by a spying process.

8 KB

16 KB

64 B 64 B 64 B

64 B 64 B 64 B

64 B 64 B 64 B

64 B 64 B 64 B

64 B 64 B 64 B

64 B 64 B 64 B

64 B 64 B 64 B

64 B 64 B 64 B

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

64 B

64 B

64 B

64 B

64 B

64 B

64 B

64 B

0 1 2 31

cache classes

as
so

ci
at

iv
e

se
ts

Figure 1: L1 cache memory disposition in a 4 (or 8) way associative Pentium
4 processor.

A hyper-threaded Pentium 4 consists of two separate cores that share
access to the same L1 cache memory. To the operating system, the cores
appear as two logical CPUs, thus it can schedule two processes to be run at
the same time. One process cannot read the data of the other process stored
in L1 cache, however, it can determine whether the process running on the
second core used a cache line from a certain cache class or not by measuring
the amount of time it takes to repeatedly read several data block from the
same cache address class.

1depending on actual type

24



In this way, we get a side information which can be used to discriminate
between two different operations performed by the process being spied. When
the two operations are different enough with respect to the memory access
they induce, we can easily identify them basing on a different “footprint” left
in the access time measurements (cf. Figure 2).

In [12], this side information was used to break an implementation of RSA
scheme. Here, we show that by using the EHNP approach described before, we
can break certain implementation of DSA algorithm, as well. In practice, this
attack threatens, for instance, applications like SSH [13], when the server runs
on an unsecured HTT platform and uses DSA for the server authentication.
When the attacker logs on the server, she can run the spy process on one
processor core, while she opens another SSH session with the server, hoping
that it will run on the second core. In this way, she gains the side information
about DSA signature computation when the server authenticates itself for the
newly opened connection. Collecting several such measurements, she can get
enough information to be able to solve the associated EHNP. From here, she
gets the server’s private key allowing her to impersonate the server.

5.2 Sliding Window Exponentiation

An OpenSSL-based SSH server uses the sliding window (SW) exponentia-
tion algorithm (cf. Algorithm 2)2 in the process of DSA authentication when
computing r′ = gk mod p (followed by the computation r = r′mod q). Two
operations to be discriminated on the HTT platform by the aforesaid tech-
nique are squaring (S) and multiplication (M). Being able to identify the
SW algorithm execution, the attacker obtains a sequence S ∈ {S, M}∗.

In Figure 2, a part of the execution of SW algorithm from the spy process
viewpoint is displayed. The sequence (S, M, S, S, S, S, M, S) is revealed by the
latency of cache classes 25 through 29. Typically, the length of the sequence
S is about 200 for the exponent length 160 with sliding window length set
to 4 (see Table 1).

To convert S to an information suitable for EHNP, one sets k̄ = 0 as
the first approximation of the nonce k. Then, she takes the next operation
from S and multiplies k̄ by 2 if the operation is S or adds 1 and adds a new
“hole” for M . Finally, the holes of zero length are filtered out from the output
sequence. The conversion procedure, described by Algorithm 3, outputs the
decomposition k = k̄ +

∑l
j=1 2λjkj, 0 ≤ kj < 2µj .

2Valid for the versions up to 0.9.7g. As from version 0.9.7h, OpenSSL uses fixed window
modular exponentiation by default for RSA, DSA, and DH private key operations to
prevent cache timing attacks.

25



Algorithm 2 Sliding window (SW) exponentiation; s is the SW length

Input: g, e = (etet−1 . . . e0)2, et = 1, s ≥ 1
Output: ge

1: g1 ← g, g2 ← g2

2: for i = 1 to 2s−1 − 1 do
3: g2i+1 ← g2i−1g2

4: end for
5: A← 1, i← t
6: while i ≥ 0 do
7: if ei = 0 then
8: A← A2 //squaring
9: i← i− 1

10: else
11: find longest string (eiei−1 . . . el) such that i− l + 1 ≤ s and el = 1
12: A← A2i−l+1

g(eiei−1...el)2 //2i−l+1 squarings, 1 multiplication
13: i← l − 1
14: end if
15: end while
16: return A

full cache miss

full cache hit

21

29
cache lines

6 · 1054 · 1052 · 1050

time [CPU cycles]

120

170

220

latency [CPU cycles]

Figure 2: Side channel timing information on selected L1 cache classes latency
on a 4-way associative Pentium 4 2.8GHz with HTT enabled during SW
exponentiation performed by OpenSSL 0.9.7e running under GNU/Linux
Debian 3.1 Sarge.

As stated by Theorem 3.5, the probability of success of Algorithm 1 is
significantly affected by the total number of holes in nonces ki and in the
hidden number x, which is L+m. The dimension D of the basis matrix B of

26



exponent binary size SW length

672 or greater 6
〈240, 671〉 5
〈80, 239〉 4
〈24, 79〉 3
〈1, 23〉 1

Table 1: Sliding window length used for different exponent (binary) lengths
in Algorithm 2 as implemented in OpenSSL 0.9.7e.

Algorithm 3 Conversion of sequence from {S, M}∗ to the decomposition of
k; s is the SW length; (N is the upper bound on k)

Input: S ∈ {S, M}∗, s ≥ 1, (N > 1)
Output: k̄, l, {λj, µj}lj=1

1: k̄ ← 0, L← 0, Λ0 ← 1, w0 ← s− 1 //L, Λ, and w are internal only
2: A← first(S)
3: repeat
4: if A = S then
5: k̄ ← 2k̄
6: for j = 0 to L do
7: Λj ← Λj + 1 //shift existing holes
8: end for
9: else

10: k̄ ← k̄ + 1
11: L← L + 1, ΛL ← 1
12: wL ← min(s− 1, ΛL−1 + wL−1 − s− 1) //new, possibly empty, hole
13: end if
14: until A← next(S)
15: if N is defined and Λ1 + w1 > dlog2 Ne then
16: w1 = dlog2 Ne − Λ1 //adjust the first hole
17: end if
18: l← 0
19: for j = 1 to L do
20: if wj > 0 then
21: l← l + 1, λl ← Λj , µl ← wj //keep the nonempty holes
22: end if
23: end for

associated lattice L defined in Definition 3.2 and consequently the running
time of the Algorithm 1 are affected, as well. Thus, it makes sense to consider

27



eliminating short blocks of known bits (especially single bits), as each of them
adds one hole to the nonce decomposition, leading to an expensive increase
of the basis matrix dimension. This procedure is described in Algorithm 4
with the minimal block size mb to be considered for the decomposition on
input.

Algorithm 4 Exclude blocks of known bits shorter than mb

Input: k̄, l, {λj, µj}lj=1, mb ≥ 1

Output: k̄′, l′, {λ′j, µ′j}l′j=1

1: l′ ← 1, k̄′ ← k̄
2: λ′1 ← λ1, µ′1 ← µ1

3: for j=2 to l do
4: if λ′l′ − (λj + µj) < mb then

5: k̄′ ← k̄′ − 2λj+µj

((
k̄′ div 2λj+µj

)
mod 2λ′

l′−(λj+µj)
)

6: µ′l′ ← µ′l′ + (λ′l′ − λj), λ′l′ ← λj

7: else
8: l′ ← l′ + 1, λ′l′ ← λj , µ′l′ ← µj

9: end if
10: end for

We ran several experiments implementing Algorithms 2, 3 and 4 for differ-
ent exponent sizes suitable for DSA-like schemes for the purpose of this work
and for the sizes suitable for RSA, as well, for informational purpose only. We
use the notation σ = dlog2 Ne−∑l

j=1 µj for the number of bits known in the

decomposition. All statistics are based upon a sample of 104 random exponent
values from ZN . The sliding window length s is set to match its definition
in OpenSSL 0.9.7e (see Table 1). The amount (σ) and the fragmentation of
the side channel information on the nonces (or exponents), depending on the
minimal (known) block size mb, gained via L1 cache timing are displayed in
Figures 3 and 4. The details can be found in Appendix A.

28



0
10
20
30
40
50
60
70
80

0 2 4 6 8 10

mb

160 bits, window size 4

σ
l

0

20

40

60

80

100

120

0 2 4 6 8 10

mb

256 bits, window size 5

σ
l

Figure 3: Side channel information on nonces suitable for DSA-like schemes.

0

50

100

150

200

250

0 2 4 6 8 10

mb

512 bits, window size 5

σ
l

0
50

100
150
200
250
300
350
400

0 2 4 6 8 10

mb

1024 bits, window size 6

σ
l

0
100
200
300
400
500
600
700
800

0 2 4 6 8 10

mb

2048 bits, window size 6

σ
l

Figure 4: Side channel information on exponents suitable for RSA.

29



5.3 Practical Experiments with EHNP

Algorithm 1 was implemented in C++ employing Shoup’s NTL library [15].
The experiments were run for different number of signatures d and minimal
known block size mb to be considered. Each experiment consists of 10 in-
stances of DSA-KDP with random public parameters, random key pair and
the signature pairs for d random messages converted to the associated EHNP
instance (Lemma 4.7). The results of the experiments with the size of DSA
prime q set to 160 bits are displayed in Figures 5 through 9. The details can
be found in Appendix B. We used the side channel emulation in these compu-
tations. Its real existence and usability was successfully verified by technical
experiments with an SSH server powered by OpenSSL 0.9.7e running under
GNU/Linux Debian 3.1 Sarge on an unprotected Pentium 4 HTT platform,
as well.

0
2
4
6
8

10
12
14
16

0 5 10 15 20 25

ti
m

e
[1

03
s]

d

LLL

BKZ

0

2

4

6

8

10

0 5 10 15 20 25

h
it

ra
te

d

LLL

BKZ

Figure 5: The hit rate and the average duration of EHNP algorithm solving
10 random instances of DSA-KDP for each d, with minimal known block size
mb = 1.

If the side channel information is available for sufficient number of sig-
natures, it seems reasonable to ignore shorter blocks of known bits, as the
running time of Algorithm 1 drops significantly while the hit rate stays on an
acceptable level. The experiments with 14 signatures and mb = 1 in Figure
5 and with 18 signature and mb = 5 in Figure 9 support this hypothesis.

The bases matrices of associated lattices were reduced with LLL reduc-
tion (LLL XD()) with parameter Delta = 0.99 (marked “LLL”) in NTL (see
[15]). If such reduction did not lead to the key disclosure, stronger Block Ko-
rkin Zolotarev reduction with Givens rotations (G BKZ XD()) was employed
in several experiments, with parameters BlockSize = 40 and Prune = 15

30



(marked “BKZ”). The experiments were run for different values of minimal
(known) block size mb to see how much information can be sacrificed while
preserving the hit rate on an acceptable level. The computing platform em-
ployed was running GNU/Linux Debian on AMD Opteron 844.

0

2

4

6

8

10

12

14

0 5 10 15 20

ti
m

e
[1

03
s]

d

LLL

BKZ

0

2

4

6

8

10

0 5 10 15 20

h
it

ra
te

d

LLL

BKZ

Figure 6: The hit rate and the average duration of EHNP algorithm solving
10 random instances of DSA-KDP for each d, with minimal known block size
mb = 2.

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20

ti
m

e
[1

03
s]

d

LLL

BKZ

0

2

4

6

8

10

0 5 10 15 20

h
it

ra
te

d

LLL

BKZ

Figure 7: The hit rate and the average duration of EHNP algorithm solving
10 random instances of DSA-KDP for each d, with minimal known block size
mb = 3.

31



0
0.5

1
1.5

2
2.5

3
3.5

4

0 5 10 15 20 25
ti

m
e

[1
03

s]
d

LLL

BKZ

0

2

4

6

8

10

0 5 10 15 20 25

h
it

ra
te

d

LLL

BKZ

Figure 8: The hit rate and the average duration of EHNP algorithm solving
10 random instances of DSA-KDP for each d, with minimal known block size
mb = 4.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20 25

ti
m

e
[1

03
s]

d

LLL

BKZ

0

2

4

6

8

10

0 5 10 15 20 25

h
it

ra
te

d

LLL

BKZ

Figure 9: The hit rate and the average duration of EHNP algorithm solving
10 random instances of DSA-KDP for each d, with minimal known block size
mb = 5.

32



A limited series of experiments was run with a sample of 100 random
DSA-KDP instances with mb = 1 and dlog2 qe = 160 bits, to see how
many signatures are needed to disclose the private key. Here, for each in-
stance we define σ as the total number of known bits in the nonces, i.e.

σ =
∑d

i=1

(
dlog2 Ne −∑li

j=1 µi,j

)
. It turns out that in one case out of one

hundred instances the key can be extracted from as few as 5 signatures.

d mb D σ̄ t̄LLL [s] t̄Babai [s] t̄BKZ [s] hit rate

3 1 96.88 222.02 2.32 0.2 49.5 0
4 1 128.47 298.51 6.34 0.37 113.04 0
5 1 161.19 369.88 13.47 0.65 202.64 1
6 1 192.46 446.61 23.27 0.97 752.69 7

Table 2: Experiments employing BKZ reduction with mb = 1 on 100 random
DSA-KDP instances.

Finally, we ran several experiments with random DSA-KDP instances
with the size of DSA prime q set to 256 bits (which is the highest size al-
lowed by the draft of Third revision of FIPS 186). The dimension of lattices
associated is higher resulting in longer running time, however, as shown in
Figure 10, the private key can be extracted for these instances, as well. The
details about these experiments can be found in Appendix C.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

20 25 30 35 40 45

ti
m

e
[1

03
s]

d

LLL

0

2

4

6

8

10

20 25 30 35 40 45

h
it

ra
te

d

LLL

Figure 10: Comparison of the hit rate and the average duration of EHNP
algorithm solving 10 random instances of DSA-KDP for each d, with minimal
known block size mb = 5 and dlog2 qe = 256 bits.

33



6 Conclusion

We presented the algorithm for solving an extension of Hidden Number Prob-
lem and examined its correctness. We demonstrated a real life cryptanalytic
application on Digital Signature Algorithm running in an unsecured environ-
ment. We were able to disclose the private key knowing certain side infor-
mation for as few as 5 signing operations. The method we elaborated can
be employed to solve other problems that may be converted to instances of
EHNP, as well, e.g. cryptanalysis of Diffie-Hellman key agreement protocol,
as shown in [5].

34



References

[1] Digital signature standard. National Institute of Stan-
dards and Technology, Washington, 2000. URL:
http://csrc.nist.gov/publications/fips/. Note: Federal In-
formation Processing Standard 186-2.

[2] Secure hash standard. National Institute of Stan-
dards and Technology, Washington, 2002. URL:
http://csrc.nist.gov/publications/fips/. Note: Federal In-
formation Processing Standard 180-2.

[3] L. Babai. On Lovász’ lattice reduction and the nearest lattice point
problem. In Proc. on STACS 85 2nd Annual Symposium on Theoretical
Aspects of Computer Science, pages 13–20, New York, NY, USA, 1985.
Springer-Verlag New York, Inc.

[4] M. Bellare, S. Goldwasser, and D. Micciancio. “Pseudo-random” gener-
ators within cryptographic applications: the DSS case. In Advances in
Cryptology—CRYPTO ’97, pages 277–291, Santa Barbara, California,
17–21 August 1997. Springer-Verlag.

[5] D. Boneh and R. Venkatesan. Hardness of computing the most signifi-
cant bits of secret keys in Diffie-Hellman and related schemes. In Proc.
of CRYPTO ’96, pages 129–142, London, UK, 1996. Springer-Verlag.

[6] D. R. Brown. Generic groups, collision resistance, and ecdsa. Designs,
Codes and Cryptography, 35(1):119–152, 2005.

[7] D. Eastlake 3rd. DSA KEYs and SIGs in the Domain Name System
(DNS). RFC 2536 (Proposed Standard), March 1999.

[8] N. A. Howgrave-Graham and N. P. Smart. Lattice attacks on digital
signature schemes. Designs, Codes and Cryptography, 23(3):283–290,
2001.

[9] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polynomials
with rational coefficients. Mathematische Ann., 261:513–534, 1982.

[10] P. Q. Nguyen and I. Shparlinski. The insecurity of the digital signature
algorithm with partially known nonces. J. Cryptology, 15(3):151–176,
2002.

35



[11] P. Q. Nguyen and J. Stern. The two faces of lattices in cryptology.
In CaLC ’01: Revised Papers from the International Conference on
Cryptography and Lattices, pages 146–180, London, UK, 2001. Springer-
Verlag.

[12] C. Percival. Cache missing for fun and profit. 2005. URL:
http://www.daemonology.net/papers/htt.pdf.

[13] OpenBSD project members. OpenSSH Suite. URL:
http://www.openssh.com/.

[14] T. Rosa. One-Time HNP or Attacks on a Flawed El Gamal Revisited.
Cryptology ePrint Archive, Report 2005/460, 2005. http://eprint.

iacr.org/.

[15] V. Shoup. NTL: A Library for doing Number Theory. URL:
http://www.shoup.net/ntl/.

36

http://eprint.iacr.org/
http://eprint.iacr.org/


Appendix A

Tables 3 and 4 provide further details on experiments implementing Algo-
rithm 3 for the conversion of the sequence S ∈ {S, M}∗ obtained by L1
cache timing to the decomposition k = k̄ +

∑d
j=1 2λjkj, 0 ≤ kj < 2µj of the

unknown nonce (or exponent) k. The statistics are based upon 104 random
values from ZN processed by SW algorithm to obtain the sequence S.

log2 N s mb σ σmin σmax l lmin lmax σ/ log2 N

160 4 1 77.51 60 102 30.79 23 36 0.485
160 4 2 65.97 41 93 19.24 13 26 0.412
160 4 3 52.67 20 86 12.58 5 21 0.329
160 4 4 37.88 1 81 7.70 1 14 0.237
160 4 5 26.76 1 66 4.90 1 11 0.167
160 4 6 17.19 1 66 2.97 1 8 0.107
160 4 7 11.43 1 51 2.02 1 6 0.072
160 4 8 8.01 1 52 1.53 1 6 0.050
160 4 9 6.10 1 50 1.30 1 5 0.038
160 4 10 4.84 1 34 1.15 1 4 0.030

256 5 1 105.67 82 136 41.95 35 47 0.413
256 5 2 89.53 59 118 25.76 18 34 0.350
256 5 3 71.59 25 116 16.79 6 26 0.280
256 5 4 52.92 11 110 10.55 3 20 0.207
256 5 5 36.12 1 92 6.37 1 15 0.141
256 5 6 24.79 1 77 4.10 1 11 0.097
256 5 7 15.55 1 67 2.55 1 8 0.061
256 5 8 10.32 1 55 1.81 1 6 0.040
256 5 9 7.2 1 59 1.42 1 7 0.028
256 5 10 5.44 1 44 1.22 1 4 0.021

Table 3: Experiments for the modulus N suitable for DSA-like schemes.

37



log2 N s mb σ σmin σmax l lmin lmax σ/ log2 N

512 5 1 211.49 177 249 83.70 75 91 0.413
512 5 2 178.86 134 225 51.27 39 63 0.349
512 5 3 142.74 85 206 33.08 20 45 0.279
512 5 4 104.26 45 170 20.34 9 32 0.204
512 5 5 70.58 15 139 11.95 3 23 0.138
512 5 6 47.37 1 123 7.30 1 17 0.093
512 5 7 28.75 1 95 4.19 1 12 0.056
512 5 8 18.10 1 72 2.67 1 8 0.035
512 5 9 11.68 1 61 1.86 1 7 0.023
512 5 10 7.78 1 74 1.43 1 7 0.015

1024 6 1 366.33 321 414 145.02 135 154 0.358
1024 6 2 309.73 238 375 88.01 71 104 0.303
1024 6 3 246.83 164 334 56.53 38 72 0.241
1024 6 4 181.60 99 281 34.80 20 52 0.177
1024 6 5 125.28 40 226 20.74 8 35 0.122
1024 6 6 81.27 14 169 11.97 3 25 0.079
1024 6 7 52.72 1 152 7.20 1 17 0.052
1024 6 8 31.25 1 96 4.12 1 11 0.031
1024 6 9 19.37 1 85 2.63 1 9 0.019
1024 6 10 12.18 1 67 1.84 1 7 0.012

2048 6 1 733.67 670 821 289.75 276 303 0.358
2048 6 2 620.17 529 716 175.87 151 197 0.303
2048 6 3 493.07 372 617 112.53 87 137 0.241
2048 6 4 361.9 236 500 68.85 47 95 0.177
2048 6 5 248.8 119 381 40.66 20 60 0.122
2048 6 6 162.02 64 299 23.21 10 41 0.079
2048 6 7 104.24 18 223 13.59 3 29 0.051
2048 6 8 60.46 1 147 7.34 1 17 0.030
2048 6 9 35.95 1 129 4.27 1 12 0.017
2048 6 10 21.62 1 95 2.69 1 9 0.011

Table 4: Experiments for the modulus N suitable for RSA.

38



Appendix B

We present detailed statistics on the experiments with random instances of
DSA-KDP converted to the instances of EHNP and solved by Algorithm 1.
The size of DSA prime q is set to 160 bits to match its definition in FIPS 186
(Second revision). Each line in Tables 5 through 14 represents an experiment
of 10 random DSA-KDP instances.

d mb D σ̄ t̄LLL [s] t̄Babai [s] hit rate

5 1 160.9 369.8 13.16 0.65 0
6 1 193.9 442.6 23.30 1.03 0
7 1 226.5 512.7 38.23 1.60 1
8 1 255.4 596.2 56.44 2.17 0
9 1 287.9 672.2 73.52 3.06 1
10 1 323.7 734.0 109.24 4.31 0
11 1 353.2 812.6 138.70 5.58 2
12 1 388.1 883.2 181.11 7.09 1
13 1 417.0 966.5 229.56 8.73 3
14 1 449.4 1032.5 287.71 11.04 4
15 1 483.0 1110.7 376.98 13.78 3
16 1 513.9 1182.2 474.33 16.11 4
17 1 547.2 1253.6 570.28 18.84 7
18 1 576.9 1334.3 680.13 22.24 7
19 1 607.5 1418.8 815.89 26.55 7
20 1 641.7 1473.7 1001.00 30.97 4
21 1 672.8 1562.0 1118.30 34.51 5
22 1 706.6 1627.8 1335.44 40.35 7
23 1 742.7 1693.1 1519.61 46.72 6
24 1 769.3 1785.9 1781.56 51.43 8
25 1 798.8 1849.7 2033.85 57.84 8

Table 5: Experiments employing LLL reduction with mb = 1.

39



d mb D σ̄ t̄LLL [s] t̄Babai [s] hit rate

5 2 95.7 305.5 4.18 0.23 0
6 2 114.4 356.5 7.47 0.35 0
7 2 136.4 425.2 13.27 0.52 0
8 2 151.8 483.1 19.66 0.71 0
9 2 172.7 540.9 28.65 0.99 0
10 2 192.5 613.8 38.81 1.28 0
11 2 210.8 667.5 49.30 1.68 1
12 2 232.3 734.1 67.96 2.11 0
13 2 251.7 796.1 85.43 2.53 4
14 2 271.1 871.5 106.48 3.19 5
15 2 293.6 937.8 136.93 3.92 5
16 2 310.8 991.3 164.35 4.68 7
17 2 322.6 1032.0 194.43 5.53 5
18 2 343.7 1088.1 246.62 6.54 5
19 2 363.3 1169.3 271.32 7.43 7
20 2 382.2 1221.9 320.61 8.71 5

Table 6: Experiments employing LLL reduction with mb = 2.

d mb D σ̄ t̄LLL [s] t̄Babai [s] hit rate

5 3 64.4 236.3 2.32 0.09 0
6 3 77.4 284.5 3.68 0.16 0
7 3 91.0 339.2 6.06 0.26 0
8 3 106.4 398.2 9.27 0.39 0
9 3 116.7 426.7 13.85 0.50 0
10 3 131.8 486.0 19.39 0.69 0
11 3 143.3 534.1 25.39 0.84 1
12 3 159.9 594.7 35.39 1.13 1
13 3 169.9 630.4 44.79 1.35 5
14 3 180.6 672.8 55.97 1.59 3
15 3 199.8 747.9 68.49 2.03 2
16 3 212.3 790.3 87.09 2.50 3
17 3 224.2 835.5 99.50 2.86 4
18 3 239.3 895.0 122.87 3.42 5
19 3 249.9 946.4 141.24 3.88 5
20 3 254.7 950.4 154.30 4.44 7

Table 7: Experiments employing LLL reduction with mb = 3.

40



d mb D σ̄ t̄LLL [s] t̄Babai [s] hit rate

5 4 45.6 189.5 1.12 0.04 0
6 4 52.5 212.6 1.85 0.06 0
7 4 61.8 249.4 3.18 0.09 0
8 4 69.6 282.4 4.55 0.15 1
9 4 78.5 321.1 6.72 0.23 0
10 4 85.4 348.1 8.39 0.33 2
11 4 95.1 388.5 11.76 0.46 1
12 4 100.6 411.4 15.46 0.56 0
13 4 111.0 455.3 21.32 0.73 2
14 4 121.2 502.6 27.29 0.92 5
15 4 126.1 524.2 31.37 1.07 6
16 4 133.4 545.6 36.34 1.24 3
17 4 141.6 571.5 47.62 1.52 3
18 4 155.2 643.5 61.41 1.88 6
19 4 162.0 659.8 69.31 2.13 4
20 4 171.0 707.1 81.09 2.36 6
21 4 183.1 760.8 98.92 2.85 7
22 4 188.0 778.1 109.73 3.33 6
23 4 196.1 803.8 126.21 3.68 7
24 4 206.3 852.8 146.41 4.34 6
25 4 212.9 885.8 163.96 4.63 7

Table 8: Experiments employing LLL reduction with mb = 4.

41



d mb D σ̄ t̄LLL [s] t̄Babai [s] hit rate

5 5 27.0 105.1 0.23 0.01 0
6 5 32.4 130.8 0.45 0.01 0
7 5 39.8 164.1 0.97 0.03 0
8 5 41.7 167.7 1.21 0.04 0
9 5 50.0 208.4 2.25 0.05 0
10 5 55.6 227.9 3.49 0.08 0
11 5 63.2 267.0 5.21 0.12 1
12 5 66.5 276.3 6.68 0.15 1
13 5 70.7 289.8 8.22 0.21 1
14 5 77.4 327.2 10.71 0.35 5
15 5 85.3 361.0 14.96 0.60 3
16 5 92.1 392.6 18.66 0.74 3
17 5 93.3 394.2 20.33 0.86 5
18 5 99.7 424.1 26.54 1.09 4
19 5 105.2 439.3 31.80 1.25 5
20 5 109.5 468.5 33.75 1.37 6
21 5 117.3 499.9 46.84 1.72 7
22 5 122.1 509.3 51.16 1.92 8
23 5 124.0 518.6 57.40 2.11 6
24 5 132.5 559.7 68.65 2.55 9
25 5 136.8 577.8 80.55 2.76 5

Table 9: Experiments employing LLL reduction with mb = 5.

d mb D σ̄ t̄LLL [s] t̄Babai [s] t̄BKZ [s] hit rate

5 1 160.9 374.9 13.30 0.66 228.59 0 (0+0)
6 1 196.4 438.4 23.92 1.02 739.48 0 (0+0)
7 1 224.8 517.2 37.60 1.51 1790.52 1 (0+1)
8 1 256.8 591.3 54.22 2.08 758.57 1 (0+1)
9 1 290.1 662.9 76.88 3.00 1521.70 5 (0+5)
10 1 322.8 732.6 105.73 4.20 3014.15 4 (2+2)
11 1 352.6 816.5 139.85 5.38 6075.52 7 (2+5)
12 1 387.2 883.2 184.82 6.89 12909.33 8 (1+7)
13 1 415.7 967.6 230.94 8.77 6971.49 8 (3+5)
14 1 448.1 1032.4 293.67 10.99 14970.03 9 (4+5)
15 1 482.5 1111.2 376.10 12.74 7377.91 9 (5+4)

Table 10: Experiments employing BKZ reduction with mb = 1.

42



d mb D σ̄ t̄LLL [s] t̄Babai [s] t̄BKZ [s] hit rate

5 2 96.9 306.1 4.61 0.23 84.62 0 (0+0)
6 2 116.6 370.1 7.65 0.36 653.17 0 (0+0)
7 2 138.1 431.6 13.21 0.55 499.35 3 (0+3)
8 2 155.8 490.2 19.29 0.78 548.27 4 (1+3)
9 2 174.7 564.9 25.88 0.98 483.71 3 (0+3)
10 2 191.8 608.0 36.79 1.27 2596.34 3 (0+3)
11 2 213.7 676.8 47.83 1.64 2946.76 6 (3+3)
12 2 233.4 730.0 64.55 2.19 5908.30 5 (0+5)
13 2 248.3 792.7 81.82 2.48 3179.12 9 (4+5)
14 2 271.8 853.7 113.02 3.25 12069.42 8 (2+6 )
15 2 290.7 916.9 136.79 4.03 3885.29 9 (3+6)

Table 11: Experiments employing BKZ reduction with mb = 2.

d mb D σ̄ t̄LLL [s] t̄Babai [s] t̄BKZ [s] hit rate

5 3 67.6 246.3 2.53 0.11 142.54 0 (0+0)
6 3 76.9 285.1 3.64 0.16 224.96 0 (0+0)
7 3 90.5 336.7 5.78 0.25 221.19 0 (0+0)
8 3 102.8 383.3 8.62 0.36 174.97 4 (0+4)
9 3 121.3 449.7 13.88 0.55 569.09 3 (1+2)
10 3 128.6 476.8 17.66 0.67 964.61 3 (0+3)
11 3 138.8 516.4 23.02 0.78 1315.60 4 (1+3)
12 3 155.1 590.7 32.67 1.02 2438.11 7 (3+4)
13 3 171.2 638.1 43.35 1.33 2162.14 10 (4+6)
14 3 183.8 693.9 57.37 1.73 3470.40 7 (3+4)
15 3 199.1 739.2 70.07 1.98 2672.28 7 (2+5)

Table 12: Experiments employing BKZ reduction with mb = 3.

43



d mb D σ̄ t̄LLL [s] t̄Babai [s] t̄BKZ [s] hit rate

5 4 44.1 181.7 1.04 0.03 1.31 0 (0+0)
6 4 53.4 212.6 1.99 0.06 7.48 0 (0+0)
7 4 61.9 249.8 3.24 0.09 34.71 1 (0+1)
8 4 71.8 299.8 4.77 0.15 125.85 4 (0+4)
9 4 78.5 317.9 6.47 0.23 404.78 1 (0+1)
10 4 87.3 360.1 9.00 0.36 666.69 6 (1+5)
11 4 95.2 396.0 11.32 0.44 1042.91 6 (1+5)
12 4 106.6 441.5 17.32 0.61 2169.34 7 (1+6)
13 4 111.8 465.0 20.13 0.72 1607.15 8 (5+3)
14 4 114.5 466.5 23.05 0.87 1214.87 6 (3+3)
15 4 126.1 518.4 31.27 1.05 1696.46 8 (5+3)
16 4 134.8 554.4 39.14 1.29 942.24 9 (6+3)
17 4 144.7 595.8 47.64 1.58 1386.65 10 (5+5)
18 4 155.6 651.9 60.35 1.94 1520.36 9 (4+5)
19 4 165.8 680.6 73.52 2.18 2417.96 9 (3+6)
20 4 170.8 697.0 80.26 2.59 3777.19 10 (4+6)

Table 13: Experiments employing BKZ reduction with mb = 4.

d mb D σ̄ t̄LLL [s] t̄Babai [s] t̄BKZ [s] hit rate

5 5 28.1 118.5 0.24 0.01 0.03 0 (0+0)
6 5 33.1 135.3 0.47 0.02 0.09 0 (0+0)
7 5 41.5 175.0 1.07 0.03 0.74 0 (0+0)
8 5 47.5 201.0 1.76 0.05 1.70 1 (0+1)
9 5 52.4 225.6 2.56 0.06 3.12 1 (0+1)
10 5 58.4 250.0 3.90 0.09 12.18 3 (2+1)
11 5 61.9 254.9 4.96 0.11 13.72 2 (1+1)
12 5 67.9 283.1 7.01 0.16 23.44 3 (2+1)
13 5 71.6 299.0 8.62 0.23 43.63 6 (3+3)
14 5 78.0 325.0 10.72 0.39 162.86 7 (3+4)
15 5 83.6 349.1 14.32 0.58 143.79 7 (4+3)
16 5 90.5 379.5 18.00 0.75 480.48 9 (2+7)
17 5 95.6 405.2 22.22 0.89 465.93 9 (4+5)
18 5 97.3 405.4 25.19 1.06 703.87 10 (5+5)
19 5 101.6 420.3 29.70 1.21 399.98 8 (5+3)
20 5 108.8 455.8 37.03 1.41 1275.56 9 (6+3)

Table 14: Experiments employing BKZ reduction with mb = 5.

44



Appendix C

We present detailed statistics on the experiments with random instances of
DSA-KDP converted to the instances of EHNP and solved by Algorithm 1.
The size of DSA prime q is set to 256 bits to match its definition in the draft
of FIPS 186 (Third revision). Each line in Table 15 represents an experiment
of 10 random DSA-KDP instances.

d mb D σ̄ t̄LLL [s] t̄Babai [s] hit rate

20 5 148.4 700.7 267.59 5.85 0
21 5 151.3 706.9 309.31 6.69 1
22 5 163.9 764.9 372.54 7.70 1
23 5 162.6 752.1 402.33 8.53 1
24 5 174.4 813.1 463.96 9.41 1
25 5 181.1 854.6 541.15 11.42 3
26 5 191.9 899.0 654.09 12.62 0
27 5 199.8 933.4 751.25 14.90 1
28 5 204.5 958.4 805.70 16.12 0
29 5 205.2 950.3 876.88 17.85 0
30 5 219.4 1038.3 1010.06 19.89 1
31 5 228.0 1071.7 1189.26 22.82 2
32 5 235.8 1111.1 1293.63 24.35 2
33 5 235.8 1110.9 1398.55 27.08 0
34 5 251.0 1173.8 1666.97 31.49 1
35 5 252.2 1174.8 1636.32 30.41 1
36 5 260.9 1229.4 1813.62 34.12 3
37 5 266.4 1231.0 2035.25 36.14 2
38 5 280.8 1320.7 2265.42 38.02 3
39 5 281.0 1307.4 2491.76 42.95 2
40 5 286.4 1337.7 2640.81 44.92 4
41 5 297.2 1397.1 2839.71 46.08 3
42 5 307.5 1430.1 3317.86 55.31 4
43 5 307.8 1424.5 3450.49 56.51 1
44 5 330.0 1553.6 3977.16 60.88 4
45 5 329.7 1545.1 4104.91 65.11 6

Table 15: Experiments employing LLL reduction with mb = 1 dlog2 qe = 256
bits.

45


	Contents
	Abstract
	1 Preface
	2 Preliminaries
	2.1 Symbol ||N
	2.2 Lattices
	2.2.1 Basic definition and properties
	2.2.2 Algorithmic problems
	2.2.3 LLL algorithm
	2.2.4 Babai's algorithm


	3 Extended Hidden Number Problem
	3.1 Problem definition
	3.2 Existing solutions
	3.2.1 Nguyen and Shparlinski's approach
	3.2.2 Howgrave-Graham and Smart's approach
	3.2.3 Motivation for the new method

	3.3 Algorithm solving EHNP
	3.4 Short vectors in L
	3.5 Correctness of the solution

	4 Digital Signature Algorithm
	4.1 Public parameters
	4.2 Signing operation
	4.3 Verifying operation
	4.4 DSA Key Disclosure problem

	5 Real Scenario Application
	5.1 Hyper-Threading Technology
	5.2 Sliding Window Exponentiation
	5.3 Practical Experiments with EHNP

	6 Conclusion
	References
	Appendix A 
	Appendix B 
	Appendix C 

