
Faculty of Mathematics and Physics
Charles University, Prague

Master Thesis

Katsiaryna Chernik

Syllable-based compression for XML documents

Department of Software Engineering
Supervisor: Jan Lánský

Study program: Computer Science

I would like to thank Jan Lánský for his helpfulness and patience while supervising this
work.

I declare that I have worked out this thesis on my own, using only the resources stated.
I agree that the thesis may be publicly available.

Prague, April 23, 2006 Katsiaryna Chernik

Contents

1 Introduction 5

2 XML: An Overview 6
2.1 XML Document . 6
2.2 XML Processing . 8

2.2.1 SAX . 8
2.2.2 DOM . 8

3 Text compression algorithms 10
3.1 Character-based text compression . 10

3.1.1 LZW . 10
3.1.2 Huffman Coding . 11

3.1.2.1 Static Huffman Coding . 12
3.1.2.2 Adaptive Huffman coding 14

3.2 Syllable-based text compression . 14
3.2.1 Decomposition of word into syllables 14
3.2.2 LZWL . 16
3.2.3 HufSyl . 18

4 XML compression 20
4.1 XMill . 20
4.2 XMLPPM . 23
4.3 XGrind . 24
4.4 XPress . 26
4.5 Other XML compressors . 28

5 Experimental methodology 30
5.1 Comparative compression tools . 30
5.2 XML data sources . 30
5.3 Compression performance metrics . 30

6 XMLSyl 32
6.1 Motivation . 32
6.2 Architecture and principles of XMLSyl . 32
6.3 Parser . 33

6.4 Encoding the structure of XML document 34
6.5 Containers . 36
6.6 Syllable Compressor . 36
6.7 Syllable Dictionaries . 37
6.8 Conversion between different character encoding 37
6.9 Comparison experiments . 37

6.9.1 Performance of XMLzwl . 37
6.9.2 Performance of XMLhuf . 39

7 XMillSyl 40
7.1 Motivation . 40
7.2 Implementation . 40
7.3 Comparison Experiments . 41

8 Conclusions and further work 44

Abstract

Title: Syllable-based compression of XML
Author: Katsiaryna Chernik
Department: Department of Software Engineering
Supervisor: Jan Lánský
Supervisor’s e-mail address: zizelevak@gmail.com
Abstract: Syllable-based compression achieves sufficient results on small or middle-sized
text documents. Since the majority of XML documents are that size, we suppose that the
syllable-based method can give good results on XML documents, especially on documents
that have a simple structure (small amount of elements and attributes) and relatively long
character data content.
In this paper we propose two syllable-based compression methods for XML documents. The
first method, XMLSyl, replaces XML tokens (element tags and attributes) by special codes
in input document and then compresses this document using a syllable-based method. The
second method, XMillSyl, incorporates syllable-based compression into the existing method
for XML compression XMill. XMLSyl and XMillSyl are compared with other XML-conscious
compression methods as well as with a non-XML syllable-based compression methods.
Keywords: XML, data compression, syllable-based compression.

Název práce:Slabiková komprese XML
Autor: Katsiaryna Chernik
Katedra: Katedra softwarového inženýrstv́ı
Vedoućı diplomové práce:: Jan Lánský
e-mail vedoućıho:: zizelevak@gmail.com
Abstrakt: Slabiková komprese prokazuje dobré výsledky na malých a sřtedně velkých tex-
tových dokumentech. Protože většina XML dokument̊u je středně velká, domńıváme se,
že slabiková komprese muže byt vhodná pro XML, zvláště pak pro dokumenty, které maj́ı
jednoduchou strukturu (mály počet elementu a atributu) a poměrně dlouhý znakový obsah.
V této práci jsme navrhli dvě slabikové kompresńı metody pro textová data ve formátu XML.
Prvńı metoda, XMLSyl, nahrazuje XML značky (elementy a atributy) ve vstupńım doku-
mentu speciálńımi kódý a pak komprimuje dokument pomoci slabikové komprese. Druhá
metoda, XMillSyl, spojuje slabikovou kompresi a kompresńı metodu XMill. XMLSyl a
XMillSyl porovnáváme s již existuj́ıćımi kompresńımi metodami pro XML a s obecnými
slabikovými kompresńımi metodami.
Kĺıčová slova: XML, komprese dat, syntaktická komprese, pravděpodobnostńı mode-
lováńı.

zizelevak@gmail.com
zizelevak@gmail.com

Chapter 1

Introduction

The Extensible Markup Language (XML) [6] is a simple text format for structured text
documents. XML provides flexibility in storing, processing and exchanging data on the
Web. However, due to their verbosity, XML documents are usually larger in size than other
exchange formats containing the same data content. One solution to this problem is to
compress XML documents. Because XML is a text format, it is possible to compress XML
documents with existing text compression methods. These methods are more effective when
XML documents have simple structure and long character data content. There are different
types of text compression: text compression by characters and text compression by words.
There is also a novel method: text compression by syllables [13]. In our work an application
of this method to XML documents was developed. Since single text compression is not able
to discover and utilize the redundancy in the structure of XML, we modify the syllable-based
compression method for XML.

At the beginning we made the hypothesis that XML syllable-based compression will be
suitable for middle-sized textual XML documents. There are many XML documents that
meet these conditions, for example documentation written in DocBook [17] format or news
in RSS format [19]. Moreover we suppose that our compression would be more suitable for
documents in languages with rich morphology (for example Czech or German [13]).

Chapter 2

XML: An Overview

XML [6] stands for eXtensible Markup Language, and it is a standard for structured text
documents developed by the World Wide Web Consortium (W3C) [23]. XML can be used to
structure text in such a way that it is readable by both humans and machines, and it presents
a simple format for the exchange of information across the internet between computers.

XML is a simplification (or subset) of the Standard Generalized Markup Language
(SGML) which was developed in the 1970s for the large-scale storage of structured text
documents.

2.1 XML Document

This section covers the basics of XML [24]. An XML document contains a prolog and a
body. The minimal prolog contains a declaration that identifies the document as an XML
document:

<?xml version=’1.0’ encoding=’UTF-8’ standalone=’yes’?>

The XML declaration may contain the attributes:

• version: Identifies the version of the XML markup language used in the data. This
attribute is required.

• encoding : Identifies the character set used to encode the data. (The default is 8-bit
Unicode: UTF-8.)

• standalone: Tells whether or not this document references an other external files. If
there are no external references, then ”yes” is appropriate.

The prolog can also contain definition of entities and a Document Type Definition (DTD).
DTD is a set of rules that specify how the different tags in an XML document can be used
together and the attributes that may belong to each tag. DTD can be defined directly within
the prolog, as well as with pointers to external specification files.

An entity is an individual XML item that has a name. Referencing the entity by name
causes it to be inserted into the document in place of the entity reference. To create an
entity reference, the entity name is surrounded by an ampersand and a semicolon, like this:

2.1 XML Document 7

&entityName;

An entity reference can reference an entire document, or external entity, or a collection
of DTD definitions (a parameter entity).

The body of an XML document contains the actual marked up document wich is com-
prised of one or more named elements organized into a nested hierarchy. An element is an
opening tag, data, and a closing tag. An opening tag is an element name preceded by a
less-than symbol (<) and followed by a greater-than (>) symbol. For any given element, the
name of the opening tag must match that of the closing tag. A closing tag is identical to an
opening tag except that the less-than symbol is immediately followed by a forward-slash (/).

<tag>Some Data</tag>

If an element does not contain any data, the opening and closing tags can be combined.
Observe the location of the forward slash just prior to the greater-than (>) symbol.

<emptyTag/>

An element may include zero or more attributes. An attribute specifies properties of
the element that you modify and consists of a name/value pair. Attribute values must be
contained in matching single or double quotes.

<tag name="value">Some Data</tag>

The elements may be arranged in an infinitely nested hierarchy, but only one element in
the document can be designated as the root document element. The root document element
is the first element that appears in the document. Also the elements must be properly nested
within each other, i.e. if the start tag of element is in the content of another element, the
end tag is in the content of the same element.

A document author can place comments in XML documents. A comment begins with the
combination of characters "<!--" and ends with the combination of characters "-->" .
Comments may appear as a child of any element in an XML document. They can also appear
before or after the root element.

An XML file can also contain processing instructions that give commands or information
to an application that is processing the XML data. Processing instructions have the following
format:

<?target instructions?>

where target is the name of the application that is expected to do the processing, and
instructions is a string of characters that embodies the information or commands for the
application to process.

There are occasions when you need handle large blocks of XML or HTML that include
many of the special characters. It would be inconvenient to replace each of them with the
appropriate entity reference. For those situations, you can use a CDATA section:

<![CDATA[Text to be ignored]]>

2.2 XML Processing 8

CDATA is predefined XML tag for ”Character DATA” and characters in CDATA section
are not interpreted as XML.

2.2 XML Processing

There are two basic ways to work with XML [25]. One is called SAX (”Simple API for
XML”), and it works by reading the XML data in parts and calling a method for each
element it finds. The other is called DOM (”Document Object Model”), and it works by
reading in the entire XML document at once and creating an internal representation of it.

2.2.1 SAX

SAX [8], the Simple API for XML, is a traditional, event-driven parser. SAX obtains the
content of an XML document as a sequence of events. For example [21], in parsing the
following sample document

<?xml version="1.0"?>

<document>

<para>This is a very simple example</para>

</document>

a SAX parser would report events

startDocument

startElement: document

startElement: para

characters: This is a very simple example

endElement: para

endElement: document

endDocument

This approach is very efficient because the parser does not hold the information in memory
and the processing is minimal at the parser’s level [21]. However, in most cases it is not
enough to possess the information of a single SAX event. For example, when the SAX
parser reports a character event the parent element is not known unless the name of the
last start tag has been kept in memory. Therefore, relevant information should be stored
in memory for further usage. The good thing is that an application knows exactly what it
needs and it also knows when each piece of information is not necessary anymore. SAX lets
build efficient parsing mechanisms, but it is difficult to use.

2.2.2 DOM

Document Object Model (DOM) [27] is an application programming interface (API) for valid
HTML and well-formed XML documents. It builds a tree structure in memory containing

2.2 XML Processing 9

the information of the entire XML document.
Consider following XML document [27]:

<TABLE>

<TBODY>

<TR>

<TD>Shady Grove</TD>

<TD>Aeolian</TD>

</TR>

<TR>

<TD>Over the River, Charlie</TD>

<TD>Dorian</TD>

</TR>

</TBODY>

</TABLE>

A graphical representation of the DOM of the XML document is shown in Figure 2.1.

Figure 2.1: DOM Tree

The DOM API defines interfaces whose instances are linked in a tree and maintain
information about elements, attributes, character data sections, processing instructions, etc.
DOM is not the easiest way to manipulate the information of a document, but it has a huge
advantage: a DOM tree is a mirror of the original document’s structure and content [21].
Problems start to occur when you need to process large documents. Some documents will
simply not fit into the computer’s memory. Therefore, DOM is much easier to use than SAX,
but has scalability issues.

Chapter 3

Text compression algorithms

It is possible to divide text compression algorithms into three types according to their ba-
sic compression unit: character-based, word-based and syllable-based algorithms. In this
chapter we describe two character-based compression methods – LZW and Huffman. Then
we introduce methods for decomposition of words into syllables. Finally we describe two
syllable-base text compression methods – LZWL and HufSyl.

3.1 Character-based text compression

3.1.1 LZW

LZW [29] is short for Lempel-Zif-Welch, a data compression technique developed in 1977 by
J. Ziv and A Lempel, and later refined by Terry Welch.

LZW is a lossless dictionary based encoding algorithm. It builds a dictionary of data
occurring in the input stream that is being compressed and indexes that point to entries in
the dictionary which are subsequently sent to the output stream. The dictionary does not
have to be transmitted with the compressed text since the decompressor can build it the
same way the compressor does.

In the initialization step the dictionary is filled with all single-character strings occurring
in the input stream. In the following steps, LZW searches the input stream for maximal
STRING, which corresponds with one from the dictionary, and generates new entries by ap-
pending the single character following STRING in the text to the end of the STRING. The
index of the STRING in the dictionary is sent to the output stream.

The algorithm for LZW compression is as follows [28]:

Initialize table with single-character strings

STRING = first input character

WHILE not end of input stream

CHARACTER = next input character

IF STRING + CHARACTER is in the string table

STRING = STRING + CHARACTER

ELSE

output the code for STRING

3.1 Character-based text compression 11

add STRING + CHARACTER to the string table

STRING = CHARACTER

ENDIF

ENDWHILE

output code for string

Decoding LZW data is the reverse of encoding. In the initialization step the dictionary
is filled with all single-character strings. The input stream of codes is translated into an
output stream using the dictionary. The dictionary is updated for each code in the input
stream excluding the first one. After the code has been translated into its corresponding
string, the first character of the string is appended to the previous string. This new string
is added to the dictionary in the same location as in the compressor’s dictionary.

It is possible to have a situation where the code in input stream is not from the dictionary.
In this case, the output string is created by concatenation of the last added string with its
first character.

The decompression algorithm is as follows:

Initialize table with single character strings

CODE = first input code

OLDSTRING = translation of CODE

output OLDSTRING

WHILE not end of input stream

CODE = next input code

IF CODE is not in the string table

STRING = STRING + CHARACTER

add STRING to string table

output STRING

ELSE

STRING = translation of CODE

output STRING

CHARACTER = first character of STRING

add OLDSTRING + CHARACTER to the string table

ENDIF

OLDSTRING = STRING

END WHILE

3.1.2 Huffman Coding

Huffman coding is a coding algorithm presented by David Huffman in 1952. It is based on
the frequency of occurrence of a data item. The basic idea is to assign short codes to symbols
that have a higher probability of occurring and long codes to those that occur less often.
This assignment can made in to variants - static and adaptive.

The static variant of the Huffman coding requires that the data items are not changed
and their frequencies of occurrence are known in advance. These frequencies are received by
static analysis of data. That why the static method requires two passes over the data.

3.1 Character-based text compression 12

In the adaptive variant, frequencies are changed during passing the data. The data are
encoded in one pass and we do not need to store the mapping for the Huffman code, which
is required by the static variant.

3.1.2.1 Static Huffman Coding

The Static Huffman [30] algorithm takes as input a list of nonnegative weights w(1), ... ,w(n)
and constructs a binary tree. All the leaves of this tree are marked with the weights. The
weights represent the frequency of occurrence of a particular data item. At each step in the
algorithm the trees corresponding to the two smallest weights, w(i) and w(j), are merged
into a new tree whose weight is w(i)+w(j) and whose root has two children which are the
subtrees represented by w(i) and w(j). The weights w(i) and w(j) are removed from the list
and w(i)+w(j) is inserted into the list. This process continues until the weight list contains a
single value. If, at any time, there is more than one way to choose a smallest pair of weights,
any such pair may be chosen.

For example [31], for string ”go go gophers” the list of input weights is
{3,3,2,1,1,1,1,1} and the trees corresponding to these weights are shown below:

‘g’

3

‘o’

3

‘ ’

2

‘e’

1

‘s’

1

‘h’

1

‘p’

1

‘r’

1

In first step two minimal nodes are merged. There are five nodes with the minimal weight
of one, it does not matter which two are merged. The first step is shown here:

‘g’

3

‘o’

3

‘ ’

2

‘e’

1

‘s’

1

‘h’

1

‘p’

1

‘r’

1

2

The final tree for string ”go go gophers” is shown in Figure 3.1.
The Huffman algorithm determines the length of the codewords to be mapped to each of

the source letters. There are many alternatives for specifying the actual digits; it is necessary
only that the code have the prefix property. The usual assignment entails labeling the edge
from each parent to its left child with the digit 0 and the edge to the right child with 1. The
codeword for each source letter from our example is shown in Table 3.2.

The decoding Huffman algorithm is very simple. In the initialization step the Huffman
binary tree is retrieved from the input stream (the tree was stored there by the encoding
process). At the start of the decoding process we are in the root of the Huffman binary tree.
Then we get a bit, and depending if it is 0 or 1 we go to the left or the right respectively.
This process stops when we hit a leaf, which contains the symbol to decode. This symbol is
sent to the output stream and we go to the root to decode a new symbol. This process is
repeated until the end of input stream is not reached.

3.1 Character-based text compression 13

‘p’

1

‘r’

1

2

‘s’

1

‘h’

1

2‘ ’

2

‘e’

1

3‘g’

3

‘o’

3

6

4

7

13

Figure 3.1: The Huffman tree for string ”go go gophers”.

char codeword
’g’ 00
’o’ 01
’p’ 1110
’h’ 1101
’e’ 101
’r’ 1111
’s’ 1100
’ ’ 100

Figure 3.2: The Huffman codeword”.

3.2 Syllable-based text compression 14

3.1.2.2 Adaptive Huffman coding

The basis for the Adaptive Huffman [32] algorithm is the sibling property: A binary code
tree suffices the sibling property if each node (except the root) has a sibling and if it is
possible to assign the node number to each node in such a way:

1. A node with a higher weight will have a higher node number.

2. A parent node will always have a higher node number than its children.

Initially, the code tree consists of a single leaf node known as the Not-Yet-Transmitted
(NYT) or escape code. NYT node has the maximum number. For each source unit the code
tree is first checked to see if it already contains that units. If it does not, the code for path
from the root to the NYT node is sent to the output stream to alert the decoder that a new
source unit follows. Then the ASCII encoding of the new unit is sent to output. The NYT
node spawns two new nodes. The node to its right is a new node containing the source unit
and the new left node is the new NYT node. If the source unit is already in the code tree,
the code for the path from root node to the corresponding tree node is sent to the output
stream. The weight of that particular node is incremented. The increments cause possible
reorganizations of the code tree by swapping the nodes to maintain the sibling property.

The reorganization process is done with the following steps. Before the node’s weight is
updated, the tree is searched for all nodes of equal weight. The soon-to-be updated value is
swapped with the highest ordered node of equal weight and only then the weight is updated.
In both cases for inserting values, weights are changed for a leaf and this change will effect
all nodes above it. Therefore, after a node is inserted, the parent above must be checked
and reorganized in the same way as the current node. In

The Figure 3.3 shows a flowchart of the tree manipulation process [32].

3.2 Syllable-based text compression

3.2.1 Decomposition of word into syllables

A syllable is a sequence of sounds which contains exactly one maximal subsequence of vowels
[13]. This is a simplified definition of syllables which is not equivalent with the grammatically
correct definition but suffices for the purpose of compression.

We recognize five types of syllables: small, capital, mixed, number and other. A small
syllable is one that consists of small letters. A capital syllable consists of capital letters. A
mixed syllable has the first letter capital and the other are small. A number syllable consists
of digits and an other syllable consists of special symbols.

According to the syllable definition, decomposition of words into syllables is not always
unique. There are four different algorithms of decomposing words into syllables to be used
in syllable-based compression: universal left PUL, universal right PUR, universal middle-left
PUML, universal middle-right PUMR [13]. These algorithms are composed of two parts. The
first part is an initialization part and this is common for all algorithms. The second part is
different for each algorithm.

3.2 Syllable-based text compression 15

First
appearance
for symbol?

Is this the
maximum ordered

node in its
weight class?

Is this the
root node?

Start

Go to leaf whose
value is this

symbol

Increment node
weight

NYT gives birth
to new NYT and
external node

Increment weight
of external node

and old NYT node

Go to old
NYT node

Switch node with
highest numbered

node in block

Go to parent node

yes

no

no

no

yes

END

yes

Figure 3.3: The adaptive Huffman tree manipulation flowchart.

3.2 Syllable-based text compression 16

In the initialization part, text words are decomposed into maximal sequences (blocks)
of vowels and consonants. The blocks of vowels will create bases of syllables. Consonants
which are in the word before the first block of vowels are added to the first block. Consonants
which are in the word after the last block of vowels are added to the last block.

Single algorithms of class PU differ in the way of adding consonants, which are between
two blocks of vowels. These algorithms are named for their method of addition of consonants:

Algorithm universal left PUL adds all consonants between blocks of vowels to the left
block.

Algorithm universal right PUR adds all consonants between blocks of vowels to the right
block.

Algorithm universal middle-right PUMR in the case of 2n (even count) consonants between
blocks adds to both blocks n consonants. In the case of 2n + 1 (odd count) consonants
between blocks it adds to the left block n consonants and to the right block n + 1 consonants.

Algorithm universal middle-left PUML in case of 2n (even count) consonants between
blocks adds to both blocks n consonants. In the case of 2n+1 (odd count) consonants
between blocks it adds to the left block n+1 consonants and to the right block n consonants.

Example 3.1. We will decompose the word priesthood into syllables. Blocks of vowels are:
ie, oo.

correct decomposition into syllables: priest-hood

universal left PUL: priesth-ood

universal right PUR: prie-sthood

universal middle-left PUML: priest-hood (correct form)

universal middle-right PUMR: pries-thood

3.2.2 LZWL

LZWL [14] is syllable-based version of compression algorithm LZW. It works over an alphabet
of syllables obtained by any algorithm of decomposition into syllables. This algorithm can
also be used for words.

In the initialization step an empty syllable and frequent syllables of the given language
are added to the dictionary. In each of the following steps LZWL, in a similar manner as
LZW, searches the input stream for the maximal string of syllables which the corresponds
with one from the dictionary and sends indexes of the string in the dictionary to the output
stream.

During compression unknown syllables can be encountered. In this case LZWL encodes
unknown syllable by the unknown-syllable coding algorithm and sends to the output stream
the code of the empty syllable followed by the code of unknown syllable.

The unknown-syllable coding algorithm encodes syllables as code of syllable type (there
are five different types of syllables and each has special code) followed by code of syllable
length and codes of individual characters of syllable.

Updating the dictionary in LZWL is analogical with character-based LZW: the first
syllable of the string is appended to the previous string and the new string is added to the
dictionary. Only, in contrast to LZW where the dictionary is updated in each step, with

3.2 Syllable-based text compression 17

LZWL the dictionary is updated only if no unknown syllables were detected in the current
or previous step. This solution has two advantages: The first advantage is that strings are
not created from syllables that appear only once. The second advantage is that we cannot
receive in the decoder the code of the string that is not from the dictionary.

The algorithm for LZWL compression is as follows:

Initialize dictionary with empty syllable

and frequent syllables of given language

OLDSTRING = empty syllable

NEWSTRING = empty syllable

WHILE not end of input stream

SYLLABLE = next input syllable

IF NEWSTRING + SYLLABLE is in the dictionary

NEWSTRING = NEWSTRING + SYLLABLE

ELSE

IF NEWSTRING is empty syllable

output the code of empty syllable

encode SYLLABLE by unknown-syllable coding algorithm

output the code

add SYLLABLE to the dictionary

ELSE

output the code for NEWSTRING

IF OLDSTRING is not empty syllable

SYLLABLE = first syllable of NEWSTRING

add OLDSTRING + SYLLABLE to the dictionary

ENDIF

ENDIF}

ENDIF

OLDSTRING = NEWSTRING

ENDWHILE}

Decoding LZWL data is the reverse of encoding and analogous with LZW. There are only
two differences: the dictionary is updated only if both this and the previously translated
string are not the empty syllable, and when the translated string is the empty syllable, the
unknown-syllable decoding algorithm should be applied to the input stream.

The unknown-syllable decoding algorithm is reverse of unknown-syllable encoding algo-
rithm.

The decompression algorithm is as follows:

Initialize dictionary with empty syllable

and frequent syllables of given language;

WHILE not end of input stream

CODE = get code from the input stream;

NEWSTRING = translation of CODE

3.2 Syllable-based text compression 18

IF NEWSTRING is not empty syllable

output NEWSTRING

IF OLDSTRING in not empty syllable

SYLLABLE = first character of NEWSTRING;

add OLDSTRING + SYLLABLE to the dictionary;

ENDIF

ELSE /* NEWSTRING is empty syllable */

decode SYLLABLE by unknown-syllable decode algorithm

add SYLLABLE to the dictionary

output SYLLABLE

ENDIF

OLDSYLLABLE = NEWSYLLABLE;

ENDWHILE

3.2.3 HufSyl

HufSyl [14] is a statistical compression method based on adaptive Huffman coding. The
HufSyl algorithm can work with syllables obtained by all algorithms of decomposition into
syllables mentioned above. This algorithm can be used for words also.

For each type of syllable an adaptive Huffman tree is built which codes syllables of a
given type. In the initialization step of the algorithm we add to Huffman tree for small
syllables all syllables and their frequencies from database of frequent syllables.

In each step of the algorithm the expected type of actually processed SYLLABLE is cal-
culated. If SYLLABLE has a different type than it is expected then an escape sequence is
generated and SYLLABLE is encoded by the Huffman tree corresponding to the syllable type.

The algorithm for HufSyl compression is show below:

Initialize data structures

WHILE not end of input stream

SYLLABLE = next input syllable

EXPECTEDTYPE = expected type of SYLLABLE

TYPE = type of SYLLABLE

IF EXPECTEDTYPE != TYPE

output escape sequence

ENDIF

if SYLLABLE is unknown

CODE = code of NYT node in TYPE Huffman tree

output CODE

encode SYLLABLE by unknown-syllable coding algorithm

output the code

insert SYLLABLE to the TYPE Huffman tree

ELSE

CODE = code of SYLLABLE in TYPE Huffman tree

output CODE

ENDIF

3.2 Syllable-based text compression 19

increment weight of SYLLABLE

if necessary reorganize the TYPE Huffman tree

ENDWHILE

Reorganization of the Huffman trees in HufSyl is the same as in the adaptive variant.
The expected type of syllable is calculated from knowledge of types of previous syllables

and knowledge of the structure of a sentence in natural language.
In Table 3.6 the expected types of syllables according type of previous syllable are shown.

previous / expected type of syllable Expected syllable
small small
capital capital
mixed small
number other
other syllable without dot, last syllable from letters is not capital small
other syllable with dot, last syllable from letters is not capital mixed
other, last syllable from letters is capital capital

Table 3.6: Expected types of syllables according type of previous syllable.

Chapter 4

XML compression

In this chapter, we introduce several XML specific compression technologies. We discuss
their main principles and performance in the context of other compressors.

4.1 XMill

XMill [9] was developed by Hartmut Liefke and Dan Suciu at AT&T Labs. XMill is based
on gzip and achieves about twice the compression rate of gzip.

XMill applies three principles to compress XML data:

• Separate structure from data The structure consists of XML tags and attribute
names. The data consists of a sequence of items (strings) representing element contents
and attribute values. Both the structure and the data are compressed separately.

• Group data items with related meaning Data items are grouped into containers
and each container is compressed separately. For example, all <name> data items form
one container, while all <phone> items form a second container.

• Apply different compressors to different containers XMill applies different spe-
cialized compressors (semantic compressors) to different containers.

The architecture of XMill (shown in Figure 4.1) is based on the three principles discussed
below. The XML document is parsed by a SAX parser. The parser then sends SAX events to
the path processor. The path processor sends tags and attributes to the structure container.
Data values are sent to various data containers, according to the container expressions.
Finally all containers are compressed independently using gzip and sent to the output.

Before entering the container, a data value may be compressed with an additional se-
mantic compressor.There are three types of semantic compressors available:

• Atomic compressors for the basic data types (like binary encoding of integers, differ-
ential compressors, etc.)

• Combined compressors (this is useful when data values have lexical structure, e.g.
integers, separated by commas) and

4.1 XMill 21

Figure 4.1: Architecture of XMill compressor

• User-defined compressors (this is useful when the XML data contains highly specialized
types, like DNA sequences, for which special purpose compressors exist)

The default text semantic compressor simply copies its input to the container, without any
compression.

In order to extract the structural item from the documents, XML documents are tok-
enized. Start-tags and attribute names are dictionary-encoded, while all end-tags are re-
placed by the token /. Data values are replaced with their container number. The received
compact document skeleton is then stored in a structure container.

To illustrate, consider the following small XML file:

<paper>

<entry year="2003">

<journal>

<title>Secret Sharing</title>

</journal>

</entry>

<entry year="2004">

<conference>

<title>XML Water Mark</title>

</conference>

</entry>

</paper>

4.1 XMill 22

After the document is processed, the following dictionaries are created:

Element dictionary
paper T0
entry T1
journal T2
title T3
conference T4

Attribute dictionary
year A0

And following containers are created:

Structure container
T0

T1 A0 C0

T2

T3 C1 /

/

/

T1 A0 C0

T4

T3 C1 /

/

/

/

Data container
C0

2003
2004

C1
Secret Sharing
XML Water Mark

The core of XMill is the path processor that determines how to map data values to
containers. The user can control this mapping by providing a series of container expressions
on the command line.

Consider the following regular expression derived from XPath:

e ::= label | * | # | e1/e2 | e1//e2 | (e1|e2) | (e)+

Except for (e)+ and #, all are XPath constructs: label is either tag or an @attribute, *
denotes any tag or attribute, e1/e2 is concatenation, e1//e2 is concatenation with any path
in between, and (e1|e2) is alternation. To these constructs, (e)+ has been added, which is
the strict Kleene closure. The construct # stands for any tag or attribute (much like *), but
each match of # will determine a new container.

The container expression has the form:

c ::= /e | //e,

4.2 XMLPPM 23

where /e matches e starting from the root of the XML tree while //e matches e at arbitrary
depth of the tree. //* is abbreviated by //.

Example 4.1. The expression //journal/title creates a container for all journal’s titles.
// places all data items into a single container. The expression //# creates a family of
containers: one for each ending tag or attribute (the default behavior of XMill).

XMill typically achieves much better compression rates than conventional compressors
such as gzip.

4.2 XMLPPM

XMLPPM [4] is XML compressor based on SAX encoding and Prediction by Partial Match
(PPM) encoding. It proposes a technique called Multiplexed Hierarchical Modeling (MHM),
which employs two basic ideas: multiplexing several text compression models based on XML
syntactic structure, and injecting hierarchical element structure symbols into the multiplexed
models.

In XMLPPM, the input XML document is converted into a stream of SAX events. El-
ement start tags, end tags, and attribute names are dictionary encoded and sent to corre-
sponding PPM models for running predictions and encodings.

XMLPPM uses four compression models:

1. the element and attribute name model (Syms),

2. the element structure model (Elts),

3. the attribute values model (Atts), and

4. the string value model (Chars).

To illustrate the operation of XMLPPM, consider following XML fragment:

<elt att="abcd">XYZ</elt>

Assuming the tag elt has been seen before, and is represented by byte 10, but attribute
name att has not, and the next available byte for attribute name is 0D, our XML fragment
would be encoded as

Model <elt att= "asdf" > XYZ </elt>

Elts: 10 FE FF

Atts: <10> 0D asdf 00 <10> FF

Chars: <10> XYZ 00

Syms: att 00

XMLPPM injects in Att and Char models the enclosing token index <nn> in order to
retain cross-model dependencies among the tokens in different contexts. <nn> indicate that
a particular token has been seen, but these token indexes are not explicitly encoded in the
models.

Compared to XMill, XMLPPM has the benefit of supporting the on-line processing of
compressed documents. Most important is that XMLPPM does not rely on user intervention
but is still able to achieve a better compression ratio than that of XMill (default mode)[2].

4.3 XGrind 24

4.3 XGrind

XGrind [7] is a compression tool for XML documents developed by Pankaj M. Tolani, and
Jayant R. Haritsa of the Indian Institute of Science in 2002. XGrind preserves the syntactic
structure and semantic information of the original XML document. This implies that the
compressed document can be parsed in the same way as any other XML document using the
same SAX or DOM parser, without performing decompression, and allows execute queries
on compressed XML documents.

XGrind uses different techniques for compressing meta-data (tags and attribute names),
enumerated-type attribute values, and (general) element/attribute values. These techniques
are described below:

1. Meta-Data Compression The method to encode meta-data is similar to that in
XMill, and is as follows: Start tags and attribute names are dictionary encoded. All
end-tags are encoded by /.

2. Enumerated-type Attribute Value Compression Enumerate-type attribute val-
ues are encoded using a simple encoding scheme to represent an enumerated domain
of values. XGrind identifies such enumerated-type attributes by examining the DTD
of the XML document.

3. General Element/Attribute Value Compression Element and attribute values
are compressed using non-adaptive Huffman compression algorithm and each values
are compressed individually to attain context-free coding.

To support the non-adaptive feature, two passes have to be made over the XML docu-
ment: the first to collect the statistics and the second to do the actual encoding.

XGrind computes a separate frequency distribution table for each element and non-
enumerated attribute. The motivation for this approach is that data belonging to the same
element/attribute is usually semantically related and is expected to have similar distribution.
For example, data such as telephone numbers or zip-codes will be composed exclusively of
digits.

To illustrate the operation of XGrind, consider an XML document with its DTD in Table
4.2 and 4.3.

<STUDENT rollno = "604100418">

<NAME>Pankaj Tolani</NAME>

<YEAR>2000</YEAR>

<PROG>Master of Engineering</PROG>

<DEPT name = "Computer Science">

</STUDENT>

Figure 4.2: Sample XML document

A conceptual view of a compressed version of this XML document is shown in Figure 4.4.
Here, Tn encodes a start tag, / encodes a closed tag, An encodes an attribute, and nahuff(a)

4.3 XGrind 25

<!ELEMENT STUDENT (NAME,YEAR, PROG, DEPT)>

<!ATTLIST STUDENT rollno CDATA #REQUIRED>

<!ELEMENT NAME (#PCDATA)>

<!ELEMENT YEAR #PCDATA)>

<!ELEMENT PROG (#PCDATA)>

<!ELEMENT DEPT EMPTY>

<!ATTLIST DEPT name (Computer Science

| Electrical Engineering

.

.

.

| Physics | Chemistry)

>

Figure 4.3: DDT of XML document

represents the non-adaptive Huffman code of a data value a. enum(s) denotes the output of
the Enum-Encoder for an input data value s, which is an enumerated attribute.

T0 A0 nahuff(604100418)

T1 nahuff(Pankaj Tolani) /

T2 nahuff(2000) /

T3 nahuff(Master of Engineering) /

T4 A1 enum(Computer Science) /

/

Figure 4.4: Conceptual view of the XGrind compressed XML document

As the output compressed documents in XGrind are homomorphic transformations of
their corresponding input documents, queries can be carried out over the compressed docu-
ment without fully decompressing it. More precisely, exact-match (the search key is a specific
data value) and prefix-match (the search key is a prefix of the data values) queries can be
completely carried out directly on the compressed document, while range (the search key
covers a range of data values) or partial-match (the search key is a substring of the data
values) queries require on-the-fly decompression of only the element/attribute values that
are part of the query predicates.

XGrind provides a reasonably good compression ratio – on the average, about three-
quarters that of XMill, and always at least two-thirds that achieved by XMill. Further, the
compression time is always within a factor of two of that of XMill.

4.4 XPress 26

4.4 XPress

XPress [10] proposes an XML compressor that supports direct querying over compressed
XML documents. Similar to XGrind, XPress transform an XML document into a compressed
form that preserves the syntactic and semantic information of the original XML document.

<book>

<author> author1 </author>

<title> title1 </title>

<section>

<title> title2 </title>

<subsection>

<subtitle> title3 </subtitle>

.

.

.

</subsection>

</section>

</book>

Figure 4.5: Sample XML document

XPress proposes a novel encoding method, called reverse arithmetic encoding, which is
inspired by arithmetic encoding and uses for encoding tree paths of the elements.

Reverse arithmetic encoding operates as follows: The entire interval [0.0, 1.0) is par-
titioned into subintervals, one for each distinct element. An interval for element T is rep-
resented as IntervalT . The size of IntervalT is proportional to the frequency (normalized
by the total frequency) of element T. Consider XML document in Figure 4.5. The following
example shows the intervals for elements in this document:

Example 4.2. Suppose that the frequencies of elements = {book, author, tile, section,
subsection, subtitle} are {0.1, 0.1, 0.1, 0.3, 0.3, 0.1}, respectively. Then, based on the
cumulative frequency, the entire interval [0.0, 1.0) is partitioned as follows:

element frequency cumulative frequency IntervalT
book 0.1 0.1 [0.0, 0.1)
author 0.1 0.2 [0.1, 0.2)
title 0.1 0.3 [0.2, 0.3)
section 0.3 0.6 [0.3, 0.6)
subsection 0.3 0.9 [0.6, 0.9)
subtitle 0.1 1.0 [0.9, 1.0)

The intervals generated by reverse arithmetic encoding possess the suffix containment
property. This property ensures that if an element path P is a suffix of an element path Q,

4.4 XPress 27

then the interval that represents P, denoted as IP , should contain the interval that represents
Q, denoted as IQ.

In Figure 4.6 is shown, how the interval [0.69, 0.699) for a simple path
/book/section/subsection is obtained.

XPress
Example

The interval [0.69, 0.699) for a path
book/section/subsection:

0.0000.000

1.0001.000

bookbook
authorauthor

titletitle

sectionsection

subsectionsubsection

subtitlesubtitle

subsectionsubsection sectionsection bookbook

0.0.600600

0.9000.900

00.690.690

0.7800.780

0.0.690690

0.6990.699

Figure 4.6: Behavior of reverse arithmetic encoding

Element and attribute values in the document are compressed individually using different
context-free compression methods depending on their data types:

1. Numerical data values are transformed into their corresponding binary representations
and differential encoding is applied on the transformed values.

2. Enumerated-type values are dictionary encoded.

3. String values are encoded using context-free Huffman encoding.

All end tags are replaced with a special symbol. Figure 4.7 shows a conceptual view of
the XPress compressed XML document.

I(/book)

I(/book/author) nahuff(author1) /

I(/book/title) nahuff(title1) /

I(/book/section)

I(/book/section/title) nahuff(title2) /

I(/book/section/subsection)

I(/book/section/subsection/subtitle) nahuff(title3) /

...

/

/

/

Figure 4.7: Conceptual view of the XPress compressed XML document

4.5 Other XML compressors 28

The coding scheme in XPress improves the compression strategy adopted in XGrind
in two aspects [2]. First, XPress encodes the tree paths of the elements using real number
intervals that satisfy the suffixes containment property. Therefore, XPress is able to evaluate
the path-based queries over compressed XML documents directly by checking the interval
containment between the paths in an imposed query and the paths of the elements in the
compressed document without decompression. Second, numerical domain data values in
XPress compressed documents are encoded using order preserving context-free compression
methods. This allows XPress to evaluate exact match and range queries concerning numerical
data over compressed documents directly without decompressing the data values.

XPRESS achieves significantly improved query performance compared to XGrind and
shows the reasonable compression ratio [10].

4.5 Other XML compressors

There are several other XML compressors available: XMLZip, Millau, XML-Xpress, XQueC,
XQzip, XCQ, XComp. In subsequent paragraphs, the principles of the two compressors are
briefly discussed.

XMLZip [2] compresses XML documents that are represented as DOM trees. XMLZip
first parses XML data with a DOM parser, then breaks the structural tree into multiple
components: a root component containing all data up to depth N from the root, and one
component for each of the subtrees starting at depth N. The root component is then modified,
references to each subtree are added onto the root, and finally components are compressed
with gzip. The compression ratio achieved by XMLZip is usually worse than that achieved by
other XML compressors. However, the advantage of XMLZip is that it allows limited random
access to partially decompressed XML documents, since XMLZip supports decompressing
the portions of the compressed components that are needed in query evaluation.

Millau [2] is an extension of the Wireless Binary XML format (WBXML). In WBXML,
each element and each attribute is replaced by a compact binary token. Millau extends it
with separation of the structure from the character data. The character data are compressed
using conventional text compressors. In the structure data, special tokens are inserted to
indicate the occurrences of compressed data.

XQueC [33] is a full-fledged XQuery query processor, which works entirely on compressed
data. Like XGrind and XPress, XQueC compresses individual data items of an XML docu-
ment. However, it differs from XGrind and XPress in that it separates the XML structure
from the XML data items. Data items specified by the same root-to-leaf path are grouped
into the same container. To support efficient query processing, XQueC constructs the struc-
ture tree of the input XML document and its structure summary that represents all distinct
paths in the document. To allow efficient access of the compressed data items, XQueC links
each individually compressed data item to its corresponding node in the structure tree and
links each container to the corresponding path in the structure summary. Although XQueC
achieves significantly improved query performance and query expressiveness, the structures
might incur huge space overhead [2].

XQzip [36] is an XML compressor which supports querying compressed XML data by
imposing an indexing structure, which is called the Structure Index Tree (SIT). XQzip

4.5 Other XML compressors 29

avoids full decompression by compressing the data into a sequence of blocks which can be
decompressed individually and at the same time allow commonalities of the XML data to be
exploited to achieve a good compression. XQzip also uses a buffer pool for the decompressed
blocks, which avoids repeated decompression in query evaluation if the data is already in
the pool. With the use of the SIT index and the buffer pool, XQzip achieves a competitive
querying time.

XML Compression and Querying System (XCQ) [37] is an XML compressor used for
compressing XML documents that conform to a given DTD. It supports querying compressed
documents without fully decompressing them. By exploiting the structural information in
the input document and its associated DTD, XCQ restructures the input document into
distinct data streams in a path-based manner. These data streams are then partitioned into
indexed blocks that can be compressed and decompressed as an individual unit. A reasonable
compression ratio, which is comparable to that of XMill, is achieved by XCQ. However, it
requires longer compression and decompression times when forming the XCQ partitioned
data streams.

Chapter 5

Experimental methodology

5.1 Comparative compression tools

To show the effectiveness of the new compression methods, we compare them with the
existing compressors: XMill [9], LZWL and HufSyl [13], which were introduced in Chapter 3
and Chapter 4. XMill is XML-specific compression tools, LZWL and HufSyl are syllable-
based compression tools.

5.2 XML data sources

The performance of the syllable-based compression tools for XML documents will be evalu-
ated on three data sets. The first data set contains English XML documents with different
inner structure. It includes regular data that has regular markup and short character data
content (elts, stats, weblog, tpc). It also includes irregular data that has irregular markup
(pcc, tall). The data in this set was distributed with the XMLPPM [4] and the Exalt [5]
compressors.

The next two data sets contain textual XML documents, that have a rather simple struc-
ture (small amount of elements and attributes) and relatively long character data content.
One of these data sets contains XML documents in English and the remainder contains doc-
uments in Czech. The documents in these sets are divided into three parts according their
size: small (2-10KB), medium (10-50KB) and large (50-350KB). These data sets contain
data in DocBook [16] and in RSS [19] format as well as five stage plays marked up as XML
in English and one stage play in Czech. Some documents in these sets were distributed with
the XMLPPM [4] and the Exalt [5] compressors, others were found on Internet.

5.3 Compression performance metrics

The compression ratio is expressed as the number of bits required to represent a byte and is
defined as follows:

CR =
sizeof(compressed file)× 8

sizeof(original file)
bits/byte.

5.3 Compression performance metrics 31

We compare the compression ratios of syllable-based compression methods for XML
(denoted as XSyl) with those of XMill, LZWL and HufSyl.

CRFXMill =
CRXSyl

CRXMill

,

normalizes the compression ratio of XSyl with respect to XMill.

CRFLZWL =
CRXSyl

CRLZWL

,

normalizes the compression ratio of XSyl with respect to LZWL.

CRFHufSyl =
CRXSyl

CRHufSyl

,

normalizes the compression ratio of XSyl with respect to HufSyl.

Chapter 6

XMLSyl

In this chapter, we introduce our XML compressor: XMLSyl. We present the motivation
and the principles on which XMLSyl is built. We discuss the architecture of it and describe
how it works by giving a compression example in detail. Finally, we present the results of
our experiments that compare XMLSyl with XMill, LZWL and HufSyl.

6.1 Motivation

XML tokens (elements and attributes) inflate XML documents. They make documents
larger in size than other specifications containing the same data content. To achieve good
compression results, we attempted to minimize XML tokens size.

The existing syllable-based compressors divide XML tokens into many syllables and hence
the size of the XML token is not minimized. In our method, we replace XML tokens with
single bytes in the input document and add them to the syllable dictionaries. It causes
the syllable-based compressor to treat XML tokens as single syllables and assign them the
shortest possible codes during syllable-based compression.

The encoding of XML tokens is inspired by existing XML compression methods like
XMLPPM [4], XGrind [7], XPress [10], XMill [9].

6.2 Architecture and principles of XMLSyl

The architecture of XMLSyl is shown in Figure 6.1. It has four major modules: the SAX
Parser, the Structure Encoder, the Containers and the Syllable Compressor.

First, the XML document is sent to the SAX Parser. Next the parser decomposes the
document into SAX events (start-tags, end-tags, data items, comments and etc.) and for-
wards them to the Structure Encoder. The Structure Encoder encodes the SAX events and
routes them to the different Containers. There are three containers in our implementation:

1. Element Container: The Element Container stores the names of all elements that
occur in an XML document. The Structure Encoder also uses the Element Container
as the dictionary for encoding XML structure.

6.3 Parser 33

SAX Parser

Structure Encoder

Element Container Data and Structure Container

XML Document

Attribute Container

Compressed XML document

Syllable Compressor Syllable Compressor

Figure 6.1: The Architecture of XMLSyl Compressor

2. Attribute Container: The Attribute Container stores the names of all attributes
which occur in an XML document. The Structure Encoder also uses the Attribute
Container as the dictionary for encoding XML structure.

3. Structure and Data Container: The Structure and Data Container stores an XML
document, in which all meta-data are replaced with special codes. The encoding
process is presented in Section 6.4.

When a document is parsed and separated into the containers, the contents of the con-
tainers are sent to the Syllable Compressor. It compresses the content of each container
separately using syllable-based compression and sends the result to the output.

The decompression process is the reverse of the compression process. The architecture
of the XMLSyl decompressor is shown in Figure 6.2. The decompressor has three major
modules: the Syllable Decoder, the Containers and the Structure Decoder. The compressed
document is decoded with the Syllable Decoder and decomposed into three parts. From the
first two parts the Element and Attribute Dictionary is created. The third part is sent to
the Data and Structure containers. The Structure Decoder decodes XML tokens using the
dictionaries and send the result to the output.

6.3 Parser

The compression process begins with the XML parser. We did not write the parser by
ourselves, rather we use the Expat parser. The Expat is a open-source SAX parser, written
in C++.

The Expat works in the following way: Callback (or handler) functions are registered
with the parser. Then the document is fed into the parser. As the parser recognizes SAX
event of the document, it will call the appropriate handler for that event. The document
is fed to the parser in pieces, so it is possible to start parsing before all the document is
available. This also allows to parse very large documents that will not fit into memory.

6.4 Encoding the structure of XML document 34

Syllable Decoder
Compressed

Document

Attribute Container

Compressed XML document

Data & Structure
ContainerElement Container

Structure Decoder

Figure 6.2: The Architecture of XMLSyl Decompressor

We decided to use the Expat because of its ease of use, its speed and also its possibility
to parse large documents.

One disadvantage of the Expat is it supports few character encodings. There are four
built-in encodings in the Expat:

• UTF-8

• UTF-16

• ISO-8859-1

• US-ASCII

For other encodings, the Expat calls the UnknownEncodingHandler. Users have to define
this handler to deal with unknown encoding. Our UnknownEncodingHandler converts data
from the original encoding to UTF-8 encoding.

6.4 Encoding the structure of XML document

The structure of the XML document is encoded in XMLSyl as follows. Whenever a new
element or attribute is encountered, its name is sent to the dictionary and its index in the
dictionary is sent to the Data and Structure Container. Two different dictionaries are used
for attributes and elements: the Element Dictionary and the Attribute Dictionary. The
Attribute Container operates as the Attribute Dictionary and the Element Container as the
Element Dictionary. Whenever an end tag is encountered a token END_TAG is sent to the
Data and Structure container. Whenever a character sequence is encountered, it is sent to
the Data and Structure Container without changes. Start and end of character sequences
are indicated by special tokens. We distinguish four different character sequences: value of
attribute, value of element, comment, and white spaces between tags, if white spaces are
preserved.

To illustrate the encoding process, consider the encoding of the following small XML
document:

6.4 Encoding the structure of XML document 35

<book>

<title lang="en">XML</title>

<author>Brown</author>

<author>Smith</author>

<price currency="EURO">49</price>

</book>

<!-- Comment-->

First, the XML document is converted into a corresponding stream of SAX events:

startElement("book")

startElement("title",("lang","en"))

characters("XML")

endElement("title")

startElement("author")

characters("Smith")

endElement("author")

startElement("author")

characters("Brown")

endElement("author")

startElement("price","currency","EURO")

characters("49")

endElement("price")

endElement("book")

comment("Comment")

The tokens in the SAX event stream are sent to the Structure Encoder. It encodes them
and sends to their corresponding containers. When the start element book is encountered, the
string value ”book” is sent to the Element Container. An index E0 is assigned to this entry.
This index is sent to the Data and Structure Container. The same operation is executed for
the element title. The attribute lang is encoded using the Attribute Container: the attribute
name ”lang” is sent to the Attribute Container and the index A0 is assigned to it. The
index A0 is sent to the Data and Structure Container. The attribute value ”en” and the
token END_ATT are sent to the Data and Structure Container. The token END_ATT signals the
end of the attribute value. When an element value ”XML” is encountered, the token CHAR,
the data value and then the token END_CHAR are sent to the Data and Structure Container.
When a comment event is encountered, the code CMNT is put into the Data and Structure
Container. The comment value is sent to the container and is enclosed by END_CMNT code.
The final state of all containers is shown in Figure 6.3.

In this example we have ignored white spaces between tags, e.g. <book> and <title>,
so the decompressor will produce a standard indentation. Optionally, XMLSyl can preserve
the white spaces. In that case, it stores the white spaces as the sequence of characters in the
Data and Structure Container between tokens WS and END_WS. In XMLSyl additional XML
information like DTD, CDATA, Procession Instruction is also compressed as the common
sequence of characters. It stores in the Data and Structure Container between tokens CHAR
and END_CHAR. Only XML declaration is parsed.

6.5 Containers 36

Element Container
element index
book E0
title E1
author E2
price E3

Attribute Container
attribute index
lang A0
currency A1

Data and Structure Container
<book> <title lang="en"> XML </title> <author>

E0 E1 A0 en END_ATT CHAR XML END_CHAR END_TAG E2

Brown </author> <author> Smith </author> <price

CHAR Brown END_CHAR END_TAG E2 CHAR Smith END_CHAR END_TAG E3

currency="EURO"> 49 </price> </book> <!--Comment-->

A1 Euro END_ATT CHAR 49 END_CHAR END_TAG END_TAG CMNT Comment END_CMNT

Figure 6.3: Content of containers

6.5 Containers

The containers are the basic units for grouping XML data. The Attribute Container holds
attribute names and the Element Container holds element names. Since the number of all
element and attribute names in any XML document is not high, these two containers are
kept in main memory. During parsing, the container’s size increases as the container is filled
with entries. Each entry in the Element container is assigned a byte in the range 04-AE.
These bytes are used for encoding the element names. Each entry in the Attribute container
is assigned a byte in the range AF-FE. These bytes are used for encoding the attribute names.
The residual 6 bytes are reserved for special codes like CHAR, END_TAG. In most cases, 170
(or 80) bytes are enough to encode element (or attribute) names. If the number of elements
(or attributes) is greater than 170 (or 80), entries are encoded with two bytes (ESC-symbol
and byte from corresponding range) then three bytes and so on.

There is another situation with the Data and Structure Container. We do not know the
size of the input XML document. The size of XML document can be so big that document
will not fit into memory and it is not possible to increase the size of container endlessly.
Therefore, the container consists of two memory blocks of constant size. The content of the
first memory block is compressed as soon as the container is filled. We don’t compress two
blocks at once because the content of the second memory block is used for compression of
the first one. After the compression, the compressed content of the first block is sent to the
output and the first block swaps its purpose with the second one. Now the first block is
filled with data. When it is full, the second block is compressed, and so on.

6.6 Syllable Compressor

The Syllable Compressor compresses the content of the Structure and Data Container and
sends the result to the output file. Then the content of the Attribute Containers and the

6.7 Syllable Dictionaries 37

content of the Element Container are compressed and sent to the output file.
The data are compressed with an existing syllable-base compressor: LZWL or HufSyl.

The user can set up which compressor will be used, from the command line. XMLSyl in
combination with LZWL is denoted as XMLzwl and XMLSyl in combination with HufSyl is
denoted as XMLHuf.

We did not write syllable-based compressors by ourselves, instead using existing sources
of LZWL and HufSyl, which was slightly. The syllable-based compressors were slightly
modified to be able to work with the containers of XMLSyl implementation instead of a
file stream and compress the content of container in pieces in case of compressing the large
document.

As LZWL and HufSyl can perform word-based compression, XMLSyl has this ability as
well.

6.7 Syllable Dictionaries

In the initialization step, LZWL [13] initializes the syllable dictionary with an empty syllable
and frequent syllables of the given language. To improve compression of XML documents,
we add to the syllable dictionary also the XML token codes in the initialization step. This
causes the syllable-based compressors to encode XML token as already known syllables, i.e.
XML tokens are received the shortest possible codes.

6.8 Conversion between different character encoding

After the Exalt parses the document, all character sequences are converted to UTF-8. It
does not depend on the input encoding. XMLSyl converts the character sequenced back to
the original encoding using libiconv library [35].

If the input XML document is in Czech, after parsing it is converted to Windows-1250
encoding, because the existing syllable-based tools compress correctly only the documents
in this encoding.

6.9 Comparison experiments

In this section, we evaluate the compression results achieved by XMLSyl, and compare its
performance to the syllable-based compressors LZWL, HufSyl and the XML compressor
XMill. Also we compare the word-based and syllable-based versions of XMLSyl.

6.9.1 Performance of XMLzwl

The compression ratio statistics of XMill, LZWL and XMLzwl over all data sets (see Chap-
ter 5) are shown in Table 6.1.

Compared to LZWL, XMLlzwl exhibits a very good performance, especially on the first
data set: the compression ratio is about 34% better than that of LZWL. On the second
and the third data sets, the compression ration is about 5-10% better than that of LZWL.

6.9 Comparison experiments 38

XMLSyl

CRXMLzwl CRFXMill CFRLZWL

1 set all 0,67 1,65 0,66
2 set all 2,99 1,13 0,94

small 3,80 1,17 0,95
medium 2,88 1,17 0,94
large 1,90 1,03 0,93

3set all 3,59 1,15 0,93
small 3,89 1,18 0,91
medium 3,34 1,14 0,96
large 2,66 1,07 0,97

XMillSyl

CRXMLzwl CRFXMill CFRLZWL

1 set all 0,69 1,56 0,66
2 set all 3,31 1,28 1,05

small 4,32 1,36 1,07
medium 3,19 1,29 1,03
large 2,31 1,18 1,05

3set all 3,98 1,29 1,03
small 4,37 1,34 1,02
medium 3,63 1,26 1,05
large 2,80 1,15 1,03

Table 6.1: Performance of XMLzwl

The reason of this sharp difference between the compression ratios is that the performance of
XMLSyl is dependent on the amount of markup in the compressed document. The documents
in the first data set have high markup percentages, while the other documents have relatively
low percentages of markup.

Compared to XMill, XMLlzwl exhibits a poor performance on the first data set. XMLzwl
compresses about 65% worse than XMill. On the second and the third data sets, XMLzwl
yields much better results. It is, on average, only 14-18% worse than XMill on the small and
the medium documents. On the large XML documents, the compression ratio of XMLzwl
is very close to that of XMill. On some documents XMLzwl even outperformed XMill,
specifically on the English language stage play documents. The performance of XMLzwl on
English large documents is shown in detail in the Table 6.2.

size CRXMill CRXMLzwl CRFXMill CFRLZWL Description
54765 2,15 2,39 1,09 0,91 "DocBook: The Definitive Guide" in DocBook format (1)
56440 2,34 2,80 1,18 0,95 Technology news for enterprise IT from InfoWorld
67142 1,70 1,99 1,12 0,88 "DocBook: The Definitive Guide" in DocBook format (5)

136807 2,10 2,02 0,98 0,96 "The Comedy of Errors" marked up as XML
160728 1,32 1,51 1,07 0,86 "DocBook: The Definitive Guide" in DocBook format (3)
217542 2,37 2,47 1,03 0,99 "ROMEA - Romany Information Service"
220497 1,84 1,70 0,94 0,95 "Much Ado about Nothing" marked up as XML
256393 2,08 1,88 0,93 0,94 "The Tragedy of Antony and Cleopatra" marked up as XML
314677 1,95 1,80 0,94 0,96 "The Tragedy of Hamlet, Prince of Denmark" marked up as XML

Table 6.2: Performance of XMLzwl on large data

The poor compression performance of XMLzwl on the first data set was expected and
can be explained. XMill utilizes the structure information in order to restructure the XML
document, which makes it more amenable to compression. This strategy is very fruitful on
non-textual documents (which have more data and less text). XMLSyl does not utilize the
structure information, it attempt only to reduce markup.

6.9 Comparison experiments 39

The word-based version performs worse than the syllable-based version on the documents
in Czech. On the documents in English, the compression ratio of two versions are very close
to each other. These results are similar to that of LZWL [13].

6.9.2 Performance of XMLhuf

The compression ratio statistics of XMill, HufSyl and XMLhuf are shown in Table 6.3.

CRXMLhuf CRFXMill CFRHufSyl

1 set all 0,93 2,64 0,37
2 set all 3,14 1,21 0,85

small 3,65 1,13 0,88
medium 3,18 1,27 0,86
large 2,20 1,20 0,79

3set all 3,57 1,16 0,85
small 3,63 1,10 0,83
medium 3,54 1,22 0,91
large 3,06 1,24 0,85

CRXMLhuf CRFXMill CFRHufSyl

1 set all 0,71 1,83 0,29
2 set all 3,27 1,28 0,88

small 3,96 1,25 0,95
medium 3,20 1,29 0,86
large 2,56 1,29 0,84

3set all 3,78 1,24 0,90
small 3,93 1,20 0,89
medium 3,86 1,31 0,95
large 3,06 1,25 0,85

Table 6.3: Performance of XMLhuf

Similar to XMLzwl, XMLhuf yields significant improvement compared to HufSyl on all
data sets. It performed about 63% better on the first data set and about 15% better on the
second and third data sets. This improvement is even better than that of XMLzwl compared
to LZWL.

Compared to XMill, XMLhuf exhibits a poor performance on the first data set and
sufficiently good on other sets. In contrast to XMLzwl, XMLhuf performed better on the
small textual XML documents and worse on the medium and the large documents. The
compression ratio of XMLhuf is on average 20-27% worse than that of XMill on the medium
and the large documents and 10-15% worse on the small documents.

Compared to the syllable-based and the word-based versions of XMLhuf, the syllable-
based version achieves expectedly worse results than the word-based version in both lan-
guages. This results are similar to that of HufSul [14].

Chapter 7

XMillSyl

In this chapter we introduce our second syllable-based compressor for XML: XMillSyl. First
we present motivation, then implementation. At last we present the results of our experi-
ments that compare XMillSyl with XMill, LZWL and HufSyl.

7.1 Motivation

There are several XML compression method available. We scrutinized closely existing XML
compression methods (all this methods are described in the Chapter 4) and decided to
incorporate one of these methods with syllable-based compressor.

The queriable XML compression methods are not suitable for our purpose. The queriable
methods preserve the syntactic structure and semantic information of the original XML
document. They compress individual data items (XGrind, XPress, XQuec) or decompose
the data into a sequence of blocks which are compressed individually (XQzip, XCQ). It
allows querying over compressed XML documents without full decompression. However,
this makes it impossible to incorporate these compressors with the syllable-base method.
The syllable-base method is the context method and oriented on data of sufficiently large
size.

Other XML compressors use the principles that were for the first time implemented in
XMill: separating structure from data and grouping data items based on semantic. This
principles are very successful and XMill achieves very good results. Therefore we decided to
incorporate the syllable-base method with XMill. We called this method XMillSyl.

We do not suppose that XMillSyl method achieves better results than XMill because
XMill based on gzip and gzip performs better than syllable-based compressors. We have
implemented XMillSyl in order to examine the power of the main principles of XMill.

7.2 Implementation

We did not write the XMill compressor. We decided to use existing sources of XMill.
XMill operates as follows: a SAX parser parses the XML file and the SAX events are sent

to the core module of the XMill called the path processor. It determines how to map tokens
to containers: element and attribute names are encoded and sent to the structure container,

7.3 Comparison Experiments 41

while the data values are sent to various data containers, according to their semantic. Finally,
the containers are gzipped independently and stored on the disk.

In XMillSyl the containers are compressed with LZWL (XMillzwl) or with HufSyl (XMill-
huf). The architecture of XMillSyl is shown in Figure 7.1

SAX Parser

Path Processor

Structure Container Data Container kData Container1

Input XML file

Data Container 2

Compressed XML file

GZip LZWL / HufSyl LZWL / HufSyl LZWL / HufSyl

…

Figure 7.1: Architecture of XMillSyl

We have modified XMill compression and decompression functions to be able to compress
and decompress the data containers with the syllable-based compressors (see Figure 7.1). We
have also modified the syllable-based compressors so that they can work with the containers
of XMill implementation instead of a file stream.

As LZWL and HufSyl can perform word-based compression, XMLSyl has this ability as
well.

7.3 Comparison Experiments

In this section, we evaluate the compression results achieved by XMillSyl (both XMillzwl and
XMillhuf) and compare its performance with LZWL, HufSyl and XMill. We also compare
the word-based and the syllable-based version of XMLSyl. Finally, performances of XMillSyl
and XMLSyl are compared.

Tables 7.1 and 7.2 show the compression ratio statistics of XMillzwl and XMillhuf re-
spectively.

XMillSyl yields significant improvements compared to LZWL and HufSyl on the first
data set. On the second and the third data sets, the compression ration of XMillhuf is
about 5-15% better than that of HufSyl, but XMillzwl performs worse than LZWL. LZWL
performance gets worse with the decrease in data size. XMillSyl splits data into containers
and then compresses it with LZWL. This makes the performance of XMillzwl worse and
XMillzwl achieves even worse results than LZWL.

7.3 Comparison Experiments 42

XMLSyl

CRXMLzwl CRFXMill CFRLZWL

1 set all 0,67 1,65 0,66
2 set all 2,99 1,13 0,94

small 3,80 1,17 0,95
medium 2,88 1,17 0,94
large 1,90 1,03 0,93

3set all 3,59 1,15 0,93
small 3,89 1,18 0,91
medium 3,34 1,14 0,96
large 2,66 1,07 0,97

XMillSyl

CRXMLzwl CRFXMill CFRLZWL

1 set all 0,69 1,56 0,66
2 set all 3,31 1,28 1,05

small 4,32 1,36 1,07
medium 3,19 1,29 1,03
large 2,31 1,18 1,05

3set all 3,98 1,29 1,03
small 4,37 1,34 1,02
medium 3,63 1,26 1,05
large 2,80 1,15 1,03

Table 7.1: Performance of XMillzwl

Compared with XMill, XMillSyl compress about 50-80% worse on the first data set and
about 15-35% on the second and the third data sets.

The word-based version of XMillzwl performs worse than the syllable-based version on
the documents in Czech. On the documents in English, the compression ratio of the two
versions are very close to each other. Compared to the syllable-based and the word-based
versions of XMillhuf, the syllable-based version achieves worse results than the word-based
in both languages.

CRXMLhuf CRFXMill CFRHufSyl

1 set all 0,93 2,64 0,37
2 set all 3,14 1,21 0,85

small 3,65 1,13 0,88
medium 3,18 1,27 0,86
large 2,20 1,20 0,79

3set all 3,57 1,16 0,85
small 3,63 1,10 0,83
medium 3,54 1,22 0,91
large 3,06 1,24 0,85

CRXMLhuf CRFXMill CFRHufSyl

1 set all 0,71 1,83 0,29
2 set all 3,27 1,28 0,88

small 3,96 1,25 0,95
medium 3,20 1,29 0,86
large 2,56 1,29 0,84

3set all 3,78 1,24 0,90
small 3,93 1,20 0,89
medium 3,86 1,31 0,95
large 3,06 1,25 0,85

Table 7.2: Performance of XMillhuf

Compared to XMLSyl, XMillSyl outperforms XMLSyl on the first data set. On all textual
XML documents XMLSyl yields better performance then XMillSyl.

We have also compared the performance of XMillSyl in default mode (grouping data
items based on semantic) and in the no-grouping mode (option -p //). On the textual
XML documents, the XMillSyl in default mode yields worse results than XMillSyl in no-
grouping mode.

We can conclude from these experimental results that the utilization of structure informa-

7.3 Comparison Experiments 43

tion in the input document in order to restructure the document has no effect in combination
with the syllable-based compression. On several documents the compression ratio is even
worse than that of single syllable-based compression.

Chapter 8

Conclusions and further work

In this thesis, we proposed two syllable-based compression methods for XML data, called
XMLSyl and XMillSyl. We presented the architecture and implementation of these methods
and tested their performance on a variety of XML documents. XMLSyl and XMillSyl were
compared with LZWL, HufSyl and XMill.

Our experimental results indicate that XMLSyl provides a reasonably good compres-
sion ratio compared to XMill on the textual XML documents and on some data it even
outperforms XMill. Since XMill is based on gzip, and gzip outperforms the syllable-based
compression, these results validate XMLSyl as very successful syllable-based XML compres-
sion method.

In contrast, our experimental results validate XMillSyl as an unsuccessful method. It
performs worse than XMLSyl, and on some data even worse than the single syllable-based
compressor. Moreover, on textual XML documents the compression ratio of XMillSyl in
no-grouping mode (all data items are placed into single container) is better than that of
XMillSyl in grouping mode (data items are grouped based on semantic). Thus, we can
conclude that the reduction of markup size by treating it as single syllable is more efficient
than separating structure from data and grouping semantically related data values.

At the beginning we supposed that our methods will be suitable for XML documents in
languages with reach morphology (Czech). But we can not conclude from our experiments
if our methods are more suitable for English or Czech language. The documents in our data
sets are of very different structures so it difficult to come to a conclusion.

We also supposed that the syllable-based compression for XML documents will be suitable
for small or middle-sized documents. Our experiments show that the XMLhuf is more
suitable for the small-sized files while XMLzwl for the large-sized files.

In the future we would like to implement some modifications to enhance the compression
ratio of XMLSyl. We plan to extract and utilize the information in the DTD section, create
a special syllable dictionary for elements and attributes in XMLhuf. We also plan modify
this method, that it can compress HTML data.

On the base of this thesis was created the article K. Chernik, J. Lánský, L. Galamboš:
Syllable-based Compression for XML Documents [1].

Bibliography

[1] K. Chernik, J. Lánský, L. Galamboš: Syllable-based Compression for XML Documents.
V: V. Snášel, K. Richta, J. and Pokorný: Proceedings of the Dateso 2006 Annual
International Workshop on DAtabases, TExts, Specifications and Objects., 2006

[2] Wilfred Ng, Lam Wai, Yeung James Cheng. Comparative Analysis of XML Compression
Technologies. World Wide Web Journal, 2005

[3] Smitha S. Nair. XML Compression Techniques: A Survey.
www.cs.uiowa.edu/∼rlawrenc/research/Students/SN 04 XMLCompress.pdf

[4] J. Cheney. Compressing XML with Multiplexed Hierarchical PPM Models In Proc.
Data Compression Conference, 2001.

[5] V. Toman. Compression of XML Data. MFF UK, 2003

[6] World Wide Web Consorcium. Extensive Markup Language (XML) 1.0.
http://www.w3.org/XML/

[7] P. Tolani, J. R. Haritsa. XGrind: A Query-friendly XML Compressor. In Proc. IEEE
International Conference on Data Engineering, 2002.

[8] SAX: A Simple API for XML.
http://www.saxproject.org

[9] H. Liefke, D. Suciu. XMill: an Efficient Compressor for XML Data. In Proc. ACM
SIGMOD Conference, 2000.

[10] Jun-Ki Min, Myung-Jae Park, Chin-Wan Chung, XPRESS: A Queriable Compression
for XML Data SIGMOD 2003, June 912, 2003, San Diego, CA, 2000.

[11] Expat XML Parser.
http://expat.sourceforge.net

[12] T. A. Welch. A technique for high performance data compression. IEEE Computer,
1984.

[13] J. Lánský, M. emlička. Text Compression: Syllables. DATESO, 2005.

[14] J. Lánský, Slabiková komprese. MFF UK, 2005

www.cs.uiowa.edu/~rlawrenc/research/Students/SN_04_XMLCompress.pdf
http://www.w3.org/XML/
http://www.saxproject.org
http://expat.sourceforge.net

BIBLIOGRAPHY 46

[15] V. Toman. Komprese XML dat.
http://kocour.ms.mff.cuni.cz/∼mlynkova/prg036/

[16] J. Kosek. Inteligentńı podpora navigace na WWW s využit́ım XML.
http://www.kosek.cz/diplomka/, 2002

[17] DocBook http://www.docbook.org/

[18] A Quick Introduction to XML.
http://www.cellml.org/tutorial/xml guide

[19] M. Pilgrim. What Is RSS.
http://www.xml.com/pub/a/2002/12/18/dive-into-xml.html

[20] XML Processing.
http://diveintopython.org/xml processing/

[21] SAX And DOM Overview.
http://www.jezuk.co.uk/cgi-bin/view/arabica/SAXandDOMIntro

[22] The gzip home page.
http://www.gzip.org/

[23] A Quick Introduction to XML.
http://www.cellml.org/tutorial/xml guide

[24] Introduction to XML.
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/IntroXML2.html

[25] XML Processing.
http://diveintopython.org/xml processing/

[26] SAX + DOM Mix = SAXDOMIX.
http://www.devsphere.com/xml/saxdomix/index.html

[27] What is the Document Object Model?
http://www.w3.org/TR/DOM-Level-2-Core/introduction.html

[28] LZW
http://www.netnam.vn/unescocourse/computervision/106.htm

[29] LZW, From Wikipedia, the free encyclopedia.
http://en.wikipedia.org/wiki/Lempel-Ziv

[30] Data Compression.
http://www.ics.uci.edu/∼dan/pubs/DC-Sec3.html

[31] Huffman Coding: A CS2 Assignment.
http://www.cs.duke.edu/csed/poop/huff/info/

http://kocour.ms.mff.cuni.cz/~mlynkova/prg036/
http://www.kosek.cz/diplomka/
http://www.docbook.org/
http://www.cellml.org/tutorial/xml_guide
http://www.xml.com/pub/a/2002/12/18/dive-into-xml.html
http://diveintopython.org/xml_processing/
http://www.jezuk.co.uk/cgi-bin/view/arabica/SAXandDOMIntro
http://www.gzip.org/
http://www.cellml.org/tutorial/xml_guide
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/IntroXML2.html
http://diveintopython.org/xml_processing/
http://www.devsphere.com/xml/saxdomix/index.html
http://www.w3.org/TR/DOM-Level-2-Core/introduction.html
http://www.netnam.vn/unescocourse/computervision/106.htm
http://en.wikipedia.org/wiki/Lempel-Ziv
http://www.ics.uci.edu/~dan/pubs/DC-Sec3.html
http://www.cs.duke.edu/csed/poop/huff/info/

BIBLIOGRAPHY 47

[32] Adaptive Huffman Coding.
http://www.cs.duke.edu/csed/curious/compression/adaptivehuff.html

[33] XQueC Project.
http://www.icar.cnr.it/angela/xquec/

[34] Millau: an encoding format for efficient representation and exchange of XMLover the
Web.
http://www9.org/w9cdrom/154/154.html

[35] Introduction to libiconv.
http://www.gnu.org/software/libiconv/

[36] J. Cheng and W. Ng. XQzip: Querying Compressed XML Using Structural Indexing.
In Proc. EDBT, 2004.

[37] W. Y. Lam, W. Ng, P. T. Wood, and M. Levene. XCQ: XML Compression and
Querying System. Poster Proceedings, 12th International World-Wide Web Conference
(WWW2003), 2003.

http://www.cs.duke.edu/csed/curious/compression/adaptivehuff.html
http://www.icar.cnr.it/angela/xquec/
http://www9.org/w9cdrom/154/154.html
http://www.gnu.org/software/libiconv/

	Introduction
	XML: An Overview
	XML Document
	XML Processing
	SAX
	DOM

	Text compression algorithms
	Character-based text compression
	LZW
	Huffman Coding
	Static Huffman Coding
	Adaptive Huffman coding

	Syllable-based text compression
	Decomposition of word into syllables
	LZWL
	HufSyl

	XML compression
	XMill
	XMLPPM
	XGrind
	XPress
	Other XML compressors

	Experimental methodology
	Comparative compression tools
	XML data sources
	Compression performance metrics

	XMLSyl
	Motivation
	Architecture and principles of XMLSyl
	Parser
	Encoding the structure of XML document
	Containers
	Syllable Compressor
	Syllable Dictionaries
	Conversion between different character encoding
	Comparison experiments
	Performance of XMLzwl
	Performance of XMLhuf

	XMillSyl
	Motivation
	Implementation
	Comparison Experiments

	Conclusions and further work

