
Charles University in Prague
Faculty of Mathematics and Physics

MASTER THESIS

Petr Nevařil

Metadata management
for Fractal component model

Department of Software Engineering

Supervisor: Mgr. Petr Hnětynka, PhD.

Study branch: Computer Science

Prague 2006

I would like to thank my supervisor Petr Hnětynka for his guidance of this

thesis.

I do declare that I wrote this thesis on my own and that references include

all the sources of information I have exploited. I agree with lending of this

thesis.

Prague, April 2006 Petr Nevařil

Contents

1 Introduction 4

1.1 The goal of the thesis . 5

1.2 The structure of the thesis . 6

2 Background 7

2.1 MDA . 7

2.1.1 Model vs. metamodel 7

2.1.2 Computation independent model (CIM) 8

2.1.3 Platform Independent Model (PIM) 9

2.1.4 Platform Specific Model (PSM) 10

2.1.5 Transformation of PIM to PSM 10

2.1.6 Metamodel Mappings 10

2.2 MOF . 11

2.3 The Fractal Component Model 14

2.3.1 Fractal objectives . 14

2.3.2 External component structure 15

2.3.3 Internal component structure 15

2.3.4 Standardized Fractal control interfaces 17

2.3.5 Type system . 17

2.3.6 Conformance levels . 18

2.3.7 Fractal ADL . 21

2.3.8 Julia . 22

2.4 Goals revisited . 23

3 Solution 26

3.1 Fractal metamodel . 26

1

3.1.1 Components . 26

3.1.2 Interfaces and bindings 30

3.1.3 Type system . 32

3.1.4 Component attributes 35

3.1.5 Component implementation 35

3.2 Extensibility of the metamodel 36

3.2.1 Level 0 . 37

3.2.2 Levels X.1 . 37

3.2.3 Level 1 . 38

3.2.4 Level 2 . 39

3.2.5 Level 3 . 40

3.2.6 Levels 3.2 and 3.3 . 40

3.2.7 Usage of the Implementation and the Controller class . . 40

3.3 Julia metamodel . 41

3.3.1 Julia components . 41

3.3.2 Interfaces . 42

3.3.3 Control objects . 43

3.4 Implementation . 43

3.4.1 Metadata repository 44

3.4.2 ADL loading . 47

3.5 MDA development with the proposed metamodel 48

4 Related work 50

5 Conclusion and future work 52

A The Fractal and Julia metamodels 57

B Installation instructions 60

B.1 Installing the demo application 60

B.2 Running of the demo application 61

2

Title: Metadata management for Fractal component model

Author: Petr Nevařil

Department: Department of software engineering

Supervisor: Mgr. Petr Hnětynka, PhD.

Supervisor’s e-mail address: hnetynka@nenya.ms.mff.cuni.cz

Abstract: A metadata management is one of the key features of mod-

ern component based systems. The most contemporary used standard for

metadata management is OMG Meta Object Facilities (MOF). Having the

metadata in a MOF-based repository plays an important role for developing

software using the Model Driven Architecture (MDA) approach, i.e. devel-

oping the system by sequence of transformations of its conceptual model.

The thesis analyze the Objectweb’s Fractal component model and designs

its MOF-based metamodel. Designing of the metamodel is complicated by

existence of several conformance levels to the Fractal component model. The

Fractal metamodel proposed in this thesis is applicable for describing com-

ponents system conforming to Fractal at an arbitrary level.

Keywords: Fractal, MDA, metadata, component-based systems

Název práce: Správa metadat pro komponentový model Fractal

Autor: Petr Nevařil

Katedra: Katedra softwarového inženýrstv́ı

Vedoućı diplomové práce: Mgr. Petr Hnětynka, PhD.

e-mail vedoućıho: hnetynka@nenya.ms.mff.cuni.cz

Abstrakt: Správa metadat je jednou z kĺıčových oblast́ı v moderńıch kom-

ponentových systémech. V současné době je nejpouž́ıvaněǰśım standardem

pro správu metadat OMG MOF (Meta Object Facilities). Metadata defi-

novaná podle tohoto standardu hraj́ı d̊uležitou při vývoji software pomoćı

MDA (Model Driven Architecture), kde aplikace vzniká postupnými trans-

formacemi jej́ıho konceptuálńıho modelu. V této diplomové práci je an-

alyzován komponentový systém Fractal a je navržen jeho metamodel po-

moćı MOF. Návrh metamodelu je obt́ıžný kv̊uli existenci několika úrovńı,

na kterých může komponentový systém modelu Fractal vyhovovat. V této

práci je navržen metamodel použitelný pro komponentový systém libovolné

úrovně.

Kĺıčová slova: Fractal, MDA, metadata, komponentové systémy

3

Chapter 1

Introduction

With the continued, and growing, diversity of software systems, the inter-

operability will never be achieved by forcing all software development to be

based on a single operating system, programming language, instruction set

architecture, application server framework or any other choice. There are

simply too many platforms in existence, and too many conflicting implemen-

tation requirements, to ever agree on a single choice in any of these fields.

Thus the possibilities to facilitate and automatize the integration of applica-

tion developed for different platforms are examined.

MDA[14] (Model-driven architecture) is an approach to software devel-

opment which emphasizes the role of machine readable models in building

software systems. It introduces designing a system in a platform independent

way and consequential transformations of the platform independent model

to a model for a particular platform. Such a design leads not only to systems

that are easier to develop, integrate and maintain but also adds the ability

to automate at least some of the construction.

Meta-Object Facility (MOF)[15] is an OMG standard for creating meta-

models of software systems. MOF defines an abstract language and a frame-

work for specifying, constructing, and managing technology neutral meta-

models. Importantly, MOF defines a framework for implementing reposito-

ries that hold metadata described by a metamodel. To enable metadata in-

terchange among repositories, OMG defined XML-based format named XMI

(XML Metadata Interchange)[17].

4

By enforcing a strict separation of interface and implementation and by

making software architecture explicit, component-based programming can

fully take advantages of the MDA approach.

The Fractal component model[16] is a modular and extensible compo-

nent model that can be used with various programming languages to design,

implement, deploy and reconfigure systems and applications, from operating

systems to middleware platforms and to graphical user interfaces. The main

features of the Fractal model are composite components (to have a uniform

view of application at various abstraction levels), introspection capabilities

(to monitor a running system), and configuration and reconfiguration capa-

bilities (to deploy and dynamically reconfigure an application). The Fractal

specification defines several conformance levels to the Fractal component

model. A component system is conforming to a given Fractal level if it pro-

vides a defined set of features.

1.1 The goal of the thesis

The Fractal component model is not defined as a big, fixed specification that

all Fractal components have to follow, but rather as an extensible system of

relations between well defined concepts and corresponding APIs that Fractal

components may or may not implement, depending on what they can or want

to offer to other components. To allow interoperability of different component

systems based on the Fractal component model, conformance levels to the

Fractal component model are defined.

Having the Fractal metadata stored in a MOF compliant repository is im-

portant not only for automatization of model transformations (and therefore

allowing the MDA approach to software development) but also it provides a

standardized interface for Fractal metadata and allows usage of MOF-based

tools for managing them.

The goal of this thesis is to create an extensible metamodel of the Fractal

component model (using the MOF standard) that can be used to describe

Fractal component systems conforming to Fractal at all possible levels. The

existence of several conformance levels and extreme modularity and extensi-

bility of Fractal makes the creation of the metamodel difficult.

5

1.2 The structure of the thesis

To achieve the goal, the thesis is structured as follows. Chapter 2 provides a

brief description of MDA, MOF and Fractal, Chapter 3 presents the proposed

solution to fulfill the thesis goal, Chapter 4 describes projects and papers

that deal with objectives related to this thesis, while Chapter 5 eveluates

and concludes the thesis and suggests the possible future work.

6

Chapter 2

Background

This chapter provides a reader with information necessary to understand the

solution described in Chapter 3. It describes MDA, MOF and Fractal.

2.1 MDA

MDA[14] is an approach to software development, which increases the power

of models in that work. It is model-driven because it provides a means for

using models to direct the course of understanding, design, construction,

deployment, operation, maintenance and modification. Using the MDA ap-

proach to software development, design has several stages using various kinds

of models and transformations between them.

2.1.1 Model vs. metamodel

Comprehension of the distinction between the terms like model and meta-

model, data and metadata, and understanding what does the meta prefix

mean is very important for understanding the rest of this thesis. The term

model is generally usually used to denote a description of something, typi-

cally something in the real world. The data that represent the model are

called metadata. It is a general term for data that in some sense describes

information (another data). The description of metadata is determined by a

metamodel. In other words, a metamodel is a model of some kind of metadata

(i.e., metamodel = model of model).

7

For example when modeling the inhabitation of people, information like

John Smith (32 years old) lives in New York, Petr Novak (20) lives in Prague

are the data. Figure 2.1 shows a possible model of this data in UML. In

Figure 2.1: Model example

this case, metadata is the information that describes model elements in this

model, i.e. that each person is described with an instance of the Person class,

having the FirstName, the Surname and the Age attributes, with the relation

to an instance of the City class. Constructs and elements, which can be used

to build the model (i.e., classes, attributes, associations, . . .), are specified

by the UML metamodel. A part of the UML metamodel (very simplified) is

depicted in Figure 2.2.

2.1.2 Computation independent model (CIM)

At first, the requirements for a system are modeled in a computation inde-

pendent model describing the situation in which the system will be used.

Such a model is sometimes called a domain model and a vocabulary that is

familiar to the practitioners of the domain in question is used in its specifi-

cation. Typically, such a model is independent of any implementation of the

system.

It is assumed that the primary user of the CIM, the domain practitioner,

has no knowledge about the models or artifacts used to realize the functional-

ity for which the requirements are articulated in the CIM. The CIM plays an

important role in bridging the gap between those that are experts about the

domain and its requirements on the one hand, and those that are experts of

8

Figure 2.2: Very simplified UML metamodel

the design and construction of the artifacts that together satisfy the domain

requirements, on the other.

2.1.3 Platform Independent Model (PIM)

Having the CIM, a platform independent model can be build. It describes

the system, but not shows details of its use of its platform. A platform

is defined as a set of subsystems and technologies that provide a coherent

set of functionality through interfaces and specified usage patterns, which

any application supported by that platform can use without concern for the

details of how the functionality provided by the platform is implemented.

CORBA[13] is an example of platform that enables the remote invocation

and event architectural styles. Another platform that enables a components

and containers style is Java 2 Enterprise Edition (J2EE)[22].

9

2.1.4 Platform Specific Model (PSM)

A PSM combines the specifications in the PIM with the details that specify

how that system uses a particular platform. It may provide more or less

detail, depending on its purpose. A PSM will be an implementation, if it

provides all the information needed to construct a system and to put it into

operation, or may acts as a PIM that is used for further refinement to a PSM

that can be directly implemented.

2.1.5 Transformation of PIM to PSM

Model transformation is a process of converting one model to another model

of the same system. As illustrated in Figure 2.3 the transformation from PIM

to PSM usually consists of a sequence of several transformations, starting

with the generic model and resulting in a model specific for a particular

platform. Even, an implementation can be the result of the transformation

sequence, because implementation is, in a manner, a kind of model. There

are many ways in which such a transformation may be done. Transformations

can use different mixtures of manual and automatic transformation for adding

the information necessary to translate a PIM to the PSM.

2.1.6 Metamodel Mappings

A model type mapping specifies a mapping from any model built using types

specified in the PIM language to models expressed using types from a PSM

language. A metamodel mapping is a specific example of a model type map-

ping, where the types of model elements in the PIM and the PSM are both

specified as MOF metamodels. In this case the mapping gives rules and/or

algorithms expressed in terms of all instances of types in the metamodel

specifying the PIM language resulting in the generation of instances of types

in the metamodel specifying the PSM language(s).

Using MDA, the development of a software system consists of these ac-

tivities:

• A model is prepared using a platform independent language specified

by a metamodel,

10

Figure 2.3: Sequence of PIM transformation

• a particular platform is chosen,

• a specification of a transformation for this platform is available or is

prepared (this transformation specification is in terms of a mapping

between metamodels),

• the mapping guides the transformation of the PIM to produce the PSM.

2.2 MOF

The Meta-Object Facility (MOF)[15] defines an abstract language and a

framework for specifying, constructing, and managing technology neutral

metamodels. In addition, the MOF defines a framework for implementing

repositories that hold metadata (e.g., models) described by the metamod-

els. This framework uses standard technology mappings to transform MOF

metamodels into metadata APIs.

11

Figure 2.4: Usage of metamodels in transformation

Metadata itself is a kind of information, and can accordingly be described

by other metadata. In MOF terminology, metadata that describes metadata

is called meta-metadata, and a model that consists of a meta-metadata is

called a metamodel. The MOF metamodel defines the abstract syntax of

the metadata in the MOF representation of a model. Since there are many

possible kinds of metadata in a typical system, the MOF framework needs to

support many different MOF metamodels. The MOF integrates these meta-

models by defining a common abstract syntax for defining metamodels. This

abstract syntax is called the MOF Model and is model for metamodels (i.e.,

a meta-metamodel). The MOF metadata framework is typically depicted as

a four layer architecture as shown in Figure 2.5.

The MOF specification defines MOF Reflective Interfaces which provide

generic interfaces to manipulate all metadata. It works like the Java reflection

feature of J2EE and allows information to be accessed dynamically.

Because of the absence of MOF graphical representation, UML is used to

depict MOF metamodels. The main reason for using the UML is the simi-

larity of the UML metamodel with the MOF metamodel. The similarity is

12

Figure 2.5: Two examples of MOF architecture layers

even so high, that in the latest version of MOF and UML (version 2.0), the

core part of MOF and UML metamodel is common for both of them. How-

ever, there is no sufficient implementation of the latest MOF version, hence

the version 1.4 is used for the purpose of this thesis. The further upgrade

to version 2.0 would not be a problem, because there is a straightforward

mapping between versions 1.4 and 2.0.

XMI

To enable metadata interchange among repositories, OMG defined a XML-

based format named XMI (XML Metadata Interchange)[17]. It defines tech-

nology mappings from MOF metamodels to XML DTDs and XML docu-

ments. These mappings can be used to define an interchange format for

metadata conforming to a given MOF metamodel.

13

2.3 The Fractal Component Model

2.3.1 Fractal objectives

Existing component-based frameworks and architecture description languages

provide only limited support for extension and adaptation. This limita-

tion has several important drawbacks: it prevents the easy and possible

dynamic introduction of different control facilities for components such as

non-functional aspects; it prevents application designers and programmers

from making important trade-offs such as degree of configurability vs. per-

formance and space consumption; and it can make difficult the usage of

these frameworks and languages in different environments, including embed-

ded systems.

The Fractal component model alleviates all above mentioned problems

by introducing a notion of component endowed with an open set of control

capabilities. In other terms, components in Fractal are reflective, and their

reflective capabilities are not fixed in the model but can be extended and

adapted to fit the programmer’s constraints and objectives.

The Fractal component model heavily uses the separation of concerns de-

sign principle[10]. The idea of this principle is to separate into distinct pieces

of code or runtime entities the various concerns or aspects of an application:

implementing the service provided by the application, but also making the

application configurable, secure, available, . . . In particular, the Fractal com-

ponent model uses three specific cases of separation of concerns principle:

namely separation of interface and implementation, component oriented pro-

gramming, and inversion of control. The first pattern, also called the bridge

pattern, corresponds to the separation of the design and the implementation

concerns. The second pattern corresponds to the separation of the imple-

mentation concern into several composable, smaller concerns, implemented

in well separated entities called components. The last pattern corresponds to

the separation of the functional and configuration concerns: instead of find-

ing and configuring necessary components and resources themselves, Fractal

components are configured and deployed by an external separated entity.

14

2.3.2 External component structure

Depending on the level of observation, i.e. scale, a Fractal component can

be seen as a black box or as a white box. When seen as black box, i.e.

when its internal organization is not visible, the only visible details of a

Fractal component are some access points to this black box, called its external

interfaces (see Figure 2.6). Each interface has a name and implements a

language interface. One may distinguish two kinds of interfaces: a client (or

required) interface emits operation invocations, while a server (or provided)

interface receives them.

Figure 2.6: External component structure

2.3.3 Internal component structure

Internally a Fractal component is formed from two parts: a controller (also

called membrane), and a content (see Figure 2.7). The content of a com-

ponent is composed of (a finite number of) other components, called sub-

components, which are under the control of the controller of the enclosing

component. The Fractal model is thus recursive and allows components to

be nested (i.e., appear in the content of enclosing components) at an arbitrary

level. A component that exposes its content is called a composite component.

A component that does not expose its content, but has at least one control

interface (the definition of control interface is stated bellow in this section),

is called a primitive component. A component without any control interface

is called a base component.

15

Figure 2.7: Internal component structure

A given component can be added to several other components. Such a

component is shared between these components. The main application of

shared components is to model resources. Because of shared components,

the structure of Fractal component, in terms of direct and indirect subcom-

ponents, is not necessarily a tree, but can be a directed acyclic graph.

The controller of a component can have external and internal interfaces.

External interfaces are accessible from outside the component, while inter-

nal interfaces are accessible only from the component’s subcomponents. A

functional interface is an interface that corresponds to a provided or required

functionality of a component, while a control interface is a server interface

that corresponds to a “non functional aspect”, such as introspection, config-

uration or reconfiguration, and so on. A binding is a communication path

between component interfaces.

16

2.3.4 Standardized Fractal control interfaces

Commonly used features of component systems are in Fractal defined as con-

trol interfaces. A component can provide the AttributeController to read and

write its attributes from outside of the component. The BindingController in-

terface is a standardized interface for binding and unbinding client interfaces

of the component providing it. By providing the ContentController interface

a component can manage its subcomponents.

Changing an attribute or a binding, or removing a subcomponent, while

components are executing, can be dangerous: messages can be lost, the appli-

cation’s state may become inconsistent, or the application may simply crash.

In order to provide a minimal support to help implement such dynamic re-

configuration a component can provide the LifeCycleController interface.

2.3.5 Type system

The definition of a simple type system is also a part of the Fractal speci-

fication. A component type is just a set of component interface types. A

component is represented by the ComponentType interface. This interface

defines operations which return types of component interfaces.

A component interface type is represented by the InterfaceType interface.

Such a type is made of a name, a signature, a role, a contingency, and a

cardinality. The signature is the name of the language interface type that

is implemented by component interfaces of this type (for a client interface,

an empty signature means that this client interface can by connected to any

server interface). The role indicates if component interfaces of this type

are client or server interfaces. The contingency denotes if the functionality

of interfaces of this type is guaranteed to be available or not. Finally, the

cardinality indicates how many interfaces of this type a component may have.

interface Type {

boolean isFcSubTypeOf(Type t);

}

interface ComponentType extends Type {

InterfaceType[] getFcInterfaceTypes();

InterfaceType getFcInterfaceType(string itfName) throws NoSuchInterfaceException;

}

17

interface InterfaceType extends Type {

string getFcItfName();

string getFcItfSignature();

boolean isFcClientItf();

boolean isFcOptionalItf();

boolean isFcCollectionItf();

}

Component and component interface types can be created by using a

type factory represented by the TypeFactory interface. Indeed this interface

provides two operations to create component interface types and component

types.

interface TypeFactory {

InterfaceType createFcItfType(string name, string signature, boolean isClient,

boolean isOptional, boolean isCollection) throws InstantiationException;

ComponentType createFcType(InterfaceType[] itfTypes) throws InstantiationException;

}

Together with the interfaces for the type system, Fractal specification also

defines a subtyping relation for the component and interface types, based on

substitutability. This relation provides a sufficient (but not necessary) condi-

tion such that if a component type T1 is a subtype of T2, then a component

of type T1 can replace component of type T2 in any environment, this en-

vironment (other component and bindings) being left unchanged, and both

components being seen as black boxes.

2.3.6 Conformance levels

In Fractal component model, most features are optional. For example a Frac-

tal component may define a new semantic for the communication between its

subcomponents: instead of specifying that operation invocations follow bind-

ings, it can for example specify that operation invocations are broadcasted to

all the subcomponents, in order to model an asynchronous “reactive space”.

A Fractal component may also refine the internal component structure, by

specifying that the component’s controller can, like the component’s con-

tent, contain subcomponents. Such a Fractal component can then provide

new control interfaces to introspect and reconfigure the subcomponents of its

controller part.

18

The advantage of such extreme modularity and extensibility is that the

Fractal component model can be applied to many situations. The drawback

is that two arbitrary Fractal components will not be generally able to work

together, because they will use different, and potentially incompatible, op-

tions or extensions of the Fractal model. In order to reduce this problem,

named sets of options called conformance levels are defined. The goal is to

be able to say, or even certify, that a given Fractal application or tool is

conforming to the Fractal model of level X. Then it will be easy to know,

which Fractal applications and tools can work together, by comparing their

conformance level to the Fractal model.

Level 0

At this level nothing is mandatory. Fractal components are like simple ob-

jects. A Java object, a Java Bean, or an Enterprise Java Bean, for example,

are conform to the Fractal component model of level 0.

Level 0.1

Conforming at level 0.1 requires following features: all components with con-

figurable attributes have to provide the AttributeController interface, all com-

ponents with client interfaces have to provide the BindingController interface,

all components that expose their content have to provide the ContentCon-

troller interface, and all components that expose their life cycle have to pro-

vide the LifeCycleController interface. Of course, these requirements do not

prevent components from providing additional control interfaces, including

extension and alternatives of the previous interfaces.

Level 1

To conform at level 1 to Fractal component model, all components have to

provide, at least, the Component interface, which specifies the introspection

capability of the component. Implementation of this interface enables to

examine the component interfaces.

19

interface Component {

any[] getFcInterfaces();

any getFcInterface(string itfName) throws NoSuchInterfaceException;

Type getFcType();

}

Level 1.1

The level 1.1 components have to provide the Component interface, with

the same additional requirements as for the level 0.1, concerning the control

interfaces.

Level 2

This level extends the level 1, by adding the necessity to implement the Inter-

face interface by all component interfaces. Implementation of this interface

extends component introspection capabilities with the possibility to discover

interface properties on the fly.

interface Interface {

string getFcItfName();

Type getFcItfType();

Component getFcItfOwner();

boolean isFcInternalItf();

}

Level 2.1

For conforming at level 2.1, there are the same requirements as for level 2,

with the same additional requirements as for levels 0.1, and 1.1 concerning

the control interfaces.

Level 3

All Fractal level 3 components have to implemenent the reflective interfaces

defined in levels 2 and 1, and they have to use (an extension of) the Fractal

type system.

20

Level 3.1

The additional requirements for conforming at level 3.1, are the same as for

levels 0.1, 1.1 and 2.1.

Level 3.2

A level 3.1 component system is a level 3.2 component system if a bootstrap

component is accessible from a “well-known” name. This bootstrap compo-

nent have to provide a GenericFactory and a TypeFactory interface. Moreover,

the GenericFactory interface has to be able to create components with any

control interfaces in the set of Fractal standardized control interfaces (and,

in particular, primitive and composite components). Finally, this interface

must also be able to create (3.2 level) primitive components encapsulating

0.1 level components.

interface GenericFactory {

Component newFcInstance(Type t, any controllerDesc, any contentDesc)

throws InstantiationException;

}

Level 3.3

The additional requirement, that the GenericFactory interface of the boot-

strap component must be able to create primitive and composite template

components, is required from the level 3.2 components to be the level 3.3

components.

Note that a level 3 component is also a level 2, 1 or 0 component, a level

2 component is also a level 1 or 0 component, a level 3.3 component is also a

level 3.2, 3.1 or 3 component, but a level 3, 2 or 1 component is not a level 0.1,

1.1 or 2.1 component. More generally, if l1 is greater than l2 in alphabetical

order, a level l2 component is not necessarily also a level l1 component.

2.3.7 Fractal ADL

The Fractal Architecture Description Language (ADL) is an open and exten-

sible language to define component architectures for the Fractal component

21

model. Fractal ADL is a XML based ADL that can be used to describe

Fractal component configuration. An example of Fractal ADL describing the

component in Figure 2.8 is stated bellow:

Figure 2.8: Hello world component

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL 2.0//EN"

"classpath://org/objectweb/fractal/adl/xml/basic.dtd">

<definition name="HelloWorld">

<interface name="r" role="server" signature="java.lang.Runnable"/>

<component name="client">

<interface name="r" role="server" signature="java.lang.Runnable"/>

<interface name="s" role="client" signature="Service"/>

<content class="ClientImpl"/>

</component>

<component name="server">

<interface name="s" role="server" signature="Service"/>

<content class="ServerImpl"/>

</component>

<binding client="this.r" server="client.r"/>

<binding client="client.s" server="server.s"/>

</definition>

2.3.8 Julia

Julia[7] is the reference implementation of Fractal component model in Java

conforming at level 3.3 to the Fractal specification. Julia implements an

extensible set of control objects, from which the user can freely choose and

assemble the controller objects he or she wants, in order to build the con-

troller part of a Fractal component. The set of control objects allows user

22

to instantiate non reconfigurable but very efficient or, on the contrary, com-

pletely reconfigurable but less efficient components. It also allows the user

to mix these components, in order to use different optimization levels for the

different parts of an application.

A Fractal component is generally represented by a set of Java objects,

which can be separated into three groups (see Figure 2.9):

• the objects that implement the component interfaces (one object per

component interface; each object has an “impl” link to an object that

really implements the Java interface, and to which all methods calls

are delegated; this reference is null for client interfaces),

• the objects that implement the controller part of the component (a

controller object can implement zero or more control interfaces),

• and the objects that implement the content part of the component (not

shown in the figure).

The objects that represent the controller part of a component can be sep-

arated into two groups: the objects that implement the control interfaces,

and (optional) interceptor objects that intercepts incoming and/or outgoing

method calls on functional (or business, or user) interfaces. Each controller

object can contain references to other controller objects. The objects that

implement the content part of a component can be subcomponents (for com-

posite components), or user objects (for primitive components).

2.4 Goals revisited

As described in previous sections the possibility to adopt only some of the

Fractal concepts (and to extend them in an arbitrary way) enables the vari-

ety of Fractal components system to be really huge. The goal of this thesis

is to create a common Fractal metamodel, which can be applicable and eas-

ily extended for component systems conforming to Fractal at an arbitrary

level defined in the Fractal component model specification (see Section 2.3.6).

Then, through the use of the Fractal metamodel, to create a basic support

23

for development of Fractal components using the MDA approach to software

development: implement a MOF-based Fractal metadata repository, and a

transformation of the Fractal metadata from the Fractal standard for de-

scribing metadata — the Fractal ADL, to the MDA standard — MOF (i.e.,

loading of metadata defined in ADL to the MOF-based repository). Together

with the Fractal metamodel the extension of this metamodel for Julia com-

ponent system will be created, as a demonstration of the extensibility and

applicability of the metamodel.

24

Figure 2.9: An abstract component and a possible implementation in Julia

25

Chapter 3

Solution

This chapter presents the proposed metamodels of Fractal and Julia and

describes the implementation of the Fractal metadata repository and related

tools.

3.1 Fractal metamodel

In following sections, the particular segments of the Fractal metamodel are

described in detail, together with the presentation of the alternative possibil-

ities for modeling relations between given concepts, and reasoning why the

selected one is the most suitable. The whole Fractal metamodel is presented

in Appendix A. As it was explained in Section 2.2, UML class diagrams are

used to describe the Fractal metamodel.

3.1.1 Components

As Fractal is a component model, the component is the essential concept of

the Fractal metamodel. As described in Section 2.3.3, the Fractal compo-

nent model specification defines three different kinds of components: a base

component, a primitive component, and a composite component; according

to increasing level of control it provides. Figure 3.1 shows straightforward

capturing of this relation in the inheritance hierarchy. This relation among

component kinds corresponds with seeing the base component as a black box

26

with no control interfaces; the primitive component as a black box with dis-

tinguishing between the functional and control part of it; and the composite

component as a white box, with the ability to see its content (subcompo-

nents).

Figure 3.1: Possible components metamodel

From another point of view the base component, the primitive compo-

nent, and the composite component are three distinct kinds of components,

as illustrated in Figure 3.2. Common for all of them is being a kind of com-

ponent, but there is no direct relation between them. This approacha is more

appropriate than the previous one, because composite component is surely

not a special kind of primitive component, as it is denoted by the inheritance

in Figure 3.1.

However, the second modeling approach to modeling the component kinds

has several drawbacks. An extension of this metamodel (to could describe a

particular Fractal component system) demands too much effort when adding

properties or behavior common for all kinds of component. Subclasses of

all component kinds have to be created, when the extension is done without

27

Figure 3.2: Possible components metamodel

changing the common Fractal metamodel. The inheritance hierarchy of the

component kinds is unnecessarily complicated. The only difference between

the base and the primitive component is in containing a control interface, and

thus the distinction between them can be done by testing of the control in-

terface presence in the component. The properties and the behavior of them

are not different, and therefore there is no need to model them as separated

component subclasses. Similarly, the difference between the primitive and

the composite component is only in the presence or absence of a subcompo-

nent. Analogous to precedent reasoning, there is no need to create a special

component subclass for composite component. For further extension of the

metamodel, it is preferable to keep the metamodel as simple as possible. The

resulting metamodel has the only one class for all component kinds with the

attribute name necessary for the component identification.

Internally, a Fractal component is composed of two parts — a content and

a controller (see Section 2.3.3); and the component content is formed out of

component subcomponents. Figure 3.3 illustrates straightforward capturing

of these relations. However this model is unnecessarily complicated. It is

useless to create a special class (the Content class) for modeling component

containment hierarchy; better solution is to capture the subcomponent re-

28

Figure 3.3: Possible component internal structure metamodel

Figure 3.4: Resulting component structure metamodel

lation with a composition association. Multiplicity of both association ends

of this composition is 0..n, because a component can contain an arbitrary

number of subcomponents and can be shared among an arbitrary number of

components.

The controller of a component embodies the control behavior associated

with the component. These control aspects of the component are described

by ist control interfaces. Hence, the metamodel element for representing

the controller is not necessary, it is fully described by a set of control inter-

faces. However, the Fractal metamodel contains the Controller element for

representing the entity that implements the control interfaces. The compo-

nentController association is not a composition but rather a reference from the

Component element to the controller. Because of the optionality of having a

controller, the multiplicity of the relation is 0..1. The resuling metamodel of

29

the internal component structure is depicted in Figure 3.4.

Alternative metamodel of component controller

As it was described in Section 2.3.3, component can have a control part —

a controller. We can think of it as a membrane that enables to control its

content. However, a component with a controller must be accessible in the

same way as a component without it (to preserve the uniform view principle).

Probably the best way of implementing it, is using the Decorator [5] design

pattern (see Figure 3.5).

Figure 3.5: Possible controller implementation

By inheriting from the Component, the semantics of the Controller element

in the metamodel would be extended beyond the concepts of the Fractal spec-

ification. For example, it would allow the Controller to have subcomponents,

it would require from the Controller to have a type, etc.

3.1.2 Interfaces and bindings

An interface represents either a required or provided service of a component.

Every interface is identified by a name within its component. It is necessary

30

to distinguish between the terms component interface and language interface:

a component has an interface, which implements a language interface, e.g. a

component has an interface with name “runComponent”, which implements

the java.lang.Runnable language interface (in this case the Java interface).

The relation between a component and its interfaces is depicted in Figure 3.6.

The Attribute name of the Interface class represent name of the component

interface. The distinction between the functional and the control interfaces is

done via the value of the boolean control attribute. Additional properties of

interfaces such as cardinality, contingency, language interface it implements

etc. are discussed in Section 3.1.3.

Figure 3.6: Component interfaces

The semantics of binding creation between a client interface of a compo-

nent and a server interface of another component is defined in the Fractal

specification as a control interface BindingController. Providing of this inter-

face for every client interface is one of the requirements for conforming to

the Fractal component model at the levels X.1 (see Section 2.3.6). Figure

3.7 presents a separate class for bindings. Representation of the binding as

Figure 3.7: Interface bindings

a stand-alone class has several advantages. It allows simple extension of the

31

binding concept by adding various attributes, such as a binding validity, a

durability etc. The next advantage is that the Interface class is not “pol-

luted” by the reference to connected interface and the part of metamodel,

which represents the standardized Fractal bindings (i.e., bindings usings the

control interface BindingController), can be easily eliminated from the meta-

model. This is useful in case that a Fractal component system uses its own

way to solve communication between component interfaces .

Figure 3.8 shows the alternative way (the simplest one) of representing

the interface bindings. This model is not very convenient, because the Bind-

Figure 3.8: Possible interface bindings metamodel

ing association is meaningful for client interfaces only and is declared for

all interface kinds and it also makes difficult to create extension of binding

(associations can not be extended).

3.1.3 Type system

Fractal defines a type system to allow checking interface bindings and to

be able to decide if a component can be replaced by another component in

its environment (other components, bindings). A simple typing is required

for all components conforming to Fractal at level 1 and higher and for all

interfaces of components at level 2. Modeling of this simple typing is quite

straightforward and follows the definition of Fractal type interfaces. Figure

3.9 presents model of the simple Fractal type system.

32

Figure 3.9: Abstract type classes

Interface type

An interface has several properties such as cardinality, contingency, signature

etc. Distinction between properties, which are interface attributes and which

are attributes of the interface type, depends on the role of the property when

resolving interface substitutability by another interface (substitutability is

the base of subtype relation definition in the Fractal specification). Ac-

cording to the substitutability definition in the Fractal specification and in

compliance with the interfaces defined in the Fractal type system, properties

of the interface type are:

• a signature representing language type of interface (e.g., name of a Java

class),

• a boolean attribute client denoting if the interface is a client or server

interface,

• an attribute optional describing interface contingency,

• and the cardinality represented as a boolean attribute collection (see

Figure 3.10).

33

Figure 3.10: Interface type

In addition to above mentioned properties, an interface can be either

internal or external (see Section 2.3.3). In this case, the distinction if it is

an Interface property, or it is a property of the InterfaceType, is not as clear

as in the previous cases. In accordance to definition of the Interface interface

(it contains an isFcInternalItf method) it is more suitable to model it as an

attribute of the Interface class (see Figure 3.11).

Figure 3.11: Interface

34

Component type

In the Fractal specification, component type is defined as a set of interface

types. In the metamodel, component type is represented as a ComponentType

class. It contains an operation for getting a particular interface type as

depicted in Figure 3.12.

Figure 3.12: Component type

3.1.4 Component attributes

In the Fractal specification, management of component attributes is defined

as the AttributeController interface. To conform to Fractal level X.1 and

higher (see Section 2.3.6), all configurable component properties have to be

accessed via this interface. The containment of attributes is modeled as an

aggregating association allowing a component to have 0..n attributes (see

Figure 3.13)

3.1.5 Component implementation

In component oriented programming, the separation of concerns principle is

heavily used. The components together with their interfaces define architec-

35

Figure 3.13: Component attributes

ture of the system and this architecture can be than implemented in various

ways. Implementation of component is represented as a stand-alone element

with a signature attribute, which defines the object (e.g., Java class) that

implements it (see Figure 3.14).

Figure 3.14: Component implementation

3.2 Extensibility of the metamodel

This section details the applicability of the proposed Fractal metamodel for

describing the Fractal component systems that conform to the Fractal com-

ponent model at an arbitrary level.

It is necessary to realize, that the conformance levels to the Fractal com-

ponent model do not prescribe structure of the components, but rather define

the control and reflective capabilities required from the components. In or-

der to provide some information about the component attributes and about

the internal component structure, the data describing this information has

to be available. The proposed Fractal metamodel is the suggestion of these

metadata structure. It consists of the part common for all conformance levels

36

and of the part which is for some levels optional.

The optional part of the metamodel serves for modeling advanced Frac-

tal features, such as the Fractal type system. However, it can be used to

describe Fractal component systems at the lowest conformance levels too. It

is important to distinguish the necessity of the run-time availability of the

component metadata from the semantic structure of components in a compo-

nent system. Component system can adopt the concepts defined in Fractal

specification to describe its components, but because of limited resources, it

does not need to support the Fractal reflective interfaces.

3.2.1 Level 0

The core concepts of Fractal — nesting of components with the uniform

view of component and composite component; and the approach to accessing

component via well defined access points — the interfaces; are common for

all conformance levels. The Component class, Interface class, subComponent

association, and componentInterface association are sufficient to represent the

core concepts. Because of the compatibility with the metamodel of higher

Fractal conformance levels, the inheritance from the TypedElement class is

necessary. Since the level 0 components do not use any type information a

singleton instance of the Type class — the UnknownType is referenced by all

typed elements.

3.2.2 Levels X.1

To conform to level X.1 (i.e., 0.1, 1.1, 2.1 or 3.1) all components must provide

a set of control interfaces. Each control interface is represented as an instance

of the Interface class with the attribute control set to true. It is necessary

to realize, that the metamodel does not describe semantics of the control

capabilities, but only register their presence or absence. This is the reason

why any special constructs for the control interfaces are not required.

The AttributeController and the BindingController are special cases of con-

trol interfaces. To could use these interfaces, additional information is nec-

essary. The AttributeController interface provides access to component at-

tributes. There is a separate class (the Attribute class) for representing com-

37

Figure 3.15: Core metamodel

ponent attributes. Usage of this class is necessary for all levels that use

AttributeController for accessing its attributes and optionally for the other

levels.

The Bind class is required for modeling interface bindings according to

definition of the BindingController interface. All interface bindings are rep-

resented by this class. Similarly to other Fractal metamodel elements, even

the components that do not implement BindingController interface (and thus

there are not X.1 components) can use the Bind class. For components im-

plementing this control interface it is a mandatory part of their metamodel,

for the other it is a optional part.

3.2.3 Level 1

At this conformance level, component reflection capabilities are required.

Every component has to provide access to its interfaces and simple type

information at runtime. Moreover, the component type must be comparable

with the type of another component by the subtype relation. The decision if

a component type is a subtype of another component type can not be done

38

in a universal way in the Fractal metamodel, because Level 1 components are

not forced to use the Fractal type system, and thus the subtype relation is not

constrained by any rules from the Fractal component model specification. In

general, the subtype relation is specific for each particular Fractal-compliant

component system.

It is not necessary to alter the level 0 metamodel (see Figure 3.15), as

it already holds all required data to satisfy the needs of implementation of

reflection capabilities required from level 1 components. The ComponentIn-

terface association supports the implementation of obtaining the component

interfaces and the Type class represents the component type. Equally to level

0, the UnknownType singleton instance of the Type class represents type for

all level 1 components. The isSubtypeOf operation of the Type class is left

unimplemented; for using the metamodel for a particular level 1 Fractal com-

ponent system, the Type class has to be extended and the component system

specific isSubtypeOf operation has to be implemented.

3.2.4 Level 2

With conforming to Fractal at level 2, the reflection capabilities are required

not only from components, but also from their interfaces. Component in-

terfaces must provide values of its basic properties, reference to the owner

component, and the simple type information. The requirements for the in-

terface typing are the same as for level 1 component type — implementation

of the isSubtypeOf operation. Analogically to level 1, the level 2 components

do not have to use the Fractal type system and can use its own. Hence, the

isSubtypeOf operation is left unspecified in the common Fractal metamodel

and ready for implementation in a particular Fractal component system.

The level 2 Fractal component systems can use the same metamodel as

the levels 0 and 1 do. It contains all necessary data to support the inter-

face introspection. For using the metamodel for a particular Fractal level 2

component system, extension of the Type class has to be developed with the

implementation of the isSubtypeOf method.

39

3.2.5 Level 3

Level 3 components must support the Fractal type system. For the type

information representation the ComponentType and InterfaceType classes are

used (subtypes of the Type with implemented isSubtypeOf operation). Struc-

ture of the InterfaceType follows the definition of the Interface interface. The

component type is defined as a set of the component interface types and

thus it can be derived from the ComponentInterface association and from the

InterfaceType. The ComponentType class is present in the Fractal metamodel

because of the simplification of metamodel extension; it is not only an ex-

tension point for customization of the Fractal type system, but also utilizes

using of the metadata repository.

3.2.6 Levels 3.2 and 3.3

The conformation to Fractal at these levels does not affect the metamodel

structure. It just requires presence of two factory interfaces and prescribes

the semantics of them. These interfaces can be modeled similarly to another

control interface, as was described for levels X.1.

3.2.7 Usage of the Implementation and the Controller class

In previous overview that discusses the usage of the Fractal metamodel, there

is no mention about the Implementation and the Controller class. It is nec-

essary to distinguish between describing architecture and describing a par-

ticular implementation of a software system. The component together with

its interfaces describes the architecture of the system. This architecture can

be then implemented in various ways using different control abilities. For all

conformance levels the Implementation class can be used to represent a par-

itcular implementation of the component, likewise the Controller class stores

the information about the particular component controller.

40

3.3 Julia metamodel

Metamodel presented in this section is an extension of the Fractal metamodel

for Julia, which is a Java implementation of 3.3 level Fractal system. Similar

to the Fractal metamodel, particular parts of the Julia metamodel are de-

scribe in the following sections. The whole Julia metamodel (as an extension

of Fractal metamodel) can be found in appendix A.

3.3.1 Julia components

One of the Julia goals is to provide a support for choosing between highly

configurable components and less configurable, but very efficient ones. User

can make the speed/memory tradeoffs he or she want. For this purpose

Julia use class generators to merge classes and remove the indirections when

invoking methods. Figure 3.16 illustrates optimization levels supported by

Julia.

Figure 3.16: Optimization levels

Each Julia component has its optimization level and each optimization

level have its own class generator for merging class. Incoming and outgoing

methods calls on functional interface can be intercepted by so called intercep-

tors to do for example some conversions or to add exception handling specific

for a particular environment. These interceptors are generated automatically

by a class generator.

41

As it was mentioned above, Julia conforms at level 3.3 to the Fractal

component model, hence all component interfaces must be castable to the

Interface interface. In Julia, support of this interface is generated automat-

ically by a class generator for all component interfaces. Figure 3.17 depicts

the resulting metamodel for Julia components.

Figure 3.17: Julia component

3.3.2 Interfaces

Each component interface is represented by its own Java object. It is be-

cause of the requirement to implement both the Interface interface and the

Java interface corresponding to this interface (getFcItfName() method of the

Interface implementation has to return interface name and thus distinct im-

plementation for all component interfaces has to exist). Figure 3.18 shows

the relation of the Julia interface to its implementation.

42

Figure 3.18: Julia interface

3.3.3 Control objects

The main goal of Julia is to implement a framework to program component

controllers. It provides an extensible set of control objects, from which the

user can freely choose and assemble controller part of component. Julia

use mixin classes for this purpose. Mixin classes can be mixed, resulting in

normal classes. Figure 3.19 captures the mixin concept and relates it to the

Fractal metamodel.

3.4 Implementation

Together with the creation of Fractal metamodel, we develop a basic sup-

port for developing Fractal component systems, using the MDA approach to

software development. We implemented a MOF-based repository for man-

aging Fractal metadata together with loading of Fractal metadata specified

via Fractal ADL and storing it to the repository. Entire implementation is

written in Java and particular parts of it are designed as Fractal components.

43

Figure 3.19: Julia mixin implementation

The attached CD contains the above mentioned implementation together

with a demonstration of the repository usage. The installation instruction

for runnig the example are described in Appendix B.

3.4.1 Metadata repository

Repository was generated from MOF metamodel using the generation ser-

vice of Metadata repository (MDR) [11], which generates repository accessi-

ble through the Java interfaces compliant with the Java Metadata Interface

(JMI) [9]. With regard to mentioned similarity of MOF and UML meta-

model, the MOF metamodel was prepared in the Poseidon for UML[20] mod-

eling tool. Then, it was converted via a MDR command-line tool uml2mof

from the UML to the MOF metamodel. The process of repository creation

is illustrated in Figure 3.20.

Repository generated by the MDR can be accessed using both reflective

(see Section 2.2), or metamodel specific (generated) APIs. For each class in

the Fractal metamodel MDR generates two interfaces: one for creating new

instances of given class; and the second one representing the instances of that

class with the getter and setter methods for class attributes. The second in-

terface also contains methods for navigating according to class associations

44

Figure 3.20: Repository implementation

(for association’s ends that are navigable). There is also generated an inter-

face for each association. The interface allows creating, removing and testing

of existence of association instances between class instances. Together with

these interfaces their implementation is also generated by the MDR. The

repository is accessed through the package interface created for every pack-

age. It offers methods for obtaining the interfaces for creating new instances

of metamodel elements.

For example for the class Component from the Fractal metamodel two

interfaces — ComponentClass and Component — are generated. The Com-

ponentClass interface allows creation of new component instances, while the

Component interface serves for setting of component attributes and navigat-

ing between associated classes. The Component interface contains methods

setName(String), getInterfaces() etc. The interface for association between

the Component and the Interface classes involve methods add(Component,

Interface), exists(Component, Interface) etc. Implementation of the Compo-

nentClass interface is obtained by invoking getComponentClass() on Fractal-

Package object.

However the generated API for accessing repository is not intuitive much

for those unfamiliar with the JMI, and also requires detailed knowledge of

the Fractal metamodel to use it properly. For example, if you want to add

an interface to a component properly, sequence of methods has to be called

(see bellow).

Interface iface = fractalPackage.getInterface().create("ifcName");

iface.setInterfaceOwner(component);

fractalPackage.getComponentInterface().add(component, iface);

UnknownType ut = fractalPackage.getUnknownType().createUnknownType();

iface.setType(ut);

fractalPackage().getIsOfType().add(iface, ut);

45

To provide more comfortable access to repository, we developed a facade1

interface for the repository. It hides the complexity of the JMI and offers the

intuitive interface of the repository. Instead of writing multiple line of code,

the interface can be simply added by calling one method from the facade

interface:

facade.addInterface("ifcName", component, additionalParams);

Because of the equality of the Fractal metamodel core structures, the

facade interface is common for all conformance levels. Data for the optional

parts of the metamodel are passed to methods using the associative array

with additional parameters (a parameter name associated with a parameter

value). Having the additional parameters in the associative array enables

using the repository facade for the Fractal metamodel extensions.

We have implemented the facade interface for all Fractal conformance

levels, i.e. levels 0,1,2 and 3. The implementation for sub levels such as 0.1,

1.1 etc. is not necessary because the differences between levels and its sub

levels is only in necessity of implement some control interfaces. Repository

facade for a particular component level stores the metadata according to

requirements for a given level.

Figure 3.21: Repository facades

1Facade is a design pattern from [5]

46

The facade for Julia metadata repository is an extension of the Fractal

repository facade. Implementation of the facade interface for Fractal level 3

is reused by inheriting it by JuliaRepositoryFacade.

Figure 3.22: Julia repository facade

3.4.2 ADL loading

Implementation of the metadata loading from the Fractal ADL to the MOF-

based repository fully benefits from the current Fractal implementation. We

have implemented the loading as a Fractal composite component with the

usage of existing Fractal components. Data from XML-based Fractal ADL

are loaded using the ADLLoader component, which is a composite component

from the standard Fractal distribution. The loader component is used as a

member of the composite component that performs loading. Such a reuse

of an existing Fractal component as a building block for a new composite

component is an illustration of the Fractal component model strength and

benefits for software development.

Architecture of composite component for loading ADL to JMI repository

is depicted in Figure 3.23. Data loaded from the ADL using the ADLLoader

component are processed by the RepositoryWriter component. The writer

47

does not work with the repository directly, but use the RepositoryFacade

component for accessing the JMI repository.

Figure 3.23: Design of ADL loading

3.5 MDA development with the proposed meta-

model

Having the MOF-compliant Fractal metamodel together with the metadata

repository, and the implementation of transformation from the Fractal ADL

to MOF, developers can benefit from MDA-based development of Fractal

applications and can use tools supporting MDA (see 4).

48

Transformations between the Fractalmetamodel and metamodels of an-

other platforms can be developed and used for guiding the transformations

between PIM and PSM, as it was described in Section 2.1.6.

49

Chapter 4

Related work

In paper[4], the importance of a metadata management in complex software

systems (such as middleware platforms) is discussed.

The paper [18] compares two approaches to building a metadata repos-

itory for component-based distributed environment. It compares a hand-

written repository and MOF-based one with respect to easiness of building

and accessing them. Authors of this paper recommend using MOF-based

repositories, because it allows faster development, better extensibility and it

also complies with the OMG standards. The results are based on implemen-

tations of the both repositories for a real component model.

The Fractal concepts are implemented in several other projects: Think[19]

is a component-based programming framework for building modular and cus-

tomizable operating systems and applications, which can be considered as an

implementation of Fractal component model that enables component-based

programming in the C language; ProActive[21] is a Fractal level 3.2 GRID

Java library for parallel, distributed, and concurrent computing; SOFA[23]

is Fractal level 2 compliant componet system which allows for an application

to be composed of a set of dynamically hierarchical updatable components.

AndroMDA[1] is a generation framework that follows the MDA paradigm.

It enables the developer to create an UML model of the application in a

CASE-tool and then generates classes and deployable components. The re-

sulting files are directly deployable; all the developer has to do is to implement

the application specific business logic. AndroMDA comes with templates pre-

50

pared for generating J2EE web applications from UML models; it generates

EJB components, Struts classes and HTML pages. But AndroMDA is not

limited to EJB-based applications only. It provides mechanisms for creating

templates and subsystems to generate applications for other platforms than

J2EE.

Jamda[8] is a similar project to AndroMDA, it is an open-source frame-

work for building application generators which create Java code from a model

of the business domain. An application generator build using Jamda would

perform the role of a model compiler in the Object Management Group’s

Model Driven Architecture specification.

51

Chapter 5

Conclusion and future work

The goal of this thesis was to design a metamodel applicable for describing

component systems conforming to the Fractal component model at an arbi-

trary level. The proposed metamodel satisfies this requirement and allows

an easy extensibility of the metamodel for modeling arbitrary features of a

particular Fractal component system.

As a proof of the concept, the MOF-based metadata repository was de-

veloped together with the metamodel. It provides a basic support for im-

plementing Fractal components using the MDA approach to software devel-

opment. The facade interface allows an intuitive use of the repository. At

this time, the facade for adding objects to the repository exists. The future

implementation of a facade interface for navigating and updating data in the

repository would enable more comfortable usage of the repository.

The metadata loading from the Fractal ADL to the MOF-based repository

enables using both the Fractal metadata tools and the standardized MOF-

based tools for managing the metadata. It also allows using the application

from the Fractal GUI project1 to design the architecture of Fractal systems

and then to translate them to a metamodels conforming to the MDA.

Implementation of the reverse metadata transformation, i.e. transforma-

tion from the Fractal MOF-based repository to the Fractal ADL, could be a

task of a future work.

1Fracral GUI is one of the OMG’s Fractal projects. It provides a graphical tool for
editing Fractal component configurations.

52

In this thesis the metamodel was designed for the reference implemen-

tation of the Fractal component model Julia. The possible future work is

the creation of the Fractal metamodel extensions for another Fractal-based

systems such as ProActive[21], Think[19], SOFA[23], or FROGi[6] to enable

MDA-based development of their applications.

53

Bibliography

[1] AndroMDA, http://www.andromda.org/

[2] Bruneton, E., Coupaye, T., Leclercq, M., Quema, V., Stefani, J. B.: An

Open Component Model and Its Support in Java, Proceedings of CBSE

2004, Edinburgh, May 2004

[3] Brunneton, E., Coupaye, T., Stefani, J.B.: Recursive and Dynamic

Software Composition with Sharing, Proceedings of WCOP’02, Malaga,

Spain, June 2002

[4] Costa, F., Blair, G.S.: The Role of Meta-Information Management in

Reflective Middleware, Proceedings of the ECOOP’ 00 Workshop on

Workshop on Reflection and Metalevel Architectures, Sophia Antipolis

and Canes, France, Springer-Verlag, June 2000.

[5] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides: Design

Patterns: Elements of Reusable Object-Oriented Software, Addison Wes-

ley, March 1995

[6] FROGi, http://www-adele.imag.fr/frogi/

[7] France Telecom: Julia documentation,

http://fractal.objectweb.org/current/doc/javadoc/julia/overview-

summary.html

[8] Jamda, http://jamda.sourceforge.net

[9] Java Metadata Interface, JSR-40, http://java.sun.com/products/jmi/

54

[10] Lopes C. V. and Hursch W. L.: Separation of Concerns, College of

Computer Science, Northeastern University, Boston, February 1995,

http://citeseer.ist.psu.edu/lopes95separation.html

[11] Metadata Repository, http://mdr.netbeans.org/

[12] OMG: CORBA Components, version 3.0, OMG document formal/02-

06-65

[13] OMG: Common Object Request Broker Architecture,

http://www.omg.org/technology/documents/formal/corba iiop.htm

[14] OMG: MDA Guide, version 1.0.1, OMG document omg/03-06-01

[15] OMG: Meta Object Facility Specification, version 1.4, OMG document

formal/02-04-03

[16] OMG: The Fractal Component Model, version 2.0-3

[17] OMG: XML Metadata Interchange Specification, version 1.2, OMG doc-

ument formal/02-01-01

[18] Petr Hnětynka, Michal Ṕı̌se: Hand-written vs. MOF-based Metadadata

Repositories: The SOFA Experience, Proceedings of ECBS 2004, Brno,

Czech Republic, IEEE CS, ISBN 0-7695-2125-8, pp. 329-336, May 2004

[19] J.-Ph. Fassino, J.-B. Stefani, J. Lawall, G. Muller. THINK: A Software

Framework for Component-based Operating System Kernels, in: Pro-

ceedings of Usenix Annual Technical Conference, Monterey (USA), June

10th-15th 2002

[20] Posseidon for UML tool, http://www.gentleware.com/

[21] ProActive, http://www-sop.inria.fr/oasis/ProActive/

[22] Sun Microsystems: Java 2 Enterprise Edition (J2EE),

http://java.sun.com/j2ee/

55

[23] Plasil F., Balek D., Janecek R.: SOFA/DCUP, Architecture for Com-

ponent Trading and Dynamic Updating, Proceedings of ICCDS 1998,

Annapolis, USA, IEEE CS, 1998.

56

Appendix A

The Fractal and Julia

metamodels

The following figures depict the Fractal and Julia metamodels from which

the MOF-based repository is generated. All elements of the metamodels have

been described in Chapter 3.

57

Figure A.1: The Fractal metamodel

58

Figure A.2: The Julia metamodel

59

Appendix B

Installation instructions

The attached CD contains four directories:

• text contains the text of this thesis,

• src contains source codes of the implementation described in Section

3.4 (i.e., Fractal metadata repository and the loading of metadata from

ADL to the repository),

• build contains build of the application and the example of a Fractal

ADL definition and its equivalent in XMI,

• install contains Linux and Windows self-installing executables of the

demo application, i.e. loading of an ADL definition to repository and

them printing the repository content to a file.

B.1 Installing the demo application

Running of the demo application requires Java Runtime Environment at least

at version 1.5. In Linux, use the install-linux.bin installer, Windows installa-

tion is performed using the install-windows.exe executable. For installing the

demo, follow the instructions of the installer.

60

B.2 Running of the demo application

The executables of the demo are located in the bin subdirectory of the instal-

lation destination folder. In case of the Linux installation, the name of the

demo script is runDemo.sh, in Windows, it is runDemo.bat. The script expects

two parameters: the fully qualified name of an Fractal ADL definition (with-

out the .fractal extension) and the name of the output XMI file. The ADL

name is specified similarly to names of Java classes — a sequence of identifiers

separated by the “.” token (e.g., org.objectweb.fractal.adl.BasicCompiler).

The name is relative to a classpath folder of the demo script (e.g., the build

directory). The metadata are loaded from ADL to the repository and then

the content of the repository is written to the output file.

Running the demo script without any parameters performs the transfor-

mation of the HelloWorld ADL definition, which is located in build subdirec-

tory of the installation:

runDemo.sh

Example of running the metadata transformation of a component from

the Fractal distribution:

runDemo.sh org.objectweb.fractal.adl.BasicCompiler BasicCompiler.xmi

It is also possible to rebuild (compile) the application using the compile.sh

(or complile.bat) script.

61

