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1 Introduction

The visualization of relational information has many applications in vari-
ous domains. The domain entities are usually modeled as vertices and the
relationships among entities are represented by edges.

There has been many graph drawing styles studied in the literature. In
this thesis we study the orthogonal box drawing. This drawing has received
a wide attention recently due to its applications: 2-dimensional variants in
VLSI routing, circuit board layout, CASE tools etc. and 3-dimensional vari-
ants for example in packaging algorithms [1,5,6,7,8].

manual Bonnet electric

Transmission Car Enginc

automatic gasoline

Figure 1: Many UML diagrams are orthogonal box drawings

The orthogonal box drawing represents vertices by axis-parallel boxes.
Edges are drawn as axis-parallel polylines with ends on boundaries of con-
nected boxes. The edges don’t intersect another boxes and with the exception
of the 2-dimensional drawing an edge cannot intersect another edge.

We call the drawing b-bend if each edge consists of at most b+ 1 line
segments. A 0-bend drawing is called a straight-line drawing. If all edges
in a straight-line box drawing in IR® are parallel then we can ignore the
thickness of the boxes in this direction. We obtain a representation known
as a 3D rectangle visibility drawing.

It turns out that the recognition of graphs with the given type of or-
thogonal drawing is difficult. For example, Shermer [11] shows that the
recognition of graphs with 2-dimensional straight-line orthogonal drawing is
NP-complete. Fekete et al. [12] establishes NP-completeness of recognition
of graphs with a 3D rectangle visibility drawing by squares.

If we cannot effectively decide whether a graph has a drawing of the given
type then it is natural to look for classes of graphs for which this decision
is possible. The previous research was concentrated mainly on the complete
graphs e.g. on the determination of the maximum size of a complete graph



with a drawing [2,3,4]. Unfortunately such results don't tell us much about
drawing of graphs with more vertices.

(a) (b)

(c) (d)

Figure 2: Different drawings of Kj:

(a) 2-bend 3-dimensional orthogonal point drawing
(b) straight-line 3-dimensional orthogonal line drawing
(c) 2-bend 2-dimensional orthogonal square drawing
(d) 3-dimensional rectangle visibility drawing

Our search for a more practical class of graphs has been inspired by the
open problem presented by Wood [1]:

What is the maximum k € Z™ such that every k-colorable graph
has a straight-line 3D orthogonal box drawing?

We study graphs with bounded colorability in this thesis. Every k-colorable
graph is a subgraph of a k-partite graph that is itself k-colorable. Therefore
it is sufficient to study the drawing of k-partite graphs.

Definition: The multipartite number of the given type of drawing is the
maximum k € IN such that every k-partite graph has a drawing of that type.
We say that the multipartite number is infinite when every multipartite graph
has such a drawing.



Wood (1] proves that the multipartite number of the straight-line orthog-
onal box drawing is at least 3. On the other hand Fekete and Meijer [2]
shows that it is at most 183.

We improve the lower bound from 3 to 22 and the upper bound from 183
to 42. We also determine the exact value of the multipartite number of the
orthogonal drawing by line segments and of the rectangle visibility drawing.
The Table 1. summarizes the results presented in this work.

v d b multipartite number
1 1 0 1 Theorem 1.
2 > 2 00 Section 3.3
1 2 Theorem 2.
0 1 Theorem 1.
3 >1 00 Theorem 2.
>3 0 3 Theorem 1.
2 2 >1 00 Section 4.4
0 1 Section 4.3
3 0 € (22,42) Theorems 5., 6.
3 3 >1 o0 Section 5.2
0 € (22,42) Theorems 5., 6.
rectangle visibility drawing 8 Theorem 3.
square visibility drawing 6 Theorem 4.

Table 1. Multipartite number of d-dimensional b-bend
orthogonal drawing by v-dimensional boxes.



2 Preliminaries

First of all we recall the exact definition of terms mentioned in the introduc-
tion.

Definition: d-dimensional b-bend orthogonal drawing of a graph G is a graph
representation where

e v € V(QG) is represented by an axis-aligned box B, C IR¢
o Vo,w e V(G),v#w= B,NB, =10

e (v,w) € E(G) is represented by an axis-aligned polyline (with b + 1
line segments) connecting points on the surface of B, and B,,

e edges (with the exception of their endpoints) don’t intersect vertices
e if d > 2 then the edges don’t intersect other edges

e if d = 2 then the edges can have a finite number of intersections

Many times we impose additional constraints on the shape of vertices.
Even the rectangle visibility drawing can be defined as a special case of the
orthogonal drawing.

Definition: A rectangle visibility drawing of a graph is a 3-dimensional
0-bend orthogonal drawing where

e vertices are represented by rectangles placed in parallel planes

e edges are orthogonal to the planes of rectangles m

Usually we suppose that the rectangles are parallel to zy-plane and the
edges are parallel to z-axis. An example of a rectangle visibility graph can
be found on the Figure 2d.

2.1 Bar-visibility Graphs

The bar-visibility drawing is a 2-dimensional variant of the rectangle visibility
drawing. It appears frequently during the study of the orthogonal drawing,
especially in straight-line line drawing.

Definition: A graph G is a bar-visibility graph if it has a drawing in a plane
with the following properties:



e vertices are represented by horizontal line segments,

e each edge is a vertical line (connecting two vertices) that doesn’t inter-
sect another vertex. B

The bar-visibility graphs are characterized by Tamassia & Tollis [9] and
Wismath [10].

Theorem: [9](10] A graph G is a bar-visibility graph if and only if it has
a planar embedding with all cutvertices in the exterior face.

Figure 3: A bar-visibility representation of K,

Very few bipartite graphs are bar-visibility graphs because Kj3 is not
a planar graph.

Corollary: K,,,, min(m,n) > 3 is not a bar-visibility graph.

2.2 Basic Lemmas

The next lemma is a simple application of the pigeon-hole principle. We
include it because we use this formulation several times in the sequel.

Lemma 1. Let k,n,c € IN and G be a complete k-partite graph whose each
part has at least c(n—1)+1 vertices and each vertex has one of ¢ colors. Then
G contains a complete k-partite subgraph whose each part is monochromatic
and contains at least n vertices.

Proof: Each part contains at least c(n — 1) + 1 vertices. Therefore there are
at least n vertices with the same color in each part. These monochromatic
sets form the k-partite subgraph with the required properties. ®

We use this lemma when each vertex from a drawing must have one
property from a finite set of properties and we have to ensure that the vertices
from the same part have the same property. A similar situation occurs when
the properties are assigned to edges.

Lemma 2. Let k,n,c € IN and G be a complete k-partite graph whose each
edge has one of ¢ colors. There exists Ny, . € IN such that if each part of



G has at least Ny, . vertices then G contains a complete k-partite subgraph
whose each part has at least n vertices and for each pair of parts the edges
among elements of these parts are monochromatic.

Proof: Let N be an integer. Fix two parts B and W (call them black and
white) that have at least N vertices. We prove that if N > (n—1)c(2¢)" then
there is a subgraph of G that is also complete k-partite, has at least n black
and n white vertices and the edges among these vertices are monochromatic.
The demanded subgraph can be obtained by a repeatable application of this
fact.

As the first step select for each black vertex the color that appears the
most frequently among its edges going to the white vertices. In the second
step collect these colors and call red the one that appears the most frequently.
Finally select the vertices whose the most frequent color from the step one
was red. We obtain a set B’ of at least N/c black vertices, each of them
connected to at least N/c white vertices by red edges.

Let’s count pairs {(v,S)|v € B, S C W,|S| = n,Vw € S : vw is red}.
Each black vertex appears in at least (N /e pairs. Hence, there are at least

> (N / c) pairs. On the other hand if there is a set S that is in n pairs then this
set with the black vertices from the pairs form the required configuration.
This must happen if the number of the pairs is bigger than (n — 1)%’: ) But

this holds because N > (n — 1)c(2¢)™:

%T(N,{c) N/c—z N 1\"
(”“1)(1:) n—l)zl;I0 (n—l) (-2?) > 1

Sometimes we need to separate the parts with respect to some function
on the set of vertices.

Lemma 3. Let k,n € IN and G(V, E) be a complete k-partite graph whose
each part has at least (n — 1)k + 1 vertices. For each £ : V — IR there exists
a complete k-partite subgraph G’ of G whose each part has at least n vertices
and whose parts are {-separated e.g. for each pair P,, P, of parts it is either
Ve € PVy € P, {(x) < {(y) orVz € P\Vy € P; {(y) < ().
Proof: Sort the vertices v € V according to their value £(v). Let P be the
part whose n-th vertex (with respect to this order) has the lowest index in
the sequence. Remove the vertices before the selected one from the sequence.
Put the first n vertices of P into G’ and remove the elements of P from the
sequence. Continue in the same way until the sequence is empty.

Let’s fix some part P. If P is not the selected part then at most n—1 of its
vertices are removed from the sequence. Therefore at most (n — 1)(k — 1) of
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its vertices are removed before the part is selected. P has at least (n—1)k+1
elements. So, the described algorithm selects n vertices from each part. The
resulting graph G’ obviously has the required property.®

Lemmas 1., 2. and 3. ensure the existence of a subgraph G'(V', E’) of
a graph G(V, E) such that |V'| > f(|V|), where f is a non-decreasing function
unbounded from the top. These properties of f ensure that the size of G’
can be made arbitrarily big if we take the original graph G sufficiently large.
We use this fact many times in the sequel because we usually want to prove
the existence of a large graph G’ with some properties and are not interested
in the exact size of G that must be taken to find a subgraph of the required
size.

11



3 Line Drawing

3.1 Straight-line Line Drawing

In this section we determine the multipartite number of the straight-line line
drawing in the n-dimensional space e.g. the drawing where each vertex is
represented by an axis-parallel line segment in IR".

Lemma 4. The multipartite number of the straight-line line drawing in R"
isat most 3 forn>2anditisl forn=1,2.

Proof: Let’s suppose that we have a straight-line line drawing in IR™ of
a k-partite graph G. If we color the vertices according to their direction
then Lemma 1. tells us that there exists a large k-partite subgraph G’ with
parallel vertices in the individual parts.

Now color the edges of the graph G’ according to their direction. Let G”
denote the result of the application of Lemma 2. on the graph G’. The edges
between arbitrary two parts of G” are parallel.

We know that the vertices in the individual parts are parallel. We claim
that the vertices from the different parts cannot be parallel. Suppose that
the opposite holds e.g. there are parts P and @ such that the vertices from
P U Q are parallel (to a vector €;). The edges between P and @ are parallel
(to a vector €3) due to the definition of G”. This means that P and Q
together with the edges between them lie in a plane (given by vectors €; and
€2). So, we have a bar-visibility graph of K|pjqg|, but the sets P and @ can
be made arbitrarily large. That is in a contradiction with the planarity of
bar-visibility graphs.

If P and @ are two parts of G”, P parallel to €;, ) parallel to € and
the edges between P and () parallel to €3 then the drawing of K|p|q lies in
S =p+ 1R+ &R + €;31R, where p is a point of some linein PUQ. If k > 3
then there must exist a part R parallel to vector €4 &€ ;IR + é&;IR + €3IR. The
edges between P and R are parallel to a vector .

Choose | € R. |IN S| <1 because €;,LS.

If INS = q then the edges between P and R have one end in ¢q. There
can be at most two such edges (from the directions ¥ and —¥). Therefore
|P} < 2, but P can be arbitrarily large.

IfiNS = @ then |+ 7R intersects S in at most one point. This means that
[ can be connected to at most one vertex from P and we have a contradiction
with the size of P again. Hence k£ < 3.

The case n = 1 is obvious. If n = 2 then G(V, E) is a union of two planar
(bar-visibility graphs) and as such has less than 12|V'| edges. Therefore no
sufficiently large bipartite graph has a 2D straight-line line drawing.®

12



The previous proof utilizes the fact that we can choose from an arbitrary
complete multipartite graph a subgraph that is itself a complete multipartite
graph, has some specific property and can be made arbitrarily large if the
original graph is sufficiently big. The additional property allows us to simplify
the proof. We use this method in many of the following proofs.

The lower bound on the multipartite number that matches our upper
bound e.g. the construction of a 3-dimensional straight-line line drawing of
K p, for arbitrary positive integers a, b, ¢ is given by Wood.

Figure 4: Straight-line 3-dimensional orthogonal line drawing of K, ,, ,

Lemma 5. [1] The multipartite number of the straight-line line drawing in
IR3 is at least 3.

Proof: It is sufficient to show that K, ,, , has such a drawing for each n € IN.
The graph K, ,, can be represented by the following lines

wi: (2,2i+1,2) — (2n+1,2+1,2)
v+ (24,2,25+1) — (25,2n+1,25+1)
wg: (2k+1,2k,2) — (2k+1,2k,2n+1)

where line segments u;, v; resp. wy represent the vertices from the first, the
second resp. the third part.
'The edges u,;v;, u;wx and v;w are represented by lines

wi: o (20,2 +1,2) — (25,2+1,2j+1) v
wi: (2k+1,2+1,2%) —  (2k+1,2k,2) :ws
vt (27,2k,25+1) — (2k+1,2k,2j+1) :wy

The detailed proof of the correctness of this drawing is given in [1] (Theorem
3.1). m



Theorem 1. The multipartite number of the straight-line line drawing in
R"is3forn>2anditisl forn=1,2.

3.2 1-bend Line Drawing

Lemma 6. The multipartite number of the 1-bend line drawing in R? is at
most 2.

Proof: We proceed similarly to the proof of Lemma 4. Suppose that we
have a 1-bend 2-dimensional line drawing of a complete k-partite graph G.
Due to Lemma 1. we can assume that all vertices in the individual parts are
parallel.

Let’s color 0-bend edges by red and 1-bend edges by green. Lemma 2.
ensures the existence of a k-partite subgraph of G with monochromatic edges
between each pair of parts.

If £ > 3 then there must exist two parts P and @) that have vertices with
the same direction. What is the color of the edges between these parts? It
cannot be red because the multipartite number of the 2-dimensional straight-
line line drawing is one.

When we have a 1-bend edge between two parallel line segments then one
of the ends of this edge must be a continuation of one of these segments.
Assign the edge to this segment. Each segment can have at most 2 edges
assigned to it. Therefore the maximum number of green edges between P
and Q is 2(|P|+|@|), but a sufficiently large bipartite graph has more edges.
Hence k must be less than 3.m

LA N ]

Figure 5: 1-bend 2-dimensional line drawing of K,

Theorem 2. The multipartite number of the 1-bend line drawing in R" is
2 for n = 2 and is infinite for n > 2.

Proof: The upper bound on the multipartite number of the 1-bend line



drawing in IR? is proved in Lemma 6. The lower bound is given by the
construction on the Figure 5.

The multipartite number in IR",n > 2 is infinite because every complete
graph has a 1-bend line drawing in IR® see Figure 6.®

yl z:

I

Figure 6: 1-bend 3-dimensional line drawing of K

3.3 2-bend Line Drawing

The Figure 7. shows that every complete graph has a 2-bend 2-dimensional
line drawing. Therefore the multipartite number of this drawing is infinite.

Figure 7: 2-bend 2-dimensional line drawing of K

15



4 Rectangle Drawing

In this section we work with rectangles in parallel pianes as if they were
in the same plane. Operations on such rectangles should be understood as
operations on the projections (into one of the planes) and the projection of
the result of the operation (for example the intersection of some rectangles)
back into the individual planes of the rectangles.

4.1 Rectangle Visibility Drawing

Let’s remind two important theorems that we use in this section.

Theorem: (Erdds-Szekeres) Each sequence of n® + 1 distinct real numbers
contains a monotonic subsequence of length at least n + 1.

Theorem: (Helly) If every at most d + 1 sets of a finite family of convex
sets in IR® intersect then all the sets of the family intersect.

The sufficient and necessary condition for the existence of a common
intersection of a set of axis-aligned rectangles is even simpler.

Lemma 7. Let S is a set of axis-aligned rectangles in a plane. If each
pair of rectangles from S intersect then the rectangles in S have a common
intersection.

Proof: The rectangles in S have a common intersection if and only if their
projections along x and y axis have a common intersection. The projections
along some axis (e.g. some intervals) have a common intersection if and
only if each two projections intersect (Helly theorem for d = 1). So, the
rectangles in S have a common intersection if and only if projections of each
pair of rectangles intersect and that happens if and only if each two rectangles
intersect.®

Definition: Let B is a box in an orthogonal drawing. z%(B) denotes
the maximum coordinate of a point in the box B. Similarly we define
z7,yt,y", 2T and z™.

‘Note that 2+ = 2z~ in the rectangle visibility drawing. We denote this
function simply by z there.

Lemma 8. The multipartite number of the rectangle visibility drawing is at
most 8.

Proof: Suppose that we have a rectangle visibility drawing of a complete k-
partite graph G. Apply Lemma 3. on this graph consecutively with functions

16



z,zt,z7,y* and y~. We obtain a graph G’ with parts separated with respect
to these functions.

Take an arbitrary part P; of G’ and sort its elements according to their
z-coordinates. Due to Erdds-Szekeres theorem we can choose from this
sequence a subsequence P! of length at least |P;|'/!'® that is monotone in
z+,z7,y" and y~ coordinates. Denote by G” the complete k-partite graph
with parts P/. From the construction of G” it is obvious that its parts can
be made arbitrarily large if we take G with sufficiently large parts.

We claim that we can suppose that the orthogonal projections (along z-
axis) of rectangles from G” have a common intersection. Rectangles from the
different parts must intersect to be able to see each other. Due to the previous
lemma it is sufficient to show that each part has a common intersection. That
happens if and only if each two rectangles from this part intersect.

Let P; be a part without a common intersection. There must be two
elements 11,72 € P; that don't intersect. Without loss of generality (w.l.o.g.)

it is 27 (ry) < 7 (r2).

Figure 8:

G" is a complete k-partite graph. Hence a rectangle r from a different
part (to see both r; and r3) must have z7(r) < z¥(r;) and z*(r) > =7 (r2).

Let’s modify the part P; to have a common intersection. Let ¢} (re-
spectively c¢;) be a maximum (resp. minimum) z-coordinate of a point of
a rectangle in P,. Denote by S the y-parallel strip between c; and c} (see
Figure 8.)

The proved inequalities together with the z%*,z -separability of parts
ensures that z7(r) < ¢ and ¢ < z¥(r) for each rectangle r ¢ P,. Therefore
if two rectangles not in P; can see each other through a point (z,y) in the
strip S then they can see each other also through a point ((c¢; — €,y) or
(cf + €,y) for a sufficiently small € > 0) outside the strip.

The rectangles in P, (ordered according to the z-coordinate) are mono-
tone in 1 and z~ coordinates and don’t have a common intersection. So,
they must be either increasing or decreasing in both these coordinates - the
rectangles form stairs (see Figure 9.)

17
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Figure 9: Modification of stairs

We claim that if we change £+ and =~ coordinates of the stair rectangles
to ensure a common intersection (as it is shown on the Figure 9.) then we
don’t destroy the completeness of the k-partite visibility representation of
G”.

Only the rectangles in the strip S are modified. So, the visibility among
rectangles not in P, is not affected because they can see each other through
points outside the strip. It remains to show that the rectangles from P, can
see all other rectangles.

Sides y* and y~ of each rectangle not in P, cross the whole width of the
strip S. They mark on the strip (orthogonal) sub-strips. The rectangles not
in P; can see the rectangles from P, only through their sub-strips.

No visibility is destroyed if we move the z* and z~ coordinates of rect-
angles from P, such that the same rectangles remain visible through each
sub-strip, but that is exactly what our stair-modification technique does.

We have shown that we can expect each part of G” to have a common
intersection.

We know that if we sort the rectangles from some part P of G” according
to their 2-coordinates then we obtain a sequence monotone also in zt,z~, y*
and y~ coordinates. Moreover if P has a common intersection then we can
consider P to form a frame with sides oriented up and down (see Figure 10.)
The orientation determines the direction from which the corresponding sides

of rectangles are visible.
up
_’- 3’0 _.» D
up

Figure 10: Transformation of one part into a frame and an oriented rectangle

‘oo

We also know that the parts are zt,z7, y*,y " -separated. Thus two cor-
responding sides of frames cannot intersect (see Figure 11.) The interiors of
frames intersect because all rectangles have a common intersection. Due to
these facts we can shrink the frames into rectangles with oriented sides. Now

18



two parts can see each other if the boundaries of their oriented rectangles
intersect and the intersecting sides have a correct orientation.

I I

(a) (b) (¢) (d)

Figure 11: Examples of invalid (a), (b) and valid (c), (d) intersections of
frames

It remains to prove that a complete graph with this modified oriented
rectangle visibility representation has at most 8 vertices.®

Lemma 9. If K,, has a modified visibility representation by rectangles with
oriented sides (as described in the previous proof) then n < 8.

Proof: We proceed in a similar way as Fekete et al. (3] in the proof of
the non-existence of a visibility representation of Kg by unit squares e.g. by
a computer search. Our algorithm is based on their algorithm. We mod-
ify it to generate visibility representations with general rectangles (not only
squares). We also add a code that assigns an orientation to the individual
sides. When the next rectangle is added the new code also checks whether
the orientation requirements are satisfied.

The location of a rectangle R can be described by its z-coordinate and
by the orthogonal distances of each of its sides from some (fixed) point from
the common intersection of the rectangles e.g. by a 4-tuple (z}, 7, ¥, yr)-
The exact values of these coordinates are not important. It is sufficient to
know the relative order of the values of the individual coordinates. Hence,
we can assume that each coordinate is an integer in the range (1,n) without
changing the visibility relationships among the rectangles.

Consider two rectangles A = (z},z3,y%,v3) and B = (2}, 25,95, ¥5)-
The intersection AN B contains the intersections of the boundaries of A and
B. The corners of AN B are therefore the only candidates through which
A and B can see each other. The left top corner is an intersection of the
boundaries of A and B if and only if min(z;,z5) = 5 and min(y},y3%) =
y4 (or min(z;,z5) = z; and min(y},y5) = y3), see Figure 12. Similar
conditions hold for other corners.

A and B can see each other through a corner of A N B only if there is
no rectangle R between A and B that intersects this line of visibility. For
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Figure 12:

example, the line of visibility corresponding to the left top corner is not
intersected if and only if the condition

Tp < min(zy,7p) or yk < min(yi,yp)

holds for each rectangle R between A and B.

Finally if a corner of AN B is an intersection of the boundaries of A and
B and the corresponding line of visibility is not intersected then A and B
are connected by an edge if and only if the intersecting edges have a correct
orientation e.g. the lower one is oriented up and the upper one is oriented
down.

We begin the search with one rectangle and proceed in a depth-first-search
manner examining all the ways to add a new rectangle above the rectangles
already added. On the m-th level of the search we have a rectangle visibility
drawing of K,, described by 4-tuples with values from (1,m). We have
m + 1 possible choices for each coordinate for the next rectangle. For each
possibility we check whether the boundary of the new rectangle intersect
boundaries of other rectangles and whether the rectangles can see each other
through the line of visibility given by the intersection. If this holds then we
try to find the orientation of sides of the added rectangle to create a valid
representation of K, .

The following observations allow us to speed up the search:

e the lowest rectangle can have all sides oriented up,

e the second lowest rectangle can have all but one sides oriented up (one
side oriented down is sufficient to see the only rectangle below).

There are only four representations of K, that satisfy these two rules
(see Figure 13.) All other representations are reflections and/or rotations
of these representations. Consider 4-tuples of the rectangles (call them R,
and Ry) in K,. It cannot happen that all four coordinates of R, are bigger
(resp. smaller) than the corresponding coordinates of R; because otherwise
the boundaries of R; and Ry would not intersect. Hence, only one, two or
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three coordinates of R, can be bigger than the coordinates of R,. For the
first and the last possibility there is only one representation of K, (Figure
13a and 13d). For the second possibility we can choose whether the bigger
coordinates are adjacent or not (Figure 13b and 13c).

(a) (b) () (d)

(\

Figure 13: Modified rectangle visibility representations of K,
(thick sides are oriented up, thin sides are oriented down)

We prove that the multipartite number of rectangle visibility drawing is
at most 8. Therefore it is sufficient to show that Ky doesn’t have a modified
rectangle visibility drawing. So, we can add optimizations dual to the already
mentioned ones:

e the ninth rectangle can have all sides oriented down,

e the eight rectangle can have all but one sides oriented down.

These conditions also ensure that the searched space is finite. The al-
gorithm either finds a representation of Ky or proves that there is no such
a representation.

We were able to process all valid configurations in 26 hours on Intel
Centrino 1.7GHz and verified that there is no representation of Ky with the
required properties.! See Appendix A for the source code of the Java class
used for the verification. ®

Lemma 10. The multipartite number of the rectangle visibility drawing is
at least 8.

Proof: The Figure 14. shows (in the form of oriented rectangles) a rectangle
visibility drawing of a complete 8-partite graph. The numbers in the lower
right corner determine the order of parts with respect to the z-coordinate.
The thick sides are oriented up, the thin sides are oriented down. The small
circles show areas where the individual parts see each other. ®

1The algorithm was run several times on different hardware configurations in fact.
Check sums were used to recognize computations affected by a potential hardware failure.



Figure 14: Rectangle visibility representation of K, pcd.e,f.,n

If we put together Lemmas 8., 9. and 10. we obtain the following theorem.

Theorem 3. The multipartite number of the rectangle visibility drawing
is 8.

4.2 Square Visibility Drawing

The multipartite number of the square visibility drawing (e.g. the rectangle
visibility drawing where vertices are represented by unit squares) can be de-
termined in the same way as the multipartite number of the general rectangle
visibility drawing.

Lemma 11. The multipartite number of the square visibility drawing is at
most 6.

Proof: Suppose that we have a square visibility drawing of a complete k-
partite graph G. We choose a subgraph G” of G as we do it in the proof of

Lemma, 8.

We claim that the squares from each part of G” have a common inter-
section e.g. we don’t need the stair modification technique for squares. If
P, is a part without a common intersection then there must be two squares
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r1,72 € P that don't intersect. W.l.o.g. it is z%(r)) < £7(ry). A square r
from a different part (to see both v, and 73) must have z7(r) < z%(r;) and
z7(ry) < x*(r). The parts are x*-separated and we know that z*(r,) <
xt(r) therefore also z%(r;) < ¥ (r). The z~-separability of parts on the
other hand gives us inequality z7(r) < z7(r;). Together we have

r(r)y<z (r)=zt(r)-1<z (rp)-1=zx"(r)-2<z%(r) -2

which is in a contradiction with the equation z~(r) = z*(r) — 1 that holds
because r is a unit square.

Now we can transform the parts into oriented rectangles (analogously to
the proof of Lemma 8.) and assign to each rectangle R a 4-tuple (z%, g, y5,
yr) with integer values from (1, k) as we do it in Lemma 9.

The squares in G have a unit size. Therefore z%(r) < z*(r’) if and only if
z~(r) < z~(r'). Hence, for two oriented rectangles A and B we have 7§ < 13
if and only if ; < 5. The values z}; are distinct integers from (1, k). So,
it must be 5 + zz = k + 1 for all oriented rectangles R. The analogous
equations y3 + yg = k + 1 hold for y-coordinates. The oriented rectangles
obtained by the transformation are therefore oriented squares.

Figure 15: Square visibility representation of K, pcd.e, s

It remains to prove that a complete graph with the modified square visi-
bility representation has at most 6 vertices. That can be verified by a slight
modification of the algorithm presented in the proof of Lemma 9 - when we
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add the m-th rectangle R to a drawing we have to make sure that it is a unit
square e.g. that 2}, + rz = m + 1 and y} + yg = m + 1 hold for its 4-tuple
(T TR, YR YR)-

We were able to process all valid configurations in less than one second
on Intel Centrino 1.7GHz and verified that there is no representation of K,
with the required properties.®

Theorem 4. The multipartite number of the square visibility drawing is 6.

Proof: The Figure 15. shows (in the form of oriented squares) a square
visibility drawing of a complete 6-partite graph. The matching upper bound
is given by Lemma 11.@

4.3 Straight-line Rectangle Drawing

A graph with a 2-dimensional straight-line rectangle drawing is a union of
two planar (bar-visibility graphs). Therefore the multipartite number of such
a drawing is one.

The 3-dimensional straight-line rectangle drawing has similar properties
to the 3-dimensional straight-line box drawing. The upper bound on the
multipartite number of the 3-dimensional straight-line box drawing proved
in the next section is also the best known bound for the straight-line rectangle
drawing. On the other hand the following drawing of a complete 22-partite
graph provides also the best known lower bound on the multipartite number
of the 3-dimensional straight-line box drawing.

Theorem 5. The multipartite number of the straight-line rectangle drawing
in IR? is at least 22.

Proof: The Figure 16. shows a rectangle visibility drawing of a complete
6-partite graph. Take a copy of the construction from the Figure 14. and
rotate it to be parallel to zz-plane. Place the copy between the third and the
fourth part. Ensure that % (resp. ™) coordinates of the rectangles from
the copy are bigger (resp. smaller) than the coordinates of the rectangles
from the 6-partite graph.

Take another copy of the construction from the Figure 14. and rotate it
to be parallel to yz-plane. Place the copy again between the third and the
fourth part either below or over the first copy. Ensure that y* (resp. y~)
coordinates of the rectangles from this copy are bigger (resp. smaller) than
the coordinates of the rectangles from the 6-partite graph.

The copies are schematically displayed on the Figure 16. by the horizontal
and the vertical line. The small circles show the areas where the individual
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Figure 16: Straight-line rectangle drawing of a complete 22-partite graph

parts see each other. It can be easily verified that the resulting construction
is a straight-line rectangle drawing of a complete 22-partite graph.®

4.4 1-bend Rectangle Drawing

If one bend is allowed in a rectangle drawing in IR? then the multipartite
number become infinite, see Figure 17.

Figure 17: 1-bend 2-dimensional rectangle drawing of Kj
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5 Box Drawing

5.1 Straight-line Box Drawing

Let’s remind one definition from (2].

Definition: Let A and B be axis-parallel boxes in IR3. We write A <, B if
A and B can see each other and z%(A) < £7(B). Similarly we define A <, B
and A <, B.

It can be easily verified that these relations are partial orders on the boxes
in a straight-line box drawing of a complete graph. We say that some boxes
from a drawing form an z-chain (resp. z-antichain) if they form a chain
(resp. antichain) in the partial order <.

Fekete and Meijer (2] show the following properties of these orders.

Lemma 12. Let C be a maximum length x-chain in a 3-dimensional or-
thogonal box drawing of a complete graph. There cannot be an x-chain D
of length greater than 4 such that CN D = 0.

Proof: See Lemma 11. in [2].®

Lemma 13. If there is no chain (z-chain, y-chain or z-chain) longer than
4 in a 3-dimensional orthogonal box drawing of a complete graph G then G
can have at most 18 vertices.

Proof: See Lemma 15. in [2].®

Lemmas 12. and 13. allow us to estimate the maximum size of a complete
graph with a drawing with the bounded length of chains.

Lemma 14. If k is the maximum length of a chain that appears in the
partial order <, <, or <, in a 3-dimensional straight-line box drawing of
K, then n < 3k + 18.

Proof: Let C,, C, resp. C, denotes the maximum z-chain, y-chain resp.
z-chain in the drawing. If we remove the boxes in C; U C, U C, from the
drawing then by Lemma 12. there cannot remain a chain of length 5. There
remain at most 18 boxes by Lemma 13. Hence, n < |C;|+|Cy| +|C,| +18 <
3k +18.m ‘

The presented properties of the partial orders <,, <, and <, can be uti-
lized to prove an upper bound for the multipartite number of a box drawing.

Theorem 6. The multipartite number of the straight-line box drawing in
IR? is at most 42.

Proof: Let G be a large complete k-partite graph that has a 3D straight-
line box drawing. Color its edges by three colors according to their direction.
Apply Lemma 2. on G and denote by G’ the resulting graph.
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Select one box from each part of G'. These boxes form a 3D straight-line
box drawing of K;. We claim that this drawing doesr'’t contain a chain of
length greater than 8. If we prove this then by the previous lemma k <
3.8+ 18 = 42.

Suppose by contradiction that there exists (w.l.0.g.) an z-chain of length
9. The boxes from the parts with a member in this chain also (due to the
selection of G') see each other along the z-axis. Therefore they correspond
to a rectangle visibility representation of a 9-partite graph that can be made
arbitrarily large if G is taken sufficiently large. This is in a contradiction
with Theorem 3.8

5.2 1-bend Box Drawing

The infinity of the multipartite number of the 1-bend box drawing comes
immediately from the infinity for the 1-bend 3D line drawing.
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6 Related Results

In the previous sections we estimate the maximum k such that each k-
colorable graph has a drawing of the given type. We can ask a dual question:
what is the minimum k such that no k-colorable graph has a drawing of the
given type? There are no non-trivial upper bounds known for this problem.
The best known lower bounds are given by the drawings of complete graphs.
The summary of these results is given in the Table 2.

v d b size
1 1 [ 0 2
2 > 2 00
1 >6
0 6
3 >1 00
3 0 > 8
2 2 >1 o0
0 8
3 0 € (56, 183)
3 3 >1 00
0 € (56, 183)
rectangle visibility drawing | € (22, 55)
square visibility drawing 7

Table 2. Size of the largest complete graph with
d-dimensional b-bend orthogonal drawing by v-dimensional boxes.

Lemma 15. shows that Kg on the Figure 18a. is the largest complete
graph with the 2-dimensional orthogonal straight-line line drawing. We con-
jecture that Ky on the Figure 18b. has the same property for 3-dimensional
orthogonal straight-line line drawing.

Lemma 15. K; doesn’t have a 2-dimensional straight-line line drawing.

Proof: Suppose that we have a 2-dimensional straight-line line drawing of
K,,n >7. W.lLo.g. there are at least as many horizontal lines as the vertical
ones e.g. there are at least 4 horizontal lines.

There cannot be three horizontal lines with the same y-coordinate because
the middle line would block the visibility between the other two lines.

If there are two horizontal lines l,,l, with the same y-coordinate then
w.lo.g. zt(l;) < z7(l;). A horizontal line I, I # l;,ly must have z7(I) <
zt(ly) and z7(l;) < z*(I). Therefore there cannot be another pair of hori-
zontal lines with the same y-coordinate. If there are two horizontal lines with
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(a) (b)

Figure 18: (a) 2-dimensional straight-line line drawing of Kj
(b) 3-dimensional straight-line line drawing of Ky

the same y-coordinate then there cannot be a vertical line. The vertical line
can see both horizontal lines only if it is between them, but then it blocks
the visibility between the horizontal lines.

Choose a horizontal line h that neither has the highest nor the lowest
y-coordinate. The edge between a horizontal and a vertical line must be
a continuation of one of the lines. The edge between h and a vertical line
cannot be a continuation of the vertical line because otherwise the edge
between the vertical line and the horizontal line with the highest or the
lowest y-coordinate would have to intersect h. So, the edge between h and
a vertical line must be a continuation of h. Hence, there are at most two
vertical lines.

If there is no vertical line then there are at most 3n — 6 vertical edges
(they form a bar-visibility drawing) and at most one horizontal edge between
lines with the same y-coordinate. The complete graph with n vertices has
n(n —1)/2 edges. So, it must be 3n — 5 > n(n — 1)/2 and therefore n < 5.

If there is one vertical line then there are at most 3(n — 1) — 6 edges
among the horizontal lines and n — 1 edges between the vertical line and the

L
1

am

Figure 19: 2-dimensional straight-line rectangle drawing of Kg
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horizontal lines. So, it must be 4(n—1)—6 > n(n—1)/2 and therefore n < 5.

Finally, if there are two vertical lines then there are at most 3(n —2) — 6
edges among the horizontal lines, 2(n — 2) edges between the vertical and
the horizontal lines and one edge between the vertical lines. So, it must be
5(n —2) — 52> n(n - 2)/2 and therefore n < 6.®

Beineke [13] proves that Kj is not a union of two planar graphs. If a graph
has a 2-dimensional orthogonal straight-line drawing then it must be a union
of two bar-visibility (e.g. planar) graphs. Therefore K3 on the Figure 19. is
the largest complete graph with this drawing.

The best known results for the visibility drawing comes from Fekete et
al. [3]. K7 has a square visibility drawing (see Figure 20.) while K3 doesn’t.
The Table 3. describes the rectangle visibility drawing of Kj,, the largest
known complete graph with this drawing. Kjsg on the other hand doesn’t
have such a drawing.

=
]

Figure 20: Rectangle visibility representation of K; by unit squares

Fekete and Meijer [2] use the rectangle visibility drawing of K», in their
construction of the 3-dimensional orthogonal box drawing of Kss and they
show that Kig4 doesn’t have this drawing.
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z 1112134156 7|89(10]11
y* 122119 (8| 7|5 |1 (17|156[ 4|15
y 12211316 |2 (19|17 |18]14112]20] 15
ct 1221151181219 | 8|7 [5]4]1]3
r~122|16(15(20] 8 |11 (12| 1 |2 |14 3
2 (1211314151617 |1819]20| 21|22
yt119(14|6 | 3| 2]20(13|10|18]12]21
y- |16 1|13 |4 57|89 (10]11]2l
¥ 211916 [10|11|16 |14 2013|1721
z- | 4|6 (1817195 |7 |9 ]10]13|21

Table 3. Coordinates of rectangles in the rectangle visibility drawing of K»;
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7 Conclusion

We have determined the multipartite number of several types of drawings.
This significantly enlarges the class of graphs that are known to have such
drawings. For example Fekete and Meijer show in (2] that each graph with at
most 56 vertices has a 3-dimensional straight-line orthogonal box drawing.
Comparing to this we prove that any 22-colorable graph has such a drawing.

Moreover the proofs of the existence of the drawing of the given type are
constructive e.g. provide an exact description of a drawing of the specified
multipartite graph. On the other hand the proofs provide only one possible
drawing of the graph. It remains an open problem how to create a draw-
ing that in addition fulfils some aesthetic criteria - minimizes the maximum
length of an edge, the total length of the edges, total number of bends or
the aspect ratio of the vertices (e.g. the ratio between the longest and the
shortest side of the box that represents the vertex).

{ J

[
S e

) 4

a—
1

| )

Figure 21: Straight-line 2D rectangle drawing of Ks ¢

The proofs can be used to construct examples of multipartite graphs that
don’t have a drawing of the given type. Unfortunately (particularly due to
the usage of Lemma 2.) the size of these examples is extremely big. We
believe that the nice properties enforced by Lemmas 1., 2. and 3. are in fact
necessary for a drawing of a graph with a large colorability and therefore
the examples can be made reasonably big. For example, we have shown that
the multipartite number of the straight-line 2D rectangle drawing is one,
but how large are the bipartite graphs without such a drawing? Wood [1]
shows that K¢ has (see Figure 21.) and that K5 ;3 and Kgg don’t have such
a drawing. It is not known whether K5,,7 < n <12 and Kgm,6 <m < 8
admit a straight-line 2D rectangle drawing,.

All graphs with the colorability lower or equal to the multipartite number
have a drawing of the given type. Among the graphs with a larger colorability
we can find some that don’t have such a drawing, but it is an open problem
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whether there exists k € IN such that no graph with the colorability equal
to k has a 3D straight-line orthogonal box drawing. !t seems that such &
could be relatively small because there is no graph known that would have
a colorability bigger than the largest known complete graph with the given
orthogonal drawing. So, it is possible that the graphs that have an orthogonal
drawing and have a large colorability also have a large complete graph as its
subgraph.

The results presented in this work can be easily used to show that some
graph has a drawing of the given type. It is sufficient to show that it can
be colored by the specified number of colors we don’t need to determine
the colorability of the graph, we can (for example) use a coloring produced
by some heuristic algorithm. On the other hand it is not possible to use our
results to show that a given graph doesn’t have an orthogonal drawing. So,
it would be desirable to find another large class of graphs and an algorithm
that would decide whether the given member of this class has an orthogonal
drawing or not.
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Appendix

A Source Code

This appendix contains the source code of the Java implementation of the
algorithm described in Lemma 9. The program starts with the four repre-
sentations of K, shown on the Figure 13. (see lines 26-34) and attempts to
enlarge the representation using the next () method. It examines all possi-
ble coordinates? of the sides of the next rectangle (lines 64-73) and checks
if the boundary of the new rectangle intersects the boundaries of all pre-
viously added rectangles (76-94) and whether the rectangles can see each
other through the line of visibility that corresponds to the intersection of
the boundaries (95-118). Then it iterates through all possible orientations
of the sides of the newly added rectangle (119-167) and tests (using the
goodOrientation() method) if the new rectangle with the given orientation
of sides can enlarge the current drawing of the complete graph.

1: public class Colorability {

2: static int max; // Maximum size of found representation

3 static int{] N=new int[10]; // North coordinates

4 static int(] W=new int[10]; // West coordinates

5 static int{] E=new int[10]; // East coordinates

6 static int{] S=new int[10]; // South coordinates

7 static boolean(] Nup=new boolean[10}; // Orientation of north sides

8 static boolean[] Wup=new boolean[10]; // Orientation of west sides

9 static boolean[] Eup=new boolean[10]; // Orientation of east sides

10 static boolean(] Sup=new boolean[10]); // Orientation of south sides

11 // The following arrays contains only values array(i]l(j] for i>j

12: static boolean[][] nes=new boolean(10][10]); // nes[i]l[j] determines whether i can see j
13: static boolean[][] nws=new boolean[10] [10]; // through the northeast corner of intersection
14 static boolean[][] sws=new boolean[10][10]; // of i and j; nws, sus and ses have similar
15 static boolean[][] ses=new boolean[10] [10]; // meaning

16 static boolean[][] nel=nev boolean[10]{10); // i-th east side intersects j-th north side?
17 static boolean[][] ne2=new boolean{10][10]; // i-th north side intersects j-th east side?
18 static boolean(][] nwi=new boolean[10][10]; // i-th north side intersects j-th west side?
19 static boolean([][] nw2=new boolean[10][10]; // i-th west side intersects j-th north side?
20: static boolean[][] swi=new boolean{10][10]; // i-th west side intersects j-th south side?
21: static boolean[][] sw2=new boolean(10][10]; // i-th south side intersects j-th west side?
22: static boolean[]([] sel=new boolean[10)[10]); // i-th south side intersects j-th east side?
23: static boolean[][] se2=new boolean[10][10]; // i-th east side intersects j-th south side?

25: public static void main(String args(]) {

26: // All sides of the lowest rectangle are oriented up

27: Nup [0]=Wup [0] =Sup [0] =Eup [0] =true;

28: // Only one (w.l.o.g. west) side of the second lowest rectangle is oriented down
29: Nup[1]=Sup(1]=Eup[i]=true; Wup[i]l=false;

30: // There are 4 possible positions of the second rectangle wrt the first one.
31: N{0]=W[1]=S[0]=E[0]=0; N[1])=W[0}=S[1]=E[1])=1; next(2);

32: N{0]=Ww[1]=8S[1]=E[0]=0; N[1]=W[0]=S[0]=E[1]=1; next(2);

33:. N{0]=Ww[1]=8S[0]=E[1])=0; N[1]=W[0]=S[1]=E[0)=1; next(2);

34: N{0]=w[1]=8[1)=E([1]=0; N[1]1=W[0]=S[0]=E[0]=1; next(2);

35: System.out.println("MAX: "+max); // Report the maximum size

36: }

37:

38: // Checks whether we have a valid orientation of _where. rectangle.
39: // Expects where’th items of nel, ne2, Nup etc. arrays to be filled.
40: static boolean goodOrientation(int where) {

41: for (int i=0; i<where; i++) {
42: boolean ne = (nei[where] [i]l&&Nup [i]&k!Eup{where])
43: I1 (ne2[where] [i]&&!Nup[vwhere] 2&Eup(i]);

2The zt,z~,y* resp. y~ coordinate is called the east, the west, the north resp. the
south coordinate in the source code.

35



65:
66:
67:
68:
69:
70:
T1:
T2:
73:
74:
75:
76:
T7:
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:
100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:

SORZBEEISFELNNELEIBES

boolean nv = (nvi(vhere] (1)&AWup(i)aa!Nup(where))
11 (nv2{vhere) (1)2&!Wup[vhere] kaNup(i));
boolean sv = (svi{vhere] [ilaaSup(ilaa!wup(vhere])
11 (sv2([vhere] (i]1a&!Sup(vhere)ditup(i]));
boolean se = (sel(vhere] (i)l&&Eup{i]&aiSup(vhere])
{1 (se2{vhere] [i]&&!Eup(vherel&aSup(i));
it (! ((nekknes[vhere) [i]) || (nvkknvs{vhere] {1])
| { (svkksvs [vhere] [i]) | | (sekkses [vhere] [i]))) return false;

return true;

// Adds another rectangle (if possible) into the existing
// representation with _where_ rectangles.
static void next(int where) {
if (vhere == 9) {
System.out.println("Representation of K_9 found!”);
System.exit(0);
}
if (vhere>max) max=vhere;
for (int n=0; n<=vhere; n++) { // Find north coordinate
N(where])=n;
for (int i=0; i<vwhere; i++) if (N[i]>=n) N[i]++;
for (int w=0; w<=vhere; w++) { // Find vest coordinate
Wlvherel=v;
for (int i=0; i<vhere; i++) if (W[il>=w) W(i])++;
for (int s=0; s<=where; s++) { // Find south coordinate
S[vhere)=s;
for (int i=0; i<where; i++) if (S[i])>=s) S[i]++;
for (int e=0; e<=where; e++) { // Find east coordinate
E[vhere]l=e;
for (int i=0; i<vhere; i++) if (E[il>=e) E[i])++;
boolean see = true;
for (int i=0; i<where; i++) {
// Checks that boundary of where intersects boundary of i
nel[where) [1]=(E[i]>E(vhere] )Rk (N[i]<N([vhere]);
ne2(wherel [i)=(E[il<E([vhere] )a&k(N[i]>N[where]);
nwl (wvhere]} [i]=(N[i]>N(vhere] )k&(W[i] <W[where]);
nv2[vhere] [i1=(N[i)<N([where] )& (W[i]>W([vhere]);
swl [(wvhere] [i]=(W[i]>W([where] )2k (S[i)<S[where]);
sw2(vhere] [1]=(W[i]<W([vhere] )2R(S[i]>S[where]);
sel [vhere] [i1=(S[1i]>S[where] )a&(E[i]<E[vhere]);
se2(wvhere] [i]=(S[i]<S[vhere] )&k (E[i]>E([where));
see=seetk (nei(vhere] (i]| |ne2[vhere] (1] | Inwi[where] [i] | |nv2{vhere]) [1i]
| Isvi[where] [1] | sw2[where] [i] | |sel{vhere] [i]||se2({where][i]);
if (!see) break; // The boundaries of where and i don’t intersect

}

if (!see) { // The boundary of where doesn’'t intersect all existing boundaries
for (int i=0; i<where; i++) if (E[i]>e) E[i}-~;
continue;

for (int i=0; i<where; i++) {
nes [vhere] [1)=nws [vhere] [i]l=sws [where] [i]=ses [vhere] [i]=true;
for (int j=i+1; j<vhere; j++) {
// Determines nes, nws, sws and ses[where] [*] values
boolean nn=(N[jI1<N[i])&k(N[jl<N([wherel);
boolean ww=(W[jI<W{il)&&(W[j]<Wiwhere]);
boolean ee=(E[j1<E[i])&&(E[j]1<E[wherel);
boolean ss=(S[j1<S[i])&k(S[j1<S[wherel);
nes [wvhere) [i]=nes [where] [i]&&k(nn| |ee);
nvs [where] [i]=nws [where] [i]J&k(an| |ww);
sws [where] [i]=sws [where] [1]&&(ss| |ww);
ses [where] [i]=ses [where]l [i]1&k (s8] |ee);

}

// Check whether _where_ can see i through intersecion of their boundaries

see=seekk((nes[vhere] [i]&&k(nei[where] [i]) | |Ine2[where] [i]))
| | (nws [where] [i]&k(nwl[where] [i] | Inw2[where] [i]))
| | (sws[where] [i]&k(swi[where] [i] | | sw2([where] [i]))
| | (ses[where] [i]&&(sel [where] [i] | | se2[where] [i]))

if (!see) break;

)

}
if (i1see) { // _where_ cannot see all rectangles through intersection of boundaries

for (int i=0; i<where; i++) if (E[i]l>e) E[i]--;
continue;

}
// Find orientation of the added rectangle
switch (where) {
case 8: // Ninth => orient all sides down
Nup [where] =Wup [where] =Sup [where]=Eup [where]l=false;
if (goodOrientation(where)) next(where+l); break;
case 7: // Eighth => it is sufficient to orient at most one side up
for (int i=0; 1i<5; i++) {
Nup (wvhere]=Wup [where]=Sup [where] =Eup [Where]l=false;
switch (i) { // case 0: all sides oriented down
case 1: Nupl[vwhere]l=true; break;

36



case 2: Vup{vhere)=true; break;
case 3: Sup{vhere]=true; break;
case 4: Eup{vhere]l=trus; break;

}
if (goodOrientation(where)) next(vhere+l);

}
break;
default:

boolean(] ors = new boolean(16]; // Determines possible orientation of whers
// 3rd to 6th rectangle => there are some rectangles belov =>

sides oriented up (e.g. i==0)

// we will try to add some rectangles above =>

sides oriented dovn (e.g. i==15)

// we cannot have all

// we cannot have all

for (int i=1; i<15; i++) {

if (ors(i)) { // See comments in the if-branch below

it ((ik1)==0) ors[i+l]) = true;
it ((1&2)==0) ors[i+2) = true;
it ((ik4)==0) ors{[i+4]) = true;
if ((ik8)==0) ors(i+8] = true;
} else {
// 1 to orientation conversion
Nup [vhere]=((ik1)==0);
Wup [vhere]=((ik2)==0);
Sup(where)=((ik4)==0);
Eup (vhere]=((ik8)==0);

it (goodOrientation(vhere)) {

// This orientation allows _vhere_ to see all rectangles below

next {where+1);

// We were able to see all rectangles below and therefore
// it doesn’t have a sense to try orientations that arise
// from this one by making some up-oriented edges down-oriented

if (Nup({where])

iz (Wup(where])

it (Sup(where])

if (Eup[where])
}

ors(i+1] = true;
ors(i+2] = true;
ors[i+4] = true;
ors[i+8] = true;

} // end of i-for statement
} // end of switch statement

for (int i=0; i<where; i++) if (E[i]l>e) E[i}~--;
if (S{i)>s) S[i)--;

} // end of e-for statement
for (int i=0; i<where; i++)
} // end of s-for statement

for (int i=0; i<where; i++) if (W[il>w) W[i]--;

} // end of w-for statement

for (int i=0; i<where; i++) if (N([il>n) N[i]--;

} // end of n-for statement
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