
Univerzita Karlova v Praze 

Matematicko-fyzikální fakulta 

, , 
DIPLOMOV A PRACE 

..... 

Jan Stala 

Chromatic invariants in graph drawing 

Katedra Aplikované Matematiky 

Vedoucí diplomové práce: Prof. RNDr. Jan Kratochvíl, CSc. 

Studijní program: Informatika, Teoretická informatika 



Na tomto místě bych rád poděkoval svému vedoucímu diplomové práce 
Prof. RNDr. Janu Kratochvílovi, CSc. za cenná doporučení a připomínky, 
které mi po celou dobu vzniku této práce uděloval. 

Prohlašuji, že jsem svou diplomovou práci napsal samostatně a výhradně 
s použitím citovaných pramenů. Souhlasím se zapůjčováním práce. 

V Praze dne 16.4.2006 

}~ 
Jan Stala 

2 



Contents 

1 Introduction 

2 Preliminaries 
2.1 Bar-visibility Graphs 
2.2 Basic Lemmas . 

3 Line Drawing 
3.1 Straight-line Line Drawing . 
3.2 1-bend Line Drawing ... . 
3.3 2-bend Line Drawing ... . 

4 Rectangle Drawing 
4.1 R.ectangle Visibility Drawing . . . 
4.2 Square Visibility Drawing . . 
4.3 Straight-line Rectangle Drawing . 
4.4 1-bend Rectangle Drawing .... 

5 Box Drawing 
5.1 Straight-line Box Drawing 
5.2 1-bend Box Drawing . . . . 

6 Related Results 

7 Conclusion 

A Source Code 

3 

5 

8 
8 
9 

12 
. . . . . 12 

14 
15 

16 
16 
22 
24 
25 

26 
26 

O O O I 27 

28 

32 

35 



Název práce: Chromatické invarianty v kreslení grafů 
Autor: Jan Štola 
Katedra: Katedra Aplikované Matematiky 
Vedoucí diplomové práce: Prof. RNDr. Jan Kratochvíl, CSc. 
e-mail vedoucího: honza<Okam.mff. cuni. cz 
Abstrakt: V této práci se zabýváme vlivem barevnosti grafu na existenci různých 
druhů ortogonálních nakreslení tohoto grafu. Studujeme otázku, jak velké můžeme 
volit kb,n tak, aby každý graf barevnosti nejvýše kb,n měl n-roz1něrné ortogonální 
nakreslení s hranami s nejvýše b ohyby. kb,n nazývá1ne multipartitním číslem 
reprezentace/ nakreslení. 

Pro ortogonální nakreslení, v nichž jsou vrcholy reprezentovány úsečkami v IRn, 
je v práci multipartitní číslo odvozeno přesně pro všechna n. Přesná hodnota je 
určena taktéž pro viditelnostní reprezentace pomocí obdélníků a čtverců. Navíc 
jsou vylepšeny nejlepší známé horní a dolní odhady pro trojrozměrné ortogonální 
nakreslení pomocí obdélníků a hranolů. Dolní odhad je zvýšen ze 3 na 22 a horní 
snížen ze 183 na 42. 
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Abstract: This paper studies the question: What is the maximum integer kb,n 
such that every kb,n-colorable graph has a b-bend n-din1ensional orthogonal box 
drawing? 

We give an exact answer for the orthogonal line drawing in all dimensions and 
for the 3-dimensional rectangle visibility representation. We present an upper and 
lower bound for the 3-dimensional orthogonal drawing by rectangles and general 
boxes. Particularly, we improve the best known upper bound for the 3-dimensional 
orthogonal box drawing from 183 to 42 and the lower bound from 3 to 22. 
Keywords: orthogonal graph drawing, colorability 
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1 Introduction 

The visualization of relational inforn1ation has many applications in vari­
ous domains. The domain entities are usually modeled as vertices and the 
relationships a1nong entities are represented by edges. 

There has been many graph drawing styles studied in the literature. In 
this thesis we study the orthogonal box drawing. 'rhis drawing has received 
a wide attention recently due to its applications: 2-dirriensional variants in 
VLSI routing, circuit board layout, CASE tools etc. and 3-dimensional vari­
ants for example in packaging algorithrns [1,5,6,7,8]. 

manual - Bonnct - electric 

Transmission - Car - Enginc 

automatic - - gasoline 

Figure 1: Many UML diagran1s are orthogonal box drawings 

The orthogonal box drawing represents vertices by axis-parallel boxes. 
Edges are drawn as axis-parallel polylines with ends on boundaries of con­
nected boxes. The edges don't intersect another boxes and with the exception 
of the 2-dimensional drawing an edge cannot intersect another edge. 

We call the drawing b-bend if each edge consists of at most b + 1 line 
segments. A 0-bend drawing is called a straight-line drawing. If all edges 
in a straight-line box drawing in lR3 are parallel then we can ignore the 
thickness of the boxes in this direction. We obtain a representation known 
as a 3D rectangle visibility drawing. 

It turns out that the recognition of graphs with the given type of or­
thogonal drawing is difficult. For example, Shermer [11] shows that the 
recognition of graphs with 2-dimensional straight-line orthogonal drawing is 
NP-complete. Fekete et al. [12] establishes NP-completeness of recognition 
of graphs with a 3D rectangle visibility drawing by squares. 

If we cannot effectively decide whether a graph has a drawing of the given 
type then it is natural to look for classes of graphs for which this decision 
is possible. The previous research was concentrated mainly on the complete 
graphs e.g. on the determination of the maximum size of a complete graph 

5 



with a drawing (2,3,4]. Unfortunately such results don't tell us much about 
drawing of graphs with more vertices. 

(a) (b) 

(c) (d) 

Figure 2: Different drawings of K5: 

(a) 2-bend 3-dimensional orthogonal point drawing 
(b) straight-line 3-dimensional orthogonal line drawing 
(c) 2-bend 2-dimensional orthogonal square drawing 
( d) 3-dimensional rectangle visibility drawing 

Our search for a more practical class of graphs has been inspired by the 
open problem presented by Wood [1]: 

What is the maximum k E zz+ such that every k-colorable graph 
has a straight-line 3D orthogonal box drawing? 

We study graphs with bounded colorability in this thesis. Every k-colorable 
graph is a subgraph of a k-partite graph that is itself k-colorable. Therefore 
it is sufficient to study the drawing of k-partite graphs. 

Definition: The multipartite number of the given type of drawing is the 
maximum k E 1N such that every k-partite graph has a drawing of that type. 
We say that the multipartite number is infinite when every multipartite graph 
has such a drawing. 
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Wood [1] proves that the multipartite number of the straight-line orthog­
onal box drawing is at least 3. On the other band Fekete and Meijer [2] 
shows that it is at most 183. 

We improve the lower bound from 3 to 22 and the upper bound from 183 
to 42. We also determine the exact value of the multipartite number of the 
orthogonal drawing by line segments and of the rectangle visibility drawing. 
The Table 1. summarizes the results presented in this work. 

v d b multipartite nurnber 

1 1 o 1 Theorem 1. 
2 >2 00 Section 3.3 

1 2 'rheoren1 2. 
o 1 Theoren1 1. 

3 >1 00 Theorem 2. 
>3 o 3 Theorem 1. 

2 2 >1 00 Section 4.4 
o 1 Section 4.3 

3 o E (22, 42) Theorems 5., 6. 
3 3 >1 00 Section 5.2 

o E (22, 42) Theorems 5., 6. 
rectangle visibility drawing 8 Theorem 3. 

square visibility drawing 6 Theoren1 4. 

Tahle 1. Multipartite number of d-dimensional b-bend 
orthogonal drawing by v-dimensional boxes. 
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2 Preliminaries 

First of all we recall the exact definition of ternis mentioned in the introduc­
tion. 

Definition: d-dimensional b-bend orthogonal drawing of a graph G is a graph 
representation where 

• v E V(G) is represented by an axis-aligned box Bv C 1Rd 

• Vv,w E V(G),v =/= w => Bv n Bw = 0 

• (v,w) E E(G) is represented by an axis-aligned polyline (with b + 1 
line segments) connecting points on the surface of Bu and Bw 

• edges (with the exception of their endpoints) don't intersect vertices 

• if d > 2 then the edges don't intersect other edges 

• if d = 2 then the edges can have a finite number of intersections • 

Many times we impose additional constraints on the shape of vertices. 
Even the rectangle visibility drawing can be defined as a special case of the 
orthogonal drawing. 

Definition: A rectangle visibility drawing of a graph is a 3-dimensional 
0-bend orthogonal drawing where 

• vertices are represented by rectangles placed in parallel planes 

• edges are orthogonal to the planes of rectangles • 

Usually we suppose that the rectangles are parallel to xy-plane and the 
edges are parallel to z-axis. An example of a rectangle visibility graph can 
be found on the Figure 2d. 

2.1 Bar-visibility Graphs 

The bar-visibility drawing is a 2-dimensional variant of the rectangle visibility 
drawing. It appears frequently during the study of the orthogonal drawing, 
especially in straight-line line drawing. 

Definition: A graph G is a bar-visibility graph if it has a drawing in a plane 
with the following properties: 
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• vertices are represented by horizontal line segments, 

• each edge is a vertical line ( connecting two vertices) that doesn 't inter­
sect another vertex. • 

The bar-visibility graphs are characterized by Tainassia & lbllis [9] and 
Wismath [10]. 

Theorem: (9](10] A graph G is a bar-visibility graph if and only if it has 
a planar embedding with all cutvertices in t11e exterior face. 

Figure 3: A bar-visibility representation of K 4 

Very few bipartite graphs are bar-visibility graphs because K 3,3 is not 
a planar graph. 

Corollary: Km,n, min(m, n) > 3 is not a bar-visibility graph. 

2. 2 Basic Lernnias 

The next lemma is a simple application of the pigeon-hole principle. We 
include it because we use this formulation several times in the sequel. 

Lemma 1. Let k, n, c E IN and G be a complete k-partite graph whose each 
part has at least c( n- l) + 1 vertices a11d each vertex has one of c colors. Then 
G contains a complete k-partite subgraph whose each part is monochromatic 
and contains at least n vertices. 

Proof: Each part contains at least c( n - 1) + 1 vertices. Therefore there are 
at least n vertices with the same color in each part. These monochromatic 
sets form the k-partite subgraph with the required properties. • 

We use this lemma when each vertex from a drawing must have one 
property from a finite set of properties and we have to ensure that the vertices 
from the same part have the same property. A similar situation occurs when 
the properties are assigned to edges. 

Lemma 2. Let k, n, c E 1N and G be a complete k-partite graph whose each 
edge has one of c colors. There exists Nk,n,c E 1N such that if each part of 
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G has at least Nk,n,c vertices t11en G coIJtains a coznplete k-partite subgraph 
whose eacl1 part has at least n vertices and for eacl1 pair of parts the edges 
ainong elements of these parts are 111011ocl1ro111atic. 
Proof: Let N be an integer. Fix two parts B and W (call them black and 
white) that have at least N vertices. We prove that if N > (n- l)c(2c)" then 
there is a subgraph of G that is also con1plete k-partite, has at least n black 
and n white vertices and the edges an1ong these vertict>s are monochromatic. 
The demanded subgraph can be obtained by a repeatable application of this 
fact. 

As the first step select for each black vertex the color that appears the 
most frequently among its edges going to the white vertices. In the second 
step collect these colors and call red the one that appears the n1ost frequently. 
Finally select the vertices whose the most frequent color from the step one 
was red. We obtain a set B' of at least N / c black vertices, each of them 
connected to at least N / c white vertices by red edges. 

Leťs count pairs {(v, S)lv E B', S C W, ISI = n, \:/w E S : vw is red}. 
Each black vertex appears in at lea.st ( N~c) pairs. Hence, there are at lea.st 

~ (N~c) pairs. On the other hand if there is a set S that is in n pairs then this 
set with the black vertices from the pairs form the required confi?uration. 
This must happen if the number of the pairs is bigger than ( n - 1) l ~) . But 
this holds because N > (n - l)c(2c)n: 

~ (N~c) N n-1 N/c - i N 1 n 1 

( n - 1) ( ~) = c( n - 1) n N - i > c( n - 1) ( 2J > 

• 
Sometimes we need to separate the parts with respect to some function 

on the set of vertices. 

Lemma 3. Let k, n E 1N and G(V, E) be a complete k-partite graph whose 
each part has at least (n - l)k + 1 vertices. For each e : V --+Ill there exists. 
a complete k-partite subgraph G' of G whose each part has at least n vertices 
and whose parts are .ť-separated e.g. for each pair P1 , P2 of parts it is either 
Vx.E P1Vy E P2 ť(x) < .ť(y) orVx E P1Vy E P2 ť(y) < ť(x). 
Proof: Sort the vertices v E V according to their value ť( v). Let P be the 
part whose n-th vertex (with respect to this order) has the lowest index in 
the sequence. Remove the vertices before the selected one from the sequence. 
Put the first n vertices of P into G' and remove the elements of P from the 
sequence. Continue in the same way until the sequence is empty. 

Let 's fix some part P. If P is not the selected part then at most n-1 of its 
vertices are removed from the sequence. Therefore at most (n - l)(k - 1) of 
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its vertices are removed before the part is selected. P has at least ( n -1)k+1 
elements. So, the described algorithn1 selects n vertices from each part. The 
resulting graph G' obviously has the required property. • 

Lemmas 1., 2. and 3. ensure the existence of a subgraph G'(V', E') of 
a graph G(V, E) such that IV'I > f (IVI), where f is a non-decreasing function 
unbounded from the top. These properties of f ensure that the size of G' 
can be made arbitrarily big if we take the original graph G sufficiently large. 
We use this fact many times in the sequel because we usually want to prove 
the existence of a large graph G' with son1e properties and are not interested 
in the exact size of G that must be taken to find a subgraph of the required 
s1ze. 
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3 Line Drawing 

3.1 Straight-line Line Drawing 

In this section we determine the n1ultipartite nu1nber of the straight-line line 
drawing in the n-dimensional space e.g. the drawing where each vertex is 
represented by an axis-parallel line seg1nent in m.n. 
Lemma 4. The multipartite 11umber of t11e straight-line line drawing i11 1Rn 
is at inost 3 for n > 2 and it is 1 for n = 1, 2. 

Proof: Let's suppose that we have a straight-line line drawing in JRn of 
a k-partite graph G. lf we color the vertices according to their direction 
then Lemma 1. tells us that there exists a large k-partite subgraph G' with 
parallel vertices in the individua! parts. 

Now color the edges of the graph G' according to their direction. Let G" 
denote the result of the application of Lemma 2. on the graph G'. The edges 
between arbitrary two parts of G" are parallel. 

We know that the vertices in the individua} parts are parallel. We claim 
that the vertices from the different parts cannot be parallel. Suppose that 
the opposite holds e.g. there are parts P and Q such that the vertices from 
P U Q are parallel (to a vector e1). The edges between P and Q are parallel 
(to a vector e2) due to the definition of G". This means that P and Q 
together with the edges between them lie in a plane (given by vectors ě'1 and 
e2). So, we have a bar-visibility graph of KIPl,IQI, but the sets Pand Q can 
be made arbitrarily large. That is in a contradiction with the planarity of 
bar-visibility graphs. 

If P and Q are two parts of G", P parallel to e1, Q parallel to e2 and 
the edges between Pand Q parallel to e3 then the drawing of KIPl,IQI lies in 
S = p + e1 Ill+ e2JR + e3lR, where p is a point of some line in P U Q. If k > 3 
then there must exist a part R parallel to vector ~ f/; e1IR + e21R + e31R.. The 
edges between P and R are parallel to a vector v. 

Chaose l E R. ll n Sl < 1 because e4.l.S. 
If l n S = q then the edges between P and R ha ve one end in q. There 

can be at most two such edges (from the directions iJ and -v). Therefore 
IPt < 2, but P can be arbitrarily large. 

lf lnS = 0 then l+iJJR intersects S in at most one point. This means that 
l can be connected to at most one vertex from P and we have a contradiction 
with the size of P again. Hence k < 3. 

The case n = 1 is obvious. If n = 2 then G(V, E) is a union of two planar 
(bar-visibility graphs) and as such has less than 12IVI edges. Therefore no 
sufficiently large bipartite graph has a 2D straight-line line drawing. • 
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The previous proof utilizes the fact that we can choose from an arbitrary 
complete multipartite graph a subgraph that is itself a con1plete multipartite 
graph, has some specific property and can be n1ade arbitrarily large if the 
original graph is sufficiently big. The additional property allows us to simplify 
the proof. We use this method in many of the following proofs. 

The lower bound on the multipartite nun1ber that rnatches our upper 
bound e.g. the construction of a 3-dimensional straight-line line drawing of 
Ka,b,c for arbitrary positive integers a, b, c is given by Wood. 

Figure 4: Straight-line 3-dimensional orthogonal line drawing of Kn,n,n 

Lemma 5. (1] The multipartite number of the straight-line line drawing in 
JR3 is at least 3. 

Proof: It is sufficient to show that Kn,n,n has such a drawing for each n E JN'. 
The graph Kn,n,n can be represented by the following lines 

Ui : (2, 2i + 1, 2i) --t (2n + 1, 2i + 1, 2i) 
Vj : (2j, 2, 2j + 1) --t (2j, 2n + 1, 2j + 1) 

Wk : (2k + 1, 2k, 2) --t (2k + 1, 2k, 2n + 1) 

where line segments ui, vi resp. wk represent the vertices from the first, the 
second resp. the third part. 

· The edges uivi, uiwk and VjWk are represented by lines 

Ui : (2j, 2i + 1, 2i) --t 

Ui : (2k + 1, 2i + 1, 2i) ~ 
Vj : (2j, 2k, 2j + 1) --t 

(2j, 2i + 1, 2j + 1) 
(2k + 1, 2k, 2i) 

(2k + 1, 2k, 2j + 1) 

The detailed proof of the correctness of this drawing is given in [1] (Theorem 
3.1) .• 
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Theorem 1. The r11ultipartite nun1ber of the straight-line line drawing in 
1R" is 3 for n > 2 and it is 1 for n = 1, 2. 

3.2 1-bend Line Drawing 

Lemma 6. The n1ultipartite nu111ber of t11e l-be1ul li11e drawing in IR.2 is at 
most 2. 

Proof: We proceed similarly to the proof of Lem1na 4. Suppose that we 
have a 1-bend 2-dimensional line drawing of a complete k-partite graph G. 
Due to Lemma 1. we can assume that all vertices in the individua! parts are 
parallel. 

Leťs color 0-bend edges by red and 1-bend edges by green. Lemma 2. 
ensures the existence of a k-partite subgraph of G with monochromatic edges 
between each pair of parts. 

If k > 3 then there must exist two parts P and Q that have vertices with 
the same direction. What is the color of the edges between these parts? It 
cannot be red because the multipartite number of the 2-dimensional straight­
line line drawing is one. 

When we have a 1-bend edge between two parallel line segments then one 
of the ends of this edge must be a continuation of one of these segments. 
Assign the edge to this segment. Each segrnent can have at rnost 2 edges 
assigned to it. Therefore the maximum nurnber of green edges between P 
and Q is 2(IPI + IQI), but a sufficiently large bipartite graph has more edges. 
Hence k must be less than 3. • 

••• ••• 

• • • 

• • • 

Figure 5: 1-bend 2-dimensional line drawing of Ka,b 

Theorem 2. The multipartite number of the 1-bend line drawing in lRn is 
2 for n = 2 and is infinite for n > 2. 

Proof: The upper bound on the multipartite number of the 1-bend line 
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drawing in JR 2 is proved in Lemn1a 6. The lower bound is given by the 
construction on the Figure 5. 

The n1ultipartite number in lRn, n > 2 is infinite because every complete 
graph has a 1-bend line drawing in Ill3 see Figure 6. • 

Figure 6: 1-bend 3-dirnensional line drawing of Kk 

3.3 2-bend Line Drawing 

The Figure 7. shows that every con1plete graph has a 2-bend 2-dimensional 
line drawing. Therefore the multipartite number of this drawing is infinite . 

• „~„. 
Figure 7: 2-bend 2-dimensional line drawing of Kk 
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4 Rectangle Drawing 

In this section we work with rectangles in parallel pianes as if they were 
in the same plane. Operations on such rectangles should be understood as 
operations on the projections (into one of the plant,>s) and the projection of 
the result of the operation (for exan1ple the intersection of some rectangles) 
back into the individua! planes of the rectangles. 

4.1 Rectangle Visibility Drawing 

Leťs remind two important theoren1s that we use in this section. 

Theorem: (Erdos-Szekeres) Eacl1 sequence of n2 + 1 disti11ct real numbers 
contains a monotonie subsequence of le11gtl1 at least n + 1. 

Theorem: (Helly) If every at 1nost d + 1 sets of a fi11ite fan1ily of convex 
sets in Rd intersect then all the sets of tl1e fainily intersect. 

The sufficient and necessary condition for the existence of a common 
intersection of a set of a.xis-aligned rectangles is even shnpler. 

Lemma 7. Let S is a set of axis-aligned recta11gles in a plane. IE each 
pair of rectangles from S intersect then the rectangles in S have a cor11111on 
intersection. 

Proof: The rectangles in S have a common intersection if and only if their 
projections along x and y axis have a common intersection. The projections 
along some a.xis ( e.g. some intervals) have a common intersection if and 
only if each two projections intersect (Helly theorem for d = 1). So, the 
rectangles in S have a common intersection if and only if projections of each 
pair of rectangles intersect and that happens if and only if each two rectangles 
intersect.• 

Definition: Let B is a box in an orthogonal drawing. x+(B) denotes 
the maximum coordinate of a point in the box B. Similarly we define 

- + - + d -x ,y ,y ,z an z. 

·Note that z+ = z- in the rectangle visibility drawing. We denote this 
function simply by z there. 

Lemma 8. The multipartite number of the rectangle visibility drawing is at 
most 8. 

Proof: Suppose that we have a rectangle visibility drawing of a complete k­
partite graph G. Apply Lemma 3. on this graph consecutively with functions 
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z, x+, x-, y+ a.nd y-. We obtain a graph G' with parts separated with respect 
to these functions. 

Take an arbitrary part ~ of G' and sort its elements according to their 
z-coordinates. Due to Erdos-Szekeres theorem we can choose from this 
sequence a subsequence P: of length at least 1~11116 that is n1onotone in 
x+, x-, y+ and y- coordinates. Denote by G" the cornplete k-partite graph 
with parts Pf. From the construction of G" it is obvious that its parts can 
be made arbitrarily large if we take G with sufficiently large parts. 

We claim that we can suppose that the orthogonal projections ( along z­
axis) of rectangles from G" have a common intersection. Rectangles fron1 the 
diff erent parts must intersect to be able to see each other. Due to the previous 
lemma it is sufficient to show that each part has a cornmon intersection. That 
happens if and only if each two rectangles from this part intersect. 

Let P1 be a part without a common intersection. There must be two 
elements r1 , r 2 E P1 that don't intersect. Without loss of generality (w.l.o.g.) 
it is x+ ( r1) < x- ( r2). 

s 

r 

Figure 8: 

G" is a complete k-partite graph. Hence a rectangle r from a different 
part (to see both r1 and r2) must have x-(r) < x+(ri) and x+(r) > x-(r2). 

Leťs modify the part P1 to have a common intersection. Let c; (re­
spectively c;) be a maximum (resp. minimum) x-coordinate of a point of 
a rectangle in P1. Denote by S the y-parallel strip between c; and c; (see 
Figure 8.) 

The proved inequalities together with the x+, x--separability of parts 
ensures that x-(r) < c; and c; < x+(r) for each rectangle r f/. P1• Therefore 
if two rectangles not in P1 can see each other through a point ( x, y) in the 
strip S then they can see each other also through a point ( ( c; - é, y) or 
(c; + e, y) for a sufficiently small e > O) outside the strip. 

The rectangles in P1 ( ordered according to the z-coordinate) are mono­
tone in x+ and x- coordinates and don't have a common intersection. So, 
they must be either increasing or decreasing in both these coordinates - the 
rectangles form stairs (see Figure 9.) 
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~-=l „ 
c; c; 

Figure 9: Modification of stairs 

We claim that if we change x+ and x- coordinates of the stair rectangles 
to ensure a common intersection (as it is shown on the Figure 9.) then we 
don't destroy the completeness of the k-partite visibility representation of 
G". 

Only the rectangles in the strip S are modified. So, the visibility among 
rectangles not in P1 is not affected because they can see each other through 
points outside the strip. It remains to show that the rectangles from P1 can 
see all other rectangles. 

Sides y+ and y- of each rectangle not in P1 cross the whole width of the 
strip S. They mark on the strip (orthogonal) sub-strips. The rectangles not 
in P1 can see the rectangles from P1 only through their sub-strips. 

No visibility is destroyed if we move the x+ and x- coordinates of rect­
angles from P1 such that the same rectangles remain visible through each 
sub-strip, but that is exactly what aur stair-modification technique does. 

We have shown that we can expect each part of G" to have a con1mon 
intersection. 

We know that if we sort the rectangles from some part P of G" according 
to their z-coordinates then we obtain a sequence monotone also in x+, x-, y+ 
and y·- coordinates. Moreover if P has a common intersection then we can 
consider P to forma frame with sides oriented up and down (see Figure 10.) 
The orientation determines the direction from which the corresponding sides 
of rectangles are visible. 

Figure 10: Transformation of one part into a frame and an oriented rectangle 

We also know that the parts are x+, x-, y+, y--separated. Thus two cor­
responding sides of frames cannot intersect (see Figure 11.) The interiors of 
frames intersect because all rectangles have a con1mon intersection. Due to 
these facts we can shrink the frames into rectangles with oriented sides. Now 
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two parts can see each other if the boundaries of their oriented rectangles 
intersect and the intersecting sides have a correct orientation. 

-~ 

-· 
(a) (b) (c) (d) 

Figure 11: Examples of invalid (a), (b) (Uld valid (c), (d) intersections of 
frames 

It remains to prove that a complete graph with this n1odified oriented 
rectangle visibility representation has at 1nost 8 vertices. • 

Lemma 9. lf Kn has a modified visibility represe11tatio11 by rectangles with 
oriented sides ( as described in the previous proof) the11 n < 8. 

Proof: We proceed in a similar way as Fekete et al. [3] in the proof of 
the non-existence of a visibility representation of K 8 by unit squares e.g. by 
a computer search. Our algorithm is based on their algorithm. We mod­
ify it to generate visibility representations with general rectangles (not only 
squares). We also add a code that assigns an orientation to the individua! 
sides. When the next rectangle is added the new code also checks whether 
the orientation requirements are satisfied. 

The location of a rectangle R can be described by its z-coordinate and 
by the orthogonal distances of each of its sides from some (fixed) point from 
the common intersection of the rectangles e.g. by a 4-tuple (x~, xJi, y~, yR,). 
The exact values of these coordinates are not iinportant. It is sufficient to 
know the relative order of the values of the individua! coordinates. Hence, 
we can assume that each coordinate is an integer in the range (1, n) without 
changing the visibility relationships among the rectangles. 

Consider two rectangles A= (xÁ,xA,yJ,y.4) and B = (x~,x8,y~,y8). 
The intersection A n B contains the intersections of the boundaries of A and 
B. The corners of A n B are therefore the only candidates through which 
A and B can see each other. The left top corner is an intersection of the 
boundaries of A and B if and only if min(xA, x:B) = x:B and min(y!, y~) = 
Y! (or min(xA,xB) = xA and min(y!,y~) = y~), see Figure 12. Similar 
conditions hold for other corners. 

A and B can see each other through a corner of A n B only if there is 
no rectangle R between A and B that intersects this line of visibility. For 
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Figure 12: 

example, the line of visibility corresponding to the left top corner is not 
intersected if and only if the condition 

holds for each rectangle R between A and B. 
Finally if a corner of A n B is an intersection of the boundaries of A and 

B and the corresponding line of visibility is not intersected then A and B 
are connected by an edge if and only if the intersecting edges have a correct 
orientation e.g. the lower one is oriented up and the upper one is oriented 
down. 

We begin the search with one rectangle and proceed in a depth-first-search 
manner examining all the ways to add a new rectangle above the rectangles 
already added. On the m-th level of the search we have a rectangle visibility 
drawing of Km described by 4-tuples with values from (1, m). We have 
m + 1 possible choices for each coordinate for the next rectangle. For each 
possibility we check whether the boundary of the new rectangle intersect 
boundaries of other rectangles and whether the rectangles can see each other 
through the line of visibility given by the intersection. lf this holds then we 
try to find the orientation of sides of the added rectangle to create a valid 
representation of Km+l · 

The following observations allow us to speed up the search: 

• the lowest rectangle can have all sides oriented up, 

• the second lowest rectangle can have all but one sides oriented up ( one 
side oriented down is sufficient to see the only rectangle below). 

There are only four representations of K 2 that satisfy these two rules 
(see Figure 13.) All other representations are reflections and/or rotations 
of these representations. Consider 4-tuples of the rectangles ( call them R1 

and R2 ) in K2 • It cannot happen that all four coordinates of R2 are bigger 
(resp. smaller) than the corresponding coordinates of R1 because otherwise 
the boundaries of R1 and R2 would not intersect. Hence, only one, two or 
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three coordinates of R2 can be bigger tha.11 the coordinates of R1• For the 
first and the last possibility there is only one repre.sentation of K 2 (Figure 
13a and 13d). For the second possibility we can choose whether the bigger 
coordinates are adjacent or not (Figure 13b and 13c). 

(a) (b) (c) (d) 

Figure 13: Modified rectangle visibility repr<~sentations of K 2 

(thick sides are oriented up, thin sides are oriented down) 

We prove that the multipartite nun1ber of rectangle visibility drawing is 
at most 8. Therefore it is sufficient to show that K 9 doesn't have a modified 
rectangle visibility drawing. So, we can add optimizations dual to the already 
mentioned ones: 

• the ninth rectangle can have all sides oriented down, 

• the eight rectangle can have all but one sides oriented down. 

These conditions also ensure that the searched space is finite. The al­
gorithm either finds a representation of K 9 or proves that there is no such 
a representation. 

We were able to process all valid configurations in 26 hours on Intel 
Centrino 1. 7GHz and verified that there is no representation of K9 with the 
required properties. 1 See Appendix A for the source code of the Java cla.ss 
used for the verification. • 

Lemma 10. The multipartite number of the rectangle visibility drawing is 
at least 8. 

Proof: The Figure 14. shows (in the form of oriented rectangles) a rectangle 
visibility drawing of a complete 8-partite graph. The numbers in the lower 
right corner determine the order of parts with respect to the z-coordinate. 
The thick sides are oriented up, the thin sides are oriented down. The small 
circles show areas where the individua! parts see each other. • 

1The algorithm was run several times on differcnt hardware configurations in fact. 
Check sums were used to recognize computations affected by a potential hardware failure. 
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Figure 14: Rectangle visibility representation of Ka,b,c,d,e,f,g,h 

If we put together Lemmas 8., 9. and 10. we obtain the following theorem. 

Theorem 3. The multipartite number of the recta11gle visibility drawing 
is 8. 

4.2 Square Visibility Drawing 

The multipartite number of the square visibility drawing ( e.g. the rectangle 
visibility drawing where vertices are represented by unit squares) can be de­
termined in the same way as the multipartite number of the general rectangle 
visibility drawing. 

Lemma 11. The multipartite number of the square visibility drawing is at 
most 6. 

Proof: Suppose that we have a square visibility drawing of a complete k­
partite graph G. We chaose a subgraph G" of G as we do it in the proof of 
Lemma 8. 

We claim that the squares from each part of G" have a common inter­
section e.g. we don't need the stair modification technique for squares. If 
P1 is a part without a common intersection then there must be two squares 
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ri, r 2 E P1 that don't intersect. W.l.o.g. it is x+(rt) < x-(r2 ). A square r 
fro1n a different part (to see both r 1 and r2) must have x-(r) < x+(ri) and 
x-(r2) < x+(r). The parts are x+-separated and we know that x+(r1) < 
x+(r) therefore also x+(r2 ) < x+(r). 1',he x--separability of parts on the 
other band gives us inequality x-(r) < x-(ri). Togt.~ther we have 

which is in a contradiction with the equation x-(r) = x+(r) - 1 that holds 
because r is a unit square. 

Now we can transforn1 the parts into oriented rectangles (analogously to 
the proof of Lem1na 8.) and assign to each rectangle R a 4-tuple (xk_, XŘ, y~, 
yR_) with integer values from (1, k) as we do it in Len1n1a 9. 

The squares in G have a unit size. Therefore x+(r) < x+(r') if and only if 
x-(r) < x-(r'). Hence, for two oriented rectangles A and B we have x:t < x°tJ 
if and only if x:4 < x8. The values x~ are distinct integers from (1, k). So, 
it must be x"k + xR = k+ 1 for all oriented rectangles R. The analogous 
equations Yk + YR = k + 1 hold for y-coordinates. The oriented rectangles 
obtained by the transformation are therefore oriented squares. 

, 

1 
5 

2 
6 

4 
3 

Figure 15: Square visibility representation of Ka,b,c,d,e,f 

It remains to prove that a complete graph with the modified square visi­
bility representation has at most 6 vertices. That can be verified by a slight 
modification of the algorithm presented in the proof of Lemma 9 ···· when we 
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add the ni-th rectangle R to a drawing we have to 1nake sure that it is a unit 
square e.g. that x~ + xji = 1n + I and y~ + YŘ = rn + 1 hold for its 4-tuple 
( + - + -) xR,xR,YR,YR . 

We were able to process all valid configurations in less than one second 
on Intel Centrino l.7GHz and verified that tl1ere is no representation of K1 

with the required properties. • 

Theorem 4. The rnultipartite 11u1nber of tl1e square visibility drawing is 6. 

Proof: The Figure 15. shows (in the forn1 of orienteci squares) a square 
visibility drawing of a complete 6-partite graph. The n1atching upper bound 
is given by Lemma 11. • 

4.3 Straight-line Rectangle Drawing 

A graph with a 2-dimensional straight-line rectangle drawing is a union of 
two planar (bar-visibility graphs ). Therefore the multipartite number of such 
a drawing is one. 

The 3-dimensional straight-line rectangle drawing has similar properties 
to the 3-dimensional straight-line box drawing. rrhe upper bound on the 
multipartite number of the 3-dimensional straight-line box drawing proved 
in the next section is also the best known bound for the straight-line rectangle 
drawing. On the other hand the following drawing of a con1plete 22-partite 
graph provides also the best known lower bound on the multipartite number 
of the 3·dimensional straight-line box drawing. 

Theorem 5. The multipartite number of the straight-lir1e rectangle drawing 
in Ill3 is at least 22. 

Proof: The Figure 16. shows a rectangle visibility drawing of a complete 
6-partite graph. Take a copy of the construction from the Figure 14. and 
rotate it to be parallel to xz-plane. Place the copy between the third and the 
fourth part. Ensure that x+ (resp. x-) coordinates of the rectangles from 
the copy are bigger (resp. smaller) than the coordinates of the rectangles 
from the 6-partite graph . 

. Take another copy of the construction from the Figure 14. and rotate it 
to be parallel to yz-plane. Place the copy again between the third and the 
fourth part either below or over the first copy. Ensure that y+ (resp. y-) 
coordinates of the rectangles from this copy are bigger (resp. smaller) than 
the coordinates of the rectangles from the 6-partite graph. 

The copies are schematically displayed on the Figure 16. by the horizontal 
and the vertical line. The small circles show the areas where the individua! 
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Figure 16: Straight-line rectangle drawing of a cornplete 22-partite graph 

parts see each other. It can be easily verified that the resulting construction 
is a straight-line rectangle drawing of a complete 22-partite graph. • 

4.4 1-bend Rectangle Drawing 

If one bend is allowed in a rectangle drawing in JR.2 then the multipartite 
number become infinite, see Figure 17. 

• • • 

• • • 

Figure 17: 1-bend 2-dimensional rectangle drawing of Kk 
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5 Box Drawing 

5.1 Straight-line Box Drawing 

Let 's remind one definition fron1 [2]. 

Definition: Let A and B be axis-parallel boxes in lR3. We write A -<z B if 
A and B can see each other and x+ (A) < x- ( B). Sin1ilarly we define A --< 11 B 
and A -<z B. 

It can be easily verified that these relations are partial orders on the boxes 
in a straight-line box drawing of a con1plete graph. We say that some boxes 
from a drawing form an x-chain (resp. x-antichain) if they forn1 a chain 
(resp. antichain) in the partial order -<x. 

Fekete and Meijer [2] show the following properties of these orders. 

Lemma 12. Let C be a maxinium le11gtl1 x-cliain iri a 3-di111ensional or­
thogonal box drawing of a con1plete grapl1. 711ere cru111ot be ru1 x-chai11 D 
of length greater than 4 such that C n D = 0. 
Proof: See Lemma 11. in [2]. • 

Lemma 13. If there is no cl1ain (x-chai11, y-cl1ai11 or z-cl1ain) longer than 
4 in a 3-dimensional orthogonal box drawi11g of a co111plete grapl1 G tlien G 
can have at most 18 vertices. 

Proof: See Lemma 15. in [2]. • 

Lemmas 12. and 13. allow us to estirnate the maximum size of a complete 
graph with a drawing with the bounded length of chains. 

Lemma 14. If k is the maximu1n length of a cJ1afr1 that appears in the 
partial order -<x, -<y or -<z in a 3-dirnensional straigl1t-line box drawing of 
Kn then n < 3k + 18. 

Proof: Let Cx, Gy resp. Cz denotes the maximum x-chain, y-chain resp. 
z-chain in the drawing. If we remove the boxes in Cx U Gy U Cz from the 
drawing then by Lemma 12. there cannot remain a chain of length 5. There 
remain at most 18 boxes by Lemma 13. Hence, n < ICxl + ICyl + ICzl + 18 < 
3k + 18 .• 

The presented properties of the partial orders -<x, -<y and -<z can be uti­
lized to prove an upper bound for the multipartite number of a box drawing. 

Theorem 6. The multipartite number of the straight-line box drawing in 
IR 3 is at most 42. 

Proof: Let G be a large complete k-partite graph that has a 3D straight­
line box drawing. Color its edges by three colors according to their direction. 
Apply Lemma 2. on G and denote by G' the resulting graph. 
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Select one box from eacb part of G'. 1„hese boxes forma 3D straight-line 
box drawing of Kk. We claim that this drawing does1~'t contain a cbain of 
length greater than 8. If we prove this then by the previous lemma k :5 
3.8 + 18 = 42. 

Suppose by contradiction that there exists (w.l.o.g.) an x-chain of length 
9. The boxes from the parts with a n1ernber in this chain also ( due to the 
selection of G') see each other along the x-axis. "fherefore they correspond 
to a rectangle visibility representation of a 9-partite graph that can be n1ade 
arbitrarily large if G is taken sufficiently large. This is in a contradiction 
with Theorem 3. • 

5.2 1-bend Box Drawing 

The infinity of the multipartite number of the 1-bend box drawing comes 
immediately from the infinity for the 1-bend 3D line drawing. 
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6 Related Results 

In the previous sections we estin1ate the n1aximun1 k such that each k­
colorable graph has a drawing of the given type. We can ask a dual question: 
what is the minimum k such that no k-colorable graph has a drawing of the 
given type? There are no non-trivial upper bounds known for this problem. 
The best known lower bounds are given by the drawings of con1plete graphs. 
The summary of these results is given in the Tahle 2. 

v d b . 
s1ze 

1 1 o 2 
2 >2 00 

1 >6 
o 6 

3 > 1 00 

3 o >8 
2 2 > 1 00 

o 8 
3 o E (56, 183) 

3 3 > 1 00 

o E (56, 183) 
rectangle visibility drawing E (22, 55) 

square visibility drawing 7 

Tahle 2. Size of the largest complete graph with 
d-dimensional b-bend orthogonal drawing by v-dimensional boxes. 

Lemma 15. shows that K 6 on the Figure 18a. is the largest complete 
graph with the 2-dimensional orthogonal straight-line line drawing. We con­
jecture that K8 on the Figure 18b. has the same property for 3-dimensional 
orthogonal straight-line line drawing. 

Lemma 15. K7 doesn't have a 2-dimensional straigl1t-line line drawing. 

Proof: Suppose that we have a 2-dimensional straight-line line drawing of 
Kn,.n > 7. W.l.o.g. there are at least a.s many horizontal lines as the vertical 
ones e.g. there are at least 4 horizontal lines. 

There cannot be three horizontal lines with the same y-coordinate because 
the middle line would block the visibility between the other two lines. 

If there are two horizontal lines l1, l2 with the same y-coordinate then 
w.l.o.g. x+(li) < x-(l2 ). A horizontal line l, l f= l1, l2 must have x-(l) < 
x+(l1 ) and x-(l2 ) < x+(l). Therefore there cannot be another pair of hori­
zontal lines with the same y-coordinate. If there are two horizontal lines with 
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(a) (b) 

Figure 18: (a) 2-dirnensional straight-line line drawing of K6 

(b) 3-diinensional straight-line line drawing of K8 

the same y-coordinate then there cannot be a vertical line. The vertical line 
can see both horizontal lines only if it is between them, but then it blocks 
the visibility between the horizontal lines. 

Choose a horizontal line h that neither has the highest nor the lowest 
y-coordinate. The edge between a horizontal and a vertical line must be 
a continuation of one of the lines. The edge between h and a vertical line 
cannot be a continuation of the vertical line because otherwise the edge 
between the vertical line and the horizontal line with the highest or the 
lowest y-coordinate would have to intersect h. So, the edge between h and 
a vertical line must be a continuation of h. Hence, there are at most two 
vertical lines. 

If there is no vertical line then there are at most 3n - 6 vertical edges 
(they forma bar-visibility drawing) and at most one horizontal edge between 
lines with the same y-coordinate. The complete graph with n vertices has 
n(n - 1)/2 edges. So, it must be 3n - 5 > n(n - 1)/2 and therefore n < 5. 

If there is one vertical line then there are at most 3( n - 1) - 6 edges 
among the horizontal lines and n - 1 edges between the vertical line and the 

l J. 

... 
• „ 

T T 

Figure 19: 2-dimensional straight-line rectangle drawing of K 8 
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horizontal lines. So, it n1ust be 4( n - 1) - 6 > n(n - 1) /2 and therefore n < 5. 
Finally, if there are two vertical lines then there art~ at m~t 3(n - 2) - 6 

edges among the horizontal lines, 2(n - 2) edges between the vertical and 
the horizontal lines and one edge between the vertical lines. So, it must be 
5(n - 2) - 5 > n(n - 2)/2 and therefore n < 6. • 

Beineke (13] proves that K9 is not a union of two planar graphs. lf a graph 
has a 2-dirnensional orthogonal straight-line drawing then it must be a union 
of two bar-visibility (e.g. planar) graphs. Therefore K8 on the Figure 19. is 
the largest complete graph with this drawing. 

The best known results for the visibility drawing cornes from Fekete et 
al. [3]. K 7 has a square visibility drawing (see Figure 20.) while K 8 doesn't. 
The Tahle 3. describes the rectangle visibility drawing of K22 , the largest 
known cornplete graph with this drawing. K56 on the other band doesn't 
have such a drawing . 

. Figure 20: Rectangle visibility representation of K7 by unit squares 

Fekete and Meijer [2] use the rectangle visibility drawing of K22 in their 
construction of the 3-dimensional orthogonal box drawing of K 56 and they 
show that K 1s4 doesn't have this drawing. 
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z 1 2 3 4 5 6 7 8 9 10 11 
y+ 22 11 9 8 7 5 l 17 16 4 15 
y - 22 13 6 2 19 17 18 14 12 20 15 
x+ 22 15 18 12 9 8 7 5 4 1 3 
X - 22 16 15 20 8 11 12 1 2 14 3 

z 12 13 14 15 16 17 18 19 20 21 22 
y+ 19 14 6 3 2 20 13 10 18 12 21 
y - 16 1 3 4 5 7 8 9 10 ll 21 
x+ 2 19 6 10 11 16 14 20 13 17 21 
X - 4 6 18 17 19 5 7 9 10 13 21 

Tahle 3. Coordinates of rectangles in thť:~ rectangle visibility drawing of K22 
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7 Conclusion 

We have detennined the rnultipartite nun1ber of several types of drawings. 
This significantly enlarges the class of graphs that are known to have such 
drawings. For exa1nple Fekete and Meijer show in (2] that each graph witb at 
most 56 vertices has a 3-dimensional straight-line orthogonal box drawing. 
Comparing to this we prove that any 22-colorable graph ha.s such a drawing. 

Moreover the proofs of the existence of the drawing of the given type are 
constructive e.g. provide an exact description of a drawing of the specified 
multipartite graph. On the other hand the proofs provide only one possible 
drawing of the graph. It ren1ains an open proble1n how to create a draw­
ing that in addition fulfils some aesthetic criteria - rninimizes the maximum 
length of an edge, the total length of the edges, total number of bends or 
the aspect ratio of the vertices ( e.g. the ratio between the longest and the 
shortest side of the box that represents the vertex). 

Figure 21: Straight-line 2D rectangle drawing of K 5 ,6 

The proofs can be used to construct examples of multipartite graphs that 
don't have a drawing of the given type. Unfortunately (particularly due to 
the usage of Lemma 2.) the size of these examples is extremely big. We 
believe that the nice properties enforced by LemmM 1., 2. and 3. are in fact 
necessary for a drawing of a graph with a large colorability and therefore 
the examples can be made reMonably big. For example, we have shown that 
the .multipartite number of the straight-line 2D rectangle drawing is one, 
but how large are the bipartite graphs without such a drawing? Wood [1] 
shows that K 5,6 has (see Figure 21.) and that K5,1a and K6,9 don't have such 
a drawing. It is not known whether K 5,n, 7 < n < 12 and Ka,m, 6 < m < 8 
admit a straight-line 2D rectangle drawing. 

All graphs with the colorability lower or equal to the multipartite number 
have a drawing of the given type. Among the graphs with a larger colorability 
we can find some that don 't have such a drawing, but it is an open problem 
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whether there exists k E IN' such that no graph witb the colorability equal 
to k ha.s a 3D straight-line orthogonal box drawing. !t seems that such k 
could be relatively small because there is no graph known that would have 
a colorability bigger than the largest known complete graph with the given 
orthogonal drawing. So, it is possible that the graphs that have an orthogonal 
drawing and have a large colorability also have a large con1plete graph as its 
suhgraph. 

The results presented in this work can be easily used to show that some 
graph has a drawing of the given type. It is sufficient to show that it can 
be colored by the specified number of colors we don 't need to determine 
the colorability of the graph, we can (for example) use a coloring produced 
by some heuristic algorithni. On the other hand it is not possible to use our 
results to show that a given graph doesn't have an orthogonal drawing. So, 
it would be desirable to find another large class of graphs and an algorithm 
that would decide whether the given men1ber of this class has an orthogonal 
drawing or not. 
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Appendix 

A Source Code 

This appendix contains the source code of the Java in1plementation of tbe 
algorithm described in Len1n1a 9. ''fhe prograrn starts with the four repre­
sentations of K2 shown on the Figure 13. (see lines 26-34) and attempts to 
enlarge the representation using the next ( ) met hod. I t exarnines all po~i­
ble coordinates2 of the sides of the next rectanglt! (lines 64-73) and checks 
if the boundary of the new rectangle intersects the boundaries of all pre­
viously added rectangles (76-94) and whether the rectangles can see each 
other through the line of visibility that corresponds to the intersection of 
the boundaries (95-118). Then it iterates through all possible orientations 
of the sides of the newly added rectangle (119-167) and tests (using the 
goodOrientation() method) if the new rectangle with the given orientation 
of sides can enlarge the current drawing of the complete graph. 

1: public class Colorability { 
2: static int max; li Maxim1111 aize of found repreaentatioa 
3: static int[J N-new int[10]; li North coordinatea 
4: static int[] W-new int(10]; //West coorclinatea 
5: static int[] E-new int[10]; // Eaat coordiaatea 
6: static int[] S-new int[10]; li Soutb coordinatea 
7: static boolean [] Nupcnew boolean (10] ; 11 Orientation ot nortb aidea 
8: static boolean[] Wup-new boolean[10); li Orientation ot vest •idea 
9: static boolean[] Eup-new boolean[10); li Orientation of eaat aidea 

10: static boolean(] Sup-new boolean[10]; li Orientation of aouth aidea 
11: li The following arrays containa only valuea array(i] [j] for i>j 
12: static boolean[][] nes-nev boolean[10][10]; li nea[i][j) deterainea whether i can aee j 
13: static boolean [] [] nws-nev boolean (10) [10] ; 11 througb tbe nortbeaat corner of interaection 
14: static boolean[][] awsan.ev boolean[10][10]; li ot i and j; nwa, ava and ••• h.ave aiailar 
15: static boolean[][] ses=nev boolean[10][10]; li meaning 
16: static boolean[][] ne1-nev boolean[10][10]; li i-th eaat aide interaecta j-th north aide? 
17: static boolean[] (] ne2=nev boolean[10) (10]; li i-th nortb aide iateraectl j-th eaat aide? 
18: static boolean[] (] nw1-n.ew boolean.(10) (10); li i-tb nortb aide interaecta j-tb veat aide? 
19: static boolean[J[] nw2=nev boolean[10][10]; li 1-tb vest aide interaecta j-th nortb aide? 
20: static boolean[][] swl-nev boolean[10][10]; // i-th veat aide interaecta j-th aouth aide? 
21: static boolean[][] sw2-nev boolean[10][10]; li i-th soutb aide interaecta j-th weat aide? 
22: static boolean[](] se1=nev boolean.(10)(10); li i-tb south aide iateraecta j-th eaat aide? 
23: static boolean[][] se2=nav boolean[10][10]; li i-tb eaat aide interaecta j-th aouth aide? 
24: 
25: public static void main(String args[]) { 
26: li All sides of the lovest rectangle are orien.ted up 
27: Nup[O]=Wup[O]=Sup[O]=Eup[O]=true; 
28: li Only one (w.l.o.g. vest) side of tbe aecond loveat rectangle ia oriented dovn 
29: Nup[1]=Sup[1]•Eup[1]-true; Wup[1]•falae; 
30: li There are 4 posaible poaitiona of the aecond rectangle vrt tbe first one. 
31: N[O]=W[1]•S[O]=E[O]=O; N[1)•W[O]•S[1]•E[1]•1; next(2) i 
32: N[O]=W[1]=S[1]=E[O]=O; N[1]•W[O]•S[O]•E[1]•1; next(2); 
33:. N[O]•W[1]=S[O]•E[1]•0; N[1]•W[O]•S[1]•E[0]•1; next(2); 
34: N[O]•W[1]=S[1]•E[1]•0; N[1]•W[O]=S[O)•E[0]•1; next(2); 
35: Syatem.out.println("MAX: "+max); li Report tbe maximum aize 
36: } 
37: 
38: 
39: 
40: 
41: 
42: 
43: 

li Checks whether ve bave a valid orientation of _where_ rectangle. 
// Expects where>th items of ne1, ne2, Nup etc. arrays to be tilled. 
static boolean goodOrientation(int vbere) { 

for (int i•O; i<where; i++) { 
boolean ne = (nel[vhere] [i]ttNup[i)at!Eup[where]) 

I I (ne2[where] [i]ttlNup[vhere]ttEup[i]); 

2The x+, x-, y+ resp. y- coordinate is called the east, the west, the north resp. the 
south coordinate in the source code. 
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44: 
45: 
46: 
47: 
48: 
49: 
50: 
51: 
62: 
53: 
S4: 
55: 
56: 
57: 
58: 
59: 
60: 
61: 
62: 
63: 
64: 
65: 
66: 
67: 
68: 
69: 
70: 
71: 
72: 
73: 
74: 
75: 
76: 
77: 
78: 
79: 
80: 
81: 
82: 
83: 
84: 
85: 
86: 
87: 
88: 
89: 
90: 
91: 
92: 
93: 
94: 
95: 
96: 
97: 
98: 
99: 

100: 
101: 
102: 
103: 
104: 
105: 
106: 
107: 
108: 
109: 
110: 
111: 
112: 
113: 
114: 
115: 
116: 
117: 
118: 
119: 
120: 
121: 
122: 
123: 
124: 
125: 
126: 
127: 
128: 

} 

} 

booleu nv • (nv1 (vbere) (i)MWupU]t.allup(vbe.re)) 
t I (nv2 [vbere] [i)MUhap(vbere]Mlvp[i]); 

booleu sv • (avl [wb.ere] [i)MSap(i]UIWup[vber•l) 
11 (av2 [vbere) (i}UISup(vben]MVup[i]); 

booleu •• • (Hl [vbere) (i]aalup(i]Utlup(vbere) > 
11 Cae2[vbere] [i]Uflup(vbere]MSup[i]); 

if ( ! ( (netbea [vbere] (i]) 11 (nv&bva(vb•r•l Ul) 
11 (av&aan [vbere] (i)) 11 (ae&&aH[vbare) [i]))) ntun falH; 

return true; 

li Adela aAOther rectangle (if poaaible) into tb• eaiatisag 
li repreaentation vitb _vbere_ rectanglea. 
atatic void nezt(int v·bere) { 

if (vbere „ 9) { 

} 

Syatem.out.priDtlD(•R.preaantation ot K_9 fouzadt•); 
Syatem.exit(O); 

if (vbere>au) au.,,bere; 
for (iDt n•O; n<-vb.ere; n++) { // FiDd nortb coord.inate 

N[vbere]-n; 
for Cint i•O: i<vbere; i++) if (N[i]>-n) N[i]++: 
for (int v-O; v<avhere; v++) { li FiDd veat coordinate 

W[vhere]•v; 
for (int 1•0; i<vhere: i++) if (W[i]>•v) W[i]++; 
for (int a•O; a<-vhere: 1++) { li FiDd 1outb coordlnate 

S[vhere)•a; 
for (int i•O; i<vbere; i++) if (S[i]>•a) S[i)++; 
for (int e•O: e<-vhere; e++) { li Find eut coordinate 

E[vhere]•e: 
for (int i•O: i<vhere: i++) if (E[i]>„) E[i]++; 
boolean see • true; 
for {int i•O; i<vhere; i++) { 

} 

li Checka that boundary of vhere interaecte bowadary ot i 
ne1[where] [i]•(E[i]>E[vhere])ll(N[i]<N[vhere)); 
ne2[vhere] [i)•(E[i)<E[vhere])tt(N[i]>N[vhere]); 
nv1[vbere] [i]•(N[i)>N[vbere])lt(W[i]<W[vbere]); 
nv2[where] [i)•(N[i]<N[wbere])li(W[i]>W[vbere)); 
sv1 [vhere] [il•(W[i]>W[vbere] )U(S[i]<S[vhere]); 
sv2[vhere](i]•(W[i]<W[wbere])tt(S[i]>S[vhere]); 
se1[vbere][i)•(S[i]>S[vbere])ll(E[i)<E[vbere]); 
se2[vhere] [i]•(S[i]<S[vbere])li(E[i]>E[vh•r•l): 
see•seetl(ne1[vhere][i]I lne2[vbere][i] I lnv1[vbere][i] llnv2[vhere](i] 

I lsv1[vhere][i]I lsv2[where][i]I lael[vbere][i] llae2[vbere)[i]); 
if (!aee) break; li The boundaries of vhere and 1 do.n't interaect 

if (lsee) { li The boundary of vhere doean't interaect all eziati.ng boundari•• 
for (int i•O; i<vhere; i++) if (E[i]>e) E[i)--; 
continue; 

} 
for (int i•O; i<vhere; i++) { 

} 

nes[vhere] [i]-nva[vhere] [i]•avs[vhere][i]•aea[vhere][i)atrue; 
for (int j•i+1; j<vhere; j++) { 

} 

li Determines nes, nva, avs and sea[vhere](•] valuea 
boolean nn• (N [j] <N [i]) li (N [j) <N [vbere]) ; 
boolean vv-(W[j]<W[i])lt(W[j]<W[wbere]); 
boolean ee•{E[j]<E[i])li(E[j]<E[where)); 
boolean ss•(S[j]<S[i])lt(S[j]<S[wbere]); 
nes[vhere][i]-nea[where](i]li(nnl lee); 
nvs[vhere][i]=uwa[vhere][i]li(nnl lvw); 
svs[wbere][i]•avs[vhere)[i]tl(ssl lvw); 
ses[vhere][i]•aes[vhere][i]tl(ssl lee); 

li Check vhetber _vhere_ can aee i through intersecion of their boundaries 
see•seettCCnes[vbere] [i]tt{ne1[where)[i]llne2[vbere] [i])) 

I l(nvs[vhere] [i]tt{nv1[vhere][i) llnv2[vhere) [i])) 
I l(swa[vhere] [1]lt(av1[vhere][i]llsv2[vhere] [1])) 
I l(ses[wbere] [i]lt(ae1[where)[i]llae2[vbere] [i]))); 

if ( ! aee) break i 

if (!see) { li _vhere_ cannot aee all rectangles through interaection of boundariea 
for (int i•O; i<wbere; i++) if (E[i]>e) E[i]--; 
continue; 

} 
li Find orientation of the added rectan.gle 
switch (vhere) { 

case 8: li Ninth •> orient all aidea dovn 
Nup[vhere)•Wup[vhere]•Sup[vbere]•Eup[vhere]•false; 
if (goodOrientation(vhere)) next(where+1); break; 

case 7: li Eighth •> it ia aufficient to orient at most ona aide up 
for (int i•O; 1<5; 1++) { 

Nup[wbere]•Wup[vhere]•Sup[vhere]•Eup[where]•false; 
switch (i) { li case O: all aides oriented down 

case 1: Nup[vhere]-true; break; 
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129: 
130: 
131: 
132: 
133: 
134: 
136: 
136: 
137: 
138: 
139: 
140: 
141: 
142: 
143: 
144: 
145: 
146: 
147: 
148: 
149: 
150: 
151: 
152: 
153: 
154: 
155: 
156: 
157: 
158: 
159: 
160: 
161: 
162: 
163: 
164: 
165: 
166: 
167: 
168: 
169: 
170: 
171: 
172: 
173: 
174: 
175 } 
176 } 
177 } 

} 

c&H 2: Wup(Vben)-tnae; break: 
C&H 3: Sup[vbere]•trwt; brM.k; 
cue 4: !up(vben]-trua: breů; 

U (goodOrient.ation(vbere)) oe.xt(vbere+l); 
} 
breů; 

defalllt: 
boolean[] on • DW booleu(16); li Dlteraioe• poaaibl• orientatiOD of vbere 
li 3rd to 6th rectugl• •> t.h•r• are ao.e rectugl„ belov •> 
li ve caD.DOt bav• all aid•• oriented up (e.g. i•-0) 
li ve vill try to add ac:m• rectuaglea above •> 
li ve cannot bave all aid•• orient.ed dovn (e.g. i-15) 
fo.r Cint 1•1; i<l6; i++) { 

if Cora[i]) { li S.• commenta in tbe if·braaeh belov 
1f ((1&1)-0) on[i+l] • true; 
if {(1&2)--0) ora[i+2] • true; 
if {{iH)-0) ora[i+4] • true; 
if {(it8)„0) ora[i+8l • true: 

} elae { 

} 

li i to orientation converaion 
Nup [vbere] • (( il:l )-0) ; 
Wup[vbere]•((it2)--0); 
Sup(vhere]•((it4)--0); 
Eup(vhere]•((it8)-0); 
U (goodOriutation(vbere)) { 

} 

li 1bi1 orientation allova _vbere_ to ••• &11 rect&Dgl•• belov 
next(vbere+l); 
li We vere able to ••• all rectaaglea belov &Dd therefore 
li it doean't have a ••na• to try orientationa tbat ariae 
li from thia one by aaking aoae up-oriented edgea dovn-oriented 
if (lup[vhere]) ora[i+l] • true; 
if (Wup(vhere]) ora(i+2] • tru•i 
if (Sup[vhere]) or1[i+4] • true; 
if (Eup[vbere]) ora(i+8] • true; 

} li end of i-for atateaent 
} // end of avitch atatement 
for (int i•O; i<vhere; i++) if (E(i]>e) E[i]--; 

} li end of e-for statement 
for (int i•O; i<wbere; i++) if {S[i]>a) S[i)--; 

} li end of a-for atatement 
for (int i•O; i<where; i++) if (W(i]>v) W[i]--; 

} li end of w-for statement 
for (int i•O; i<wbere; i++) if (N(i]>n) N(i)--; 
li end of n-for atatement 
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