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CHAPTER [

INTRODUCTION

1. Legal framework and practice

The ongoing development of contemporary risk management methods and the in-
creased use of innovative financial products have brought about substantial changes
in the business environment faced by credit institutions nowadays. The Basel
Committee on Banking Supervision, established in the end of 1974, represents an
institution which formulates broad supervisory standards and guidelines and rec-
ommends statements of best practice in expectation that individual authorities
(central-banks) will take steps to implement them to their own national systems.
In 1988, the Committee decided to introduce a capital measurement system com-
monly referred to as the Basel Capital Accord. In June 1999, the Committee issued
a proposal for a New Capital Adequacy Framework to replace the 1988 Accord.
Following extensive interaction with banks the revised framework was issued on
June 26, 2004 under the name Basel II Capital Accord. The Basel II Capital Ac-
cord is legally underpinned by the Capital Adequacy Directive (12/2000), issued
by the European parliament and the Council. The new Basel II capital Accord
demands a lot of attention both from regulators and regulated subjects. Among
various innovations a new internal rating based approach (IRB), determining the
capital requirements in the area of credit risk, was proposed.

One of the Committee’s goals in setting forward an IRB approach is to align
more precisely capital requirements with the intrinsic amount of credit risk to
which banks are exposed. The orientation of the IRB approach is consistent with
the framework currently being used by many banks with well-developed risk man-
agement systems to assess internally both their credit risk profile and their capital
adequacy.

The Committee believes that such an approach, which relies heavily upon
bank’s internal quantitative and qualitative assessment of its counterparties and
exposures, can better secure key objectives consistent with wider risk management
practice.

In order to comply with the recommendations of the Basel II Capital Accord,
each bank is required to estimate its set of probabilities of default (PD) related to
its lending policy in each specific portfolio segment. To be more specific, bank’s
internal measures of credit risk are based on assessments of risk characteristics of
both the borrower and the transaction. Most banks orient their borrower rating
methodologies and risk management practices to the risk of borrower’s default.
The PD of the borrower or a group of borrowers is the central concept on which
the IRB approach is built. The PD of the borrower does not, however, provide the
complete picture of the potential credit loss. Banks also seek to measure how much
thev will lose, should the borrower default on an obligation. This is contingent
upon two elements.

First, the loss is contingent upon the amount to which the bank was exposed to
the borrower at the time of default, commonly expressed as Exposure at Default
(EAD). Second, the magnitude of likely loss on the exposure referred to as the
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Loss Given Default (LGD), which is expressed as a percentage of the exposure.
For the sake of completeness, note that the IRB approach also takes into account
the effective maturity (M) of exposures. These components (PD, EAD, LGD, M)
form the basic inputs to the IRB approach, thus they must be assessed and esti-
mated accurately, starting with the basic quantity, which is the PD. For this reason
banks apply several sophisticated statistical methods for classifying their potential
clients into certain rating categories and estimating the probabilities of default in
these categories. We refer to this prescribed estimation process as to the process
of credit scoring. In our context the process of credit scoring refers to statisti-
cal methods used to develop a statistical model for estimating and predicting the
probability that a loan applicant or an existing obligor will default or become del-
iquent. The final scoring tool is called the credit scoring model. To build a credit
scoring model, statisticians analyze historical data on the performance of provided
loans to determine which of the borrower’s characteristics are useful in predicting
whether the loan performed well.

To be more precise the bank has several information related to the creditwor-
thiness of its potential clients or obligors. This information might be encoded in
several characteristics which depend on the actual commercial area the scoring
model is build for.

2. The general model

From the mathematical point of view the basic setup can be expressed in the

following way: we have n observations @, = (xj1,....2im). 1 = 1,.... n. of a
random vector in X in R™. That is, there are m explanatory (independent)
variables X;..... X, referred to as predictors. Further we have a dependent (re-
sponse) random variable Y. The observations can be expressed as a row vector
(yi.x]),i=1,...,n. Thus, z;; is the value of the j-th predictor j = 1,..., m of the

i-th customer i = 1,...,n. Similarly y; is the value of realization of random vari-
able Y. It has two values coded by 1 and 0 (default and non-default), respectively.
The actual data set can be expressed in the matrix form as

i1 -+ Tim 1
x=| : | ¥=
LInl -+ Lnm YUn

Statisticians make a sample of its past debtors and analyze their characteristics.
Practically, the selected sample is divided into two subsamples. The first, called the
train sample, is used for model development. The second, called the test sample,
is used for model testing and validation. The scoring model is generated from
this input data through various approaches and then it is applied to new clients
in order to estimate their expected probability of default. Obviously, the purpose
of credit scoring is highly practical, it provides the bank with better knowledge of
its clients. It effectively helps to manage and reduce credit risk. In other words,
statistical techniques used for credit scoring are based on the idea of discrimination
between several subgroups in the underlying population of bank clients. The goal is
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to develop statistical method which is sufficiently sensitive, quick in computation,
transparent and easy to interpret.

This thesis introduces the background knowledge of credit scoring in the context
of generalized linear models (GLM), in particular logistic regression. The statistical
aspect of credit scoring methodology are discussed. Emphasis is put on statistical
techniques and statistical computing employed in credit scoring model development
and validation procedures. The thesis resolves statistical issues connected to the
second and third stage of the credit scoring process illustrated in Figure 1.1.

."'r\‘\
Stage 1 '../; Stage 2\\\
Problem Definition /_ I N\
Data Preparation /" Model Deyglopmena \
/ stage 3" Stage 4
/ N \ Model Application
" 'Model Validation PD Estimation/Predicting

Figure 1.1. The process of credit scoring.

3. Data sources

Data sets employed in the above presented stages of the credit scoring process stem
from a Czech bank. A special database has been developed to store and process
detailed quantitative and qualitative data. The data was collected by means of
electronic forms filled by the branch network. However, additional information is
confidential and therefore names of all variables used in analytical examples, as well
as in illustrative figures have been removed. With regard to internal confidentiality
and data privacy protection we do not present final results, that is, concrete models.
Instead we present statistical methodology, whose application leads to reasonable
statistical models in similar situations we faced. For the sake of completeness, note
that we examined the segment of Corporate/SME firms and the considered default
horizon was one year.






CHAPTER 1[I

MODEL DEVELOPMENT TECHNIQUES

1. Single- factor analysis

A common characteristic of credit scoring models based on information from fi-
nancial statements, is a large number of independent variables that can be used in
the model development phase. It is not so complicated to define a huge amount
of financial ratios, combining all the useful information contained in the financial
statements of a company in very different ways to assess its credit worthiness. The
way this information is employed to build the model is crucial in determining the
capability and robustness of the final model in predicting default. Actually. some
of the financial ratios that can be derived. might be useful to predict default, but
others might not be related to the default variable at all. Furthermore, some of the
ratios can take extremely high or low values for some clients, without serving any
information for default prediction purposes. These facts highlight the importance
of variable selection and transformation processes that are performed during the
single-factor analysis phase.

Single-factor analysis is the first step in statistical part of building a credit
scoring model. The aim of the single-factor analysis is to prepare a reasonable set
of default predictors that can be used later in multi-factor analysis. Given a large
amount of possible predictors. it is important to reduce this list to predictors that
enter the final model selection process. In order to understand the reason why
predictors are treated separately, we should be aware of the fact that modelling
database contain raw data.

There are several problems that has to be solved within the single-factor anal-
ysis before any multi factor analysis can be performed.

Statisticians distinguish two types of predictor variables. Namely the catego-
rial and continuous predictors. The nature of the predictor variables is different
and so are the problems that statisticians need to solve. Dealing with categorial
predictors involves the following issues.

e Order of predictor categories (in terms of expected default frequency)
need not be completely clear beforehand. Definitely, we should always
assess what is the position of missing values (NA) within this order. It
i1s convenient to assign categories certain numeric levels beforehand to
optimize statistical performance of the predictor in multi-factor analysis.

e There may be strong dependence between categorial predictors, but their
vague and subjective definition can hide it. Thorough investigation has
to be undertaken to uncover possible dependence.

e Predictive power of categorial predictors can be rather volatile in time be-
cause of subjective nature of assignment of obligors to categories. Regular
validation of particular categorial predictors is necessary.
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Dealing with continuous predictors involves the following issues.

e Continuous predictors have to be tested for outliers because outliers can
significantly disturb predictive power of single predictor as well as its
contribution to the multi-factor model.

e Certain transformation or truncation of the continuous predictor may be
desirable to optimize its statistical performance in multi-factor analysis.

e Strong dependence among continuous predictors is typical in credit mod-
elling. Usually, one has a group of predictors describing the same or very
similar things in slightly different manner at hand. Within such a group
only one or two predictors are convenient to be considered in multi-factor
analysis. Inclusion of the whole group is counterproductive.

e Treatment of missing values.

1.1. Categorial predictor analysis

Procedures concerning categorial predictors are relatively easy to get along with,
because the single-factor analysis of categorial predictors is simpler than the one
of continuous predictors and the results are easier to interpret. Nevertheless the
following things have to be done. We have to asses the proper order of predictor
categories. As soon as it is done, joining of non-significant categories is carried
out. Afterwards we might proceed with reducing the predictor set.

1.1.1. Ordering predictor categories. Assessing the proper order of predictor
categories including the position of NA is primary problem to get along with. We
solve this task by assigning all categories certain numeric levels, respecting the
following property: The larger is the numeric level the larger is the corresponding
expected probability of default. Beside proper ordering, we require that the levels
should translate the predictor into a linear world of logistic regression model in
order to make it optimized for further use in multi-factor analysis. The level
assignment is carried out by fitting a one-dimensional logistic additive model for
each categorial predictor X as follows

(2.1) log { ——} = f(X).
1—p

Model 2.1 is a special case of the general multi factor model A.8 described in
Appendix A, where we set m = 1 and o« = 0. In this application it is useful to think
of the generalized additive model as of a method for estimating the appropriate
metameter in which to measure the variables. It follows that this way we ensure
both the proper ordering and the translation into the linear world.

Thus. we assume that some predictor X can attain S abstract values Cy,...,Cs

and refer to them as categories. In view of 2.1 and Appendix A we seek for an
assignment f such that

(2.2) fley=E. &=1.. 58

where Ly..... Ls are arbitrary real numbers. These numbers are estimated via
a so called local-scoring algorithm, computational details are given in Hastie and
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Tibshirani (1997). In order to work this well data sample size has to be significantly

larger than S. Figure 2.1 displavs a possible level assienment carried out on real
(=] (=] ? .

data.

2

0

f(predictor variable X)

-2

predictor variable X

Figure 2.1. A possible level assignment carried out on qualitative
predictor variable X, which has 9 levels including the category of NA.
The length of each line represents to the proportion of observations
having the corresponding level outlined above this line on the top
horizontal axis.

Since the above described approach is quite general, we might want to specify
the assumptions concerning function f from 2.1 when choosing the method of
estimating and quantifying the appropriate ordering and significance of predictor
categories. In this sense the univariate generalized additive model is equivalent to
fitting an univariate general linear model of the form

S

| (P
(2.3) Iog{l _p} =Y LI{X=cC)}

s=1

where I{X = C,} is the indicator of the fact that predictor X assumes category
Cs. These two methods are intended to be equivalent from the the point of view of
proper ordering of predictor categories, nevertheless the fitting procedures related
to the two model types are iterative and might differ in implementation in different
software packages. As a result the corresponding estimates might slightly differ in
absolute values as well. Because X can always assume just one of the categories
the univariate model 2.3 can be viewed as a special S-dimensional (multivariate)
model.

An important features of this model is that regressors I{X = C}},..., [{X =
C's} are perfectly orthogonal. Moreover, if we add a constant to the model we
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obtain a singular regression matrix, thus another benefit is the absence of the in-
tercept.

Assume we fitted model 2. .3 and obtalned estimates L1 ,ZS of coeflicients
Ly,..., Lg. respectively. Let L (1) - L ) be estimates Ll, e ES ordered in as-
cending order. This ordering plowdes orderino" of obligors by their estimated
probabilities of default and suggests order of categories Cy,...,Cy in these terms.

Finally, denote by C),...,Cs) the suggested order of categories Cy,...,Cs.

Once we obtain optimal level assignment for all categorical predictors we test,
whether two subsequent categories differ significantly or not. the corresponding co-
efficients are compared. Afterwards, it might be useful to joint the non-significant
categories together.

1.1.2. Jointing predictor categories. Realize that, with the absence of the
intercept, tests whether Ly = 0 does not have much meaning. Moreover, Ly = 0
does not mean that category C, is not statistically significant. Here, significance
should rather be considered in terms of the relative number of observations of
category Cy and by mutual comparison of levels L,. This comparison is crucial for
jointing categories.

Let us introduce a set of orthogonal vectors Dy, k = 1,...,5—1, each of length
S having the following property. The k-th element of vector Dy equals 1, while
the & + 1-th element equals —1, the other elements of this vector equal 0. We
refer to them as contrasts. Further, denote the vector of the ordered estimates of

—~ o~

coefficients Ly, ..., Ls by L() thus L() = Ly < s 5 5 L(sy). For an arbitrary k we
have that Dy ' L() = ], By = L{-;.,.). Employing the introduces notation, we are
able to describe the 1)10ble1n of testing, whether two subsequent categories differ
significantly, with a sequence of null hypotheses as follows

-~

H[_},ll DlTi() = L(g) — Z(l) =
Ho DkTE() = z(_k-i—l} — E(m =0

Hos_1: Ds—1'Ly = Lisy — Lis_1y=0

Recall that in ordinary linear regression we are used to employ the t-statistic to
check whether two coefficients are significantly different. In the context of gener-
alized linear models. in particular logistic regression, this statistic does not follow
t-distribution. Nevertheless, by Wald's (1943) results for maximum likelihood es-
timators (ML), having enough data one can safely use asymptotic approximation
by the standard normal distribution, for the test statistics T}, corresponding to
the k-th hypothesis, which reads
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where o denotes the standard error. Equation 2.4 holds because all coefficient
estimates are uncorrelated since linear regressors / {X =Iq}, .-, I{X = Lg} are
orthogonal. Realize that Tj is large if the difference L(k+1] — Z(;\.) is large and if
standard error O'(L(H_l) L(A,)) is small. The standard error is small if particular

standard errors O'(L(k+l)) and O‘(E(;H_”) are small. thus, if estimated coefficients
are not inaccurate. In our case, inaccuracy is mainly caused by small number of
observations in the considered category.

Note that because of the ascending ordering of coefficients it should be enough
to test the null hypotheses against a one-sided alternatives, however, we discuss
also the case of two-sided alternative. With respect to the large-sample normality
of ML estimators, we compare T with the appropriate critical values of standard
normal distribution to obtain test results of one- or two-sided alternatives. Equiv-
alently, for the two-sided alternative, admitting that T} has asymptotically the y?
distribution with one degree of freedom, critical values of y?(1) distribution can
be employed.

Set the confidence level to be o, 0 < a < 1. If T}, > & (1 — «), we reject the
k-th null hypothesis and categories C, and Cp., are considered to be significantly
different and no jointing is committed. On the other hand, T}, < & !(1 — a) does
not necessarily imply that categories C; and Ci,; should be joined as it is outlined
in the following paragraph.

[t often happens that a sequence of non-significant differences is encountered.
Let us consider three (ordered) categories C; (K); Cik+1) and C(x492) whose correspond-
ing suhsequent estimated coefficients L(;\ L(}-.:+1_) and Z(;H_;g) do not differ signif-
icantly. If L(g-) and L(Hg, differ significantly we cannot reason jointing all three
categories in one even if the neighbouring couples do not significantly differ. In
these cases we have to choose which couple should be joined. However, the new
joint category need not be significantly different from the left one after jointing
because the new level coefficient of the joint category shifts towards the coefficient
of the left category. Such situations might occur if the statistic 7}, for Cy) and
Ck+2) is not highly above quantile ®'(1 — «).

The above prescribed situations suggest, that beside statistics 2.4 it might be
useful to calculate T,Em statistics for the second neighbours, namely,

Lk+2) — L)

\/ (L) + 02 (Low)

Statistics 2.4 and 2.5 are usually sufficient for jointing categories, but we could
compute statistics T, for m > 2 if necessary.

In practical applications expert opinion should also be taken into account,
especially in those situations, when statistically suggested order of categories is
different from expert expectation, and in the same time, when two categories
which does not differ significantly must not be joined at any case.

(2.5) T = o k=1,....8-2,

1.1.3. Treatment of missing values. Missing values of categorial predictors
are treated as a category referred to as NA. The level assignment and jointing
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described above fully applies to this category. Generally, it might happen that for
certain reason the NA category improves the predictive power, or its order among
the other categories is somehow suspicious. These cases require special treatment
if any. Usually it is recommended to exclude these predictors from the modeling
database, that’s why we do not examine this issue further.

1.1.4. Reduction of the predictor set. Referring to our previous comments,
we outline again that the aim of the single-factor analysis is to prepare a reasonable
set of default predictors that can be used later in multi-factor analysis. Because of
the fact that at the beginning we are given a large amount of possible predictors, it
is important to reduce this list of predictors in order to obtain the most reasonable
ones, which can be finally used in the multi-factor analysis. When assessing the
appropriate criteria for reduction of the predictors set, two kind of characteristics
are taken into account. First, we would like to evaluate the discriminative ability
of each predictor with respect to separation between defaulting and non-defaulting
obligors. Discriminative characteristics, namely, the receiver operating characteris-
tics curve and the related area under this curve are employed to exclude predictors
with none or low discriminative power. Second, we desire to choose predictors that
are not probability dependent in a significant way. The reason for this is obvious,
strong dependence among predictors causes serious problems within the multivari-
ate analysis as the estimates of coefficients are inaccurate and they can also have
different signs than expected. It is advised to choose only one, at most two, rep-
resentatives out of group of strongly dependent predictors.

Discrimanative ability. The assessment of the discriminative ability of a spe-
cific predictor is accomplished by using the receiver operating characteristics (ROC
curve) and computing its appropriate summary statistics, the area under the ROC
curve — AUC. In this context ROC analysis represents an overall measures for
assessing the amount of information included in the underlying predictor regard-
ing its ability to discriminate between good and bad cases. Because of the fact
that the major of Chapter III is dedicated to these issues we do not expand this
problematic here. Instead, we focus on the dependence structure that determines
the final set of predictors used in multi factor analysis.

Dependence structure. The dependence structure is a fundamental issue of each
statistical analysis. No model can be contemplated without making some assump-
tions about dependence structure of elements involved. In credit scoring models
we are strongly interested in dependence among predictors. Dependence structure
that joins marginal distributions to the joint distribution is fully described by the
copula function. Nevertheless, simpler tools which characterize grade of depen-
dence instead of the copula are often used. These tools are usually called measures
of association. Note, that there is a specific subgroup of measures of association
which are called measures of dependence. There are several properties of these
measures that are important for practical application.
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Assume we have two random variables X, and X, whose dependence is mea-
sured by a measure of dependence o(.X;, X,). Realize that according to Nelsen
(1998) and Slaby (2004), the following properties are required in any case:

(1) The measure of dependence is symmetric: (X, Xa) = 0(Xs, X).

(2) The measure of dependence is bounded by 0 and 1: 0 < §(X;. X,) < 1.

(3) The measure of dependence distinguish independence: (X, X,) = 0 if

and only if X| and X, are (probability) independent.

(4) The measure of dependence distinguish certain kind of perfect dependence:

e For continuous X; and X, 0(X,, X,) = 1 if and only if each of X
and X, is a strictly monotonous function of the other.

e For categorial X, and X, with S, and Sy categories, say S; < 5o,
0(X,Xy) = 1 if and only if there is a one-to-one correspondence
between categories of X, and an Si-element subset of categories of
X5 where each of possible S5 — Sy left categories of Xy occurs merely
with one of the categories of Xj.

(5) The measure of dependence is invariant under certain transformations:

e For continuous X; and Xy, d0(g(X1).h(Xs)) = o(X, X3) whenever g
and h are strictly monotonous functions.

e For categorial X| and X, 5(g(X1). h(X2)) = 6(X,, X,) whenever in
this case g(X;) and h(X;) arise by permutation of categories of X,
and X,, respectively.

Measures of association are less restricted than measures of dependence since
they are designed to measure special types of dependence. For example, equiv-
alence in point (3) of the above prescribed list does not hold, an implication is
satisfactory. Similarly, the lower bound in point (2) could be different too, it often
equals to —1.

Further, we introduce a measures of dependence that we derived using the
standard Pearson y? statistics.

Assume again that we have two categorial predictors X; and X, which attain
Sy and Sy abstract values (categories) Cyy,...,Cg, and Coy,...,Css,, respectively.
Denote

[)U:P(){IZCNXAV:C‘]J) 321,51 jzl,SQ

the joint probabilities of attaining categories Cy;, Cy; and

S2
pDi. = P(X1 = Chﬁ) — Zp,'j.
j=1

S1
p.; = P(X3 =Cy) = ZP-@j,
=1

the marginal probabilities. The matrix (p;;) is usually called as the matriz of
probabilities. By definition, predictors X; and X, are (probability) independent if
Dij = Di. * P-j- '

Conversely, for S; = S predictors are perfectly dependent when categories
Ci1....,Cys, form faithful pairs with categories Cy,...,Csg,, that is, these pairs
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always occur together. Formally speaking it means that for any fixed 7 or j we
have just one p;; > 0, and p;; = p;. or p;; = p.;, respectively.

[f numbers of categories differ, for example Sy > S;, then the notion of perfect
dependence is slightly modified. In such a case there is an S| x S;-square sub
matrix of (p;;), which satisfies the above conditions while the columns left contain
just one p;; > 0. Informally speaking, all categories Cy,...,Cs, have faithful
partners among categories Cy, ..., Cag,.

Now assume that we have n simultaneous observations of predictors X; and
Xs. Let n;; be the number of cases when X; assumes category Cy; and X, assumes
category Co;. Further let n;. be the number of cases when X assumes category Cy;
and n.; the number of cases when X, assumes category Cy;. Thus, we have

So
n;. = E n'-"'_]".'

=1
S S

n = Z: n; = Z n.;
i=1 j=

In statistical literature the matrix (n;;) is called the contingency table.
The chi-square statistic y* defined as

o M. » M5 \*
S 5o n” S < — S
I
s
(27 ) ) PL

i=1 j=1

T n
is the standard tool for testing independence in contingency tables. Formula 2.7
is actually not suitable for computation, so we try to derive an equivalent form
which used to be employed while computation:

_ _ Lo M.\ 2 _
5‘1 'J (n” .#) 1 S] S'.! ( 2_2 AL B _|_ 12_ 3)
2 Z Z " 1 Z Z nijn nnijnin.; + nins
X = i Mg -

o

| 15705
=1 j=1 5 i=1 j=1 et
S Sy ng S, S S Se
;{"
S0 ) S SEE) B) SITES-D ) WITE
= n,-.n.j = =
=1 =1 =1 =1 =1 =1
S1 S :
ke nfj
= nE E —2n+n
i
i=1 j=1
S, S
e n,?j
(2.8) = H-E E —n.
T 705
=1 j=1 "

Note that large values of the x* statistic suggest that hypothesis of indepen-
dence does not hold. In practice, asymptotic critical values are usually used in tests
as \~ statistic 2.7 has asymptotically X'(?sl—l)(.s'z—l) distribution with (S;—1)(S;—1)
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degrees of freedom. It is known that this asymptotic approximation is plausible
only in cases where n;.n.;/n > 5 for all combinations of i and j.

Now we employ the described y* statistics to derive a theoretical measure of
dependence that has similar properties to those we have listed. Slaby (2004). We
follow those prescribed properties and we show that a theoretical measure of de-
pendence between X; and X, defined as

]

Sh
2. 2 =
39) X1 111111(5'1 ) —1 ZZ

=1 ;—1

satisfies them. It is clear that y% is symmetric. Further we show that 3. distin-
111 : sy 2 . . op 9
guishes perfect dependence if y7 = 1 and perfect independence if xy7 = 0. In other
words we need to prove that 7 is bounded and the introduced standardization
ensures that lies between 0 and 1.

First we consider that our two categorical predictors X, Xy can assume S} and
Sy categories, where S; = S5 and that predictors are perfectly dependent. Thus
we are looking for a constant A such that the following holds

I

s e 1
210) K (233 2 —n)l=1 = K

t el T 132
=1, 3=1 ' r'
%’.
S g b ” P
I = Z( s ”)—1=( L b ‘2)
* \DPi- Pl Pi-P-S, \P1-P1 P1Ps,/,
=1
D3y Pss. Pé, D%, s,
4 R 2 it i— e e v o e, ¥ ]
\p2pa p2p-s,) \Ps,-p1 Ps-D-s2 ).
=1 =1
(211) = S1-1=K-= !
' - (S —-1)

Second we consider that our two categorical predictors X, X5 can assume S; and
S, categories, where S| < S5 and that predictors are perfectly dependent, in this
case for the formula labelled as 77 we find that

S So ])2- S1 S1+(52—51) pz
izl j=1 Pi-P.j i1 = Pi-P.j
S 9 ) 2 -2
_ Pi T Pis, Pi(si+1) P Pisi+(82=51)) | |
— \PiP1 Pi-P-S, Pi-P-(S1+1) DPi-P-(S1+(52-51))
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3 ) 2 2
(2.12) _ 1)121 i e Pis;  Pisi+ - P1(514(52-51)) -
P1.-P1 P1.P.Sy P1.P-(S1+1) P1.P-(514+(52—S1))
il
o, 2 n2 2
+ [ Ps . PEis Psisien 4 Psisitsems) )
DPsy-Pa Ps,-P-S; PSy-P-(S1+1) PS1-P-(S1+(52—51))
=

The terms in the above prescribed equation sum to one, thanks to the definition
of the perfect dependence in the case where S; < S,.

This can be easily presented on the next example. Consider two categorical
predictor variables X; and X, such that X, assume three categories coded by
integers 1 to 3, thus S; = 3. X, assumes six categories coded by integers 1 to 6,
thus Sy = 6. The variables has the following form

X, =
X‘) =

(1,1.2,3.3.2.1.1.2.2.3)
(1,1,5,4,3,2,1,1,2,2,6)

The corresponding contingency table and the matrix of probabilities have the fol-
lowing form

o 0101111011
2 O013[(0(0(11(0
1 410(0(0(01[0
Categories of X;/X5[1[2|3[|4|5|6

Table 2.1.

Contingency table related to categorical predictors X, Xos.

3 0 | 0 [I/1l][1/il] 0 |1/11

2 0 [3/11] 0 0 |1/11] 0

i | 4/11 0 0 0 0 0
Categories of X; /X, | 1 2 3 4 5 6

Table 2.2. The matriz of probabilities related to categorical predic-
tors X1, Xo. The square sub-matriz outline with blue colour satisfies
the condition that for each i or j there is only one p;; > 0, and
pij = Pi. 0T pij = p.j, respectively. The columns left contain just one

Pij > ().
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In this illustrative example we find that the term labelled as T has the following

form
_ (4/11)? (3/11)° L
= ((4/11)(4/11>)+((4/11><3/11>+(4/11>(1/“’),

A o L
e W

(1/11)? (1/11)? (1/11)°
((3/11)(1/11) "B/ " (3/11)(1/11>)j1

S—

.

<

= 5 -1

The above presented example should provide clear insight how the terms in equa-
tion 2.12 sum to one, under the assumption of the perfect dependence in the case
of S1 < Ss.

Realize that if we reverse the role of S| and S,, thus if we assume that S, < S},
the result in equation 2.13 would be S; — 1. Finally we are able to conclude that
the standardization constant that brings the x? statistics to [0, 1] has the following
form

|

2.14 H=
(2.14) ' n(min(Sy, S;) — 1)

For the sake of completeness we show that if predictors X; and Xy are probability
independent, statistics y7 equals zero. Thus under the assumption of independence

Pij = pi.p.; We have
— 1) =: 1)

thus 2.15 equals zero if T, equals zero under the assumption of independence. This
can be shown as follows

St So

. 1 o
2.15 X5 = — E
(2:18) = min(Sy, S3) — 1 (Z Z Di. * P.j

i=1 j=1

L

I

Sl q‘g 2
Pij
Ty = L1 = @
; Z_; p,j.p.j
S; S
~ P?j — 1 P
ZZ})[) - ) Pij = Pi-P-j+
i=1 j=1 £
the later statement is true because
Sy S 9 Sy S
Y3, - S5 e
St So
- 3 n,
=1 j=1
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For the theoretical measure 2.9 it holds that,
0<x7 <1

and statements about x3 = 1 and y3 = 0 are exact. Indeed, xy2 = 1 if and only
if X; and X, are perfectly dependent while x7. = 0 if and only if X; and X, are
independent.

Finally, we outline that the sample counter party to theoretical measure 2.9 is
defined as

S1 So

2.16 = —Ii 1
( ) Xs min(S;, Sp) — 1 Z Z N * N.j

i=1 j=1

Using the above described measure of dependence, precisely it’s sample version
2.16 for determining potential dependencies among predictors and using the AUC
statistic while assessing the discriminative ability of the predictors, we are able to
reduce the long list of categorial predictors.

1.2. Continuous predictor analysis

The single-factor analysis in case of continuous predictors consists of slightly dif-
ferent steps than it was described above, obviously due to different nature of the
predictors. Because of potential difficulties that might occure, it is useful to per-
form the reduction of the continuous predictor set, before any other analysis is
done. Being aware of the facts, that further analysis involves setting boundaries
(cutoff points) which define the range of reasonable predictor values while exclud-
ing potential outliers, next assessing necessary transformation of predictors. We
should perform the reduction of the predictor set using such measures that are
invariant with respect to monotone transformations and which are robust against
outliers. At this stage we employ the Spearman correlation coefficient and the
discriminative statistics discussed in detail in Chapter III. These fulfill the above
outlined properties and thus in this way some predictors can be discarded even be-
fore any finer analysis is done, just on the ground of Spearman coefficient matrix,
discriminative power statistics.

The ongoing part of the single-factor analysis regarding continuous predictors
is performed only on the ground of the reduced predictor set. This involves the
following steps.

[n contrast with categorial predictors. continuous predictors have to be tested
for outliers. The goal of the outlier analysis is to check continuous predictor data
for outstanding cases which we may have better excluded before multi-factor mod-
eling.

Further we need to check for the relationship between a specific predictor and
the default status. We expect that a reasonable predictor variable has a monotone
relationship with respect to the default probability. In order to obtain notion or
a possible shape of this relationship we employ a non-parametric smoothing tech-
nique.

The next step involves check on linearity assumptions. Due to the fact that we
are intent to employ a logistic regression model which implies a linear relationship
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between the log odd and the input predictor variables.

1.2.1. Reduction of the predictor set. When assessing the appropriate crite-
ria for reduction of the predictors set, again two kind of characteristics are taken
into account. First, we would like to evaluate the discriminative ability of each pre-
dictor with respect to separation between defaulting and non-defaulting obligors.
Second, we would desire to choose predictors that are not probability dependent
in a significant way. The reasons for this are the same a before, strong dependence
among predictors causes serious problems within the multivariate analysis as: the
estimates of coefficients are inaccurate and the could also have different signs than
expected. Thus it is advised to choose only one, at most two representatives out
of group of strongly dependent predictors.

Diseriminative ability. The assessment of the discriminative ability of a spe-
cific predictor is again accomplished by performing the ROC analysis and comput-
ing the appropriate summary statistics as it was done in the categorical case. In
this context the ROC curve represents again an overall measures for assessing the
amount of information included in the underlying predictor regarding its ability to
discriminate between good and bad cases. Because of the fact that the major of
Chapter III is dedicated to these issues we again do not expand this problematic
here.

Dependence structure. Continuous predictors comprise various financial crite-
ria. Financial criteria are likely to be highly dependent. That is why the grade of
dependence is emphasized as a key feature when selecting continuous predictors.

In the first step, we classify financial criteria in groups from an economical
point of view, such as liquidity, activity, turnover, solvency etc. Criteria within
these groups are typically very strongly dependent and hence only one or two pre-
dictors from each group are plausible to select at most. Moreover, one can find
a lot of strongly dependent couples of financial criteria, each belonging to a differ-
ent subject group. Note that the strong dependence among continuous predictors
is caused by the fact that financial criteria are composed of relatively small num-
ber of aggregate items of financial reports. It means that the number of carefully
selected financial criteria is typically not larger than the number of the aggregate
items. In other words the amount of information gained from financial criteria
cannot be larger than the number of the aggregate items.

In credit scoring models, continuous predictors are supposed to be concordant
or discordant. The concordance/discordance is a typical representative of a mea-
sure of association, a slightly relaxed measure of dependence Nelsen (1998). Two
points (z,y;) and (xs, yo) are concordant if (x; —x2)(y; —y2) > 0 whereas they are
discordant if (zy —x2)(y; —y2) < 0. The more realizations of random vector (X, Y')
are concordant the more concordant is conceived the random vector itself. The
same applies to discordance, but understand that concordance and discordance
compensate each other similarly to the positive and negative linear correlation.
Thus in the case of credit scoring models a certain measure of concordance should
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be used to measure the grade of dependence between continuous predictors. We
employ the Spearman coefficient.

Assume that we have two continuous predictors X, and X5, that is, they follow
distributions with certain continuous distribution functions. Assume that we pos-
sess two simultaneous samples of values of the predictors, namely, (zq,...,I1,)

BRA (B51005 Tl 188 R R, and Rsq,..., Ry, be the corresponding ranks
of (x11,...,21,) and (xa1, ..., Ta,), respectively. Thus, Rg = m if X is the m-th

largest Value in marginal sa,mple (Ts1y...,%en), s = 1,2. Since predictors are con-
tinuous the ranks are well defined with probability one. The Spearman coefficient

is defined as the sample correlation coefficient calculated from ranks Ryq,...., Ry,
and Heisooo o Bon

pPs = E:;l le-RZ?' — R.EI—R—»Q
(S B =B (S, B — T

where R; =n='Y." | R;;,j = 1,2. Note that sometimes the Spearman coefficient
is called the Spearman correlation coefficient obviously because of its definition.
However, this term is unfortunate since the Spearman coefficient do not measure
the linear correlation between X; and X, but a kind of more general association,
namely the above prescribed concordance. It holds that the Spearman coefficient
can be rewritten as follows

(2.17)

. L 6 - o B
(2.18) ps =1 = sy 2 (Buk = Ru)

k=1

The later equation is suitable for computer implementation and can be derived
from 2.17 by substituting the following terms

o 1 n 1 n - 1
B = =Y Ru==Yi=222 j=12

2 Bewe n <= 2
i: R — i R2 = ifz _ n(n + 1)6(211 + 1).
i=1 i=1 i=1
i RiiRai = i R, + zn: Ry | - % i(le Ry;).
1=1 =1 i=1 i=1
_ n(n+ 1)6(2n f1) %i(Rh Ry)?

Simplifving equation 2.17 after substitution is straightforward thus we do not give
the calculus here.

Realize that the Spearman coefficient does not change its value under strictly
increasing transformations applied to variables X, and X, whose mutual concor-
dance 1s measured, because such transformation does not influence ranks. Under
strictly decreasing transformations it just reverts its sign. Note that because the
Spearman coefficient is based on ranks, it is also robust against outliers. Further
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note that
(2.19) =1 < pg <1

where ps = 1 means that variables X, and X, are perfectly concordant, pg = —1
means that variables X, and X, are perfectly discordant, and pg = 0 suggests that
X1 and X, are neither concordant neither discordant. In other words two random
variables are perfectly concordant if they are strictly increasing transformations
of each other. In turn, two random variables are perfectly discordant if they are
strictly decreasing transformations of each other.

The critical values p§(a) are tabulated, however for n > 30 the asymptotic
normality of the Spearman coefficient is employed. We compute the critical values
at level a, 0 < a < 1 as follows
o-1(3)

vVn — 1

thus the hypothesis of independence is rejected in case |(ps)| = p§(a).

As prescribed above the Spearman coefficient is robust against outliers. It has
the advantage that we can calculate the matrix of Spearman coefficients before
any outlier analysis is carried out. In this way some predictors can be discarded
even before any single-factor analysis, just on the ground of Spearman coefficient
matrix and discriminative power statistics. It can save quite a time because the
single-factor analysis of continuous predictors is quite complicated and elaborate.
Further note that at any case the Spearman coefficients must be calculated from
data before cutoffs and missing values replacement. One simple reason is that the
Spearman coefficient rests on ranks which are not well defined for samples with
ties. Certain modifications can be used for equal observations, but there are other
reasons not to do it. Replacement of missing values can artificially change the
ralue of the Spearman coefficient. On the other hand, cutoffs can significantly
decrease the value of the Spearman coefficient because all diversity beyond cutoft
points is shrunk in one point.

(2.20) psla) =

1.2.2. Assessment of outliers. Single-factor analysis of continuous predictors
involves a check of the tail distribution and outliers. Firstly, wrong input data can
be detected, secondly, a check of tails is useful for assessment of cutoff points and
suggestion of appropriate transformation. Wrong input data involves both wrong
figures and obligors which does not belong to the modelled group. For example,
financial institutions typically exhibit huge balance sheet sums and tiny ratios of
equity in contrast with non-financial corporates. Hence the first check of outliers
can be also viewed as data validation. The simple check involves plotting the
data, or more precisely the left and right tails, to see whether there are not a few
observations which are one or several times larger or smaller than their neighbours.
An illustrative example is provided in Figure 2.2. Such obligors are then checked
for validity. Outliers are discarded depending on the result of the validity check
and on feasibility of data recovery.

We are ahead to estimate the 5% and 95% quantiles ug o5 and uggs; of the
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underlying distribution of the actual predictor.i.e.
upos = inf{x: Q(x) > 0.05}.
upos = inf{z: Q(z) > 0.95},

where Q(x) denotes the unknown distribution function of the considered predic-
tor.

As we do not assume any particular distribution to be followed by the pre-
dictor we estimate the appropriate quantiles according to the following scheme.
Assume that we observe n realizations of the underlying predictor variable X,
that is xy,...,x,. We order the sample z,...,x, obtaining the ordered sample
T(1),--..2(n). The appropriate quantiles are than estimated as

Up.05 = T([(n+1)0.05])>
Up.95 = L([(n+1)0.95])>

where | | denotes the lower interger part. Obligors corresponding to values
smaller than the estimated g o5 quantile and larger than the estimated ug g5 quan-
tile are selected as possible problematic cases. Proceeding this way for all contin-
uous predictors we obtain a set of suspicious obligors (in the sense of their data).

Realize that at this stage no regression outliers analysis is worth doing because
later possible transformations of predictors can change everything in drastic way.
Regression outlier analysis is postponed to multi-factor analysis when final models
are put through regression diagnostic procedures.

u
> 1% quantile 99% quantile
-
[}
F |
2
w
o
a ¢ .
Left tail area Right tail area
= =
(=
-2 -1 0 1

Predictor variable X

Figure 2.2. An illustrative example of the possible distribution of
a single predictor variable. The suspicious values are expected to be
found in one of the tail areas of the distribution.

1.2.3. Treatment of missing values. In single-factor analysis of continuous
predictors, missing values are not substituted in the first step as it is not desirable
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to dim down the real discriminative ability of the predictor by any substitutions.
As soon as the discriminative ability of the predictor with missing observations
discarded is checked one can proceed with a check of what happens if various
substitutions are used. There are natural cases when missing values appear and
substitutions are relevant. Typically, some financial criteria are not always well-
defined because of division by zero or, for instance, because they have a good
meaning only for positive values of input. In such cases it is usually logical and
well reasoned by experts to assign an ultimate upper or lower value. These levels
are typically put equal to cutoff points described below. Generally, we can observe
anything-decrease, increase as well as stagnation of the discriminative ability after
substitutions. Substantial decrease is unfortunate, of course, and suggests that
problems may be encountered in subsequent multi-factor analysis where substitu-
tion of missing values can be needed because of combining many predictors. On
the other hand, substantial increase is suspicious and has to be investigated care-
fully. It can suggest that missing values correspond systematically to certain kind
of obligors.

1.2.4. Testing monotonicity and suggestion of transformations. At this
stage of the single-factor analysis we are ahead to get notion about the univariate
regression dependence between the considered continuous predictor variables and
the default probability. We assume that the predictor set is already reduced using
the discriminatory power statistics as described above, so here it is not expected
that there would be any predictor that would have a constant (no) regression
relationship with respect to the default probability. Note that such predictor would
perform bad also on the ground of the discriminatory ability, thus it would be
excluded earlier. However, if a certain predictor has a reasonable predictive power
in term of the discriminatory statistics, it does not have to be clear, whether
this predictor has a monotone regression relationship with respect to the default
probability. Realize that the assumption of a monotone relationship is obvious
since it is desired that a reasonable predictor does not have for example a decreasing
regression relationship with respect to the default probability in the certain range
of its values and a increasing relationship in another (disjunct to the the first one)
range of its values. The test on the monotonicity assumption is performed by
employing a smoothing technique.

Having observed quantity X, the expected value of Y is given by the regression
function. It is of great interest to have some knowledge about this relationship. If
n data points {(x;,y;)}’_, have been collected, the regression relationship can be
modeled

yi = m(x;) + € Il B )

with the unknown regression function m and observation errors ¢;. The aim of
a regression analysis is to produce a reasonable estimate m(x) to the unknown
response function m(x). By reducing the observational errors it allows interpre-
tation to concentrate on important details of the mean dependence of Y on X.
This curve approximation procedure is commonly called smoothing. Especially in
this section we have performed a nonparametric smoothing approach, which offers
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a flexible tool in analyzing unknown regression relationships. The term nonpara-
metric refers to the non-prespecified functional form of the regression curve. The
function estimates m(x) are often called smooths (when smoothness is assumed).
We assume that the reader is familiar with the basic ideas about non-parametric
regression techniques. However we outline that in our context we deal with regres-
sion estimates m(x) that can be expressed in the following form

1 n
2.21 n(r) = — Whilx)y;,
(221) () = — Z (x)y

where {W,;(z)}"_, denotes a sequence of weights which may depend on the whole
vector (ry,...,x,). Thus a local averaging procedure of the form 2.21 can be
viewed as the basic idea of smoothing. The amount of averaging is controlled by
the weight sequence W,;(x),7 = 1,...,n, which is tuned by a smoothing parameter.

For our purposes we employ the so called supersmoother proposed by Friedman
(1984) which is based on local linear k— NN (k nearest neighbor estimates) fits in a
variable neighborhood of the estimation point . Local cross-validation is applied
to estimate the optimal span as a function of the predictor variable. A great
advantage of the & — NN estimate is that its computation can be updated quite
easily when & runs along the sorted array of values of predictor X. The algorithm
requires essentially O(n) operations to compute the smooth at all ;. It is therefore
highly computationally efficient thanks to the following recursive approach. In case
we suppose that the data have been pre-sorted, so that r; < x;..i=1,....n—1.
Then if the estimate has already been computed at some point r;, the smooth at
ri.1 can be recursively determined as

. . 1
(2.22) me(Tip1) = me(x;) + T (Yittk/21+1 — Yielk/2)) »

where & denote the number of nearest neighbors corresponding to z; and .r;; and
(k/2] = sup{i:i < k/2}. We do not expand the technical details of this smoothing
method here. We refer the interested reader for example to Hardle (1994).

As it was prescribed above we employed this smoothig technique in order get
insight about the regression relationship between our dependent variable ¥ having
two possible outcomes (default coded as 1, non-default coded as 0) and the ex-
planatory (predictor) variable X. A simple look at a scatter plot of observations
x; versus ¥;,, 1t = 1,..., n does not always suffice to establish an interpretable re-
gression relationship as shown in Figure 2.3.

On the other hand, if we smooth the values x; against y; using the Friedman’s
adaptive supersmoother. we are able to produce very clear and reasonable esti-
mates of the regression relationship between the two considered variables. This is
ilustrated in Figure 2.4.

However, we do not observe such a nice behaviour every time. There are plenty
of cases when the monotonicity assumption is violated. An illustrative example
is provided in Figure 2.5. Those predictor variables where the monotonicity as-
sumptions are violated has to be checked for validity. There might occure some
cases when the non-monotone behaviour has a reasonable economic interpretation,
however these predictors are not suitable for later multifactor modelling.



1. SINGLE-FACTOR ANALYSIS

08

Dependent variable
0.4 0.6

0.2

a0 A EOO0THe O DD S O e -

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Predictor variable

0.0

Figure 2.3. A scatter plot of x; versus y;, i = 1,...,n. Clearly it
does not provide any useful information about the relationship be-
tween the two underlying variables.
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Figure 2.4. A scatter plot of x; versus y;, i = 1,...,n and the
appropriate smooth. A clear monotone/decreasing regression rela-

tionship is observed.
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Figure 2.5. A scatter plot of x; wversus y; and the appropriate
smooth. A clear violation of the monotonicity assumption.

Once we have tested the predictor variables for monotonicity we further desire
to test another stronger assumption, i.e. the test of linearity assumption. With
respect to the ongoing multi-factor analysis it is reasonable to check whether the
assumptions of the underlying logistic regression model apply to the data. With
reference to Appendix A the logistic regression model assumes the following rela-
tionship

m
exp {a- + ) x; :5}-}

j=1
1 + exp {a + > .rj.}j}

j=1
where 7(z) = P(Y =1/ X =x) =1 - P(Y = 0|X = x). Equation 2.23 implies a
linear relationship between the log odd and the input explanatory variables:

m

5 [ rw(x) ,
(22—1) log m =+ JZI IJ),J

(2.23) T(z) =

[n case the above described linear relationship does not hold it is recommended to
suggest certain transformations of predictor variables.

Namely, for each predictor we look for an appropriate function f in an univari-
ate model

. pomx)

Since f is non-parametric in nature we employ the smoothing technique again.
In the first stage we use the Friedman supersmoother to get notion about pos-
sible shape of f for values of the predictor within data range. Smoothing can
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be done without excluding any obligors as outliers because smoothers focus on
data locally and hence outliers do not disturb the final estimate unless in the very
tail area. After we have determined the shape of the non-parametric smooth we
try to give a parametric transformation which is close to the fitted smooth. The
closeness is determined according to a technique for comparing parametric and
non-parametric curves. However, we do not expand the related problematic here.
The choice of the parametric transformation can be taken within a predefined set
of parametric functions such as f(x) = blog(xr — a). Also, there is a possibility to
select a group of good candidates for transformation f and make the decision later
based on practical arguments. The final choice of the transformation need not be
strictly technical a broad space can be given to expert arguments.

2. Multi factor analysis

As soon as a reasonable set of predictors is settled within single-factor analysis,
building of multivariate models can be launched. All the models that we consider
within the process of multi factor analysis stems from the class of generalized lin-
ear models. The first part of this section provides a background information about
the genesis of generalize linear models and explains why they are useful in our
situation. Further paragraphs contain the information about statistical properties
of this specific class of regression models. Finally, model selection techniques and
techniques of assessing the goodness of fit of a model as well as model diagnostics
methods are described.

The generalized linear regression model is a generalization of the usual linear
regression model, so it is important to outline the limitations of the standard linear
model and why we would like to generalize it. In practical applications it is quite
common that the relationship between the response and the predictor variables is
not linear. The response variables could be bounded, such as categorical response
rariables as in our situation, or the variance is non-constant, it could be expressed
as the function of the means. Thus in these cases, the assumptions concerning the
standard linear regression model does not hold.

General linear models are a generalization of linear regression models. Specif-
ically, the predictor effects are assumed to be linear in the parameters, but the
distribution of the response, as well as the link between the predictors and this
distribution, can be quite general. A general linear model also consist of a random
component, a systematic component and a additional link function, linking the two
components.

The response variable Y represents the random component and it is assumed
to have exponential family density 2.26

yh — b(0)

(2.26) fy;0;0) = eXp{W +c(y,c.b)}-

where b(+) is a smoothly differentiable function to the second order, a(¢) and ¢(y, ¢)
are functions such that a(¢) > 0 and ¢(y, ¢) does not depend on #. Further note
that ¢ is called the dispersion parameter. The parameter # depends on values

x' = (ry,...,x,) of explanatory variables and on the vector of coefficients (3
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trough the linear predictor n = a + & 'B. The linear predictor n represents the
systematic component. Further there is a monotonic differentiable link function g
such that n = g(u). i.e.

m

(2.27) glp) = a+ Z L33,
j=1

where 1 = E(Y|X = x). Note that the mean y is related to the 6 by u = b'()
and that a link function for which g(u) = # is called the canonical link.

Many useful models fall into this class, including the Logistic regression model
for binary data, that we employ.

2.1. The Logistic regression model

The logistic regression model assumes that we have a binary response variable
Y having alternative (Bernoulli) distribution Alt(7). Thus variable Y has two
possible outcomes Y = 1 indicating that the obligor is a defaulter and Y = 0
indicating that he is a non-defaulter. The mean g in this situation is equal to
n=FEY|X =z)=PY =1X = x) = n. We denote this probability as 7(x)
reflecting its dependence on values &' = (zy,...,x,,) of predictors. In case of
logistic regression the link function g(-) introduced above has the form 2.28

(2.28) g(m(x)) = log li(—'f():n)

With this notation the logistic regression model takes the form
m
m(x
(2.29) log i P > xif;.
Jj=1

or equivalently
exp(a + Z Fii3;)
(2.30) m(x) = =

1 +exp(a+ ) xi3;)
j=1

The term on the left side of equation 2.29 is called the logit or the log odds.
The corresponding conditional Bernoulli density of Y can be then written as

(2.31) fy.rw(@)=PY =y|X=xz)=(r(=)'(1-nx)"™, y=0.1

Fundamental model fitting techniques seek for estimates of a and 3,..., 3,
which maximize the conditional log-likelihood implied by Bernoulli distribution
2.31. The conditional log-likelihood is introduced below.

Assume we have n independent subjects. With n independent subjects we
threat n binary responses (yi..... yn) of random variable Y. Further x|, .... x

are the corresponding settings i.e. @ = (ri,....Tym) denotes the setting i of

1
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values of m predictor variables, i = 1,.... n. The likelihood function of the n inde-
pendent subjects is then equal to the product of marginal Bernoulli densities 2.31.

(2.32) Lila,B) = H (7(zi, ., )" (1 — 7 (s, (1.;@))“_”').

i=1
Above we denote m(x;) = m(x4. o, B) in order to outline to which term the o and
3 relate. The corresponding conditional joint log-likelihood, denote it as l(«a, 3) is
equal to the sum of the corresponding marginal conditional log-likelihoods. The
formula for the joint conditional log-likelihood reads
(2.33) l(a,B) = Z (yilog (m(zi, o, B)) + (1 — yi) log (1 — 7 (xi, v, B))) -

=1

Estimates a, ,.f'gfl, i§ 5 ._,;'3,,,_ of a and 3,,..., 3, obtained by maximization of 2.33 are
called mazimum likelihood estimates. The estimating procedure is done by the
Newton-Raphson algorithm, which is general-purpose iterative method for solv-
ing nonlinear equations. Computational details are given for example in Agresti
(2002).

Realize that maximum likelihood estimates are parameter values under which
the data observed have the highest probability of occurrence. Note the parameter
values that maximizes the log likelihood function 2.33 also maximizes the underly-
ing likelihood function, however it is simpler to maximize the log likelihood since
it is a sum rather than a product of terms. Finally, for further purpose denote

S E(B) the standard error of a multivariate parameter B and let cov(3) denote the
asymptotic covariance matrix of 3.

2.2. Parameter interpretation in the logistic regression model

A reasonable interpretation of the regression parameters is a key feature of under-
standing the magnitude of the estimated effects. The interpretation of parameters
in the logistic regression model is based on the following simple calculations. Ex-
ponentiating equation 2.29, the logistic model can be equivalently written in terms
of odds of the positive response as

m

(T4
(@) = exp Q+Z;r,-jdj ;
j=1

(234 1 — (x5

thus the probability of the positive response is

exp (o + Z z:;8;)

J=1

(235) 'H'(:Bz) = m .
1+ exp (a+ 3 zi;53))
j=1
Equation 2.34 provides a basic interpretation for the magnitude of 3’s. Assum-
ing that predictors X, ...,X,, are functionally uncorrelated, we can say that the
odds increase multiplicatively by exp(/3;) for every one unit increase in X, holding
all other predictors values fixed. In other words we can say that exp(/3;) is the
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odds ratio, thus the odds at X = x; 4+ 1 divided by the odds at X = z;.

Further we can state that the sign of the a certain parameter 3 determines
whether 7(x) is increasing or decreasing as r increases. The rate of climb or de-
scent is determined by [3|. In case a specific 3; = 0 than random variable Y is
independent of variables Xj;.

2.3. Strategies in model selection

Model selection for logistic regression faces the same issues as in the case of stan-
dard linear regression. The selection process becomes harder as the number of
explanatory variables increases, because of the rapid increase in possible effects
and interactions. There are two competing goals: The model should be complex
enough to fit the data well on one hand. On the other hand, it should be simple
to interpret, smoothing rather than over fitting the data.

There exist many model selection procedures, no one of which is always the
best. Caution is required for any generalized linear model building process. A model
with several predictors may suffer from multi-collinearity among predictors making
it seem that no one variable is important when all the other are in the model. A
variable may seem to have a little effect because it overlaps considerably with other
predictors in the model. itself being predicted well by another predictors. Deleting
such a redundant predictor can be helpful, for instance to reduce standard errors
of other estimated effects.

The common model building procedures are described in the next paragraph
of this section. However, realize that no matter which model building strategy we
choose there is a common feature on which they are based. This relates to the
statistics which we use when evaluating significance of the predictor variables.

The standard tool for testing the significance of predictors generalized linear
regression is the regression z-statistic. Formally speaking, for the logistic regres-
sion model of the form A.10 significance test of predictor variable X; focuses on
testing the hypothesis

(2.36) Ho: 8; =0,

which speaks for the independence of the response variable Y on the predictor
variable X;. According to Wald’s asymptotic results for maximume-likelihood es-
timators, parameter estimators in logistic regression models have large sample
normal distribution. Based on these results, the significance tests of the null hy-
pothesis 2.36 has the following form. With nonnull standard error SE(*}) of 3 the
test statistics

SE(B)
has an approximate standard normal distribution under Hy. Thus 22 has a chi-
squared null distribution with one degree of freedom. This type of statistics is
called the Wald statistics. The multivariate extension for the Wald test of Hy :
B = By has test statistics

(2.38) W = (8~ Bo)" [cov(B)] (B — Bo)-
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The asymptotic normal distribution of 3 implies the asymptotic chi-squared dis-
tribution for W. The degrees of freedom equal to the rank of the asymptotic
covariance matrix cov(3) of B.Thus generally if |z| > ® '(a), where ® is the
distribution function of the standard normal distribution the predictor X; is con-
sidered not to be statistically significant within the current model at the confidence
level a.

These test are incorporated within the automatic model building procedures
describe in the next paragraph.

2.4. Stepwise procedures

In case when we face a relatively big amount of candidate predictor variables an
algorithmic method for searching among models can be informative if we use the
results cautiously.

The first possible approach is the forward selection procedure. Forward selec-
tion adds variables sequentially until further additions do not improve the fit. At
each stage it selects a variable giving the greatest improvement in the fit. The min-
imum P- value for testing the significance of the variable in the model is a sensible
criterion, a complement to this is the reduction in deviance. A stepwise variation
of this procedure retests, at each stage the variables added at previous stages to
see if they are still significant.

Backward elimination begins with a complex model an sequentially removes
the predictor variables. At each stage, it selects a variable for which its removal
has the least damaging effects on the model. In other words, the largest P-value.
The process stops when any further deletion leads to a significantly poorer fit.
With either approach, for qualitative (categorical) predictor variables with more
than two categories, the process should consider the entire variable at any stage
rather than just one of its dummies. Otherwise, the result depends on the coding.

We prefer the the backward elimination over forward selection, feeling it safer
to delete variables from an overly complex model than to add variables to an overly
simple one. Forward selection can stop prematurely because a particular test in
the sequence has a lower power. Realize that neither strategy must lead to a rea-
sonable model. thus the algorithmic/automatic variable selection procedures has
to be used with caution. Finally note that statistical significance should not be
the sole criterion for the inclusion of predictor variables in the model. Credit ex-
pert usually suggest also certain predictor variables which should be at least tested
for significance even if they are not included in the proposed short list containing
variables for multi factor modelling.

2.5. Assessing the Goodness of fit

Let us denote the fitted values of a particular logistic regression model as

7(xy, @, B),....7(xn,, &, 3), for simplicity we will write 7y, ..., #,. Further denote
[(m;y) the log-likelihood function expressed in terms of means 7w = (my,...,7,).
Let [(7;y) denote the maximum of the log likelihood for the considered model.

Realize hat for all possible model, the maximum log likelihood is I(y;y). This
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occurs for the most complex model, having a separate parameter for each observa-
tion and thus a perfect fit ¥ = y. Such a model is called the saturated model. This
model is not useful, since it does not provide data reduction. However, it serves
as a baseline for comparison with other model fits.

The deviance of the logistic regression model is defined as

maximum likelihood for model

9 < D(u: # —
(2.39) (y; ) 2111aximum likelihood for saturated model

= =2[(7;y) — U(y; y))-

what describes the lack of the fit. It is the likelihood ratio statistics for testing the
null hypothesis that the model holds against the alternative that a more complex
model holds.

The deviance function is most directly useful not as an absolute measure of
goodness-of-fit but for comparing two nested models. Consider two models M
and M, with fitted values 79 = (701, ... . on) and @1 = (711,...,7T1n). Further
let M be a special case of My, thus M, is nested within M,. Since M, is simpler
than M. a smaller set of parameter values satisfies M, than it satisfies M;. Thus
maximizing the log likelihood over a smaller space cannot yield a larger maximum.
So. we have that [(7rg; y) < [(7r1;y) and from 2.40 it follows that

(2.40) D(y;7r1) < D(y; o)

Thus simpler models have larger deviances. Assuming that model M, holds. the
likelihood-ratio test of the hypothesis that M, holds uses the test statistics

—2l(fro;y) — U F1;9)] = —2l(Fo;y) — l(y;v)] — {-2[l(F1;9) — ly; v)]}

= D(y; 7o) — D(y; 71)

We observe that the likelihood ration statistics is the difference between the
deviances. Obviously. this statistics is large when )/, fits the data poorly compared
to M. Under certain regularity conditions, this difference has asymptotically a
chi-square null distribution with degrees of freedom equal to the difference between
the number of parameters in the two models.

The deviance function serves a great purpose when comparing several logistic
regression models. Realize that in case models My and M, differ only in one
predictor variable. The deviance function tests the significance of this individual
predictor variable, although generally it allows testing the significance of a group
of predictor variables.

2.6. Logistic regression diagnostics

In the previous paragraphs we introduced statistics for checking the model fit in
a global sense. After selecting a model candidate we move to a more detailed
analysis of the models quality. Specifically, we describe the basis properties of the
analysis of residuals in the context of generalized linear models. The analysis of
residuals is used to carry out regression outlier analysis and influential analysis.



2. MULTI FACTOR ANALYSIS 31

For continuous predictors, graphical methods are also very common to use.

Here we concentrate only on one type of residuals although there are more types
which could be employed. On the background the deviance function we can define
deviance residuals in the following way. Realize that if the deviance is a measure
of discrepancy of the model. than each unit contributes a quantity d;, so that the

is quals D = " d;. The deviance residuals are defined as
deviance equals D iy O

(2.41) rp = sign(y; — m)\Vd;.
where

i 1 —y
(2.42) di=2(ylog (L) +1-y)log [ =2

Using the deviance residuals may help us identify whether the are observation
for which the model fits poorly. Whenever a residual indicates that the model fit
the data poorly in the appropriate region, it can be informative to delete the ob-
servation and refit the model to the remaining ones. Note that this is equivalent to
adding a parameter to the model for that observation, in order to provide a perfect
fir for it. Residual analysis is a important step when assessing observation which
could possible influence the parameter estimates (thus the whole fit) in a undesir-
able way, however we do not expand these issues here.

2.7. Final comments

This chapter was focused on the statistical methodology related to the model
development process. First we have discussed single-factor analysis in order to
determine a reasonable set of predictor variables, which were later used in multi-
factor modeling. The result of the multi-factor analysis is a proposal of model
candidates. Note that there is no best model, thus in practical application several
model candidates are developed.

For each obligor, the models produce a score value s = :I:T/é, which is afterwards
transformed to the obligors estimated default probability. These two outcomes are
considered to be equivalent.

In the next chapter we discuss statistical methods which enable the validation
of the proposed models. Based on the results obtained from these methods the final
best feasible model is chosen. For the purpose of validation procedures we divide
the estimated score values produced by the models into two groups corresponding
to defaulting and non-defaulting obligors. Although the suggested logistic model
produces continuous score values, the next chapter covers a discrete case as well
in order to provide general validation framework.
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CHAPTER III

MODEL VALIDATION AND BENCHMARKING
TECHNIQUES

In the previous chapter we have presented the methodology we have developed
while building credit scoring models for the environment of corporate and semi-
corporate firms. However, a model without sufficient validation can only stay
a hypothesis. Without adequate objective validation criteria and processes, the
benefits of implementing and using these scoring models cannot be fully realized.
This makes reliable validation techniques crucial at this point. Such testing also
gives the user confidence that the model is stable and has not been overfitted.
Model evaluation techniques and methods are necessary tools to aid searching and
choosing of the appropriate model.

1. Criteria of model validation

In the situation when we are ahead to choose a specific model as our final scoring
tool, one of the criteria to be considered, is the classification accuracy - the number
of obligors classified correctly among all the obligors. This is a simple and natu-
ral quantity, which can be measured quantitatively and the model builder could
possibly be interested in. Commonly an equivalent criterion, the misclassification
error rate, is considered.

The number of incorrectly classified cases
Error rate = e :
The total number of cases
The error rate of the model being evaluated should be in the range between the
zero error rate (of a perfect model that classify all cases correctly) and a random
model’s error rate (random assignment of rating scores).

Nevertheless the classification accuracy (equivalently the misclassification error
rate) is not the only criterion that counts. There are also other aspects to be
considered with respect to the practical application of the model. The issue of the
computational time might be as well a key criterion. The required time for both
the training and the applying of the classification model should be considered.
With the drifting of the population, most models fail to be stable in long time run.
Thus the time needed to train a model is therefore important since model should
be regularly revised. Finally we mention the transparency and the interpretability
of the considered model. An important attribute of the models is that there is
a transparent relationship between input variables and the output so that one can
see the impact of each input variable on the output. In practice, model builders
try to come up with the best trade-off between these criteria.

2. Methods of model validation

In the case of default risk models, validation involves examining the goodness
of the model according to the following basic stream. The power of the model,
which can be expressed as how well a model discriminates between defaulting and
non-defaulting obligors. In case we have two models that produce ratings of good

33
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and bad, the more powerful is the model that has a higher percentage of defaults
(lower percentage of non-defaults) in its bad category and a higher percentage of
non-defaults (and a lower percentage of defaults) in its good category. In practice,
measuring this quantity can be challenging.

2.1. ROC Graphs and Power Statistic

2.1.1. ROC Graphs and their generation. Assume that we generally have
n obligors and let us consider a model that assigns each obligor a score s out of
a specific set T. T might be either a finite set of r discrete values {sy,...,s,}:

Sp < ...< S, or it might be a continuous interval, say [0, 1]. In general assume
that the score values are ranging from worst to best. It means that a high score
indicates a low default probability. Further we introduce random variables Sp
and Syp. The random variables Sp and Syp follow the score distribution of
the defaulters and the non-defaulters, respectively. According to this, we will
distinguish two cases, the case when Sp and Sy p have continuous distribution and
the case when they have finitely discrete distributions. A random variable having
a finite discrete distribution is meant to be a variable that can equal only a finite
number of values with nonzero probability. A possible distribution of rating scores
for defaulting and non-defaulting obligors, that were assigned by a specific model is
illustrated in Figure 3.1. Note that for a perfect scoring model, the distributions of
defaulters and non-defaulters are separate. Naturally for real world scoring models
a perfect discrimination is not possible, thus both distributions overlap each other.

defaulters non-defaulters

Density

Credit Score

Figure 3.1. The overlapping distribution of credit scores. The cut-
off point C' represents a potential boundary for classifying obligors.

Suppose that our aim is to decide (given a set of credit scores assigned by
the model, with properties as prescribed above) which obligor will default dur-
ing a certain period of time and which will survive. In order to come up with
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a reasonable decision and classify certain obligors as potential defaulters and po-
tential non-defaulters it is useful to introduce a cut-off point C' as in Figure 3.1.
According to the cut-off point C' each obligor with credit score lower than C' is
classified as a potential defaulter and each obligor with credit score higher than C
as a non-defaulter. Thus four possible outcomes are possible. A common means of
representing these outcomes is summarized in a confusion matriz as in Table 3.1.

Actual
Default Non-default
below C True Positives False Positives
Model (correct prediction) (type II error)
above C False Negatives True Negatives
(type I error) (correct prediction)

Table 3.1. A confusion matrixz describing the four possible outcomes
of the decision problem introduced above in the text.

Note that in our case, when the model produces credit scores (probabilities
transformed to credit scores) instead of just let say two separate prediction classes,
a specific confusion matrix is only valid for a certain model cut-off point. The cells
in the confusion matrix represent the number of so called true positives (TP),
true negatives (TN), false positives (FP) and false negatives (FN). The term TP
indicates a predicted default that really occurs, a TN is predicted non-default
that really occurs. a FP is a predicted default that does not occur and a FN is
a predicted non-default in the case the company defaults at last. Note that the
numbers on the major diagonal represents correct decisions, and the numbers on
the off diagonal represents mistakes — the confusion between classes. The cell in
which the number of FNs is present quantifies the type I error and the one with the
number of FPs the type II error. There are several metrics that can be calculated
from the confusion matrix and further used as indicators of model performance.

We define the true positive rate or equivalently called as the hit rate (HR) as

(3.1) HE(C) = Pldp £ U,
which can be estimated as
~ T PUC
(3.2) B(sp<0)=""2,
D

where T P(C') is the number of defaulters predicted correctly according to the cut-
off value C and np is the total number of defaulters.
We define the false positive rate also called as the false alarm rate (FR) as

(3.3) FR(C)= P(Snp < C),
which can be estimated as

~ FP(C
(3.4) B(Syp < 0) = 229,

nND
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where FP(C) is the number of non-defaulters classified incorrectly as defaulters
according to cut-off value C' and nyp is the total number of non-defaulters. Note
that it holds HR(C) = 1 — P(type I error) and FR(C) = P(type II error).

For graphical interpretation in Figure 3.1, we can express the true positive rate
as the area on the left from the cut-off value C' between the red and the blue line
and the false positive rate as the lower area on the same side under the blue line.

A useful measure used in the validation process is the Receiever Operating char-
acteristic curve — ROC curve. ROC curves represent a more general analysis of the
confusion matrix providing information about the performance of a model at any
admissible cut-off point. The ROC graphs are constructed in the following manner.

Continuous Sp and Syp. Let us suppose that we are in the situation when
Sp and Syp follow continuous distributions, note that this case includes also the
situation when we use the logistic regression model as our scoring tool. Now let
us take an arbitrary cut-off value C' and consider a point whose horizontal coordi-
nate is P(Syp < C) and its vertical coordinate is P(Sp < C). Denote this point
by I(C'). Because of the fact that these two coordinates are represented in terms
of probabilities, the point I(C') lies always within a unit square graph. Imagine
that for all possible cut-off values C' ranging from —oo to oo, there is a point
[(C') plotted on this graph. When C' equals —oo, I(C') corresponds to the point
having coordinates (0,0). As C' is raised [(C') generates a continuous curve that
reaches the point (1.1) when C' equals oo. So when Sp and Syp are assumed to be
continuous in general it holds. that varying the cut-oft values from —oo to oo and
drawing a curve across the ROC space would produce the theoretical. continuous
ROC curve. This curve is running from (0.0) to (1,1). as described in Figure 3.2
on the left.

Discrete S and Sxp. In this case we assume that Sp and Syp follow a dis-
crete distribution. Consider the set T, that is a set of r discrete values {sy,...,s,}
which are ordered in the following way —oo < s1 < ... < s, < oc as mentioned
above. For the values s;.i = 1,.... r. it holds that either P(Sp = s;) > 0 or
P(Sxp = s;) > 0. which means that each of the values included in set 7" could
be assumed with positive probability. Finally put s = —o0 and s,,; = oo.
Just like in the continuous case, consider an arbitrary cut-off value C' and the
corresponding point I(C') in the ROC space with coordinates P(Syp < (') and
P(Sp < C). It holds that I(sq) # I(s1) # --- # I(s,) and I(s,) = I(sy4+1). Next,
note that for a cut-off value C' which meets condition s; < C' < s;.1. we put
HEY = (s ).0= Uicis r. It means. that no matter the fact that C' could obtain
infinite number of values. the corresponding ROC graph would only consist of r+1
distinct values I(sg), I(s1),.... I(s,). Note that the points I(sy) and I(s,) equal
(0.0) and (1.1). respectively. The graphical interpretation is presented again in
Fieure 3.2 on the right.
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Figure 3.2. Receiver Operating Characteristics. Left: The contin-
uous case. Right: The discrete case.

According to our notation P(Sp < C) = HR(C), P(Syp < C) = FR(C),
we can see that ROC graphs are two dimensional graphs that plot the hit rate on
the vertical axis against the false alarm rate on the horizontal axis and as such,
illustrate a relative trade-off between true positives and false positives.

So far, we have outlined the generation process by which the ROC graphs are
produced, in real life situations we are not able to produce a continuous (theo-
retical) ROC curve. This is the reason why we would like to have a reasonable
estimate of the theoretical equivalent. Thus it is useful to define a sample ROC
graph. Suppose that we have Np and Nyp observations of random variables S
and Syp, respectively. Recall that in 3.2, 3.4 we have denoted P(S p < C) and
P(Syp < C) the proportion of Np and Nyp observations respectively, that are
less than or equal to the cut-off value C'. Consider a point I(C) in the ROC space,
having coordinates P(Sp < C) and P(Syp < C). We define the sample ROC
graph as a graph consisting of points I(C) for all C in the actual range of credit
scores. The coordinates P(SD < () and P(SND < () are unbiased estimates of
P(Sp < C) and P(Syp < C) which are actually the theoretical coordinates of
I(C). In this sense we can consider the sample ROC graph as an unbiased estimate
of its theoretical equivalent. Note that in practical applications we are only able
to get a finite sample of points in the ROC space, namely the sample ROC graph.
To obtain a curve, we connect these points by linear interpolation.
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Figure 3.3. Possible Receiver operating characteristics curves.

Remark that several points in ROC graphs deserve further attention. Points
(0,0) and (1,1) are always present in the ROC space since for C' < minger(s)
we get TP(C) = FP(C) = 0 similarly for C' > maxr(s) we get TP(C) = np
and FP(C) = nyp. The point (0.0) describes the case of having no positive
classifications. in such a situation the decision rule produces no false positive errors
but also provides no true positive cases. The opposite case describes granting
positive classification absolutely.

Figure 3.3 outlines the possible shapes of ROC curves. The line labeled as the
scoring model. represent the performance of a reasonable model under evaluation,
the diagonal line labeled as random model, describes the state of zero information
that means random assignment of credit score. For example if the model guesses
the positive class half the time, it can be expected to get half of the positives
and half of the negatives correctly. thus it does not separate the classes at all.
Finally the curve rising vertically from (0,0) to (0,1) and then horizontally to
(1,1) represents the performance of the perfect model which orders all bad cases
before good cases. It scores 100% bad cases into the default class and 0% good
cases into the default class according to a specific cut-off value.

Finally, assume that we are validating a reasonable scoring model, in sense that
lower values of rating scores assigned by the model indicate higher probability of
default. We say that random variable X is stochastically smaller than random
variable Y if for every constant C' it holds, P(X < C) > P(Y < (). Following
up, random variables X and Y are stochastically comparable if X is stochastically
smaller than Y or reversed. In our context it means that applying a reasonable
scoring model, leads us to the conclusion that variables Sp and Syp should be
stochastically comparable, furthermore Sp should be stochastically smaller Sy p,
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which finally means, we await that the ROC curve of a reasonable scoring model
should be concave.

2.1.2. Power Statistic. In order to have a summary statistics beside the com-
plex ROC graph, one may wish to come up with a single scalar value representing
the expected performance of the actual model. In the context of credit scor-
ing model validation, such statistics are called the power statistics. An effective
method for summarizing the ROC graphs is to calculate the area under the ROC
curve as described in Figure 3.4. We denote this statistics as AUC.

Hit Rate
0.6 08 1.0

04

Q2

0.0

0.0 0.2 0.4 0.6 0.8 1.0
False Alarm Rate

Figure 3.4. Graphical interpretation of the area under the receiver
operating characteristics

Because of the fact that the AUC is a part of a unit square its value ranges
between 0 and 1. With respect to the description of the random models ROC
curve, it holds than the random models expected performance expressed in terms
of AUC vyields the value of 0.5. Thus the value 0.5 corresponds to a model with no
discriminative power, on the other hand the perfect model has the AUC' equal to 1.
According to these rules we can state that any model its ROC curve appears in the
lower right triangle of the ROC space has a value of AUC' lower than 0.5, thus it
could be possibly worse than random guessing. In this case we should be aware of
the fact that the ROC space is symmetrical about the diagonal (random model’s
ROC curve). According to this, if we reverse the classification rule of the model,
its true positives become false positives and vice versa. Such case should not occur
during the model validation process because it would mean that we completely
misinterpreted the meaning of the model, but is likely to occur while employing
ROC analysis and its summary statistics during single factor analysis.

The following paragraphs contain a description of statistical properties of the
AUC statistics, as well as a convenient interpretation of AUC in context of credit
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scoring model validation. Let us assume that we have two obligors, one drawn
from the distribution of defaulters and the other one from the distribution of non-
defaulters. In this situation we obtain two credit scores that correspond to the
realization of random variables Sp and Syp. If we have to decide, using these val-
ues, which of the two obligors is a defaulter, we obviously state that the defaulter
is the obligor with the lower credit score. In case both values are the same, we
can decide at random. Thus the probability that our decision was correct equals
P(Sp < Syp) + %P(S p = Syp). We will examine how this probability relates to
the AUC statistic.

Continuous Sp and Syp. Let us suppose that we are again in the situation
when Sp and Syp follow a continuous distribution. In this case we are able to
calculate the AUC statistics as follows

1
AUC = / P(Sp < C)dP(Syp < C)

0

(3.5) = / dP = P(Sp < Swp).
{Sp<Snp}

Because of the fact that Sp and Syp are continuous, we have that P(Sp = Syp)
is zero. and that AUC = P(Sp < Syp) = P(Sp < Syp) = P(correct decision).

Discrete S and Syp. In this case we assume that Sp and Syp follow discrete
distributions, and they obtain values {s;,....s,} from the set 7. We have shown
that in this situation the corresponding ROC graph consist only of a finite number
of points. So, the appropriate AUC statistics can not be calculated as in the
continuous case. Thus we define the AUC statistics in the discrete case to be
the area under the discrete ROC graph, where we connect the distinct points in
the ROC space by linear interpolation. Figure 3.5 sketches a possibility, how to
calculate the discussed area.

We can see that the AUC statistics can be expressed as a sum of certain
trapezoids U;. Specifying the proportions of these trapezoids. we have that the
height of the i-th trapezoid U; is equal to

P(Snp < 8;) — P(Snp < si—1) = P(Syp = s3)

and the lengths of corresponding edges are P(Sp < s;) and P(Sp < s;_1).
According to this, the volume of the i-th trapezoid is

1 1
Ui = P(Syp = s;) §P(SD < s) + §P(SD < Si-1)
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Figure 3.5. The AUC statistics in the discrete case is defined as the
area under the linearly interpolated discrete ROC graph. Trapezoids
U; provide a clear, and intuitive suggestion about computational mat-
ters.

With respect to the fact that AUC' is the sum of r trapezoids as described
above we have that

— [1 1
AUC = ) |SP(Sp<s)+5P(Sp _Ss,-l)} P (Snp = s;)
=1 =
= || 1
(3.6) = ; -P(SD < 8i-1) + §P (Sp= -‘is)] P (Snp = si)

& 1 "
i ,-:ZLP(SD < 8-1) P(Swvp = si)+3 ; P(Sp=s:) P(Sxp = 5:)

1
= P(Sp < Sxp)+ §P(SD = Snp)-

Recall that in the continuous case we have that P(Sp = Syp) = 0. This means
that equation

1
(3.7) P(Sp < Snp) + §P (Sp = Snp)

holds for both the discrete and the continuous case. From this point, till the end of
this subsection, we will consider both the continuous version 3.5 and the discrete
version 3.6 and denote them jointly by AUC.

Now from these equations we are able to deduce two possible interpretation.
First, we can state that the AUC statistics may be interpreted as the probability
that the variable Sp yield a smaller credit score than variable Sy p. Second, recall
the above described situation in which we have two randomly drawn obligors. One
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from the distribution of non-defaulters and one from the distribution of defaulters
and we have to decide which obligor belongs to each distribution. Intuitively we
proclaim the obligor with the lower score as the one from the default distribution.
When the scores are equal we can decide by chance. In this case and with respect
to 3.6 we may interpret the AUC statistics as the probability that our decision
is correct. Hence the AUC statistic is not just some quantity that gains certain
possible values according to which we are able to deduce some properties about
our scoring model, but it has a clear, stand alone interpretation. The key task is
to determine the way in which we would like to employ this statistics. Again, we
have two possibilities.

e First. AUC can be used as a measure of the size of the difference between
two populations. In this sense AUC measures the extent to which the
distribution of Sp lies below the distribution of Sy p. The ultimate values
of AUC could be, in this case, interpreted as follows. The highest value.
AUC = 1, could be attained if and only if the distribution of defaulter
lies entirely below the distribution of non-defaulters, non of them overlap-
ping each other. The smallest value, AUC = 0, could be obtained in the
opposite case. Finally, if the two distributions are identical AUC equals
0.5. Thus, the closer the AUC' is to zero or one, the larger the difference
bhetween the two sample populations, whereas the closer the AUC is to
0.5 the smaller the difference between them.

e Second and more importantly, according to our purpose, AUC' can be used
as a measure of discrimination accuracy. In this sense the AUC measures
the extent how accurately a given model discriminates between defaulters
and non-defaulters, and that is our main task. Recall Figure 3.3. Thus
when AUC = 1, it means that the model discriminates the two sample
populations pertectly. In other words it means that theoretically there
exists a critical score/cut-off below which all the defaulters scores are,
and above which all the non-defaulters scores are. So, when the AUC' is
close to 1, the actual model classifies obligors almost perfectly, reversely if
the AUC' is only a little above 0.5 then the model assigns the appropriate
scores almost randomly.

2.1.3. Estimates and Confidence Intervals concerning AUC. There exist
several possibilities how to estimate the AUC'. Naturally, we can decide to employ
a parametric or a nonparametric procedure. The latest could be proclaimed to be
more popular. Mainly because of its relative simplicity, but moreover because of
the fact that it doesn’t require any distributional assumptions concerning variables
Sp and Syp.

Let us begin with the following idea. Assume that we have sampled np and
nyp observations of Sp and Syp. respectively. So, we have np x nyp possibilities
of pairing these observations. Recall the definition of the sample ROC graph

- -

and similarly as in that definition denote P(Sp < Syp), P(Sp = Syp) and
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P(Sp # Snp) the proportions of ny x nyp observations for which Sp < Syp.

Sp = Syp and Sp # Syp. Again. it is clear that these proportions are unbiased

estimates of their theoretical equivalents. The area under the Sample ROC graph
—_—

denoted by AUC can be calculated by the trapezoid rule as in 3.6 that is as follows

—_— A ~ ‘I' > Q
AUC = P(Sp < Sxp) + -__)P(,SD = SNp)-

Next for a randomly drawn defaulter with score sp from Sp distribution and
a non-defaulter with score syp from Syp distribution we define the variable vp vp
as

1, if Sp < SND,
1 £ :

(3-8) I__.’f)”__\.'D —— E‘ 1{ .S’t) —— S_\'!).,
(). lf .H'D > S_\'”,

Now recall that the Man-Whitney (1947) U statistic is defined as the total
number of pairs for which Sp < Syp. According to this definition we can see that
quantities AUC, AUC and the Man-Whitney U statistic are closely related. In
case we define the alternative Man-Whitney statistics U as

0= —'—1—— Z UD.ND

nplhty
D'tND (D.ND)

where the sum is over all possible pairs of defaulters and non-defaulters. we ob-
serve that AUC equals U. Further we observe that U is an unbiased estimator of
P(Sp < Syp)+ .—i;P(SD = Sy p). which means that U is an unbiased estimator of
the theoretical AUC, and since U equals AUC we have an alternative prove that

e

AUC is an unbiased estimate of the theoretical AUC'. That is
~ —_— ]_ .
AUC =E(U) =E(AUC) = P(Sp < Syp) + 5[’(59 = Snp)-

According to these statements we are able to utilize statistical properties of the
Man-Whitney statistic to predict statistical properties of the AUC' statistic.

The variance of AUC. At the first I)ldCL we are going to lay emphasis on

the estimation process of variance of the AUC (= U ) statistic. As outlined above
certain results about the variance of Man-Whitney statistic are employed. There
are several possibilities deriving formulas for the variance of this statistics under
the assumption that Sp and Syp are continuous. According to Bamber (1975)
and his reference to NoetEgL (1967) it is possible to relax this assumption. Thus

for the variance U% of AUC we employ Bamber’s formula

- 1
2 = ———|Ppsnp+(np—1)Ppp
AUC 4'?’1{)?’!:‘-\’9[ p#ND + (p —1)Pp.p np
1
(3.9) + (nyp —1)Pypnp.p —4(np +nyp — 1)(AUC — E)z]

where Ppiyp, Pppnp and Pyp np,p are defined as follows. Assume we have
sampled two independent observations from the Syp distribution, these are Sy p
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Snp,2 and one independent observation from Sp distribution Sp ;. According to
this Pyp np.p 1s define as

Pvpnpp = P(Snpi,Snp2 < Spi)+ P(Spi < Snp.i,SnD2)

— P(Snp1 < Sp,1 < Snp2) — P(Snvp2 < Spa < Snp,i1),

Pp. p np 1s define similarly by reversing the role of the independent observations
sampled from the two populations as described above. For completeness we define
Ppinp as P(Sp # Snyp). It is clear that for practical applications we would
like to have a reasonable estimate of these probabilities and thus a estimate for
the discussed variance afﬁ. Similarly as in previous paragraphs consider triples
as following (Syp.1, S‘.-\.?D._QI,SD’]L) with independent Syp; and Sypo. The total
number of these triples is nyp(nyp — 1)np. We denote the proportion of these
triples for which Sypi. Sype are less than equal to Spy by P(Snp1.Sxpa <
Spi). p(S‘:\’D.l < Sp.1 < Syp.2) and P(SND_Q < Sp.1 < Snyp.1) also represent the
proportions in appropriate cases. So we have that

Pvpnpp = P(Snp.i1,SNp2 < Spi1)+ P(Sp1 < Snp.i:sSnp2)
— 2P(Snvp1 < Spi1 < Syp2),

1s an unbiased estimate ot Pyp yp p. From the computational point of view we
can obtain the estimate }E’N p.ND.p in the consecutive way. First of all, rank order
the combined vector of Sp and Sy p score values. For each defaulters score value
Sp. evaluate the number of non-defaulters score values Sy p that are less than Sp.,
and the number of score values that are greater and denote these values by ap and
bp. respectively. Pyp nyp.p can be rewritten as

: Z [QD((JD — 1) + bD(bD - ].) — 2(19()0] \

nypnyp — 1)n

p(nvp — D &

where we sum runs over all defaulters. Analogously, we can define the estimate of
Pp.p.nD-

Up to this point, AUC, P(Sp # Svp), Pvp.yp.p and Pp p nyp were unbiased
estimates of their theoretical equivalents. Bamber (1975) outlined. that before
substituting them into equation 3.9 we have to be aware that the expected value of

—
(AUC —2)?% is (AUC —2)? + 0 et This bias could be corrected with multiplying

4

P.\'D.:\-'D.D =

equation 3.9 by npnyp/(np — 1)(nyp — 1). In this way we obtain a unbiased
. ~ . v
estimate 0% — of o?

AUC AUC
9 1 ,« .
T = Ppxn i = L P05 i
S vire, 4(np — D(nyp — 1) [ p£ND + (Np )Pp.p.ND
s — 1 9
(3.10) + (nnp — 1)Pnpnp.p —4(np +nyp — 1)(AUC — E)“]

Confidence interval for the AUC statistics. It is known that if np, nyp are
e

held in constant ration. then if np,nyp — oo, statistics (AUC — AUC)/U%TFC"‘ is

asymptotically normally distributed with mean zero and standard deviation one

Bamber (1975). According to this statement and because of the fact that sample
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sizes employed in credit modelling are very large. we are able to compute confidence
intervals for AUC'. Thus the asymptotic confidence interval at level 1 —a.a € (0, 1)
has the form

—
UC

[A C=60"" (1 — %) AUC 4 5=®1 (1 B 2)]

AUC AUC

where ®~! represents the quantile function of the standard normal distribution.

Comparing the areas under ROC graphs. A common situation that we
usually face while performing model building and validation is, to choose the best
suiting model for our problem under consideration. We usually build more than
just one scoring model and at this stage of the validation process we would like to
choose the most suitable one, namely, the most powerful in terms of the AUC' sta-
tistics. In this context the primary application of ROC analysis is the comparison
of different scoring models applied to to the same data. In the simplest case we
are interested in comparing the discrimination ability of two scoring models A and
B. Denote the corresponding areas under the ROC curves by AUC'y and AUCp.
Formally speaking, we would like to test the hypothesis

HQI flL-‘TC'..l = A(»'r('n.

against the alternative

Ay: AUCH # AUCH

. e

Comparing the appropriate estimated values AUC 4 and AUC'g and choosing
the final model only upon these quantities would not be appropriate from the
statistical point of view. To be precise and to derive a reasonable test on the
difference between two AUC' statistics, namely AU Cﬂlfl AUCpg, we have to

o A I3 = l) = r ‘-_'_,.,..-I-..‘___-
calculate the variances a‘%-ﬁ and e of estimators AUC' 4, and AUC'g. Because
AU 4 AU L B

of the fact that two models for which we have estimated the AUC statistics might
be correlated, we also need to compute the covariance between the two estimators
AUC A AUC 5. With respect to previous notation and according to Delong et al.
(1988) and Engelmann, Hayden, Tasche (2002) for the estimate of 62—, . we

AUC 4,AUCp
find that

a-‘%-‘—'-- — — 1 [PAB r .
AUC 4, AUCp 4’(”'[) = 1)(nND . 1) DD ND ND
+ (np— 1)PS.%,ND + (nNp — I)Pﬁg,wp,n

(3.11) ~ 4{np +nyp — )(AUCA - 3)(AVC5 - 5)|.
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€ \B , 4 , ahilities PAB
where PD D ND.ND: PD p.np and P{E . b p are estimators for probabilities PAZ, v p vp:

PDD ND> PI\D yp,p defined as follows
PRE ngin = Plos 8,500 58 )Pl < 585 8 < 8in)
(85 = S 85 < Bhp) — P8E < :8%n: 90 > Sin)s
(SD1>SNDﬂSD.2>S p) + (SD1<SND*SDZ<SJ\D)
(854 > 855905 < 8y5) — P(SD1 & w8 = = B
Pibnpp = P(Sp>SNp1,Sp > Snpa) + P(Sh ’\’DI*SD<SE\D2)
— P(Sp > Syp,1,Sp < Sypa2) — P(Sp 2)

|
i

AB _
PD,D ND P

I
g,

Quantities S5, S5, S5, S5, and S35 ,, S5, are observations independently drawn
from the distribution of defaulters. Similarly the ones labeled by N D are obser-
vations independently drawn from the distribution of non-defaulters. Finally the
testing procedure constitutes of evaluating statistics M defined as

o | (ALT04 - 4UC‘B)
(3.12) M= — -
(J-H r _|_ = 20’ --""‘:--.
AUC 5 AUC 4 AUC 4,AUC 5

which is asymptotically ,\/2—distributed with one degree of freedom. The appro-

. “pe 9 : . ‘ . . -
priate critical values are calculated from the y<(1) distribution given confidence
level o € (0.1).

Finally we provide an alternative method for estimation of the joint covariance
. —— '.#.-;h‘-' . . f ;

of estimators AUC 4. AUC 5 which might be quite useful for computer implemen-
tation. In the first place we define quantities V(sp), V(syp) as placements of
scores sp and syp in the distributions of Sp and Syp. respectively. It means
that V' (sp) is the the placement of score value sp in the distribution of Syp and
V(syp) i1s the placement of score value syp in the distribution of Sp. In other
words V' (sp) is the fraction of Sy p scores that exceed it, similarly V(syp) is the
fraction of Sp scores that it exceeds. So we evaluate these two quantities as

nyND
Vi(sp,;) E VoD Ey J=1..., np,
n\D
and
) 1 np
V("\DR E U(D,j),(ND.k)s =l ..., nNp.
np
Jj=

Note that the nonparametric estimate of the AUC statistic denoted AUC is the
average of placement values in both cases
np 1/(.
Z{FZ“ Zrlf) V(snp.k) o Zj:l V("’D-J’)

nnNp np

According to Delong et al. (1988) and with reference to the method of struc-
tural components Sen (1960), the joint covariance is computed as the sum of scaled
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covariances of placement values for defaulting and non-defaulting scores. Thus, we
have

"0 (V(sh.)— AUC,||V(sB ;) — AUC

D2y |V(sp,) —AUC4| |V(sp;) — AUCs

.“lf:(x‘:‘.fjl{'(‘ﬁ’ .” I)(‘” {) — 1)

—

;;f[pwsﬁpJ)~.4U(14[stﬁnﬁ)—-jiiag]

”.\-’D(”.\-‘D =~ 1)

_|_

letters A and B indicate the calculation of the respective placements values in the
appropriate model.

2.2. Cumulative accuracy profile

Another concept which is currently popular in practise for evaluation the discrim-
inative power of scoring models and which is similar to the receiver operating
characteristics is the cumulative accuracy profile (CAP) curve. In this subsection
we focus on the genesis of the CAP graph its interpretation. Further we derive an
analytical relationship between the summary statistic related to the CAP curve,
the accuracy ratio (AR) and the AUC' statistic. This relationship demonstrates
how statistical properties of the AUC statistic can be used in determining statis-
tical properties of the AR summary statistic.

In order to comply with our notation assume again that we generally have n
obligors and let us consider a model that assigns each obligor a score s out of
a specific set 7. T might be either a finite set of r discrete values {s;...... Sk
sp < ...< S, orit might be a continuous interval, say [0,1]. In general as-
sume that the score values are ranging from worst to best. It means that a high
score indicates a low default probability. Further we introduce random variables
St and we consider again the random variables S, and Syp. The random vari-
able Sr follow the score distribution of all obligors and recall that Sp and Syp
follow the score distribution of defaulters and non-defaulters, respectively. The
cumulative accuracy profile is defined as the graph consisting of points. whose hor-
izontal coordinate is defined as P(Sy < (') and vertical coordinate is defined as
P(Sp < (), where C runs across the finite set of discrete values {s,..... s} or
across the range of possible score values. Realize that in case T is a continuous
interval, i.e. the model produces continuous score values, we have that » = n, be-
cause the probability that two different obligors obtain the same score value equals
zero. Further note, that varying the score values smoothly from C' = minger(s)
to C' = maxrsr(s) and computing the appropriate coordinates produces the theo-
retical CAP curve. However, in practise we are able to assess again only a finite
number of points, so the curve is obtained again by linear interpolation between
them.

A perfect model assigns the lowest score values to the defaulting obligors. In
this case the CAP curve is increasing linearly and staying at one. For a random
model without any discriminative power, we have that the fraction &k of all debtors
with the lowest rating scores contains k percent of all defaulters, thus this is the
case when P(Sr < C) = P(Sp £ C),C € T. Based on this interpretation, one can
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also conceive of a perfect model which gives all defaults worse scores than non-
defaults, and a random or uninformative model, which excludes defaults at the
same rate as non-defaults. Reasonable scoring models are somewhere in between
these two extremes.

The discriminative ability of the scoring model can be again summarized by
a single number, the accuracy ratio AR. It is defined as the ratio of the area AS
between the CAP curve of the scoring model under evaluation and the CAP curve
of the random model, compared to the area AP between the CAP curve of the

perfect model and the CAP curve of the random model. Formally speaking, it
follows for AR that

. _AS
(3.13) AR= 2.

In these sense the scoring model is the better the closer the AR is to one. Graphical
interpretation of the later statements is provided in Figure 3.13

1.0

perfect model

ors
0.8

g oblig

0

scoring model

random model

Fraction of defaultin
0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of all obligors

Figure 3.6. Cumulative accuracy profile. The blue line shows the
performance of a model under evaluation, it depicts the percentage of
defaulting obligors identified by the model at different percentages of
the total number of obligors. The diagonal line represents the state
of random assignment of score values. The accuracy ratio is defined
as the ratio of area AS and AP.

Further we are going to illustrate that the statistical properties of ROC curves
and the related summary statistics AUC' are also applicable to the CAP curve
and its summary statistic AR. The key relationship between the two performance
measures is determined by the following formula

(3.14) AR =2AUC —1.
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The above presented relationship 3.14 can be derived as follows. Assume that
the number of defaulting and non-defaulting obigors is np and nyp. respectively.

Obviously for the total number of obligors n, we have n = np + nyp. For AP we
find that

nNp np 1
AP = s -5
nyp+np 2nxp+np) 2

1 I"nND

(3.15) _

2nyp +np

In order to compute the AS we need to express the cumulative distribution func-
tion P(Sy < C). In terms of Sp and Syp the cumulative distribution function
P(S7 < () can be expressed as

np "ND

P(Sp £ C) +

. P(ls*‘\'[) S (_")q
nNp +np nyp +np

(3.16) P(Sy < C) =

where np /(nyp+np) is the prior default probability of all obligors and nxp/(nyp+
np) equals one minus this probability. Employing expression 3.16 for AS we find
that

|
i\
as = [ sy <opp(sr<0) -

0

1
_ "D / P(Sp < C)dP(Sp < C)
nyp +np Jo

. 1
+ 0 [ p(s, < CaP(Syn < ) -
nNp +1p Jo
”'D'il}' -+ ?Z.NDA(IC 1 "H.'-\.';)(‘AL'TC = ‘%)

3.17 — R
( ) nNp +np 2 nNp +np

Do | =

Substituing 3.15 and 3.17 into equation 3.13 we find that

AS  nnp(AUC - 3)
AP l!’?,ND

2

(3.18) AR =

This means that the accuracy ratio can be computed directly from the area under
the ROC curve and vice versa. Thus the statistical properties of the accuracy ratio
can be also derived from the statistical properties of the AUC statistics.

We conclude this paragraph providing comparison of the interpretation of the
two concepts described up to this point. We have shown that the above described
performance statistics are equivalent in the sense of equation 3.18, however the
curves answer slightly different questions.

e ROC curves answer the question: What percentage of non-defaulters
would a model have to exclude to exclude a specific percentage of de-
faulters?

e CAP curves answer the question: What percentage of an entire portfolio
would a model have to exclude to avoid a specific percentage of defaulters?

Although CAP curves are the representation typically used in practice by finance
professionals and business people, the research concerning statistical properties
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was traditionally performed in the context of ROC curves, primarily because of
their practical application also in medical research communities.

2.3. The Kolmogorov-Smirnov statistic

An important measure that is also commonly used in practise for credit scoring
model comparison and validation is the Kolmogorov-Smirnov statistic. Notice that
both ROC and CAP curves (and the related summary statistics AUC and AR),
as well as the Kolmogorov-Smirnov statistic measure the models ability to dis-
criminate between defaulting and non-defaulting obligors. In other words these
discriminative measures address model’s capability of proper ordering of obligors
in terms of probability of default. Since the obligors probability of default is deter-
mined by the corresponding score value produced by the model, we expect a proper
ordering in terms of score values. If we assume that higher score values indicate
lower default probability, we expect that the distribution of defaulting obligors is
shifted to the left from the distribution of non-defaulting obligors. Denote the
distribution functions of defaulting and non-defaulting obligors by F'(x) and G (),
respectively. As outlined before, a reasonable scoring model should clearly sepa-
rate the defaulting and non-defaulting cases, thus the corresponding distributions
should be clearly shifted from each other.

The Kolmogorov-Smirnov statistic is used to test the hypothesis that the dis-
tribution function of score values of defaulting and non-defaulting obligors are
identical against a general alternative that they are different.

Hy: F#) = Glz),
As: F(x) # G(x).

The Kolmogorov-Smirnov statistic is related to the supremum distance between
distribution functions. The Kolmogorov-Smirnov distance between two distribu-
tion functions F' and G. is defined as

(3.19) KSus= sup |F(x)— G(x)|.

—oo<L<r<+o0

With respect to general properties of distribution functions, it is clear that
0 S I{Sdist < L.

In case KSy¢ = 0 then F(r) = G(x) for all x and so, both distributions are
identical. In case K Syt = 1 then F(x) =0 and G(x) = 1 or vice versa for some
r. It implies that that either F(z) > G(x) or F(r) < G(x) for all . Recall
that if certain random variables X and Y possess distribution functions F' and
G. respectively, and F > G then X is stochastically smaller than Y. Indeed,
F(r) > G(x) means P(X < z) > P(Y < x).

In the context of credit scoring model validation, the Kolmogorov-Smirnov
statistic 1s understood to be the sample version of Kolmogorov-Smirnov distance
between empirical distribution functions corresponding to default and non-default
samples. To be more precise we denote by F,,(r) and G, ,(r) the empirical
distribution functions of credit scores corresponding to np defaulting and nyp
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non-defaulting obligors.

(3.20) KS= sup |F,,(x)—G,,(T).

— 00 << 00

Because of the fact that empirical distribution functions have bounded supports.
supremum can be replaced by maximum in 3.20

(3.21) KS= max |F,,(x)— G, ().

—oo<Lr<+0C

Let us consider the following characteristics

(3.22) KSsp,= sup (F(x)- G(r))
— o< T +0C

and

(3.23) KS;,;= inf (F(x)—G(x))

— 00 <L <+2C
Thus it holds
0 < KSg <1

and
—1 < ['\'S;”f < 0.

Note that if K S, = 0 then F(x) < G(x) for all z while if KS;,; =0 F(x) > G(r)
for all z. Also the opposite ultimate situation when K'Sg,, = 1 and K'S;,; = —1
distinguish the two cases described above in connection with A'Sy; = 1. Finally
we have that

K S s = magk (B8 sy oS5 ) «

Again, we are able to obtain the empirical versions of 3.22 and 3.23, similarly
supremum and infimum can be replaced by maximum and minimum, respectively.
These two empirical characteristics provide better notion about possible order
relationship between F'(r) and G(x) because once we do not have either F(r) <
G(x) or F(xr) > G(x) for all z then the empirical version of KSs does not
measure the grade of stochastic ordering between the corresponding samples. In
the context of credit scoring model validation it means that we do not recognize
the situation when the model is good only for some regions of the predictor vector.
That is why the whole graph of F,, (x) — G, , (2) should accompany the figure of
the Kolmogorov-Smirnov statistic.

[t is necessary to outline that formula 3.21 is not a convenient solution for
computational matters concerning Kolmogorov-Smirnov statistics since it requires
too many computational operations. That’s why we employ a different expression
introduced below,which shows that Kolmogorov-Smirnov statistic can be viewed
as a rank statistic see Antoch, Vorlickova (1992), on condition that F(z) and G(x)
are continuous. Moreover, there is a modification for the discrete case. Recall
that empirical distribution functions F),,(z) and G,,,(z) which correspond to
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obligors’ scores Xi,...,X,,, and non-defaulting obligors’ scores X, +1,..., X,
where n = np + nyp can be expressed as

np

1 .
Frm ("L‘) - E Z “’(J" - X’e‘)

T
and

1 n
GHND(;F) = m Z '(L-(;L’ = }(,'_)

i=np+1

where u(zr) = 1, > 0,u(x) = 0,2 < 0. The sums count the number of defaulted
obligors’ scores or not defaulted obligors™ scores which are smaller than or equal
to . respectively.

Further let random variables Uy, ..., U, +.\, be the order statistics of the joint
default and non-default sample Xy,.... X, . X, +1.. .., X ptnnps thus, Uy is the
k-th largest value within the joint sample. We define variables Z,,..., Z, +nyp
as indicators of the fact that Uy, ... U, +ny, belong to the default sample. It
means that Z, = 1 if U corresponds to some of X,,..., X, and Z; = 0 if Uy

corresponds to some of X, ,+1,...,X,. The Kolmogorov-Smirnov statistic can be
then expressed as

k
(3.24) KS=  max R N Z Zi —

l<k<np+nnp | NMPAND nND

The derivation of 3.24 works as follows

KS = max |Fupls) =Gy 7]

—0<T<+2C

|

1 np 1 n
max |— uler — X;) — — E u(r — X;)
— o< <+ oc | T D “ H..‘,.\:D

i=1 i=np+!

1 I np n
= max |——— |nyp Z u(r — X;) —np Z u(r — X;)
I i=1

—x<r<+ [ NpnNp ' Hi
i=np

1 i np n
= max |——— [(n —np) Z u(x — X;) — np Z u(r — X;)
TOSEST | NDIND | i=1 i=np+1
1 " np n
= max |——— |n Z u(r — X;) —np Z u(x — X;)

—x<r<+x (NpnNp —1 j—1
f= =

Since the empirical distribution functions are defined for a finite number of points,
we can take the maximum over a finite set of these values Xy, k € {1,...,np +
nyp}. Because we take the maximum over all possible values without loss of
generality we can assume that we take it over an order set of values X, <
X< X

= (np+nyp)
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np n

> 1 - - R

KS = max — | n E w( Xy — Xi) — np E w( Xy — X;)

X SX)SX(np+nnp) | RDRUND = =
I n
| n = . . 1 , :

= max S E w( Xy — X;) — E w( Xy — Xi)

X{]_JS.’Y”\-}S.\(”D_i_”l\.n} ’3[)”\'}_) i—1 H\f) P

The first sum in the latest equation equals the number of defaulting score values
which are less or equal than the the A—th ordered statistic. The second term is
the order of the k—th ordered statistic, which is A. So we find that

(3.25) KS = max o Z Li —

1<k<np+nxyxp npnhiyNp

nND

Formula 3.24 works well if F' and G are continuous, then variables Z; are well
defined with probability 1, because ties, that is, observations of the same value,
have zero probability. Precisely it means that P(X; = X;) = 0 for arbitrary i
and 7.

Finally realize that in credit modelling we can easily observe ties, for instance
if we check categorial predictors or if we deal with categorial models. If equal
observations can occur we have to adjust formula 3.24 so that ties are gathered in
one case. To do so let U; < ... < U; be distinct values of realizations of order
statistics Uy, ..., Upptnnps thus, j < nyp+np. Instead of Z; consider Zi equal to
the number of X; such that X; = Uik =1, ... . J, and define K, as the number
of all observations (X; and Y;) which are less then or equal to Uy, k = 1,....].
The adjustment of formula 3.24 can be written as

K k

. o k )
(3.26) KS = max "D + MND Z /-

1<k<j| npnyp nNND

p=1

Formula 3.26 is computationally more efficient formula for calculating Kolmogorov-
Smirnov statistics. As it was outlined above it is useful to accompany the value of
the Kolmogorov-Smirnov statistics with a graph obtained by plotting

~ . - np+nNyNp I{k 1 _
(3.27) Ki against V= ——— ZZ, - k=0,...,].
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Figure 3.7. The figure depicts the distance between empirical dis-
tribution functions of the defaulting and non-defaulting obligors.
The mazimum of these distances is the the sample version of the
Kolmogorov-Smirnov statistics.



CHAPTER 1V

SUMMARY

The present technical literature on corporate credit risk modelling is scarce. Sev-
eral academical papers deal with this issue. however most of them focus onlv on
certain area of the overall problem. The academic research in this area is sub-
stantially limited by the unavailability of public data. In contrast with similar
papers on credit scoring this thesis intend to provide a self-contained concept of
the statistical methodology related to the overall problem. instead of an empirical
study. The main purpose of the thesis was to develop the statistical methodology
whose application leads to reasonable credit scoring models.

The first part of the document proposes statistical methods that should be
employed within the process of determining a reasonable set of predictor vari-
ables which could be later used in multivariate modelling. Here we propose an
adjustment of the standard Pearson y?. We show that this adjustment leads to a
reasonable sample measure of dependence.

The second part of the thesis is focused on model validation techniques. Mea-
sures of model performance are described and their statistical properties are inves-
tigated. Emphasis is put on the concept of the receiver operating characteristics
and the related summary statistics, the area under the receiver operating charac-
teristics. Further the relationship of the receiver characteristics analysis and the
cumulative accuracy profile analysis in described. Statistical properties of the later
concepts are reviewed and the computational aspect are discussed.

Finally, we focus on a different concept of a model performance measure.
Namely, the Kolmogorov-Smirnov statistics. We derive alternative formula for the
computation of the Kolmogorov-Smirnov statistics which shows that the Kolmogorov-
Smirnov statistics can be viewed as a rank statistics and which is suitable for
computer implementation.
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APPENDIX A

REGRESSION MODELS

1. Introduction of the model classes

First we restrict our attention to the standard multiple regression problem. We

have n observations of a response (dependent) variable Y. denoted by y = (y1. .. .. Un)?
measured at n design vectors & = (rj...... rim). The points ' may be cho-

sen in advance, or may be themselves measurements of random variables vector
X = (X;1,....X;n). We do not distinguish these two cases.

Our goal is to model dependence of Y on X...... X,,,. There could exist several
reasons we would like to do this. The first is a description. We want a model to
describe the dependent variable on the predictors so that we could better under-
stand the proces that produces Y. On the second place we are also interested in
inference. We want to asses the relative contribution of each of the predictors in
explaining Y. Finally, we could be interested in prediction. We wish to predict Y
for some set of values obtained from Xy...... X

For all these purposes, the standard tool for the applied statistician is the
multiple linear regression model:

(A.1) Y=a+ X181+ + XpnfBn +e¢,

where E (¢) = 0, var(e) = 0% and a. 3y, . ...
beta,, are parameters whose values are unknown and have to be estimated from
the data. Fitting linear regression models is performed by employing the standard
least squares optimization procedure. In general. if we denote the conditional
expectation of Y by y, then the systematic part of the model can be expressed

m
(A.2) E(YIX)=p=a+)_ X;3,

Jj=1
Further specification of the model involves the stronger assumption for the random
part of the model. Namely, that errors €;.i = 1,...,n, follow the Normal distri-
bution with mean zero and constant variance o?. The least squares optimization
procedure

m

(A.3) I{Illl‘gl (Y — o+ le )(j_dj)2,

A

yields estimates a;, ;‘31, ooy B of o, By, ..., 03, which minimizes A.3. As outlined
above, this model makes a strong assumption about dependence structure of y on
X...., X, that the dependence is linear in each of the predictors. In case, this
assumption holds, the linear regression model is very useful and convenient. It
provides a simple description of the data, summarizes the additive contribution of
each predictor with a single coefficient. Thus it is easy to interpret and finally,
provides a simple method for predicting new observations.

Because of the strong assumptions concerning the standard multivariate re-
gression model described above, it is applicable only in situations when they are
satisfied. The Generalized linear regression model is a generalization of the usual
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linear regression model, so it is important to outline the limitations of the standard
linear model and why we would like to generalize it. In practical applications it is
quite common that the relationship between the response and the predictor vari-
ables is not linear. The response variables could be bounded, such as categorical
response variables, or the variance is not constant — it could be expressed as the
function of the means. Thus, in these cases, assumptions concerning the standard
model does not hold.

General linear models are a generalization of linear regression models. Specif-
ically, the predictor effects are assumed to be linear in the parameters, but the
distribution of the response, as well as the link between the predictors and this
distribution, can be quite general. A general linear model also consist of a random
component, a systematic component and an additional link function, linking the
two components. The response variable Y represents the random component of
the model, it assumes to have exponential family density

(A.4) Tland; d) = exIJ{:iQ”_((——f)(@ + c(y. (_b)}.

wwhere b(:) is a smoothly differentiable function to the second order, a(¢) and
¢(y. o) are functions such that a(¢) > 0 and ¢(y. ) does not depend on . Further
note that ¢ is called the dispersion parameter. The parameter # depends on values
x' = (r,....1,) of explanatory variables and on the vector of coefficients (3
trough the linear predictor n = a + x'B. The linear predictor 1 represents the
svstematic component. Further there is a monotonic differentiable link function g
such that n = g(u). i.e.

m

(A.5) glp) = a+ Z z; 3,
j=1

where i = E(Y|X = x). Note that the mean y is related to the § by u = b'(#)
and that a link function for which g(u) = € is called the canonical link. Note that
formally we can write

m

(A.6) g(n) =+ Y _ X;3;.
j=1

Many useful models fall into this class, including the linear logistic regression model
for binary data, that we employ and discuss in the section dedicated to multivari-
ate analysis, where we further expand the theoretical background.

A further extension of the class of generalized linear models, is called General-
1zed additive models. They extend generalized linear models by replacing the linear
form a+ )", X;3; with an additive form a + Z;};L fi{X;), where f;,5=1,...,m
are arbitrary univariate functions, one for each predictor. As outlined above, lin-
ear models have an important feature that made them so popular for statistical
inference. The are additive in predictor effects. Generalized additive models retain
this important feature. Thus, they are also additive in predictor effects, however
this time on the transformed scale given by the link function. Specifically, we
assume that response Y has a distribution of the form A.4, with the conditional
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expectation p = E(Y|.X|...... X,,) linked to the predictors as
(A.7) g(p) = a + z F(X5):
j=1

2. Logistic models

The logistic regression model assumes that we have a binary response variable
Y having alternative (Bernoulli) distribution Alt(7). Thus variable Y has two
possible outcomes Y = 1 indicating that the obligor is a defaulter and Y = 0
indicating that he is a non-defaulter. The mean g in this situation is equal to
p=EY|X =xz)=PY =1|X =x) = 7. We denote this probability as =(x)
reflecting its dependence on values @' = (... ... ) of predictors.

2.1. Additive models

The logistic additive model assumes that the relation between p and the pre-
dictors has the form

(A.8) log { 7 T_T(;f;() } = (¢ + Z FilX;)

J=1

where the link function on the left hand side is called the logit and where X =
(X1,....X,,). The additive predictor on the right hand side is determined by
additive constant v and by arbitrary univariate functions f..... f, translating
predictors X..... X,, into a linear world.

By A.8 we have
exp {(r + E ')‘;,-(.\'_),-)}

(A.9) (X) = —
1 + exp {rr + Z_:I IJ(\J)}

2.2. Linear model

The logistic linear model assumes that the relation between p and the predictors
has the form

(A.10) log (1 f(j&)) =a+ Z X3

where the link fuction on the left hand side is called the logit and where X =
(X1, Xon).

The relationship between the above presented models is straightforward. The
logistic additive model is a generalization of the logistic regression model as the
additive predictor is replaced by a linear one, i.e. f;(X;) = 3;X].
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