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CHAPTER I

INTRODUCTION

1. Legal frarnework and practice

The ongoing development of contemporr ry risk manag rn nt m t hods and th in­
creased use of innovative financial products hav brought é: bout 'lIb, antir 1ch. nge '
in the business environment fac d by cr lit in .t it ut ions 110\' adays. Th Ba 1
Cornmittee on Banking Supervi 'ion , establish cl in t he nd of 1974 I' pl' nts é: n
inst it ut ion which forrnulates broad supervisory standards ancl guid lin ' and I' c­
ommends statements of b est practice in xpect ation t hat individual authoriti s
(central-banks) will take steps to implement t h 111 to t h ir own national .yst ms .
In 1988 , t he Commit t ee deciclecI to introduc a capital m as ur m II S)T't ln COl11­

monly referred to as the Bascl Capital Accorcl. 111 J lIne 1999 , t he Comrnitt e issued
a proposal for a New Capital Adequacy Frarnework to replace t ll 1988 Accord .
Following extensive interaction with banks t he I' vised fram work was i ' 'll cl 011

J unc 26, 2004 under the name Basel II Capital Accord. Tll Ba el II Ce pital Ac­
cord is legally underpinned by the Capital Adequacy Directive (12/2000) , is .ued
by the European parliament and the Council. The new Basel II capital Accord
demands a lot of attention both frorn regulators and regulat cl subj cts . Among
various innovations a new int ernal rating based approach (IR,B) , det rrnining the
capit al requircmcnts in the area of credit risk , was proposed.

One of the Committee 's goals irl setting forward an IRB approach is to align
more precisely capit al requirements with the intrinsic amount of creclit risk t o
which banks are exposed . The orientation of the IRB approach is consistent with
t he framework currently being used by many banks with well-developcd risk man­
agement systems to assess internally both their credit risk profile and their capital
adequacy,

The Committee believes that such an approach, which relies heavily upon
bank 's internal quantitative and qualitative assessment of its countcrparties and
exposures, can better secure key objectives consistent with wider risk management
practice.

In order to comply with the recommendations of the Basel II Capit al Accord ,
each bank is required to estimate its set of probabilities of default (PD) relat ed to
its lending policy in each specific portfolio segment. To be more specific, bank 's
internal measures of credit risk are based on assessments of risk charact eristics of
both the borrower and the transaction. Most banks orient their borrower rating
methodologies and risk management practices to t he risk of borrower 's default.
The PD of the borrower Ol' a group of borrowers is the cent ral concep t on which
the IRB approach is built. The PD of the borrower does not , however, provide t he
complete picture of the potential credit loss. Banks also seek to measure how much
they will lose , should the borrower default on an obligation. This is contingent
upon two elements.

First, the loss is contingent upon the amount to which the bank was exposed to
the borrower at the time of default , commonly expressed as Exposure at Default
(EAD). Second, the magnitudo of likely loss on the exposure referred to as the

1



2 I. INTRODUCTIO

Loss Given Default (LGD), which is expressed as a percentage of the exposure .
For t he sake of completeness , nate that the IRB approach also takes into account
t he effect ive maturity (lVI) of exposures. These camponents (PD , EAD , LGD , M)
form the basic inputs to the IRB approach , thus they must be assessed and esti­
mated accurately, starting with t he basic quantity, which is the PD. For this reason
banks apply several sophisticated statistical methods for classifying their potential
client s into certain rating categories and estimating the probabilities of default in
these categories. We refer to this prescribed estimation process as to the process
of credit scoring. In our context the process of credit scoring refers to statisti­
cal methods uscd to d.evelop a statistical model for estimating and predicting the
probability that a loan applicant or an existing obligor will default or become del­
iquent. The final scaring tool is called the credit scaring model. To build a credit
scoring moelel , st at ist icians analyze historical data on the performance of pravided
loans to determine which of the borrower 's characteristics are useful in predicting
whether t he loan performed well.

To be more precise the bank has several inforrnation related to the creditwor­
t hiness of its po tential clients or obligors. This infarmation might be encoded in
several characterist ics which depend on the actual cammercial area the scoring
model is build for.

2. The general model

From the mathematical point of view t he basic setup can be expressed in the
following way : we have n observations x i == CLil " ' " X 'irn ) , i == 1, ... , n , of cl
randem vector in X ill ]Rn'L. That is, there are m explanatory (indcpcndcnt]
variables X I , ... , X 7n referred to as predictors. Further we have a dependent (re­
sponsc) randorn variable Y. The observations can be expressed as a row vector
(-Vi, x i ),i == 1, . .. , n . Thus, .L ij is t he value of t he j-t h predictor j == 1, ... , m of t he
i-tll custorner i == 1, ... . ti. Similarly Yi is t he valuc of realization of random vari­
able Y. It has two values coded by 1 and O (default and non-default ), respectively.
T he actual data set can be expressed in the matrix form as

x==
x; 1,

Xl ni,

»;.«,

y==

Stati .t icians make a sample of its past debtors and analyze t heir characterist ics.
Practically, the selected sample is divided into two subsamples. The first , called the
train sample, is uscd for model development. The second, called the test sample,
i ' II .ed for model testing and validation. The scaring model is generated from
t his input data t hrough various approaches and then it is applied to new clients
in orel r to estimate t heir expected probability of default. Obviously, the purpose
of credit .coring i ' highly practical, it provides t he bank with better knowledge of
it client '. It effect ively helps to manage and reduce credit risk. In other words ,
'tati ,tical techniques used for credit scoring are based on t he idea of discrimination
betw II s v ral ubgroups in t he underlying population of bank client s. The goal is
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to develop statistical method which is .uffici ntly n iti v , qui k in cornputation
transparent and easy to interpr t .

This thesis introduces t he background knowl dg of cr dit .coring in th context
of generalized linear models (GL~'1) , in parti cular logisti c regr ssion . The statistical
aspect of credit scoring methodology are cli .cuss d. Empha 'is is put on stati ·tical
techniqucs and statistical computing employed in credit scoring mod 1dev lopm nt
and validation procedurcs. The t hes is resolves stat ist ical is ' l l s conn ct d to the
second and third stage of the credit scoring process illustrated in Figure 1.1.

Stage 1

Problem Definition
Data Preparation

Stage 3

IModel Validationl

Stage 2

Stage 4

Model Application
PO EstimationlPredicting

Figure 1.1. The process oj credit scoring.

3. Data sources

Data sets employed in the above presented stages of the credit scoring process stem
from a Czech bank. A special database has been developed to store and process
detailed quantitative and qualitative data. The data was collected by means of
electronic forms filled by the branch network. However , additional information is
confidential and therefore names of all variables used in analytical examples , as well
as in illustrative figures have been removed. With regard to internal confidentiality
and data privacy protection we do not present final results , that is, concrete models.
Instead we present statistical methodology, whose application leads to reasonable
statistical models in similar situations we faced. For the sake of completeness, note
that we examined the segment of Corporate/SlVIE firms and the considered default
horizon was one year.
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CHAPTER II

MODEL D EVELOPME NT TECHNIQUES

1. Single - factor analysis

A common characteristic of cred it scoring models bas cl Oll inforrn. t ion frorn fi­
nancial statements , is él large number of ind p nd n variabl tha can b l l ' cl in
the model developmcnt phase. It is I10t so ornplicat d to cl fine a 1111g arno unt
of financial ratios , combining all the usoful inforrnation cont ain d in the finan ial
statements of a cornpany in very different ways to assess its credit worthin ss . Th
way this information is employed to build th mod 1 is cruc ial in cl t rrnining t h
capability and robustness of the final mod 1 in predicting default. A t ually, '0111 ,
of tho financial ratios that can be clerivecl, might b useful t o predict default , but
others might not be related to the default variable at all. Furthermor , '0111 of t h
ratios cau take ext remely high or low values for some cli nts , without s rving any
information for default prediction purposes. These fact s highlight t h impor t anc
of variable selection and transforrnation processes that él1'e p rformecl during t ll
single-factor analysis phase.

Single-factor analysis is the first step in statistical part of building a credit
scoring model. The aim of the single-factor analysis is to prepare a reasonable s t
of default predictors that can be uscd later in multi-factor analysis, Civen a large
amount of possible predictors , it is important to rcduce this list to predictors t hat
enter the final model selection process. In ordcr to understand t he reason w11jT
predictors are treated separately, we should be aware of t he fact t hat modelling
database contain raw clata.

There are several problems that has to be solved within the single-factor anal­
ysis before any multi factor analysis can be performecl .

Statisticians distinguish t\VO types of predictor variables. amely the catego-
rial and coniinuous predictors. The nature of t he predictor variables is different
and so are the problems that statisticians need to solve. Dealing with ca tegorial
predictors involves the following issues,

• Order of predictor categories (in terms of expected default frequency)
need not be completely clear beforehand. Definitely, we should always
assess what is the position of missing values (NA) within this order. It
is convenient to assign categories certain numeric levels beforehand to
optimize statistical performance of the predictor in multi-factor analysis.

• There may be strong dependence between categorial predictors, but their
vague and subjective definition can hide it. Thorough investigation has
to be undertaken to uncover possible dependence.

• Predictive power of categorial predictors can be rather volatile in time be­
cause of subjective nature of assignment of obligors to categories. Regular
validation of particular categorial predictors is necessary.

5



6 II. MODEL DEVELOP lE T TECH IQUES

Dealing with cont inuous predictors involves the following issues,

• Continuous predictors have to be tested for outliers because outliers can
significantly disturb predictive power of single predictor as well as its
cont ribut ion to the multi-factor model.

• Certain transformatian or truncation of the continuous predictor may be
desirable to optimize its statistical performance in multi-factor analysis.

• Strong dependence among continuous predictors is typical in credit mod­
elling. Usually, one has a group of predictors describing the same or very
similar things in slightly different manner at hand. Within such a group
anly one or two predictars are convenient to be considered in multi-factor
analysis. Inclusion of the whole group is counterproductive.
Treatment of missing values.

(2.1 )

1.1. Categorial predictor analysis

P roccdures concerning categorial predictors are relatively easy to get along with,
bccause t he single-fact or analysis of categorial predictors is simpler t han the one
of continuous predictors and the results are easier to interpret. Nevertheless the
following t hings have to be done. We have to asses the proper order of predictor
categories . As soon as it is done, joining of non-significant categories is carried
out . Afte rwards we might proceed with reducing t he preelictor set .

1.1.1. Ordering predictor categories. Assessing t he proper order of preelictor
categories including t he position of NA is primary problem to get along with. We
.olvc this task by assigning all categories certain numeric levels , rcsp ecting the
following prop erty: The larger is the numeric level the larger is t he corresponding
expected probability of default. Beside proper ordering, we require that the levels
.hould translate t he predictor into a linear world of logistic regression mo elel in
order to make it op timized for fur ther use in multi-factor analys is. The level
as .ignment is carried out by fi t ting a one-dimensional logistic adelitive model for
each categorial predictor X as follows

log { p } == .f(X ).
1-p

Model 2.1 is a special case of t he general multi factor model A.8 described in
Appendix A, where we set m == 1 and a == O. In this application it is useful to think
of the generalized adelit ive model as of a method for estimat ing t he appropriate
metameter in which to measure t he variables. It follows t hat this way we ensure
both the proper ordering and t he t ranslation into t he linear world.

Thus , we ass ume that some predictor X can attain S abstract valucs Cl , ... ,Cs
and r f r to them as categories . In view of 2.1 and Appendix A we seek for an
a ' ignm nt f such that

(2.2) .{(Cs ) == Li , s == 1, ... ,S.

wher Ll . . . ~ Ls ar arbitrary real numbers. These numbers are est imated via
<:1 'o call d local-scoring algorithm, cornputational det ails are given in Hastie and
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T ibshirani (1997). In order o work thi \v II clata cmpl .iz 11e ' o b 'icrnific n 1
larger than S. Figure 2.1 cli pl, Y' a po 'ibl 1 v 1 c ' 'igll ffi nt · rri d Ol l Oll r el
data.

B D F K

x-
CI)

ji
ca
'i:
ca
>
~o-e:oe
Co--

predictor variable X

(2.3)

Figure 2.1. A possible level ossiqnmeni carried out on, qualitative
predicior variable X , uihicli has 9 levels incliulinq the cai eqoru o] NA.
The length oj' each line represents to the proportion oj obseruations
having the correspondinq level ouilined above this line on lhe top
horizontal axis.

Since the above described approach is quito general, we might want to sp ecify
the assurnptions concerning function f from 2.1 when choosing the method of
estimating and quantifying t he appropriate orclering and significance of predictor
categories. In this sense t he univariat e generaJized additive model is equivalent to
fitting an univariate general linear model of the form

s

lOg{ l ~ P} = L Ls! {X =Cs }

05==1

wherc I {X == Gs } is t he indicator of the fact that predictor X assumes category
es. These t\VO met hods are intended to be equivalent from the the point of view of
proper ordering of predictor categories, nevertheless the fitting procedures related
to the two model types are it erative and might differ in implementation in different
software packages . As a result the corresponding estimates might slightly differ in
absolute values as well. Because X can always assume just one of the categories
the univariate model 2.3 can be viewed as a special S-dimensional (rnultivariate)
model.

An important features of this model is that regressors I {X == G l } , ... , I {X ==
Gs } are perfectly orthogonal. Moreover, if we add a constant to the model we
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obtain a singul ár regression matrix, thus another benefit is the absence of the in­
tercept.

Assume we fitted model 2.3 and obtained estimates Ll ,...,L, of coefficients- - -...-...
L l ,··· , L s , respectively. Let L (l ), ... , L(s) be estimates Ll, ... , L s ordered in as-
cending order. This ordering provides ordering of obligors by their estimated
probabilities of default and suggests order of categories Cl, ... ,Cs in these terms.
Finally, denote by C(l), ... , C( S) the suggested order of categories Cl, .. · .C«.

Once we obtain optimallevel assignment for all categorical predictors \ve test ,
whether two subsequent categories differ significantly or not , the corresponding co­
efficients are compared. Afterwards, it might be uscful to joint the non-significant
categories together.

1.1.2. Jointing predictor categories. Realize that , with t he absence of t he
intercept , test s whether L ; == O does not have much meaning. Morcovcr , L 8 == O
does not mean t hat category C, is not statistically significant. Here , significance
should rather be considered in terms of the relative number of observations of
category Cs and by mutual comparison of levels L s . This comparison is crucial for
jointing categories.

Let us introduce a set of orthogonal vectors D k , k == 1, ... ,S-I , each of length
S having t he following property. The k-th element of vector D k equals 1, while
t he k + l-th eleme nt equals -1 , the other elements af this vector equal O. We
refer to t hem as con trasts. Furthcr , denote the vector of the orclered est imates of

-... -... T - -...
coeffic ients L l , ... , L s by L() , thus L() == (L (l )' ... ' L (s)). For an arbitrary k we

T - - -...
have t hat Di: L() == L (k+ l ) - L (k ). Employing t he introduccs notation , we eLre
able to clescribe t he problem of testing, whether two subsequent categories differ
significant ly, wit h a seqllence of null hypotheses as follows

Recall that in ordinary linear regression we are used to employ t he t-statistic to
check whether two coefficients are significant ly different. In t he context of gener­
alized linear models, in particular logistic regression, this stat istic does not follow
z-distribution. evertheless, by Wald 's (1943) results for maximum likelihood es­
tirnators (l\/IL) , having enough data one can safely use asymptotic approximation
by the .tandard normal distribution, for t he test stat istics Tk , corresponding to
th k-th hypothesis, which reads

(2.4) k == 1, ... ,S - 1,



1. SI GLE- FACTOR . ALYSIS 9

whcrc (J' denotes the standard rror. Equation 2.4 holi b all ' all co ffi i n
estimates are uncorrelat ed .inc lin ar r gr sors I {X == L l} ... , I {X == L } ar

..-. ..-.

orthogonal. Realize that Ti. is larg if t ll diff I' n L (k+ l ) - L (k ) i ~ lcrg and if
..-. ..-.

standard error o-(L(k +l ) - L (k )) is small. Th standard rror i ' srn II if particular
..-. ..-.

standard errors o-(L(k +l )) and CJ (L (k+ l )) ar .mall, t hus , if .t imat d co ffici nts
are not inaccurate. In our case, inaccuracy is m. inly es ll ' i by small nu mb I' of
observations in the considered category.

Note that because of the ascending ordering of coefficient ' it sho uld b enough
to test the null hypotheses against a one-siclecl alternatives how v r , vV discu s
also the case of two-sided alternative. With r sp ct to t h larg -sample normalitv
of ML estimators , wc compare Tk with t he appropria t crit ical valu 'of .t andard
normal distribution to obtain test results of 011e- Ol' tvvo- .idcd alt rnatives. Equiv­
alently, for the two-sided alternative, adrnit t ing t hat T/~ has asymptotically t h X2

distribution with one degree of frcedom, crit ical valu s of 2( 1) cli str ib ution can
be employed .

Set the confidence level to be a, O < a < 1. If Tk > <I> - 1(1 - a), we I' ject t h
k-th null hypothesis and categories Ck and Ck+1 are considercd to be significantly
different and no jointing is committecl. On the other hand , Tk < <I> - 1(1 - a) does
not necessarily imply that categories Ck and Ck+1 should be joined as it is outlined
in the following parugraph.

It often happens that a sequence of non-significant diflcrenccs is encountcrcd .
Let lIS consider three (ordered) categories C (k ) , C (k+l ) and C (k+ 2) whose corres pond-

..-...-. ..-.

ing subsequent est imated coefficients L (k ) , L (k+ l ) and L (k+ 2) do not differ signif-
..-. ..-.

icantly. If L (k ) and L (k+2 ) differ significant ly we cannot reason jointing all t hree
categories in one even if the neighbouring couples do not significantly cliffer . In
these cases we have to choose which couple should be joined. However , the new
joint category need not be significantly different from the left one after jointing
because t he new level coefficient of the joint category shift s t owards t he coeffic ient
of the left cat egory. Such situations might occur if the statistic Tí: for C (k ) and
C (k+ 2) is not highly above quantile <1> -1(1 - a ).

The above prescribed situations suggest , that beside statistics 2.4 it might be
useful to calculate TP ) statistics for the second neighbours , namely,

k== 1, ... ,5- 2,(2.5)

..-. ..-.

(2) L (k+2 ) - L (k)

T
k

= V(J"2(L(k+2)) + (J"2(L(k )) ,

Statistics 2.4 and 2.5 are usually sufficient for jointing categories , but "ve could
compute statistics Tt~) for m > 2 if necessary.

In practical applications expert opinion should also be taken into account ,
especially in those situations, when statistically suggested order of categories is
different from expert expectation, and in the same time, when two categories
which does not differ significantly must not be joined at any case.

1.1.3. Treatrnent of missing values. Missing values of categorial predictors
are treated as a category referred to as NA. The level assignment and joint ing
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described above fully applies to this category. Generally, it might happen that for
cert ain reason the NA category improves the predictive power, or its order among
the other categories is somehow suspicious. These cases require special treatment
if any. Usually it is recommended to excludc these predictors from the modeling
database , that 's why we do not examine this issue further.

1.1.4. Reduction of the predictor set. Referring to our previous comments ,
we outline again that the aim of the single-factor analysis is to prepare a reasonable
set of default predictors that can be used later in multi-factor analysis. Because of
t he fact that at the beginning we are given a large amount of possible predictors , it
is important to reducc this list of predictors in order to obtain the most reasonable
ones , which can be finally used in the multi-factor analysis. When assessing the
appropriate cri teria for reduction of t he predictors set , two kind of characteristics
are taken i11tO account. First , we would like to cvaluat e the discriminative ability
of each predictor with respect to separation between defaulting and non-defaulting
obligors . Discriminative characterist ics, namely, the receiver operating characteris­
tics curoe and the related area undcr this curve are employed to exclude predictors
with none or low discriminative power. Second , we desire to choose predictors that
are not probability dependent in a significant way. The reason for this is obvious ,
strong dep endence among predictors causes serious problems within the multivari­
ate analysis as t he estimates of coefficient s are inaccurato and they can also have
clifferent signs t han expected . It is advised to choose only one, at most two , rep­
resentatives out of group of strongly dep cndent predictors.

Discriminative ability. The assessment of t he discriminativo ability of a spe­
cific predictor is accomplished by using the receiver op erating characterist ics (ROC
curvc) and cornputing its appropriate surnrnary st at ist ics, t he area under the ROC
curve - AUC. In t his context ROC analysis represents an overall measures for
asse .sing t he amount af information included in the underlying predictor regard­
ing its ab ility to discriminate bctwcen good and bad cases. Because of the fact
that the major of Chapter III is dedicated to t hese issues we do not expand t his
problematic here. Instead , we fO ClIS on the dependence st ruct ure t hat deterrnines
the final set of preclictors used in multi factor analysis.

Deperulence struciure. The dependence st ruct ure is a fundamcntal issuc of each
't at i st ical analysis. ... o model can be contemplated without making some assump­
t ions about dependence structure of elements involved. In credit scoring models
we are strongly int erest ed in dep endence among predictors. Dep endence structure
t hat joins marginal distributions to t he joint distribution is fully described by t he
copula funct ion . cvcrthelcss , simpler tools which characterize grade of dep en­
dence instead of the copula are oft en used. These tools are usually called measures
of as .ociat ion. ote , that t here is a specific subgroup of measures of association
which ar call d mea ures of dep endence. There are several properties of these
111 a .ur s t hat are important for practical application.
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ASSl1me we have two random vari. bl ' X"1 an I X"2 who 1 ' ln a-
sured by a measure of dep end 11C <5 ( ~y1 X 2) . R, éliz 11é a rding to
(1998) and Slabý (2004) , the following prop rti ' ér r quir d in an ~ ase:

(1) The rneasure of dep nd nce is syrnm t ric: 6(./Y 1 , X 2 ) == <5(X2 , ./Y1 ) .

(2) The measure of dep end nce is bound cl by Oand 1: O< c5 (./Y1, X 2) < 1.
(3) The measure of dep endence distinguish ind p nd IlC : Ó(./Y1 X 2) == O if

and only if Xl and X 2 are (probability) ind p nd nt.
(4) The measure of depend nce distinguish c r ain kind of p rf ct d p 11d nc :

• For cont inuous ./Y l and ./Y2, Ó(X1 X 2 ) == 1 if and only if each of Xl
and X 2 is a st rictly monotonous function of t he otll r .

• For categorial X l and X 2 with Sl and S2 cat gori s, say Sl < S2 ,
Ó(Xl , X 2) == 1 if anel only if there i ' a 011e-to-on correspond nce
between categor ies of ) ( 1 and an S 1-el 111 .nt sul».et of cat gories of
X 2 whcre each of possible S2 - Sl left cat -gories of X 2 oCC11rs ln r ly
with one of the categories of X l.

(5) The measure of dcp cndencc is invariant under c rt ain tr. nsforrnations:
• For cont inuous ./Y 1 and X 2, c5(g(X1 ) , lt(X2) ) == <5 (X1 , ./Y2) whcn ver 9

and h are strictly monotonous functions.
• For categorial Xl and X 3 , <5(g(Xl) , l~(X2)) == c5 (X1 , X 2) wh nev r in

this case g(Xl) and lt(X2) arise by perrnutation of categories of X l
and X 2 , respectively.

Measures of association are less restricted than 111e(l S11res of elepenelence since
t hey are designeel t o measure special types of dep end :1nce. For example equiv­
alence in point (3) of the above prescribeel list does not hold , an implication is
satisfactory, Similarly, t he Iower bound in point (2) could be diíferent too, it oftc n
equals to -1.

Further , we introduce a measures of dep enelence t hat "ve elerived 11Sil1g t he
st andard Pearson X2 st at ist ics .

Assumc again that we have two categorial preclictors Xl and X 2 which at tain
Sl and S2 abst ract values (categories) Cll , ... ,C1S1 and C2l , ... ,C2S2' respectively.
Denote

Pij == P(X1 == Cli , X 2 == C2j ) i == 1, ... , S l, j == 1, ... , S2

the joint probabilities of attaining categories Cli, Cl j and

S2
Pi· = P(XI = Cli) = L Pij l

j==l

Sl

P-j = P(X2 = C2j) = L Pij ,
i == l

the marginal probabilities. The matrix (Pij) is usually called as t he matrix oj
probabilities. By definition, predictors Xl and X 2 are (probability) independent if

Pij == Pi· . P-j·
Conversely, for Sl == 52 predictors are perfectly dependent when categories

Cll , ... ,ClS1 form faithful pairs with categories C21, ... ,C2S2' t hat is, t hese pairs
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(2.6)

always occur together . Formally speaking it means that for any fixed i Ol' j we
have just one Pij> O, and Pij == p; or Pij == P-j, respectively.

If numbers of categories differ, for exarnple S2 > Sl, then the notion of perfect
dependence is slightly modified . In such a case there is an Sl x Sl-sqllare sub
matrix of (Pij) , which satisfies the above conditions while the columns left contain
just one Pi j > O. Informally speaking, all categories Cl l , . . . ,Cl S l have faithful
partners among categories C2l , . .. , C2S 2 .

I ow assume that we have n simultaneous observations of predictors Xl and
X 2 . Let n ij be the number of cases when Xl assumes category Cli and X 2 assumes
category C2j . Further let n i. be the number of cases when Xl assumes category Cli
and n-j t he number of cases when X 2 assumes category C2j . Thus , we have

S 2

n; = L n.ij ,
j== l

Sl

n-j = L nij ,
'i == l

Sl S 2

n = L ni. = L n-j .
'i== l j== l

In statistical Iit eraturc t he matrix (n i j) is callcd the contingency table.
The chi-square stat istic X2 defined as

(
n i , . n .j ) 2

2 Sl S2 n.ij - n'
(2.7) X = LL ni. · n-j

i == l j==l
n

is the standarcl tool for testing independence in contingency t ables. Forrnula 2.7
is actually not suitable for comput ation , so we try to derive an equivalent form
which used to be ernployed while cornputation:

S l S2 (n,.,. - n i· . n-j )2 Sl 52 ( 2 2 2)
X2 = ~~ lJ " n = ~ ~~ nijn - 2nnijni. n -j + ni.n-j

L...J L...J tu . n .) n L...J L...J ti. .n . .
i == l j==l i == l j== 1 i J

n
Sl S2 2 Sl S2 1 Sl S2

n LL n~~.. - 2LL nij + n LL ni.n -j
i== l j==l J i == l j== l i == l j==l

Sl S2 2

n L L n~~ .. - 2n + n
i== l j ==l J

Sl S2 2

(2. ) n LL n
ij

- n .
tu.n ..

i== l j ==l i - 'J

1 ot t hat large values of the X2 statist ic suggest that hypothesis of indep en­
cl nc clo ' not hold. In practice, asymptotic cr it ical values are usually used in tests
as X2 .t at ist ic 2.7 has asymptotically XCS1 - 1)(S2- 1) distribution with (51- 1)(52- 1)
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degrees of freedom. It is known that this a -' . mp o i appr xima ion i ' plau ibl
only in cases where n i.n-j / n > 5 for all ombina ion ' of i é nd j.

ow we employ the de crib d / 2 t ti .t i ' to d riv a II r icr 1 III a .ur of
dependence that has similar properti s to th ' w 11éV list i, Slabý (2004) . M
follow those prescribed properti s and we ,11ovV that a tll or tical m é .ur of 1 ­
pendence between Xl and X 2 d fined a '

(2.9)

satisfies them. It is clear that X} is syrnmetric. Furth r we show that X} distin­
guishes perfect depeneience if X} == 1 and perf ct indcp ndenc if X} == O. 111 other
words we need to prove that X} is bound d and the introduc d 'téndardization
ensures that lies bctwcen O and 1.

First "ve consider that our two categorical predictors .4X" 1 , X 2 can assume Sl <:111Ci
82 categories , where Sl == 82 and that predictors are perfectly dcpendcnt. Thus
we are looking for a constant K such that the following holds

(2.10) K (nt t pt - n) == 1
. -1 . 1 P i']]'J'

'l~ J =::.

(2.11)

Second we consider that our two categorical predictors Xl, X 2 can assume Sl and
82 categories, where Sl < 82 and that predictors are perfectly dependent , in this
case for the forrnula labelled as Tl we find that

-1
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(2.12) (P~l + ... + P~Sl Pi(Sl+l) + ...+ pi(Sl+(S2- S1)) ) + .. .
Pl·P·l Pl,P'Sl Pl,P'(Sl +1) Pl ,P'(Sl + (S2-Sl))

, j

V'

==1

... + (P~d + .. .+ P~lSl P~dSl+l) + ... + p11 (Sl+(S2-S1 )) )-1
PSl·P·l PSl,P.Sl PS1,P'(Sl +1) PSl,P'(Sl +(S2- Sl ))

, j

V'

==1

(2.13)

The terms in the above prescribed equation sum to one, thanks to the definition
of the perfect dependence in the case where Sl < S2 .

This can be easily presented on the next example. Consicler two categorical
predictor variables Xl and X 2 such that Xl assume three categories coded by
integers 1 to 3, thus Sl :=: 3. X 2 assumes six categories coded by integers 1 to 6,
t hus 52 :=: 6. The variables has the following form

Xl (1 ,1 ,2 ,3 ,3 ,2 ,1 ,1 ,2 ,2 ,3)
X 2 (1 ,1 ,5 ,4 ,3 ,2 ,1 ,1 ,2 ,2 ,6)

The corresponding contingency table and the matrix of probabilities have the fol­
lowing form

3 O O 1 1 O 1
2 O 3 O O 1 O
1 4 O O O O O

Categories of X l /X2 1 2 3 4 5 6

Table 2.1. Contingency table related to categorical predictors X l ) X 2 .

3 O O 1/11 1/11 O 1/11
2 O 3/11 O O 1/11 O
1 4/11 O O O O O

Categories of X l / X 2 1 2 3 4 5 6

Table 2.2. The matrix of probabilities related to categorical predic­
tors X l) X2 . The square sub-matrix ouiline unili blue colour saiisjies
the condition that for each i or j there is only one P ij > O) and
]Jij :=: P i· or ]Jij :=: P -j ) respectively. Th e columns left contain Just one
Pij> O.
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(2.14)

In this illustrative examp1e \V find that th t rrn 1c b 11 - I e ' Tl hr ' t h followinz
form

(
(4/11)2 ) ((3/11) 2 (1/11)2)

(4/11)(4/11) + (4/11)(3/11) + (4/11)(1/11)
" ~ " ~ve ty-

== 1 == 1

(
(1/11)2 (1/11)2 (1/11)2)

+ (3/11)(1/11) + (3/11)(1/11) + (3/11)(1/11) - 1
" JV'

== 1

Sl -1.

The above presented examp1e should provid c1ear insight how tll t rrns in equa­
tion 2.12 sum to 011e , undcr the assumption of the perfect cl 1)el1(1 nce in the ca '
of Sl < S2'

Realize that if we reverse the role of Sl and S2 thus if »: as .um that S2 < Sl
the rcsult in equation 2.13 would be S2 - 1. Finally we ar abl to conclude that
the standardization constant that brings the X2 statistics to [O , 1] has the following
form

K= 1
n(min(51 , S2) - 1)

For the sake of comp1eteness we show that if predictors Xl and X 2 are probability
independent , statistics X} equals zero. Thus undcr the assumption of indep endence
P ij == Pi·Poj we have

(2.15)
1 (Sl S2 2 )2 _ P ij _ 1 - OXT - . -

mln(Sl 52) - 1 L L p...'o. ', ' 1 ' 1 i LJ
~ == J==

thus 2.15 equals zero if T2 equals zero undcr the assumption of independence. This
can be shown as follows

the later statement is true because

O

1, P ij == Pi·Poj ,

Sl S2 ( ) 2LL Pi·P-j
. l' Pi,P'J'
~== J==l

Sl S2

LLPi.P-j
i==1 j==l

1.
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For the theoretical measure 2.9 it holds that ,

O< X~ < 1

and statements about X~ == 1 and X~ == O are exact . Indeed , X} == 1 if and only
if Xl and X 2 are perfect ly dependent while X} == O if and only if Xl and X 2 are
independent .

Finally, we outline t hat t he sample counter par ty to t heoretical measure 2.9 is
defined as

(2.16)
1

(

Sl S2 r 2 )2 nij
Xs == -- - 1 .

min(51 52) - 1 L L n..·n.·, ·1·1 i J
~~ J~

Using the above described measure of dependence, precisely it 's sample vers ion
2.16 for deterrnining potential dependencies arnong predictors and using the AUC
statistic while assessing the discriminative ability of the predictors , we are ab le to
reduce the long list of categorial predictors .

1 .2 . Continuous predictor analysis

The single-factor analysis in case of continuous predictors consists of slightly clif­
ferent steps than it was described above, obviously due to different nature of the
predictors . Because of potential difficult ies that might OCClIre, it is useful to per­
form the reduction of the continuous predictor set, before any other analysis is
done. Being aware of tho facts , that further analysis involves setting boundaries
(c'utoff poirnts) which define the range of reasonable preclictor values while exclud­
ing potcntial outlicrs , next assessing necessary transforrnation of predictors. We
should perform the reduction of the predictor set using such measures that are
invariant with respect to monotone transformations and which are robust against
outliers. At this stage we employ the Spearman correlation coefficient and the
cli .criminativc st at ist ics discussed in cletail in Chapter III . These fulfill the above
outlined properties and thus in this way some predictor ' can be discardecl even be­
fore any finer analysis is done , just on the ground of Spearman coefficient matrix ,
discriminative power statistics.

The ongoing part of the single-factor analysis regarding continuous predictors
i ' performed only on the ground of the reduced predictor set . This involves the
following steps.

In contrast with categorial predictors , continuous predictors have to be tested
for outlicrs. The goal of the outlier analysis is to check continuous predictor data
for outst anding cases which we may have better excludcd before mult i-factor mod­
ling .

Furth r we need to check for the relationship betwccn a specific predictor and
th default status . vVe expect that a reasonable predictor variable has a monotone
re lationship with respect to the default probability. In order to obtain notion or
a 1)0' .ible shape of this relationship we employ a non-parametric smoothing tech­
lllqll .

The n xt st p involves check on linearity assumptions . Due to the fact that we
ar int nt to employ a logi .tic regression model which implies a linear relationship
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bctwcen the log odd and th input pr clictor Ve ri r bk '
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1.2.1. Reduction of the predictor set. \1\ h n as 'e' .ing tll appropriat crit ­
ria for reduction of the predictors set égain two kind of chart ·t ri ' ics er - te k n
int o account . First , wc would like to evaluat th di scriminr tiv abilit of ch pr ­
d ictor with respect to separation betwe n cl faulting an I non-d faulting obligor '.
Second, we would desire to choose predictors that are not probability cl p nd nt
in a significant way. T he reasons for this are thc sam a b efor , .t rong cl p ndenc
among predictors causes serious problems within th multivariate énalysis és: th
estimates of coefficients are inaccuratc and the could al '0 hav cliff r nt .igns t hé II

expected. T hus it is advisecl to choose only one, at most two r pr s ntativ s out
of group of strongly dependent predictors ,

Discriminative ability. The assessment of th di:.criminat iv ability of él 'P ­
cific predictor is again accomplished by performing the ROC analysi ' and comput ­
ing t he appropriate summary statistics as it was done in the categorical case. In
this context t he RO C curve represents again an overall measures for asse ising the
amount of information included in the underlying predictor regarding its ability to
d iscriminate between good and bad cases . Because of the fact that the major of
Chapter III is dedicat ed to these issues we again do not expand this problematic
here.

Dependence siructure. Continuous predictors comprise various financial crite­
ria. Financial criteria are likely to be highly dependent. That is why the grade of
dependence is emphasized as a key featurc when select ing continuous predictors .

In the first step, we classify financial cr iteria in groups from an economical
point of view, such as liquidi ty, activity, turnover , solvency etc . Criteria within
these groups are typically very strongly dependent and hence only one or two pre­
dictors from each group are plausib le to select at most . Moreover , one can find
cl lot of strongly dependent couples of fina ncial criteria, each belonging to a differ­
ent subject group , ote that t he strong dependence among continuous predictors
is caused by t he fact that financial criteria are composed of relatively small num­
ber of aggregate it ems of financial reports . It means that the number of carefully
se lected financial criteria is typically not larger than the number of the aggregate
items. In other words the amount of information gained from financial criteria
cannot be larger t han the numbcr of the aggregate items.

In credit scoring models, continuous predictors are supposed to be concordant
or d iscordant . The concordance/discordance is a typical representative of a mea­
sure of association, a slightly re laxed measure of dependence elsen (1998). T wo
points (Xl , YI) and (X2 ,Y2) are concordant if (Xl -X2)(YI -Y2) > Owhereas they are
d iscordant if (Xl -X2)(YI - Y2) < O. The more realizations ofrandom vector (X ,Y)
are concordant the more concordant is conceived the random vector itself. T he
same applies to discordance, but understand that concordance and discordance
compensate each other similarly to the positive and negative linear correlation.
T hus in t he case of credit scoring models a certain measure of concordance should
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be uscd to measure the grade of dependence between continuous predictors. We
employ the Spearman coefficient .

Assume that we have two continuous predictors Xl and X 2 , that is, they follow
distribut ions with certain cont inuous distribution functions . Assume that we pos­
sess two simultaneous samples of values of the predictors , namely, (XII , . .. , X l n )

and ( X21 , ,X2n ) . Let RII ,· . . , R l n and R21 , . . . , R2n be the corresponding ranks
of (XII, ,Xl n ) and ( X21 , ... ,X2n ) , respectively. ThlIS, R sk == m if X sk is the m-th
largest valuc in marginal sample ( X sI , . . . ,xsn ) , s == 1,2 . Since predictors are con­
t inuous the ranks are wcll defined with probability one. The Spearman coefficient
is defined as t he sample correlation coefficient calculated from ranks RII , ... , R l n

and R21 , · .. , R2n

(2.17) Ps == ----;==============================================

where Rj == n- l 2:: ~7 1 Rj'i ' j == 1,2. Not e that somet imes t he Sp earrnan coeffic ient
is called t he Spearman correlat ion coefficient obviously because of its definition.
However , this term is unfortunate since the Spearman coefficient do not measure
t he linear correlation betvveen Xl and X 2 but a kind of more general association,
namely the above prescribed concordance. It holds that the Spearman coefficient
can be rewrit t cn as follows

(2.18)
6 n 2

Ps = 1 - n(n + l )(n _ 1) L (R1k - R2k ) .
k== l

T he later equation is suitable for computer irnplementation and can be derived
from 2.17 by substituting the following terms

R ·J

n n

.!. " RIi = .!. " i= n + 1t;«: n ~ 2
i == l i==l

j==1 ,2,

11

L R1iR2i

'Í== 1

Simplifying equation 2.17 afte r substitution is st raightforward t hus we do not give
t he calculus here.

R alize that the Spearman coeffic ient does not change its value under st rict ly
incr a ing tran .for rnat ions applied to variables X I and X 2 whose mutual concor­
danc i ' m a .ured, because .uch t ransformation do es not influence ranks. Under
.t rict ly decreasing transformations it just revert s it s sign . ote t hat because the
p arman '0 fficient i ' ba .ed on ranks , it is also robust against outliers . Further
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note that

(2.19) - l< Ps< l

19

whcrc Ps == 1 means that variables X I and X 2 are p rfectly concordan , Ps == -1
means that variables Xl and X 2 are perfectly discordant , and Ps == Osugg sts that
Xl and X 2 are neither concordant neither discordant. In oth r word ' t\VO random
variables are perfectly concordant if t hey are strictly incr asing transforrnations
of each other. In turn , two random variables are perfectly di .cordant if th y are
strictly decreasing transformations of cach other.

The crit ical values PS(Ll:) are tabulated, however for TL > 30 t hc asymptotic
normality of the Spearman coeffic ient is employed . v~ cornput t he crit ical values
at level o, O< o: < 1 as follows

(2.20)

t hus the hypothesis of independence is rejected in case l(ps)1 > ps(a ).
As prescribed above the Spearman coefficient is robust against outliers . It has

the advantage that we can calculate the matrix of Sp earman coeffic ients before
any outlier analysis is carried out. In t his way some predictors can be discarded
even before any single-factor analysis , just on the ground of Spearman coeffic ient
matrix and discriminative power st at ist ics. It can save quite a t ime because t he
single-factor analysis of cont inuous predictors is quitc cornplicated anel elabor áte .
Further note that at any case the Spearman coefficients must be calculated from
data before cutoffs and missing valucs replacement. One simple reason is t hat t he
Spearman coefficient rests Oll ranks which are not well defined for samples with
ties. Certain modifications can be used for equal observat ions, but there are other
reasons not to do it. Replacement of missing values can artificially change t he
valuc of the Spearman coefficient . On the other hand , cutoffs can significantly
decrease t he valuc of t he Spearman coefficient because all elivers ity beyond cutoff
points is shrunk in one point.

1.2.2. Assessment of outliers. Single-factor analysis of cont inuous predictors
involves a check of the tail distribution and outliers. Firstly, wrong input data can
be detected , secondly, a check of tails is useful for assessment of cutoff points and
suggestion of appropriate transformation. Wrong input data involves both wrong
figures and obligors which does not belong to the modelled group, For example,
financial institutions typically exhibit huge balance sheet sums and t iny ratios of
equity in contrast with non-financial corporates. Hence t he first check of outliers
can be also viewed as data validation. The simple check involves plot ting the
data, or more precisely the left and right tails , to see whether there are not a few
observations which are one or several times larger or smaller t han their neighbours.
An illustrative example is provided in Figure 2.2. Such obligors are then checked
for validity. Outliers are discarded depending on the result of t he validity check
and on feasibility of data recovery.

We are ahead to estimate the 5% and 95% quantiles UO.05 and UO.95 of the
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underlying distribution of the actual predictor ,i.e.

Ua.05 inf{x: Q(x) > O.05} ,

uO.95 inf{x: Q( x) > O.95} ,

where Q(x) denotes the unknown distribution function of the considered predic­
tor .

As "ve do not assume any particular distribution to be followed by the pre­
dictor we est imate the appropriate quantiles according to the following scheme.
Assume t hat "ve observe ti realizations of the underlying predictor variable X ,
t hat is Xl, . . . . x .; We order the sample X l, ... . tc; obtaining the ordered sample
X(l), ... , X(n) . The appropriate quantiles are than estimated as

»<

U o.OS X(L(n+ l) O.OSJ)'
»;

tlO.9S X(L(n+l)O .9SJ),

where l J denotes t he lower interger part. Obligors corresponding to values
srnaller t han t he estimated fl O.OS quantile and larger than the est imated fLo.9S quan­
t ile are selected as possible problematic cases . Proceeding t his way for all contin­
11011S predictors we obtain a set of suspicious obligors (in the sense of their data).

Realize t hat at t his stage no regression outliers analysis is worth doing because
later possible t ransformations of predictors can change evcryt.hing in drastic way.
Regression outlier analysis is postponed to multi-factor analysis when final models
are put through regression diagnostic procedures.

-2

Left taiI area

1% quantile

-1 O
Predictor variable X

Right tail are

Figure 2.2. An illustraiiue example oj the possible distribuiion oj
a single predictor variable. The suspicious values are expected to be
[outul in one oj the tail areas oj the distribution.

1.2.3 . Treat m e nt of missing values. In single-factor analysis of continuous
pr dictor , mis 'ing values are not substituted in t he first step as it is not desirable
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to dim down the real discriminativ abilitv of h pr di t r b c ll, r .ubs it 1 ion '.
As soon as the discriminativ abili of II pr di or with lni ' ina ob rvati ns
discarded is checked one can proc ecl with a Cll - k of wha 11é1)1) ll' if Ve riou
substitutions are used. Th r are natural cas s wh n mis 'ing valu ' a1)p ar and
substitutions are relevant. TJ pically, '0111 finan ial 'rit r ia ar not alwa w 11­
defined because of division by zero or for inst anc , b , aus h y hr v c goocl
meaning only for positive values of input. 111 .uch cases it i ' II .ually logice1 énd
well reasoned by expert s to assign an ultimat upper or low r valu . Th s lev ls
are typically put equal to cutoff point s cl scr ib cl b low. G II rally, \V can observ
anything-decrease, increase as well as sté gnation of t ll discriminativ é bility aft r
substitutions . Substantial clecrease is unfortunat , of cours , and .ugg .t s t hat
problems may be cncountercd in subsequent multi-factor analysis wh re .ub .titu­
tion of rnissing values can be uccded b cause of .ombining Inél11Y predictors. Oll
the other hand , substant ial increase is suspicious and has to b inv stigat d car ­
fully, It can suggest t hat missing values corres poncl syst matically to c rtain kincl
of obligors.

1.2 .4 . Testing monotonicity and suggestion of transformations. At t his
stage of the single-factor analysis we are ahead to get notion about t ll univariat e
regression dependence betwccn t he considercd COl1t il1l10l1S predictor variables and
the default probability. We assume that the predictor set is already reduced using
the discriminatory power stat ist ics as described above, so here it is no t expectecl
t hat there would be any predictor t hat would have a constant (110) r gression
relationship with respect to t he default probability. Note that such predict or would
perform bacl also orl the ground of t he discriminatory ability, t hus it would be
exc ludcd earlier . However, if a cert ain predictor has a reasonable predictive power
in t errn of the discriminatory stat ist ics, it do es not have to b e clear, whether
this predictor has a monotone regression relationship with respect t o the default
probability. Realize that the assumpt ion of a monotone relationship is obvious
since it is desired that a reasonablc predictor cloes no t have for example a decreasing
regression relationship with respect to the default probability in the certain range
of its values and a increasing relationship in another (disjunct to the t he first one)
range of its values, The test on the monotonicity assumption is performed by
ernploying a smoothing techuiqu e.

Having observed quantity X , the expected value of Y is given by the regression
function. It is of great interest to have some knowledge about this relationship. If
n data points {(Xi,Yi) }r 1 have been collected , the regression relationship can be
modeled

i == l, ... ,n,

with the unknown regression function m and observation errors ti . The aim of
a regression analysis is to produce a reasonable est imate m(x) t o t he unknown
response function m(x). By reducing the observational errors it allows int erpre­
tation to concentrate on important details of the mean dep endence of Y on X.
This curve approximation procedure is commonly called smoot hing. Especially in
this section we have performed a nonparametric smoothing approach, which offers
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(2.21)

a flexible tool in analyzing unknown regression relationships . The term nonpara­
metric refers to the non-prespecified functional form of the regression curve. The
function estimates m(x ) are often called smooths (when smoothness is assurned).
We assume that the reader is familiar with the basic ideas about non-parametric
regression t echniques. However we outline that in our context we deal with regres­
sion est imat es m(x) that can be expressed in the Iollowing form

1 n

m(x) = - L vVni( X)Yi l
ti

i== l

where {Wni(x)} i I denotes a sequence of weights which may depend on the whole
vector (Xl ,' ." x n ) . Thus a local averaging proceduro of the form 2.21 can b e
viewed as t he basic idea of smoothing. The amount of averaging is cont rolled by
the weight sequence vl1ni( X), li == 1, ... , n , which is t uncd by a smoothing purameter.

For our purposes we employ the so called supersm oother proposed by Friedman
(1984) which is basecl on locallinear k - N N (k nearest neighbor est imates) fit s in a
variable neighborhood of t he estimat ion point x . Local cross-validation is applied
to estimate t he optimal span as a function of t he predictor variable. A great
advantage of t he k - NN est imate is t hat its cornputation can be updated quit e
easily when x runs along t he sorted array of values of predictor X . The algorithm
rcquires essentially Den) operations to compute t he smoot h at all Xi . It is therefore
highly computat ionally efficient t hanks to the following rccursive approach . In case
we suppose t hat t he dat a have been pre-sort ed , so t hat x, < X 'i+l, li == 1, ... , n - 1.
Then if t he estimate has already been cornputed at some point ~ri, t he smooth at
X 'i+ l can be recurs ively detcrmincd as

(2.22)

where k denote t he numb er of nearest neighbors corresponding to X i ancl Xi+l and
[k/2] == Sllp {i : i < k/2} . \Ve do not expand t ho technical det ails of t his smoothing
rnethod hcrc. We re fer the interested reader for examplc to Hardlc (1994) .

As it was prcscribed above we employed t his smoot hig technique in order get
insight about t he regression relationship bctween our dependent variable Y having
t\VO possible outcornes (defa lllt code d as 1, non-default codecl as O) and t he ex­
planatory (predictor) variable X. A simple look at a scatter plot of observations
x, versus Yi , i == 1, ... . ti does not always suffice to establish an interpret able re­
gres 'ion re lationship as shown in Figure 2.3.

On the other hand , if we smooth t he values x, against Yi using t he Friedman 's
adapt ive supersmoother. we are able to produce very clear and reasonable esti­
mates of t h regre .sion relationship betwcen t he two considered variables . This is
illu .t rated in Figure 2.4.

However , we do not observe such a nice behaviour every t ime . There are plenty
of ca' s when the monotonicity ass umption is violated. An illustrative example
i ' provid d in Figure 2.5. Those predictor variab les where t he monotonicity as­
sumptions are violat d has to be checked for validity. There might occure some
ca,' wh rl t h non-rnonotone behaviour has a reasonab le economic interpret ation ,
how v r t h ' pr dictors are not suitable for lat er multifactor modelling.
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Figure 2.3. A scatter plot oj x, oersus Yi, II == 1, . .. , In . Clearly ii
does not provide any usejul inJormation about the relaiionship be­
tween the iuio runderlyirl,g uariobles.
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Figure 2.4. A scatter plot oj x, versus Yi , i == 1, ... , n and the
appropriate smooth. A clear monotone/decreasing regression rela­
tionship is observed.



24 II. lVIODEL DEVELO P lVIE T TECH IQUES

.m<lV CD o CCI> 0 0 <DO o o o o

___- oe>-n 0 = .DU> o::oJIl " .., Q o o o 00 o o Cl o

3.02.51.0 1.5 2.0
Predictor variable

0.50.0

Figure 2.5. A scatter plot oj x, versus Yi and the appropriate
smooth . A clear violation oj the monotonicity assumpiion.

Once we have tested the predictor variables for monotonicity we furt her des ire
to t est another stronger assumption, i.e. the test of linearity assumption . W ith
respect to the ongoing mult i-factor analysis it is reasonable to check whether the
cl ' .umpt ions of the underlying logistic regression model apply to the (lata. With
reference to Appendix A the logistic regression model assumes the following rcla­
t ionship

(2.23)
{

rl ?, }

exp a + j~ x j ,6j

1r( x) == rn

1 + exp { a + j~ x j ,6j }

where 1r (x ) == P(Y == llX == x ) == 1 - P(Y == 0I X == x ). Equation 2.23 implies a
linear relationship between the log odd and the input explanatory variables:

(
1r(X) ) ni

(2.24) log 1 _ 1f(x) = a +f; Xjf3j

111 ca 'e t he above described linear relationship does not hold it is recommended to
'llgg st certain t ransformat ions of predictor variables.

1 amely, for each predictor we look for an appropriate funct ion J in an univari­
at model

(2.25) {
7f(X) }

log 1 _ 1f(X) = f(X) .

inc .f is non-parametric in nature we employ the smoothing technique again.
111 t ll fi rst stage we I I 'e th Friedman supersmoother to get notion about pos­

sibl hap of .f for values of the predictor within data range . Smoothing can
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be done without excluding any obligors as outlier b aus .moot h rs focus on
data locally and hence outliers do 110t disturb the final e .t irnr t unl ss in the very
tail area. After we have determined the shap of thc non-param trie smoot h we
try to give a parametric transforrnation which is elos to t ll fitt d smooth . The
closeness is determined aeeording to a technique for cornparing param trie and
non-parametric curves. However , we do not expand the related problernati c hcre.
The choice of the parametrie transformation can be taken within a preclefined set
of parametric functions such as f (x) == b log( x - a). AIso, there is a possibility to
select a group of good candidates for transformation f and make the clecision later
based on practical arguments. The final choiee of the transformation need not be
strictly technical a broad space can be given to expert arguments.

2. Multi factor analysis

As soon as a reasonable set of predictors is settlecl within single-factor analysis ,
building of multivariate models can be launched. AII the rnodels that we eonsider
within the process of multi factor analysis stems frorn the class of qeneralized lin­
ear models. The first part of this section provides a background inforrnation about
the genesis of generalize linear models and explains why they are useful in our
situation. Further paragraphs eontain the inforrnation about statistical properties
of this specifie class of regression models. Finally, model selection techniques and
techniques of assessing the goodness of fit of a model as well as rnodel diagncstics
methods are described.

The generalized linear regression moclel is a generalization of the usual linear
regression model , so it is important to outline the limitations of the stanclard linear
model and why we would like to generalize it. In practical applieations it is quite
common that the relationship bctween the response and the predictor variables is
not linear. The response variables could be boundcd, such as eategorical response
variables as in our situation, or the variance is non- constant , it could be expressed
as the function of the means. Thus in these cases , the assumptions eoncerning the
standard linear regression model does not hold.

General linear models are a generalization of linear regression models. Speeif­
ically, the predictor effects are assumed to be linear in the parameters , but the
distribution of the response , as well as the link bctween the predictors and this
distribution, can be quite genera!. A generallinear model also consist of a randem
compotietit, a systematic component and a additional link function, linking the two
components.

The response variable Y represents the random eomponent and it is assumed
to have exponential family density 2.26

{
yB - b(B) }

(2.26) f(y;B;cjJ)=exp a(cjJ) +c(y,cjJ) 1

where b(·) is a smoothly differentiable function to the second order, a(cP) and c(y, cP )
are functions such that a(cP) > O and c(y, cP) does not depend on B. Further nate
that cP is called the dispersion parameter. The parameter () depends on values
x T == ( Xl,"" X m ) of explanatory variables and on the vector of coefficients {3
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trough the linear predictor 7] == a + x T f3. The linear predietor 7] represents the
systematie component . Further there is a monotonie differentiable link function 9
such that TJ == g({l) , i.e .

(2.27) g(/1) = a + L Xj,6j ,
j==l

where fl == E(YI X == x ). Note that the mean {l is related to the e by {l == b'(e)
and t hat a link function for whieh g({l) == e is ealled the canonical linko

Many useful models fall into this elass , including the Logistie regression model
for binary data , that vve employ.

2.1. The Logistic regression model

The logistie regression model assumes that we have a binary response variable
Y having alternative (Bernoulli) distribution Alt(Jr). Thus variable Y has t \VO
possible outcornes Y == 1 indicating that the obligor is a defaulter and Y == O
indicating t hat he is a non-defaulter. The mean {l in this situation is equal to
{l == E (Y IX == x ) == P(Y == l lX == x) == Jr . We denote this probability as Jr(x)
re flect ing it s dep endence on values x T == ( X l , . .. , X r ll ) of predictors. In case of
logistic regression t he link function g(.) introduced above has t he form 2.28

(2.28)
Jr (X)

g(7í(x )) = log () '
1-7fX

\;\Jit 11 t his not ation t he logistic regression model t akes tho form

(2.29)

Tll

exp (a + 2: Xj (3j )
j==l

ln

1 + cxp(o + 2: xj /3j)
j==l

7f (x ) == -------(2.30)

The term on the left side of equation 2.29 is called t he logit or t he log odds.
Th eorresponding condit ional Bernoulli density of Y can be the n written as

(2.31) f(y ,7í(x))= P(Y =yI X = x) = (7í (x ))Y(1- 7í (X)) (l- Y), y =O 1.

Fundamental model fitt ing techniques seek for estimates of a and (31, ... , f3m
which maximize the condit ional log-likelihood implied by Bernoulli distribution
2.31. Tll conditional log-likelihood is introduced below.

A . .ume w have 71, independent subjects, With ti independent subjects "ve
thr c t nbinarv re .ponses (Y1 , ... ,Yn) of random variable Y . Further a:T, ... ,xJ
ar t ll ·orr .ponding , t.tings i.e. xi == Cri1' ... ' X im) denotes t he set t ing i of
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values of m predictor variabl ' i == 1 ... . ri. Tll lik lihood fun ion of t h ti ind ­
pendent subjects is then cqual to the produ t of mr ruinal B rnoulli cl nsiti ' 2.31.

(2.32)

Above we denote 7r(Xi) == 7r(Xi , Q , (3) in orel r to outlin to which rm th a and
(3 relate. The corresponding conditional joint log-lik lihoocl denot i as l (Q (3) is
equal to the sum of the corresponding marginal condit ional log-lik lihoods. Th
forrnula for the joint conditional log-likelihood reads

n

(2.33) l(a,(3) = L (Ydog (7f(xi,a,(3)) + (1- Yi) log (l-7f(x i ,a ,(3))).
i== 1

A A

Estimates &, (31, ... ,(3nl of Q and /61, ... ,(3Tn obtainecl by maximization of 2.33 are
called maximum likeliliood estim ates. Th stirnr ting proceduro is elone by tll
Newton-Raphson algorithm, which is general-purpos it rativ m thocl for solv­
ing nonlinear equations. Cornputational details are given for example in Agresti
(2002).

Realize that maximum likelihood estimates are parameter valucs undcr which
the data observed have the highest probability of occurrence. Note the parameter
valucs that maximizes the log likelihood function 2.33 also maximizes t he underly­
ing likelihooel function , however it is simpler to maximize the log Iikelihood since
it is a sum rather than a product of terms. Finally, for furt.her purpose d note
S E(fj) the standard error of a multivariate pararneter fj and let cov (fj ) denote the

A

asymptotic covariance matrix of (3.

2.2. Parameter interpretation in the logistic regression model

A reasonable interpretation of the regression parameters is a key feature of under­
standing the magnitudo of the estimated effects. T11e interpretation of parameters
in the logistic regression model is based on the following simple calculations. Ex­
ponentiating cquation 2.29 , the logistic model can be equivalently written in terms
of odds of the positive response as

(2.34) 1 :(:t~i) = exp (a +~ X 'i
j{3j) ,

thus the probability of the positive response is
m.

exp (o: + L Xij(3j)
.1==17r( Xi) == --------(2.35) ni

1 + exp (o: + L Xij(3j)
j==l

Equation 2.34 provides a basic interpretation for the magnitudo of (3's. Assum­
ing that predictors Xl , ... ,X m are functionally uncorrelated, we can say that t he
odds increase multiplicatively by exp((3j) for every one unit increase in X j , holding
all other predictors values fixed. In other words we can say that exp((3j) is the
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odds ratio, thus the odds at X == Xj + 1 divided by the odds at X == Xj '

Further we can state that the sign of the a certain parameter (3 determines
whether 7r(x) is increasing or decreasing as x increases. The rate of climb or de­
scent is determined by 1(31 . In case a specific (3j == O than random variable Y is
independent of variables X j .

2.3 . Strat egies in model selection

Iodcl select ion for logistic regression faces the same issucs as in the case of stan­
dard linear regression. The selection process becomes harder as the number of
explanat ory variables increases , bccause of the rapid increase in possible effects
and interactions. There are two compet ing goals: The model should be complex
enough to fit the data well on one hand . On the other hand , it should be simple
to int erpret , smoothing rather than over fit ting t he data.

There exist many model select ion procedurcs , no one of which is always t he
best . Caution is required for any generalized linear model building process. A model
with several predictors may suffer from multi-collinearity among predictors making
it seem t hat no one variable is important when all t he other are in the model. A
variable may seem to have a little effect because it overlaps considerably with other
predictors in t he model, itself being predicted well by anot her predictors. Deleting
such a redundant predictor can be helpful , for instance to reduce standard errors
of other estimatecl effects.

T he common model building procedures are clescribed in t he next paragraph
of t his section. However , realize t hat no matter »:hich model building strategy we
choose t here is a common feature on which t hey are based. This relat es to t he
.t at ist ics which we use when evaluating significance of t he predictor variables.

The standard tool for testing t he significance of predictors generalizecl linear
regression is t he regression z-stat istic. Formally speaking , for t he logisti c regres­
'ion moclel of the form A.10 significance test of predictor variable X j focuses on
test ing the hyp othesis

(2.36)

which speaks for t he independence of the response variable Y on t he predictor
vari r ble X j . According t o Walďs asyrnptotic result s for maximum-likclihood es­
t irnators , parameter estimators in logisti c regression models have large sample
normal distribution. Based on t hese resul t s, t he significance tests of t~e nlll! hy­
poth 'i' 2.36 has the following for mo With nonnull standard error SE ((3 ) of /6 t he
test .t atist ics

(2.37)

A

/6
?" - - - -
~ - A

SE( /3)

11c ' an approximate standard normal distribution under Ho. Thus Z 2 has a chi­
.quar cl null distribution with one degree of freedom. This type of statist ics is
call cl t he Wald statistics. T he mult ivariate extension for t he Wald test of Ho :
f3 == f30 ha ' t .t tati .t ics

(2.3 )
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The asymptotic norrnal distribution of impli S II a .yrnp oti 11i- .quar cl dis­
t r ibution for "{IV. The degrees of freedom qual to tll rank of t h a .yrnptotic
covariance matrix cov( ,6) of ,6.T hllS g n rally if Izl > <D -1(a) , whcre <P is tll
distribution function of the standard norrnal distribution th pr lictor X j i ' con­
sidered not to be statistically significant within thc curr 11t mod 1é t th confid ne
level Q .

These test are incorporated within th autornatic 1110cl I buil ling proc dures
describe in the next paragraph.

2.4. Stepwise procedures

In case when we face a relatively big amount of candidate pr dictor variables an
algorithmic method for searching among 1110 c1els can be inforrnativ if vV llS t he
res ults caI I t iously.

The first possible approach is the forward selection procedur . Forward s lec­
tion adds variables sequentially until further additions clo 110t irnprov the fit. At
each stage it selects a variable giving the greatest improvement in the fi t. The min­
imum P- value for testing the significance of the variable in the moelel is a sensible
critcrion , a complement to this is the reduction in deviance. A stepwise variation
of this proceduro retests , at each stage the variables adcled at prcvious stages to
see if they are still significant .

Backward elimination begins with a complex model an sequentially removes
the predictor variables. At each stage, it selects a variable for which its removal
has the least damaging effects on the model. In ether words , the largest P-vallle.
T11e process stops whon any further deletion leads to cl significantly poorer fit.
With either approach, for qualitative (categorical) predictor variables with more
than two categories , the process should consider the ent ire variable at any stage
rather than just one of it s dumrnies. Ot herwise, the result depends on the coding.

" Te prefer the the backward elimiuation over forward selection, feeling it safer
to delete variables from an overly complex model than to add variables to an overly
simple one. Forward selection can stop prematurely because a particular test in
the sequence has a lower power. Realize t hat neither strategy must lead to a rea­
sonable model, thus the algorithmicjautornatic variable selection procedures has
to be used with caution. F inally note that statistical significance should not be
the sole cr iterion for the inclusion of predictor var iables in the model. Credit ex­
pert usually suggest also certain predictor variables which should be at least tested
for significance even if they are not included in the proposed short list containing
variables for multi factor modelling.

2.5. Assessing the Goodness of fit

Let us denote the fitted values of a particular logistic regression model as
K( Xl, &, /3) , .. . ,n(x n , &, ,6), for simplicity we will write Kl , . .. ,Kn · Further denot e
l( 7r ; y ) the log-likelihood funct ion expressed in terms of means tt == (1Tl , .. . , 1Tn ) .

Let l (1r ; y ) denote the maximum of the log likelihood for the considered mo del.
Realize hat for all possible model, the maximum log likelihood is l (y; y). This
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occ urs for the most complex model , having a separate parameter for each observa­
t ion and t hus a perfect fit 7r == y. Such a model is called the saturated model. This
model is not uscful , since it do es not provide data reduction. However, it serves
as a baseline for comparison with other model fits.

The devian ce of the logistic regression model is defined as

(2.39) D(y; fr) = -2 maximum likelihood for model
maximum likelihood for saturated model

-2[l(7r; y) -l(y; y)].

what describes the lack of t he fit. It is the likclihood ratio statistics for testing the
null hypothesis that the model holds against the alternative that a more complex
1110del holds.

The deviance Iunction is most directly useful not as an absolutc measure of
goodness-of-fit but for comparing two nested models. Consider two models 1\/10

and 1\11 with fit ted values 7ro == (Kal , o o o , Kon ) a11(1 7r1 == (Kll ,. o. , K1 n)0 Further
let 1\1/0 be a special case of lvl 1 , thus Mi, is nested within 1\1/1 . Since Mi, is simpler
t han 1\11 , a smaller set of parameter values satisfies 1\110 t han it sat isfies 1\1/1 0 Thus
maximizing t he log likelihood over a smaller space cannot yield a larger maximum.
80 , we have t hat l (7ro; y) < l(7r1; y) and from 2040 it follows that

(2.40) D(y; 7r1 ) < D (y; iro)

Thus simpler models have larger dcviances. Assuming t hat model ry!l 1101ds, t he
likelihood-ratio test of t he hypot.hesis t hat 1110 holds uses t he test statistics

-2[l( iro; y ) - l (?T1; y )] == -2 [l (7ro; y ) -l (y; y )] - { -2 [l(*1; y ) - l (y; y )]}

D (y; 7ro ) - D (y; *1 )

We observe t hat t he likelihood ration statistics is the c1ifference between the
levianc ' o Obviously, thi ' st at ist ics L' large whcn ~/10 fi ts t hc dat a poorly cornparcd

to M« . Under certain regularity conditions, t his difference has asymptot ically a
chi-sq uare null distribution with degrees of freedom equal to t he difference betwcen
th number of parameters in t he two models.

The deviance function serves a great purpose when comparing several logistic
r gres 'ion model' . Realize t hat in case models TVl o and ~;J1 differ only ill one
predictor variable. The deviance fun ction tests t he significance of t his individual
pl' dictor variable, although generally it allows testing the significance of a group
of pr dictor variable '.

2.6. Logistic regression diagnostics

111 tll previous paragraphs we introduced statistics for checking the model fit in
a global .ense. After s lecting a mo del candidate we move to a more det ailed
an. ly 'i ' of t h mod I, quality, 8pecifical ly, we desc ribe t he basi ' properties of t he
analy 'i ' of r .iduals in the context of g neralized linear models. The analysis of
r sid uals i ' ll ' d to carry out regression outlier analysis and infiuential analysis.
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(2.42)

For continuous predictors , graphical In t h i ' ér' .l ' \ 1'. ommon to us .
Here we concentrat e only Oll one yp of r 'i lual al 110 19l1 th r c r mor yp ,

which could be employed. On t h background t h deviz11C function »: can d fin
deviance residuals in t he following way, R élize t hat if t ll devianc i ' a 111 a 'll1'e
of discrepancy of the model , t han each uni t contr ib ut ' a quanti ty (li, so that t he
deviance equals D == L~l 1 d'i. Thc devi anc r 'idual · ar defin i a '

(2.41) TD == sign(Yi - ir'i) y!d;

whcre

( (Y'i) (1 - Yi))di == 2 Y'ilog ~ + (1 - Yi.) log _ A . •

1T,1. 1 1T'l.

Using the deviance residuals may help lIS identify wh t her t ll are ohs rvation
for which the model fit s poorly. Whencvcr a res idual indicat )S that t he mod 1 fit
the data poorly in the appropriate region , it can b informativ to cl let t h ob­
servat ion and refit t he model to t he remaining ones. ot t hat t hi ' is equival nt to
adding a paramet er to t he mo elel for that observation , in orel I' to provid a I) r f ct
fil' for it. Residual analysis is a import ant step whcn ass ssing obs rvation which
could possible influence the parameter estimates (t.hus t he vyhole fit ) in é1 undesir­
able way, however we do not expand these issucs here.

2.7. Final comments

This chapter was focused on t he statistical methodology rclated to t he model
development process. First we have discussed single-factor analysis in ord r to
determine a reasonable set of preclictor variables , which were lat er uscd in multi­
factor modeling. The result of tho multi-factor analys is is a 1)r01)OSé11 of model
cane1idates. Note that there is no best model , thus in practical application several
model candidates are developed.

For each obligor , t he rnodels produce a score value .5 == X T /3,which is afterwards
t rans formed to t he obligors est imated dcfault probability. These two outcomes are
considered to be equivalent.

In t he next chapter "ve discuss st at ist ical methods which enable t he validation
of the proposed models. Based on the results obtained from t hese methods t he final
best feasible model is chosen. For the purpose of validation procedures "ve divide
the estimated score values produced by the models into two groups corresponding
to defaulting and non-defaulting obligors. Although t he suggestcd logistic model
produces continuous score values , the next chapter covers a discrete case as well
in order to provide general validation framework.



32 II. IODEL DEVELOPME T TECH IQUES



CHAPTER III

MODEL VALIDATION AND BENCHMARKING

TECHNIQUES

In the prcvious chapter we have presented the ln thoclology v\ hr V cl v lop 1
whilc building credit scoring models for the nvironrn nt of corporat c11d ' mi­
corporate firms. However, a model withou suffici nt validation can only stay
a hypothesis. Without adequate objective validation crit ria and proces , th
benefits of implementing and using these .coring mod 18 annot b fully r alized.
This makes reliable validation techniques crucial at this point. Such testing also
gives the user confidence that the model is stable and has not b en overfitted.
Model cvaluation techniques and methods ar necessary tools to aid searching and
choosing of the appropriate model.

1. Criteria of model validation

In the situation when we are aheacl to choose a specific model as our final scoring
tool, one of the criteria to be considered, is the classification accuracy - the number
oj obligors classified correctly arnong all the obligors. This is a simple and natu­
ral quantity, which can be mcasured quantitatively and the rnod 1 builder could
possibly be interested in. Cornmonly an equivalent criterion, the misclassification
error rate, is considered.

The number of incorrectly classified cases
Error rate == '.

The total number of cases
The error rate of the model being evaluatcd should be in the range between the
zero error rate (of a perfect model that classify a.ll cases correctly) and a randem
model's error rate (random assignment of rating scores).

Nevertheless the classification accuracy (equivalently the misclassification error
rate) is not the only criterion that counts. There are also other aspects to be
considered with respect to the practical application of the model. The issue of the
cornputational time might be as well a key criterion, The required time for both
the training and the applying of the classification moclel should be considered.
With the drifting of the population, most models fail to be stable in long time run,
Thus the time needecl to train a model is therefore important since model should
be regularly revised. Finally we mention the transparency and the interpretability
of the considered model. An important attribute of the models is that there is
a transparent relationship betwecn input variables and the output so that one can
see the impact of each input variable on the output. In practice, model builders
try to come IIp with the best trade-off between these criteria.

2. Methods of model validation

In the case of default risk models, validation involves examining the goodness
of the model according to the following basic stream. The power of the model,
which can be expressed as how well a model discriminates between defaulting and
non-defaulting obligors. In case we have two models that produce ratings of good

33
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and bad, the more powerful is the model that has a higher percentage of defaults
(lower percentage of non-defaults) in its bad category and a higher percentage of
non-defaults (and a lowcr percentage of defaults) in its good category. In practice,
measuring this quantity can be challenging.

2.1. ROC Graphs and Power Statistic

2.1.1. ROC Graphs and their generat ion. Assume that we generally have
n obligors and let lIS consider a model that assigns each obligor a score SOlIt of
a specific set T. T might be either a finite set of r discrete values {Sl, ... , Sr};
Sl < ... < Sr, or it might be a continuous interval, say [0,1]. In general assume
that the score values are ranging from worst to best. It means that a high score
indicates a low default probability. Further we introduce random variables 3 D

and 3ND. The random variables 3 D and 3ND follow the score distribution of
the defaultcrs and the non-defaultcrs, respectively. According to this, we will
distinguish two cases, the case when 3D and 3ND have continuous distribution and
t he case when they have finitely discrete distributions. A randem variable having
a finite discrete distribution is meant to be a variable that can equal only a finite
number of values with nonzero probability. A possible distribution of rating scores
for defaulting and non-defaulting obligors , that were assigned by a specific model is
illustrated in Figure 3.1. Note that for a perfect scoring model , the distributions of
dcfaulters and non-defaulters are separate. Naturally for real world scoring models
a perfect eliscriminat ion is not possible , thus both distributions overlap cach other.

>..
'u;
c:
Q)

C

defaulters

Credit Score

non-defaulters

Figure 3.1. Th e overlapping distribut ion oj credit scores. The cui­
oft point C represents a potential uouiulan) [or classi.fying obliqors.

lIPI)O 'e that our aim is to decide (given cl set of creclit scores assigned by
t he II10d 1, with properties as prescribed above) which obligor will default dur­
ing a cert ain period of t ime and which will survive. In order to come IIp with
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a reasonable decision and cla ' ify c rtain obliz rs <: s pot nti r 1 cl fc III r énd po­
tential non-defaulters it is II eful to introdu é II -off I in Ce' in Figur 3.1.
According to the cut-off point C ach obligor with cr clit 'cor 10\\ r than Ci'
classified as a potential defaulter é111Cl each obligor with cr clit .cor high r than C
as a non-defaulter. Thus four po .sib l outcom ' ar 1)0 \ .ibl . A ornmon m an of
representing these outcomes is summariz cl in : cotijusioti mairia: a ' in Tabl 3.1.

Actual
Default

below C True Positiv s
Model (correct pr cliction)

above C False gatives
(type I rror)

Tahle 3.1. A conjusion matrix describing the [our possible ouicomes
oj the decision problem ititroduced above in, ihe text.

ote that in our case, when the model produces cr dit scores (probabilities
transformed to credit scores) instead of just let say two separate prediction classcs,
a specific confusion matrix is only valid for a certain model cut-off point. The cells
in the confusion matrix represent the number of so called irue positives (TP) ,
irue neqaiiues (TN) , .false positives (FP) and jalse neqaiioes (F ). The term TP
indicates a predicted default that really occurs, a T I is preclicted non-default
that really occurs, a FP is a predicted default that does not occur and a FN is
a predicted non-default in the case the company defaults at last. ote that the
numbers on the major diagonal represents correct decisions, and the numbers on
the off diagonal represents mistakes - the confusion between elasses. The cell in
which the number of FNs is present quantifies the type I error ancl the one with the
number of FPs the type II error. There are several metrics that can be calculated
from the confusion matrix and further uscd as indieators of model performance.

We define the true positive rate or equivalently ealled as the hit rate (HR) as

(3.1)

which can be estimated as

(3.2)

H .R(C) == P(SD < C),

where T P(C) is the number of defaulters predicted eorrectly aeeording to the cut­
off value C and nD is the total number of defaulters.

We define the Jalse positive rate also called as the Jalse alarm rate (FR) as

(3.3)

which can be estimated as

(3.4)

FR(C) == P(SND < C),

?(S < C) = FP(C)ND - ,
nND
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where F P(C) is the number of non-defaulters elassified ineorreetly as defaulters
aeeording to eut-off value C and nND is the total number of non-defaulters, Note
that it holds H R(C) == 1 - P(type I error) and FR(C) == P(type II error) .

For graphieal interpretation in Figure 3.1, we ean express the true positive rate
as t he area on the left from the cut-off valuo C between the red and the blue line
and t he false positive rate as the lower area on the same side undcr the blue line.

A useful measure used in the validation process is the Receiever Operating char­
acteristic curve - ROC curve. ROC curves represent a more general analysis of the
confusion matrix providing information about the performance of a model at any
admissible cut-off point. The ROC graphs are constructcd in the following manner.

Continuous SD and S ND. Let lIS suppose that we are in the situation whcn
SD and S N D follow cont inuous distributions , note t hat t his case includcs also t he
situation when we use the logistic regression model as our scoring too1. Now let
l IS take an arbitrary cut-off value C and consider a point whose horizontal coordi­
nate is P (SiVD < C) and its vertical coordinate is P(SD < C). Denote this point
by I (C) . Because of t hc fact t hat t hese two coordinates are represented in terms
of probabilities , t he point I (C) lies always within a unit square graph. Imagine
that for all possible cut-off values C ranging from -00 to 00 , there is a point
1(C ) plotted on t his graph. When C equals -00 , I(C) eorresponds to the point
having coordinates (O, O). As C is raised I (C) generates a cont inuous curve t hat
reaches t he point (1, 1) when C equals 00. So when SD and SND are assumed to be
cont inuous in general it holds, t hat varying t he cut-off values from -00 to 00 and
drawing a curve across t he RO C space would produce the t heoretical, continuous
ROC curve. This curve is running frorn (O, O) to (1, 1), as describecl in Figure 3.2
on the left .

Discrete SD and SlVD . In t his case we ass ume t hat SD and SND follow a dis­
erete distribution . Consider t. he set T, that is a set of r diserete values {,s l ,". ' Sr }

which are orderecl in the following way - 00 < Sl < ... < Sr < 00 as montioned
above. For the values Si , i == 1, ... , T , it holds t hat eit her P (SD == Si) > O or
P (S.ND == Si ) > O, which means t hat each of t he valucs included in set T could
be assumcd with positive probabili ty. Finally put So == - 00 and Sr+l == 00 .

Just like in t he continuous case, eonsider an arbit rary cut-off value C and t he
eorresponding point 1(C) in t he RO C space with coordinates P(SiVD < C) and
P (SD < C). It holds that 1(so) -# 1 ( S l ) -# ... -# l (sr) and l (sr) == 1(Sr+1 )' Next ,
note t hat for a cut-off valuc C which meets eonclition S i < C < Si+1, we put
1(C ) == I (Si ) , i == O, ... , T . It means , t hat no mat t er t he fact t hat C could ob tain
infini t e number of values , the corresponding ROC graph would only consist of T + 1
cli .t inct values I (,so), 1(,sl) , ... , I (,sr) , 1 ote t hat t he points 1(so) and I (Sr) cqual
(O ~ O) ancl (1, 1), respectively. The graphical interpret ation is presented again in
Figure 3.2 on t he right .



2. rvIETHODS OF l\!IODEL VALIDATIO 37

•

1.0

•
•

0.2 0.4 0.6 0.8

False Alarm Rate

•
0.01.00.2 0.4 0.6 0.8

False Alarm Rate
0.0

•CD aJ.... ....m ma:: a:
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F ig u re 3.2. Receiver Operating Characteristics. Lejt: The contin­
1l0 rUS case. Right: The discrete case.

Aecording to our notation P(SD < C) == HR(C) , P(SND < C) == FR(C) ,
we ean see that ROC graphs are t\VO dimensional graphs that plot the hit rate on
the vertical axis against the false alarm rate on the horizont ál axis and as SlICh,
illustrate a relative trade-off bctwcen true positives and false positives.

So far , we have outlined the generation process by which the ROC graphs are
produced, in real life situations we are not able to produoe a continuous (theo­
retieal) ROC curve. This is the reason why we W01Ild like to have a reasonable
estirnate of the theoretical equivalent . Thus it is useful to define a sample ROC
graph. Suppose that we have ND and NND observations of random variables SD
and SND , respectively. Recall that in 3.2, 3.4 we have denoted P(SD < C) and
P(SND < C) the proportion of ND and NND observations respeetively, that are

A

less than or equal to the cut-off value C. Consider a point I (C) in the ROC space,
having eoordinates P(SD < C) anel P(SlVD < C). We define the sample ROC

A

graph as a graph eonsisting of points I (C) for all C in the actual range of eredit
seores. The coordinates P(SD < C) and P(SlVD < C) are unbiased estimates of
P(SD < C) and P(SND < C) which are actually the theoretical coordinates of
I (C). In this sense we can consider the sample ROC graph as an unbiased estimate
of its theoretical equivalent. Note that in practical applications we are only able
to get a finite sample of points in the ROC space, namely the sample ROC graph.
To obtain a curve, we connect these points by linear interpolation.
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perfect model

1.00.8

random model

0.4 0.6
False Alarm Rate

0.2

scoring mode l

0.0

Figure 3.3. Possible Receiver operating characteristics curoes .

Remark that several points in RO C graphs cleserve further attention. Point s
(O, O) anel (1 ,1) are always present in the RO C space since for C < Im 'i n 8 ET(8)
we get T P(C) == F P(C) == O similarly for C > ma:r 8 ET(.s ) we get T P (C) == ti»
and F P(C) == 77' lV D . The point (O , O) describes t he case of having no positive
classificat ions, in such a situation the decision rulo produces no false positive errors
but also provides no true positive cases . The op posite case describes granting
positive classification absolutely.

Figuro 3.3 outlines the possib le shapes of RO C curves , The line labelecl as the
scoring model, represent the performance of a reasonable moelel under evaluat ion,
t he diagonal line labeled as random model, describes the state of zero information
that means random assignment of cred it score . For example if the model guesses
the positive class half the t ime, it can be expected to get half of t he positives
and half of the negatives correctly, thus it does not separate t he classes at all.
Finally the curve rising vertically from (O , O) to (O , 1) and t hen horizontally to
(1, 1) represents the performance of the perfect model which orders all bad cases
before good cases . It scores 100% bad cases into the default class and 0% goocl
cases into the default class according to a specific cut-off value .

Finally, assume that we are validating a reasonable scoring model, in sense that
lower values of rating scores assigned by the model indicate higher probability of
default. We say that random variable X is stochastically smaller than random
variable Y if for every constant C it ho lds , P (X < C) > P (Y < C). Following
IIp, random variables X and Y are stochastically comparable if X is stochastically
.maller t han Y or reversed . In our context it means that applying a reasonable
.coring model , leads lIS to the conclusion that variables 3D and 3ND should be
.tocha .t ically comparable, furthermore SD should be stochastically smaller SND,
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which finall y means \ v awr 1 11é II RO
should be COllcave.

39

rmc 111 d I

2.1.2. Power Statistic. lil ord I' to hr a .ummarv .' atis i .' be .ide II om-
. J

plex ROC graph one m. Jr wi .h to COl11 IIp wi II a .. inal« .' é lal' -alu- 1' -pr ..sn inu
the expected performance of t h actual 1110 1 1. 111 11 :\ Oll Jr of .r elit ' 01'­

ing model validation, mch stati .t ics ar all 1 11 :\ lJO (lU 7' statistics. II ff t iv
method for summarizing t he ROC graphs i ' to al ulat e 11 - area 'Ll71Jd r the ROC
curie as descrihed in Figur 3.4. V\l cl not t his .. ta i .t ic . as C.

0.0 0.2

AUC

0.4 0.6
False Alarm Rate

0.8 1.0

Figure 3.4. Graphical inierpreiation o.f the area un der the receiuer
operating characteristics

Because of the fact that t he AUC is a part of a unit square its valuc ranges
between O and 1. With respect to the description of the random models ROC
curve, it holds than the random moclels expected performance expressed in terms
of AUC yields the valuc of 0.5. Thus the value 0.5 corresponcls to a model with no
discriminative power, on the other hand the perfect model has the AUC equal t o 1.
According to these rules we can state that any model its ROC curve appears in the
lower right triangle of the ROC space has a value of AUC lower than 0.5 , t hus it
could be possibly worse than random guessing. In this case we should be aware of
the fact that the ROC space is symmetrical about the di agonal (random model's
ROC curve). According to this, if we reverse the classification rule of t he mo del ,
its trne positives become false positives and vice versa. Such case should not OCC1Ir
during the model validation process because it would mean that we completely
misinterpreted the meaning of the model, but is likely to OCClIr while employing
ROC analysis and its summary statistics during single factor analysis.

The following paragraphs contain a description of statistical properties of t he
AUC statistics , as well as a convenient interpretation of AUC in context of credit
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scoring model validation. Let us assume that we have two obligors, one drawn
from the distribution of defaulters and the other one from the distribution of non­
defaulters. In this situation we obtain two crodit scores that correspond to the
realization of random variables SD and SND. If we have to decide, using these val­
ues, which of the two obligors is a defaultcr, we obviously state that the defaulter
is the obligor with the lower credit score. In case both values are the same, we
can deci de at random. Th11S the probability that our decision was correct equals
P(SD < SND) + ~P(SD == SND). We will examine how this probability relates to
the AUC statistic.

Continuous SD and SNDe Let us suppose that we are again in the situation
when SD and SND follow a continuous distribution. In this case we are able to
calculat the AUC statistics as follows

(3.5)

AUC II P(SD < C) dP(SND < C)

I' dP = P(SD < SND)'
J{SD~SND}

Because of the fact that SD ancl SjVD are continuous, we have that P(SD == SND)
is zero, and that AUC == P(SD < SjVD) == P(SD < SjVD) == P(correct clecision).

Discrete SD and SlV De In this case we assume that SD ancl SlVD follow cliscrete
distributions , and they obtain values {81, ... , sr} from the set T. We have shown
that in this situation the corresponding ROC graph consist only of a finite number
of points. 80 , the appropriate AUC statistics can not be calculated as in the
cont inuous case. Thus we define the AUC statistics in the cliscrete case to be
the area under the discrete ROC graph , where we connect the distinct points iIl
the ROC space by linear interpolation. Figuro 3.5 sketches a possibility, 110vV to
calculate the discussed area.

We can see that the AUC statistics can be expressed as a sum of certain
t rapezoicls Ui . 8pecifying the proportions of these trapezoids , we have that the
height of the i-th trapezoid U, is equal to

ancl the lengths of corresponding edges are P(SD < Si) and P(SD < Si-I).

According to t his, the volume of the i-th trapezoid is
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0.0 0.2

AUC

0.4 0.6
False Alarm Rate

0.8 1.0

Figure 3 .5. The A UC stoiistics in ih.e discreie case is definl tl as the
area under the linearly inierpolated discreie ROC qraph: Trapezoids
U, provide a clear, and intuitiue suqqestioti obout compuiationol mat­
iers.

With resp ect to t he fact t hat AUC is t h sum of r t rap zoicls as cl scrib cl
above we have that

AUC ==

(3.6)

r [1 1 ]~ 2P (SD < s.J + 2P (SD < si- d P (SND = Si)

~ [p (SD < Si- I) + ~P (SD = S.J ] P (SND = sd

T T
1L P (SD < Si-d P (SND = s.J + 2 L P (SD = s.J P (SND = s.J

i = l i = l

1
P (So < SNO) + 2P (SD = SNO) .

Recall that in the continuous case we have that P(SD == SND) == O. This means
that equat ion

1
(3.7) P (SD < SND) + 2P (SD = SND)

holds for both the discret e and the continuous case. From this point , t ill t he end of
this subsection, we will consider both the continuous version 3.5 and t he discrete
version 3.6 and denote them jointly by AUC.

Now from these equat ions we are able to deduce two possible int erpret ation.
First , we can state that the AUC statistics may be interpreted as t he probability
that the variable S D yield a smaller credit score than variable SND . Second, recall
the above described situation in which we have two .randomly drawn obligors. One
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from the distribution of non-defaulters and one from the distribution of defaultcrs
and we have to decide which obligor belongs to each distribution. Intuitively we
proclaim the obligor with the lower score as the one from the default distribution.
When the scores are equal we can decide by chance. In this case and with respect
to 3.6 we may interpret the AUC statistics as the probability that our decision
is correct. Hence the AUC statistic is not just some quantity that gains certain
possible values according to which we are able to deduce some properties about
our scoring model, but it has a clear, stand alone interpretation. The key task is
to determine the way in which we would like to employ this statistics. Again, we
have two possibilities .

• First, AUC can be uscd as a measure of the size of the difference bctwecn
two populations, In this sense AUC measures the extent to which tho
distribution of SD lies below the distribution of S ND. The ultirnate values
of AUC could be, in this case , interpretec1 as follows. The highest valuo,
AUC == 1, could be attained if and only if the distribution of defaultcr
lies entirely below the distribution of non-defaulters, non of them overlap­
ping each other. The smallest value, AUC == 0, could be obtained in the
opposite case. Finally, if the two distributions are identical AUC equals
0.5. Thus , the closer the AUC is to zero or one, the larger the difference
between the t\VO sample populations , whercas the closer the AUC is to
0.5 t he smaller the difference between them.

• 8econc1 and moro import.antly, according to our purpose , AUC can be uscd
as a measure of discrirnination accuracy. In this sense the AUC measures
the extent hO\\T accurately a given model discriminates betvveen dcfaulters
and non-dcfaultcrs , and that is our main task. Recall Figure 3.3. Thus
when AUC == 1, it means that the model discriminates thc two sample
populations perfectly. In other words it means that theoretically there
exists a critical scorejcut-off bclow which all the defaulters scores are ,
and above which all the non-defaultcrs scores are. 80 , when the AUC is
close to 1, the actual model classifies obligors almost perfectly, reversely if
the AUC is only a little above 0.5 then the model assigns the appropriate
.cores almost randomly.

2.1.3. Estimates and Confidence Intervals concerning AUC . There exist
.cvcral possibilities how to estimate the AUC. I aturally, we can decide to employ
a parametric or a nonparametric procedure. The latest could be proclaimed to be
mor popular. Mainly because of its relative simplicity, but moreover because of
t h fact t hat it doesn t require any distributional assumptions concerning variables
S D and SVD·

L t us begin with the following idea. Assume that we have sampled n o and
ri n t: ob ervations of SD and S ND , respectively. 80 , we have tiu x nND possibilities
of pairing these observations. Recall the definition of the sample ROC graph
an 1 .imilarly a ' in t hat definition denote P( SD < SND) , P( So == SND) and
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P(SD =I- SND) the propor ti on: of n o X nND bs rva i ll ' f r which D < V D,

SD == SND and SD =I SVD . Ao'( in , it i -. 1-)( r th. ll .' pr 1) r ions ar unbias i
est im at es of t heir t heoretical quival ent '. T ll area 1111 1 r tll cmple R,Q grc1)11---denoted by AUC can b calcu lat cl bv t ll - trap zoid 1'111 a' in 3 .6 th. i ' Cl ' follow '

.--- ~ 1 ~
AUC = P (SD < SVD) + ?P(SD = Sl 'D) '

....-

Next for a randomly drawn d fault r with .cor -D frorn D cli st r ibu t ion and
a non-defaulter with score .5lVD frorn Srv D cli .t r ibut i II \\ d fin t ll - \ é r iabl vo.: D

as

(3.8) 'VD ND ==,

1,
1
2 'o,

if s [] < " VD ,

if "O==8NIJ ,

if .5IJ > "lVD .

ow recall that t he Man-Whitney (1947) U s atist i is defi n cl cLS t ll to é 1
number of pairs for which SD < SiVD ' Accorciing to t his definition we can ,'8e t hat---qnantities AUC, AUC and t he Man-Whitn ey U .. tatisti · are clo .ely related . I II

~

case "ve define the alternative 11arl-Whitney statistics U čLS

A 1 ~
U == ~ VD NO ,

11DrLND '
( O ,iV O)

where t he sum is over all possible pairs of cl fault rs cLI1Ci non-default crs , \V ob-
___ ~ A

serve t hat AUC equals U. Further we observe t hat U is an unbiased est imator of

P(SD < SND) + ~P(SD = SND), which means t hat (; is a n unbiased sst imat or of
.- -----

t he t heoretical AUC, and since U equals AUC "ve have an alternat iv prov t hat-----AUC is a n unbiased est imate of t he t heoretical AUC. That is

~ --- 1
AUC = E(U) = E (AUC) = P(SD < SND) + 2P (SD = SND) '

According t o t hese statements we are able to utilize statist ical properties of t he
Man-Whitney statistic to predict statistical properties of t he AUC statistic,

----The variance oj AUC. At the first place , we are going to lay emphas is on
----- »;

the est im at ion process of variance of the AUC( == U) st atistic. As outlined above
certain results about the variance of Man-Whitney st atistic are employed . There
are several possibilities deriving forrnulas for the variance of this statistics under
the assumption that SD and SND are continuous. According to Bamber (1975)
and his reference to Noether (1967) it is possible to relax t his assumpt ion . Thus-----for the variance a~ of AUC we employ Bamber 's formula

AUC

aA~UC 1 [PD-:P ND + (nD - l)PD,D,ND
4nDnND

(3.9) + (nND - l)PND,ND,D - 4(nD + nND - l )(AUC - ~ ) 2] ,

where PD-:pND , PD,D,ND and PND,ND ,D are defined as follows. Assume we have
sampled two independent observations from the SND distribution, t hese are SND ,l
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'"
PND,ND,D

SND,2 and one independent observation from SD distribution So ,v - According to
this PND ND D is define as, ,

PND,ND ,D == P (SND,I , SlVD ,2 < SD,l) + P (SD,1 < SND ,I , SND,2)

- P (SND,1 < SD ,l < SND,2) - P (SND,2 < SD ,1 < SND,I) ,

PD,D,ND is define similarly by reversing the role of the independent observations
sampled from the two populations as described above. For completeness "ve define
PD-:pND as P (SD i- SND ) . It is clear that for practical applications "ve W011ld
like to have a reasonable estimate of these probabilities and thus a estimate for
the discussed variance a~ . Similarly as in previous paragraphs consider triples

AUC
as following (SND ,l , SND,2 ' SD ,l) with independent SND,l and SND,2. The total
number of these triples is nND(nND - l)nD . We denote the proportion of these

t riples for which S ND,I , S iVO,2 are less than equal to SD ,1 by P(SNO,I ' S iVD ,2 <
SD,l ) . P(SND ,l < SD ,l < SND,2) ancl P(SND,2 < SD ,l < SND,d also represent the
proportions in appropriate cases. So we have that

P(SND ,l , SND ,2 < SD ,d + P(SD,l < SND ,l , SND ,2)

2P(SND,l < SD,l < SND,2) ,

is an unbiased estimate of PND,ND,D. From the cornputational point of view "ve
'"

can obtain the cst imate P ND,ND,D in the consecutivc way. First of all , rank order
t he combined vector of S D and S jVD score values . For each defaulters score value
S o , evaluate t he number of non-dcfaulters score values SND that are less t.han So ,

anel t he number o~ score values t hat are greater and denote these values by ao and
bD ~ resp ectivelv. P VD,iVD,D can be rewritten as

P ND,ND ,D = (1 ). "" [aD(aD - 1) + bD(bD - 1) - 2aDbD] ,
n jVD 'n ND - 1 n o Z::

(D)

where we sum runs over all defaulters . Analogously, we ean elefine the est imate of
PD,DJ\./D.

------- »; »; »;

Up to t his point , AUC, P (SD i- SND) , P iVD,ND ,D and PD ,D,ND were unbiased
estimates of t heir theoretieal equivalent s, Bamber (1975) outlined , that before
sub .t it ut ing t hem into equation 3.9 we have to be aware that the expected value of

-------(AUC - ~ )2 is (AUC - ~ )2 +uAUC/ ' This bias coulcl be correctecl with multiplying
equat ion 3.9 by n DniVD / Cn D - l)(nND - 1). In this way "ve obtain a unbiascd
est imate o-~ of a~

.4UC AUC

»; 2 1 [ »; »;

u AiJC 4(nD _ l)( n ND _ 1) PD#ND + (nD - l)PD,D,ND

(3.10) + (nND - l )P,vD ,ND ,D - 4(nD + nND - l)(AUC - ~)2].

Confidence interval for the AUC statistics. It is known that if ti o , nND are
-------h Id in const a nt ration, t hen if n u- nND ~ 00 , statistics (AUC - AUC)/o-~ is

AUC
a .yrnptot ically normally distributed with mean zero and standard deviation one
Bamb r (1975). Aecording to t his stat ement and because of the faet that sample
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sizes employed in cr di t mo 1 lling ér v rv 1é rs . \V <: r <: bl - 111!) 1 .onfi 1 n
intervals for AUC. Thus t ll <: .y rnpt IC nf 1 II int rvr 1e 1 \ T-1 1- o , a E (O, 1)
has the forrn

[AiiC - o-_ ep-l (1 - ()~ ) AC + 0- - <1> -1 (1 _ Cť ) ]
AUC 2 · A C 2

where <1> -1 represent s t ll quantile f1111Cti ol1 of th .t and: rd nornu 1 cli -, ribu i ll.

Comparing the areas uruler ROC graphs. A eOll1111011 .it uat ion t hat w
usually face while p erforming 1110cl 1 buildiug and validation is , to choos t hc 1) st
suiting model for our 1)1'0blem II11cl I' cousid ra ti on. \\ 1.1S11élly build 11101' t han
j 11St one scoring mo clel and at this stag of t ll -l valida i011 proc ss \V \\ 0111c1 like t o
choose the most suitable one, nam ly, t he 1110St I)0\verf111 in t rl11S of t ll AUC .t a­
tistics. In this context the prirnary application of RO C analysis is t he comparison
of different seoring models applied to to t he sam data. 111 t ll sirI1 I)1 est .as we
are interested in eomparing t he discrimination ability of t \VO scoring 1l10d ls A and
B. Denote t he eorresp onding areas 1111der t he ROC .urves OJTAUCA and AUCB .

Formally speaking, we would like t o test t hc hypothesis

against t he altcrnat ive

---- ----Comparing the appropriat e estimated values AUCA and AUCBand ehoosing
t he final model only upon t hese quanti ties would not b e app ropr iate frorn t he
statistical point of view. To b e preeise and to derive a reasonable test on the
differenee between two AUC statisties , namely AUCA and AUCB , we have t o---- ----calculate the variances o-~ and a-~ of est imators AUC A and AUC B . Because

AUCA AUCB
of the faet that two models for which we have est imated the AUC statisties might
be correlated , we also need to compute the covariance between the two est ima tors---- ----AUC A, AUCB. With respect to previous notation and according to Delong et al.
(1988) and Engelmann, Hayden, Tasche (2002) for the est irnate of ()~ - we

AUCA ,AUCB

find that

"' 2
(}- -

AUCA ,AUCB

(3.11 )
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h PAAB pAAB d pAAB . f b biliti pABw ere D,D,ND,ND' D,D,ND an ND,ND,D are estimators or pro a II les D,D,ND,ND '
PEt ND' P~fy NDD defined as follows, , "

p AB
D,D,ND,ND

p AB
D,D,ND

p AB
lVD,ND,D

P(S~ > S~D ' s2 > S~D) + P(S~ < S~D ' s2 < S~D)

P(S~ > S~D ' s2 < S~D) - P(S~ < S~D ' s2 > S~D) '

P(S~ 1 > S~D ' s2 2 > S~D) + P(S~ 1 < S~D ' s2 2 < S~D), , . , ,

P(S~ 1 > S~D ' S22 < S~D) - P(S~ 1 < S~D ' s2 2 > S~D) ', , , ,

P(S~ > S~D l ' s2 > S~D 2) + P(S~ < S~D l ' s2 < S~D 2), , , ,

P(S~ > S~D l ' s2 < S~D 2) - P(S~ < S~D l : s2 > S~D 2)·, , , ,

Quantities S~ , SE , S~,I ' SE,1 and SB,2 ,SE,2 are observations indep endently drawn
from t he distribution of dcfaultcrs. Sirnilarly the ones labeled by N D ar e obser­
vations indep cndently drawn from the distribution of non-defaultcrs. Finally the
testing proceduro const it utes of cvaluat ing statistice ~;J defined as

(3.12)

which i ' asymptotically X2-c1istr ibllted wit.h one degree of frcedom. The appro­
priat e critical values are calculated from t he X2(1) distribution given confidc nce
level a E (0, 1).

Finally we providc an alternative method for estimat ion of the joint covariance----- -----of estimators AUCA , AUC B which might b e quit e useful for computer implemen-
tation . In the first place we definc quantities V (s D), V (SND) as placements of
scores sD and s lVD in t he distributions of SD and SlVD , respectively. It rneans
that V(SD) is t he t he placement of score value SD in t he distribution of SlVD and
V(SND) is t he placement of score valuc SND in t he distribution of SD. 111 other
words V(SD) is t he fraction of SlVD scores t hat exceec1 it , similarly V(SlVD) is t he
fract ion of SD scores that it exceeds . So we evaluatc these t\VO quantities as

1 n n o

V(SD ,j) = n L V( D ,j ),(N D ,k) , j = 1, ... .no,
vD k== 1

and
1 n o

V(SND ,k) = -;;;:- L V (D ,j) ,(N D ,k) , k = 1, ... , nND ·
D . 1J==

-----1Tote t hat the nonparametric estimate of t he AUC statistic denotecl AUC is the
av rage of placement values in both cases

~TL ,y D V ( )AUC == L..." k~ l SND ,k

nND

2:;:;1 V (SD,] )

n D

Accorcling to D long et al. (1988) and with reference to the method of st ruc­
tural COI11pOIl nt Sen (1960) , the joint covar iance is computed as t he sum of scaled
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covariances of placem nt \ alu ' for cl faul ina énd n
have

Thu " \\

n'D(nO - 1)

[
A --- ] [.1 --- ]V ( \ D ,j ) - UCA V (, .O,k) -.. C B

[V (. 7J.j) - AfiCA] [ r: (, ~.j) - UtB ]

~'l' lVD

LJk== l

~nD

LJj == l

+

"' 2
(]" -- --A [jCA,AUCB

11 \o(nvo - 1)

letters A and B indicate t he calculation of t ll r 'I) ctiv plac 111 nts valu ' in t h
appropriate model.

2 .2. Cumulative accuracy profile

Another concept which is currently popular in practise for evaluation t ll cli ' .rim­
inative power of scoring med ls and which is similar to t ll re ' Jiv :' 1' Ol) - rr t ing
characteristics is t he cumulatice accuracu projile (CA?) curoe. 111 this subs .t ion
we focus on t he genesis of t he CAP graph it s interpr et at ion . Further VV cleriv cln
analytical relationship bctwecn the summary statistic related to t ll CAP curve,
t he accuracu ratio (AR) and t he AUC statist ic. This r lationship demonst rat s
110W statistical properti es of t he AUC statistic can be used in det errnining statis­
t ical properties of the AR sumrnary statistic.

In order to comply with our not ation ass ume again t hat w g ner ally hav n.
obligors anel let 11S consider a model that ass igns each obligor cl scor s out of
a specific set T. T might be eit her a finite set of r discr t values {" l : ... , 8T' };
8 1 < ... < Sr, or it might be a continuous interval , s: y [0, 1] . lil gener ál é1S­
sume that t he score valucs are ranging from worst to b st . It means t hat a high
score indicates a low default probability. Further we introducc random variables
ST and we consider again the random variables S o and SND . The randem vari­
able ST follow the score distribution of all obligors and recall t hat SO é111d SjVD
follow t he score distribution of defaulters and non-defaulters, r spectively. The
cumulative accuracy profile is defined as the graph consisting of point s, whose hor­
izontal coordinate is defined as P(ST < C) and vertical coordinate is defined as
P(SD < C) , whero C runs across the finit e set of discrete values { S l ,' .. , ,)r } or
across the range of possible score values. Realize t hat in case T is a continuo us
interval , i.e. the model produces continuous score values, wc have that r == ti, be­
cause the probability that two different obligors obtain t he same score value equals
zero. Further note , that varying the score values smoothly from C == m inSET(s)
to C == maxSET(s) and computing the appropriate coordinat es produces the t heo­
retical CAP curve. However , in practise we are able to assess again only a finit e
number of points , so t he curve is obtained again by linear interpolation between
them.

A perfect model assigns the lowest score values to the defaulting obligors . In
this case the CAP curve is increasing linearly and staying at one. For a randorn
model without any discriminative power, we have that the fraction k of all debt ors
with the lowest rating scores contains k percent of all default ers, t hus this is the
case when P(ST < C) == P(SD < C) ,C E T. Based on this int erpret ation, one can
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also conceive of a perfect model which gives all defaults worse scores than non­
defaults , and a random or uninforrnative model, which excludes defaults at the
same rate as non-defaults . Reasonable scoring models are somewhere in bctwcen
t hese two extremes.

The discriminative ability of the scoring model can be again summarized by
a single numbcr , the accuracy ratio AR. It is defined as the ratio of the area AS
between the CAP curve of the scoring model under evaluation and the CAP curve
of the random model, compared to the area AP between the CAP curve of the
perfect model and the CAP curve of the random rnodel. Formally speaking, it
follows for AR that

(3.13) AR= ~~.
In these sense the scoring model is the better the closer the AR is to one. Graphical
interpretation of the later statements is provided in Figuro 3.13

AS

1.00.8

random model

0.4 0.6
Fraction of aU obligors

perfect model

scoring model

AP

0.20.0

fl)...
o
.2»
:c
o
O')
e
E
:J
ca....
(1)

"C....o
c
o
:;
(.)
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Figure 3 .6. Cumulatiue accuraci) projile. The blue line shows the
perjormance oj a model utuler evaluation, it depicts the percentage oj
dejoultinq obliqors identified by the model at different percentages oj
the total number oj obliqors. The diagonal line represenis the state
oj ran dem assignment oj score ualues. The accuracy raiio is defined
as the raiio oj area AS and AP.

Furt.her we are going to illustrate that the statistical properties of ROC curves
and t he related summary statistics AUC are also applicable to the CAP curve
and it ' summary stat ist ic AR. The key relationship between the two performance
111 a .ur ' i . determined by the following forrnula

(3.14) AR == 2AUC - 1.
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The above present ed relation .hip 3.14 .an b (1 riv cl é " follows. A s '11111 t hat
the number of defaulting and Ilon-cl fé ulti ng obiuors i ' n D HJIcl T~ fV D , r 'I) cti I)T.

Obviously for t he total nurnb er of obligors TL , w have n == 'TID + TL rl] . For AP \V

find that

1T~ lVD
AP

(3.15)

TL____ + D

nND+nD 2(TLY[J+ lnID) 2
1 nND

2 n lVD + n D

In order to compute t he AS we need to xpress t he cumulative distrib ution func­
tion P(ST < C). 111 t errns of SD ancl S/YD t ll cumulative distrib ut ion funct ion
P( ST < C) can be expressecl as

(3.16) P(ST < C) = nD P(SD < C) + 1LND P(SND < C) ,
n r:» + InD 1LfVD+ n o

wherc n D/ Cn N D+n D) is t he prior default probabili ty of all ob ligors a11c1'TL fVD / CnllVD+
n D) equals one minus t his probability. E mploying cxpression 3.16 for AS we finel
that

AS

(3.17)

(3.18)

t P(SD < C)dP(ST < C) - ~Jo ~

nD t' P (SD < C)dP(SD < C)
'n'ND + 17)D .Jo

i
ol 1+ nND P (SD < C)dP(SND < C) - -

nND + InD . o 2

'nD ~ + nNDA UC 1 rLlVD(AUC - ~)

nND + tit: 2 ·n N D + n o

Substituing 3.15 and 3.17 into equation 3.13 we find t hat

AS nND(AUC - 1)
AR == - == 1 2 == 2AUC - 1.

AP 2n ND

This means that the accuracy ratio can be cornputed directly from t he area under
thc ROC curve and vice versa. Thus the statistical properties of the acc uracy ratio
can be also derived from the statistical properties of the AUC statistics .

We conclude this paragraph providing comparison of the int erpretation of t he
t\VO concepts described IIp to this point. We have shown t hat the above described
performance statistics are equivalent in the sense of equation 3.18, however the
curves answer slightly different qucstions.

• ROC curves answer the question: What percentage of non-defalllt ers
W01Ild a model have to exclude to excludc a sp ecific percentage of de­
faulters?

• CAP curves answer the question: What percentage of an ent ire portfolia
would a model have to exclude to avoid a sp ecific percentage of default ers?

Although CAP curves are the representation typically used in pract ice by finance
professionals and business people, the research concerning stat ist ical propert ies
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was traditionally performed in the context of ROC curves , primarily because of
their practical application also in medical research communitics.

2.3. The Kolmogorov-Smirnov stat ist ic

An important measure that is also commonly used in practise for credit scoring
model comparison and validation is the Kolmogorov-Smirnov statistic. otice that
both ROC and CAP curves (and the related summary statistics AUC and AR) ,
as well as the Kolmogorov-Srnirnov statistic measure the models ability to clis­
criminat e between defaulting and non-defaulting obligors. In other words these
discriminative measures address model's capability of proper ordering of obligors
in t erms of probability of default. Since the obligors probability of default is deter­
mined by t he corresponding score value produced by the model , "ve expect a proper
ordering in terrns of score values. If "ve assume that higher score values indicate
lower default probability, "ve expect that the distribution of defaulting obligors is
shifted to the left from the distribution of non-defaulting obligors. Denote the
distribution functions of defaulting and non-defaulting obligors by F (x) and G (x) ,
resp ectively. As outlined before , a reasonable scoring model should clearly sepa­
rate t he defaulting and non-defaulting cases , thus the corresponding distributions
should be clearly shifted from each other.

The Kolmogorov-Smirnov st at ist ic is uscd to test the hypothesis t hat t he dis­
t ribution function of score values of defaulting and non-defaulting obligors are
iclenti cal against a general alternat ive that t hey are differcnt.

H:3 : F(x) == G(x) ,

A:3 : F (x) =I G (:r ) .

The Kolmogorov-Smirnov statist ic is related to t he supremum clistance between
distribution functions. The Kolmogorov-Smirnov distance between two distribu­
tion funct ioris F and G~ is clefi ned as

(3.19) }(Sc1'i.st == sup I F ( ~r) - Ger) l·
-oo<x<+oo

W ith res pect to general properties of distribution functions , it is clear that

O< KSdú:rt < 1.

In case }( S di .st == O t hen F (x) == G(x) for all x and so, both distributions are
iclentical. In case K S di.st == 1 then F(x) == O and G(x) == 1 Ol' vice versa for some
.c , It implies that t hat eit her F (x) > G(x) Ol' F(x) < G(x) for all x. Recall
t hat if cert ain random variables X and Y possess distribution functions F and
G, re 'p ctively, and F > G t hen X is stochast ically smaller than Y. Indeed ,
F (x) > G(x) rneans P(X < x) > P (Y < x ).

111 t he cont xt of credit scoring model validation , the Kolmogorov-Smirnov
'tat i .t ic is und rstood to be t he sample version of Kolrnogorov-Smirnov distance
b tw n empirical distribution functions corresponding to default and non-default
sampl . To be more precise we deno te by FnD(x ) and G'TlND(X) the empirical
li .t ribut ion function of credit scores corresponding to ti u defaulting and nND
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non-defaulting obligors.

5 1

(3.20) KS== sup
- <:r<+

Because of the fact that empirical distribution functi ons have 1)Oll11C1ec1 .upports,
supremum can be replaced by maximum in 3.20

(3.21) !{S == max IFnD ( ~C ) - CnNo(·r)l·
- <.1;<+

Let lIS consider the following characterist ics

(3.22)

and

(3.23)

Thus it holds

and

}(S,5UP == sII1) (F( :r) - Cer))
- <.1;<+

KSin j == inf (F(~r) - C(:r))
- ()o<:r<+

o< «s.; < 1

-1 < «s.; < O.

Note that if K S,up == othen F(x) < G(:r) for all :r while if I( S 'inj == OF(x) > G(;[)
for all x. Also the opposite ultimate situation whon }(S S'l1P == 1 H11C1 I( S i'nj == -1
distinguish the two cases clescribed ahove in connection with K S ci'ist == 1. Finally
we have that

t:Srlist == max i«Ssup , t;S inj ) .

Again , we are able to obtain the empirical versions of 3.22 and 3.23, sirnilarly
supremum and infimum can be replaced by maximum and mi 11imll 111 , respectively,
These t\VO empirical characteristics provide better notion about possible order
relationship between F(x) and C(x) because once we do not have either F(~r) <
C(x) or F(:r) > C(x) for all x then the empirical version of K Sdist does not
measure the grade of stochastic ordering between the corresponding samples. In
the context of credit scoring model validation it means that we do not recognize
the situation when the model is good only for some regions of the predictor vector.
That is why the whole graph of Fno(x) - CnN D (X) should accompany the figure of
the Kolmogorov-Smirnov statistic.

It is necessary to outline that forrnula 3.21 is not a convenient solution for
computational matters concerning Kolmogorov-Smirnov statistics since it requires
too many cornp ut at ional operations. That's why we employ a different expression
introduced below,which shows that Kolmogorov-Smirnov statistic can be viewed
as a rank statistic see Antoch, Vorlíčková (1992), on condition that F(x) and G(x)
are continuous. lVloreover, there is a modification for the d iscrete case. Recall
that empirical distribution functions Fn D (x) and CnN D (X) which correspond to
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obligors' scores Xl, . .. , X 17, D, and non-defaulting obligors' scores X 17, D+ I , . . . , X 17,
where n == tit: + n jv D can be expressed as

and

wherc u(x) == 1, x > 0, u(x) == 0, x < O. The sums count the number of defaulted
obligors ' scores or 110t dcfaulted obligors ' scores which are smaller than Ol' equal
to ~E, respectively.

Furt.her let random variables Ul , , U17, D+nND be the order statistics of the joint
default and non-default sample Xl , , X 'nD ' X nD+1, . . . ,XnD+T~ND ' thus , Uk is the
k-th largest value within the joint sample. We define variables Zl ,.' .' Z17,D+17,ND
as indicators of the fact that Ul , . . . , UnD+nND belong to the default sample. It
means that Zk == 1 if Uk corresponds to some of Xl , . . . ' X 17, D and Zk == °if U;
corresponds to some of X 17, D+I , ... , X n . The Kolmogorov-Smirnov statistic can be
t hen expressed as

(3.24) }(S == max
l 'S:.k~nD+nND

k
nD + n N D 2:: Z, _ k: .

nD'n iYD . . n N D
'I,=: 1

The derivation of 3.24 works as follows

}<5 ==

1
max

- oo<x<+oo 'n D'n 1V D

1
max

-00<.(;< + .X> n Dn Y D

1
max

- <x<+oo 'n D n N D

[

»» 17,]
nlýD ~ u(x - XJ - u r: i ~+l u(x - X i)

[(n - nD)~ u(x - X i) - n t: i ~+1 u(x - X i)]

[n~ u(x - XJ - nD~ u(x - X i)]

inc t he ernpirical distribution Iunctions are defined for a finite number of points ,
"ve can take t he maximum over a finit e set of these values X k , k E {I , ... , nD +
n 'D} . Bec. l l ' "ve take t he maximum over all possible values without loss of
g II rality "ve can ass ume t hat we take it over an order set of valucs X (l) <
./Y( k) < X"(nD+n 'D)
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}(S max
X ( l )~)«k ) ~X( TL D +n ND )

1

max
X (l )~X(k ) ~ ./"'« (TL D+nN O )

The first sum in t he latest qua tion quals t ll -' 1111111t) r of lefaul tinz .-' , r \ é 111 '
which are less or equal t han t ll t ll ~ k- tll orel red st a is ic. Tll - second t :\1'111 i.'
the order of the k- th ordereel stati. .t ic, whi 'll i ' k. So w find t hat

(3.25) !{S m ax
l ~kS.nD +nN D

Forrnula 3.24 works well if F and G are COlltil111011S , t ll II variables Z A; are well
defined with probability 1, becausc t ies, t hat is , observations of t he same valu ,
have zero probability. Precisely it means that P( ./Yj == ./Yj ) == O for arbitrary i
and j.

Finally realize t hat in creclit moelelling w can easily observ t ies , for instanc
if we check categorial predictors Ol' if we deal with .at egorial 1110(le18. If equal
observations can occur v\t~e have to adjust forrnula 3.24 so that t ies cr gat hered in
011e case. To do so let Ul < . . . < U, be distinct values of realizations of ord r

statistics Ul , ... , UnD+l1ND' thus, j _< fnNO+ fn O· Instead of Z A; consider Z A; equal t o
the number of X, such t hat X, == UA;, k == 1, ... ,.J, and define K A; as t he number
of all observations (Xi and Yi) which are less then or equal to Ui; k == 1, ... , j o
The adjustrnent of formula 3.24 can be writ t.en as

(3.26)

Forrnula 3.26 is computationally more efficicnt forrnula for calculat ing Kolmogorov­
Smirnov statistics. As it was outlined above it is useful to accompany the valuc of
the Kolmogorov-Smirnov statistics with a graph obtained by plotting

(3.27)
-

KA; against k == O, ... , j .
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Figure 3.7. The figure depicts th e distance between empirical dis­
tribution functi ons oj the dejaulting an d n on-siejauliinq obligors.
T he maximum oj these distances is the th e sample version oj the
K olmogorov-Sm irnov statis tics .
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SUMMARY

The present technical Iiterature Oll corporat ~ cr -d i ri .k m odelling i, ' scarce . \­
eral academical papers deal with t h is iSS11 , how ver 1110,'t of t l18111 fo 'll, ' only Oll

certain area of the overall probl 111. The a '( demi · r searc h in t his <: r sa is sub­
stantially limited by the unavailability of publi (lata . 111 .ont rast wi t.h sim il: r
papers on eredit seoring this thesis intend to 1)1'0\ id ~ CL s elf-cont a iued .oncep t of
the statistical methodology relatecl to the overall probl ém. inst -ad of en mpirical
study, The main purpose of the thcsis was to (1 \ T 101) the .t a t ist ical methodology
whose application leacls to reasonable credit seoring models.

The first part of the document proposes 't a t i. .t ical methods that should b
employecl within the process of deterrnining a reasouablc set of predictor vari­
ables which could be later used in multivariatc modelling. Here we propos - an
adjustrncnt of the standard Pearson X2

. We show that this adjustrnent leads to a
rcasonable sample measure of dependence.

The second part of the thesis is fO C11S8cl Oll 1110c1el validation t echniqu s . -Iea­
sures of model performance are describ d and their statistical properties are inv s­
tigated. Emphasis is put on the c011CeI)t of the rccciver opcrating charac tcrist ics
and the related summary statisties , the area under the receiver opcratiug charac­
teristics. Further the relationship of tho receiver charactcristics analysis and the
cumulative accuracy profile analysis in clescribecl. Statistical properties of the latcr
coneepts are rcviewcd and the cornputational aspect ar discussed.

Finally, we focus on a different concept of a model performance measure.
Namely, the Kolmogorov-Smirnov statistics. We clerive alternative formula for the
cornputation of the Kolmogorov-Smirnov statisties which shows that the Kolmogorov­
Smirnov statisties can be viewed as a rank statistics and which is suitable for
computer implementation.
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PPE DI ",

REGRESSION ODEL

(A.2)

(A.3)

1. Introductian of the model cla se

First we restrict our attention to t ll ..tan larcl 111Ult i1)1 ~ r ~' OT ~\ .. 'i II prob lcm . \\1
have n observations of a reSl)011Se (dep snd Jllt ) variablc y' . Cl ~' 1 10 cd by Y == CYl ~ . . . 'lJn)T

measured at n design vect ors x; == (;ri1 ~ ... • ;rú n ) ' T he p oin "' x,i 111ay 1 -110­

sen in advance, or may be t he m , lvcs 111 Cl 'Ul' ements of r. llC10111 vari. h les \ í .t or
X == (XiI , ... , X i1n ) . We do not di stinguish t ll ~'e t \VO ca 'es .

Our goal is to model dependence of Y" on X 1 , .... ..IY 11 1 ' T her - 0 111(1 exi..t sev rul
reasons we would like to clo t his . The first is cl descripiion. We \VaJ1t a 1110(1 1 to
describe the depenclent variable Oll t he predict ors so t hat w - could bet. t er under­
stand the proces t hat produces Y. Oll t he .'8CO I1C1 placc we are also interestcd in
inference. We want to asses t he relati ve coutrib ut ion of eac h of t he predi ctors in
expla ining Y. Finally, we could be interes ted in ptcdiction . We wish to predict Y
for some set of values obt ained from ..lY1, ... , '/'(" ",

For all these purposes , t he standard tool for t he applied statist ician is t ll
multiple linear regression moelel:

(A.I) Y == a + X 1!31 + ... + X rn /3rn + E,

whcre E (E) == 0, var (E) == (J"2 and ~, (31 , ... ,
beta-; are parameters vVhose values are unknown and have to b e est irna ted frorn
the data. Fitting linear regression models is performed r)y ernploying t he standard
least squares optimization proceduro. In gener ál. if we denot e t he COIIClit ional
exp ect a t ion of Y by I-l , t he n t he systernatic part of t. he model ca n b e expressed

.,-11,

E (YIX) = Jl, = CY + :2.: Xl l j ,

.1 == 1

Further specification of the rnoclel involves thc stronger assumpt ion for t he ranclom
part of the model. Namely, t hat errors Ei , i == 1, ... ,n, follow the Norrnal distri­
bution with mean zero and constant variance (J" 2. The least squares optimization
proccdure

min (Y - Cl: +~ X. (3.)2
{3

Z:: J J ,
0' .

, .1== 1

yields estimates a,/31, ... ,/lmof CY , (31, ... "Bm which minimizes A .3. As outlined
above , this model makes a strong assumption about dependence structure of Ilon
Xl , ... , X m , that the dependence is linear in each of the predictors. In case, this
assumption holds , the linear regression model is very useful and convenient. It
provides a simple description of the data, summarizes the additive contribution of
each predictor with a single coefficient. Th11S it is easy to int erp ret and finally,
provides a simple method for predicting new observations.

Because of the strong assumptions concerning the standard multivariate re­
gression model described above, it is applicable only in situa t ions when they are
satisfied. The Generalized linear regression model is a generalization of the usual
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(A .4)

linear regression model , so it is important to outline the limitations of the standard
linear model and why we W01Ild like to generalize it . In practical applications it is
quite common that the relationship between the response and the predictor vari­
ables is not linear. The response variables C01Ild be boundcd, such as categorical
response variables , or the variance is not constant - it C01Ild be expressed as the
function of the means. ThlIS, in these cases , assumptions concerning the standard
model does not hold.

General linear models are a generalization of linear regression models. Specif­
ically, the predictor effects are assumed to be linear in the parameters , but the
di stribution of t he response , as well as the link between the predictors and this
distribution, can be quite general. A generallinear model also consist of a random
com ponent, a systematic component and an additional link [uncturn, linking the
t \VO components. The response variable Y represents the random component of
t he model, it assumes to have exponent ial family density

. { yB - b(B) }1(y; (); rjJ ) = exp a (rjJ ) + c(y , rjJ ) :

wwhere b(·) is a smoothly differentiable function to t he second order , a(cP) and
c(y, cP) are functions such t hat a(cP ) > Oand c(y, cP ) do es not depend on B. Further
110t e t hat cP is callcd t he dispersion parameter. The parameter Bdep ends on values
x T == (Xl, " " X n 1,) of explanatory variables and Oll t he vector of coefficient s f3
trough t he linear predictor TJ == a + x T f3. The linear predictor TJ represents the
systematic component . Further t here is a monotonie ditferentiable link function 9

such t hat TJ == g(l l), i.e.
TrL

(A.5) g(!l ) = a + L Xj i')j,
j== l

(i\ .6)

wherc I I == E(YI X == x ). Note t hat t he mean I I is relat ec1 to t he B by I I == b' (B)
a11e1 that a link function for which o9 (l-l ) == B is called t he canonical linko ote t hat
formally we can write

n'L

g(p ) = a + L x,s..
j== l

i\Ictll)TII .eful mo de 1s fall into t his class, including the linear logistic regression model
for binary data, t hat we employ and disC1ISS in the section dedicated to multivari­
at analysis , where we further expand t he t heoret ical background.

A furt.her extension of t he class of generalized linear models , is cal1ed General­
ized additive models. T hey extend generalized linear models by replacing the linear
forrn a + 'E71 Xj ,Bj with an additive forrn a + 'E71 f j(Xj) , where 1j ,j = 1, ... ,m
ar arbitrary univariate fun ctions, one for each predictor. As outlined above, lin-
ar models have an important feature t hat made them so popular for statistical

infer ne . The are additiv in predictor effect s. Generalized additive models retain
t his import.ant Ieature. Thus , t hey are also addit ive in predictor effects, however
t his t irn Oll the transformed scale given by the link function. Specifically, we
a .sum t hat r .pon ~ Y has a distribution of t he form A.4, with the condit ional
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expectation fl == E (YI ·)(l ..... -'X"'11 ) Iinked to tll ~ pl' -d ictors čl '

"1

(A .7) g(/l.) = O + L .fj (X j ) .

) == 1

2. Logist ic model

T he logist ic regression 1110e1el as sumes t hat \YC h. ve a biuarv r(\ '1) 0 11.'fI \ arial lc
Y having alternative (Berllolllli ) cli .t r ib ut ion .l lt (1T ). lUL ' va r i. bl e } ha ' t \VO

possible outcomes Y == 1 indicating t hat t he obligo r i.' a dcfnul t ' I' .ui d Y == ()
indicat ing that he is a non-dcfaulter. Th - mean I' in t h is situat ion i..' oq ual to
fl == E(YI X == x ) == P(Y == l lX == x ) == Tl . \\?e douot c t his probahili t v a ' Tl (X)
reflecting its dependence Oll values x T == (:c 1..... '/,' ''1) of procli .tors .

2.1. Additive models

The loqistic addii ice model assuuies t liat t. hc rolu ti ou botwoon P a nr1 t l«: pro­
d ictors has the form

7T( X ) n i .

(A.8) log { 1 _ 7f(X) } = n + L .fj (X j )

.1 == 1

where the link function on the left 11aľ1c1 sicle is called t hc loqii (111(1 where X ==
(XI, . .. , X 'mJ . The additive predictor on t ho right 11<1,11(1 sic1e is det crruiue:1 by
additive constant a and by arbitrary univariat c functious i, ~ . . . ~ i., t r nns lat ing
predictors Xl , . . . , X ,n into a linear world.

By A.8 "ve have

(A.9)

2.2. Linear model

exp { (1! + j~l l lKj ) }

7T( X) == 1H

1 + exp { (ť + .J~fj (Xj) }

The logistic linear model assumes that the relation b etwecn p (1,11c1 the predictors

has the form

(
1f(X) ) r11,

(A.IQ) log 1 _ 7f(X) = o: + f;x.s;

where the link fuct ion on the left hand side is called the logit and whcre X ==
(Xl , " . ,X'm) '

T he relationship between the above presented models is straightforward. The
logistic additive model is a generalization of the logistic regression model as t he
additive predictor is replaced by a linear one, i.e. fj(Xj) == (3j X j .
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