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Autor: Jan Benda
Katedra: Kabinet software a výuky informatiky
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Kĺıčová slova: mobilńı robot, lokalizace, sledováńı polohy, všesměrové viděńı
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The thesis addresses the vast problem of mobile robot localization in the dynamic
environment of a robotic contest. Method based on particle filters is developed,
using only the image of a catadioptric visual sensor as its input. The advantage of
this approach is an easy portability thanks to independence on other systems of the
mobile robot and robustness to external influences such as robot collisions. This
new method employs the composition of fast color thresholding, look-up coordinate
transformation, vision-based motion prediction and Monte Carlo Localization to
gain robust and reliable pose tracking using a color map of a delimited environment.
Since the method uses visual data both to determine the relative motion and to
verify the current location, it can cope with an unexpected events such as wheel
slippage or collision.
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Chapter 1

Introduction

Mobile robot localization is one of the most important and challenging tasks
in the domain of mobile robotics. A mobile robot performing any kind of
operation on a specific place must be able to navigate in the environment and
to identify the goal location with an accuracy required by the task. Whatever
is the robot’s mission, reliable position qualification either in geometrical
or topological terms is a necessary condition. All the operations required
for the robot’s motion, such as path planning, path following and known
obstacle avoidance, depend on the knowledge of the robot’s location in the
environment.

1.1 Preface

This thesis addresses the problem of geometrical localization for a mobile
robot with three degrees of freedom, namely two for position on the ground
plane and one for orientation. The task is to navigate a robot in a robotic
competition, where it can benefit of a highly structured environment with
well distinguishable visual navigation marks, but also faces a large amount
of unexpected influences including numerous partial view occlusions and un-
expected motion due to robot interaction. Fast and robust self-localization
is crucial when a robot has to be able to execute its tasks effectively.

The localization problem in general can be described as determining and
tracking the location of a mobile robot with respect to some global represen-
tation of space. This can be expressed either in qualitative or quantitative
terms, by either identifying a previously visited position or giving a numer-
ical representation of the robot state, respectively. For a known delimited
environment of a robotic contest, where an a priori geometrical description
is available, the latter is a more suitable option.

The operation field of the robot is limited and known — it is the playing
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field of the Eurobotopen 2005 robotic contest. Although the prototype solution
targets this specific environment, the proposed approach and the developed
algorithms can be reused in different contest environments.

The presented work is divided into four chapters. Chapter 2 presents
and further specifies the given task seeking for an optimal strategy. Sev-
eral possibilities of non-visual and visual methods applicable for the target
environment are discussed highlighting probabilistic approaches. The choice
of omni-directional imaging is substantiated, examples of known applications
are given, and a customized solution is presented. In Chapter 3, a theoretical
background for omni-directional image formation, color perception and par-
ticle filtering is given. Chapter 4 describes the prototype implementation in
detail. The experiments in Chapter 5 display the performance of the selected
approach and describe the limits of the method and the problems open for
future research.
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Chapter 2

Problem Analysis

Ongoing research on mobile robotics provides numerous approaches to the
localization problem. The selection of an appropriate method is a key task on
the way to successful implementation. The following subsections will discuss
the derivation of the proposed solution.

2.1 Architectures

Modern robotic applications can be roughly classified by the top-level organi-
zation of the control architecture as behavioral or deliberative. Every robotic
problem decomposition starts with the selection of an appropriate overall
design, which is chosen with respect to the complexity of the application.
The architecture design is also tightly coupled with the conception of the
world model, the internal representation of the operating environment. In
this section, the architecture of the control system is discussed (see fig. 2.1).

2.1.1 Behavioral

The behavioral approach focuses on the actual interaction of the robot and
the environment. Internal reasoning about the world is suppressed and the
task is decomposed into required responses to external stimulations with as-
sociated priority levels. This method assumes that the world itself is the best
possible model, thus resigns on any modelling and gives all the responsibility
to the actual sensors. The obvious disadvantage of such approach is the ne-
cessity to possess sensors able to discriminate every considered event and the
impossibility of any long-term planning. The basic reactive concept is state-
less and is usually applied on very simple tasks, such as e.g. wall following.
For tasks where appropriate mapping between sensor input and desired be-
havior exists, the optimal mapping may be effectively realized using methods
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Figure 2.1: Overview of the general control architectures

of artificial intelligence such as artificial neural networks (ANN) and genetic
optimization [11]. The mapping function may also be realized in the closed
loop of a continuous control in the classical sense of control systems.

When a more complicated response is required, the subsumption [7] archi-
tecture may take place. This method uses a set of behavioral models arranged
in a hierarchy of levels of competence, each of which directly maps sensations
to actions. Lower levels have implicit priority over the higher ones, which
enables e.g. the collision avoidance model to take control when appropriate.
The incremental nature of this design makes it straightforward to implement.
However, debugging such architecture may be problematic, as the final emer-
gent behavior of subsumption architecture is the set of reactions that emerge
from the various models triggered by the real-time conditions that control
the individual behaviors.

Behavioral models may be advantageous in simple tasks where a sensing–
response mapping exists and the advantage of evolutionary (ANN) approach
may be taken; or when real-time response (such as using a closed loop con-
troller) is required. These controllers may either implement the entire control
system of a primitive application, e.g. line follower robots, or take part as
low level modules in a hierarchical system (see below), e.g. to keep the robot
on a planned path or avoid unexpected obstacles.

2.1.2 Deliberative

The deliberative approach is typically described in terms of functional (hor-
izontal) decomposition. The world is processed and represented using a dis-
crete set of actions, times, and events. The system consists of individual
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modules operating in a deterministic serial fashion. In this architecture,
commonly known as Sense-Plan-Act (SPA), the robot periodically executes
a series of ’percept-model-plan-execute’ modules with the output of one
module being input of the following. Although it is hard to reach real-time
response of such system, functional examples exist [34].

To be able to both perform in real time and allow for complex model
manipulation and reasoning, the system must be designed as hierarchical [11].
A typical design would include a persistent world model, which is periodically
updated with the sensed data and used for reasoning. The individual modules
in the hierarchical model are all required to have real-time response, i.e.
to finish every execution cycle in a fixed period of time. In contrast with
the classical SPA, these modules typically run concurrently, which allows
different update rates of individual modules. This approach is well suited
for vision-based navigation and reasoning that typically requires significant
time for processing one captured image. Although this time may be kept
constant, it will typically be much longer than the execution time of e.g. a
low-level motion controller.

In a strict hierarchical system, the high-level layers such as mission plan-
ning and operational activity monitoring have full control over the layers
that provide low-level control of the robot’s sensors and actuators. This
also defines the mechanism for propagation of information and control se-
quences. In a blackboard system [11], the communication between modules
is provided by a neutral common information pool, shared by the individual
computational processes. Fundamental to any blackboard-based system is
a mechanism to provide efficient communication between the various com-
putational agents and the blackboard. A mechanism that proves elegant,
effective, and scalable is the publish-subscribe model. In this scenario, the
actual world model variables reside in the individual agents providing the
remaining modules with access to the contained variables using a common
communication system. The common pool thus serves only for pairing the
publishers containing the variables with the subscribers requesting access to
the data. The key task is to distribute the world model so that inter-module
communication is minimized.

Note that the global conception of the target control architecture falls be-
yond the scope of this thesis and is not described here. The thesis focuses on
one fundamental part of the complex system, which is the localization mod-
ule. The other essential components, such as the motion control and planning
algorithms are not covered. The modular approach enables to design the indi-
vidual components in an isolated manner. The localization module processes
the output of sensoric subsystems and produces the position information via
a defined interface.
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Figure 2.2: Overview of the sensor modalities used in mobile robot
localization

2.2 Sensors

Sensing is a key prerequisite for the robot to be able to reason about the
environment. All factors and events the robot is required to consider must
be detectable by the robot’s sensoric equipment. Apart from internal sensors
such as odometers, accelerometers, inclinometers or gyroscopes, providing
the robot with information about relative motion with respect to the en-
vironment, and tactile sensors providing the information about the nearest
vicinity, long-range sensors are required to identify the surrounding environ-
ment, plan actions and even predict the development of the environment and
the relative robot state (see fig. 2.2).

2.2.1 Range-finders

Reasoning about the distant objects in the environment is typically based
on sensing the energy emitted or reflected by the object surfaces. A wide
class of active sensors is based on the principle of emitting energy into the
environment and measuring the properties of the signal reflected back to the
robot. The simplest application is to compare the quantity of the reflected
signal in order to estimate distance to objects. In practical applications, the
emitted signal is further modulated to enable discrimination of the reflected
signal from the background noise. Such devices, usually implemented using
infrared light or ultrasonic sound, suffer from the fact that different sur-
faces have different reflective characteristics and thus the distance can not
be determined precisely. Moreover, mainly for the sonic sensors, the speed
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Figure 2.3: The time-of-flight Swiss Ranger sensor that is able to
provide real-time depth maps of the environment, reprinted from [49]

of distribution of the signal through the environment depends on environ-
mental properties such as temperature and humidity. These simple sensors
are thus often used as proximity detectors, kind of early-warning bumpers.
More advanced approach considers additional features of the reflected signal,
such as reflection angle for triangulation [4] or time-of-flight [11].

Using electromagnetic waves in conjunction with time-of-flight or phase-
based measurements is a very robust and reliable technique. Both methods
use the time delay of signal propagation. This is especially advantageous con-
sidering the high and relatively invariable speed of light. On the other hand,
it poses significant requirements on signal processing, making such devices
relatively expensive. Various applications exist, exploiting the characteris-
tics of specific wavelengths, from long-range radars to high precision laser
range-finders (LRF). These devices are usually able to take very frequent
distance measurements along a defined ray. Therefore it is possible to ex-
tend the measurement to multiple directions by reflecting the measurement
ray [1]. As mobile robots usually operate on a flat surface, one range-finder
scanning a single horizontal plane is sufficient for navigation tasks. Some
obstacles, however, such as furniture or steps require scanning in additional
planes. More range-finders may be added or a single device may be pointed
to different directions to get better coverage of the space in front of the ro-
bot. Advanced sensors providing direct real-time 3D imaging also exist (see
fig. 2.3).

For modern robotic applications, the laser or sonar range-finders are very
popular, although these sensors have a number of problems. They tend to be
easily confused in highly dynamic environments, e.g. when the laser or sonar
beams are blocked by people or other robots. The operation area must also
be populated with objects detectable by the range-finders. The localization
process using range-finder measurements requires that the operation field is
surrounded by walls. Unfortunately, this is not the case for many robotic
contests, as the operation fields for the contests are flat and may be placed
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in an arbitrary indoor area. Localization in such environments using LRFs
is feasible, but is far from being simple and inexpensive [20].

Additionally, feature estimates obtained from rangefinder measurements
are generic, without any uniquely defining characteristics. This poses a dif-
ficult problem for solving the data association problem between the current
measurements and the map, where a single feature observation might require
comparison with the entire map. This is an important drawback comparing
to vision-based sensors, which usually provide a great deal of contextual in-
formation that can constrain data association, and reduce the cost of feature
matching [44].

2.2.2 Beacons

A tempting approach is to use a navigation system based on bearing or dis-
tance measurements towards a set of beacons — active devices whose location
is known. A popular example is the Global Positioning System (GPS). A GPS
receiver can be localized with the accuracy of tens of meters anywhere on
the globe using 21 Earth-orbiting satellites. The accuracy may be further
increased using Differential GPS (DGPS) systems, where a reference GPS
receiver with known coordinates transmits the current relative error of the
GPS system, although the gain in accuracy is negligible after the selective
availability encryption for civilian receivers was removed [36]. A still more
accurate form of DGPS called Differential Carrier GPS exists. This system
uses the difference in carrier cycle measurements between the mobile and
the reference receivers and can achieve accuracy of centimeters. Naturally,
Differential Carrier GPS is substantially more costly than basic DGPS [11].
One of the great advantages of the GPS system is that is does not involve
any other observation of the external environment. It is also a purely passive
system that involves no energy output by the receiver, which makes it ideal
for military applications. Unfortunately, for majority of robotic applications,
the tradeoff between price and accuracy is unreachable. Moreover, for indoor
mobile robots reliable GPS signal coverage is often missing.

Another possibility is to create a special beacon system customized for
the indoor navigation task. It would even be applicable to a contest environ-
ment where several active or passive landmarks may be installed in known
positions. Many possibilities exist, e.g. triangulation using time-of-flight
measured distances of beacons emitting ultrasonic pulses or using relative
bearing measurements towards light-reflecting landmarks. Unfortunately,
such system would require expensive custom electro-mechanical design and
manufacturing, which makes it unavailable for the considered application.
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2.2.3 Vision

As described so far, the entire class of active sensors is not appropriate for
the target environment. Rejecting the active emission of energy by the robot
itself as well as by external beacons, one important class of sensors remains
— the visual perception. Providing the robot with the ability to ”see”, i.e.
process and interpret 2D images of the environment acquired by a camera,
has many advantages as well as drawbacks. A positive aspect is that human-
populated environments are vision-friendly as vision is the dominant sense
used by people. Even in unmodified environments, the important features
relevant to navigation, such as steps or door-posts, are made visually dis-
criminable.

The major drawback and most significant challenge of a general computer
vision task is the ambiguity of inverse mapping from the 2D perspective pro-
jection back into the 3D space. The most general approach, inspired by the
human stereoscopic vision, employs two or more cameras and the relative shift
of correspondent features to determine their distance from the observer. Ac-
tive vision methods combining the active and passive approaches are some-
times used in scene reconstruction — a known pattern projected onto the
observed scene helps to disambiguate the inverse perspective projection. For
example the light striping technique, which uses a laser beam to highlight
a plane, whose intersection with the surrounding objects is triangulated to
obtain the depth estimation [11]. To avoid the computationally demanding
scene reconstruction, constraints may be applied on the locations of the ob-
served features, e.g. positioning them all on a single plane. The perspective
projection of this subset of features then becomes a bijection. Concerning a
contest environment, the distinctive markers on the floor represent exactly
this class of features.

An important factor that led to the selection of visual approach for the
given environment is that the operation field contains well structured land-
marks discriminable by color. Moreover, due to their small vertical diversity,
a minimal error is introduced assuming their location is on the ground-plane.
Based on this assumption, the environment can be represented using a 2D
map of ground color and the scene reconstruction may be simplified to a
one-to-one function. Camera is also a perfect sensor for tracking proximate
color landmarks as it provides high amount of data for a relatively low cost.
On the other hand, a computationally efficient approach to the extraction
of landmark information is difficult to implement. Appropriate choice of the
visual sensor configuration may help to ease the task.
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Figure 2.4: Omni-directional vision can be used as an afford-
able range-finder replacement. Here, distances to different visual
landmarks determined by color transition are measured, reprinted
from [31]

2.2.4 Omni-directional Vision

The feature that makes traditional perspective cameras hardly applicable to
robot localization is the limited field of view and the emerging viewpoint
and occlusion problems. A single camera may be occluded by an obstacle
or the robot may be facing a direction where no appropriate landmarks are
observable [46]. When the operation field is small, an overhead camera may
be mounted monitoring the entire area, such as for example in the RoboCup
Small Size League competition. Unfortunately, no suitable location for a
global vision camera exists in the target environment.

To address the field-of-view problem, multiple-camera solutions, active
panning, or fish-eye lenses have been proposed. An alternative is to use
specially designed mirrors to bring a larger portion of the environment into
the field of view of the camera (see fig. 2.4). Such configurations are called
catadioptric as they employ both reflection and refraction in the process of
image formation. The camera is typically mounted in the upwards direction
with the mirror above it providing the robot with a 360◦ view of the environ-
ment [11]. Panoramic or omni-directional cameras have become popular for
self-localization in recent years because of their relatively low cost and large
field of view, which makes it possible to define features that are invariant to
the robot’s orientation [3].

One of the objectionable features of panoramic sensors is the relatively low
spatial resolution. For applications that require both wide field of view and
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high resolution, a high-resolution camera [9] or multi-camera solution [23]
may be applied. However, for the majority of applications the resolution
of a general camera is sufficient, besides the fact that a higher amount of
data could be too complicated to process. Equipping the robot with an
additional perspective camera providing detailed view of one particular area
of interest [18] is a suitable compromise in many cases.

A customized mirror surface may also be designed and manufactured for
a special application. An interesting design that uses the camera resolution
effectively is a mirror with different scales for close and distant landmarks
(see fig. 2.4). Constant resolution camera designs are also popular in many
applications. It is a class of sensors that project linearly a measure in the
world coordinates to a measure in the image ones. The most common con-
stant resolution cameras designs are [17]:

• horizontal (CHR) — projects linearly the points on a plane perpendic-
ular to the mirror axis,

• vertical (CVR) — projects linearly the points on a cylinder co-axial
with the mirror surface, and

• angular (CAR) — projects linearly the points on a sphere centered at
the camera’s center of projection.

CVR cameras are sometimes referred to as panoramic and the CHR are called
bird eye’s view cameras. Although it is often possible to define mapping
functions to reach desired image geometry, the rectification process always
leads to a loss of information. On the other hand, custom mirror profiles are
often hardly affordable. Section 3.1 presents additional information on the
projection used in this thesis.

2.3 Approaches

There is a variety of possible approaches for localization using omni-
directional image. They can be roughly classified by the following aspects:

• the ability to globally localize the robot from scratch

• the internal representation of the current robot pose

• the method for maintaining the pose between individual measurements

• the nature of localization information extracted from the omni-
directional image
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Figure 2.5: Classification of omni-vision based approaches

For each of these aspects, two representative classes of applications are
selected and described (see fig. 2.5). In the real-world applications, combi-
nations are often implemented to benefit from the positives of both sides.
The following sub-sections aim at defining the classes and describing their
advantages and drawbacks.

2.3.1 Global Localization vs. Tracking

When the robot is switched on without any prior information about its lo-
cation, it faces the problem of a global localization. If it is provided with a
map of the environment, it can make measurements and actions that lead
to selection of the candidate locations and disambiguation between them.
Once the location is known, either after a successful localization or from
an external source, tracking may take place which benefits from the known
kinematics of the robot and the proximity of the successive measurements.
Pose tracking is a suitable approach for the target application as the initial
location where the robot is started is known. An important precondition is
that the localization process is robust enough to keep the correct location
information all the time.

The task of global localization is often addressed in the kidnapped robot
problem [48], as the problem of unknown location may reappear anytime dur-
ing the pose tracking, especially when the robot is displaced artificially and
in defiance of its kinematics. The pose tracking techniques are thus usually
equipped with means to detect the complete loss of pose information and to
enable re-localization. An alternative approach is to model the robot mo-
tion from the current observations, which eliminates the necessity to measure
the ego-motion using dead reckoning and reduces the influence of external
intervention [43] [6].
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2.3.2 Geometrical vs. Topological Approach

There are two general principles to represent the robot’s state within the
world model. A continuous, geometrical (metrical), approach describes the
robot’s location using numerical terms with respect to a selected coordinate
system. The discrete one, topological, uses specific highlighted places to rep-
resent the positions and goals within the environment. This is better suited
for applications involving human operators, as people preferably describe a
goal as ’enter the second door on the left’ rather than ’follow azimuth 244
for 7.29 meters, then azimuth 152 for 2.6 meters’. The metrical approach on
the other hand is more suitable when the robot is required to follow a path
within a specified margin [17].

In the topological approach, the world is described using a graph, where
the nodes represent the known reference locations, and the edges correspond
to the possible transitions between these nodes. The individual reference
locations are recorded during the learning (mapping) phase and contain rel-
evant information that can be used for the localization (such as metrical
coordinates or semantic description of the place) together with the informa-
tion that enables the robot to evaluate the similarity of current observations
to the reference ones, and thus identify the closest node.

It is also important to note, that for majority of applications the topolog-
ical navigation has to be combined with some kind of metrical navigation, as
manual creation of a topological map is hardly feasible. Once the graph repre-
sentation including metrical evaluation of the reference locations is recorded,
a simple architecture (such as a reactive one, based only on dead reckoning)
may be used to move between the individual nodes. A suitable scenario for
the topological localization is an indoor office/hallway environment, which
maps well to a graph representation [33].

For the target operation area, and generally for open environments where
the robot can freely move in any direction and no locations with specific
importance exist, the geometrical approach is more suitable. It is also useful
when the robot has to follow precisely a given path, presented as a set of
numerical coordinates. The selection of the reference coordinate system is
straightforward for a limited known environment. For a rectangular opera-
tion field a Cartesian system aligned with the two axes of the field is often
used.

2.3.3 Probabilistic vs. Analytical Approach

An ideal solution to the localization problem is to develop sensors able to
analytically calculate the current position using only the most recent ob-
servations. This is achievable with e.g. beacon-based systems, where the
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specific landmarks in the environment can be uniquely identified and pre-
cisely localized. In unmodified natural environments this is typically not the
case. Even if the vision-based systems provide less ambiguity of the landmark
observations compared to the rangefinder-based approaches, the problem of
perceptual aliasing [33], i.e. existence of distinct but visually similar locations
has to be considered.

In most cases, the uncertainty of the robot state and its development is
modelled in the localization process. The restrictions based on the robot’s
kinematics help to eliminate the distant candidate locations, reduce the am-
biguity, and focus the computation on the particular area of interest. The
general specification of the probabilistic localization problem involves posi-
tion estimates using dead-reckoning (for example with the robot’s odometry)
and iterative enhancement using environment map and sensor input. The
system starts with an initial estimate of the robot’s location in a configu-
ration space (Euclidean space whose dimension is equal to the number of
robot’s degrees of freedom) given by a probability density function (PDF) of
the robot’s position belief. As the robot navigates through the environment,
the PDF is updated using a probabilistic model of the robot’s kinematics
and sensors. The probabilistic model of the robot’s motion is first applied
to obtain a predictive PDF representing the possible development of the ro-
bot’s state. Sensor data is then used in conjunction with map to produce a
refined position estimate having increased probability density about the true
position of the robot [11].

The existing probabilistic approaches differ in their internal representa-
tion of the belief and the associated update methods [10]. The Kalman filter,
Markov Localization and the particle filter-based methods are some of the most
popular approaches.

Kalman filtering [27] emerges when representing all the state and mea-
surement densities by Gaussians. If all the motion and the measurement
PDFs have normal distributions, and the initial state and measurement noise
are also specified as Gaussians, then the density will remain Gaussian at all
times. It can be shown analytically that the Kalman filter is the optimal
solution to the probabilistic update rules under these assumptions [30]. The
inherent problem in this approach is that only one pose hypothesis can be
represented using a Gaussian density making the method in general unable
to globally localize the robot or to recover from total localization failures [19].

This limitation has been addressed by two related families of algorithms:
localization with multi-hypothesis Kalman filters and Markov localization.
Multi-hypothesis Kalman filters represent beliefs using mixtures of Gaus-
sians, which enables them to represent and track multiple, distinct hypothe-
ses. However, to meet the Gaussian noise assumption inherent in the Kalman
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filter, low-dimensional features have to be extracted from the sensor data,
ignoring much of the information acquired by the robot’s sensors.

Markov localization algorithms [14], in contrast, represent beliefs in a
discretized manner over the space of all possible poses. There are different
methods which can be roughly distinguished by the type of discretization
used for the representation of the state space. In the Topological Markov Lo-
calization, the state space is organized according to the topological structure
of the environment [45]. The coarse resolution of the state representation
limits the accuracy of the position estimates. Topological approaches typi-
cally give only a rough sense as to where the robot is. In many applications,
a more fine-grained position estimate is required, e.g. in environments with
a simple topology but large open spaces, where accurate placement of the
robot is needed.

To deal with multi-modal and non-Gaussian densities at a fine resolution,
the Grid-based Markov Localization may take place [16]. A part of interest
within the state space is discretized into a regular grid which is used as
the basis for an approximation of the PDF by a piece-wise constant function.
Methods that use this type of representation are powerful, but suffer from the
disadvantages of computational overhead and a priori commitment to the size
of the state space. In addition, the resolution and thereby also the precision
at which they can represent the state has to be fixed beforehand [10]. Defining
data structures enabling variable resolution representation of the state space,
e.g. oct-trees, allow for effective utilization of memory and computation
resources. However, the entire class of Markov-based approaches has been
recently overcome by sampling-based systems.

The sampling-based representations are an obvious generalization of the
Markov localization methods. Instead of discretizing the domain of the PDF
into a fixed set of samples, it is sampled dynamically. The set of samples is
drawn randomly from the PDF so that they concentrate in the regions with
high likelihood. A duality between the samples and the represented density
exists, which enables to apply existing update equations on the sampled
PDF [47].

Particle-based representations have several key advantages over the fore-
going approaches [15]:

1. In contrast to existing Kalman filtering based techniques, they are able
to represent multi-modal distributions and thus can globally localize a
robot.

2. They drastically reduce the amount of memory required compared to
grid-based Markov localization and can integrate measurements at a
considerably higher frequency.
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3. They are more accurate than Markov localization with a fixed cell size,
as the state represented in the samples is not discretized.

4. They are also much easier to implement.

Monte Carlo Localization (MCL) [10] with a constant number of samples
is the probabilistic algorithm selected in this thesis. A fixed set of samples
is initialized at the starting location of the robot and then undergoes a pe-
riodic sequence of prediction, correction and resampling phases. The entire
algorithm is described in more detail in Section 3.3.

2.3.4 Feature-Based vs. Image-Based Evaluation

One popular method for omnivision-based localization uses a similarity mea-
sure defined directly over the space of original omni-directional images to
evaluate the current observation. This appearance-based approach involves a
database of images captured at the reference locations and searches for the
most similar one. There are two important issues concerning this matching.
Firstly, a compression is required to make the image comparison computa-
tionally effective. Secondly, rotational invariance should be involved into the
image comparison, otherwise multiple rotations have to be recorded for the
same reference location.

Various methods have been developed. The principal component analysis
(PCA) addresses the first issue reducing the dimensionality of the problem.
The omni-directional images are treated as n-dimensional vectors where n

is the number of image pixels. An orthonormal basis of the reference im-
age database is computed, which allows space-saving representation of every
image of the training set using only a few parameters corresponding to the
most discriminative vectors of the basis. PCA offers means for calculating
an optimal basis using singular value decomposition (SVD) of the covariance
matrix, representing the images in a low-dimensional subspace that is an op-
timal linear approximation of the original set in the least squares sense. The
dimension of the feature subspace is usually set between 10 and 15 for a gray-
scale omni-directional image. Higher number of dimensions leads to better
discriminability but increases the risk of over-learning. Another suitable ap-
proach employs a cylindrical projection of the omni-directional image. The
advantage of this projection is in that rotation of the camera corresponds to
a translation of the projected image — the azimuth of a scene point equals
to the horizontal coordinate in the rectified image. Selected components
from the Fourier transform of the projected image thus provide both image
compression and rotational invariance.
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Although the image-based approach looks temptingly feasible, straight-
forward and natural, there are several issues. One is the problem of percep-
tual aliasing, e.g. in long hallways with doors similar one to another. Other
fundamental problem is the uneven influence of illumination changes and
partial occlusions on the representation of the captured image. Finally, the
creation of the database may be extremely tedious if performed manually or
require additional metrical mapping or map geometry restoration technique
if it is to be automatized.

Viable real-world applications extract some kind of features contained in
the image of the environment. The discussion on the usable landmarks is
given a respective section.

2.3.5 Natural and Artificial Landmarks

A landmark is generally any feature of the environment that can be repeat-
edly identified by the robot as being relevant. There is a broad range of
landmarks considering both their artificiality and relevance for the localiza-
tion task. Objects ranging from purpose-built beacons and reflective or con-
tractive markings to edges or corners in a human-built environment or just
distinct contours in a natural outdoor environment, all these can be used to
determine relevant position information. Also the amount of obtained infor-
mation differs from precise triangulation using uniquely identified beacons to
relative motion information from tracking a distinctive feature among several
successive images.

The definition of landmarks used by the specific implementation is typi-
cally imposed by the restrictions of the target environment. Special applica-
tions posing severe requirements on robustness and reliability usually allow
arbitrary modification of the environment in order to simplify the applica-
tion design. This class of tasks is considered to be solved and is typically
addressed by engineers rather than robotics researchers. Current research
highlights the ability to navigate in unmodified and unknown environments
allowing the robots to extend their operation range beyond the robotic labs
and workshops. Similarly, the robotic competitions tend to gradually com-
plicate the navigation task by reducing the amount of artificial landmarks
and limitations.

There are currently three principal domains for autonomous robot nav-
igation: the exploration devices designed for operation in hardly accessible
locations, the robots designed in the context of academic research and the
robots involved in robotic competitions. All these domains involve a slightly
different approach to the ultimate task of unrestricted autonomous operation
based on the actual priorities.
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It is the space program that engages the most robust and sophisticated
applications, but various terrestrial missions as e.g. land mine elimination or
rescue operations [29] also require reliable devices. It is obvious that no prior
modification of the environment is applicable. The general localization in
natural unmodified outdoor environment still remains a very hard problem
and a large portion of human operator intervention stays involved.

An important class of research applications targets natural indoor envi-
ronments. The scope of such projects is to develop fully autonomous devices
able to navigate inside any building. Besides the fact that the considered
motion may be restricted to three degrees of freedom (within a single floor),
an unmodified indoor environment also contains a large number of interest-
ing landmarks, such as e.g. windows, door posts and other edges, moreover
typically rectangular. The landmarks most commonly used in the indoor
environments are vertical edges, as they project aptly especially on omni-
directional sensors, and the more general SIFT features, a class of image
features that are invariant to image scale, rotation and translation as well as
to illumination changes and affine or 3D projection.

Last but not the least, the domain of robotic competitions motivates the
robotic science. The participants are presented rules, which are restrictive in
a manner to encourage research and favor new solutions while leaving con-
siderable space for creativity and improvements. The operation environment
is pre-defined and typically contains multiple kinds of artificial landmarks.
The focus is on real-time response and reasonable robustness in order to ac-
complish the given task. The robotic competitions are very important for
the development of robotics as the concurrent evolution of the game rules
and the game tactics pushes the horizons in a reasonable pace.

2.4 Related Work

Surprisingly little work exists on the omni-directional vision applied to the
task of robot localization; although it can be seen that once this approach
is visited by a researcher it is rarely abandoned. Mainly the principle of full
sensoric coverage of the robot’s surroundings is very advantageous.

The annotated works are grouped by the top-level approach, i.e. appear-
ance or feature based. Much of the feature-based localization work is being
done for the RoboCup Middle Size League. These applications are given a
proper subsection.

2.4.1 Appearance-Based Approach

Back in the 1996, Ishiguro and Tsuji [25] were one of the first to examine
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Figure 2.6: Power spectrum of the Fourier transform of cylindrical
projection of an omni-directional image, reprinted from [25]

the potential of omnivision-based localization. They calculate the Fourier
coefficients to represent cylindrical projections of omni-directional images
in a lower-dimensional subspace (see fig. 2.6). The coefficients indicate the
features of global views at the reference points and the phase components
indicate the orientation of the views. However, they only address place recog-
nition by indexing and do not try to generate an interpolated model. The
representation used is not robust, since the Fourier transform is inherently
a non-robust transformation. An occlusion in the image influences the fre-
quency spectra in a non-predictable way and therefore arbitrarily changes
the coefficients.

Aihara et al. [2] were probably the first to use the panoramic eigenspace
approach using PCA to represent the image database. In order to avoid
the problem of rotation of the sensor around the optical axis, they use row-
autocorrelated transforms of cylindrical panoramic images. The approach
suffers from less accurate results for images acquired on novel positions, since
by autocorrelating the images some of the information is lost. Moreover,
the process of autocorrelating the image is non-robust, meaning that any
occlusion in the image may result in an erroneous localization.

Many authors came with their own propositions on the solution of the
rotational invariance problem. Pajdla and Hlaváč [38] proposed to estimate
a reference orientation from images alone with the zero phase representation
(ZPR). ZPR, in contrast to autocorrelation, tends to preserve the original
image content while at the same time achieving rotational independence, as it
orients images by zeroing the phase of the first harmonic of the Fourier trans-
form of the image. The experiments indicate that images taken at nearby
positions tend to have the same reference orientation, which enables to in-
terpolate between the relevant reference locations. The method is, however,
sensitive to variations in the scene, since it operates only with a single fre-
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Figure 2.7: Eigenvector images computed for a database of rotated
images, reprinted from [26]

quency using a global transform. Generally all methods that apply a global
transform to the images result inherently into non-robust eigenspace repre-
sentations.

An alternative approach is to include several possible rotations for each
reference location into the database (see fig. 2.7) as presented by Jogan and
Leonardis [26]. The system proves to be robust especially with respect to the
amount of occlusion as expected. However, this method can not reliably deal
with major changes in illumination. The results obtained with this method
proved reliable up to 60% occlusion that yields to a mean localization error of
approximately 60 cm, which is the resolution of the training set. The entire
matching process requires several seconds to complete.

It is possible to consider the recent robot’s state to lessen the computa-
tional demands of the matching process. Menegatti et al. [33] propose to use
the Monte Carlo Localization to track the robot’s position and reduce the
amount of reference locations considered. This allows the system to reach
real-time performance, while preserving the ability to globally localize the
robot using a hierarchical search within the entire database [32]. The pro-
posed solution spreads in each step 10% of the samples to the best matching
locations (reference locations with least dissimilarity to the current obser-
vation). This amount is experimentally proved to enable the algorithm to
quickly converge in case of kidnapping while not importantly drifting the
probability distribution in a common case of perceptual aliasing.

The authors of [33] use so called Fourier components as the feature vec-
tor for storing and comparing the images. This signature is a subset of
Fourier coefficients computed for individual rows of a cylindrical projection
of a grayscale omni-directional image. The major advantage of the Fourier
coefficients is that they naturally provide rotational invariance. Another ben-
efit is the reduction of memory consumption, as this signature occupies only
0.25% of the space required by raw 640×480 24 bit images.
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Figure 2.8: Important edges in an omni-directional image and the
respective distance transform, reprinted from [17]

The obvious disadvantage of this method is the necessity to create the
reference image database. The total of 500 reference images together with
relative metrical information had to be taken in a corridor approximately 100
meters long. The major advantage is the possibility of quick matching against
all possible locations to address the kidnapped robot problem effectively.
This solution is best suited for environments with little color information,
possible but not periodical perceptual aliasing, and relatively few possible
reference locations, such as are e.g. the corridors of a large public building.

An efficient solution to the illumination problem is presented in [17].
Instead of treating the original omni-directional images, an edge-based rep-
resentation is created using a distance transform (see fig. 2.8). A compu-
tationally effective method is derived using an eigenspace approximation of
the Hausdorff distance [22]. However, the Hausdorff based matching is only
applied in locations where illumination can change significantly. A method
based on PCA is applied otherwise as it is more informative.

One of the most complex methods addressing the image-based similarity
measure is given by Paletta et al. [39]. The authors robustified the panoramic
eigenspace approach by applying Bayesian reasoning over local image ap-
pearances. They achieved robustness and handled rotation by dividing the
panoramic image into overlapping vertical strips representing unidirectional
camera views. Distributions of sector images in eigenspace are represented
by mixture of Gaussians to provide a posterior distribution over potential
locations. However, the local windowing introduces ambiguities that have
later to be resolved through Bayesian probabilistic framework. This solution
displays the limits of the image-based approach as it abandons the similarity
measures based on appearance of the entire image. The sector-wise approach
is evidently biased towards feature-based image treatment. It can be seen
that for practical applications, specific features have to be addressed in the
omni-directional image. For fully general solutions with no specific domain
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Figure 2.9: Minimum free space estimation, reprinted from [51]

of operation, generic invariant features should be taken into account instead
of aspiring for appearance-based invariance.

2.4.2 Feature-Based Approach

Returning back to the 1995, one of the first practical experiments with omni-
directional navigation already uses a feature based approach. In the work of
Yagi et al. [51] a Conic Projection Image Sensor (COPIS) detects and tracks
vertical edges in the environment. The sensor contains a conical mirror,
which projects the vertical edges to radial lines in the image, and a TV
camera, which sends the images wirelessly to a control computer. Because
the COPIS sensor is omni-directional and the environment is constructed
to be populated with vertical lines, a large number of azimuth readings are
obtained surrounding the robot. The system is capable both of improving
the rough location estimate using a map of known features and of detecting
and recording a new feature. A simple sort algorithm is used to maintain the
list of known edges. The locations of unknown obstacles are estimated by
monitoring loci of azimuth angles of the vertical edges. The coordinates of
new edges are corrected using triangulation from successive readings. A large
error occurs in the front region of the robot when the robot moves straight
ahead, but the error diminishes when the robot changes direction.

Known vertical edges are used to define the minimum free space (see
fig. 2.9), a wire occupancy map of the environment created connecting the
adjacent vertical edges and verifying the candidate surfaces using an acoustic
sensor. An ultrasonic sensor is used if and only if the robot is required to
pass through a candidate surface to verify if it is a real one. This is one of
the major drawbacks of edge-based navigation — the configuration of object
surfaces can only be estimated and need to be verified otherwise.

The image analysis was implemented on an image processor and was able
to process about 1 fps including the time needed for communication. The
speed of the robot was about 5 cm per second and the localization error in
an artificial box-like test environment ranged from 3 to 7 cm.

In the work of Dellaert et al. from 1999 [10] the idea of Monte Carlo Lo-
calization (MCL) crystallized. This localization technique was presented as
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Figure 2.10: A light map of a museum ceiling used for vision-based
update, reprinted from [10]

a novel application of a known Monte Carlo method originally developed for
object tracking. The MCL applies the conditional density propagation [24] al-
gorithm to the problem of tracking the motion of the entire camera platform.
The motivation for a particle-based approach was the high ambiguity of the
sensor used for the localization which yielded to a complicated measurement
PDF disabling the traditional approaches.

The testing platform — a museum tour guide robot — used the odometry
information to produce the predictive PDF. A light map of the ceiling (see
fig. 2.10) was compared with the average brightness value of a small area
in the middle of an upwards-mounted camera image. This little information
provides surprisingly good results when combined with a robust probabilistic
algorithm. One of the drawbacks of such simple sensor is that in case of
global localization, the disambiguation had to be performed using random
motion of the robot, during which the robot had no information about its
location. Also, the precision of the method was limited because of high
perceptual aliasing of the single-dimensional sensor. It is obvious, that much
more information could be harvested from a camera image, which may help
to overcome these limitations.

Andreasson et al. [3] presented a method that combines the advantageous
properties of a particle filter, an omni-directional sensor and the SIFT fea-
tures. The system is thus capable of matching generic features extracted
from local interest points in the image (see fig. 2.11). This results into a uni-
versal and very robust system that can reliably navigate a mobile robot in a
large, populated indoor environment, able to face kidnapping and occlusion
of up to 90% of the robot’s field of view.

The matching used in the application employs a Modified Scale-Invariant
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Figure 2.11: Feature-based matching of an omni-directional image
against the image database, reprinted from [3]

Feature detector (MSIFT), which selects landmarks that are invariant to im-
age scale, rotation and translation as well as to illumination changes and
affine or 3D projection. The map of the environment contains 100 strongest
interest points recorded for each reference location, each of which is associ-
ated with a feature descriptor built from image gradient orientations in the
neighborhood of the interest point. Only several closest reference locations
are tested for match with every particle using the similarity of the features
descriptors to match the interest points. The new weight of the particle is
based on the number of interest points that match between the current image
and the corresponding database image. To estimate the rotation of the robot
a histogram of relative rotations of the matched interest points is used.

The mean localization error ranged from 0.5 m to 2 m in the experiments
with the span of database images being 0.5 m. The principal drawback of
this method is a relatively high computational cost as the feature extraction,
matching and update costs about 2 seconds on a 2GHz desktop computer
which makes this approach currently inapplicable for real-time localization
of an autonomous robot.

2.4.3 Contest Environment

The following works all address the environment of the RoboCup Middle
Size League soccer field [13]. Although the approaches vary a lot, the omni-
directional cameras already have a stable place in this competition. This
is mainly due to the removal of fixed surrounding walls from the rules since
2001, which makes it harder to apply range-finder based methods. Moreover,
the game elements are strongly color-coded, which favors the usage of vision-
based systems.
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Figure 2.12: Bird’s eye view of the RoboCup field with the estimated
pairs of line segments highlighted, reprinted from [28]

Marques and Lima [28] propose to extract the geometrical features from
a bird eye’s perspective of the environment. They describe a general ap-
proach for tracking straight line segments on the floor and an application to
analytical localization on a RoboCup soccer field. The method benefits from
a mirror profile that realizes a constant horizontal resolution projection and
thus preserves the geometry of the ground plane(see fig. 2.12).

The transition pixels denoting interesting features in the acquired image
are processed using Hough transform (HT) [21] to detect straight linear pat-
terns of the floor. A fixed count of most distinct straight lines is picked and
all pairs made out of these lines are classified for relevance using a priori
knowledge of the environment geometrics. This step is used to highlight
pairs of parallel lines enclosing an expected gap. The common direction of
the most relevant pair is used to pick the remaining parallel lines. These se-
lected lines are then correlated with a corresponding set of model features to
find the best match. The selection and correlation process is then repeated
with the remaining non-parallel lines. Two sets of six and five parallel lines
of a RoboCup soccer field were used in the practical application. Typical
position errors ranged from 0 to 10 cm.

This approach is functional and robust mainly due to the integrative
fashion of the HT. On the other hand, ignoring the continuity of the robot
state throws away much of the information reusable in the next localization
step. This may especially prove derogative in real-world environment with
considerable distortion and occlusion influences. The analytical approach
risks sudden fallouts, which could be avoided using an uncertainty-modelling
approach.

Sekimori et al. [41] present an analytical approach to the localization
problem on a RoboCup field based on a single tracked landmark — the
green rectangular shape of the entire playing field floor. The method starts
with image pre-processing that extracts a convex hull of the floor projection.
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Figure 2.13: The process of estimating playing field position using
the green floor segment, reprinted from [41]

This reduces the effect of occlusions on the floor shape. The floor outline
is then projected back to the coordinate system of the ground plane and
geometric moments of the shape are calculated to obtain a rough match with
the field model. Least-squares optimization is then used for best fit with
the model (see fig. 2.13). The rotation and shift of the observed landmark
define the current robot’s coordinates with the only ambiguity of field central
symmetry. If the color of goal is observed it solves this ambiguity, otherwise
the most recent solution is chosen.

Extending the initial idea using probabilistic refinement, a robust solution
is achieved [42]. The global position information can be easily reformulated
in a form suitable for the Kalman filter. The self position estimation is
updated by dead reckoning using odometry and the belief is improved by the
vision-based self-position observation described above. The Kalman filtering
helps to improve the localization performance, which would otherwise suffer
from quantization errors, occlusions and noise in the images.

The resulting method seems to be robust and reliable. The only short-
coming may be the necessity to always fit the entire field into the view of the
omni-directional camera. This greatly reduces the resolution of the sensor
but there are means to address this issue if required [31].

An interesting hybrid of the analytical and probabilistic approaches is
presented in [35]. The method uses ambiguous landmark observations of
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Figure 2.14: Possible locations of a robot observing a relative bearing
of two landmarks, reprinted from [35]

Figure 2.15: Searching for geometrical features in an omni-directional
image, reprinted from [50]

the field corners to draw a sampled set of position estimates (see fig. 2.14),
each of which is weighted with subsequent landmark observations. Instead
of estimating the position using a definite triangulation from three or more
landmarks, only two are selected. This results into a set of possible positions
located on a circle determined by the relative bearing of the two landmarks
and their order [11]. The circle is then sampled into a fixed count of position
estimates each having an error value accumulator. This counter is zero at the
beginning and increases over time as different landmarks are observed and
the robot moves. The relative bearing of two landmarks and the direction
angle to an individual landmark is compared with the predicted values for
each sample. The difference between the observed and the predicted value
is added to the error counter. The sample with the lowest accumulated
observation error is used as the current position. When the total error exceeds
a given threshold, a new pair of landmarks is selected. Several independent
localization processes are executed to increase robustness.

34



Figure 2.16: Visual range-finder measurements from an omni-
directional image, reprinted from [31]

Same as in [28], the features selected by Wolf and Pinz [50] are the white
lines drawn on the playing field floor. A particle filter is used to track the
position estimate using the robot’s odometry and a geometrical correction
method based on omni-directional image of the floor. Several important lo-
cations selected a priori in the field model are transformed into the image
coordinates for every sample and the omni-directional image is searched for
color transitions corresponding to these landmarks. The difference between
the expected coordinate and the true position of the edge is used for weight-
ing the samples. The selected approach requires a geometrical description of
the markings and a complicated evaluation of the match between the esti-
mated pose and the current observations. On the other hand, the evaluation
can be performed very fast. The major drawback of the selected method
is the inability to deal with the kidnapped robot problem as the update
algorithm only searches for expected landmarks in a restricted area thus fail-
ing to observe any landmarks at all if the position estimate error exceeds a
threshold.

A very good application addressing the localization problem on the
RoboCup field is presented by Menegatti et al. [31]. A custom mirror pro-
file is used that performs two projections of the playing field at a different
scale. The inner portion provides a bird’s eye overview of the entire playing
field, while the outer rim serves for precise low-distance measurements. The
authors define a paradigm of visual range-finder: they extract the color tran-
sition information along several rays in the omni-directional image to detect
for the distances to visual markers of the RoboCup field. This approach
enables to combine the existing methods developed for range-finder based
navigation with the rich information provided by the visual sensor.

Monte Carlo Localization is used to track the location of the robot. To
address the kidnapped robot problem, random samples are inserted to enable
re-localization. The system is shown to perform active disambiguation in 6
update steps corresponding to a distance of 4 meters traveled. This solution is
very good but inapplicable to the task of this thesis for at least two reasons.
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Firstly, the target environment has a periodic color pattern, which would
make a visual range-finder very ambiguous. Secondly, such custom mirror
profile is difficult to obtain.

2.5 Proposed Solution

Firstly, it has to be noted that a customized approach must be derived for
a very specific target environment to make the solution effective in terms
of development and computational costs. The applications noted above are
all performing well in their own environments but are rarely general enough
to be simply reproduced. On the other hand, selecting a too complex and
generic approach would make the resulting application hardly competitive in
the terms of processing speed.

The scope of this thesis is to design and implement a localization mod-
ule for a mobile robot operating in the Eurobotopen 2005 contest environ-
ment [12]. The following sections first specify the available features of the
given environment, followed by the presentation of the prototype solution
and its contribution.

2.5.1 Target Environment

The operation field of the Eurobotopen 2005 contest is a rectangular area of
approximately 2.1×3.6 meters consisting of two fields with a brown-beige
30×30 cm checkerboard pattern separated by a blue ditch and surrounded
by a white border. The central ditch is 60 cm wide and is 3.6 cm below the
level of the playing field floor. It is separated from the two floors by a glossy
white line. The construction of the target robotic platform enables it only
to cross the ditch using one of the two beige bridges, positioned randomly
before the start of a match. The detailed description of the playing field can
be found in the Appendix A.

Visual features usable for the localization include the checkerboard pat-
tern, the blue ditch with the randomly positioned beige bridges and the white
borders denoting the limits of the checkerboard fields and the ditch.

The localization task is complicated by the fact that the playing field is
populated with additional elements that tend to confuse the visual sensor
by occluding the expected landmarks and creating false ones. These are
namely the game elements, such as are the 15 green and 15 red skittles and
two black bowls. Moreover, the solution must expect very frequent influences
from other robots operating on the playing field — physical robot interactions
are very frequent in this contest.
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Figure 2.17: Playing field for the Eurobotopen 2005 contest

2.5.2 Task Formulation

The most common implementations of a probabilistic localization use the in-
formation from odometry to predict the current pose of the robot. However,
there is a shortcoming in relying on the odometry data as the wheel slippage
introduces an unmodeled noise into the system. Often, especially in robotic
competitions, the robot moves in an unexpected direction because of collision
with another moving object. Such motion, not considered in the prediction
phase, results in the so called kidnapped robot problem [48]. Therefore a
method will be proposed that uses the image data for both the motion esti-
mation and the weight updates. Compared to a hardware odometry based
approach this method can deal with any kind of robot’s motion.

The aim of the thesis is to develop a localization module that would en-
able the target robotic platform to localize itself within the Eurobotopen 2005
contest environment using solely the information provided by a visual sensor.
The only input to the algorithm is a video stream of an omni-directional cam-
era with a hyperbolic mirror that provides a panoramic view of the contest
environment. The task of the localization module is to track the position of
the moving camera platform given the initial coordinates within the environ-
ment independently on the robot’s actions and inputs.

The advantage of the resulting method is that it can be used on any
other robotic platform with the only requirement that the same visual sensor
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Figure 2.18: Overview of the vision-based localization process

is used. It is also possible to experiment with an image-based replacement
of hardware odometry and to hopefully overcome some of its limitations.
Moreover, only the recorded video stream is needed for development and
off-line evaluation of the method.

2.5.3 Selected Approach

An overview of the selected method is given here (see fig. 2.18). The de-
tailed description of the prototype implementation is given in Chapter 4 and
the theoretical background for the implemented algorithms is described in
Chapter 3.

A sampling-based probabilistic algorithm was chosen to track the current
position of the camera platform. A visual odometry module predicts the
motion of the camera and the precise localization is achieved using a visual
correction module extracting landmark features from the omni-directional
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image. A bird’s eye view transform is applied on the acquired image to
rectify the geometry of the rectangular playing field landmarks.

Instead of trying to evaluate the relative position of the entire playing
field, which would be very hard due to the fact that the playing field sur-
roundings are not defined, easily detectable features of the playing field are
extracted and tracked to determine the relative motion of the robot. A prob-
abilistic update is then applied to refine this position estimate.

The odometry module tracks the boundaries of the playing field land-
marks. A relative position within one checkerboard square is estimated by
detecting the orientation and shift of the rectangular grid formed by the indi-
vidual checkerboard squares in the rectified image. This relative information
is continually tracked to get the global position estimate. Because of the
periodicity of the basic pattern, an ambiguity in the motion estimation has
to be solved imposing an upper bound on the robot’s speed.

To correct for position estimate errors induced by the image noise, oc-
clusions, reflections, and especially distortions caused by the camera tilt, the
raw accumulated position estimate is periodically corrected in the probabilis-
tic framework using a map of the playing field colors and a sparse pixel-wise
comparison with the color-classified omni-directional image.

This is an alternative approach opposing the most common modalities
consisting of precise odometry and range-finder sensors. One of the motiva-
tions is to examine the possibilities of the visual odometry and to offer an
affordable option to the costly sensors used in current robotic applications.
The major benefit of the probabilistic approach is that additional sensors
can be easily integrated into the existing framework to increase precision
and robustness. This would enable e.g. to enhance the developed solution
with hardware odometry if available on the target platform or to replace the
visual odometry at all if no suitable landmarks exist within an alternative
environment.
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Chapter 3

Theory

This chapter presents a theoretical background for the omni-directional im-
age formation, color classification and probabilistic localization algorithms
employed in the prototype implementation.

3.1 Omni-directional Vision

The projection model used in this thesis consists of the perspective camera
projection combined with a curved reflexive surface.

In the perspective projection model, the three-dimensional feature points
are projecting onto an image plane with perspective rays originating at the
center of projection (COP), which would lie within the physical camera. The
origin of the coordinate system is taken to be the COP and the focal length,
f is the distance from the COP to the image plane along the optical axis,
which is aligned with the ~z axis.

The perspective projection of a point (x, y, z)T in the world coordinates
to a point (u, v)T in the image coordinates is performed by(

u
v

)
=

(
x
y

)
f

z

In a catadioptric configuration, the camera is combined with a curved
mirror to increase the field-of-view of the sensor. The mirror profile is a
rotationally symmetrical surface described by a surface function z(x) — the
surface is constructed by rotating the graph of z(x) around the optical axis.
Depending on the shape of the surface equation, the mirror profiles can be
roughly classified as single viewpoint (SVP), e.g. hyperbolic, and non-single
viewpoint (Non-SVP), e.g. spherical or conic (see fig. 3.1). The advantage
of a SVP profile is that in certain camera configuration it reflects the rays
passing the camera COP such that they all seem to originate in a single point
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Figure 3.1: Examples of Non-SVP and SVP projections, reprinted
from [17]

inside the mirror. For example a hyperbolic surface reflects a ray passing one
of the foci of the hyperboloid onto a line passing the other focus. This feature
of the hyperbolic mirror is used later in the image rectification. More on SVP
profiles can be found in [5].

Since the geometrical markings used for the localization are all rectangu-
lar and the hyperbolic mirror profile used in the prototype application does
not provide a bird’s eye view projection, image rectification is required to
recover the original shape of the landmarks. However, the single-viewpoint
feature of the hyperbolic mirror and the alignment of the camera COP with
one of the mirror’s foci (the focus F in fig. 3.2) enable the derivation of the
following equations.

The image rectification process recovers the landmark shape using a pixel-
wise projection from the image plane coordinate system to the ground plane
coordinate system. Since the catadioptric projection is rotationally symmet-
rical, the rectification can be redefined in the cylindrical coordinates aligned
with the optical axis of the camera-mirror system. Putting the angular coor-
dinate aside for a while, the rectification becomes a 2-dimensional problem:
the ray passing through the camera COP is described by the angle ρ — the
deviation from the optical axis.

The mirror profile is now given by a hyperbolic equation z2/a2−t2/b2 = 1,
which yields the surface function z(t) = a

√
1 + t2/b2. The coefficients a and

b define the shape of the hyperbola and are assumed to be known. For a
given radius ρ defining a point in the image coordinates, the task is to find
the intersection point of the corresponding ray with the hyperbolic curve
[t, z(t)]. This is done by solving for an unknown t the equation:

e + z(t)

t
=

f

ρ
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Figure 3.2: Schematic for the ground plane projection and rectifica-
tion

The solution of this equation is:

t =
2ab2ρf

b2f 2 − a2ρ2

Because of the single-viewpoint feature of the hyperbolic profile, the point
of intersection with the ground plane [r,−h] can be evaluated using triangle
similarity. This is because the reflected ray is on a line connecting the inner
mirror focus [0, e] and the reflection point [t, z(t)] (see fig. 3.2).

Note that in the implementation the transformation is pre-calculated and
stored in a look-up table to increase the execution speed.

3.2 Color perception

Fast and robust color classification is an important part of an application
detecting visual landmarks determined by their color. A special algorithm
exists that addresses the classification issue for robotic applications where
the processing speed is an important factor [8].

Objects uniformly painted by the same color are not represented by an
equal RGB color when captured by a camera. This is due to the effect of
illumination on the hue and brightness of the reflected light. It is mainly
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Figure 3.3: Representation of the landmark color classes using rec-
tangular thresholds in the YCrCb space

the brightness that varies widely for the object’s pixels. This is why the
captured image is first transformed into the YCrCb color space, which uses
one coordinate to express brightness and the two others for blue and red
chromaticity respectively. The YCrCb space enables to approximate the color
classes for many robotic applications with rectangular blocks (see fig. 3.3).
This is because the artificial colors of landmarks can be usually delimited in
the CrCb plane and the Y coordinate is left to compensate for the influence
of illumination. Allowing a wide span in the brightness channel reduces the
effect of object shape, orientation and position relative to the camera and
light sources on the color classification.

The rectangular shape of the color classes is advantageous for the fast
classification algorithm — it can classify each pixel using only 2 bitwise
AND operations, whereas a naive approach would require 5 conditional AND
operations in the worst case:

if ((Y >= Ylowerthresh) AND (Y <= Yupperthresh)

AND (U >= Ulowerthresh) AND (U <= Uupperthresh)

AND (V >= Vlowerthresh) AND (V <= Vupperthresh))

pixel color = color class;

If the task was to decide whether a given number ranging from 0 to 255 is
within a pre-defined interval, one can define a lookup table representing the
characteristic function of the interval. Since the three-dimensional thresh-
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old can be represented as a product of three interval-defined subspaces, the
classification of one pixel can be performed using 3 lookups:

pixel in class = YClass[Y] AND UClass[U] AND VClass[V];

For best performance, all the color classes can be evaluated at once. If
the lookup tables are made of 32-bit integers, 32 color classes can be stored,
one in each bit. The bitwise AND identifies all the color classes a pixel belongs
to making the respective bit set.

3.3 Monte Carlo Localization

In a probabilistic localization framework [10], the robot state at a current
time-step k is estimated given knowledge about the initial state and all mea-
surements Zk = {zk, i = 1..k} up to the current time. The robot state is
given by a vector xk = [x, y, θ]T comprising the position and orientation of
the robot. The estimation problem is an instance of the Bayesian filtering
problem where the posterior density p(xk|Zk) of the current state conditioned
on all measurements is constructed. In the Bayesian approach, this proba-
bility density function (PDF) holds all the knowledge that is available about
the state xk. In sampling based methods, the density is approximated by
a set of N random weighted samples or particles Sk = {(si

k, w
i
k); i = 1..N}

drawn from it. Each si
k stands for one possible state of the robot and the wi

k

expresses the probability of the current state being si
k. The current position

can be estimated from this representation, e.g. as a weighted average of all
samples.

To localize the robot, the goal is to recursively compute at each time-step
k the density p(xk|Zk) working with the set of samples Sk that is drawn from
it. This is done in two phases, the prediction and the update.

3.3.1 Prediction

In the first phase a motion model is used to predict the current position of the
robot in the form of a predictive PDF p(xk|Zk−1), taking only motion into
account. The current state xk is assumed to depend only on the previous state
xk−1 and a known control input uk−1. The motion model is thus specified
as a conditional density p(xk|xk−1;uk−1). The predictive density over xk is
then obtained by integration:

p(xk|Zk−1) =

∫
p(xk|xk−1;uk−1) p(xk−1|Zk−1) dxk−1
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In the implementation of a particle filter, the motion model is applied
to each of the particles si

k−1 computed in the previous iteration obtaining a
new set S ′

k that approximates a random sample from the predictive density
p(xk|Zk−1):

for each particle si
k−1:

draw one sample s′ik from p(xk|si
k−1; uk−1)

3.3.2 Update

In the second phase the position estimate obtained in the form of a predictive
PDF is updated using a measurement model of the current sensor readings
to obtain the posterior PDF p(xk|Zk). The measurement zk is assumed to
be conditionally independent of earlier measurements Zk−1 given xk. The
measurement model is expressed in terms of a likelihood p(zk|xk). This
term denotes the likelihood of the state xk given that zk was observed. The
posterior density over xk is obtained using Bayes’ theorem:

p(xk|Zk) =
p(zk|xk) p(xk|Zk−1)

p(zk|Zk−1)

For a particle filter, this update consists of two steps. First the weights
are corrected according to the measurement zk. Then the particle set is
resampled to represent the new density p(xk|Zk).

All the samples in the predictive set S ′
k are updated by the likelihood of

s′ik given zk, i.e. weighted by:

wi
k = p(zk|s′ik) wi

k−1

The new set Sk is then obtained by resampling from this weighted set.
All the weights are first normalized so that

∑
i w

i
k = N . The resampling

then reproduces the samples s′ik having a high weight associated with them
replacing those with a low weight. This addresses the problem of a continual
degeneration of the sampled PDF. The sample set must be updated to remove
insignificant samples and give place to the promising ones. In doing so a new
set Sk is obtained that approximates a random sample from p(xk|Zk):

for i = 1..N:

if wi
k > 2 draw two Sk samples from p(xk|s′ik)

else if wi
k < 0.5 drop the sample s′ik

else if |Sk| < N draw one Sk sample from p(xk|s′ik)
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After the update phase the process is repeated recursively.
At time k = 0 the knowledge about the initial state x0 is assumed to

be available in the form of a density p(x0). The particle filter starts with a
random set of samples S0 = si

0 drawn from this prior density. In the pose
tracking task, the density p(x0) represents a narrow distribution around the
known initial pose.
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Chapter 4

Implementation

This chapter describes a prototype implementation of the probabilistic local-
ization module presented in Section 2.5. The implementation consists not
only of the resulting module but creates a complex framework for testing and
tuning various image-processing modules. See the Appendix D.1 for the list
of features of the application accompanying this thesis.

For the purpose of examining various image processing methods, the ab-
straction of an image filter is used. This is generally a piece of code that
takes one image at its input and produces one at the output. The individual
filters are aggregated into filter chains, sequences of filters aimed at a partic-
ular task. The following sections give an overview of the filters used in the
localization process.

4.1 Filters and Chains

An image filter provides one level of processing of the input video stream.
Each filter is defined as a descendant of the abstract class ImageFilter.
This class provides the principal ability to group into chains and additional
services such as import and export of settings and saving the output to a
file. It also allocates memory for the output image and can display the
filter’s output in a window. One method, Process, is abstract and is left to
be implemented by the specific filter classes.

Individual filters are grouped into filter chains that aggregate the image
filtering for a particular purpose. Each chain is derived from the FilterChain
class and must redefine the method Start that adds and initializes the in-
dividual filters. The framework can switch between different chains, each
of which may provide a different view of the input video. Each chain also
defines, which of the contained filters will have an output window. It allows
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Figure 4.1: NormYUVFilter enhances the input images and trans-
forms it into the YCrCb color space. Note that the output image is
displayed in false colors for illustration reasons as the image itself
does not change, only the base it is enumerated to. The Y, Cr, and
Cb channels are displayed as green, red and blue respectively.

a chain to hide the filters with uninteresting or hardly readable output and
make the framework less cluttered.

Many filters also provide access to their configuration variables via track-
bars displayed in the respective windows. A user may change these variables
and store them in a configuration file, which is automatically read at each
startup.

Additional filter chains allow tuning of the filters involved in the localiza-
tion chain. The following subsections describe the individual filters in more
detail.

4.2 Pre-processing

There is a number of helper filters in the framework that can be used to
enhance the input video and to experiment with its properties. Only those
used in the localization chain are described here.

4.2.1 Input Enhancement

The input video is first normalized so that the mean and standard deviation
of the individual color channels are constant. This helps to robustify the
following process with respect to the changes in illumination reducing the
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Figure 4.2: ThreshBoundFilter classifies the input color image into
color classes and detects the important playing field boundaries

influence of color and intensity of the ambient light on the tint and brightness
of the observed visual marks. The transformation is global, i.e. applied
uniformly on all image pixels. Without this pre-processing the subsequent
color classification is less reliable.

In one step of the localization chain the robot’s silhouette is also masked
out to remove confusing data from the processed image.

The input is also transformed from the RGB color space of the camera out-
put to the YCrCb color space used in the color classification. For performance
reasons, both these transforms are performed at once by the NormYUVFilter
class (see fig. 4.1).

4.2.2 Color Classification

The color classification extracts the landmark information from the input
image by applying a 3-dimensional threshold to the input image for each
of the six defined color classes (see Section 3.2). The colors defined in the
contest environment are red and green for the game elements, blue, brown
and beige for the playing field and white for its borders. Each of these
classes is represented by one bit of the 8-bit output image. One more bit
is used to store the information about the playing field boundaries, which is
later used for the motion prediction. The inner playing field boundaries of
the individual checkerboard squares as well as the outer field boundaries of
the checkerboard and the white border are marked by decorating the pixels
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Figure 4.3: ColorFilter visualizes the classification by displaying
the individual color classes in schematic colors

that lay in a close neighborhood of two of these three color classes with the
boundary bit.

To improve performance, two operations are again performed at once.
The input image is classified and searched for color class boundaries at the
same time (see fig. 4.2). It is important to note that throughout the local-
ization process, only the thresholded input image is used, never the original
one. This is enabled by the discriminative painting of the color landmarks
and allows better performance of the whole process.

4.2.3 Color Display

One of the helper filters that is only used to visualize information for the
user is the ColorFilter (see fig. 4.3). It paints the classified image with
schematic colors to make the color classification better readable. This filter
is used e.g. in the ClassEditChain that enables to interactively tune the
classification thresholds.

4.2.4 Image Rectification

As the floor markings form a periodical orthogonal pattern, it is straight-
forward to begin the processing with a projection of the camera image to
the ground plane. This approach yields an image where straight lines cor-
respond to straight lines on the floor, which significantly simplifies the fol-
lowing process. The ProjectFilter (see fig. 4.4) uses several user-defined
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Figure 4.4: ProjectFilter rectifies the input image into ground
plane coordinates given the parameters of the mirror geometry

parameters, such as the mirror radius and position within the input image
to recover the geometry of the floor markings using the transform described
in Section 3.1. Its descendant MaskProjectFilter is used to mask out the
robot’s silhouette that could confuse some of the following filters. Another
filter, FieldMaskFilter, is used to further limit the projection only to the
current estimated bounds of the playing field relative to the camera.

Note that the transform used in the localization chain is sparse, in terms
that it only moves the individual pixels of the input image to the transformed
coordinates and does not perform any interpolation. This is because an
interpolation would not add any new information and would uselessly waste
computational resources because no subsequent filter requires a dense input
image. However, there is an InverseProjectFilter that calculates the
inverse projection for the destination pixels to get a dense rectified image
using the nearest neighbor interpolation (see fig. 4.5). This output is meant
for evaluation of the transform parameters by the framework user and is
provided by the ProjectPreviewChain.

4.3 Prediction

After the image is rectified, the boundaries extracted in the enhancement
phase form several parallel lines in two perpendicular directions. The task
is to determine the rotation and relative shift of these lines with respect to
the camera. If all the lines in the rectified image were either horizontal or
vertical, computing the column sums would result in sharp local maxima cor-
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Figure 4.5: ProjectFilter rectifies the input image into ground
plane coordinates given the parameters of the mirror geometry

Figure 4.6: SumFilter predicts the robot’s motion from the evolution
of the detected field boundaries
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responding to the vertical lines. If neither of the two boundary orientations
is perfectly vertical, these local maxima will blur. But if the image was first
skewed so that some of the boundaries become vertical, the local maxima
would reappear. Thus, if a fixed number of skew angles is tried out, the
one that best matches the true orientation of the vertical lines will have the
sharpest peaks in the scanline sum. The SumFilter examines 90 different
orientations, to estimate the robot’s relative orientation with a resolution of
one angular degree as the projected boundary image is π

2
-periodical.

Analogical approach may be used for the offset of the perpendicular
boundaries but as the best skew angle is already known only one sum (in
the appropriate direction) is performed.

An important feature of the pose estimation process is the invariance to
the playing field surroundings. This is required because the area beyond the
playing field borders is not defined and can easily contain similar landmarks
that would confuse the pose estimation. This problem is solved by clipping
the projected view to the extent of the estimated playing field location. As
long as the estimated pose matches the true one, all the landmarks beyond
the borders are ignored.

The drawback of the boundary-based approach is that it only provides
location within one checkerboard square. If all the boundaries were always
detectable, counting the peaks on both sides of the robot would provide an
absolute location. This unfortunately is not true, because several boundaries
may be occluded by the robot itself, as well as other objects randomly placed
on the playing field. An average of the peak offsets is used instead to estimate
the robot’s offset within the square-size period.

The relative position within one checkerboard square is estimated and
this information is aggregated recursively to provide the rough estimate of
the robot’s location. This estimate is filtered using a simple exponential av-
eraging to reduce the effect of temporary distortions on the predicted motion.
The change of the filtered estimate then enters the MCL framework in the
terms of a control input uk (see Section 3.3.1). A random noise term is also
added to deal with prediction errors.

4.4 Correction

The final image filter uses the thresholded image again but now only several
random pixels are picked instead of processing the entire image. This adds
a complementary information to the process that was up to now based only
on edge information — the color of landmark surfaces is used to refine the
position estimate within the MCL framework.

For each sample, a fixed count of random observations is picked from the
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Figure 4.7: VisualMclFilter updates the MCL samples with the
classified visual information and displays the localization progress

thresholded image, transformed to the playing field coordinates using the
pose represented by the sample and verified against a known map of playing
field colors. A match with the map increases the weight of the sample a
mismatch decreases it and a neutral observation (a pixel not belonging to
any of the landmark color classes) leaves the weight intact within the MCL
update (see Section3.3.2). The weight update highlights the samples around
the true robot’s pose as the observations for outlying samples do not match
the color map and cause a quick decrease of the associated weights.

The pixel-wise observation method helps to increase the robustness of
the entire process as virtually any pixel in the source image can be used for
the weight update. If a small portion of pixels represents false observations
it only affects a small subset of all the samples. This reduces the influ-
ence of image distortions, occlusions and local color misclassifications on the
overall performance. Each of the approximately 90 000 possible observations
contained in the input image may be used in the correction phase. The in-
dividual possible observations are stored in a lookup table in the form of a
mapping from the source image coordinates to the respective ground-plane
projection. The evaluation is thus very fast as it only requires one lookup
and a transformation from the sample-centric coordinates to the world ones.

Similarly to the prediction phase, the update must also be insensitive to
the playing field surroundings. This is done by simply ignoring the observa-
tions that fall outside the color map. The map contains all the area of the
playing field and a small margin to enable matching against the playing field
borders.
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Figure 4.8: A likelihood p(zk|xk) evaluated for different robot posi-
tions given the set of 90 000 pixel-wise observations, 20 of which are
randomly selected per update. Darker colors denote higher values.
The true robot pose is shown by a red arrow

The major complication posed by the checkerboard playing field on the
localization module is the periodicity that allows the pose estimate to drift
to a diagonally adjacent square producing very similar observations. To com-
pensate for this ambiguity, the observations of the ditch and the playing field
border are given higher weights. The probability distribution of the mea-
surement model p(zk|xk) induced by the pixel-wise observation evaluation is
shown in Figure 4.8. It is a probabilistic plot rendered by averaging a large
number of updates for each of the different positions drawn in the image.
The orientation of the robot is fixed and corresponds to the horizontal di-
rection in the plot. The true position of the robot is marked by an arrow.
As expected, the probabilistic update (in asymptotic terms) reaches signifi-
cant local maxima at the true robot pose but also at the diagonally adjacent
squares.
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Chapter 5

Experiments

To verify the usefulness of the proposed approach, an extensive amount of
tests was conducted with the prototype implementation. The experiments
were performed both in simulated conditions and in real-world environment.
The results of these two experiment scenarios are given in the following sec-
tions. All the experiments were performed off-line, using only the video
stream representing an omni-directional view of the operation field.

Ten different sizes of the particle set were always used for the pose estima-
tion. All the experiments were repeated several times with 50, 100, 150, 200,
250, 300, 400, 500, 750, and 1000 particles to test for the influence of the size
of the sample set on the accuracy and robustness of the method. Note that
the computational burden increases linearly depending on the particle count
taking the constant overhead of the image pre-processing into account. The
processing speed varied from 20 fps for 50 samples to 13 fps for 1000 samples
on a Celeron-M at 1300MHz.

Fast update rate is important not only for accuracy reasons. The visual
odometry also requires that the updates occur frequently enough to resolve
the ambiguity in the motion of the periodic pattern. The maximum for-
ward speed must allow two consecutive observations within one checkerboard
square to determine the direction of the motion. A similar condition applies
to the angular speed. A processing pace of 15 fps imposes an upper bound of
approximately 2 ms−1 on the forward speed and 4π s−1 on the angular one,
which is far enough for a mobile robot acting on a playing field less than 4m
long.

5.1 Simulated Environment

A series of simulated experiments was performed to test the prototype imple-
mentation in idealized conditions and to enable evaluation of the maximum
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Figure 5.1: Simulated tracking experiment

(a) Batch error (b) Average error per simulation step

Figure 5.2: Average displacement error in meters in the simulation
experiment with respect to the particle count calculated (a) for the
entire batch of 50 experiments and (b) for the individual localization
steps of the simulated experiment

accuracy that can be reached with the proposed method. A 3-D model of
the playing field was constructed and a simulated video stream was rendered
along a rectangular trajectory. The model was created to mimic real-world
conditions as truly as possible including occlusions caused by individual game
elements and light reflections.

A rectangular trajectory circling the entire playing field at 20 cm from
the border was rendered to verify the accuracy of the method with different
sizes of the particle sets (see Section 3.3). Perpendicular distance from the
original trajectory was measured in every tenth localization step. The num-
ber of observations per update was fixed to 20 for each sample. A random
displacement realized by a uniform distribution [−50 mm, 50 mm] was ap-
plied to each sample to compensate for inaccuracies in the motion prediction
phase. An experiment batch of 50 tests was executed for each of the ten
different particle counts.

Figure 5.2(b) displays the course of the displacement error averaged for
the experiments within a batch. The results of only 5 representative batches
are displayed. The development of the average localization error (computed
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from all the 2500 localization steps recorded in every batch) is shown in Fig-
ure 5.2(a). The displayed value denotes average localization error in meters.
The average error falls quickly towards 400 particles. After that it does not
decrease significantly. The best value was reached using 500 particles and it
was approximately 13mm, which is very good.

The biggest local error is reached when passing from one playing field
side to the other, i.e. when crossing the ditch. It shows up that one small
simplification can have important influence on the local performance. The
actual simplification included in the localization algorithm is that all the
checkerboard boundaries form a rectangular pattern with a period of 30 cm.
In fact, the ditch is separated from the two checkerboards by a 22mm wide
white line, which makes the boundaries detected on the different sides of
the ditch misaligned by 4.4 cm. This error is unfortunately inherent and is
unreplaceable because the motion prediction merges all the detected peaks
into one assuming the 30 cm period. The relative position estimate thus
slowly drifts from the coordinate system of one field to the other as the
influence of the distant boundaries diminishes. In a real-world environment
this error is negligible compared to other distortions but in the simulated
case it is noticeable.

As can be seen from the charts the experiments conducted with the simu-
lated environment proved that with too small particle sets the localization is
not reliable. Using too many samples is generally not deteriorative although
their update may consume too much computational resources. However, from
a certain size the sample set provides a good coverage of the represented PDF
and the results do not dramatically improve when adding more samples. In
this application, the limit particle set contains around 500 particles.

5.2 Target Environment

For the following experiments the original playing field for the Eurobotopen

2005 Czech National Cup [12] was used. The test robotic platform was
equipped with a catadioptric sensor whose hyperbolic mirror was placed
45 cm above the ground. Its field-of-view covers the entire operation field.
The image was captured using an off-the-shelf web-camera connected to USB
and providing thirty 640×480 uncompressed images per second. The robot
was manually pushed along the playing field and the omni-directional video
stream was recorded. As noted in Section 2.5, this video stream is sufficient
for the application to be able to reconstruct the original robot’s trajectory.

The prototype application was tested off-line on seven recorded video
streams (see fig.5.4). The average length of a test stream is 40 s, which corre-
sponds to 1200 localization steps. The localization process was repeated 70
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Figure 5.3: Real-world tracking experiment

Figure 5.4: The trajectories estimated using the vision-based method
rendered for the eight test video streams
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Figure 5.5: Influence of particle count on accuracy of rotation track-
ing; gray — final estimated orientation in radians, blue — the diver-
gence of the final orientation

times (using a different initialization of the pseudo-random number genera-
tor) and the final estimated pose was evaluated to determine the probability
of a complete tracking failure for the given video stream. Note that no ground
truth information is available to be able to verify the accuracy in the real-
world conditions. However, due to the periodic pattern of the playing field
a translational error greater than 15 cm or rotational greater than 45◦ leads
to a total failure.

Generally, the proposed method performs very well. Five of the eight
test videos, namely R0, R2, G1, G3, and the simulated S0, produced in total
only 3 erroneous results out of a total of 350 conducted experiments. There
are three sample videos that pose some problems to the localization module.
This is mainly because of significant image distortion at some step that leads
to misinterpretation of the robot’s motion and a false prediction. The rest
of this section describes, how the proposed method deals with such errors.

The R0 test video ends with a rotation of 270◦ around the robot’s vertical
axis near to an edge of the playing field. The fact that few playing field
boundaries are visible and that the entire image is blurred by the rotation
results to big oscillations in the motion prediction. Figure 5.5 shows the
average final orientation of the robot estimated for a given particle count.
The maximum and minimum values are shown by black vertical braces. The
divergence of the final orientation is drawn in blue.

Similar to the results discussed above, the divergence of the final rotation
continually falls down to a local minimum at 400 samples and then does
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Figure 5.6: Influence of particle count on the probability of success-
ful pose tracking; gray — average displacement at the final step in
meters, blue — probability of total tracking failure i.e. returning a
final pose more than 30 cm away from the true one

not further improve. This accords to the previously stated fact that with a
particle set of this size the represented PDF is well covered.

This experiment shows that if the motion prediction fails during fast
rotation of the robot it is very hard to recover. However, if the robot was
controlled on-line, it could have detected the loss of credibility of the pose
estimate and reduce the angular speed. In the off-line experiment, the video
stream goes on and the pose changes too quickly to be recovered by the
update method. Once the difference between the true pose and the estimated
one exceeds the period of the field pattern the robot is lost.

The G2 video shows an example of an omni-directional stream damaged
by light reflections. The robot is maneuvered within an area close to the
start location, where only a small portion of the playing field is displayed
in good resolution. Moreover, the field is occluded by stacked game objects
and finally a large portion of the color landmarks is destroyed by a reflecting
light source. In this complicated setup the motion prediction fails to produce
accurate estimate and the correction often picks misclassified pixels.

In such scenario a higher number of particles is an obvious advantage. The
bigger the particle set the higher the probability a correctly classified pixel is
used in the update. Figure 5.6 displays the influence of the size of the sample
set on the probability of tracking failure and error in the final pose. Both
these measures diminish as the particle count rises. A total of 580 tests was

61



executed within which the probability of tracking failure varied from 51%
(for 50 particles) to 14% (750 particles). The average displacement error
ranged from 200mm (50 particles) to 59mm (750 particles). Surprisingly,
the configuration of 400 samples again performed very well.

In all the executed experiments the method showed to be robust with
respect to the lighting, occlusions, and image blurs and distortions caused
by the robot’s motion and tilt. The weakest point shows to be the pose
change estimation that can be fooled when too little of the playing field is
drawn in good resolution. In such cases the motion prediction can produce
a false estimate. This happens mainly near the corners of the playing field,
especially when a part of the landmarks is further occluded by game elements
or damaged by reflecting lights. The correction phase usually deals with such
errors.

The average probability of correct tracking for all eight test videos is
79.7% using 400 particles. As noted above, this means that in four experi-
ments out of five the maximum error never exceeded 15 cm, which is good.
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Chapter 6

Conclusion

This thesis has given a thorough overview of the task of vision-based localiza-
tion of a mobile robot within the dynamic environment of a robotic contest.
It presented a complete solution that can track a mobile robot anywhere
within the limited contest field using no other than visual sensors, perform-
ing real-time visual pose tracking on a general hardware. Since the large field
of view is important to avoid lack of traceable features in the camera image,
a solution using catadioptric omni-directional visual sensor was developed.
The method is best suited for localization in a highly dynamic environment
of robotic competitions taking place on delimited operation field painted with
an easily detectable color pattern.

6.1 Results

A method for probabilistic ego-motion tracking based on edge and color
features of the playing field reconstructed from an omni-directional image
was developed. A prototype implementation using Monte Carlo Localization
was presented and was shown to perform very well in the target environment
of the Eurobotopen 2005 robotic contest. Instead of using an expensive range-
finder sensor with ambiguous readings, an affordable combination of an off-
the-shelf camera and a hyperbolic mirror was used to produce a reliable
position estimate. The proposed method was able to reconstruct the original
robot’s trajectory reaching an average accuracy of approximately 15mm. The
results of both simulated and real-world experiments display the usability of
the approach and propose several new challenges.

One of the scopes of this thesis was to evaluate whether a vision-based
odometry that does not suffer from the problem of unmodeled displacement
can completely replace a hardware one. Contrary to the odometry based on
counting the revolutions of wheels that can slip and fail to detect sideways
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motion caused by collision, the visual odometry detects all the robot’s motion
up to a certain speed. This is especially important in situations, where many
moving objects may influence the robot’s intended trajectory. On the other
hand, the visual odometry, as well as the hardware one, produces erroneous
measurements. The important fact is that the problematic scenarios of the
two methods do not overlap. A combination of both methods could produce
exquisite results.

The major contribution of the thesis is a new vision-based update method
for the probabilistic framework that enables to use virtually any pixel of the
input omni-directional image to enhance the pose estimation. The update
method only requires a color map of the environment, which is very easy to
define for the playing field of a robotic contest. This new approach decreases
the influence of local misclassification as different observation items are se-
lected for each of the particles. Each of the approximately 90 000 possible
observations contained in the input image can be used. The evaluation is
very fast, because the observation transforms are pre-calculated.

The important advantage of the omnidirectional sensor is that the image
of entire operation field is available regardless to the robot’s pose. Addition-
ally, the evaluation function does not require a specific background beyond
the border of the operation field. The localization process is insensitive to
the surrounding of the playing field, which is not defined.

6.2 Future Research

Further work will focus on merging the hardware odometry information with
the vision-based motion prediction to remove the limitation on the speed
of intended motion. Future enhancements may consider a redefinition of
the motion estimation to enable the method to perform in operation fields
without a periodic rectangular pattern.

A global update sensor may also be added to enable relocalizing the robot
in case of a tracking failure.

Finally, interesting results could be obtained implementing a feedback
channel that would affect the robot’s actions depending on the immediate
reliability of the estimated pose. The robot can react by reducing speed or
performing actions that may help the localization process to recover using
reliable landmarks.
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Appendix A

Playing Field Plan

The playing field for the Eurobotopen 2005 contest [12] is a rectangular area
3.644m long and 2.1m wide consisting of two fields painted with a brown-
beige checkerboard pattern separated by a blue ditch that can be passed
using three bridges (see fig. A.1). Each of the two fields consists of 7×5 tiles
measuring 30×30 cm. The ditch is 60 cm wide and is separated from the two
fields by a white stripe 22mm wide. A white border 7 cm high is encircling
the playing field. It is assumed to lay outside of the playing field dimensions.

The starting locations of the two robots are in the two opposite corners.
The playing field contains following game elements and obstacles, all placed
respecting a central symmetry:

• 15 green and 15 red skittles (painted wooden cylinders) initially stacked
into 4 piles,

• 4 white skittle stands placed symmetrically under two and two of the
skittle piles, and

• 2 black bowls placed on the ends of the central bridge.
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Figure A.1: The plan of the Eurobotopen 2005 contest playing field
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Appendix B

Target Robotic Platform

The test robotic platform (see fig. B.1) used in the experiments is a differ-
entially driven robot with the propelled wheels having 70mm in diameter
mounted in back and two steerable wheels mounted in the two front corners.
The approximate dimensions of the robot are 30×20×32 cm.

The robot is equipped with a web-camera and a hyperbolic mirror
mounted 45 cm above ground. The mirror is a hyperbolic glass mirror H3G

from Neovision [37] and is described by the surface equation:

z2

789, 3274
− x2 + y2

548, 1440
= 1
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Figure B.1: The test robotic platform with the omni-directional sen-
sor mounted on top
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Appendix C

Attachment CD Contents

The following directories are present on the CD disk:

• bin — Contains all the binaries necessary to run the vision framework.

• bonus — Contains two videos about the Eurobotopencontest.

• OpenCV — Contains a redistribution of the Intel Open Source Computer
Vision Library.

• src — Contains the complete source files of the application and a
project file that can be opened with Visual Studio .NET 2003.

• tracking — Contains 9 output videos rendered by the application
using the included sample video streams. They are stored both in AVI
and QuickTime formats and may be immediately played back.

• vids — Contains 8 sample video streams for the vision framework in
the AVI format.

The directory ‘vids’ contains 8 sample videos that can be used to test
the prototype application. A batch file ‘vision.cmd’ is contained in the ‘vids’
directory. It accepts the name of a sample video as the first argument and
executes the file ‘vision.exe’ in the ‘bin’ directory with the appropriate
settings.

Even simpler, one of the eight batch files in the CD root can be used to
execute the application with one of the sample videos. The following batch
files are present:

• S0.cmd — Shows a rectangular path rendered in a simulated environ-
ment.

• R0.cmd — The robot follows an L-like trajectory across the field.
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• R1.cmd — The robot goes straight and then rotates by 270◦.

• R2.cmd — The robot goes around the field to the opposite corner.

• R3.cmd — The robot goes close to the start border and passes the far
bridge.

• G1.cmd — The robot passes a bridge and turns by 180◦.

• G2.cmd — The robot follows a complicated path near the starting lo-
cation.

• G3.cmd — The robot is pulled sideways.
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Appendix D

Software Documentation

The following sections document the prototype application provided at the
attachment CD.

D.1 Vision Framework Usage

Once the vision framework is run (e.g. using one of the batch files in the CD
root) a preview window opens and a list of available commands is printed to
the console. These commands enable viewing different filter chains contained
in the framework and to manipulate with the input video. They also enable
to save the current chain output to disc.

The commands are as follows:

• 0-5,9 — Selects the displayed filter chain:

• 0 — Preview Chain (displays only the preview of the video)

• 1 — Project Preview Chain (shows the ground-rectified projection)

• 2 — Color Class Edit Chain (displays the color classification)

• 3 — Boundary Detector Chain (shows detected checkerboard bound-
aries)

• 4 — Video MCL Chain (displays a pose tracking window)

• 5 — Combined MCL Chain (displays more tracking windows for a de-
tailed look onto the localization process; note that the localization
process executes if and only if one of this two chains is selected)

• 9 — Threshold Gradient Chain (shows a histogram of the classified
image)
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• SPACE — Pause/Resume (toggles input video playback)

• R — Restarts the input video

• + — Advances 1 s forward in the input video stream

• - — Returns 1 s back in the input video stream

• [ — Skips 1 frame back in the input video stream

• ] — Skips 1 frame forward in the input video stream

• D — Dumps all the current chain images to disk

• C — Capture (continually dumps all windows)

• V — Video (dumps the chain output filter)

• S — Stop capture (stops recording)

• I — Imports the filter settings from disk (implicitly Filters.txt)

• E — Exports the filter settings to disk (implicitly Filters.txt)

• M — Marks (toggles display of calibration marks on the preview image)

• F — Freeze (stops the video stream and counts FPS on the current
frame)

• Q — Query performance (displays the average processing speed)

• x — Exit (the program terminates when the video stream ends)

• ESC — EXIT (the program ends immediately)

Some filters also have interactive windows. These are namely the ‘Pre-
view’ window (0: Preview Chain) that enables to change the mirror center
and radius using the middle and right mouse buttons respectively and the
‘Colored’ window (2: Color Class Edit Chain) that enables to add and
remove pixels to/from the current color class using left mouse button and
the Ctrl/Alt key modifiers respectively.

The ‘VisualMCL’ window of the (5: CombinedMcl Chain) enables to re-
place the estimated robot pose using the right mouse button.

Note that the application can be executed directly from the CD. The
batch files in the CD root can be used to open and test the individual sample
video streams. When exporting data from the framework, these are stored
in the subdirectories of C:/temp/vision.
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D.2 Description of Vision Framework Files

The directory ‘src’ on the CD contains the following files:

• Capture.h (cpp) — Handles input of the video stream including seeking.

• FilterChain.h — Aggregates the individual filters into chains that can
be executed by the framework.

• Framework.cpp — Main source of the application. Performs handling
of the command-line arguments and interactive commands on chains.

• ImageFilter.h (cpp) — Defines the base class for all the image filters.
Handles allocation, reading of settings, output to a window and saving
output to a file.

• Localize.h (cpp) — Implements the persistent state estimation used in
the tracking.

• MclFilter.h (cpp) — Image filters used for the particle update from the
classified image.

• PreviewFilter.h(cpp) — A set of simple filters that serve for visualiza-
tion.

• ProjectFilter.h(cpp) — A set of projection filters that perform the im-
age rectification.

• StdAfx.h (cpp) — A precompiled header file.

• SumFilter.h (cpp) — Performs the visual odometry by tracking periodic
straight lines.

• ThresholdFilter.h(cpp) — Classifies the input image using a fast 3D
thresholding.

• Transform.h (cpp) — Implements the mirror reflection transforms used
in the rectification.

• Vision.sln (vcproj) — The project files for the Visual Studio .NET
2003.

Note that the project can be opened and compiled from the CD.
However, intermediate files as well as the compiled binary are placed in
C:/temp/vision. If you want to remove these files later you must do it
manually.
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The OpenCV library [40] is required for the project to compile. A com-
plete package (redistributed under the terms of Intel License Agreement For
Open Source Computer Vision Library) is included in the OpenCV directory.

The path to the OpenCV library files must be set in the project configu-
ration, section Linker|General. It is set to ../OpenCV/lib for the solution
saved on the CD. If the solution files are moved to other location, this path
must be reset accordingly.
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[46] J. Sladek. Detekce orientačńıch bod̊u pro mobiln roboty. Master’s thesis,
Charles University in Prague, Faculty of Mathematics and Physics, 2003.

[47] A.F.M. Smith and A.E. Gelfand. Bayesian statistics without tears: A
sampling-resampling perspective. American Statistician, 46(2):84–88, 1992.

[48] S. Thrun, D. Fox, W. Burgard, and F. Dellaert. Robust monte carlo local-
ization for mobile robots. Artificial Intelligence, 128(1-2):99–141, 2001.

[49] J.W. Weingarten, G. Gruener, and R. Siegwart. A state-of-the-art 3d sensor
for robot navigation. In Proceedings of the IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), 2004.

[50] J. Wolf and A. Pinz. Particle filter for self localization using panoramic vision.
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