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Interval linear programming means

minc! z, for ¢ € e,

M
where M = {x € R"; Az = b,x > 0,A € A/b € b}, A C R™" b C R™,
c CR", A, b, c are intervals.

The first part of the master thesis introduce a new approach to interval
linear programming, defining always bounded set of feasible solutions of a
linear programming problem and studying its properties. The main result
of this part demonstrates that the modified set of feasible solutions varies
“continuously” with the entries in the matrix A and in the vector b. The
second part studies the solution function continuity for an interval linear
programming problem.
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Chapter 1

Introduction

1.1 Linear Programming

Linear programming problems are optimization problems in which the ob-
jective function and the constraints are all linear:

T
s oab Ll
minc’ z, (1.1)

where M = {x € R*; Az = b,z > 0} and A € R™", b € R™, ¢ € R".
M is called a feasible region or a set of feasible solutions and it is a convex
polyhedral set.

Linear programming is an important field of optimization for several rea-
sons. Many practical problems in operations research can be expressed as
linear programming problems. Certain special cases of linear programming,
such as network flow problems and multicommodity flow problems are con-
sidered important enough to have generated much research on specialized
algorithms for their solution.

Since the objective function is linear, all local optima are automatically
global optima. The linear objective function also implies that an optimal
solution of (1.1) can only occur at a boundary point of the feasible region.

It is proved that a linear programming problem is solvable by the worst-
case polynomial-time algorithm, although the most famous algorithm - sim-
plex algorithm is the worst-case exponential-time algorithm.

1.2 Interval Linear Programming

Interval linear programming (as indicated by the name) is derived from linear
programming. An interval linear programming problem is a linear program-
ming problem with inexact data. A matrix A, vectors b and ¢ are not fixed

3



CHAPTER 1. INTRODUCTION 1

in this case, but they are from an interval:

11{1{11 cl'z for ¢ € ¢, (1.2)
|

where M = {z € R Az = bz > 0,A € Ab € b} and A = (4, A),
b= (b,b), c={cc), A, A€R™" b beR™ ¢ ¢ R

Interval linear programming has also many applications in practice, how-
ever, due to its complexity there exist only algorithms for special cases. It is
proved by Rohn [2] that an interval linear programming problem is NP-hard
problem. We can say that an inexact data in the objective function and in
the vector b do not increase much the complexity of the problem, but inexact
data in the matrix A create a significant increase in the complexity of the
problem. Prof. Rohn has published wide range of the publications concern-
ing matrixes, matrix intervals, systems of linear equations with inexact data
and interval linear programming including NP-hardness problematics, e.g.
3], [4], [5]. Concerning interval linear programming, Rohn was focused on
bounds of the solution function, bounds of the set of feasible solutions and
methods of their estimation. His latest results in interval linear programming
are [6] and [7]. This thesis gets out of Prof. Rohn’s work, but is focused on
the topic that Prof. Rohn has not researched. Even, this topic si not studied
in any available literature on interval linear programming.

1.3 The Goals and the Contributions of the
Thesis

The thesis is focused on the set of feasible solutions of problem (1.2) and
its changes with a matrix A and a vector b perturbations. In this thesis it
will be studied what kind of a dependency there is between changes in the
entries in the matrix A and in the vector b and changes in the set of feasible
solutions of (1.2). At the same time we will find out required assumptions
for such relation.

The second goal of the thesis is to research possibilities, that the solution
function® of an interval linear programming problem (1.2) is continuous and
to find out required assumptions, so that the solution function is continuous
in the point (A,b,c). Continuity of the solution function will be studied
through the properties of the set of feasible solutions of (1.2).

The thesis wants to be a contribution to the theoretical understanding of
the interval linear programming problematics, but will not study any prac-
tical applications of these theoretical results.

1See section Notation for the definition of the solution function.
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1.4 Notation

We shall use the following notation:

Notation Description Most common examples
Scalar lower-case letters with or | i, 7, k, b;, ¢, x;, a4, €, €1,
without subscript(s), greek | «, 8, A\, (A7')ij, (AB);;
letters with or without a sub-
script, upper-case letter(s) in
braces with two subscripts
Vector lower-case letters with or | x, 7, r, 4,7, 2, Z, b, b, b,
without an overline, an un- | b, ¢, ¢, ¢, ¢

derline, a tilde, with or with-
out a superscript

Vector interval | bold lower-case letter b, c

Matrix upper-case letter with or | A, A, A, A, A,
without an overline, an un-
derline, a tilde, a subscript
Matrix interval | bold upper-case letter A

Set upper-case letter with or | M, M, M., M , B, N
without a tilde, a subscript

Matrix A = (a;;). For two matrixes A, B of the same size, inequalities
like A < B and A < B are understood componentwise, i.e. A < B if and
only if V;ja;; < b;;. The absolute value of a matrix A = (a;;) is defined
by |A| = (Jai|). A is called nonnegative if 0 < A, A" is transpose of A.
The same notations also apply to vectors, which are always considered one-
column matrixes. The norm of a vector z = (z1,...,z,) is defined as ||z|| =
JE+ -+

We will use (Ay, As) for an open matrix interval, (A, Ay) for a closed
matrix interval. For set comparison we will use C for a subset and C for a
proper subset, i.e. M; C My if and only if M, C M, and M, # M.

Unless said otherwise, it is always assumed that A, A, A € R™*" b, b, b €
R™ and ¢, ¢,¢ € R™, where m and n are positive integers m < n. We also
assume, if not said otherwise, that A = (A, A), b= (b,b), ¢ = (¢,?), A < A,
b<b c<cand A is a fixed matrix A < A < A with the maximum rank,
i.e. rank(A) = m. A system of linear equations Az = b is called solvable if
it has a solution, and feasible if it has a nonnegative solution.

For an arbitrary matrix D € R™*", m > 1, n > 1 we define an open neigh-
borhood U(D) as an open matrix interval U(D) = (Dy, D), U(D) C R™*™,
D1 < D < D,.
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Definition 1. Given A € R™*", b€ R™ and ¢ € R". The problem

minimize ¢! r (1.3)
subject to (s. t.)

Ap=5b,5210 (1.4)

15 called a linear programming problem, or simply a linear program. We
shall write the problem (1.3), (1.4) briefly as

Min {cTa:; Ar=b,z > O} . (1.5)

Notice the use of the upper case in “Min” to denote a problem in contrast
to “min” which denotes a minimum when applicable. A vector z satisfying
(1.4) is called a feasible solution of (1.5). A problem (1.5) having a feasible
solution is said to be feasible, and infeasible in the opposite case.

Definition 2. For a given linear program (1.5) we introduce the value
f(A,b,c) =inf {ch;Aaz:b,:I:Z 0} (1.6)
and we shall call it the optimal value of (1.5).

The optimal value (1.6) of a linear programming problem (1.5) can obtain
the following values:

oo | if a linear programming problem (1.5) is infeasible,

—oo | if a set of feasible solutions of a linear programming problem (1.5)
is unbounded and contains a half-line along which the value of
cl'z tends to —oo,

finite | every other case.

Definition 3. Given A = (A, A), b= (b,b),c= (¢,¢), A A, b<b c<FT
The problem

minimize ¢ x (1.7)
subject to (s. t.)
Az =b,x > 0, (1.8)
where
Ace A bebandcec (1.9)

is called an interval linear programmaing problem, or simply an interval linear
program. We shall write the problem (1.7), (1.8), (1.9) briefly as

Min {c"z;Ax=bx >0,Ac Abeb,cec}. (1.10)
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Definition 4. For an interval linear programming problem (1.10) we intro-
duce a function f(A,b,c) : R™" xR™ xR" — RU {00, —o0} in the following
way

f(A,b,c) =inf {CT.'.I': Ar=b 1> 0} _. (1.11)

where
AeA bebandcec

and we shall call it the solution function of (1.10).

As we can see, the solution function in the point (A, b, ¢) is the optimal
value of the linear program (1.5).

1.5 Basis Solution

Let be A€ R™*" be R™, x € R*, m <n, rank(A) = m and Ax = b. Then
columns of the matrix A and of the vector r elements can be rearranged
into the form A = (AgAy) and z = (zgxy) such that (AgAx)(zprN) = b,
Ag € R™™ Ay € RP-mXm p ¢ R™ gy € R*™ and Ap is a regular
matrix. B is an index set of the columns of the matrix A which create a
regular matrix Ag. B is called the basis of matrix A. The rest of the column
indexes of the matrix A are in the set N = {1,...,n}\ B.

Thus for the matrix Ap exists an inverse matrix and the system of linear
equations Ax = b can be rewritten into the form

Ar = b,

(ABAN) (CEBLEN) = b,

AB$B+ANCCN = b
rp = Aglb = AE,IAN.’L'N. (112)

?



Chapter 2

Set of the Feasible Solutions

In this chapter, the symbols E, b and ¢ will be used for an arbitrary matrix
and arbitrary vectors, A € R™*" b & R™ and ¢ € R". If not said otherwise,
then A< A< A b<b<bandc<c¢<FC

We will work with an interval linear programming problem

Min {c'z; Az =b,2>0,A€ A,bE b,c € ¢}, (2.1)
where
A= (A A, b=(bb),c=(cc),A<A b<bandc<?c (2.2)
for which a basis B is given such that
V‘g_ﬁ<g<—g?‘ank(ﬁ3) = m; (2.3)
Let us consider an arbitrary A € A, b € b, and ¢ € ¢, which fulfill
A<A<A b<b<bc<c<et (2.4)

and a constant A € R, h > 0 sufficiently large. Meaning of this constant will
be explained after Definition 6.

Observation 5. If the matrix A does not have its mazimum rank, 1i.e.
rank(A) < m, then, in general, the solution function f(A,b,c) is not contin-
wous in the point (A, b, c).

Example of such linear programming problem:

Min {(0,—1)%;(1 1):1:: ( D@zo},
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cz(o,—1),A=(} i).b:(i).

The set of feasible solutions of Az = bis the abscissa ((1,0), (0,1)). Obviously
f(A,b,c) = —1 and A is singular. We slightly change entries in A to create
a nonsingular matrix A:

- | 1 |
A= ( { doy 1+ﬂ).(17£/3.

L . . .
g —.i-) and the solution function

Az = b has exactly one solution z = ( i
g =

f(A,b,c) = ﬁ%‘a (if the system of linear equations is feasible). For any small
a and G with o = 8 and o # 3, Ar = b is an ill-conditioned system and its

solution is extremely dependent on changes in the matrix entries, e.g.

, = 1 il
a = 0.01, 3 =0.0099, i.e. A; = ( 1001 1.00099 ) :

e 1 1
a = 0.001, 3 = 0.00099, i.e. A, = ( D rae— )

and the only solution of both systems of linear equations Az = b and
Ay = bisz = y = (—99,100). However this is not a feasible solution,

thus f(A;,b,c) = oo. In this way, we can create sequence

i_ 1 1
L4107 14107 - 1074

with 121; =% A ‘v’igz-a: = b has exajfztly one solution x = (=99, 100). Because
there is no feasible solution, V;f(A;, b, ¢) = oo holds.

2.1 Definition of the Set M

Definition 6. Given an interval linear programming problem defined in
(2.1), (2.2), (2.3), (2.4) and a sufficiently large constant h € R, h > 0.
Let be ¢ € R. We define the following sets:

M = {LUERR;AiEIb,VieN()SiEiSh},
ﬂ’fo = {.’,17 = Rn;AI = b,fl? > quieN-’Ei < h} g
M, = {zeR Az =b,zg > ¢€,Vien0 < z; < h}
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and for arbitrary A b A< A<4Aand b<b<b
M = {x e R™ Az = b, Vien0 < x; < h} :
ﬁo = {1: € R"; Ay = E, T 2> 0,Viene; < h} :
J\Z = {1: e R"; Ar = g, x> e, Vien0 < z; < h} .

Further in this text we will use the following letters and numbers as
indexes of M:

o greek letters - M,, Mz, M), - meaning as defined in Definition 6, e.g.

My ={z;Ax = b,z > a,Vien0 < x; < h},

e integer numbers (except 0) - My, M, - meaning of a set without any
special property.

Our attention is focused on a set of feasible solutions of a linear program-
ming problem and its reaction on changes in the entries in the matrix A and
in the vector b. The set of feasible solutions is, in general, unbounded and
its reaction on changes in the entries in the matrix A and in the vector b can
not be bounded, too. Therefore we defined the “set of feasible solutions” M,
and in this way we bounded nonbasis variables xy by a constant h. In the
following text we will study reaction of the “set of feasible solutions” M on
changes in the entries in the matrix A and in the vector b.

Observation 7. For any A, b it holds
g1 < g9 = A/[al 2 A/IEQ. (25)

Lemma 8. Let M # () has its meaning from Definition 6. Then M 1is a
convex, bounded and closed set.

Proof. M is defined as
M = {z; Az = b,V;en0 < z; < h}.
We prove all three properties separately:

e M is convex:
Let z, y € M and z = px+(1 — p) y, where pis an arbitrary real number
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0 <p<1 Because of 0 < xy < (h,....,h) and 0 < yy < (h,...,h),
we have

an = pn+(1—p)yn 2 p0+ (1 -p)0 =0,

ean = pen+ (1 —p)yy <p(h,....,A)+ (1 —=p)(h,...,h) = (h,..., h)

and
Az=A(px+(1—p)y) =pAz+ (1 —p)Ay=pb+ (1 — p)b=b.
Thus z € M.

e M is bounded:
0<zy <(h,...,h)and

rp = Aglb — AEglAN.'L'N,
therefore 3, (k,..., k) <xzp < (l,...,1) and M is bounded.

e M is closed:
{x; Az = b} is a shifted vector space, thus it is a closed set. Because the
intersection of a finite number of closed sets is a closed set, we proved
that
M = {z; Az =b} N[ ) {0 < z; < h}
1IEN
is closed.

O

Assertion 9. Let € € R be arbitrary and M. be a set defined in Definition
6. If M. # (0, then M. is a convex, bounded and closed set.

Proof. For any € € R, M. can be defined also as
M.=MnN ﬂ {x;x; > €}
icB
and we prove all three properties separately:

e M. is convex:
M is convex, {z;x; > €} is also convex for i € B and the intersection
of finite number of convex sets is a convex set, too.

e ). is bounded:
M is bounded and the intersection of a bounded set with any set is a
bounded set, too.
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e M. is closed:
M is a closed set, {x;x; > ¢} is a closed half-space for i € B and the
intersection of a finite number of closed sets is a closed set.

O]

2.2 Study of M

In this section we will study a reaction of the set M from Definition 6 on
changes in the entries in the matrix A and in the vector b.

Lemma 10. Let A € R™*" and B € R"*P be arbitrary matrizes. Then

Vs>03U(A),U(B)V;{eU(A).EEU(B)VI'J' (AB);; — (AB)U =&
Proof. Let
Ay = A=A,
AB = E—B
Then

AB = AB+ AAp+ AaB+ AaAp,
AB— AB| = |AAg+ AAB+ AsAg|,

AB — AB

IA

|AAg| + |AaB| + |AsAp],

AB — AB

IA

Al [Ag| + [Aa| [B] +|Aa| [A]

Let U(A) - (A — EAEA,A—f- EAEA) and U(B) = (B = EBEB, B —I-EBEB),
where ¢4 > 0, eg > 0, E4 € R™" Eg € R V,i(E4); = 1 and
Vii(Ep)ij = 1. €4 and ep will be specified further in the proof. Thus for
an arbitrary choice of A € U(A) and B € U(B) holds

|AA! < EAEAa
|AB} < 5BEB-
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Hence

gé — AB| < ¢p ‘*1| Ep+ceaFE4 ]B| + caegpEAER,

‘(AB)U—(A'E)__ < ep)_lanl+ea ) |bij| +cacnn.
k k

ij

With an appropriate choice of €4 and e, the proof will be finished. We want
the following inequality

A

tJ

1(143)@ - (A"E’)

to hold for each 7 and j. Therefore, for example, the following conditions
need to be fulfilled for each 7 and j:

™ ™
B oy
] =[]
= 2
& =
VAN VAN
wlm wlm

Lol M

So

\v4 (s < ° )
1 B = y
32&- |Q1k|
£ <min{ : }
B = : 3
s 32k laik]
3

& S )
B Smaxi{zk|aik|}

respectively

\v4 (5 < - )
’ 4= 3Zk|bkj| ’
€

€A < ,
2 3H18,Xj {kak”}
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and

EAEB < I:;
€a < ;n
EBS- d—i;

Summarizing these facts we finish the proof with

€4 = min : , - ,
! {3111axj{2;-|bkj|} \/3”}
31:}'

Lemma 11. For a reqular square matriz D it holds, that the entries in the
matriz D~ vary continuously with the entries in D.

€B

. &
min
{Smaaq > |aw
[

Proof. It is result of a well known linear algebra formula

(D). = (—1)""7 det DU
i det (D) ’

where DU¥ is the matrix created from the matrix D by deleting j-th row
and ¢-th column. [

Theorem 12. Giwen an interval linear programming problem defined in
(2.1), (2.2), (2.3), (2.4) and M has its meaning from Definition 6. Let
be M # 0. Then

VE>UE|U(A),U(b)vﬁeU(A).EeU(b)

((Vmeﬁ,{aa?eﬁ ”JE - 55“ < E) A (VEGE}—H;EEM ||.L' — ."f” < E)) .

Proof. Let us consider arbitrary A and 5 such that A < A< <A b< b<b
holds. Let A = (AgAn), z = (zpxy), A= (ABAN ) and T = (Tpxy). Then

rp = Ap'b— Az'Anzy,
Tp = Az'b— AZ'ANTN.
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Obviously z and z are uniquely identified by zy and Ty. We put

Lﬁf_.-\,’ =TIN.
Thus
n
~ ~ )
le -7 = |3 (xi—5)
i=1
le =21 = /> (@-7)"+ ) (0~ )"
EB iEN
le=% = > (@-3)+) 02
eB teN
le -3 = |3 (-7
i€B
|z =zl = |zp— 25| (2.6)
Furthermore
IB _EEB = Aglb—AélAN;L'N — (Auglg_g;}l/&:\r}jv)” y
Ip —Ip = A§1b+g§15+ ﬁglgNI,v — AglAN:L'NH :
zs — g < ||[4z'0- A"gl'EH + H (Z;A"N - A;?IAN) :L‘NH .

We want to choose neighborhoods U(A) and U(b) so that the following in-
equalities

HAglb _ ﬁ;lBH < g (2.7)
(A 45 0) ] < o
will hold.
o Ad (2.7):

From Lemma 10 for 55= there exist Ui(A3') and U(b) such that for
all ggl c Ui(Ag'), all be U(b) and for all ¢ the inequality
(45'0), - (45'0).

&

2y/m

<




CHAPTER 2. SET OF THE FEASIBLE SOLUTIONS 16

holds. From Lemma 11 for U 1( 4; ) exists U;(Ag) such that for all
A & U(Ag) also AB € Ui(A3') holds. Hence

m 5

||A§1b - Eﬁ“ = \ > ((Aglb)i & (.5{;;‘5)?_)",

=1

st 59 < |3 (577)

>

Azt — A < (4—

AG'b— A <

1\3.|m/

o Ad (2.8):

We define £, as
5
€1 = , 2.10
YT 2h(n—m) Vm L

From Lemma 10 for €; exists Us(Az') and U(Ay) such that for all
A € Uy(AgY), all Ay € U(Ay) and for all i, j

](A;AN)” ~ (5'Ay)

< 8 (2.11)
ij

holds. From Lemma 11 for Uy(AR') there exist Us(Ap) such that for
all Ag € Uy(Ap) also Agl c Ug(Agl) holds. Therefore

(45" x - a5'ax) ax | = ij(z( 1AN_A;AN)“I.)2_

J=1

The inequality (2.11) implies that

| (45! Ay - 4 lAN)INH<\ji(§elh)2

j=1

and from (2.10) we obtain

(ﬁglﬁ;\r — A;AN) TN l o \/m(n — m)2e2h?,
£

(A;%N — A5 Ay) zy | € o (2.12)
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Now we define g(_AB) = Ui(Ap) N Uy(Ap). Let U(Ap) = (Ap, Ap) and
g(AN) = (é_j_\_{_LAJM). Then U(A) = ((AgAn), (AgAy)). So for arbitrary
AcU(A) and b e U(b)

| R H (A};‘EN — .4;3“4,,\.) TN

holds. From the inequalities (2.9) and (2.12) it is clear that

s - Fsll < ||45'0 - 5%

‘|$3—53|| =, +

]

B

M b M

les —Zpl| <
and from the equality (2.6) is easy to see that
|z — z|| <e.

_ For given € > 0 we defined U(A), U(b). If arbitrary A e U(A) and
b e U(b) is given, then for given y € M we define

?78 = ;{glﬂg_ gélgw'y;v-.
YNn-

[l

YN

Thus

—

y = (Ypyn) € M.
And for given y € M we define

yp = Ag'b— Az AnDn,

YN = Un.
Hence

y = (ypyn) € M.
We have proved previously in the proof that for such defined y and y (yy =
yn) the following inequality
ly —yll <e

holds. O]

Observation 13. Previous Theorem 12 can be also formulated in the follow-
ing way:

Given an interval linear programming problem defined in (2.1), (2.2), (2.3),
(2.4) and M has its meaning from Definition 6. Let be M # (). Then

Ve>0 HU(A).U(b)vﬁEU(A),EEU(b)

((‘v’meMEIEEE}—Hx = Aﬂ?'“ <eNxy = ’fN) (VEEMHl'EM ||.’E = 3'?“ <EeENZN = IEN)) ;
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2.3 Study of M.

We continue to work with an interval linear programming problem defined
in (2.1), (2.2), (2.3) and (2.4). In this section we assume that

JesoM: # 0. (2.13)
The condition (2.13) can be reformulated into

dpertyxp >0
and it is necessary assumption and can not be left out.

Observation 14. Given an interval linear programming problem defined in
(1.10) with the solution function f(A,b,c) from in (1.11). Let arbitrary A €
A, rank(A) = m, b € b, ¢ € ¢ be given and the condition (2.13) is not
fulfilled, i.e.

VesoM: = 0.

Then, in general, the solution function is not continuous in the point (A, b, c).

Example of such linear programming problem:
Min {(1,0)"z;(0,1)z =0,z > 0}
A=(0,1), b= (0), c=(1,0) and f(A,b,c) =0. We define sequences

Then A; = A, b % b and

, 1 1
f(A;, b, ¢) = min {(I,O)F:E; (—;, 1) T=—gnd > O} =1

for every i > 0, but f(A,b,c) = 0.

Definition 15. Let M; C R"*, My C R" be closed bounded sets and M; 2
My D 0 or My D M; D 0. Then we define binary operation “Set distance”

l.,.] = R as
|My, M| = max min ||z — y]| . (2.14)

reM; yeM>

Assertion 16. Let M; C R*, M, C R"™ be closed bounded sets and M; 2

A/fg 2 @ Then
M, = M, & |My, M| =0.
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Proof.
M, =M, &
S M, C M, &
= V‘PEMJ: e M, &
& Vaeen, Mingeps, ||z —y|| =0 &
& maXyen, Milyepy, |2 — y|| =0 &
& | My, M| = 0.
O
Assertion 17. Let M;, My be closed bounded sets and M, O My D (). Then
|A{1, A/[2| = d < VIE% Eiyeﬂ,fg ||;[.' — fj” < d.
Proof.
M1, M| <d &
& maXgey, Milgep, |2 —y|| £ d &
& Ve, Mingeps, ||z —y|| £ d &
& Vaer Iyenr |z — y|| < d.
O

Observation 18. |Mj, M,| can be imagined as the minimum distance needed
to get from an arbitrary point of M, to the set M.

Properties of the operation “Set distance”:

e it is not commutative operation, | My, My| # | My, My|.

It follows from the definition of “Set distance” (2.14) as for every
M, C M,
|Ms, M| = max min ||z — y|| = 0.
yeMo xe M,

e vﬂfl,fﬂz |A/I].: -[V[2| Z O)

because V., ||z — y|| > 0.

e From the fact that the minimum from a subset is greater or equal then
the minimum from the set and that the maximum from a superset is
greater or equal then the maximum from the set we obtain

My, M| < |My, Ms| A | My, Ms| < | My, Ms).
(2.15)

My Qﬂ/fggﬂffgi
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o if ﬂf[l D ﬂfg then

(M, M| = max min ||z —y|| >0, (2.16)
xeM\ M, yeM,

because if x € M; \ M, then Ve, ||z — y|| > 0 and | My, My| = 0.

Lemma 19. Let M, C R", My C R", M; C R" be closed bounded sets and
My D My D M3 D 0. Then

‘A/Il, I‘Igl S |A’[1, ﬂ“[-z' + |ﬂ-[2, ﬂ];| : (217)
Proof. Let dy = |My, Ms| and dy = | My, M3|. Then

| My, Ma| = di = Yeen, Jyens
|Ma, M| = da = Vyers, Fzens |y — 2| < do.

r—yl| <d,

Hence

Veermy Fzenss ||z — 2] S |lz =yl + ly — 2|| £ d1 +dy,
| | My, M3| < dy + do,
My, My| < | My, M| + | My, M| .

[

This lemma can be, with a little exaggeration, called “triangle inequality”.

From this moment ¢ € R, « € R, 3 € R, vy € R, A € R and M, M.,
My, Mg, M., M), are sets as defined in Definition 6. In the following proofs
specific properties of M are used.

Theorem 20. Let a« < 3 <y be such that Mz D M, D (). Then
| My, M| < |Ma, M| . (2.18)

Proof. As o < 3, it is easy to see from (2.5) that M, O M. From M, D
Mg D M, (2.15) yields that

| My, M| < |M,, M,|.
If M, = Mp, then (according to Assertion 16) it is clear, that

|Ma, Mg| = 0 and |M,, M,| = |Mgz, M,|
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and because M3 # M., we have
|ﬂ[}.3. ﬂ[»}‘ > (.

Hence
0= |Afa,11-[3| < | My, M,| = |Mjg, M,|.

It My # Mg, i.e. My D My then from (2.16) we see that

M., Mzl = mas in ||z —1
| My, M| (oaw i |z — y|

and these maximum and minimum are attained at least in one point. Let’s
choose arbitrary one of such points (Z,7). So

T —7|| = max In || — 1
[l s, |z = yll,

where T € M, \ M3z and § € M.
AsT € M, \ Mg and M, C Mgy, we have T € M, \ M,.
Now the following inequality

min [[7— 2| > iz 3l

will be proved, which implies that

min |7 —z|| > max min ||z—y|,
ZEM-Y :Eeﬂ'ft-k\ﬂf;j yef‘u’g

1 min ||z — z|| > |My, M;
me{’»r?\)ifﬁ, zeMﬁ(” | | Mo, Mg

(Mo, M| > | My, Mj|

bl

and its proof by a contradiction finishes the proof of the theorem.
Let be (for the contradiction) Z € M., such that

2l — rmin 15— 2l < 5 — 7l
Iz = Z|| = min ||z - 2|| < ||z - 7

Then we define z (on the abscissa Tz € M,)
z2=pT+(1-p)%,

where p € (0,1). As M, is a convex set from Assertion 9, z € M, for any
p € (0,1). Because T € M, \ Mz and Z € M,, i.e.

(Oé, e ._,Od), Biegfi < ,8,

AN

AVAR VS
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and a < 3 < v, we can define such p that z € Mz \ M., ie.
25 2 By sB) s Jicnz <1
As z € M and

Iz—=2 < llz-=] <|z-9l,
[z—z| < min|F—y],
we have the contradiction and the proof is finished. O

Corollary 21. Previous Theorem 20 will be mostly used in the form:
Let 0 < B < v be such that Mg D M, D (. Then

| Mo, M| < |Mo, M,| .

Observation 22. Let the assumptions of previous Theorem 20 be fulfilled.
If My, D Mg, then
0 < | My, M| < | My, M| .

Theorem 23. Let « € R, F € R, a < 3 and Mg # (). Then

1
| My, M| < 5 | M, Mg, (2.19)

where \ = %’3

Proof. As a < A < 3, then Mz C M, C M, and

|M,, M)| = max min ||z —y|,
2€ Mo ye M)

| Mo, Mg| = gggﬁ;gﬁ;l!x—yll-

Let’s choose arbitrary x € M, and define 3

— = 1 — 2.2
| =7l = min flz -yl (2:20)

1 i

Y|

Because v € M,, y € Mg C M, and M, is a convex set from Assertion 9,
also Z € M,. Furthermore

r€EMy=zny>0A28 > (a,...,q),
YyE Mg=9Yny >20AYp > (B,...,0).
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Thus
1 1
2 = 5 $+Z}-)Z§((C¥, ,a,O,
 {a+p a+ 3
N 2 792
2 2 Naess A0 0)
and therefore Z € M,.
Moreover
lo -7l = |z — =
x—Z| = 5

From Z € M) and (2.20) we obtain
1

_ 1 _
x——($+y)H =5 llz =7l

1

min ||z - z[| < [lo = 2] = 5[l — 7l = 5 min [z —y]|.

ZEM),

2 yeMpy

And as x was an arbitrary vector from M,, we conclude the proof with

min ||z — z|| <

vmefﬂa seM
A

max min ||z — z|| <
2EMq 2€M)

My, M| <

~ iy [l — ],

5 min [z —y

: le—yll,
2 max min ||z —y
§ |]Lfm A'f;3| .

[

Corollary 24. Now we state two important cases of Theorem 23, which we

will use later in this chapter.

1. Lete >0 and My, # 0. Then
| My, M| <

(a=0,8=2\A=¢).

2. Lete >0 and M. # 0. Then

|A{—€: A/-[Ol S

(o =—¢, B=¢, A=0).

1
3 | Moy, M|

1
5 |M_c, M,|
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Lemma 25. Let be € > 0 and M. # (). Then
(M_o, M| < | Mo, M| .

Proof. Corollary 24 provides that

1
[M_e, M| < 5 |M_., M.

and Lemma 19 (“triangle inequality”) provides that

IM_, M| < |M_., My| + | Mo, M.

Summarizing these facts we obtain

1 1 1
M_o, Mo| < 5 |M_s, Me| < 5 [M_e, Mo| + 5 | Mo, Me],
1 1
5 IM_e, Mol < 5 | Mo, Me|.

IM_., My| < |Mo, M.|.

Definition 26. For My # 0 we define

o function d ()

dp(e) = | Mo, M|  V(e>0A M #0),

e function d_(¢)
d_(¢)=|M., My| Ve<0,

e function d(e)

d(e)
d(e)

I
IS8
+
—
L

fore >0,
fore <O0.

|
I@..
o
)
S

Observation 27. It is not important whether is d(0) defined as d,(0) or
d_(0), because
d.(0) = d_(0) = | My, Mp| = 0.

Observation 28. The functions d,., d_, d basic properties:

e d(e) > 0 forVe.
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o d.(c1), d_(g2) are defined only for 1 > 0 and g5 < 0, when M, # 0.
o Furthermore d,(g) is defined only for € > 0 for which M. # (.
e d (g) is a non-decreasing function because
0<e <es= MyD M., DM,
and according to (2.15) we have

| Mo, M., |
d (1)

| My, M.,
d(e2).

<
5

e Analogously, d_(g) is a non-increasing function.
o d.(g) has its finite left-handed limit in ¢ = 0

0< lim dy(¢) < o0,
E—>U+

because d (&) is bounded below (lower bound 0) and is non-decreasing.
e d_(g) has its finite right-handed limit in ¢ = 0

0 < lim d_(¢) < o0,

e—0_
because d_(g) is bounded below (lower bound 0) and is non-increasing.

Lemma 29. Let be g > 0 such that M., # 0. Then the function d,(c)
is upper semi-continuous in € = 0 and the function d_(g) is lower semi-
continuous 1 g =

Proof. As 3.,-0M., # (), Observation 28 shows us that the function d_(¢) is
defined for all ¢ < 0, the function d, (g) is defined at least on the interval
(0,£0), dy(g) has a finite left-handed limit in ¢ = 0 and d_(¢) has a finite
right-handed limit in € = 0. Thus for any sequence of numbers (g;) — 04
must

lim dy(g;) = lim dy(g)

i=1,...,00 e—04

hold and for any sequence of numbers (¢;) — 0_ must

lim d_(g;) = lim d_(e).

1 - e—0_
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hold. From the assumption of the lemma follows that, there exists s > 0
such that M., # (). We define the sequence (g;) as

€0 .
gg=——1"Fori=1,..., 0.
2i—1 2

Then lim;—, _ ~ &; = 0 and therefore

.....

lim d () = lim d (&)= __llim d, ( - )

e—04 i=1,...,00 i=1,..., 2¢—1

Since for i > 1 £ = 22T holds and M_sa_ D M., D 0, Theorem 23 yields

that 1 o
2 - \MO, M.
2 2i-1

| Mo, Mg

In other words

1
| Mo, Me,,,| < = | My, M|,
1
di(€iy1) < §d+(51)=
1
di(€it1) < §gd+(5o)-
Hence Y
i T S I g0} =0
and this means that
e—04

The function d, (¢) is upper semi-continuous in £ = 0.
From the prootf of upper semi-continuity we know that

i=1,...,00
and for any sequence of numbers (g;) — 0_ must

lim d_(g;) = lim d_(¢)

F=1:;00 e—0_

hold. As V;>oM., 2 M., D (), we obtain from Lemma 25 that
|\ M_.., M| < | Mo, M|,

l.e.

d_(—&’i) § d+(€i).
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Hence

and it is easy to see that

lim d_(g) = 0.
e—0_
The function d_(¢g) is lower semi-continuous in £ = 0. O

Corollary 30. The function d(g) is continuous in € = 0.

Corollary 31. From the proof of previous Lemma 29, we conclude that if
e>0 and M. # (), then d,(g) > d_(—¢) i.e.

Vesom.20 d(€) > d(—¢).
Assertion 32. Let 3.,-oM., # 0 and 3zcp,JiesT; = 0. Then
V{)<5550d(5) > (.

Proof. As T; = 0 and i € B, then Voc.<,,Z ¢ M., because Vyer. xp >
(g,...,¢). Hence My D M. and therefore from Assertion 16 we obtain
| My, M| > 0, i.e. d(g) > 0. O

Theorem 33. Let M has its meaning from Definition 6 and 3., ~oM., # 0.
Then

Vs>0351>0,5220( (51 + &3 < 6) A
ANz € Mo\ M, Iy € M,, ||z —y|| < e2) A
A(Ve e M_.,\ My Jy e M|z -yl <e2)).

Proof. We divide the proof into 2 independent cases. Each M, which fulfill
the assumptions of the theorem, is included in exactly one case.

1. 3€0>0 A/[ — ‘A/IEO} i.e.
EIso>0 Veem T 2 (an = -350)-

2. v&—>0 M 7& Mg, le
drem T P (0, . -,0)-
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We are given arbitrary € > 0.

Ad 1)
From the definition of the set M we have M DO M, O M., and from the
assumption of this case we have M = M, . Therefore M = M, = M.,. We
define £; and €5 as

. (%o 5}
=g =m —; =2 > 0.
9 = €1 1111{2 3

(In the place of % can be any number less than £y and in the place § can be

any number less than £.)

9
Hence 9
€1+€e2 < 58 <E.

As 0 < g1 < gg then My D M, O M., and My = M,,. Thus My = M.,. We
also see that M_., = My, because

‘v’xeM rg > (EO,...,SO) S (0,...,0).

Therefore Mo\ M, =0, M_., \ My = () and the proof in this case is finished.

Ad 2)
From the theorem assumption exists €9 > 0 such that M., # 0. Thus d_(¢)
is defined for all ¢ < 0 and d, (¢) is defined at least on the interval < 0,g¢ >.
Let be 0 < g1 < g¢ for now, £; will be defined exactly later in the proof. For
£1 we define &5 as

g9 = max {d(e1),d(—¢e1)} > 0,

but since M., O M., D 0 holds, we obtain from Corollary 31 that d(s;) >
d(—e1), which means that g5 = d(&y).
As d(g) is continuous in ¢ = 0 and d(0) = 0, we see that

gy = d(e1) "5 0.

Hence we can define £, with the following inequality

361,0(81§Eo d(El) +e1 < €,

381,U<61§eo,5220 €1 + Ea < E.

Furthermore
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That is the definition of the functions d, and d_ (Definition 26)
|Mo, M| = €2 and |M_.,, My| < es.
Because of Assertion 17, we can rewrite the last line into

vaceMgzlyeMsl H&‘? - yll < & and VJ:EM_EIEIyGMQ HI - y|| < &9,

VeeMo\ M., FyeM., lz —y|| < e and  Vaem_. \MoIyeMo |z — y|| < e

(Note that M_., \ My can be the empty set in some interval linear program-
ming problems for some/all £;. However M, \ M., is never (), because of the
case 2 assumption that M # M. for every € > (.) O

2.4 Study of M,

Theorem 34. Given an interval linear programming problem defined in
(2.1), (2.2), (2.3), (2.4). My, My have their meaning from Definition 6.
Let E:r:engB > 0. Then

Vesodu(a)u (b)vﬂeU(A)Ib)eU(b)
((‘v’weMoElyeﬁo ||.I‘ — ’U“ <€ E) AN (VyeﬁoameMo ||J3 = y” < E)) ; (221)
Proof. Through the proof we will also use the sets M, M , M. and ﬁe as
defined in Definition 6.

As Jpen,zp > 0, then J.ooM. # ) and M # (). From previous Theorem 33
we obtain £; > 0 and 5 > 0 such that

(e1+ea<e)N (Vre Mo\ M, Jye M, |lz—y| <e) A (2.22)
A (Va: S A/[_El \]\/fg dy € M, ||1E — y” < 62)

and from Theorem 12 for a given interval linear programming problem, where
€ = £1, we obtain

EU(A)»U(b)vﬁeU(A),EeU(b) (vmeMaa;‘eEf |z —Z|| < 51) A (2.23)
A (V-—eﬁameM ||£L' — 55” < El) ;

€T

U(A),U(b) will be our wanted intervals. We will prove that for any A e U(A)
and b € U(b) the inequality in (2.21) holds.
Let arbitrary A € U(A) and b € U(b) be given.

1. Let arbitrary x € M, be given.
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o Ifx e M,.
Because M., C M, we obtain from (2.23) and Observation 13

afeﬁ?nx

As z € M., then xp > (&1,...,€1) and therefore g > (0,...,0)
and T € M,.

o If x € My\ M.,.
Because My C M, we obtain from (2.23) and Observation 13

—Z||<e<e and zy=Zp.

L rllz—Z] <e1<e and zy=7Zy.

However £ > 0 is not ensured. Therefore from (2.22) for z €
Mo\ M., there exists y € M., such that ||z — y|| < e2. Asy € M.,
then there exists y € M, such that ||y — y|| < ¢; and

le =yl <llz—y+y—yll <llz—yll+lly -yl
As ||z — y|| < &9 and ||y — y|| < €1, we see from (2.22) that

lr —yl| <e1+e2<e.

Thus for arbitrary z € M, we have

Ela"feﬁo ||_E - .’}?H < E.

2. Let arbitrary x € M, be given.

o If 7€ M.,.
Analogously to the previous case, because of (2.23) and Observa-
tion 13, we obtain

amemr Hx—’x"” < &1 KX E and IN I.%'N.

As T € JEI, then zg > (e1,...,¢1) and therefore zz > (0,...,0)
and z € M,.

o If 7€ M\ M.,
Because My C M, we obtain from (2.23) and Observation 13

Jeem ||z —T|| <1 <€ and zn=Ty.

Asz € Mo, then zg > (0,...,0). Therefore xg > (—&1,...,—¢1)
and x € M_.,. We see from (2.22) for z € M_., \ My that

e, |2 — Yl < €2,
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SO
ly—zll =lly—z+z-2|| <lly — 2| + |lz — z[|.

As ||z — y|| € ez and ||z — || < &1, (2.22) implies that
”?}_%” <. &1 +E9 £ &,

Thus for arbitrary = € M, we have

Jeens |2 = 2]| <e.

31



Chapter 3

Continuity of the Solution
Function

3.1 Definition of the Set M

Definition 35. Given an interval linear programming problem defined in
(2.1), (2.2), (2.3), (2.4). Let M and My have their meaning from Definition
0, 1.e.

M = {.L' €ER™ Ax =b,V;en0 < x; < h} )
f\"jo = {I = RH,AJ’ — b?LE > O?vieNfL'-,; < h} ‘
We define the following sets:

M = {xeR" Az =b,zy >0},
My = {zeR" Az =0b,z >0}

and for arbitrary Av, E, A< A <A and b < b<b
M = {a:eR'”;g:f::Z,mNZO},
I@JIO == {:EER”;ﬁ:v:E,Q:ZO}.

From the definition, it is obvious that Ml 2 M and Mgy 2 M, because M
and M, have additional conditions in their definition. Analogously, Ml O M
and My O M, for the same A and b.

3.2 Study of M

Lemma 36. Given an interval linear programming problem defined in (2.1),
(2.2), (2.3), (2.4). My, My have the meaning from Definition 35. My, M,

32



CHAPTER 3. CONTINUITY OF THE SOLUTION FUNCTION 33

have the meaning from Definition 6. Let J,epm,xp > 0. If My is bounded,

then
AIO — MO

and - N
HU(A)1U(b)v§eU(A),:‘;eU(b) Mo = M.

Proof. We set h from Definition 6 as

h = 5 max {1, max ||x; — xs|| , max max;xi} : (3.1)

r1,22€Mp zeMp ieN

Because M, is a bounded set from the theorem assumptions, h < oco. M, C
M from the definition of M, and

h h h h
< | —=,...,— — g T .
VQ:EMOQ;N = (51 3 5) < (43 ) 4) (3 2)

from the definition of h. That immediately leads to
My, = M.

From the theorem assumption there exists T € M such that T > 0. We
define
S0 = minT;. (3.3)
Obviously 9 > 0. We define our wanted intervals as U(A), U(b), which are
provided by Theorem 12 for £ = ¢y:
Fu(4).00)Y Zev(a)Feu v) ( (VeemIzezrllz — T <€0) A
A\ (‘v’ieﬁﬂmeM ||$ — %” < Eg) ) (34)

Let’s have arbitrary A € U (A) and beU (b) and corresponding M,. We will
prove that

- h h
VEGMDxN < (5, ceey 5) . (35)
That will implicate that Vi _g = € Mg or in other words
MO — Mg.

We will prove (3.5) in two steps, first we will prove

Vet ((EN < (g L g)) V (G > h)) | (3.6)
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For the contradiction, we assume that there exists y € M{] such that yy <
(hy...,h)and Jxenyr > % Because yy < (h,...,h)and y € My, alsoy € M.
Therefore for y from (3.4) must exists y € M, for which ||y — y|| < o and
yn = yn (Observation 13).

Furthermore y ¢ M, because yp = yp >
\VIIEMDSCN < (%, N R5 %) Thus YB z (.

But as ||y — y]| < €0 and yg > 0, it holds that yg > (—¢q,...,—€0). We
define z as follows

and from (3.2) we know that

ol

1
o = = —1].
2" T oY

Because T € M and y € M, from M convexity (Lemma 8), we have z € M.
Let’s summarize what we know about T and y:

e Ty > (g0,...,80) > 0and 0 < Ty < (&,...,2) from (3.2) and (3.3).
e yg > (—€0,...,—¢€0), 0 <yny < (h,...,h) and y, > 2.
Hence
S 15: +1 >10+1h
v = FEET R = 5V T o
2% =2 h
k 43
> 1E —|—1 >10—|- 0>0
z o= o = =
N Z 5 N 2yN_2 )
1 1 1 /h h 1
= - — e (=T —(h, ...
ZN 2$N+ 2yN_2(43 14> 2(1 3h)1
2y < (h, ,h,)
and
1_ 1 1
g = 31‘3'{'59825(503'--380)‘*‘5(_503 , —€0),
<B Z 0.

This means that z € M, and 2z, > -’4‘-. It is the contradiction to (3.2)and we
have proven (3.6).

Now we are going to prove (3.5). For the contradiction let

N h
ElQ'ENA/VI[o HjeNyj = §
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Applying (3.6), it must hold that
e, Jieny; > h.

For 7 € M from (3.4) must exists z € M, for which |z — || < eo. As
Ty = zy and T > (£o,...,E0), it is evident that x -3 > (0. Thus r € ﬂ[o

M,. Whole abscissa (55) is a part of MO, because M is a convex set. As
N < (%, e %) and y; > h, on this clbbClea it must exist a point z € Mo
such that 2y < (h,...,h) and Jienz; > 3 h That is the contradiction to (3.6).

Hence

h
Ve, VieNYi < 3
and
Mg ./Ug
holds for arbitrary A € U(A) and b € U(b). O

3.3 Continuity of the Solution Function

Theorem 37. Gwen an interval linear programming problem defined in
(2.1), (2.2), (2.3), (2.4). My, My have the meaning from Definition 35.
Let 3pemyxp > 0. If My is bounded, then

Va>o3U(A),U (b) VZ@U(A)EEU(EJ)

((VoeroTyeo 10 = 9ll < €) A (Vs Foerss lle — 9l < ).

Proof. Arbitrary € > 0 is given. The assumptions of previous Lemma 36 are

fulfilled, so we obtain
A/-[O — MO

and U;(A), Uy(b) such that
VﬁeUl(A),'SeUl (b)MO = Mo.
Theorem 34 provides us with Us(A) and Uy(b) for ¢ such that

VA'eU;,(A),EeUg(b)

((VQ;eMDEJyEﬁU |z —y|| < s) A (‘v’yemﬂmm |z —y|| < 5)) ;
We define U(A) = Ui (A) NU2(A), U(b) = Uy(A) N Us(b) and conclude

vJ!ieU(A)fzJeU(b)
(et 12 = 9ll < ) A (Yt ecrno o = ol <))
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Lemma 38. Given an interval linear programming problem defined in (2.1),
(2.2), (2.3), (2.4). Moy, My have the meaning from Definition 35. Let
JremoZp > 0. If My is bounded, then

Vex0TU(4),U0),U(0) Y Fev () beu (v).zeU ()
((VaemoTzeim, T2 — €7Z| <€) A (Ve Toem, [Tz — E7T| < €)).
Proof. The style of this proof is the same as the style of the proof of Lemma
10. Therefore the proof will not be done into details, like exact definition of
€. and g,.
Arbitrary € > 0 is given. Let

A, = ¢c—ec,
A, = T—uz.
Then
cFx—2'z] = |fz—(c+A) (z+A,)],
CTiE oIz = CTA;E 2 Ag$ + AzAm' 3
cx—clz| < CTHA:B|—|—|AZ|[;C|+ )ACT||A:,:| (3.7)
We want

}cTa: _ ET%” e,

to hold. One of more possibilities is

1A

A

Wl o] m

.

N

A7 |2

AT] 1A,

/AN

As z € My and M is bounded, then there exists a constant H € R such that
lz| < (H,...,H). Hence

<7]12] < =, (3.8)
IAT|(H,... H) < % (3.9)
AT 1Al < = (3.10)

Let U(c) = (¢ — ece,c+€ce), where e, > 0, e € R™ and V;e; = 1. An exact
value of . can be calculated similarly as in Lemma 10 from (3.9) and (3.10).
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From (3.8) and (3.10) we also define ¢,, where ¢, > 0, |A,| < e,6. Theorem
37 provides us with U(A) and U (b) for € = ¢,

vEeU(A).EeU(b)
Hence

v

A€U(A)beU(b)

((vaMOH:‘EEMO |.L“ — E| < Am) N (VEEEMDHIEMO |L — ?I?| < AI)) :

That together with (3.7)-(3.10) yield that

VEeU(A),’EeU(b),EeU(c)
((Vmemﬁﬂgeﬁ;ﬂo |cT:c - ET5| <e) A (V%,GMOEI%MO |CT.’L' - E’ICE| <eg)).

H
Theorem 39. Giwen an interval linear programming problem defined in
(2.1), (2.2), (2.3), (2.4). The solution function f is defined in (1.11), My

has the meaning from Definition 35. Let pem,xp > 0 and My be bounded.
Then the function f is continuous in the point (A,b,c).

Proof. We want to prove that

v€>OEIU(A)aU(b)sU(C)vﬁeU(A),EeU(b),E:’eU(c) f(A,b,e) — f(A,b0)| <e.

Arbitrary € > 0 is given. We can rewrite an interval linear programming
problem (2.1) as

Min {c"z;z € My, A€ A,beb,c€ c}.

From previous Lemma 38 we obtain U(A), U(b) and U(c) for € > 0 so that

V,IeU(A),Ee U(b),eeU(c)
(Facwto Tz, €72 — ZF| <€) A (Vaeqs, Foemo |72 — T7F] < £)).
Hence

Ty —mine¢'z

rEMg

min c

VEEU(A),E(;U(E)),EEU(C) TEM

In another words

VA"EU(A),EeU(b),EeU(c)

F(A,b,c) — f()"{,”z;,a' <e.
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3.4 Note on the Assumption of Theorem 39

Theorem 39 will not hold without the assumption, that a set of feasible
solutions M, is bounded. However this assumption is not necessary, only
sufficient. Example of a linear programming problem with unbounded M, is

Min {(0,-1)"z;(0,1)z = 1,2 > 0}.
For the interval linear programming problem
Min {(0,-1)"z;((-1,1),1)z =1,z > 0},

the solution function f(A,b,c) is not continuous in the point (A,b,c) =
((0,—1),(0,1),1). Another example of a linear programming problem with
unbounded M, is

Min {(0, Nz (1,-1)z =0,z > O} .
For the interval linear programming problem
Min {((0.9,1.1), (0.9, 1.1))"z; ((0.9, 1.1), (=1.1,-0.9))z = (—0.1,0.1),z > 0}

the solution function is continuous in every point of the intervals.
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Conclusion

The goal of the thesis was reached.

Theorem 34 is the main result of the work and is proved in Chapter
2. This theorem has two necessary assumptions - “Ag matrix regularity”
(2.3) and Jyen,zs > 0 (My has its meaning from Definition 6). The first
assumption about the maximum rank of matrixes in the given interval was
easy to see. “Regularity” is an important property of matrixes and was the
first to check. But finding of the second assumption, the existence of x € M,
with xp > 0, required much more effort (actually it was the most difficult
part of the whole thesis), and a new view on interval linear programming
problems needed to be introduced. This view clearly separates basis and
nonbasis variables and it is based on the first assumption of the matrixes
maximum rank. This approach also slightly modified the set of the feasible
solutions’ by bounding nonbasis variables. (Therefore the modified set of
feasible solutions of (1.2) is bounded.) Stated approach leads gradually to
Theorem 12, Theorem 33 and finally to Theorem 34.

Theorem 12 does not require the second assumption yet and it says that
the set M varies “continuously” with the entries in the matrix A and in the
vector b. However, the introduction of the nonnegativity conditions on the
basis variables stopped any straightforward attempt to prove Theorem 34.
Therefore an additional assumption had to be introduced and Theorem 33
about a dependency between M, and M. needed to be proved.

Theorem 34 says that the set M (the modified set of feasible solutions)
varies “continuously” with the entries in the matrix A and in the vector b.
This theorem would implicate that the solution function was continuous, if
the set of feasible solutions was defined as in Definition 6.

IThe modified sets of feasible solutions are M, My (Definition 6). The sets of feasible
solutions as known from linear programming are M, My (Definition 35).

39
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However, the set of feasible solutions in linear programming is defined
as in Definition 35 and what was unexpected, the continuity of the solution
function could not be proved without an additional assumption, that M is
bounded. This assumption is different from the previous assumptions, as it is
only a sufficient assumption, not necessary one (see the last section of Chapter
2 for examples). Defining exactly necessary assumptions for Theorem 39 is
one of the topics for a future research, as well as a study of continuity of the
solution function on an interval. These topics need to be studied in order to
achieve a practical use of the theoretical results of this thesis.
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