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Interval linear programming means 

miner x, 
M 

for c E c, 

where M == {X E IRn; Ax == b, X > O, A E A, b E b }, A C ]Rmxn, b C JRm, 
c C IRn, A, b, c are intervals. 

The first part of the master thesis introduce a new approach to interval 
linear programming, defining always bounded set of feasible solutions of a 
linear programming problem and studying its properties. The main result 
of this part demonstrates that the modified set of feasible solutions varies 
"continuously" with the entries in the matrix A and in the vector b. The 
second part studies the solution function continuity for an interval linear 
programming problem. 
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Chapter 1 

Introduction 

1.1 Linear Programming 

Linear programming problems are optimization problems in which the ob­
jective function and the constraints are all linear: 

min cT x, 
M 

(1.1) 

where M == {x E JRn; Ax == b, x > O} and A E IRmxn, b E IRm, c E IRn . 
M is called a feasible region or a set of feasible solutions and it is a convex 
polyhedral set. 

Linear programming is an important field of optimization for several rea­
sons. Many practical problems in operations research can be expressed as 
linear programming problems. Certain special cases of linear programming, 
such as network flow problems and multicommodity flow problems are con­
sidered important enough to have generated much research on specialized 
algorithms for their solution. 

Since the objective function is linear, all local optima are automatically 
global optima. The linear objective function also implies that an optima! 
solution of ( 1.1) can only occur at a boundary point of the feasible region. 

It is proved that a linear programming problem is solvable by the worst­
case polynomial-time algorithm, although the most famous algorithm - sim­
plex algorithm is the worst-case exponential-time algorithm. 

1.2 Interval Linear Programming 

Interval linear programming ( as indicated by the name) is derived from linear 
programming. An interval linear programming problem is a linear program­
ming problem with inexact data. A matrix A, vectors b and c are not fixed 
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CHAPTER 1. INTRODUCTION 

in this case, but they are from an int rval: 

miner x 
M 

for c E c (1.2) 

where M == {x E JRn; Ax == b,x > O,A E A b E b} nd A (_A) 
b == (Q., b) , c == (!::., c), A , A E JRmxn, Q_ , b E IRm !::_, c E ]Rn. 

Interval linear programming has also many appli ation in pra ti how-
ever, due to its complexity there exist only algorithm for p i 1 c · . It i 
proved by Rohn [2] that an interval linear programming probl · mi P-h rd 
problem. We can say that an inexact data in the obj ctive function nd in 
the vector b do not increase much the complexity of the problem, but in x t 
data in the matrix A create a significant increase in th compl xity of th 
problem. Prof. Rohn has published wide range of th publication conc rn­
ing matrixes, matrix intervals , systems of linear equations with inexact data 
and interval linear programming including NP-hardness problematics, .g. 
[3], [4], [5]. Concerning interval linear programming, Rohn was focused on 
bounds of the solution function, bounds of t he set of feasible solutions and 
methods of their estimation. His latest results in interval linear programming 
are [6] and [7]. This thesis gets out of Prof. Rohn's work, but is focused on 
the topic that Prof. Rohn has not researched. Even, t his t opíc si not studied 
in any available literature on interval linear programming. 

1.3 The Goals and the Contributions of the 
Thesis 

The thesis is focused on the set of feasible solutions of problern (1.2) and 
its changes with a matrix A and a vector b perturbations. In t his t hesis it 
will be studied what kind of a dependency there is between changes in t he 
entries in the matrix A and in the vector b and changes in t he set of feasible 
solutions of (1.2). At the sarne time we will find out required assumpt ions 
for such relation. 

The second goal of the thesis is to research possibilities , that the solution 
function1 of an interval linear programming problem (1.2) is continuous and 
to find out required assumptions, so that the solution function is continuous 
in the point (A, b, c). Continuity of the solution function will be studied 
through the properties of the set of feasible solutions of (1.2). 

The thesis wants to be a contribution to the theoretical understanding of 
the interval linear programming problematics, but will not study any prac­
tical applications of these theoretical results. 

1 See section N otation for the definition of the solution function. 
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1.4 N otation 

We shall use the following notation: 

Notation 
Scalar 

Vector 

Vector interval 
Matrix 

Matrix interval 

Set 

Description 
lower-case letters with or 
without subscript(s), gre k 
letters with or without a sub­
script, upper-case letter( s) in 
braces with two subscripts 
lower-case letters with or 
without an overline, an un­
derline, a tilde, with or with­
out a superscript 
bold lower-case letter 
upper-case letter with or 
without an overline, an un­
derline, a tilde, a subscript 
bold upper-case letter 

upper-case letter with or 
without a tilde, a subscript 

i j, k bi i i aij c c 1 

a f3 .\, (A- 1 )iJ (AB) iJ 

~' x, x, y, y, z z, b b Q 
b, c, c, c, c 

b, c 
A, A, A, A, Ai 

A 
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Matrix A == ( aij). For two matrixes A, B of the same size, inequalities 
like A < B and A < B are understood componentwise, i.e. A < B if and 
only if \lijaij < bij. The absolute value of a matrix A == ( aij) is defined 
by IAI == (laij I). A is called nonnegative if O < A, AT is transpose of A. 
The same notations also apply to vectors, which are always considered one­
column matrixes. The norm of a vector x == (x1, ... , Xn) is defined as llxll == 
Jxr + ... + x~. 

We will use (A1 , A2 ) for an open matrix interval, (A1 , A2 ) for a closed 
matrix interval. For set comparison we will use C for a subset and C for a 
proper subset, i.e. M1 C M2 if and only if M1 C M2 and M1 i- M2. 

Unless said otherwise, it is always assumed that A, A, A E IRmxn, b, Q, b E 

IRm and c, c, c E IRn, where m and n are positive integers m < n. We also 
assume, if not said otherwise, that A== (A, A), b == (Q., b), c == (~, c), A< A, 
Q. < b, {;; < c and A is a fixed matrix A < A < A with the maximum rank, 
i.e. rank(A) == m. A system of linear equations Ax == b is called solvable if 
it has a solution, and feasible if it has a nonnegative solution. 

For an arbitrary matrix DE JRmxn, m > 1, n > 1 we define an open neigh­
borhood U(D) as an open matrix interval U(D) == (D1 , D2 ), U(D) C JRmxn, 

Di< D < D2. 
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Definition 1. Given A E IRmxn 7 b E IRm and c E lRn . Th probl m 

minimize cr (1. ) 

subject to (s. t.) 

Ax == b, x >O (1. ) 

is called a linear programming problem 7 or imply a lin ar progr m. Wi 
shall write the problem (1.3) 7 (1.4) briefiy as 

Min { cr x; Ax == b, x > O} . (1.5) 

Notice the use of the upper case in "Min" to denote a probl min contra t 
to "min" which denotes a minimum when applicable. A v ctor x ati fying 
(1.4) is called a feasible solution of (1.5). A problem (1.5) having a f a ibl 
solution is said to be f easible, and infeasible in the opposite case. 

Definition 2. For a given linear program (1.5) we introduce the value 

f(A,b,c) -inf {crx;Ax == b,x >O} (1.6) 

and we shall call it the optimal value oj (1.5). 

The optimal value (1.6) of a linear programming problem (1.5) can obtain 
the following values: 

oo if a linear programming problem (1.5) is infeasible, 
-oo if a set of feasible solutions of a linear programming problem (1.5) 

is unbounded and contains a half-line along which the value of 
cT x tends to -oo, 

finite every other case. 

Definition 3. Given A == (A, A) 7 b == ('2, b), c == (c, c), A < A, Q < b, {;. < c. 
The problem 

minimize cT x (1.7) 

subject to (s. t.) 
Ax == b, x >O, (1.8) 

where 
A E A, b E b and c E c (1.9) 

is called an interval linear programming problem, or simply an interval linear 
program. We shall write the problem (1. 7), (1.8), (1.9) briefiy as 

Min { cT x; Ax == b, x > O, A E A, b E b, c E c} . (1.10) 
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Definition 4. For an interval linear programming probl m (1.10} w intro­
duce a function f (A, b, c) : JRmxn x JRm x JRn --7 JR.U { oo - } in th following 
way 

f (A, b, c) - inf { cT x· Ax == b > O} 
where 

A E A, b E b and c E c 

and we shall call it the solution function of (1.10). 

(1.11) 

As we can see, the solution function in the point (A, b c) i th optimal 
value of the linear program (1.5). 

1.5 Basis Solution 

Let be A E JRmxn, b E ffi.m, x E JRn, m < n, rank(A) == m and Ax == b. Th n 
columns of the matrix A and of the vector x elements can be rearranged 
into the form A== (ABAN) and x == (xBXN) such that (AsAN )(xBXN) == b, 
A E JRmXm A E JR(n-m)xm X E ffi_ffi X E ffi.n-m and A is a regular B , N ,B N B 

matrix. B is an index set of the columns of the matrix A which create a 
regular matrix AB. B is called the basis of matrix A. The rest of the column 
indexes of the matrix A are in the set N == { 1, ... , n} \ B. 
Thus for the matrix AB exists an inverse matrix and the system of linear 
equations Ax == b can be rewritten into the form 

Ax b, 

(ABAN) (xBXN) b, 

b, 

Ali1b - Ali1 ANXN. (1.12) 



Chapter 2 

Set of the Feasible Solutions 

In this chapter, the sy~bols A, b ~nd c will be used for an arbitrary m trix 
and arbitrary vectors, A E IRmxn, b E IRm and c E IRn. If not said oth rwi 
then A < A < A, b < b < b and c < c < c. 

We will work with an interval linear programming problem 

Min {cTx;Ax == b,x > O,A E A,b E b,c E c}, (2.1) 

where 

A== (A, A), b == (b, b), c == (c, c), A <A, Q_ < band~< c (2.2) 

for which a basis B is given such that 
.......... 

V A A<A<Arank(A8 ) == m. ,_ (2.3) 

Let us consider an arbitrary A E A, b E b, and c E c, which fulfill 

A < A < A, b < b < b, ~ < c < c. (2.4) 

and a constant h E IR, h > O sufficiently large. Meaning of this constant will 
be explained after Definition 6. 

Observation 5. If the matrix A does not have its maximum rank, i.e. 
rank(A) < m, then, in general, the solution function f (A, b, c) is not contin­
uous in the point (A, b, c). 

Example of such linear programming problem: 

8 
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c =(O, -1) A= ( ~ ~ ) b = ( ~ ) . 

ThesetoffeasiblesolutionsofAx==bistheab i ((1 O) (O 1)). Obvi 
f(A, b, c) == -1 and A !s singular. We slightly hang ntri in A t r t 
a nonsingular matrix A: 

Ax _ b has exactly one solution x = ( f3~a, - f3~a ) and th solution fun tion 

f (A, b, c) == f3~a (if the system of linear equations is feasibl ). For any m 11 
---

a and f3 with a ~ /3 and a f= /3, Ax == b is an ill-condition d yst m and it 
solution is extremely dependent on changes in the matrix entri s, .g. 

. ........, ( 1 1 ) a = 0.01, {3 = 0.0099, i.e. A1 = l.OOl 1.00099 , 

. ---- ( 1 1 ) a = 0.001, {3 = 0.00099, i.e. A2 = l.OOOl 1.000099 
........, 

~d the only solution of both systems of linear equations A 1x == b and 
A 2y == b is x == y == (-99, 100). However this is not a feasible solution, 
thus f (Ai, b, c) == oo. In this way, we can create sequence 

,,..._, ( 1 1 ) Ai = 1 + 10-2-i 1 + 10-2-i _ 10-4-i 

with Ai ~A. \iiAix == b has exactly one solution x == (-99, 100). Because 
......... 

there is no feasible solution, \iif (Ai, b, c) == oo holds. 

2.1 Definition of the Set M 

Definition 6. Given an interval linear programming problem defined in 
{2.1), {2.2), {2.3), (2.4) and a sufficiently large constant h E JR, h > O. 
Let be c E IR. We define the following sets: 

M {X E IRn; Ax == b, \iiENO < Xi < h}, 
M0 {x E JRn;Ax == b,x > O,\iiENXi < h}, 
Ms {x E IRn;Ax == b,xB > c,\iiENO < Xi < h} 
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and for arbitrary A, b, A < A < A and Q_ < b < b 

M {X E IR.n; Ax = b viENO < i < h} 
Mo {X E IR.n; Ax = b, X> o viEN i < h} 
Me {x E IR.n;.Jx = b,xs > c ViENO < i< h}. 

Furt her in this text we will use the f ollowing lett rs and numb r a 
indexes of M: 

• greek letters - Ma, Mf3, MA - meaning as defined in D finition 6 .g. 

• integer numbers ( except O) - M1 , M2 - meaning of a et without any 
special property. 

Our attention is focused on a set of feasible solutions of a lin ar program­
ming problem and its reaction on changes in the entries in the matrix A and 
in the vector b. The set of feasible solutions is, in general, unbounded and 
its reaction on changes in the entries in the matrix A and in the vector b can 
not be bounded, too. Therefore we defined the "set of feasible solutions" M, 
and in this way we bounded nonbasis variables x N by a constant h. In the 
following text we will study reaction of the "set of feasible solutions" M on 
changes in the entries in the matrix A and in the vector b. 

Observation 7. For any A, b it holds 

(2.5) 

Lemma 8. Let M -=/- 0 has its meaning from Definition 6. Then M is a 
convex, bounded and closed set. 

Pro o f. M is defined as 

We prove all three properties separately: 

• M is convex: 
Let x, y E M and z== px+(l - p) y, where p is an arbitrary real number 
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O < p < 1. Because of O < XN < (h ... h) nd O < y < (h ... h) 
we have 

ZN px N + ( 1 - p) y N > p0 + ( 1 - p) 0 == 0 

ZN PXN + (1 - p) YN < p(h, ... h) + (1 - p) (h ... h) == (h ... h) 

and 

Az ==A (px + (1 - p) y) == pAx + (1 - p) Ay == pb + (1 - p) b == b. 

Thus z E M. 

• M is bounded: 
O< XN < (h, . .. ,h) and 

therefore ~k,z(k, ... , k) < x 8 < (l, ... , l) and Mis bounded. 

• M is closed: 
{x; Ax == b} is a shifted vector space, thus it is a closed set. Becaus the 
intersection of a finite number of closed sets is a closed set, we proved 
that 

M = { x; Ax = b} n n {O < Xi < h} 
iEN 

is closed. 

D 

Assertion 9. Let E E IR be arbitrary and ME: be a set defined in Definition 
6. If ME: -=I- 0, then ME: is a convex, bounded and closed set. 

Proof. For any E E IR, ME: can be defined also as 

Me = M n n { x; Xi > E} 
iEB 

and we prove all three properties separately: 

• Mc is convex: 
M is convex, { x; xi > E} is also convex for i E B and the intersection 
of finite number of convex sets is a convex set, too. 

• ME: is bounded: 
M is bounded and the intersection of a bounded set with any set is a 
bounded set, too. 
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• Mt: is closed: 
M is a closed set, { x · xi > é} i a clo d h lf- p f · E B n h 
intersection of a finite number of lo d t i lo d t. 

D 

2.2 Study of M 

In this section we will study a reaction of t h t Nf from D finit ion 6 n 
changes in the entries in the matrix A and in t he v ctor b. 

Lemma 10. Let A E JRmxn and B E IRnxp be arbitrary matrix . Then 

Proof. Let 

Then 

~A 

~B 

__, 

A-A 
' ,,..._,. 

B-B. 

AB AB + A~B + ~AB + ~A~B , 

AB -AB IA~B + ~AB + ~A~BI ' 

AB - AB < IA~BI + l~ABI + l~A~BI' 

AB -AB < IAI l~BI + l~AI IBI + l~AI l~BI. 

Let U(A) == (A - EAEA, A+ EAEA) and U(B) == (B - EBEB, B + EBEB) , 
where éA > O, EB > O, EA E JRmxn, EB E IRnx p, Vij(EA)ij == 1 and 
vij ( E B )ij == 1. é A and,_, é B will be specified further in the proof. Thus for 

an arbitrary choice of A E U(A) and B E U(B) holds 

!~Al < éAEA, 

l~BI < éBEB. 
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Hence 

AB-AB 

(AB)ij - ( AB) ij < EB L laikl+ cA L lbkJl +c Es · 
k k 

With an appropriate choice of EA and c8 , the proof will b fini h d . W w nt 
the following inequality 

to hold for each i and j. Therefore, for example, th following ondition 
need to be fulfilled for each i and j: 

Es L laik I 
é 

< 
3 ' 

k 

EA L lbkjl 
é 

< -
- 3 ' 

k 

é 
éAEBn < -- 3 

So 

respectively 

"fj (EA~lbkjl < ~)' 
VJ (cA < 3 l::lbkJI) ' 

é 
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and 

é 
EAEBn < 

3 
é 

EAEB < 3n 

EA <~, 

EB<~. 
Summarizing these facts we finish the proof with 

EA min Lmaxd~k lbkj l}' ~}, 
EB min { 3maxi {~k laik I } ' ~}· 

1 

D 

Lemma 11. For a regular square matrix D it holds, that the entries in the 
matrix D-1 vary continuously with the entries in D. 

Proof. It is result of a well known linear algebra formula 

_
1 

( -1) i+j det D(j,i ) 

(D )iJ = det (D) ' 

where D(j,i) is the matrix created from the matrix D by deleting j-t h row 
and i-th column. D 

Theorem 12. Given an interval linear programming problem de.fined in 
(2.1), (2.2), (2.3), (2.4) and M has its meaning from Definition 6. Let 
be M-/= 0. Then 

'v'c>O::JU(A),U(b) 'v' AEU(A),bEU(b) 

(('v'xEM:JxEM llx - xll < c) /\ (\7'xEM::JxEM llx - xll < c)) · 
,_,_, ........... ........... - ........... -

Proof. Let us consider arbitrary A and b, such that A < A < A, b < b < b ,,.....,, ,,.....,, ,......, 

holds. Let A== (ABAN ), x == (xBxN ), A== (ABAN) and x == (xsxN ). Then 
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Obviously x and x are uniquely identifi db n ut 

Thus 

n 

llx-xll L (xi - Xi) 2 

i=l 

llx-xll 

llx-xll 

llx - xll 

llx - xll (2.6) 

Furthermore 

llxB - XBll AB1b-AB1ANxN - (As1b-As1ANxN) 

llxB - xBll Ali1b - A31b + Ai/ANXN - A31 ANXN , 

llxB - xBll < AB1b - As1b + ( As1 AN - AB1AN) xN . 

We want to chaose neighborhoods U(A) and U(b) so that the following in­
equalities 

will hold. 

• Ad (2.7): 

(2.7) 

(2.8) 

From Lemma 10 for 2.Jm there exist U1(AB1) and U ( b) such that for 

all AB1 E U1(AB1
), all b E U(b) and for all i the inequality 

(AB1b)i - ( As
1
b) i < 2:rn 
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holds. From Lemma 11 for U1(A81) i U1 ( 8 ) 

As E U1(As) also ÁB1 E U1(AB1) hold. H n 

• Ad (2.8): 
We define é 1 as 

< 

< 

é 
< -

2 

1 

h h fir 11 

(2.9) 

(2.10) 

From Lemma 10 for é 1 exists U2 (A13 1
) and U(AN) uch that for all 

AB1 E U2(AB1 
), all AN E U(AN) and for all i, j 

(2.11) 

holds. From Lemma 11 for U2 (A81
) there exist U2(A 8 ) such that for 

all A 8 E U2 (A 8 ) also .4131 E U2(A131
) holds. Therefore 

The inequality (2.11) implies that 

m (n-m ) 2 

( AB1ÁN -AB1AN) XN < H ~ é1h 

and from (2.10) we obtain 

( AB1 AN -AE1AN) XN 

(AB1ÁN -AB1AN) XN 
é 

< -
2 

(2.12) 
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Now we define U(As) == U1(A8 ) n U2( 8 ) . L ) (_ 

U(AN) == (AN,AN)- Then U(A) == (( B ) ( 8 )) . 
,.._,. ,,....._, 

A E U(A) and b E U(b) 

llxs - Xsll < A[/b - A/b + (Ar/A 
holds. From the inequalities (2.9) and (2.12) it i 

llxs - Xsll < c + E 
2 2 

llxs - Xsll < E 

and from the equality (2.6) is easy to see that 

llx - xll < E . 

) 

7 

_ For given c > O we defined U(A), U(b). If arbitr ry A E U(A) nd 
b E U ( b) is given, then for given y E M we defin 

fls A:a1b'- As1ANYN , 
,,......, 

YN YN· 

Thus 

Y - (YBYN) E M. 

And for given y E M we define 

YB A- 1b A- 1A ,,......, 
B - B NYN, 

---Y N YN· 

Hence 
Y - (YBYN) E M. 

We have proved previously in the proof that for such defined y and fj (YN == 
YN) the following inequality 

holds. D 

Observation 13. Previous Theorem 12 can be also formulated in the follow­
ing way: 
Given an interval linear programming problem defined in (2.1)) (2.2)) (2.3), 
(2.4) and M has its meaning from Definition 6. Let be M -1- 0. Then 

vc>o3u(A),U(b) v AEU(A) ,bE U (b) 

( (VxEM3xEM llx - xll < E /\ XN == XN) /\ (VxEM3XEM llx - xll < c /\ XN == XN)) . 
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2.3 Study of Mc 

We continue to work wit h an interval lin r progr m 1ng pr fir 
in (2.1) , (2.2), (2.3) and (2.4) . In thi tion w um th 

3s>0Mc =/= 0. (2 .1 ) 

The condition ( 2.13) can be reformulated into 

3 xEMoXB > Q 

and it is necessary assumption and can not b 1 ft out . 

Observation 14. Given an interval linear programming probl m d fin d in 
( 1.1 O) with the solution function f (A, b, c) f rom in ( 1.11) . L t arbitrary A E 

A, rank(A) == m, b E b, c E c be given and the condition (2.13) i not 
fulfilled, i. e. 

Vc;>OMc; == 0. 
Then, in general, the solution function is not continuous in the point (A b ) . 

Example of such linear programming problem: 

Min {(l,O)Tx; (O, l) x == 0,x >O} 

A== (O, 1), b == (O), c == (1, O) and f (A, b, c) ==O. We d fin s qu nces 

Ai = ( - ;i , 1) , bi = - ;i · 
Í-+00 Í --+00 d Then Ai ~ A, bi ~ b an 

f (Ai, b, c) =min { (1, Of x; (-;i, 1) X = -;i, X > 0} = 1 

for every i > O, but f (A, b, c) ==O. 

Definition 15. Let M1 C IRn, M2 C IRn be closed bounded sets and M1 ::J 

M2 ::J 0 or M 2 ::J M 1 ::J 0. Then we define binary operation "S et distance" 

I · , . I -t IR as 
(2.14) 

Assertion 16. Let M 1 C IRn, M 2 C IRn be closed bounded sets and M1 ::J 

M2 ~ 0. Then 
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Proof 

M1 == Nl2? 

? M 1 c Nf 2 {::} 

{::}V xEM1 X E M2 {:::} 

{:::} VxEM1 minyEM2 llx - Yll ==O{:::} 

{::} maxxEM1 minyEM2 llx - Yll == O {:::} 

{::} IM1,M2I ==O. 

19 
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Assertion 17. Let M 1, M 2 be closed bounded sets and M 1 ~ M 2 ~ 0. Then 

IM1, M2I < d {:::} VxEM~3yEM2 llx - Yll < d. 

Proof. 

IM1, M2I < d {:} 

? maxxEM1 minyEM2 llx - Yll < d? 

{:::} VxEM1 minyEM2 llx - Yll < d {:::} 

{:::} VxEM13yEM2 llx - Yll < d. 

D 

Observation 18. jM1 , M2 1 can be imagined as the minimum distance n eeded 
to get from an arbitrary point oj M 1 to the set M 2 . 

Properties of the operation "Set distance": 

• it is not commutative operation, !Mi, M2I-/:- IM2, Mil· 

It follows from the definition of "Set distance" (2.14) as for every 

IM2, Mil== max min llx - Yll ==O. 
yEM2 xEM1 

because Vx,y llx - Yll >O. 

• From the fact that the minimum from a subset is greater or equal then 
the minimum from the set and that the maximum from a superset is 
greater or equal then the maximum from the set we obtain 

Mi ~ M2 ~ M3 => IM1, M2I < IM1, M3I /\ IM2, M3I < IM1, M3I. 
( 2.15) 
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(2.1 ) 

Lemma 19. Let Mi C JRn) M2 C IRn) lv13 C IRn b clo d bound d t and 
M1 ~ M2 ~ M3 ~ 0. Then 

Proof. Let di == IM1, M2I and d2 == IM2, M3I. Then 

Hence 

IM1, M21 == di ==? VxEM1=1yEM2 llx - Yll < d1, 

IM2, M31 == d2 ==? VyEM2:JzEAh llY - zl l < d2. 

VxEM1 =1zEM3 llx - zll < llx - Yll + llY - zll < d1 + d2, 

IM1, M31 < di + d2, 

IM1, M3I < IM1, M2I + IM2, M31 · 

D 

This lemma can be, with a little exaggeration, called "triangle inequality". 

From this moment E E JR, a E JR, (3 E JR, r E JR, A E JR and M, Mc, 
Mc0 Mf3, M,, MA are sets as defined in Definition 6. In the following proofs 
specific properties of M are used. 

Theorem 20. Let a< f3 < r be such that Mf3 ~ M, ~ 0. Then 

(2.18) 

Proof. As a < (3, it is easy to see from (2.5) that M 0 ~ Mf3. From Ma ~ 
Mf3 ~ M, (2.15) yields that 

If M 0 == M 13 , then (according to Assertion 16) it is clear, that 
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and because Mf3 =/= M 1 , we have 

INI(3 NI, I > o. 

Hence 

O == IMa, Mf31 < IMa 1\if1 1 = IM 11 1. 

If Ma =/= M13, i.e. Ma ~ M(3 then from (2.16) w that 

and these maximum and minimum are attained at 1 ast in on point. L t 
chaose arbitrary one of such points (x, y). So 

llx - Yll = max min llx - Yll, 
xEMo. \Mf3 yEMf3 

where x E Ma \ Mf3 and y E Mf3. 
As x E Ma \ M(3 and M1 C M13, we have x E Ma \ M1 . 

N ow the following inequality 

min llx - zll > llx - Yll, 
zEM1 

will be proved, which implies that 

min llx - zll > max min llx - Yll, 
zEM, xEMo. \lv!f3 yEMf3 

max min llx - zll > IMa, Mf31, 
xEMo. \M, zEM, 

IMa,M,I > IMa, Mf31 

and its proof by a contradiction finishes the proof of the theorem. 
Let be (for the contradiction) z E M1 such that 

llx - zll == min llx - zll < llx - Yll · 
zEM1 

Then we define z (on the abscissa x z E Ma) 

z == px + ( 1 - p) z, 

where p E (O, 1). As Ma is a convex set from Assertion 9, z E Ma for any 
p E (O, 1). Because x E Ma \ M13 and z E M 1 , i.e. 

XB > (a, ... ' a), 3iEBXi < {3, 

ZB > (/, ... ,() 
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and a < /3 < { , we can define such p that z E M13 \ M,, i. e. 

As z E Mf3 and 

llx - zll < llx - zll < ll x - Yll , 
llx - zll < min ll x - Yll , 

yEMf3 

we have the contradiction and the proof is finished. 

Corollary 21. Previous Theorem 20 will be mostly used in the form: 
Let O< /3 < r be such that Mf3 ~ M, ~ 0. Then 

22 
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Observation 22. Let the assumptions of previous Theorem 20 be fulfilled. 
If M 0 ~ M13, then 

O< IM0 , Mf31 < IM0 , M 'Y I · 

Theorem 23. Let a E IR„ f3 E IR„ a < /3 and M13 #- 0. Then 

1 
IMa, M>.I < 

2 
IMa, Mf31, 

where .X == a~/3 . 

max min llx - Yll, 
xEMa yEM>.. 

max min llx - Yll -
xEMa yEM13 

Let 's chaose arbitrary x E Ma and define y 

llx-yll min llx - Yll, 
yEMf3 

z 
1 
2 (x + y). 

(2.19) 

(2.20) 

Because x E Ma, y E Mf3 C M 0 and M 0 is a convex set from Assertion 9, 
also z E Ma. Furthermore 

x E Ma ==? XN >O/\ XB > (a, ... , a), 

Y E M13 ==? YN > 0 /\ YB > ({3, · · ·, /3). 
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Thus 

1 1 
z 

2 
( x + y) > 

2 
( (a, ... , a, O, ... , O) + (,B, ... , ,B, O, ... , O)) = 

(a; ,B, ... , a; ,B, O, ... , O) =(.,\, ... , A, O, ... , O) , 

z > ( ..\, ... , ..\, O, ... , O) 

and therefore z E M)... 
Moreover 

1 1 llx - zll = x - 2 (x + Y) = 
2 

llx - Yll · 

From z E M).. and (2.20) we obtain 

1 1 
min llx - zll < llx - zll == - llx - Yll == - min llx - Yll · 
zEM>. 2 2 yEM13 

And as x was an arbitrary vector from Ma, we conclude the proof with 

min llx - zll 
1 

V xEMa < - min llx - Yll, 
zEM>. 2 yEMf3 

max min llx - zll 
1 

< - max min llx - Yll, 
xEMa zEM>. 2 xEMa yEM13 

IMa, M)..I 
1 

< - IMa , M13j. 
2 

D 

Corollary 24. Now we state two important cases oj Theorem 23, which we 
will use later in this chapter. 

1. Leté> O and M2c-/:- 0. Then 

(a == O, f3 == 2c, ,,\ == é). 

2. Leté > O and Mc -/:- 0. Then 

1 
IM-c, Mol < 2 IM-c, Mci 

(a== -é, {3 == c, ,,\==O). 
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Lemma 25. Let be E > O and Mé i- 0. Then 

Proof. Corollary 24 provides that 

and Lemma 19 ("triangle inequality") provides that 

Summarizing these facts we obtain 

IM-é, Mol < -

1 
- IM-é, Mol < 
2 -

IM-é, Mol < -

Definition 26. For M0 -=F 0 we define 

• function d+(c) 

• function d_ ( E) 

• function d(c) 

d(c) 

d(c) 

d+(c) 
d_(c) 

for é >o) 
for E <O. 

24 
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Observation 27. It is not important whether is d(O) defined as d+(O) or 
d_ (O), because 

d+(O) == d_ (O) == I Mo, Mol ==O. 

Observation 28. The functions d+, d_) d basic properties: 

• d(c) > O for Ve. 
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• d+(c1), d_(c2) are defined only for E1 > O and E2 <O, when Mo =I- 0. 

• Furthermore d+ ( E) is defined only for E > O for which Mé i= 0. 

• d+ ( é) is a non-decreasing function because 

and according to (2.15) we have 

IM0,Mc1I < IM0,Mc2 I, 
d+(E1) < d+(E2). 

• A nalogously, d_ ( E) is a non-increasing function. 

• d+ ( é) has its finite left-handed limit in é == O 

0 < lim d+(E) < oo, 
c-+O+ 

because d+(E) is bounded below (lower bound O) and is non-decreasing. 

• d_ ( é) has its finite right-handed limit in E == O 

0 < lim d_(E) < 00, 
c-+O_ 

because d_(c) is bounded below (lower bound O) and is non-increasing. 

Lemma 29. Let be co > O such that Mé0 =I- 0. Then the function d+(E) 
is upper semi-continuous in E == O and the function d_ ( E) is lower semi­
continuous in é == O. 

Proof. As :3co>OMc0 i- 0, Observation 28 shows us that the function d_(E) is 
defined for all E < O, the function d+(E) is defined at least on the interval 
(O, Eo), d+(c) has a finite left-handed limit in E == O and d_(E) has a finite 
right-handed limit in E == O. Thus for any sequence of numbers (Ei) --+ O+ 
must 

hold and for any sequence of numbers (Ej)--+ Q_ must 

. lim d_(EJ) == lim d_(c). 
J==l, ... ,oo s-+O_ 
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hold. From the assumption of the lemma follows that, there exists co > O 
such that Mco # 0. We define the sequence (ci) as 

co . 
ci == . 1 for i == 1, ... , oo. 2i-

Then limi==l, ... ,oo Ei == O and therefore 

lim d+(c) ==._lim d+(ci) ==._lim d+ ( ~0 1 ). c-+O+ i-1,„.,oo i-1,„.,oo 2 

o+_;u_ 
Since for i > 1 ~~ = ~·- 1 holds and M

2
:2

1 
~ Mc0 ~ 0, Theorem 23 yields 

that 

M0,M~ 
1 

M0 , M_;u_ <-
2i - 2 2i -l 

In other words 

I Mo, Mci+1 I 
1 

< 
2 IMo, McJ, 

d+ ( éi+l) 
1 

< 
2 

d+(ci), 

d+(Ei+l) 
1 

< -. d+(co). 2i 

Hence 
1 

._lim d+(ci) < ._lim i-l d+(co) ==O 
i-1, ... ,oo i-1,„.,oo 2 

and this means that 
lim d+(c) ==O. 

c-+O+ 

The function d+(c) is upper semi-continuous in c ==O. 
From the proof of upper semi-continuity we know that 

. lim d+(ci)==O 
i==l, ... ,oo 

and for any sequence of numbers (cj) -+ Q_ must 

. lim d_(Ej) == lim d_(c) 
J==l, ... ,oo c-+O_ 

hold. As Vi?..oMci :J Mco ~ 0, we obtain from Lemma 25 that 

Le. 
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Hence 

O< limi==l,.„,oo d_(-Ei) < limi== l, ... ,oo d+(ci) ==O, 
limi==l, ... ,oo d_ ( -éi) == O 

and it is easy to see that 
lim d_(c) ==O. 

é>--+0_ 

The function d_ ( c) is lower semi-continuous in é == O. 

Corollary 30. The function d(c) is continuous in c ==O. 

27 
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Corollary 31. From the proof of previous Lemma 29, we conclude that if 
c >O and Ms i- 0, then d+(E) > d_(-c-) i.e. 

\js>O,Mc-/=0 d(c) > d(-é). 

Proof. As Xi == O and i E B, then Vo<s~J.:oX ~ Ms, because VxEMc XB > 
( é, ... , é). Hence M0 ~ Ms and theref ore from Assertion 16 we o btain 
I Mo, Msl >O, i.e. d(c-) >O. D 

Theorem 33. Let M has its meaning from Definition 6 and 3so>OMs0 ::/- 0. 
Then 

Vs>Ojs 1 >0,s2 >0 ( (c1 + E2 < E) /\ 
/\ (Vx E Mo\ Ms 1 3y E Ms1 llx - Yll < E2) /\ 

/\(\lx E M-s 1 \Mo 3y E Mo llx -yjl < c2) ). 

Proof. We divide the proof into 2 independent cases. Each M, which fulfill 
the assumptions of the theorem, is included in exactly one case. 

jxEM XB / (O, ... , O). 
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We are given arbitrary c > O. 

Ad 1) 
From the definition of the set M we have M ~ M0 ~ Meo and from the 
assumption of this case we have M == Mco· Therefore M == M0 == Meo · We 
define c1 and E2 as 

. { Eo c} Q c2 - E1 min 2 ; 
3 

> . 

(In the place of ~ can be any number less than Eo and in the place ~ can be 
any number less than ~.) 
Hence 

2 
é1 + C2 < 

3 
é < é. 

As O< E1 < Eo then Mo~ Me1 ~ Meo and Mo== Meo· Thus Mo== Mc1 • We 
also see that M_c1 == M0 , because 

VxEM Xs > (co, ... , Eo) > (O, ... , O). 

Therefore M0 \ Mé 1 == 0, M_e1 \ M0 == 0 and the proof in this case is finished. 

Ad 2) 
From the theorem assumption exists Eo > O such that Meo -/:- 0. Thus d_ (c) 
is defined for all E <O and d+(E) is defined at least on the interval< O, Eo >. 
Let be O < c1 < Eo for now, E1 will be defined exactly later in the proof. For 
c1 we define E2 as 

E2 - max { d(c1), d(-E1)} > O, 

but since Me1 ~ Meo ~ 0 holds, we obtain from Corollary 31 that d(E1 ) > 
d(-E1), which means that c2 == d(c1). 
As d(E) is continuous in c == O and d(O) ==O, we see that 

Hence we can define E1 with the following inequality 

3e1 ,0<e 1 :S;eo d(c1) + E1 < E, 

3c1,0<c1:S;eo,c2~0 E1 + E2 < é. 

Furthermore 

d+(c1) == d(E1) == c2 

d+(c1) == é2 

and 

and 

d_(-c1) < d+(c1) == E2, 

d_(-c1) < E2. 
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That is the definition of the functions d+ and d_ (Definition 26) 

I Mo, Ms1 I == E2 and IM-é1 , Mol < E2. 

Because of Assertion 17, we can rewrite the last line into 

'v'xEMo3yEMci llx - Yll < E2 

VxEMo\Mc 1 3yEMc1 llx - Yll < E2 

and VxEM-ei 3yEMo llx - Yll < E2, 

and VxEM-e1 \Mo::lyEMo llx - Yll < E2. 

29 

(Note that M_s1 \ M0 can be the empty set in some interval linear program­
ming problems for some/all c1 . However M 0 \Mci is never 0, because of the 
case 2 assumption that M -=/= Ms for every E > O.) D 

2.4 Study of Mo 

Theorem 34. Given an interv!]J__ linear programming problem defined in 
(2.1), (2.2), (2.3), (2.4). M 0 , M 0 have their meaning from Definition 6. 
Let 3xEMoXB >O. Then 

V s>03U(A),U(b) V AEU(A),(b)EU(b) 

( (vxEMo3yEMo llx - Yll < é) /\ (vyEMo3xEMo llx - Yll < c)) . (2.21) 

Proof. Through the proof we will also use the sets M, M, Ms and Mé as 
defined in Definition 6. 
As =1xEMoXB > O, then 3c>OMs -=/= 0 and M -=/= 0. From previous Theorem 33 
we obtain E1 > O and E2 > O such that 

(c1 + E2 < c) /\ (Vx E Mo\ Me1 3y E Me1 llx - Yll < c2) /\ (2.22) 

/\ ('v'x E M-s1 \Mo ::ly E Mo llx - yjj < c2) 

and from Theorem 12 for a given interval linear programming problem, where 
E == E1, we obtain 

3u(A),U(b) \1' AEU(A),bEU(b) (v xEM3XEM llx - XII < c1) /\ 
/\ (VxEM3xEM llx - xll < c1) · 

,..._,, 

(2.23) 

U(A1 U(b) will be our wanted intervals. We will prove that for any A E U(A) 
and b E U(b) the inequality in (2.21) holds. 

........... ,..._,, 

Let arbitrary A E U(A) and b E U(b) be given. 

1. Let arbitrary x E M0 be given. 
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• If X E Me1 • 

Because Me1 C M, we obtain from (2.23) and Observation 13 

3xEM llx - xll < €1 < E and XN == XN · 

As x E Mel' then XB > (E1, ... , E1) and therefore XB > (O, ... , O) 
~ 

and x E Mo. 

• If X E Mo \ Me1 . 

Because M 0 C M, we obtain from (2.23) and Observation 13 

3xEM llx - xll < E1 < E and XN == XN· 

However x > O is not ensured. Therefore from (2.22) for x E 

Mo \Me1 there exists y E Mc1 such that llx - Yll < E2. As y E Me1 , 
.....__... 

then there exists y E Mo such that llY - Yll < E1 and 

11 X - y 11 < 11 X - y + y - VI I < 11 X - y 11 + 11 y - YI I . 
As llx - Yll < E2 and llY - VII < E1, we see from (2.22) that 

11 X - VI I < é 1 + é 2 < é. 

Thus for arbitrary x E M 0 we have 

3xEMo llx - xll < é. 

2. Let arbitrary x E M 0 be given. 

• If x E Me1 • 

Analogously to the previous case, because of (2.23) and Observa­
tion 13, we obtain 

:3xEM llx - xll < E1 < E and XN == XN. 

As x E Mel' then XB > (E1 , ... , E1) and therefore XB > (O, ... , O) 
and x E Mo. 

~ --------
• If x E Mo \ Me1 • 

~ ------
Because M 0 C M, we obtain from (2.23) and Observation 13 

3xEM llx - xll < é1 < é and XN == XN. 

As x E Mo, then XB > (O, ... , O). Therefore XB > (-Ei, ... , -E1) 

and x E M_e 1 • We see from (2.22) for x E M_c1 \ M 0 that 

3yEMo llx - Yll < E2, 
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so 
llY - xll == llY - X+ X - xll < llY - xll + llx - xll · 

As llx - Yll < c2 and llx - xll < E1, (2.22) implies that 

llY - xll < E1 + E2 < é. 

Thus for arbitrary x E M0 we have 

3xEMo llx - xll < é. 

31 

o 



Chapter 3 

Continuity of the Solution 
Function 

3.1 Definition of the Set M 

Definition 35. Given an interval linear programming problem defined in 
(2.1), {2.2), {2.3 ), (2.4). Let M and M 0 have their meaning from Definition 
6, i. e. 

M == {x E IRn; Ax == b, 't/iENO < Xi < h}, 
Mo == {x E IRn; Ax == b, x >O, 't/iENXi < h}. 

We define the following sets: 

M _ {X E R n; Ax == b, X N > O} , 

Mo - {x E Rn;Ax == b,x >O} 

and for arbitrary A, b, A< A< A and Q_ < b < b 

M {X E ~n;Jix = b, XN >O}, 
Mo { x E ~n; Ax = b, x > O} . 

From the definition, it is obvious that M ~ M and M 0 ~ M 0 because M 
............ ......--....-

and M 0 have additional conditions in their definition. Analogously, M ~ M 
............... ...--.._,...... ............... ............. 

and M 0 ~ M0 for the same A and b. 

3.2 Study of Mo 

Lemma 36. Given an interval linear programming problem defined in {2.1), --- ......--....-

( 2. 2), {2.3), (2.4). Mo, Mo have the meaning from Definition 35. M 0 , M 0 

32 
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have the meaning from Definition 6. Let :3xEMoXB > O. If Mo is bounded, 
then 

Mo== Mo 

and 
,....,, 

:3u(A),u(b)V AEU(A),bEU(b)Mo ==Mo. 

Proof. We set h from Definition 6 as 

h - 5max {i, max llx1 - x2l1, maxrp.axxi}. (3.1) 
x1,x2EM0 xEMo iEN 

Because M0 is a bounded set from the theorem assumptions, h < oo. M 0 C 

M 0 from the definition of M 0 and 

(3.2) 

from the definition of h. That immediately leads to 

Mo== Mo. 

From the theorem assumption there exists x E M0 such that XB > O. We 
define 

co min xi. 
iEB 

(3.3) 

Obviously co > O. We define our wanted intervals as U(A), U(b), which are 
provided by Theorem 12 for c ==co: 

3u(A),U(b)\f AEU(A),bEU(b) ( ('v'xEM3xEM llx - XII <co) /\ 

/\ (\f XEM3xEM llx - XII < co)). (3.4) 

___, ___, ,,...,_, 

Let's have arbitrary A E U(A) and b E U(b) and corresponding M 0 . We will 
prove that 

\f XEMo X N < ( ~ ' · · · ' ~) · (3.5) 

That will implicate that VxEMox E Mo or in other words 

We will prove (3.5) in two steps, first we will prove 
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"""" 
For the contradiction, we assume that there exists y E M 0 such that y N < 
(h, ... , h) and "3kENfÍk > ; . Because fÍN < (h, ... , h) and Y E Mo, also Y E M. 
Therefore for y from (3.4) must exists y E M, for which llY - ffll < Eo and 
YN == YN (Observation 13). 
Furthermore y ~ M 0 , because Yk == Yk > ~ and from (3.2) we know that 
YxEMoXN < (~, ... , ~). Thus YB Í O. 
But as llY - Yll < Eo and YB > O, it holds that YB > (-Eo, ... , -Eo). We 
define z as f ollows 

1 1 
z - 2x + 2Y· 

Because x E Mandy E M, from M convexity (Lemma 8), we have z E M. 
Leťs summarize what we know about x and y: 

• XB > (E0, ... , Eo) > O and O< XN < (i, ... , i) from (3.2) and (3.3). 

• YB > (-Eo, ... ,-Eo), O<yN < (h, ... ,h) andyk > ~-

Hence 

and 

Zk > 

1 1 1 1 h 
-Xk + -yk > -Q+--
2 2 -2 22' 
h 
4' 

1 1 1 1 
ZN > -XN + -yN > -0 + -0 > 0 2 2 -2 2 - ' 

ZN !XN + !YN < ! (h, ... , h) + !(h, ... , h), 
2 2 -2 4 4 2 

ZN < (h, ... ,h) 

1 1 1 1 
zs 

2
xs + 

2
Ys > 

2
(co, ... , Eo) + 

2
(-co, ... , -co), 

Z3 > O. 

This means that z E M0 and zk > i· It is the contradiction to (3.2)and we 
have praven (3.6). 

Now we are going to prove (3.5). For the contradiction let 
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Applying (3.6), it must hold that 

:3yEMo3jENYj > h . 
..........._... 

For X E M from (3.4) must exists X E M, for which llx - xll < Eo. As 
..........._... 

XN == XN and x 8 > (co, ... , co), it is evident that x8 > O. Thus x E M0 C 
............. -...... ,_._, 

M0 . Whole abscissa (x Y) is a part of M0 , because M0 is a convex set. As 
X N < ( ~, ... , ~) and Jfj > h, on this abscissa it must exist a point Z E Mo 
such that ZN < (h, ... , h) and :3iENZi > ~· That is the contradiction to (3.6). 
Hence 

and 
,,....,, 

Mo== Mo 
............ ............ 

holds for arbitrary A E U(A) and b E U(b). D 

3.3 Continuity of the Solution Function 

Theorem 37. Given an interval linear programming problem defined in 
(2.1), (2.2), (2.3), (2.4). M 0 , M 0 have the meaning from Definition 35. 
Let :3xEMoXB > O. If Mo is bounded, then 

\f é>03U(A),U(b) \f AEU(A),bEU(b) 

( (vxEMo::JyEMo llx - Yll < E) /\ (vyEM0 :3xEMo llx - Yll < E)) · 
Proof. Arbitrary E > O is given. The assumptions of previous Lemma 36 are 
fulfilled, so we obtain 

Mo== Mo 

............ 

V AEU1(A),bEU1(b)Mo == Mo. 

Theorem 34 provides us with U2 (A) and U2 (b) for E such that 

v AEU2(A),bEU2(b) 

( (vxEMo::JyEMo llx - Yll < E) /\ (vyEMo::lxEMo llx -yll < E)) · 
We define U(A) == U1(A) n U2 (A), U(b) == U1(A) n U2 (b) and conclude 

\:/ AEU(A),bEU(b) 

( (v xEMo::JyEMo llx - Yll < E) /\ ( vyEMo ::lxEMo llx - Yll < E)) . 
D 
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Lemma 38. Given an interval linear programming problem defined in {2.1), 
,,........ 

{2.2), {2.3), (2.4). Mo, Mo have the meaning from Definition 35. Let 
:3xEMoXB >O. If Mo is bounded, then 

\f c>0:3U(A),U(b),U(c) V AEU(A),bEU(b),cEU(c) 

((VxEMo::JXEMlo lcTx - crx1 < c) /\ (VxEMlo::lxEMo Wx - crx1 < c)). 

Proof. The style of this proof is the same as the style of the proof of Lemma 
10. Therefore the proof will not be done into details, like exact definition of 
Ec and Ex· 

Arbitrary E > O is given. Let 

Then 

We want 

lcT X - CT xl 
icr x - ťxl 

lcTX - CTXI < 

,,........ c-c 
' ,,_ 

X - X. 

I CT X - ( C + ~c) T (X + ~x) I , 
I CT ~X + ~~X + ~~~X I ' 
lcTI l~xl + 1~~1 lxl + l~~l l~xl · 

lcrx-ťxl < E. 

to hold. One of more possibilities is 

I CT I 16.x I < é ' 
3 

j6.~l lxl < ~' 
j 6.~ I 16.x I < ~ · 

(3.7) 

As x E M0 and M0 is bounded, then there exists a constant H E JR such that 
lxl < (H, ... , H). Hence 

jcTj 16.xl < ~' 

j 6.~ I ( H, ... ' H) < ~ ' 

16.~l 16.xl < ~ · 

(3.8) 

(3.9) 

(3.10) 

Let U(c) == (c - Ece, c + Ece), where Ec > O, e E Rn and Viei == 1. An exact 
value of Ec can be calculated similarly as in Lemma 10 from (3.9) and (3.10). 
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From (3.8) and (3.10) we also define Ex , where Ex >O l~x l < Exe . Theorem 
37 provides us with U(A) and U(b) for E == Ex 

v AEU(A) ,bEU(b) 

( (VxEMio::JXEMo Jlx - XII < Ex) /\ (VXEMo::lxEMio llx - XJI < Ex )) · 

Hence 

v AEU(A),bEU(b) 

( (VxEMo3xEMo lx - xl < ~x) /\ (VxEMo3xEMo lx - xl < ~x)) · 

That together with (3. 7)-(3.10) yield that 

V AEU(A),bEU(b),cEU(c) 

((VxEMo3xEMo icTx - CTxl < c) /\ (VxEMo3xEMo icTx - CTxl < E)). 

D 

Theorem 39. Given an interval linear programming problem defined in 
(2.1), (2.2), {2.3), {2.4). The solution function f is defined in {1.11), M 0 

has the meaning from Definition 35. Let 3xEMoXB > O and M0 be bounded. 
Then the function f is continuous in the point (A, b, c). 

Proof. We want to prove that 

\jc>o3u(A),U(b),U(c) V AEU(A),bEU(b),cEU(c) f (A, b, c) - f (A, b, C) < E. 

Arbitrary E > O is given. We can rewrite an interval linear programming 
problem (2.1) as 

Min { cT x; x E M 0 , A E A, b E b, c E c} . 

From previous Lemma 38 we obtain U(A), U(b) and U(c) for E >Oso that 

V AEU(A),bEU(b),cEU(c) 

((VxEMio::JXEMo icTx - CTXI < E) /\ (VxEMo::lxEMio icTx -CTXj < E)). 

Hence 

V min cT x - min cTx < E AEU(A),bEU(b),cEU(c) xE1\\ÁT · 
l'V'll xEMo 

In another words 

V AEU(A),bEU(b),cEU(c) f (A, b, c) - f (A, b, C) < E. 

D 
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3.4 Note on the Assumption of Theorem 39 

Theorem 39 will not hold without the assumption, that a s t of feasible 
solutions M 0 is bounded. However this assumption is not necessary, only 
sufficient. Example of a linear programming problem with unbounded M0 is 

Min {(0,-l)Tx;(O,l)x==l,x>O}. 

For the interval linear programming problem 

Min { ( 0, -1) T X; ( ( -1, 1), 1) X == 1, X > 0} , 

the solution function f (A, b, c) is not continuous in the point (A, b, c) == 
((O, -1), (O, 1), 1). Another example of a linear programming problem with 
unbounded M 0 is 

Min {(O, l)Tx; (1, -l)x == 0,x >O}. 

For the interval linear programming problem 

Min { ( (O. 9, 1.1), (O. 9, 1.1)) T x; ( (O. 9, 1.1), ( -1.1, -O. 9)) x == (-O .1, O .1), x > O} 

the solution function is continuous in every point of the intervals. 
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Conclusion 

The goal of the thesis was reached. 
Theorem 34 is the main result of the work and _ls proved in Chapter 

2. This theorem has two necessary assumptions - "AB matrix regularity" 
(2.3) and 3xEMoXB > O (Mo has its meaning from Definition 6). The first 
assumption about the maximum rank of matrixes in the given interval was 
easy to see. "Regularity" is an important property of matrixes and was the 
first to check. But finding of the second assumption, the existence of x E M0 

with x B > O, required much more effort ( actually it was the most difficult 
part of the whole thesis), and a new view on interval linear programming 
problems needed to be introduced. This view clearly separates basis and 
nonbasis variables and it is based on the first assumption of the matrixes 
maximum rank. This approach also slightly modified the set of the feasible 
solutions1 by bounding nonbasis variables. (Therefore the modified set of 
feasible solutions of (1.2) is bounded.) Stated approach leads gradually to 
Theorem 12, Theorem 33 and finally to Theorem 34. 

Theorem 12 does not require the second assumption yet and it says that 
the set M varies "continuously" with the entries in the matrix A and in the 
vector b. However, the introduction of the nonnegativity conditions on the 
basis variables stopped any straightforward attempt to prove Theorem 34. 
Therefore an additional assumption had to be introduced and Theorem 33 
about a dependency between M0 and Mc needed to be proved. 

Theorem 34 says that the set M ( the modified set of feasible solutions) 
varies "continuously" with the entries in the matrix A and in the vector b. 
This theorem would implicate that the solution function was continuous, if 
the set of feasible solutions was defined as in Definition 6. 

1The modified sets of feasible solutions are M, Mo (Definition 6). The sets of feasible 
solutions as known from linear programming are M, Mo (Definition 35). 

39 
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However, the set of feasible solutions in linear programming is defined 
as in Definition 35 and what was unexpected, the continuity of the solution 
function could not be proved without an additional assumption, that M0 is 
bounded. This assumption is different from the previous assumptions, as it is 
only a sufficient assumption, not necessary one (see the last section of Chapter 
2 for examples). Defining exactly necessary assumptions for Theorem 39 is 
one of the topics for a future research, as well as a study of continuity of the 
solution function on an interval. These topics need to be studied in order to 
achieve a practical use of the theoretical results of this thesis. 
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