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Thesis description





Logical foundations of fuzzy
mathematics

Preface

This is a commentary associated with the author’s PhD thesis in logic at the Faculty of
Arts, Charles University in Prague. The thesis is based on papers containing results
of five years of the author’s research in logic-based fuzzy mathematics. The papers have
been published in peer-reviewed international journals [14, 30, 34, 26, 28, 41], proceedings
of international conferences [33, 31, 32, 16, 17, 19, 22, 18, 37, 43, 42, 44, 29] and other
volumes [15, 21, 25, 35]. By the time of the submission of this thesis and according to the
author’s knowledge, the papers have been cited 25 times in peer-reviewed international
journals and 15 times in edited volumes and proceedings of international conferences,
excluding auto-citations and citations by co-authors. Two co-authored conference papers
won the Best Paper [32] and Distinguished Student Paper [42] awards (respectively at the
11th IFSA World Congress and the 5th Conference of EUSFLAT).

The work is part of a larger project in formal fuzzy mathematics, which is still in
progress (cf. the end of Section 4.1 below): several important topics in formal fuzzy
mathematics are being investigated by my colleagues and myself, with results not yet
complete for publication. Therefore it seemed more appropriate to present the results
of this research in the form of a commented collection of papers, rather than to compile
a monographic text, as at the time of submission the topic was still under permanent
construction and re-construction and not yet ripe for a book-style presentation.

Due to the brevity or purely expository nature of some of the conference papers and
the overlap of their topics with full journal articles, only the six journal papers [34, 30,
28, 41, 26, 14] and four of the proceedings papers [16, 19, 43, 42] have actually been
included in the thesis. The author’s contribution to co-authored papers is indicated in
Section 4.2.

The thesis is organized as follows: In the cover text (Part I), Section 1 provides a
general introduction to the area of research. A broader context and the state of the art
upon which the thesis is based is described in Section 2. The main features of the approach
developed in the thesis and the significance of the topic are discussed in Section 3. The
author’s own contribution to the topic and the papers included in the thesis are then
described in Section 4. The author versions of the published papers constitute the main
body of the thesis (Part II). The thesis is concluded by mandatory annexes (Part III).

Acknowledgments. Many people must be thanked for helping this thesis come to exis-
tence. I am grateful to Petr Jirk̊u, not only for his supervision and help with organizational
matters at the Faculty of Arts, but also for much needed support in the early years of my
study. Many thanks go to my co-advisor Petr Hájek, for countless benefactions including
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(but not limited to) his advice, support, and friendship: by adopting me to his working
group at the Institute of Computer Science, he has enabled me to participate in the sci-
entific life of the relevant community; and nearly all of my knowledge of fuzzy logic has
its ultimate roots in his lectures and tutoring.

I thank all my co-authors for fruitful co-operation. In alphabetical order they are
Ulrich Bodenhofer, Petr Cintula, Martina Daňková, Rostislav Horč́ık, and Tomáš Kroupa.
Without them, this thesis would either be much sparser, or would have to deal with
different topics. I am grateful to people who supported my research by including me in
their grant teams, supporting my fellowship applications, or providing funding for my
participation at conferences: Petr Hájek, Jǐŕı Š́ıma, Jeff Paris, Mirko Navara, Petr Jirk̊u,
Franco Montagna, and Andrzej Wísniewski.

The research presented in this thesis was supported by the Information Society project
1ET100300517 and grants No. B100300502, A1030004, A100300503, and A900090703 of
the Grant Agency of the Academy Sciences of the Czech Republic, grant No. 401/03/H047
of the Grant Agency of the Czech Republic, Institutional Research Plan AV0Z10300504,
COST action 274 TARSKI, fellowships from the Marie Curie Early Stage Training network
MEST–CT–2004–504029 MATHLOGAPS and the CEEPUS network SK–042, three joint
projects of the Academy of Sciences of the Czech Republic and Spanish Research Council,
and program KONTAKT projects 2005–15 Austria and 6–07–17 Austria. The conference
presentation of some results was furthermore supported by Polish Research Council, a
EUSFLAT grant for student participation, and a travel grant from the Faculty of Arts of
Charles University.

I have also benefited from discussions with many colleagues and kind advice given to
me by senior researchers in the field. Among those whose remarks helped me a lot are (in
alphabetical order and besides those listed above) Christian Fermüller, David Makinson,
Jeff Paris, and several anonymous referees. Thanks are due to Petr Cintula, Petr Hájek,
Tomáš Kroupa, and Carles Noguera for comments on a draft version of the cover chapter.
Many other people have helped me during the course of my PhD study with scientific and
organizational matters; I appreciate all help I have been given.

1 Introduction

Fuzzy mathematics is the study of fuzzy structures, or structures that involve fuzziness—
i.e., such mathematical structures that at some points replace the two classical truth
values 0 and 1 with a larger structure of degrees. Often, the real unit interval [0, 1] is
employed as the system of degrees, but other options are common as well—a finite set, an
arbitrary lattice, an algebra of some kind or other. The degrees are intended to provide
more flexibility to a fuzzy mathematical structure than the two truth degrees provide to
the corresponding classical (“crisp”) mathematical structure.

A simple example of a fuzzy mathematical structure is that of a fuzzy set. Instead of
classical two-valued characteristic functions χ : X → {0, 1}, fuzzy sets employ real-valued
membership functions µ : X → [0, 1], where X is a fixed universe of discourse. While
ordinary crisp sets clearly cut the elements of X between members and non-members, the
richer system of degrees in fuzzy sets allows modeling gradual change between membership
and non-membership.

Since the introduction of fuzzy sets by Zadeh [212] in 1965, a plethora of fuzzy mathe-
matical structures have been proposed and investigated in the literature. The degrees that
replace the classical truth values 0 and 1 (usually called membership degrees, as they serve
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as values of membership functions) can appear at various places in such fuzzy structures.
For instance in fuzzy topology, crisp families of open fuzzy sets (“fuzzy topologies”), fuzzy
families of open crisp sets (“fuzzifying topologies”), and fuzzy families of open fuzzy sets
(“bifuzzy topologies”) have all been investigated [55, 208, 130]. The membership degrees
themselves can form various structures. For example, the original notion of [0, 1]-valued
fuzzy set was soon generalized to L-valued fuzzy sets for L an arbitrary lattice [95], and
even more general (e.g., poset-valued) fuzzy sets and fuzzy structures are studied [184].

The large freedom in defining fuzzy mathematical notions correlates with freedom in
interpreting the informal meaning of membership degrees. Depending on the intended in-
terpretation, various structures of membership degrees and various definitions of fuzzy
mathematical notions are appropriate. Vice versa, particular structures of membership
degrees and particular definitions of fuzzy mathematical notions admit only some of all
possible informal interpretations and applications of the fuzzified theory. Unfortunately,
this fact is seldom reflected in the practice of the fuzzy community. The omission of
such considerations can result in arbitrariness of definitions, inappropriateness of applica-
tions, and completely unclear methodology, for all of which fuzzy mathematics has often
(and in many cases quite justly) been reproached and disrespected by the mainstream
mathematical community.

The present work is not intended to contribute to the chaotic and methodologically
confused development of the broad area of fuzzy mathematics. Instead, from the mixture
of possible interpretations of membership degrees it selects one particular interpretation
which has already been clarified enough to support a methodologically sound development:
namely, the interpretation of membership degrees as degrees of comparative truth, which
is studied by deductive fuzzy logic. Our approach to fuzzy mathematics can thus be
characterized as logic-based.1 More detailed methodological considerations justifying this
approach have been presented in [26]; here we only stress the most important points.

Deductive (or formal, symbolic, mathematical) fuzzy logic follows the modus operandi
of classical logic. Without necessarily claiming that the philosophical notion of truth as
such is (or is not) many-valued, it employs semantical models that assign intermediary
truth degrees to propositions. In deductive fuzzy logic, like in fuzzy mathematics in
general, a richer structure of truth degrees enables to model gradual change between truth
and falsity, which seems appropriate in many real-life situations. The interpretation of
membership degrees in terms of truth, moreover, allows studying transmission of truth
degrees in formalized arguments, in the same way as classical logic studies transmission
of bivalent truth.

The study of transmission of partial truth (in the technical sense of “partial truth” as
the graded quality preserved in sound arguments) is what in fact distinguishes deductive
fuzzy logic from traditional fuzzy logic. Fuzzy logic in the traditional sense has emerged
soon after the introduction of fuzzy sets [96], by generalizing the obvious correspondence
between elementary set operations and logical connectives. If the transmission of partial
truth is not taken into account, there are as many ways to define fuzzy logical connec-
tives as there are possibilities for pointwise elementary fuzzy set operations. This makes
traditional fuzzy logic subject to the same criticisms as fuzzy mathematics as a whole,
especially for arbitrariness and unclear methodology. Moreover for most choices of logical

1Other approaches to fuzzy mathematics exist, some of them quite far developed—for example
category-theoretical (see [106]) or sheaf-theoretical (see [129]). As far as they can address the methodolog-
ical issues hinted at above, they provide a legitimate grounding for those branches of fuzzy mathematics
that are compatible with their methodological assumptions. The logic-based approach then complements
rather than rivals such approaches.
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connectives, the resulting logical systems have very poor logical properties, which leads
to additional criticism from the point of view of formal logic.

It can nevertheless be shown [26, 22] that if certain basic principles governing the
transmission of partial truth are observed, the resulting logical systems are well-behaved
and well-motivated. These principles narrow down the choice of real-valued logical con-
nectives to a class based on left-continuous t-norms and described by deductive systems
of t-norm based fuzzy logics [110, 81]. These logics not only model the gradual change
from truth to falsity like other kinds of fuzzy logic, but also have a “deductive face” and
belong in a well-explored and well-behaved class of substructural logics [173, p. 208].

Since Hájek’s monograph [110], various propositional and first-order systems of de-
ductive fuzzy logic have been defined and intensively studied. Nowadays the discipline
is developed to the point that it is reasonable to construct and study axiomatic math-
ematical theories within the formal framework of deductive fuzzy logic. A systematic
development of axiomatic fuzzy mathematics based on deductive fuzzy logic has been
proposed as a research program in [34]; the present work can be viewed as a report on its
implementation.

The strategy proposed in [34] was to utilize the similarities between deductive fuzzy
logics and classical logic and employ the architecture that has proved useful in foundations
of classical mathematics. The classical foundational approach consists in developing a suf-
ficiently rich foundational theory that would harbor all (or almost all) other mathematical
theories. In classical mathematics, the role of a foundational theory can be assumed, e.g.,
by some variant of set theory, type theory, or category theory. For the foundations of
logic-based fuzzy mathematics, [34] proposes a fuzzy variant of Russell-style simple type
theory that has been introduced in [30]. It can equivalently be characterized as Henkin-
style higher-order fuzzy logic or a typed theory of cumulative fuzzy classes (i.e., Zadeh’s
fuzzy sets of all finite orders). The apparatus of this foundational theory, also called
Fuzzy Class Theory or FCT, is described in detail in [30, 31, 32, 35]; its methodologi-
cal issues are further discussed in [26, 37]. The basics of the theory of fuzzy sets and
relations, which are the prerequisites of all other branches of fuzzy mathematics, are de-
veloped in [30, 28, 41, 19]. Some more advanced topics of fuzzy mathematics have already
been developed, too, including the (graded) theory of fuzzy lattices [17, 15], fuzzy intervals
[16, 134], aggregation operators [64, 29], fuzzy filters [149], and fuzzy topology [43, 42, 44].
In [14, 38, 25], the apparatus is applied in metamathematics of fuzzified versions of other
non-classical logics.

The results achieved so far have already demonstrated that this style of development
of fuzzy mathematics is viable and can facilitate generalizing known theorems as well as
discovering new results. Indeed, from the point of view of formal logic the methodology
and foundational structure of the theory is quite standard and straightforward. On the
other hand, from the point of view of traditional fuzzy mathematics the theory presents a
radical shift of paradigm, embraced till now by very few authors (for notable exceptions see
Section 2). The main reasons justifying the development of logic-based fuzzy mathematics
are described in Section 3 below.

There are many open questions and areas for future research in formal fuzzy math-
ematics, as well as problems of philosophical and methodological nature. Even though
these problems are still distant from the applied practice or topics of mainstream interest,
their solution can give us better understanding of the phenomenon of gradedness and its
role, as well as possible applications.

For the adequate perspective on the present work with respect to the whole of fuzzy
mathematics, it is necessary to keep in mind the methodological restrictions of the logic-
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based approach. The definite interpretation of membership degrees as degrees of truth
transmitted under inference leads on the one hand to methodological clarity, but on the
other hand it restricts meaningful definitions to those compatible with the deductive
paradigm, and limits the scope of applicability of the results. For instance, as men-
tioned above and as shown in more detail in [26], the principles of deductive fuzzy logic
restrict the choice of the conjunction connective on the interval [0, 1] to left-continuous
t-norms. Consequently, the operation of fuzzy set intersection can meaningfully be de-
fined only by means of such conjunctions.2 Other possible notions of intersection that
may be meaningful in broader fuzzy mathematics, for instance those based on aggregation
operators different from left-continuous t-norms, may well be definable in a sufficiently
strong higher-order fuzzy logic (e.g., higher-order logic ÃLΠ), but are ill-motivated from
the point of view of logic-based fuzzy mathematics. Thus, as argued in [26], even though
the expressive power of higher-order fuzzy logic goes well beyond its intended scope, the
strength of its apparatus is best manifested within the limits of its motivation. Logic-
based fuzzy mathematics thus forms a specific, distinct part of fuzzy mathematics, which
is based on the notion of deduction and which should not be confused with other areas
of fuzzy mathematics that are based on different interpretations of membership degrees,
such as degrees of uncertainty, belief, frequency, preference, etc. (cf., e.g., [90, 74, 73] for
different interpretations of degrees and the concluding part of [26] for the need of their
clear separation).

Another connection that should be clarified is that to the philosophy of vagueness.
On the one hand, fuzzy logic is often claimed to be the logic of vague propositions, or
the logic of vagueness. On the other hand, it is as often criticized by philosophers as a
completely misled and inadequate theory of vagueness. Although this introduction is not
a suitable place to discuss this issue in detail, it should be stressed that both claims are
inaccurate and need certain qualifications. To be sure, fuzzy logic cannot claim to be the
logic of vagueness, as vagueness is a phenomenon with many facets, most of which are not
captured by deductive fuzzy logic (e.g., are not truth-functional). If anything, deductive
fuzzy logic can claim to be a logic of a certain kind of vagueness, related to properties
that can be understood as coming in degrees. Moreover, deductive fuzzy logic is only
a logic, rather than a fully fledged theory of vagueness meeting all requirements of the
philosophy of vagueness (including answers to questions not asked by logic, for instance
about the objectivity of the truth degrees etc.). Still, it can be argued that deductive
fuzzy logic is a good model of inference under (certain kinds of) vagueness and as such can
serve as a logical basis for a (prospective) theory of vagueness, or at least can help shed
light on some of its facets. The sweeping damnation of fuzzy logic by many philosophers
of vagueness is therefore unjustified and is for the most part caused by the ignorance of
recent advances in fuzzy logic.3

Finally, fuzzy mathematics is sometimes criticized by mainstream mathematicians as

2At least as long as we understand intersection as the operation expressing the fact that an element
belongs to the first and the second fuzzy set, i.e., require that one can infer both x ∈ A and x ∈ B from
x ∈ A ∩B and vice versa.

3For instance, many criticisms are caused by an inappropriate use of weak conjunction instead of strong
conjunction in ÃLukasiewicz fuzzy logic (which is by far the most popular fuzzy logic among philosophers
of vagueness), cf., e.g., [205, §4] or [78, §3]. Bad logical properties of some systems of fuzzy logic which
are defective from the deductive point of view (e.g., Zadeh’s original system of connectives min, max, and
1−x) induce many philosophers (e.g., [201]) to condemn fuzzy logic as a whole, without considering better
options offered by present-day mathematical fuzzy logic. Further problems arise from misunderstanding
the role of fuzzy logic and expecting it to be applicable to situations that are beyond its scope (e.g.,
related to probability, levels of belief, etc.).
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giving nothing but cheap generalizations of classical results. One of the aims of the present
work is to show that indeed large parts of fuzzy mathematics are trivial, and demonstrate
their triviality by deriving them from easily provable metatheorems (e.g., [30, Th. 33–36]
or theorems in [41]). This shows that unlike more traditional approaches, the deductive
apparatus of higher-order fuzzy logic enables clearly to perceive the triviality of such
results. At the same time it provides means for reaching less trivial theorems (cf., e.g.,
[28, §6–7]) and possibly for achieving higher levels of fuzzy mathematics. It can be hoped
that this direction will eventually contribute to gaining a better reputation for fuzzy
mathematics among mainstream mathematicians.

2 State of the art

The enterprise of logic-based fuzzy mathematics is not isolated from other areas of math-
ematics and logic. It is based on formal fuzzy logic and its metamathematics, and can
be regarded as its higher-order extension. At the same time it can be regarded as a for-
malization, reconstruction, and further development of certain parts of traditional fuzzy
mathematics. In a broader context it is part of non-classical mathematics, i.e., mathemat-
ics that uses a non-classical logic for reasoning. This section gives an overview of previous
results upon which logic-based fuzzy mathematics in general and the author’s contribu-
tion in particular have built, as well as main results in related areas. However, due to
the breadth of the field, this section cannot give an exhaustive survey or full historical
account of all important works published in this area. Works which are most relevant to
particular topics of this thesis are referred to in the articles it consists of; only a brief
description of the state of the discipline at the time of the current project is given here,
with a focus on works relevant for formal fuzzy mathematics.

2.1 Non-classical mathematics

Non-classical mathematics can be defined as the development of mathematical theories
that employ some non-classical logic for informal reasoning or formal derivations. The
area of non-classical mathematics comprises several independent branches, according to
the kind of underlying logic used for mathematical reasoning. Each of these branches can
further be divided into many particular theories over particular logics of the respective
kind.

An example of non-classical mathematics is paraconsistent mathematics based on some
variant of paraconsistent logic. The common feature of paraconsistent logics is that con-
tradictions are in general not explosive (i.e., A and non-A do not in general entail an
arbitrary B). This fact can be used, e.g., for the development of mathematical analysis
based on the (contradictory) notion of infinitesimals [165]. Another application of para-
consistent mathematics is in naive set theory with full comprehension, where Russell’s
paradox is not destructive thanks to paraconsistency (e.g., [47]).

Avoiding Russell’s paradox is one of the most important motivations for non-classical
mathematics. Besides paraconsistency, there are several alternative ways in which Rus-
sell’s paradox can be eliminated by employing a non-classical logic. One option is based
on the observation that the structural rule of contraction (see, e.g., [182, 175, 173, 174])
is essential for the derivation of contradiction from the definition of Russell’s set. It has
indeed been proved that in various contraction-free substructural logics, set theory with
the unrestricted axiom scheme of comprehension is consistent, and some of such theories
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have indeed been developed—e.g., over variants of linear logic [195, 187].4 In fuzzy logics
(which belong among contraction-free logics, cf. [173]), the consistency of unrestricted
comprehension over ÃLukasiewicz logic was conjectured in 1957 by Skolem ([190], accord-
ing to [204]). Skolem’s partial results [191] were later extended by Chang [53] and Fen-
stad [84], and the conjecture finally confirmed in 1979 by White [204]. The theory has
recently been investigated by Hájek [115] and Yatabe [207]. It is still an open question
whether the theory or some extension thereof is sufficiently strong to support non-trivial
mathematics (as conjectured by Skolem): Hájek’s paper [115] contains some negative re-
sults on this question regarding arithmetic.5 Although certainly worth investigating, this
style of fuzzy mathematics is very different from traditional fuzzy mathematics. Logic-
based fuzzy mathematics presented in this thesis avoids Russell’s paradox by different
means (namely in the style of type theory) and is only remotely related to fuzzy set
theories with unrestricted comprehension.6

Another way to avoid Russell’s paradox by means of non-classical logic has been pro-
posed by Kraj́ıček in [146, 147], namely by adding (epistemically interpretable) modalities
to the language of set theory. The resulting theory is an example of modal mathematics,
which in general can employ various kind of modalities serving various purposes. Modal
mathematics related to the phenomenon of vagueness (and thus remotely to fuzzy logic)
is proposed in [136].

Probably the most influential of all branches of non-classical mathematics is intu-
itionistic mathematics; related to the latter is constructive mathematics which usually
uses some variant of intuitionistic reasoning, plus or minus some principles considered
(non)constructive. The informal development of intuitionistic mathematics by Brouwer
and his followers (cf. its formalization [143]) and constructive mathematics by construc-
tivists can be considered the first non-classical mathematics ever developed. The later
development of formal theories over intuitionistic logic (e.g., [77, 183]) is of special impor-
tance for logic-based fuzzy mathematics, since deductive fuzzy logics can be characterized
as prelinear contraction-free intuitionistic logics;7 informally speaking, fuzzy logics show
in general intuitionistic features (especially in the behavior of quantifiers and negation).

The most important parts of intuitionistic mathematics for the foundations of fuzzy
mathematics are set theories over intuitionistic logic. Since they are directly connected
with the development of set theories over fuzzy logic, they will be described together with
the latter in Section 2.4.

Especially strong links exist between mathematics over intuitionistic logic and that
over Gödel fuzzy logic (for which see [76, 135, 110, 4]), as Gödel logic extends intuitionistic

4Related theories with unrestricted comprehension were originally studied by Grishin over the logic
known as (classical) logic without contraction, Grishin’s logic, or Ono’s CFLew (classical full Lambek
calculus with exchange and weakening, see [173]). A description and further elaboration of Grishin’s
work [108] can be found, e.g., in [51].

5Further negative results [181, 121] regard the related question (which classically is a variation of
Russell’s paradox or the Liar) whether a truth predicate can be added to arithmetic over ÃLukasiewicz
logic.

6It should be noted that for the consistency of unrestricted comprehension, a necessary condition on
the underlying logic is that no bivalent connective be definable. Consequently, fuzzy set theories with
full comprehension cannot be based on Gödel or product logics (as they have bivalent negation), nor
any fuzzy logic with the Baaz 4 connective. Many important fuzzy logics are therefore excluded from
this style of fuzzy mathematics. Fuzzy set theory with unrestricted comprehension is thus a very specific
theory rather than a universal formalization of traditional fuzzy mathematics.

7More precisely, the weakest deductive fuzzy logic MTL, which is arguably [26] the weakest fuzzy logic
suitable for formal fuzzy mathematics, arises by adding the axiom of prelinearity to the intuitionistic
calculus LJ without the rule of contraction.

9



logic just by Dummett’s axiom of prelinearity (ϕ → ψ)∨(ψ → ϕ) and the first-order axiom
of constant domains (∀x)(ϕ ∨ ψ(x)) → (ϕ ∨ (∀x)ψ(x)). Fuzzy mathematics over Gödel
logic is thus stronger (i.e., closer to classical mathematics) than intuitionistic mathematics
and most results in intuitionistic mathematics are readily transferrable to Gödel fuzzy
mathematics. Since the connectives of Gödel logic are available in all extensions of the
fuzzy logic MTL4, the results in Gödel fuzzy mathematics have also some relevance in
general fuzzy mathematics.

Kripke semantics for predicate Gödel logics, characterized in [10] as countable lin-
ear Kripke frames for intuitionistic logic with constant domains, with a possible modal
interpretation of epistemic states of the idealized mathematician (or Brouwer’s creating
subject, cf. [199]) provides an additional link between fuzzy, modal, and intuitionistic
mathematics. The Kripke semantics can be extended to non-contractive first-order fuzzy
logics [163, 164] along the lines of [174] (i.e., equipping the Kripke frame with a monoidal
operation, or a ternary accessibility relation). Kripke semantics can provide another pos-
sible link, beside that based on the algebraic semantics of (linear) residuated lattices,
of logic-based fuzzy mathematics to other substructural (e.g., relevant [159, 88]) math-
ematical theories; this option has not yet been investigated, though. Since furthermore
intuitionistic logic is the inner logic of topoi (see, e.g., [98]), intuitionistic mathematics
may also provide a link between the logic-based and category-theoretic or sheaf-theoretic
approaches to fuzzy mathematics [106, 129]. This link, however, has not yet been inves-
tigated, either.

2.2 Formal fuzzy logic

Logic-based fuzzy mathematics could not be developed without previous sufficient ad-
vancement of formal fuzzy logic. The requisite advances in formal fuzzy logic were achieved
only in the past decade,8 even though there were some (rather isolated) predecessors to
this development.

Logics now regarded as belonging to the family of fuzzy logics were defined and studied
from about 1920 on by several logicians, including ÃLukasiewicz [154], Wajsberg [200],9

Gödel [94], Dummett [76], Hay [125], Belluce and Chang [45], Horn [135], and others.
Fuzzy logic related to Zadeh’s idea of a fuzzy set first occurred in Goguen’s 1969 paper
[96], motivated by the obvious correspondence between elementary fuzzy set operations
and logical operations on truth degrees. In subsequent years, however, the term “fuzzy
logic” was used either in a very broad sense (cf. the distinction between fuzzy logic in
broad and narrow sense made by Zadeh in [214]), or only in reference to the semantical
truth tables defining some (often rather arbitrarily chosen) operations on truth degrees.

The first formal calculus specifically devised for fuzzy logic, later proved to be equiva-
lent to ÃLukasiewicz fuzzy logic with real truth constants [110, 122], was given in 1979 by
Pavelka [177]. This line of research, further pursued and extended to first-order logic by
Novák [167, 166], studies the so-called fuzzy logic with evaluated syntax—a specific kind
of labeled-deduction calculus for fuzzy logic that enjoys the so-called Pavelka-style com-
pleteness (i.e., the correspondence between syntactic provability degrees of formulae and
their semantic truth degrees). The logical foundations of fuzzy mathematics presented
here are, however, based on systems of fuzzy logic with traditional logical syntax rather

8This explains why the logic-based approach to fuzzy mathematics started to be systematically inves-
tigated only a few years ago and almost forty years after fuzzy mathematics itself.

9The historical papers by ÃLukasiewicz and Wajsberg are cited according to [110] and [172], respectively.
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than evaluated syntax, and utilize its similarity to classical Boolean logic and classical
foundations of mathematics.10

The best known fuzzy logics with traditional syntax are those that use left-continuous
t-norms as the truth functions of conjunction and their residua as the truth functions of
implication (see, e.g., [144] for the theory of t-norms). Members of this family of t-norm
fuzzy logics have systematically been studied since Hájek’s milestone 1998 monograph
[110], in which the ‘basic’ fuzzy logic BL of all continuous t-norms and its most important
extensions, both propositional and first-order, were described in detail. Since then, a
plenitude of formal systems of t-norm logics have been defined and their basic metamath-
ematical properties (incl. general and standard completeness of their axiomatic systems,
arithmetical or computational complexity, functional representation, etc.) investigated.

Of these systems, the most important for our present investigation are the logic MTL
(or its variant MTL4) of all left-continuous t-norms [81] and the logic ÃLΠ (or its variant
ÃLΠ1

2
) joining the three basic t-norms [83, 59]. As argued in [26], MTL is the weakest fuzzy

logic suitable for the deductive style of fuzzy mathematics, thus providing the largest
generality within certain reasonable constraints. The logic ÃLΠ1

2
, on the other hand, is

the most expressive system among best-known fuzzy logics that still possesses very good
metamathematical properties: a deduction theorem [59], introduction and elimination of
Skolem functions [60, 30], etc. Besides other features, its standard semantics contains all
basic arithmetical operations on truth degrees; thus it is a good approximation of the
needs of traditional fuzzy logic. Moreover, a broad class of propositional t-norm logics
is interpretable in ÃLΠ; thus it can serve as a common framework for integration of fuzzy
mathematics over more specialized fuzzy logics.11 Nevertheless, various modifications of
these logics can be useful for more specific purposes within the project (for example, the
involutiveness of negation was needed in [43]; therefore, IMTL4 was employed as the
ground logic). Higher-order logic and formal fuzzy mathematics can be based on any
t-norm fuzzy logic, and all of them may be useful for this purpose in specific situations.

General algebraic semantics of well-behaved propositional t-norm logics consists of
suitable quasivarieties of residuated lattices (possibly enriched with additional operators).
Consequently, t-norm fuzzy logics belong to the family of substructural logics, as the latter
can be identified with logics of (classes of) residuated lattices [173]. Both the theory of
residuated lattices [139, 89] and substructural logics [175, 182] thus provide a broader
background for the more specific study of t-norm fuzzy logics. In particular, t-norm
logics fall within contraction-free substructural logics [174], since their local12 consequence
relation in general fails to satisfy the structural law of contraction (or the idempotence of

10One of the reasons for the choice of traditional rather than evaluated syntax is the necessary condition
for the Pavelka-style completeness that implication be continuous, which limits fuzzy logic with evaluated
syntax to variants of ÃLukasiewicz logic.

11These were the reasons why ÃLΠ was chosen as the ground logic of the foundational Fuzzy Class
Theory in the original paper [30], while later most of the more particular disciplines of logic-based fuzzy
mathematics have for the sake of generality been developed in Fuzzy Class Theory over the logic MTL4
(as combinations of connectives pertaining to different t-norms turned out to be used only rarely).

12Like in modal logics or other logics with partially ordered truth values, local and global consequence
can be distinguished in t-norm fuzzy logics [117, 26]. Even though the global consequence relation
(which transmits the full truth of fuzzy propositions) is more commonly studied in formal fuzzy logic, it
is the local consequence relation between partially true premises and a partially true conclusion which is
more important for formal fuzzy mathematics, as it allows deriving graded results with imperfectly true
premises. In the practice of formal fuzzy mathematics, we derive theorems of the form ϕ1 & . . .&ϕn → ψ
by the rules of global consequence, which is axiomatized by the usual systems of fuzzy logic; the latter
form internalizes precisely the local consequence between the premises ϕ1, . . . , ϕn and the conclusion ψ.

11



conjunction), while the laws of exchange and weakening do hold in t-norm fuzzy logics.
Related systems that lack some of the latter structural laws, e.g., Metcalfe’s uninorm
logic UL which drops weakening or logics with non-commutative conjunction like pseudo-
BL or the flea logic, are studied as well [157, 150, 71, 114]. With appropriate changes,
higher-order logic and formal fuzzy mathematics can be developed over these related
systems, too.

As contraction-free substructural logics with exchange and weakening, t-norm fuzzy
logics extend Ono’s logic FLew (full Lambek calculus with exchange and weakening, see,
e.g., [173]), also known as affine multiplicative additive intuitionistic linear logic [157],
Höhle’s monoidal logic [127] or intuitionistic logic without contraction [1], i.e., the logic
of commutative bounded integral residuated lattices. The distinctive feature of t-norm
fuzzy logics among contraction-free logics is the validity of the axiom of prelinearity
(ϕ → ψ) ∨ (ψ → ϕ). In [36] we argued that prelinearity (in a more general form) can be
regarded as a characteristic feature of the class of fuzzy logics (i.e., not just t-norm based)
among Cintula’s weakly implicative logics [62]. A general theory of weakly implicative
fuzzy logics as the logics of classes of linearly ordered logical matrices is also described
in [62].

The conditions of weakly implicative fuzzy logics, however, only ensure suitable prop-
erties of implication as the principal connective in formulae true to degree 1. For the
deductive style of fuzzy mathematics aimed at graded theorems that transmit partial
truth, further conditions are needed that ensure that implication and conjunction respec-
tively internalize the local consequence relation and cumulation of premises. The resulting
class of deductive fuzzy logics [26] can be characterized as the intersection of the classes of
Cintula’s weakly implicative fuzzy logics and Ono’s substructural logics (optionally with
exchange and weakening, which will be assumed further on), or as the class of fragments
or expansions of MTL (or Metcalfe’s [156] uninorm logic UL when working without weak-
ening) with all connectives congruent w.r.t. bi-implication. Deductive fuzzy logics (which
include all common t-norm logics) are the intended background logics for logic-based fuzzy
mathematics as studied in the present project.

Propositional fuzzy logic is of course insufficient for the development of formal fuzzy
mathematics, which besides fuzzy logical connectives also needs some means for (prefer-
ably fuzzy) quantification over its individuals. Some first-order systems of particular fuzzy
logics were developed already during the pre-fuzzy and early fuzzy era [125, 45, 194]. A
systematic treatment of first-order variants of t-norm based fuzzy logics has started with
Hájek’s book [110]. Those first-order fuzzy logics that are most important for logic-based
fuzzy mathematics are described in [110, 59, 81]; a comprehensive survey of first-order
t-norm fuzzy logics is [118]. The basics of model theory for t-norm fuzzy logics have been
developed in [119] and [118, §6]. Metamathematical properties of first-order fuzzy logics
relevant to the important question of their completeness w.r.t. the standard real-valued
semantics can be found in [161, 113, 116, 163].13 Initial steps toward a general theory of
first-order weakly implicative fuzzy logics are given in [60], which largely conforms with
Rasiowa’s general approach to first-order implicative logics [180]. Higher-order systems
of fuzzy logics and axiomatic theories over first-order fuzzy logics will be mentioned in
Section 2.4.

The quantifiers in all of the first-order systems studied in the papers mentioned above
are the lattice quantifiers, corresponding to lattice conjunction and disjunction.14 This

13Of the most important first-order fuzzy logics, the standard completeness holds only for MTL and
Gödel logic. The standard incompleteness of other logics is usually proved by showing that the arith-
metical complexity of the set of their standard real-valued tautologies is larger than Σ1.

14Recall that in contraction-free substructural logics there are two different meaningful conjunctions and
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is fully sufficient for the needs of formal fuzzy mathematics, since the first-order systems
with just the lattice quantifiers turn out to be strong enough to enable the construc-
tion of Henkin-style higher-order logic, in which various classes of strong (multiplicative)
quantifiers become definable [39, 65, 64].

First-order fuzzy logics containing a strong quantifier as a logical symbol have been
studied by Montagna in [160]; cf. also another strong quantifier introduced for the real-
valued semantics by Thiele [196, 197] (as described in [160]). However, these quantifiers
do not coincide with the weakest quantifier Π that allows the inference (Πx)ϕ(x) →
&t∈M ϕ(t) for any finite multiset M of terms.15 According to our knowledge, the lat-
ter ‘inferentially optimal’ multiplicative quantifier has so far only been sketched in our
abstract [65].

Besides the special case of multiplicative quantifiers, also a general notion of quantifier
is of importance for formal fuzzy mathematics. Generalized quantifiers formally studied
in a logic-based setting by Novák [168, 171] and Holčapek [132] are motivated mainly
by modeling natural language (cf. generalized quantifiers in classical logic [203, 178] and
linguistically-motivated fuzzy quantifiers in traditional fuzzy mathematics [215, 93]) or
applications in fuzzy control. From the point of view of formal fuzzy mathematics, crisp
generalized quantifiers such as for infinitely many x, fuzzy counting quantifiers like for
many x, or quantifiers relativized to a fuzzy mathematical condition like for all large
numbers x are of the greatest interest; however, these have apparently not yet been sys-
tematically studied in the framework of formal fuzzy logic, although some of the linguistic-
oriented approaches mentioned above are undoubtedly applicable in this area as well. Such
quantifiers are nevertheless implicit in many constructions of formal fuzzy mathematics:
for example, Bandler and Kohout’s “local properties” of fuzzy relations [8, 9] are instances
of fuzzily relativized quantifiers. The initial studies on fuzzy quantifiers in formal fuzzy
logic mentioned above mostly employ higher-order systems (Novák’s fuzzy type theory
[169] or our higher-order fuzzy logic [30]), since fuzzy quantifiers can be regarded as fuzzy
sets of fuzzy sets. Apart from strong quantifiers mentioned above, the possibility of having
generalized fuzzy quantifiers as primitives in the logical language has probably not been
considered in formal fuzzy logic yet; for the development of formal fuzzy mathematics
they are not indispensable, as they can be introduced internally in higher-order systems
that are based on lattice quantifiers.

Perhaps even more important for formal fuzzy mathematics than various kinds of
strong and generalized quantifiers is the related notion of exponentials. Exponentials (in
our sense of [65]) can be seen as propositional counterparts of truth-functional strong
quantifiers.16 They are motivated by similar considerations as Girard’s exponentials for
linear logic [91], which are used generally in substructural logics (see, e.g., [175]). Expo-
nentials studied in fuzzy logic so far include Montagna’s storage operator of [160], which
corresponds to his strong quantifier mentioned above, and Baaz’s operator 4, introduced

disjunctions. One of the pair of connectives is in the literature variably called weak, lattice, comparative,
extensional, or additive and the other one strong, group, parallel, intensional or multiplicative. For the
difference between them see, e.g., [175]. The distinction can be extended to quantifiers, see [176].

15A multiset, since the strong conjunction & is not contractive (idempotent); therefore multiple oc-
currences of the same term have to be taken into account. Thiele’s quantifier only ensures the property
for a set of terms, while Montagna’s quantifier additionally ensures the idempotence of (Πx)ϕ(x) w.r.t.
conjunction; the latter quantifier therefore coincides with the optimal one in extensions of BL, but not
generally in extensions of MTL, as was already proved in [160], even though the optimal quantifier was
only implicit there.

16They can be defined from the latter by dummy quantification, i.e., ϕ∗ ≡df (Πx)ϕ if x is not free
in ϕ. As propositional modifiers they are special hedges in the terminology of [151] (followed in [112]),
or modalities in that of [58].
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in [2] for Gödel logic, transferred to the most important fuzzy logics in [110, 81], and gen-
eralized for all weakly implicative fuzzy logics in [62]. A proof-theoretical investigation of
logics expanded with certain classes of exponentials is given in [58].

The importance of exponentials for formal fuzzy mathematics stems from their role
as lower estimates for the truth values of propositions ϕ, ϕ2, ϕ3, . . . (where ϕn is the n-
tuple strong conjunction of ϕ). Formulae of the form ϕn occur frequently in formal fuzzy
mathematics due to the general non-idempotence of strong conjunction; exponentials ∗
such that ϕ∗ → ϕn for any n then provide a common bound on the strength of ϕn

for all n. Although Baaz 4 can always be taken for such an estimate, in many cases
it is too strong (e.g., if there is an idempotent w.r.t. & below the truth value of ϕ).
Montagna’s storage operator provides a better alternative, but is still unnecessarily strong
in some cases (cf. footnote 15). The inferentially optimal exponential ϕω, related to the
inferentially optimal multiplicative quantifier mentioned above, has by now only been
sketched in [65].17

The general state of the art of formal fuzzy logic can be characterized as follows: Cha-
grov [52] distinguishes three stages in the development of a new area of non-classical logic.
In the first stage, the concepts and logics of the area emerge without a clear methodol-
ogy or well-developed metamathematics. In the second stage, when the methodology
and metamathematics has become available, the area is systematically explored: often,
many new logics are defined and their properties studied by advanced techniques. The
third stage then offers a synthesizing view on the area, when common properties of whole
classes of logics are obtained by generalized methods, and unifying insights are achieved
by mature understanding of the area. The three phases need not be sharply separated and
may chronologically overlap. As observed by Chagrov, this account, though abstracted
from the particular development of modal logic, can be applied to the history of most
disciplines of non-classical logic.

In formal fuzzy logic, these three stages can be found as well. The first phase com-
menced with the early study of ÃLukasiewicz and Gödel–Dummett logics in the 1920–60’s,
and continued by the informal development and applications of fuzzy logic since the 1970’s.
The second phase was announced by the first works on formal fuzzy logic since the late
1970’s, especially those by Pavelka [177], Novák [166], and Gottwald [102]. The heyday
of the second stage came after Hájek’s 1998 monograph [110], when an explosion of new
systems of fuzzy logic and their systematic metamathematical study has begun. Now
we find ourselves in the maturity of the second stage and the beginning of the third, as
the exploration of the fuzzy-logical landscape is far advanced (though new logics still do
emerge—recently, e.g., uninorm [156, 157] and weakly cancellative [162] logics) and the
properties of known fuzzy logics have already been deeply investigated (including their
arithmetical [113, 116] and computational [3, 123, 124] complexity, expansions by various
kinds of connectives [82, 160, 80, 58], standard completeness theorems [138, 79, 133], proof
theory [57, 158], etc.). One of the first works that clearly belongs to the third stage is
Cintula’s [62], in which a unified metamathematical treatment of all weakly implicative
fuzzy logics is given. This framework was further generalized to weakly implicational
(fuzzy) logics in [66]; a narrower class of (4-)core fuzzy logics [119] was further studied

17As a primitive symbol of propositional logic, the exponential ω is axiomatizable by a straightforward
infinitary rule. It can moreover be approximated by a finitary axiomatization such that the finitarily
axiomatized exponential coincides with the optimal one if the latter does exist on the algebra of truth
values (which in general need not be the case). The exponential ω is of course definable in higher-order
fuzzy logic, though only with the qualification that the Henkin-style axiomatization of higher-order fuzzy
logic admits its non-intended models (it is nevertheless the optimal internal exponential in the theory).
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in [63]. The second stage, however, cannot be considered completed, as is apparent for
instance from the as yet insufficient investigation of exponentials in fuzzy logic.

An indispensable precondition for the development of logic-based fuzzy mathematics
was to achieve at least an advanced phase of Chagrov’s second stage in formal fuzzy logic.
In particular, it was the extensive exploration of the logical landscape in the fuzzy area
that enabled finding the most suitable systems of fuzzy logic that could support formal
fuzzy mathematics (esp. the logics MTL4, ÃLΠ, and t-norm fuzzy logics in general), allowed
applying their basic metamathematical properties in the development of the formalism
and helped clarify the area of their applicability. The emergence of logic-based fuzzy
mathematics indeed coincides with this stage of development of formal fuzzy logic. The
above considerations can partly explain why it had not appeared earlier during the four
decades of the existence of traditional fuzzy mathematics.

2.3 Traditional fuzzy mathematics

As fuzzy mathematics has been developed by many researchers for more than forty years,
it is impossible to present an overview of all its developments in this brief survey. Therefore
we shall only deal with those areas of fuzzy mathematics to which the papers included in
this thesis are related, namely the theory of fuzzy sets and fuzzy relations, fuzzy topology,
and fuzzy numbers. The developments in other areas of traditional fuzzy mathematics are
described, e.g., in the surveys [73, 142]. A compendium of application-oriented traditional
fuzzy mathematics is, e.g., [145]. For each of the relevant disciplines of fuzzy mathematics,
only the works that initiated the research and recent representative books or surveys of the
area will be mentioned here. Approaches that are close to logic-based fuzzy mathematics,
where they exist, will also be noticed. Further details can be found in the introductions
and references to the papers included in this thesis, and in the literature cited in the
surveys.

The theory of fuzzy sets (and fuzzy mathematics as the whole) is usually considered
to have started with Zadeh’s 1965 paper [212], which introduced the concept of fuzzy
set (and coined the term fuzzy), identifying fuzzy sets with membership functions from
a crisp ground set to [0, 1]. There have, nevertheless, been several predecessors who
proposed similar or identical concepts, most notably Max Black [48], Abraham Kaplan
and Hermann Schott (see [73, §1.2.4]), Karl Menger (ibid.), and Dieter Klaua (see [105]).
In 1967, the notion of fuzzy set was generalized to lattice-valued membership functions by
Goguen [95]; since then, various structures of membership degrees have been considered.

Graded properties of fuzzy sets have been considered mainly in the setting related to
or based on formal fuzzy logic (esp. by Bandler and Kohout [7] and Gottwald [99]). For
axiomatic theories of fuzzy sets based on formal systems of fuzzy logic, in which graded
properties of fuzzy sets appear quite naturally, see Section 2.4.

Important monographs with chapters on fuzzy sets include [166, 145, 104]. An overview
of basic notions in the theory of fuzzy sets is given, e.g., in [73]. Besides the direct represen-
tation by means of membership functions, various alternative foundations for the notion of
fuzzy set have been considered in the literature: category-theoretical approaches to fuzzy
sets are surveyed in [131, 106], and categories of fuzzy sets are treated in detail in [206]
and [172, Ch. 7]. A sheaf-theoretic foundation of fuzzy sets is described in [129]. Ax-
iomatic theories of fuzzy sets based on formal fuzzy logic are described in more detail in
Section 2.4 below.

The notion of fuzzy relation was defined already in Zadeh’s first paper on fuzzy
sets [212]. It was generalized to lattice-valued relations in Goguen’s 1967 paper [95],
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in which several important fuzzy-relational concepts (including, e.g., sup-product compo-
sitions) were studied. Many important concepts, incl. fuzzy similarity and fuzzy ordering,
were introduced in Zadeh’s 1973 paper [213]. Important contributions to the theory of
fuzzy relations were made by Bandler and Kohout, esp. regarding generalized relational
products [6]. Further references to the vast literature on fuzzy relations can be found in
the papers on fuzzy relations included in this thesis [28, 41].

Graded properties of fuzzy relations, which are fundamental in logic-based theory
of fuzzy relations (cf. [28]), were first proposed by Gottwald in [101]. They are sys-
tematically studied in Gottwald’s monographs [102] and [104, §18.6] and Bělohlávek’s
book [46]. The graded approach has been applied by Gottwald to the solvability of fuzzy
relational equations in [103]. Several graded notions of fuzzy function have been studied
by Demirci [70].

The discipline of fuzzy topology was established in the 1960’s and 1970’s in papers
by Chang [55], Goguen [97], Lowen [152], and others.18 It has been given a considerable
attention throughout the history of fuzzy mathematics and elaborated by a number of
researchers. Several approaches to fuzzy topology have been developed: besides those
based on membership functions and fuzzy sets, the most prominent are the (point-free)
lattice-theoretical and categorial treatments. Various definitions of fuzzy topology were
surveyed by Höhle and Šostak in [130]. Many results are also surveyed in the (more recent,
but somewhat self-promoting) historical overview [142, §6]. A detailed exposition based
on the categorial viewpoint is given in Höhle’s monograph [128].

An early example of logic-based fuzzy topology is Ying’s investigation of fuzzifying
and bifuzzy topologies in the early 1990’s [208, 209, 210]. His definitions and proofs were
based on the semantics of ÃLukasiewicz predicate logic (or complete residuated lattices
later in [211]), which naturally led him to graded fuzzy topological notions and theorems.
Graded topological notions (of compactness and connectedness) had even earlier been
studied by Šostak (see the references in [70], esp. to [192]).

Two main competing approaches to fuzzy numbers have originally been proposed: one
of them treats fuzzy numbers as fuzzy intervals (Mizumoto and Tanaka 1979, see [142,
§11]), while the other regards them as (certain equivalence classes of) distribution func-
tions (Rodabaugh 1982, see [142, §11]).19 In the interval approach, Dubois and Prade
(1980, see [142, §11]) have added further conditions of monotony and continuity. The
distribution-based approach has been extensively studied in relation to the construction
of fuzzy real numbers and the topology of the fuzzy real line, by Lowen, Höhle and others
[153, 126].

The interval-based approach was recently criticized by Dubois and Prade [75] as rep-
resenting the fuzzified notion of interval rather than number. Their proposal to define a
fuzzy number as a gradual element, i.e., a function from truth values to the domain of
discourse rather than vice versa, is discussed from the point of view of formal fuzzy logic
in [26, §2] included in this thesis.

2.4 Formal fuzzy set theories

In this section we shall describe the state of the art in formal theories of fuzzy sets. We
shall leave aside set theories with the unrestricted comprehension scheme, mentioned in
Section 2.1, as these are very specific theories, unrelated to logic-based mathematics as

18These papers are cited according to [130].
19It can be observed that the approach of [16] (included in this thesis) in fact combines both approaches,

since it treats fuzzy numbers as intervals between two distribution functions (or fuzzy Dedekind cuts).
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presented here and constrained to a very narrow class of fuzzy logics (cf. footnote 6 on
page 9 above). Instead, we shall focus on theories which are closest to our approach to
fuzzy set theory, namely such theories over fuzzy logics whose axioms ensure that basic
set-theoretical constructions (such as forming unions, intersections, singletons, or power
sets) can be carried out. As this is exactly the motivation of the axioms of classical
Zermelo–Fraenkel set theory, we shall call such theories ZF-style fuzzy set theories. Akin
to ZF-style fuzzy set theories are fuzzy type theories (including Fuzzy Class Theory upon
which our logic-based fuzzy mathematics is founded), since their hierarchy of types and the
comprehension axioms (or the mechanism of λ-abstraction in Church-style type theories)
are aimed at ensuring the availability of basic set-theoretic constructions, too (and vice
versa, the set-theoretical constructions, esp. those of power set and union, guaranteed by
the axioms of ZF-style set theories usually impose a cumulative structure on the universe
of sets analogous to the hierarchy of types in type theories).

At least two strands can be recognized in the history of ZF-style theories of fuzzy
sets.20 One of them attempted at formal treatment of fuzzy (or many-valued) sets from
the outset, while the other originated in ZF-style set theories over intuitionistic logic,
whose methods were subsequently transferred to fuzzy logics (with systems close to Gödel
logic as an intermediary step).

Early works in the former strand are due to Dieter Klaua (in 1965–1973, see Gottwald’s
survey [105]), who defined (variants of) a cumulative hierarchy of fuzzy sets using defi-
nitions based on ÃLukasiewicz logic. This approach was followed and further modified by
Siegfried Gottwald [99, 100] who derived many results on fuzzy sets in this framework.

While Klaua’s and Gottwald’s fuzzy set theories were essentially based on (ÃLukasiewicz)
fuzzy logic, other early axiomatizations of fuzzy sets were based on membership functions
and classical logic. Chapin’s axiomatic fuzzy set theory [56] considered a ternary mem-
bership predicate, with the third argument representing the degree of membership. An
important feature of Chapin’s theory was a homogeneity of its objects (which is desirable
in foundational theories—cf. classical set theory, where all objects are sets), as the mem-
bership degrees were not external objects different from fuzzy sets: rather, the role of
membership degrees was played by some of the fuzzy sets themselves (hence the papers’
title ‘Set-valued set theory’). Basic parts of the formal theory of so defined fuzzy sets
were derived from the proposed axioms in the two parts of the paper (the announced
third part was never published). A similar setting was presented by Weidner [202], whose
system (called Zadeh–Brown set theory ZB) aimed at emending some features of Chapin’s
axioms; to this effect, the ordering relation between the degrees was taken as an additional
primitive notion besides the ternary membership predicate. Consistency of ZB was shown
by constructing a Boolean-valued model in ZF.

The construction of formal ZF-models valued in an appropriate structure of degrees
was also a main motive in a series of papers, by several different authors, that originated
in set theory over intuitionistic logic and subsequently shifted towards formal theories of
fuzzy sets. In his 1975 paper [179], Powell constructs a syntactic interpretation (called the
inner model) of classical ZF in a certain reformulation of ZF over intuitionistic logic (Int).
To this end, he first needs to introduce and investigate various set-theoretical notions
(e.g., ordinal numbers) and prove several results (e.g., the transfinite recursion theorem)
within the formal intuitionistic set theory.21 Grayson’s 1979 paper [107] studies in detail
various properties of ordinal numbers in a similar reformulation of ZF over Int, and shows

20A much more refined classification of formal theories of fuzzy sets can be found in Gottwald’s recent
survey [105], which also includes approaches distant from ours.

21A similar Heyting-valued model was much later studied by Shimoda [186].
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counterexamples to some classically valid theorems on ordinals in a Heyting-valued sheaf
model of the theory (which is a generalization of Boolean-valued models of Scott and
Solovay). Even though the main results of those papers are metamathematical (viz,
mutual interpretability of the theory and classical ZF), the theory itself is proposed as
a prospective axiomatic setting for intuitionistic set theory in the sense of non-classical
mathematics (see Section 2.1 above), and the theorems derived within the theory are
regarded as results on intuitionistic (Heyting-valued) sets. This attitude differs from
that of an earlier book [85] by Fitting, who only employs a reformulation of ZF over
Int for metamathematical purposes, namely as a means for classical independence proofs
by forcing. Driven mainly by this motivation, Fitting’s axioms arise from the classical
axioms of ZF by replacing all occurrences of ∀ by ¬∃¬, which yields a rather unintuitive
axiomatic system from the point of view of non-classical set theory over Int.

Powell’s results and methods were in 1984 adapted by Takeuti and Titani [193] for a
ZF-style set theory over a variant of Gödel logic (with a rule ensuring density of truth
values). Besides the main result on mutual interpretability with classical ZF by means of
inner models, they developed some parts of the formal theory, incl. the properties of real
numbers.22 In 1992 the same authors [194] presented a ZF-style set theory over a richer
logic which contained further connectives besides those of Gödel logic, representing the
basic arithmetical operations (except division) in the standard [0, 1]-interpretation of the
logic. Again they constructed a cumulative [0, 1]-valued model of their theory and proved
mutual interpretability with classical ZFC. The paper also contains the construction of
internal truth values (adapted in [41] for FCT over MTL) and various definitions and
results within the theory.

Takeuti and Titani’s definitions mostly employ Gödel connectives as primary ones, and
make use of the arithmetical operations only where necessary for their metamathematical
purposes (mainly in the construction of internal truth values); the theory thus retains
the structure of intuitionistic and Gödel set theories of the previously mentioned papers.
Titani’s 1999 lattice-valued set theory of [198] is also largely based on lattice connectives
in the underlying logic (although the implication connective is generalized so that it also
admits a quantum-logic interpretation). The results and methods of Gödel set theory
are, however, hardly transferable to other fuzzy logics, as they depend heavily on the
idempotence (i.e., contractivity) of the minimum conjunction. The step to non-contractive
fuzzy logics was undertaken by Hájek and Haniková in their 2003 paper [120], in which
they adapt the previous methods (using also ideas from Shirahata’s work on set theory
over linear logic [188]) for a set theory over the logic BL4.23

A (Church-style) fuzzy type theory FTT over the logic IMTL4 has been introduced
in 2004 by V. Novák [169]. Although it has been mainly used as a formal background for
linguistic modeling [171, 170], some parts of fuzzy mathematics have necessarily been de-
veloped in its framework, too (e.g., the theory of feasible natural numbers, [170, §3.5.3]).

Fuzzy Class Theory FCT of [30], which is the foundational theory of logic-based fuzzy
mathematics as studied in this thesis, can be regarded as a (Henkin-style) simple type
theory (of Russell’s type), too.24 The developments of the theory by the present author

22Basic notions of set theory over Gödel logic, motivated by both intuitionistic and fuzzy considerations,
have also been developed in the present author’s master thesis [12] (in Czech; a short English summary
can be found in [13]).

23The 4 connective is used for limiting the size of powersets, which otherwise would be inconsistently
large, and ensuring full existence of postulated sets, which is justifiable by the Skolem function equivalents
of the axioms.

24FTT and FCT (in logics over which FTT has been defined) seem to be mutually faithfully inter-
pretable.
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and his co-authors (U. Bodenhofer, P. Cintula, M. Daňková, R. Horč́ık, S. Saminger-
Platz, and T. Kroupa) are described in detail in other parts of this thesis. Further works
that contributed to the study of FCT and formal fuzzy mathematics developed within its
framework are [64, 149, 148, 134] by P. Cintula, R. Horč́ık, and T. Kroupa.

3 Significance of the area of research

Logic-based fuzzy mathematics is a minor, rather than mainstream, current in fuzzy
mathematics. This fact may raise questions about the meaningfulness of the enterprize
and the significance of this area of research. In this section we shall summarize some
reasons why the study of logic-based fuzzy mathematics is worthwhile.

There are general arguments in favor of the importance of any kind of non-classical
mathematics (cf. also Section 2.1). Changing the logical principles that underlie mathe-
matical reasoning may reflect some external motivation under which these principles are
no longer valid—compare, e.g., the rejection of certain laws of classical reasoning by intu-
itionistic mathematics; this is also the case in fuzzy mathematics, as for instance the law
of excluded middle is in general implausible for graded propositions. Non-classical mathe-
matics can, however, also be justified independently of such ‘applied’ motivations, and be
studied for the intrinsic reason of developing an alternative view on classical mathematics,
as removing some assumptions of classical logic may reveal various kinds of dependen-
cies between classical notions and present classical mathematical structures as special (or
degenerate) cases of more general non-classical structures. This enables us, for instance,
to compare the robustness of various mathematical definitions and theorems with respect
to the changed logical assumptions.25 The splitting of classically equivalent notions in
weaker logics (in which their equivalence may no longer be provable), can shed light on
classically indistinguishable aspects of the notions and provide a better understanding of
the interdependencies between such aspects. (For an illustration, compare the various
notions of finiteness in intuitionistic mathematics, cf. [87, §IV.6] and [77]—or, for that
matter, in classical mathematics without the axiom of choice, see, e.g., [137, §4.6].) In
the particular case of logic-based fuzzy mathematics, the change of the underlying logic
yields linear-valued (and often continuous-valued) mathematical structures as semantical
models, variants of which have been studied—mainly for such intrinsic reasons rather
than for the sake of applications—since the 1960’s [54, 55, 152].

Besides being a sub-area of non-classical mathematics, logic-based fuzzy mathematics
is also a specific sub-area of the theory of fuzzy sets. The importance of fuzzy sets for
certain kinds of engineering applications is beyond doubt. In such applications, the richer
system of membership degrees allows modeling the gradual change of a property, using it
as a feedback measure for fine-tuning the value of the property by approximation steps—
which would not be enabled by a crisp jump from 0 to 1 without intermediate values.
Giving a formal foundation to various engineering fuzzy methods was one of the original
motivations for the development of formal fuzzy logic, e.g., in [110, p. 2]. Although logic-
based fuzzy mathematics does not directly address all methods of engineering-applicable
fuzzy mathematics (cf. [26]), it provides a unifying framework for at least some of its
parts [34, 26]. A consistent application of the logic-based approach moreover yields certain

25For example, it is known [107] that the axiom of choice entails bivalence already in very weak set
theories over intuitionistic logic, while Zorn’s lemma does not do so even in rather strong intuitionistic
set theories. This shows, not only that the classical theorem on their equivalence uses the law of double
negation in an essential way, but also that Zorn’s lemma is a more robust variant of the axiom of choice
with respect to the behavior of negation.
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favorable features of the resulting theory that provide further reasons for developing fuzzy
mathematics in this specific manner; we shall list some of them in the next paragraphs.

One of the most important characteristics of the logic-based approach to fuzzy mathe-
matics is the universal gradedness of defined notions. Traditional fuzzy mathematics em-
ploys classical logic for mathematical reasoning, therefore its defined concepts are by
default crisp; gradedness has to be intentionally introduced in each definition. In logic-
based fuzzy mathematics, on the contrary, defined notions are introduced by formulae of
many-valued logic, and therefore are by default many-valued. This applies not only to
fuzzy structures themselves (where adding gradedness is usual even in traditional fuzzy
mathematics), but also to their properties, which in logic-based fuzzy mathematics are
naturally fuzzy as well. Such graded properties of fuzzy structures have occasionally been
studied in traditional fuzzy mathematics, too, often in partially logic-based setting. In
fuzzy relations they have been first studied by Gottwald [101, 102, 104] and later by
Bělohlávek [46]. Graded properties of fuzzy structures are also met in fuzzifying topology
[208, 209, 211, 185]. Measures of defects of a broad range of mathematical properties,
though motivated by other than logic-based considerations, were studied by Ban and
Gal in [5]. A few properties like fuzzy set inclusion are commonly introduced as graded
even in mainstream fuzzy mathematics [6, 7]. The idea of gradedness is also very strong
in Pavelka-style fuzzy logic with evaluated syntax [177, 167, 172], which fuzzifies even the
concept of provability. Full gradedness is a general feature of fuzzy mathematics based
on formal fuzzy logic, be it a higher-order logic like FCT, a fuzzy type theory [169], or
a formal fuzzy set theory [194, 120]. There are many reasons why graded properties of
fuzzy structures are important; some of them are given in [19, §1], [35, §2.1], and [28, §1].
A reason which has not been stressed in these papers is that graded properties, like all
fuzzy sets, enable one to optimize the property that is only imperfectly satisfied, where
the degrees give a feedback for the optimization that cannot be provided by a crisp jump
from 0 to 1. (Generalized fuzzy quantifiers would provide more kinds of logically mean-
ingful measures of graded properties, thus enabling more kinds of optimization besides
that on the infimum; however, a logic-based theory of generalized quantifiers is only in its
beginnings, see Section 2.2.)

A related feature of logic-based fuzzy mathematics is a smooth accommodation of fuzzy
sets of fuzzy sets. This is desirable in many branches of fuzzy mathematics: prototypically
in fuzzy topology, as topological structures are usually formed of sets of sets (namely, sets
of open sets, systems of neighborhoods, etc.), but also in other areas (consider, e.g., fuzzy
sets of fuzzy numbers, of fuzzy points, of fuzzy events, etc.). Since formal fuzzy set
theories axiomatize fuzzy sets of all kinds, their theorems apply as well to fuzzy sets of
complex structures as to simple fuzzy sets of atomic urelements. Thus even though their
semantical models are as complex as required, the syntactic logic-based apparatus that
describes them is much simpler than their direct semantical description that is usual in
traditional fuzzy mathematics. This demonstrates an advantage of the strict separation
of syntax from semantics in the approach based on formal logic.

A related advantage of logic-based fuzzy mathematics ensues from its radical axiomatic
approach, which contributes to its methodological clarity. An axiomatic approach has
proved beneficial in countless fields of mathematics; it has occasionally been employed in
traditional fuzzy mathematics, too (cf., for instance, de Luca and Termini’s [67] axioms
for fuzzy entropy or various axioms for aggregation operators—see, e.g., [145, Ch. 3]).
However, grounding the axiomatic method on formal fuzzy logic offers an additional
advantage for fuzzy mathematics, as the assumptions on the structure of truth degrees
are then isolated and encapsulated in the logic itself, rather than re-introduced at each
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definition. Fuzziness is thus only introduced into the theory by the set of rules that can
generally be employed for sound reasoning about fuzzy propositions.26 By this treatment,
the general properties of fuzziness are removed from a particular theory to the level of
logic; the theory itself can then deal with its specific notions only, and need not be
concerned at the same time with the properties of truth degrees.

By hiding truth degrees in the semantics of fuzzy logic, logic-based fuzzy mathematics
also alleviates one of the criticisms of traditional fuzzy mathematics, namely the artificial
over-precision of fuzzy sets: an argument often raised against fuzzy set theory points out
that instead of giving less information about the membership in a vague concept, fuzzy
sets provide more (indeed too much) information by specifying its value to a precise real
number (or an element of another lattice of truth degrees). However, by screening off
direct references to truth degrees, logic-based fuzzy mathematics avoids (in a principled
way) computing with particular truth degrees: not only are such calculations absent from
formulae of the theory, but the theory in fact abstracts from them, in consequence of the
definition of validity in formal logic by generalization over all models.

Another appealing consequence of hiding fuzziness into the rules of logic is the result-
ing similarity of formulae of fuzzy mathematics to those of classical mathematics. Since
deductive fuzzy logics are not too different from classical logic, many concepts of classical
mathematics can be naturally transferred to fuzzy mathematics simply by reinterpreting
the logical connectives that appear in their formal definitions (cf. [126, §5]).27 Quite of-
ten, classical definitions reinterpreted in fuzzy logic yield useful and interesting notions of
fuzzy mathematics. The meaning of fuzzy concepts obtained in this way can be clarified
by taking the meaning of fuzzy connectives and quantifiers into account. For instance,
fuzzy inclusion A ⊆ B ≡df (∀x)(Ax → Bx), defined by the same formula as in classical
mathematics (since Ax is just an abbreviation for x ∈ A), is not just some measure of
inclusion of fuzzy sets, as it is understood in traditional fuzzy mathematics, but is the
strongest measure which allows for any x to infer28 Bx from Ax & (A ⊆ B), which is a
transparent generalization of the same idea underlying the classical notion of inclusion.
The parallel with classical logic and the meaning of fuzzy connectives thus provides ad-
ditional motivation and guidance in defining concepts of fuzzy mathematics, besides the
criteria of traditional fuzzy mathematics (which in practice often fail to prevent ad hoc
definitions).

A further consequence of the closeness between classical and fuzzy logic is the fact that
the three-layer architecture of classical mathematics (with the layers of logic, foundations,
and particular theories) can be paralleled in fuzzy mathematics. (This was the leading
idea of the position paper [34], included in this thesis.) The layer of foundations, provided
by a sufficiently general formal theory over fuzzy logic, establishes a common language
and a unifying framework for different disciplines of fuzzy mathematics. The foundational
theory thus facilitates the exchange of concepts and results across the subfields of fuzzy
mathematics.

As stressed above (p. 20), logic-based fuzzy mathematics directly formalizes only a
limited part of traditional fuzzy mathematics. Nevertheless, its clearly isolated pre-

26Particular sets of inference rules—i.e., particular fuzzy logics—then reflect special assumptions on
the structure of degrees.

27Though of course not too mechanically, as there are usually more options for finding a fuzzy coun-
terpart to a crisp notion (e.g., if classically equivalent definitions are no longer equivalent in fuzzy
logic). Some selection is needed, based on pragmatic criteria; often it leads to splitting classical no-
tions, cf. [37, §4].

28I.e., to ensure that the truth degree of the consequent is at least as large as that of the antecedent.
This kind of inference in deductive fuzzy logic is based on the local consequence relation, cf. [26].
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theoretical assumptions, captured in the form of the axioms of the background fuzzy
logic, enable it to find applications even beyond the traditional realm of fuzzy logic,
namely in the areas where these extracted assumptions are applicable. An example of
such application is the interpretation of deductive fuzzy logics in terms of resources or
costs [11], similar to the resource-based interpretation of linear logic (cf. [92]). Under this
interpretation of deductive fuzzy logic, the semantic values of formulae represent (prelin-
ear) resources or costs rather than degrees of truth.29 Deductions in formal fuzzy logic
then preserve costs rather than partial truth, and particular fuzzy logics correspond to
different ways how the costs can be summed by conjunction. The resource-based ap-
plications of deductive fuzzy logic (esp. in epistemic, deontic, and dynamic logics) are
yet to be elaborated: currently they are just sketched in the present author’s conference
abstracts [20, 23, 25].

The latter connection between fuzzy logic and linear logic is just an instance of sim-
ilar connections between fuzzy logic and other substructural logics. These links follow
from the fact that deductive fuzzy logics are specific substructural logics (namely those
with the law of prelinearity), and so usual motivations for having dropped structural
rules apply to them as well. Logic-based fuzzy mathematics can therefore model specific
(namely, prelinear) situations modeled by substructural logics. Even though substruc-
tural logics are mostly studied in their propositional forms (because of the problems with
strong quantifiers, see Section 2.2), it is clear that more complex situations modeled by
substructural logics would require first- or higher-order language. This motivates the need
for substructural mathematics (cf. Section 2.1), of which logic-based fuzzy mathematics
is a specific and important part. Possible generalizations of the methods of logic-based
fuzzy mathematics to broader classes of higher-order substructural logics with a wider
area of applications thus give another reason for the development of fuzzy mathematics
in the logic-based setting.

The above paragraphs summarized motivations, i.e., “ex ante” reasons for developing
logic-based fuzzy mathematics. However, there is also an “ex post” reason, namely the
results already achieved in the framework of Fuzzy Class Theory. As witnessed by the
papers included in this thesis (esp. [30, 41]), the logic-based approach is capable of trivial-
izing certain parts of traditional fuzzy mathematics. This demonstrates that logic-based
fuzzy mathematics is capable of providing powerful tools for traditional fuzzy set theory
(which in turn is directly applicable in engineering practice).

4 Description of the author’s contribution

This section provides a commentary on the papers comprising this thesis, with a special
focus on several points. First, the relation of each paper to the topic of the thesis and to
other papers connected with the project is explained. Second, some of the older papers
are commented from the point of view of the later development of the theory. Finally,
the author’s contribution to the joint papers included in this thesis is indicated. (The co-
authors have read the descriptions of author contribution and explicitly confirmed their
accuracy by email.)

In order also to clarify the author’s contribution to the project of logic-based fuzzy
mathematics itself, a short history of the development of Fuzzy Class Theory is given
first. Though unavoidably subjective, it tries to describe the emergence of ideas related
to the project in as accurate way as possible. For the account of predecessor ideas and
results upon which the project has been built see Section 2.

29Parts of this idea arose in discussions with Petr Cintula.
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4.1 A short history of Fuzzy Class Theory

The author’s master thesis [12] dealt with axiomatic set theory over Gödel logic.30 The
thesis was written shortly after the period (ca. in 2000–2001) when a small semi-regular
seminar was organized in Prague by Petr Hájek, which was devoted to developing formal
set theories over t-norm fuzzy logics and in which the present author actively partici-
pated.31 The attempt at investigation of some basic disciplines of fuzzy mathematics
(with fuzzified set theory and arithmetic as first choices) seemed to be a natural next step
after first-order fuzzy logic and its metamathematics had advanced enough [110] to provide
a meaningful machinery for such theories. The study of set theory based on Gödel logic
was a reasonable choice as the latter logic extends intuitionistic logic in which successful
variants of set theory had been built [179, 107, 85], and is closely related to the (slightly
stronger) logic in which Takeuti and Titani’s fuzzy set theory [193] had been constructed;
also Takeuti and Titani’s subsequent variant of fuzzy set theory [194], even though defined
over a much stronger logic similar to ÃLΠ, employs mainly Gödel operations in definitions,
and therefore most of its constructions can be modified for set theory over Gödel logic,
too. The seminar was, nevertheless, partly devoted to set theories and arithmetics over
other fuzzy logics (esp. ÃLukasiewicz and BL), which later resulted in Hájek’s study of
Cantor–ÃLukasiewicz set theory with full comprehension over ÃLukasiewicz logic [115] and
the construction of Hájek and Haniková’s ZF-style set theory over BL [120]. The seminar
laid stress on actual developing mathematics formally within the theories (in the spirit of
Klaua’s, Chapin’s [56], and Gottwald’s [99, 100] papers), and not just on the metamathe-
matical study of their properties. Although the seminar stopped meeting in 2001, several
participants continued investigating formal fuzzy set theory individually (including the
present author, whose master thesis on the topic was defended in 2002). An attempt by
Cintula, Hájek, and the present author to revive the seminar in 2003 led instead to the
employment of the present author at the Institute of Computer Science (where the former
two were working) and a close collaboration by the three on the topic, and eventually to
the development of Fuzzy Class Theory and the current research project.

Fuzzy Class Theory was conceived in discussions between Petr Cintula and the present
author during their research stay in Barcelona (at IIIA CSIC, Bellaterra) in October 2003.
At that stage, only the first-order classes over the logic ÃLΠ were considered, and the aim
was to construct a common framework for the study of elementary operations and relations
on fuzzy sets and fuzzy relations (such as various kinds of intersection, union, inclusion,
etc.) over first-order fuzzy logic. The authors’ motivations for this study, however, slightly
differed from each other. P. Cintula had shortly before (in 2002) solved a problem on fuzzy
orderings, presented to him by U. Bodenhofer, by means of first-order fuzzy logic (so in
fact by using first-order classes) and wanted to continue the study of fuzzy orderings to
see how far could the theory be developed with the limited means of elementary theory of
fuzzy classes. The present author, on the other hand, had the experience from his work
on Gödel set theory that a very large number of concepts of applied fuzzy mathematics
can be defined and investigated just by means of first-order fuzzy classes (i.e., without
considering membership of fuzzy sets in fuzzy sets). Even though elementary class theory
consists for the most part just in translating the first-order predicate calculus into the set-

30The thesis was written in Czech; an English overview of its topic and methodological principles can
be found in [13].

31Establishing the new focused seminar followed a series of talks on the same topic at the Seminar in
Applied Mathematical Logic (an activity of the Czech Society for Cybernetics and Informatics) held at
the Institute of Computer Science of the Academy of Sciences of the Czech Republic. Regular attendants
were P. Cintula and Z. Haniková (then students of Petr Hájek), K. Bendová (later the supervisor of the
author’s master thesis related to the topic of the seminar), A. Sochor, K. Trlifajová, and several others.
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theoretical language, it is actually just a theory of fuzzy classes which is mostly used in
applied fuzzy set theory, rather than a fully fledged fuzzy set theory.32 In particular, such
concepts as the empty and universal class; the relations of inclusion, equality, disjointness,
and compatibility; the properties of fuzziness and crispness, normality, and height; the
unary class operations of complement, kernel, and support; the binary class operations
of intersection, union, and difference; the properties of reflexivity, symmetry, transitivity,
antisymmetry, and functionality of fuzzy relations; the operations of composition and
inversion of fuzzy relations; and many other important relations and operations on fuzzy
sets and fuzzy relations can all be expressed and investigated in the theory of first-order
classes, not needing a theory with fuzzy sets of higher ranks (or orders).

The aim therefore was to have an axiomatic framework for the study of such concepts,
with the possibility of quantification over classes (rather than just over atomic elements
as in first-order fuzzy logic) and with the apparatus for handling tuples in order to in-
ternalize fuzzy relations (besides fuzzy classes). Since the tuples were intended just to
represent multiple arguments of predicates with arities larger than 1, there was no need
to fuzzify tuples, and the classical axioms for crisp tuples (regarded as crisp logical func-
tions in the sense of [111]) could be adopted.33 As fuzzy classes were to be treated in the
same manner as crisp classes in classical second-order logic, axioms analogous to those
of classical second-order logic could be adopted to describe them: the axiom scheme of
comprehension, ensuring that each fuzzy property expressible in a fixed formal language
defines a fuzzy class; and the axiom of extensionality, ensuring that a fuzzy set is uniquely
determined by its members (i.e., by the truth values of membership of x in A for all x—in
other words, by its membership function). The fuzzy logic ÃLΠ was chosen for the back-
ground logic in order to have full arithmetic power over the system of truth degrees34 in
a system that would still enjoy good metamathematical properties. The logic was also
suitable as a unified framework for the investigation of many different fuzzy set opera-
tions, by virtue of the representability of a large class of truth functions in the standard
ÃLΠ-algebra.

Initially, the theory was expected to provide little more than a convenient framework
for easy proofs of schematic theorems on several kinds of intersection, union, inclusion,
etc. However, the full potential of the theory was realized soon (before the end of 2003).
The present author observed that the fragment of class theory reducible to propositional
logic [30, Th. 33–36] is so large that it covers most interesting elementary theorems of
traditional fuzzy set theory. Jointly we observed that by iterating the machinery for
classes of higher orders, the expressive power of the resulting simple fuzzy type theory
(FCT) is sufficient for a large part of traditional fuzzy mathematics, as classical higher-
order theories are interpretable in FCT [30, L. 41] (so we can assume any crisp structure
on the universe of discourse), and moreover such concepts of fuzzy set theory as Zadeh’s
extension principle become definable objects of FCT [30, Def. 39]. In this form, the theory

32By a class theory we mean the study of classes that contain atomic individuals from some fixed
domain, but the membership of classes in classes is not considered. Set theory proper, on the other hand,
is the study of sets as objects that contain other sets or objects and are themselves members of other
sets.

33Subsumption of sorts of variables had to be introduced for convenient handling of tuples; this was
done by Petr Cintula when our discussions convinced us that other possibilities would probably not be
more easily implementable. Even though sorted first-order languages had been used before [110, 46],
subsumption of one sort by another had not yet been considered in formal fuzzy logic.

34Insufficient expressive power could lead to the undefinability of various notions of traditional fuzzy
mathematics. For instance in set theory over Gödel logic without 4, even such basic concepts as the
normality and the crisp kernel of a fuzzy set are undefinable [12].
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was presented at the FSTA conference in January 2004, where also the first version of the
paper [30] was finished.

The expressive power of the theory suggested the possibility of its foundational role
for fuzzy mathematics, analogous to that of Russell’s simple type theory for classical
mathematics. Furthermore, the fact that the underlying logic of the theory was fuzzy
offered a consistent methodology of fuzzification of classical notions by a (controlled)
reinterpretation of classical defining formulae in fuzzy logic (cf. [126, §5]), building upon
the corresponding roles of classical and fuzzy logical symbols (cf. p. 21 above). The
idea of a foundational research program based on this methodology and implemented by
means of FCT emerged in a discussion between P. Cintula and the present author at
an institutional workshop in March 2004. The foundational program was then described
in the manifesto [34] (presented at The Challenge of Semantics in Vienna, July 2004)
and the research program was elaborated into a grant proposal in April 2004. The grant
was awarded for 2005–2007 and the grant team included, besides P. Cintula (the principal
investigator) and the present author, also T. Kroupa (as the principal co-investigator) and
R. Horč́ık. The latter two focused on the development of particular disciplines of fuzzy
mathematics in FCT: R. Horč́ık on fuzzy intervals [134] and fuzzy quantifiers [65, 64] and
T. Kroupa on fuzzy filters [149] and fuzzy topology [43, 42, 44]. The description [32] of
the foundational program won the Best Paper Award at the 11th IFSA World Congress
in Beijing, July 2005.

The next task after the development of the basic apparatus of FCT was to advance a
formal theory of fuzzy relations within its framework, as fuzzy relations are indispensable
in all disciplines of fuzzy mathematics. Following P. Cintula’s previous contacts in this
area, in November 2004 we started a cooperation with Ulrich Bodenhofer, focusing on
basic properties of fuzzy preorders and similarities. The first joint results [33, 49] were
presented at the Linz Seminar in February 2005, and the cooperation eventually led to
the comprehensive paper [28], finished in 2007.

Since 2005, the investigation of particular disciplines of fuzzy mathematics has begun
and the project participants turned their interests to various directions; only a sketchy
description of these activities can be given here.

A different approach to basic properties of fuzzy relations, making them relative to a
fuzzy relation representing indistinguishability of elements, was proposed by the present
author at IPMU 2006 [19]. In 2005, the present author started working with M. Daňková
on properties of fuzzy relational operations that had not been covered by his joint pa-
per with Cintula and Bodenhofer. It was soon realized that many relational operations
had a form similar to either Zadeh’s [213] sup-T relational composition or Bandler and
Kohout’s [6] BK-product (i.e., inf-R composition) of fuzzy relations. The informal corre-
spondence was made precise by means of internalized truth values (cf. [194]) and formal
interpretations [21] by the present author, and systematically explored in a joint paper
with M. Daňková [41]. The method described in the paper provides a reduction to a
simpler calculus for fuzzy relational operations, in a similar manner as the metatheorems
of [30] do for class operations.

The internalization of truth values described in [41] initiated later (in 2007) an in-
vestigation of graded properties of truth-value operators (e.g., t-norms, copulas, etc.)
under a Czech–Austrian project on aggregation operators. The first results (by U. Bo-
denhofer, P. Cintula, S. Saminger-Platz, and the present author) were presented at the
Linz Seminar 2008 [29]; a full paper is in preparation. In 2004–5, the first steps were also
done in the logic-based theory of measures on clans of fuzzy set by T. Kroupa [148] and
fuzzy Dedekind–MacNeille lattice completion and fuzzy Dedekind reals by the present au-

25



thor [15, 16]. An application of the formalism to the fuzzified logic of questions, sketched
by the present author at the VlaPoLo workshop in Zielona Góra as early as in Novem-
ber 2003, was turned into a full paper [14] in 2004. Several further areas are currently
under investigation; for an overview of the work in progress and future plans see the end
of this section.

During the work on formal fuzzy mathematics, several peculiar features of axiomatic
theories over fuzzy logic have been noticed which are not met in classical nor mainstream
fuzzy mathematics. These features, due mainly to the non-idempotence of strong conjunc-
tion and thus common to mathematical theories in all contraction-free substructural logics,
have been summarized in [37]. The different style of fuzzy mathematics ensuing from these
peculiarities has been gradually introduced in papers since 2006, cf. [19, 28, 29, 43, 42].
This also emphasized the need of exponentials and generalized fuzzy quantifiers for fully
fledged formal fuzzy mathematics (to be worked out yet, with initial results in [65, 64])
and directions for further elaboration of the basic apparatus of FCT.

The experience with fuzzy mathematics also helped to analyze fundamental differences
between the fundamental assumptions of mainstream fuzzy mathematics and logic-based
fuzzy mathematics. As argued by the present author in [26], logic-based fuzzy mathemat-
ics directly addresses only a very specific portion of traditional fuzzy mathematics, and
even though its apparatus is powerful enough to encompass a much larger area of tradi-
tional fuzzy mathematics, the advantages of the logic-based approach are manifested best
in problems close to its own principles and motivation (i.e., logical inference preserving the
degrees). The scope of the logic-based approach thus should be specified more narrowly
than originally in the manifesto [34]. Nevertheless, its applicability is still broad enough
to make it a significant part of mainstream fuzzy mathematics, with clear methodology
and interpretation.

At present, the project of logic-based foundations of fuzzy mathematics is by no means
finished and continues to be under permanent progress. Among the proximate future tasks
is the elaboration of the theory of fuzzy quantifiers and their application in all disciplines
of logic-based fuzzy mathematics (which would include revisiting areas that have already
been developed, and a thorough study of new notions defined by means of such quanti-
fiers). Another important topic is the notion of fuzzy function, which has not yet been
sufficiently investigated in FCT, either. The notion can then be employed for defining in
FCT the concepts of fuzzy cardinality (based on fuzzily bijective fuzzy functions) and fuzzy
morphism of fuzzy structures. Various properties of fuzzy orderings have not yet been
systematically studied, for instance linearity, directedness, or well-foundedness. Fuzzy
topology, fuzzy aggregation operators, and fuzzy interval arithmetic are currently under
study; fuzzy lattices, measures, and metric spaces are possible candidates for forthcoming
topics of research in FCT.

4.2 The papers comprising the thesis

This section comments on the papers comprising the thesis. The papers are grouped and
ordered by topic rather than chronologically, in order to give an exposition of the theory
proceeding in a logical way from the methodological assumptions and the basic apparatus
of FCT to more advanced disciplines of fuzzy mathematics. The texts of the papers were
recompiled for inclusion in the thesis, and may therefore differ from the published versions
in such details as formatting, numbering of footnotes or references, etc.35 Several typos
that occurred in the published papers have also been fixed in the present version.

35The applicable copyright transfer agreements allow including the papers in a thesis.
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L. Běhounek: On the difference between traditional and deductive fuzzy logic
[26]. The paper analyzes methodological principles of logic-based fuzzy mathematics and
demonstrates them to be fundamentally different from those of traditional fuzzy mathe-
matics. The paper shows that even though most concepts of traditional fuzzy mathemat-
ics can be modeled in higher-order fuzzy logic (as its expressive power includes classical
mathematics), the logic-based rendering of notions that are based on principles alien to de-
ductive fuzzy logic is rather artificial and gives little advantage over studying such notions
by traditional methods. Therefore, the logic-based approach is best suited to a specific
area of fuzzy mathematics consonant with its methodological assumptions (namely those
related to the deductive treatment of partial truth), and its foundational significance is
smaller in other areas of fuzzy mathematics.

The paper was based on several years of experience with developing logic-based fuzzy
mathematics; therefore it could make distinctions that had not been recognized in the
Manifesto [34] written at the beginning of the research program. Even though the more
precise delimitation of the scope of the foundational program could be seen as a retreat
from the too optimistic tone of the Manifesto (which purported to give foundations to
all fuzzy mathematics), it can on the other hand be interpreted as a clarification of the
fact that traditional fuzzy mathematics actually deals with several phenomena that are
too different from each other, and therefore it in fact comprises several different fields of
research. The field in which the logic-based approach is most fruitful is marked by a clear
interpretation of membership degrees as degrees of truth (preserved under inference), while
other areas of fuzzy mathematics work with a mixture of several different conceptions of
membership degree (cf. [74]), often not clarified enough. Naturally, logic-based methods
apply in a less straightforward manner to such fields. The paper thus presents a more
precise delimitation of the area of research, rather than a retreat from the foundational
program.

Although the paper uses the term partial truth frequently, it was not meant to engage
in the philosophical dispute on the nature of truth and its (un?)necessary bivalence:36 the
term should be understood in the technical sense of “the (gradual) quality of propositions
that is preserved under the deductions in fuzzy logic”. The gradual quality is in the paper
called “partial truth” in analogy with the (bivalent) quality transmitted in deductions of
classical logic, which is usually called—and understood as—truth. Whether we call the
gradual quality “partial truth” or another name has no effect on the observations made
in the article: the only important thesis is that, similarly as classical logic operates salva
veritatis, deductive fuzzy logics infer their conclusions salvo gradu—i.e., preserving the
grades assigned to propositions,37 no matter whether the grades are interpreted as degrees
of truth, a measure of the underlying attributes [140], utility values [90], costs [11, 25], or
grades of any other kind.

The term deductive fuzzy logic is in the paper used for logic-based fuzzy mathematics
in general (i.e., not only for formal fuzzy logic in the strict sense), since the intended
audience usually employs the term fuzzy logic (both in Zadeh’s [214] broad and narrow
sense) in the broader sense of fuzzy mathematics. The term is in the paper additionally
given a concrete mathematical meaning of the logics of linear residuated lattices, which
delimits the class of logics upon which logic-based fuzzy mathematics in our sense can be
built.

36This was not stressed in the paper, as the intended audience were researchers in traditional fuzzy
logic rather than philosophers.

37Preserving should here be understood in the sense of the local consequence in substructural logics
(cf. footnote 12 on page 11 above and see [26] for details), not in the sense of [50, 86].
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In the paper, the structural rule of exchange (i.e., commutativity of conjunction) is
assumed for deductive fuzzy logics. This assumption was based on the idea that while
the absence of the rules of contraction and weakening can be motivated by considerations
about truth degrees,38 non-commutativity of conjunction is motivated by (e.g., tempo-
ral) considerations that are not related to degrees of truth. However, since fuzzy logics
can [11, 20, 23, 25] also be motivated as logics of resource-aware reasoning (or logics of
costs), and the rule of exchange can fail for resources (i.e., fusion of resources need not
be commutative), it is more reasonable to discard in general the assumption of commu-
tativity, too.

In [86], Josep Maria Font proposed to call the intervals {β ∈ L | β ≥ α} for each
α ∈ L truth degrees, as opposed to the truth values α ∈ L. Then one can say that it is a
truth degree what is preserved by fully true implication in deductive fuzzy logics, rather
than a truth value. Font’s distinction is consonant with the considerations presented in
the discussed paper and provides a better formulation of what in the discussed paper is
described as “guaranteed degrees of truth”, “guaranteed truth thresholds”, etc.

L. Běhounek, P. Cintula: From fuzzy logic to fuzzy mathematics: A method-
ological manifesto [34]. The paper was written in June 2004 and presented at the
workshop The Challenge of Semantics in Vienna in July 2004. The main motivation for
writing the paper was to have a concise description of the methodology of logic-based
fuzzy mathematics (called Hájek’s program in the Manifesto) that could be referred to in
subsequent papers. The contents of the paper arose from extensive discussions between
both authors and is their joint work. The structure and actual wording of the paper was
drafted by the present author and finalized by both.

At the moment of writing it was assumed that deductive fuzzy logics could provide
foundations for the whole of traditional fuzzy mathematics. While this is true to some
extent, the best-suited area of applicability of the approach was later clarified in [26]; see
the previous paragraph on [26] for details.

A skeptical attitude towards the methodology described in the Manifesto (and towards
non-classical many-valued mathematics in general) was expressed by D. Dubois in [72,
p. 195–6]:

Although some may be tempted to found new mathematics on many-valued
logics [34], this grand purpose still looks out of reach if not delusive. It sounds
like a paradox of its own since we use classical mathematics to formally model
many-valued logic notions. What could be named “many-valued mathemat-
ics” essentially looks like an elegant way of expressing properties of many-
valued extensions of Boolean concepts in a Boolean-like syntax. For instance,
the transitivity property of similarity relations is valid in ÃLukasiewicz logic,
and, at the syntactic level, exactly looks like the transitivity of equivalence
relations, but should be interpreted as the triangular inequality of distances
measures.

To answer the criticism, the following clarification should be given first. Formal fuzzy
mathematics based on the methodology of [34] can essentially be understood in any of
the following two ways:

38Namely, by observing that combining imperfect truths combines their imperfection, which justifies
the general non-idempotence of conjunction; and that there can be degrees of full truth (e.g., in such
predicates as acute angle)—i.e., that the residuated lattice of truth degrees need not be integral.
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• In a “traditionalist view”, logic-based fuzzy mathematics is just a methodologically
advantageous treatment of traditional fuzzy mathematics, where in exchange for
voluntary restrictions on the language and methods we obtain a formalism that
enables us to derive theorems of certain forms more easily (cf. [30, §3.4] or [41]).
Under this view, the formulae of higher-order fuzzy logic indeed describe the behav-
ior of membership functions valued in the real unit interval or more generally in an
appropriate semilinear residuated lattice.

One of the benefits of this approach indeed comes from the fact that many notions
of traditional fuzzy mathematics turn out to be expressed by formulae of exactly
the same form as analogous notions of classical mathematics—e.g., T-transitivity
by a formula expressing classical transitivity, only reinterpreted in many-valued
logic. This enables to treat fuzzy notions in a similar way as classical notions: e.g.,
the proofs of theorems often just copy classical proofs. Moreover, it allows us to
extrapolate this observed correspondence and find new important notions of fuzzy
mathematics by reinterpreting classical definitions in fuzzy logic. Furthermore, when
employing many-valued logic, all defined notions become naturally graded, which
radically facilitates the study of graded properties (in the sense of [101]) of fuzzy
notions.

• Alternatively, in a “foundationalist view”, logic-based fuzzy mathematics presents
a fundamental treatment of fuzzy mathematics (indeed a “new mathematics”, as
called by Dubois in the cited passage of [72]), based on non-classical logics. This in-
terpretation understands fuzzy sets as a primitive notion, axiomatized (or governed)
by the axioms and rules of the non-classical logic, in a similar manner as crisp sets
are governed (and can be axiomatized) by the axioms and rules of classical logic.

Under this approach, fuzzy sets are not represented or modeled by their member-
ship functions, but are primitive objects sui generis. Pre-theoretical considerations
(cf. [22, 117]) about (certain kinds of) vague propositions suggest that they can be
assumed to be governed by the laws of the fuzzy logic MTL or some of its varia-
tions. Importantly, the justification of the logical laws governing vague propositions
is pre-theoretical and independent of any model of fuzzy sets in classical mathe-
matics. Based on the axioms and rules of fuzzy logic, a formal theory of fuzzy
sets can be developed, with the intended informal semantics of actual fuzzy sets,
i.e., unsharply delimited collections of objects—similarly as the intended informal
semantics of classical sets is that of sharply delimited collections of objects. The
formal semantics of fuzzy logic is then formed by fuzzy sets described by (a frag-
ment of) the very same theory itself—similarly as the semantics of classical logic is
formed by sets described by (a fragment of) classical set theory (i.e., the same form
of ‘circularity’ is encountered as in the foundations of classical mathematics).

It turns out that, incidentally, the theory of fuzzy sets can be formally interpreted in
classical mathematics: this formal interpretation is what more usually is called “the
many-valued semantics” of fuzzy set theory, in which fuzzy sets become interpreted
by “membership functions”. Although classical mathematics is thus, by means of
the formal interpretation, capable of faithful modeling fuzzy mathematics, it does
not establish its priority over fuzzy mathematics, as both theories can be founded
independently of each other and are faithfully interpretable in each other.39

39A formal interpretation of classical mathematics in fuzzy mathematics can be done by means of
the propositional connective 4—which is no wonder as the connective is intended to represent crisp
propositions among fuzzy ones and is axiomatized by the laws valid for crisp sets.
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Both classical and fuzzy mathematics are therefore of equal standing as foundational
theories, and precedence can be given to one of them only on the basis of some
pragmatic criteria. Classical mathematics may be preferred because of our long
experience with it or because of its simplicity (as it only considers crisp sets). Fuzzy
mathematics, on the other hand, can be preferred in vague contexts because it
renders vaguely delimited sets more directly, and because of the advantages of its
apparatus in proving theorems on fuzzy sets as described under the traditionalistic
view above.

It can be seen that the three points of the above criticism of many-valued mathematics
from [72, pp. 195–196], namely that

1. “we use classical mathematics to formally model many-valued logic notions”,

2. “what could be named ‘many-valued mathematics’ essentially looks like an elegant
way of expressing properties of many-valued extensions of Boolean concepts in a
Boolean-like syntax”, and that

3. “the transitivity property of similarity relations [. . . ] should be interpreted as the
triangular inequality of distances measures”,

only apply to the traditionalistic view of the non-classical theory. The second statement
is explicitly admitted in the Manifesto [34, p. 643]:

Admittedly, a formal theory over fuzzy logic is just a notational abbreviation
of classical reasoning about the class of all models of the theory.

Still, the advantages of the logic-based approach fully justify the development of logic-
based fuzzy mathematics even under the traditionalistic interpretation. The possibility
of the foundationalist attitude, however, shows that the non-classical theory need not be
regarded just as formally modeling many-valued notions while still using classical math-
ematics. Rather, the non-classical notions can be regarded as primitive and independent
of classical mathematics: since the theory is syntactical, it does not need to presuppose
that classical mathematics has been developed first. And under the foundationalist ap-
proach, the transitivity of similarity relations is not interpreted as the triangular inequality
of distance measures, but indeed as transitivity of unsharply delimited relations (regarded
as primitive entities). The application of the name “transitivity” to fuzzy relations is then
justified by the fact that Trans R ≡df (∀xyz)(Rxy & Ryz → Rxz) is the necessary and
sufficient graded condition ensuring that Rxz can for any instances of x, y, z be inferred40

from Rxy and Ryz (which is exactly the property we usually call “transitivity”). Only
accidentally the property coincides, when fully true, with the notion of T-transitivity that
is known from traditional fuzzy mathematics and that expresses the triangle inequality
of distance measures.

In sum, Dubois’ criticism of [72] only applies to the traditionalist understanding of
logic-based fuzzy mathematics, and not to the foundationalist one. But even under the tra-
ditionalistic view, logic-based fuzzy mathematics has undisputable advantages described
above, which fully justify its development.

40In the graded way, i.e., preserving the truth degrees in the sense of the local consequence of deductive
fuzzy logics, see footnote 12 on page 11 or [26].
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L. Běhounek, P. Cintula: Fuzzy class theory [30]. This chronologically first paper
on Fuzzy Class Theory introduced its apparatus, demonstrated its expressive power (by
interpreting notions of fuzzy and classical mathematics) and hinted at benefits of its
formal methods (by reducing a large part of graded elementary theory of fuzzy classes to
propositional calculations).41

In the paper, the logic ÃLΠ was used as the background logic of the theory, because of
its expressive power. The aim of the paper was to construct a unified framework for most
of fuzzy mathematics, which required having a large class of t-norm based propositional
connectives interpretable in the underlying logic. The logic ÃLΠ which interprets all finite
ordinal sums of the three basic continuous t-norms (ÃL, G, and Π) and many left-continuous
t-norms (e.g., NM) as well as their residua while still retaining good metamathematical
properties provided a suitable compromise between the expressive power and simplicity
of the logic. For the sake of generality, all notions were in the paper defined relative
to an arbitrary ÃLΠ-representable t-norm (intended to interpret the connectives in the
defining formula), and theorems and proofs were formulated schematically, with connec-
tives indexed by ÃLΠ-representable t-norms. Later the practice showed that connectives
pertaining to different t-norms are seldom mixed in particular disciplines of logic-based
fuzzy mathematics, and that it is therefore more convenient to work in a fragment of
ÃLΠ containing just the connectives needed for the particular purpose. The schematic
formulae indexed by an ÃLΠ-representable t-norm can then be replaced by formulae of the
logic MTL4, which is sound for any left-continuous t-norm. If needed, the logic MTL4
can be strengthened by additional assumptions (e.g., to IMTL4 if the involutiveness of
the residual negation is required) or expanded by additional connectives (e.g., to MTL∼
if an independent involutive negation is needed). Currently, therefore, logic-based fuzzy
mathematics is mostly done in FCT over MTL4 or a similarly weak logic rather than
over ÃLΠ.42 It is obvious that the apparatus of FCT can straightforwardly be transferred
to any deductive fuzzy logic that extends MTL4. Fuzzy Class Theory over ÃLΠ, nev-
ertheless, remains being the common framework for the study of notions pertaining to
different ÃLΠ1

2
-representable t-norms in one theory, and thus (a candidate for) the common

foundational theory for logic-based fuzzy mathematics.
The paper, though necessarily technical, was also aimed at the audience not special-

ized in formal fuzzy logic; therefore some technical details were only sketched (e.g., the
apparatus of tuples) or not discussed at all (for instance, that the comprehension schema
should be extended to formulae of the enriched language if new symbols are added to the
language, as in Section 6 of the paper). As it was sufficient for the basic development
of logic-based fuzzy mathematics, only the axioms of extensionality and comprehension
(and, optionally, fuzziness) were considered in the paper, although it was already clear
that advanced topics in logic-based fuzzy mathematics will sooner or later require some
forms of the axiom of choice or similar principles. Since only the basics of fuzzy math-
ematics have been investigated by now, such a need has not arisen yet. The expected
complexity of the relationships between possible variants of choice principles over fuzzy
logic makes them another topic for future investigation.

41Theorems on fuzzy sets that are typically found on the first several dozens of pages in standard text-
books in fuzzy set theory (e.g., [166, 145]) are corollaries of the metatheorems [30, Th. 33–36] and simple
theorems of propositional fuzzy logic. Since usual propositional deductive fuzzy logics are decidable, the
metatheorems show that basic properties of fuzzy sets could easily be generated by a computer program.
A similar comment applies to the theorems on fuzzy relations from the paper [41] described below.

42Working in MTL4 is slightly more general than the schematic work in ÃLΠ, since it admits interpreting
the connectives by all left-continuous t-norms rather than only those representable in ÃLΠ. Notice, however,
that propositional MTL is complete w.r.t. all left-continuous t-norms representable in ÃLΠ1

2 [155].
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The paper was written in January 2004; the authors’ motivations for the study of the
theory are described in Section 4.1. In the actual preparation of the paper, all parts were
extensively discussed by both authors, and most sections are their joint work. Of particu-
lar developments that are due mainly to one of the authors, the apparatus of subsumption
of sorts in first-order fuzzy logic was prepared by Petr Cintula, while the metatheorems of
Section 3 were observed by the present author.

L. Běhounek, U. Bodenhofer, P. Cintula: Relations in Fuzzy Class Theory:
Initial steps [28]. The paper treats basic properties of fuzzy relations in the graded
setting of FCT. Since relations occur in all parts of mathematics, the investigation of
basic properties of fuzzy relations in FCT is an indispensable prerequisite for all disci-
plines of logic-based fuzzy mathematics. A parallel aim of the paper was to present Fuzzy
Class Theory to researchers in traditional fuzzy mathematics and introduce to them the
fully graded approach in fuzzy mathematics. To this end we wanted to recast in FCT
known theorems on graded properties of fuzzy relations (esp. those from Gottwald’s mono-
graph [104, Ch. 18]), and to give graded generalizations of some representative non-graded
results of traditional fuzzy mathematics; a few previously unknown concepts and results
were discovered along the way, too. As it was impossible to cover the whole area of fuzzy
relations, the paper focused mainly on fuzzy preorders and similarities; but even with
this reduction of scope, the paper could only treat a selection of their most basic proper-
ties. Further classes of fuzzy relations (e.g., fuzzy orderings or functions) still wait for a
thorough investigation.

Several parts of the paper have preliminary versions in conference proceedings [33, 49,
61, 16, 27]. In order to keep the introduction to the paper short, a primer in Fuzzy Class
Theory [35] was written and made freely available online as a research report.

The paper was written over the period of more than three years (2004–7), mostly dur-
ing several research stays of the Czech co-authors at Johannes Kepler University in Linz.
All parts of the paper were edited, discussed, and checked for correctness by all of the
co-authors. Particular contributions of the co-authors (so far as they can be determined)
were as follows: Ulrich Bodenhofer provided the examples and links to known results of
traditional fuzzy mathematics (cf. [49]), wrote most of the Introduction, edited many pas-
sages in other sections, and collaborated on several parts of the paper (esp. in Sections 4,
6, and 7). Most of the introductory Section 2 and the Appendices were written by Petr
Cintula and the present author (cf. [37, 35]); the latter is also responsible for Section 5
(on bounds, cf. [16]) and smaller parts of other sections. Section 6 (on Valverde represen-
tation, cf. [27]) is a joint work of all three co-authors. Section 7 (on partitions, cf. [61])
is mostly due to Petr Cintula, who also produced most proofs in Sections 3 and 4 (all of
these proofs were presented in the paper in order to keep the exposition self-contained,
even though some of the properties follow independently from more general theorems
of [41]).

The clumsy proof of Corollary 4.11(I52) in the published version of the paper resulted
from a trivial mistake discovered only when the final version was already submitted. The
statement has in fact a trivial proof that uses just the monotony of the opening and
closure operators and of min-intersection and max-union with respect to inclusion.

L. Běhounek, M. Daňková: Relational compositions in Fuzzy Class Theory
[41]. The paper, written in 2006–2007, was originally intended to deal with properties
of relational notions not covered by [28] (then under preparation) such as Cartesian prod-
ucts or preimages. However, it was soon realized by the present author that most of
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such notions are just instances of (sup-T or inf-R) relational compositions for arguments
with lesser arities, and that this relationship, which had only informally been sketched in
Bělohlávek’s monograph [46, Rem. 6.16], can be made precise in the formal framework
of FCT by means of syntactic interpretations (cf. [21]). The systematic exploitation of
the correspondence (including classes of arity 0 that represent truth values, cf. [18, §2])
resulted in a systematic and uniform description of more than 30 relational notions, with
many properties translated automatically from a few basic properties of relational compo-
sitions. A large class of properties of these notions furthermore turns out to be derivable
from a few identities in a simple equational calculus for fuzzy relations. The method
thus provides a reduction of a large fragment of the elementary theory of fuzzy relations
to a much simpler calculus, comparable to the reduction of a fragment of the theory of
fuzzy classes to fuzzy propositional calculus by the metatheorems of [30, §3]. The fact
that the fuzziness of the relations under consideration does not play a significant role in
the application of the equational calculus to the relational notions further supports the
thesis that with a suitable apparatus (here, of deductive fuzzy logic), the generalization of
some parts of classical mathematics to fuzzy sets is rather straightforward (cf. the end
of Section 1).

Even though a larger part of the paper is due to the present author, Martina Daňková
had an indispensable role in the exhaustive derivation of relational properties in the
equational calculus and providing links to the applied practice (esp. Examples 5.12–13).
She also prepared and presented the preliminary conference version [40] of the paper and
made a search for relevant literature. All parts of the paper were discussed and checked
for correctness by both co-authors.

L. Běhounek: Extensionality in graded properties of fuzzy relations [19].
The conference paper, presented at IPMU 2006, offers new definitions of basic graded
properties of fuzzy relations, relative to a fuzzy indistinguishability relation between the
objects of discourse. The approach is part of the effort to avoid hidden crispness in def-
initions, suggested already in the original FCT paper [30, §7]: the proposed definitions
eliminate the implicit crisp identity of traditional graded definitions that is hidden in
using multiple references to the same variable, and replace it by an explicit fuzzy in-
distinguishability relation E; the traditional definitions are then the special cases for E
equal to the crisp identity relation Id. The paper gives arguments supporting the need
for such definitions, answers the counter-argument referring to an infinite regress, and
shows that the traditional property of extensionality of a fuzzy relation w.r.t. an in-
distinguishability, which in the non-graded setting has the same motivation as the new
definitions, cannot substitute the new definitions in the graded setting (although it can
do so in the non-graded setting). The paper furthermore offers an explanation why only
some of the indistinguishability-based properties have previously been defined in the non-
graded setting.

It was not mentioned in the paper, though it should have been, that also E-functionality
had been defined in the traditional non-graded setting (alongside several variant defini-
tions of a fuzzy function) by Demirci [68, 69].

The conference paper only gave results relevant to its main theses, rather than a
comprehensive list of properties of indistinguishability-based properties; these will be
given in a full paper, which is currently under construction.43 The full paper will also

43Incidentally, all results included in the conference paper were first-order; therefore just first-order
logic (MTL4) could be employed. The higher-order setting is, nevertheless, needed for the study of
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extend the game-theoretically motivated generalization sketched in Section 4 of the paper
and a systematization of the properties in terms of sup-T and inf-R compositions.

L. Běhounek: Towards a formal theory of fuzzy Dedekind reals [16]. The
conference paper, presented at EUSFLAT 2005, presents a sketch of a theory of fuzzy
real numbers and fuzzy intervals based on the Dedekind completion of an underlying
structure of crisp numbers. Besides purely theoretical motivations, one of the aims of the
investigation was to model the traditional notion of fuzzy number (cf. Section 2.3 above,
p. 16) in the logic-based framework. The (fuzzified) lattice completeness of the resulting
fuzzy real numbers, construed as fuzzy Dedekind cuts, is proved, and the transition from
Dedekind cuts to fuzzy intervals representing traditional fuzzy numbers is sketched.

Only fuzzy reals satisfying the defining conditions to degree 1 were considered in the
paper, partly for simplicity and partly in order to adhere to the motivation that Dedekind
cuts express the distribution of the fuzzy real number (which would be violated by any
misbehavior of its distribution function, and therefore the condition should be satisfied
to the full degree). The definitions are thus regarded as the axioms for fuzzy Dedekind
cuts, rather than graded conditions. Results on the graded notion of fuzzy real would for
a large part be obtainable by replacing 4’s by suitable exponents, but this generalization
might not be very interesting for mainstream fuzzy mathematics, as traditional fuzzy reals
form a crisp class, too.

Even though only crisp rationals were considered for the underlying structure in this
paper (as they are sufficient for generating a structure of fuzzy reals), the results obviously
hold for each dense linearly ordered field of numbers (e.g., crisp real numbers, which are
more often used for a construction of fuzzy numbers in the mainstream fuzzy mathemat-
ics). Fuzzy lattice completions of crisp dense linear orders are studied in more detail in
the author’s workshop paper [15], where two methods of obtaining a fuzzy lattice from
such crisp orderings (viz, by Dedekind cuts and MacNeille stable sets, which differ in the
fuzzy setting) are described.

The fuzzy lattice completion employed in the paper differs from fuzzy lattice comple-
tions described earlier in the literature [126, 46]: while [126] and [46] study the minimal
fuzzy lattice completions of fuzzy orderings (achieved by MacNeille stable fuzzy sets), the
present paper is concerned with a fuzzy completion of a crisp ordering, which need not
be minimal, but should contain all fuzzy Dedekind cuts. Despite different settings and
definitions in [126, 46], some results are nevertheless similar (for more details see [15]).

A similar approach to fuzzy numbers (or intervals) has later been taken by Horč́ık in
his paper [134] on fuzzy interval analysis, where analogous results on representation and
arithmetic of fuzzy intervals have been derived.

The results of [28, §5] on suprema were originally derived by the present author for the
purposes of the discussed conference paper [16]. Therefore most proofs omitted from [16]
can be found in [28, §5]. A full paper on this topic is still in progress; the main obstacle to
finishing it is an as yet unclarified suitable definition of multiplication of fuzzy Dedekind
cuts. (Observe that Horč́ık [134] also defines just multiplication by a scalar, i.e., a crisp
number, which is unproblematic.) The aim is to extend the operations from the under-
lying crisp numbers to fuzzy cuts A in such a way that Aq can be interpreted as the
truth value of A ≤ q (or a measure of the distribution of the fuzzy real A in (−∞, q]),
with the ordering preserved by the extended operations (cf. [16, §4]). Zadeh’s extension

preservation of the indistinguishability-based properties w.r.t. class unions, intersections, etc., which will
be given in the full paper.
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principle works to this effect only if the original operation on crisp numbers is mono-
tone; a suitable definition of multiplication of fuzzy cuts therefore has to separate positive
numbers from negative ones (cf. the definition of multiplication for crisp Dedekind cuts),
but the details of the construction that would capture the informal motivation correctly
are not yet clear enough.44 The ‘game-theoretical’ considerations on the interpretation
of the truth values of the operands hinted at in Horč́ık’s paper [134] (similar to those
sketched in [19, §4]) should also be taken into account. At present, a sound treatment of
the extended operations on fuzzy intervals remains a subject for future work.

L. Běhounek: Fuzzification of Groenendijk–Stokhof propositional erotetic
logic [14]. This early (and in many respects premature) paper is included in the disser-
tation in order to demonstrate a possible application of logic-based fuzzy mathematics as
a formal semantics for fuzzified non-classical logics. By defining a fuzzified consequence
relation of a non-classical logic in Fuzzy Class Theory, the fuzzified non-classical logic gets
formally interpreted in FCT (i.e., in higher-order fuzzy logic). The apparatus of FCT then
provides a well-defined framework for introducing semantical notions of the non-classical
logic and deriving its metamathematical properties.

The paper avoids the problem of quantification over a fuzzy domain W by requiring
the crispness [14, §6] or full contractivity [14, §7] of W ; an adequate account for arbitrary
fuzzy logical spaces would need a better understanding of quantification over a fuzzy
domain (cf. footnote 45 and comments on [43, 42] below). The paper only deals with
yes–no questions, since yes–no partitions of a logical space are explicitly definable by
means of negation; a logic-based theory of fuzzy partitions, needed for choice questions
and first-order fuzzy erotetic logic, had not yet been developed in the time of writing
the paper. A possible extension to fuzzy choice questions or to first-order fuzzy erotetic
logic, generalizing the framework of [109], could use the results of [28, §7] on graded T-
partitions: by [28, §7], T-partitions correspond to fuzzy equivalences (even in the graded
manner); graded T-partitions thus provide a well-motivated basis for a partition semantics
of fuzzy questions. This approach would enable to fuzzify the notion of question itself,
by considering the fuzzy notion of T-partition. (In the discussed paper [14], the concept
of fuzzy yes–no question itself is crisp, although it admits fuzzy answerhood.)

Further applications of the apparatus of FCT in the semantics of non-classical logic
are sketched by the present author in the workshop paper [25] on fuzzified propositional
dynamic logic (employed for modeling costs of program runs) and the Czech conference
papers [23, 24] on fuzzified epistemic logic (employed for modeling feasible and vague
knowledge). Full journal papers based on these conference papers are being prepared.

L. Běhounek, T. Kroupa: Topology in Fuzzy Class Theory: Basic notions [43];
Interior-based topology in Fuzzy Class Theory [42]. The conference papers [43]
and [42] were presented, respectively, at the IFSA World Congress 2007 and the Con-
ference of EUSFLAT 2007 (where the latter paper won the Distinguished Student Paper
Award). The papers present the first treatment of fuzzy topology in the framework of
FCT: they investigate the mutual relationships between alternative graded definitions of a
fuzzy topology, namely by open or closed fuzzy sets [43, §3], fuzzy neighborhoods [43, §4],
and fuzzy interior operators [42].

44The definition of multiplication for fuzzy cuts over the discrete domain of integers, extending a
cardinality-based multiplication of natural numbers, could help to clarify the matter; however, the theory
of fuzzy functions and cardinalities has to be developed first.
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Only fuzzy topologies over crisp universes have been considered in [43, 42]. This
restriction has rather been chosen for methodological than technical difficulties. Even
though it would be technically quite straightforward to generalize the notions for fuzzy
universes (in exchange for several more exponents in definitions), the meaningfulness
of such definitions would need a much more thorough discussion. For example, fuzzy
domains are not preserved under the usual (sup-T) composition ◦ of fuzzy mappings,
which makes many straightforward constructions over fuzzy topological spaces ill-defined
(as the mapping F ◦G is defined on another fuzzy space, different from the domain of F )
or ill-motivated. The motivational discussion needed to avoid ad hoc solutions exceeds
the scope of fuzzy topology, as the questions encountered here are particular instances of
more general problems of quantification over a fuzzy domain, which have not yet been
satisfactorily addressed by deductive fuzzy logic.45 The discussion of topologies over a
fuzzy universe in the fully graded setting of FCT thus remains a task for future work,
which can only be successfully solved after the general questions of quantification over
fuzzy domains are addressed.

Although the underlying logic employed in [43] was IMTL, most results hold generally
in MTL: the involutiveness of negation was only used to obtain the duality between open
and closed fuzzy sets (which, moreover, seems to be inessential for fuzzy topology: cf. the
successful development of constructive topology [183] where the duality fails as well).

The general approach and the definitions of basic concepts arose from joint discussions
of both authors. Actual derivations of most particular properties listed in the papers have
been done by T. Kroupa (some of them followed easily from his results in [149] on fuzzy
filters), while the present author is responsible for most of the examples. Both authors
participated in writing the papers and checking the results for correctness. P. Cintula gave
us a hint on the importance of the inner exponent in the definition of U2c [43, Def. 4.3].
The papers have been followed by an abstract [44] on the notions of continuity in the
present setting; a full paper summarizing these results is under construction.

The present author’s current view (which may not be shared by his co-author) on
how logic-based fuzzy topology should further be developed differs somewhat from that
presented in the above papers and is based on a more radical reading of [37, §7] on
deprecating fixed preconditions in definitions. Obviously, the notions of fuzzy topology
as presented in [43, 42] have to be parameterized by several indices that determine the
multiplicities of conjuncts in the compound notion. The list of such indices, which is
already too long, can further grow if more special properties of fuzzy topologies (like
stratification [128] or separation axioms) are considered. Even the defining conditions
proposed for open fuzzy topology (OTop) in our papers [43, 42] are themselves disputable
as they are not independent (since ∅ ∈ τ is implied by the union-closedness of τ); yet
it would not be reasonable to omit the condition ∅ ∈ τ in favor of the union-closedness,
as the latter is much stronger and many properties only need the former. It is not at
all clear which are the ‘right’ counterparts in fuzzy topology of the classical conditions
that the empty set and the whole space are open. This suggests that the notion of
fuzzy topological space is even less rigid than in classical mathematics or in traditional
fuzzy mathematics (cf. the plenitude of variant kinds of topological spaces defined in
both), and that there is no predetermined set of properties which together would form a
well-motivated and sufficiently stable notion of fuzzy topology. Rather, there is a vague

45Observe that the apparatus of deductive fuzzy logic itself only considers crisp domains of discourse,
and thus is best suited to modeling fuzzy structures over crisp universes. Possibly, a proper use of strong
quantifiers (see Section 2.2) might provide an adequate treatment of quantification over fuzzy domains:
a detailed investigation in this direction has yet to be done.
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informal set of independent ‘topologically flavored’ graded properties of arbitrary fuzzy
systems of fuzzy subsets (or of fuzzy neighborhoods), and various combinations of such
properties should be studied without restricting our attention in advance to a fixed set
of conditions. Under this approach, fuzzy topology would not ask the properties of a
pre-defined notion of fuzzy topology, but rather proceed in a reverse manner, by deriving
preconditions ensuring such ‘topologically flavored’ properties (cf. the research program of
reverse mathematics, e.g., in [189, Ch. 1]). This reverse style of logic-based fuzzy topology
may well be the right manner of developing logic-based fuzzy mathematics in general, as
the problem of too many indices and the absence of a fixed set of defining conditions are
not specific for fuzzy topology (being due just to the non-contractivity of conjunction).
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logic. In F. Hakl, editor, Doktorandské dny ’08, pages 11–18, Prague, 2008. Mat-
fyzpress.

38
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[121] P. Hájek, J. Paris, and J. C. Shepherdson. The liar paradox and fuzzy logic. Journal
of Symbolic Logic, 65(1):339–346, 2000.

[122] P. Hájek, J. Paris, and J. C. Shepherdson. Rational Pavelka logic is a conservative
extension of ÃLukasiewicz logic. Journal of Symbolic Logic, 65(2):669–682, 2000.

[123] Z. Haniková. A note on the complexity of propositional tautologies of individual
t-algebras. Neural Network World, 12(5):453–460, 2002. Special issue on SOF-
SEM 2002.
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On the difference between traditional
and deductive fuzzy logic

Published version: L. Běhounek: On the difference between traditional and deductive
fuzzy logic. Fuzzy Sets and Systems 159 (2008): 1153–1164.

Abstract: In three case studies on notions of fuzzy logic and fuzzy set theory (Dubois–
Prade’s gradual elements, the entropy of a fuzzy set, and aggregation operators), the pa-
per exemplifies methodological differences between traditional and deductive fuzzy logic.
While traditional fuzzy logic admits various interpretations of membership degrees, de-
ductive fuzzy logic always interprets them as degrees of truth preserved under inference.
The latter fact imposes several constraints on systems of deductive fuzzy logic, which
need not be followed by mainstream fuzzy logic. That makes deductive fuzzy logic a spe-
cific area of research that can be characterized both methodologically (by constraints on
meaningful definitions) and formally (as a specific class of logical systems). An analysis
of the relationship between deductive and traditional fuzzy logic is offered.

Keywords: Deductive fuzzy logic, fuzzy elements, gradual sets, entropy of fuzzy sets,
aggregation, membership degrees, methodology of fuzzy mathematics. MSC: 03B52,
03E72, 68T37.

Introduction

Lotfi Zadeh [41] has made the distinction between fuzzy logic in broad sense (FLb) and
fuzzy logic in narrow sense (FLn). FLn is based on certain many-valued logics, but its
agenda differs from that of formal logic: it deals with such concepts as linguistic variable,
fuzzy if–then rule, defuzzification, interpolative reasoning, etc.; and FLb roughly coincides
with the broad theory and applications of fuzzy sets.

In this paper we shall focus on a sub-area of FLn that studies or uses formal deductive
systems of fuzzy logic. Prototypical examples of such systems are those centered around
Hájek’s basic fuzzy logic BL of continuous t-norms [22], including for instance ÃLukasiewicz,
Gödel, and product logics [22], the logics MTL [20], ÃLΠ [21], etc., both propositional and
first- or higher-order [22, 35, 6]. The area also covers those parts of fuzzy mathematics
(i.e., of FLb) which are built as deductive axiomatic theories based on these formal fuzzy
logics (cf. [38, 25, 26, 8, 6, 7, 11], etc.). To avoid a conflict of terms, we shall call this
area deductive fuzzy logic (FLd). Other parts of FLn and FLb will in the present paper
be labeled traditional fuzzy logic (FLt), as the latter has a much longer tradition than the
relatively newer FLd.
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The aim of this paper is to point out and analyze certain fundamental differences
between FLd and FLt. The differences are illustrated in three case studies, regarding
respectively:

1. Dubois and Prade’s notion of fuzzy element

2. The notion of entropy of fuzzy sets

3. Aggregation of fuzzy data

Since the paper is methodological rather than technical, I omit most technical details
and focus on the analysis of the principles behind the approaches of FLt and FLd. I
assume that the reader has a basic knowledge of some formal system of fuzzy logic, for
instance Hájek’s logic BL of continuous t-norms [22]. Here I only briefly recapitulate some
characteristic features of deductive fuzzy logics, which will be of importance for further
considerations:

• Deductive fuzzy logic is a kind of (many-valued) logic.1 Therefore, like other kinds
of logics, it primarily studies preservation of some quality (“truth”) of propositions
under inference. In the particular case of formal fuzzy logic, the quality is partial
truth, i.e., the degrees of truth.2 Thus, deductive fuzzy logic interprets membership
degrees exclusively as degrees of truth of the membership predication. In this it
differs from the rest of traditional fuzzy logic, which admits various interpretations
of membership degrees [17, 16].

• As a kind of formal or symbolic logic, FLd strictly distinguishes syntax from se-
mantics. In syntax, deductive fuzzy logic works with some fixed language composed
of propositional connectives, quantifiers, predicate and function symbols, and vari-
ables. The symbols (and formulae built up from these symbols) are then interpreted
in semantical models, which are composed of usual fuzzy sets and fuzzy relations
of FLt. In this way the formulae of the symbolic language formally describe actual
fuzzy sets.

1Fuzzy logic understood as part of the theory of many-valued logics is sometimes called mathematical,
symbolic, or formal fuzzy logic, as it employs the methods of mathematical (symbolic, formal) logic [23].
Deductive fuzzy logic in our sense is a proper part of mathematical fuzzy logic: it will be shown that
in addition to being formal systems of (mathematical, or symbolic) fuzzy logic, deductive fuzzy logics
should satisfy certain principles in order to be suitable for graded logical deduction.

2Note that throughout the paper, “preservation of partial truth” or “graded inference” refers to the
so-called local consequence relation. The more commonly studied global consequence relation expresses
the preservation of full truth between fuzzy propositions. The global consequence relation is defined as
follows: ψ globally follows from ϕ1, . . . , ϕn iff the following holds: whenever all ϕ1, . . . , ϕn are fully true
(i.e., of truth degree 1), so is ψ. The local consequence relation, on the other hand, is defined by means
of partial truth: ψ locally follows from ϕ1, . . . , ϕn iff the truth degree of ψ is at least as large as the
aggregation (by strong conjunction) of the truth degrees of all ϕ1, . . . , ϕn.

Even though it is the global consequence relation which is most often studied in current mathematical
fuzzy logic, local consequence is important for actual reasoning in formal fuzzy logic, as it can be used
even when premises are only partially true. Notice that usual systems of deductive fuzzy logic axiomatize
the global (rather than local) consequence relation; however, the relation of local consequence between
ϕ1, . . . , ϕn and ψ can in these logics be defined as the (global) validity of (ϕ1 & . . . & ϕn) → ψ, where &
is strong conjunction and → implication. As argued in Case Study 3 below, the requirements on good
behavior of local consequence and its interplay with & and → form the constitutive features of deductive
fuzzy logics.
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• FLd is based on the axiomatic method and works in the formal deductive way. Valid
statements about fuzzy sets are derived in an axiomatic theory, through iterated
application of sound rules of a particular system of deductive fuzzy logic. Since
FLd employs non-classical many-valued logic, formal theories in FLd can have some
peculiar features [11], which are not met in standard axiomatic theories of FLt or
classical mathematics.

• Most systems of FLd impose specific constraints on some of its components. For
example, most systems of formal fuzzy logic require that conjunction be realized as
a left-continuous t-norm, and are much less interested in other conjunctive operators
studied in FLt. A partial explanation of this selectiveness of FLd will be elaborated
in the present paper. It can be shown that such restrictions largely follow from the
features of FLd listed above (viz the interpretation of degrees in terms of truth, the
study of partial truth preservation, formal deducibility, etc.).

A further explanation and illustration of these points, as well as an analysis of the differ-
ence between FLd and FLt which results from the above features of FLd, will be given
in the following sections. I will argue that FLd is a rather sharply delimited area of FLt,
and that the agenda of FLd differs significantly from that of FLt. Therefore, to avoid
confusion in fuzzy set theory, we should clearly distinguish between their respective areas
of competence.

Case study 1: Dubois and Prade’s gradual elements

In [18], Dubois and Prade have introduced the notions of gradual element and gradual
set by the following definitions:

Definition 1. Let S be a set and L a complete lattice with top 1 and bottom 0. A fuzzy (or
gradual) element e in S is identified with a (partial) assignment function ae : L\{0} → S.

Definition 2. A gradual subset G in S is identified with its assignment function aG :
L \ {0} → 2S. If S is fixed, we may simply speak of gradual sets.

A prototypical example of a fuzzy element is the fuzzy middle-point of a fuzzy inter-
val A, which assigns the middle point of the α-level of A to each α ∈ L \ {0}. Notice that
the assignment function of a gradual element need not be monotone nor injective (cf. the
middle points of certain asymmetric fuzzy intervals). Fuzzy elements of this kind are met
in many real-life situations (e.g., the average salary of older people). Gradual elements
and gradual sets are claimed by the authors to be a missing primitive concept in fuzzy
set theory.

The authors proceed to define the fuzzy set induced by a gradual set, the membership
of a gradual element in a fuzzy set, etc. As these notions are not important for our present
case, I refer the reader to the original article [18]. We shall only notice that the operations
proposed for gradual sets are defined cut-wise (with possible rearrangements of cuts in
the case of complementation).

The declared motivation for introducing gradual elements is to distinguish impre-
ciseness (i.e., intervals) from fuzziness (i.e., gradual change from 0 to 1). As implicit
in [18, 19], a general guideline for definitions of fuzzy notions should be the following
principle (we shall call it the principle of cuts):

55



Principle of cuts: The α-cuts of a fuzzy notion FX should be instances of
the corresponding crisp notion X.

I.e., the fuzzy version FX of a crisp notion X should be defined in such a way that
the α-cuts of FX ’s are X’s. Thus the fuzzy counterpart of the notion of element is
exactly the fuzzy element of Definition 1, that of the notion of set is the gradual set of
Definition 2, etc.

The definitions of gradual sets and gradual elements are clearly sound and the notions
will probably prove to be of considerable importance for FLt. Let us see if they can be
represented in FLd as well. A more detailed analysis of this question has been done in [4];
here we extract its important parts:

Apparently there are no direct counterparts of gradual elements or sets among the
primitive concepts of current propositional or first-order fuzzy logics. Nevertheless, it can
be shown that gradual elements and gradual sets are representable in higher-order fuzzy
logic [6, 9] or simple fuzzy type theory [35, 6]. For technical details of the representation
see [4]; here we only sketch the construction:

1. By the comprehension axioms of higher-order fuzzy logic, the notions of crisp kernel,
fuzzy subset, fuzzy powerset, and crisp function are definable in higher-order fuzzy
logic (see [6], [4] or a freely available primer [9] for details).

2. By a standard construction (cf. [38]), an internalization of truth degrees is definable
in higher-order fuzzy logic (see [4] or [12] for the details of the construction and some
meta-mathematical provisos). The lattice that represents truth degrees within the
theory is defined as L = Ker(Pow({a})), i.e., the kernel of the powerset of the crisp
singleton of any element a of the universe of discourse. (In fuzzy type theory of [35],
this step can be omitted, since the set of truth values is a primitive concept there.)

3. Since Definitions 1 and 2 need no further ingredients beyond those listed in items
(1)–(2), crisp functions from L to the domain of discourse or its powerset represent
respectively the notions of gradual element and gradual set in higher-order fuzzy
logic. By similar means, all other notions defined in [18] can be defined in higher-
order fuzzy logic as well (see [4]).

In particular, the definitions of gradual elements and gradual sets in the standard
framework of higher-order logic (or fuzzy class theory [6, 9]) run as follows:

Definition 3. A fuzzy element of S (in higher-order fuzzy logic) is any (second-order)
class E such that

Crisp E & ∆(Dom E ⊆ L \ {∅}) & ∆(Rng E ⊆ S) & Fnc E .

Definition 4. A gradual subset of S in higher-order fuzzy logic is any (second-order)
class G such that

CrispG & ∆(Dom E ⊆ L \ {∅}) & ∆(Rng E ⊆ Ker Pow S) & FncG.

In this way, the FLt notions of gradual element and gradual set can also be defined
in FLd of higher order. However, their rendering in FLd is not very satisfactory. First,
the formal representatives in FLd of the simple FLt notions are rather complex—namely
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certain very special second-order predicates, whose relationship to traditional fuzzy sets
(i.e., first-order predicates) is far from perspicuous.3 Although this presents no obstacle
to handling them in the formal framework of higher-order fuzzy logic, the apparatus of
FLd does not much simplify working with these notions (unlike it does with traditional
fuzzy sets), since they are represented by crisp functions like in their semantic treatment
by FLt. Considering the fundamental role fuzzy elements are to play in Dubois and
Prade’s recasting of fuzzy set theory, it would certainly be desirable to have fuzzy elements
and gradual sets rendered more directly in FLd—as primitive notions rather than defined
complex entities, preferably of propositional or first-order rather than higher-order level.
These demands, however, encounter the following deep-rooted difficulty:

The new notions represent the horizontal (cut-wise) view of a fuzzy set (construed
as a system of cuts), while usual fuzzy set theory represents fuzzy sets vertically (by
membership degrees of its elements). Predicates in first-order fuzzy logic only formalize
the vertical view of fuzzy sets; and although the latter can also be represented by systems
of cuts, all usual FLd systems of first-order fuzzy logic require that the cuts be nested.
This requirement is already built in the propositional core of common formal fuzzy logics,
all of which presuppose the following principle (further on, we shall call it the principle
of persistence):

Principle of persistence: If a proposition ϕ is guaranteed to be (at least)
α-true, then it is also guaranteed to be (at least) β-true for all β ≤ α.

The principle is manifested, i.a., in the transitivity of implication, which is satisfied in all
systems of FLd and is indispensable for multi-step logical deduction (more on this in Case
Study 3 below). Since Dubois and Prade’s gradual sets do not meet this requirement (the
α-cuts need not be nested), the known systems of first-order fuzzy logic cannot represent
them as fuzzy predicates. (Similarly, known systems of propositional fuzzy logic cannot
represent them as fuzzy propositions.)

The reason why Dubois and Prade’s notions depart so radically from the presupposi-
tions of FLd resides in the conceptual difference between the approaches to fuzziness in
FLd and FLt. In FLt, there are many possible interpretations of the meaning of mem-
bership degrees [16, 17]. In particular (as stressed by Dubois and Prade in [18]), fuzzy
sets may in FLt represent imprecision and membership degrees the gradual change. In
FLd, however, membership degrees are only interpreted as guaranteed degrees of truth;
and fuzzy sets in FLd represent the degree of satisfaction of truth conditions rather than
interval-like imprecision. Thus in FLt, membership degrees can be understood as mere
indices which parameterize the membership in a fuzzy set and which allow the gradual
change from 0 to 1 (“fuzziness by fibering”). In FLd, truth degrees are what is preserved
in graded inference, i.e., preserved w.r.t. the ordering of truth values; and this enforces
the principle of persistence.

It should be noticed that the principle of cuts, which motivates the distinction between
gradual elements and fuzzy sets in [18], is not itself alien to FLd. On the contrary—when
following a certain FLd-sound methodology, many fuzzy counterparts of crisp notions do
satisfy the principle of cut. The methodology was already sketched in [27, §5] by Höhle,
then elaborated in [6, §7], and proposed as a general guideline for FLd in [8]; it consists
in re-interpreting the formulae of classical crisp definitions in many-valued logic. If fuzzy

3It can, e.g., be observed that the FLd models of Definitions 3 and 4 do not exactly follow the
principle of cuts, since the crisp elements or sets are in fact functional values rather than α-cuts of the
crisp functions that represent gradual elements and sets in higher-order FLd.
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notions are defined in this natural way, then the principle of cuts is often observed: the α-
cuts of fuzzy sets are crisp sets, the α-cuts of fuzzy relations are crisp relations, the α-cuts
of fuzzy Dedekind or MacNeille cuts [27, 13, 3, 2] come out as crisp Dedekind–MacNeille
cuts, etc. Unlike in FLt, however, in FLd the fuzzy notions have also to conform with the
principle of persistence; this constrains the α-cuts to nested systems of the corresponding
crisp objects. In the particular case of fuzzy elements, the α-cuts of an FLd fuzzy element
a must not only be crisp elements (as in FLt), but also must satisfy the principle of
persistence for all formulae, in particular for the formula x = a. The latter already
necessitates that the α-cut of a equals its β-cuts for all β ≤ α; and since this should
hold for all α, the fuzzy element a has to be constant. Thus in FLd we can only have
constant fuzzy elements, which can be identified with ordinary crisp elements. Similarly,
by enforcing the nesting of α-cuts, the principle of persistence reduces in FLd gradual
sets to common fuzzy sets.

No doubt fuzzy elements are a natural notion, abundant in many real-life situations;
therefore the above difficulties should not stop us from investigating them. There are
no obstacles to investigating them in the framework of FLt. However, current FLd can
only render them indirectly in a higher-order setting, since they do not conform to the
principle of persistence upon which all current systems of FLd are founded. Thus even
though (advanced) FLd can (clumsily) capture the new notions, they actually do not fall
into its primary area; and so the way in which FLd can contribute to the investigation of
these notion is rather limited.4 This of course does not diminish the importance of the new
notions for FLt and does not even exclude the usefulness of their formal counterparts in
some parts of FLd. The above analysis only shows that when employing fuzzy elements
in FLd, we shall have to deal with complex objects (crisp functions from the set of
internalized truth values) rather than some kind of more primitive notion.

A further analysis will be needed to find out if Dubois and Prade’s gradual elements
and sets can be treated propositionally or as a primitive first-order notion in a radically
new system of deductive fuzzy logic. Since a direct logical rendering of gradual sets would
need to drop the principle of persistence, it would have to adopt an entirely different
concept of truth preservation under inference; such a radical change would consequently
affect virtually all logical notions. Unfortunately, many straightforward approaches are
not viable, as they would trivialize the theory. E.g., a notion of truth preservation based
on the identity (rather than order) of truth degrees would reduce truth degrees to mere
indices exactly in the way FLt does; however, it would trivialize the logic to classical
Boolean logic.5 From the opposite point of view, this could be an indication that by
treating membership degrees as mere indices (rather than truth degrees that should be
preserved under graded inference), FLt does not in fact step out of the classical framework;
it is the gradual inference what makes things genuinely fuzzy from the FLd point of view,
rather than just employing some set of indices like [0, 1].

4One of the few advantages of studying gradual elements in formal higher-order setting might be
the possibility of generalizing them easily to “fuzzy gradual elements” by dropping the condition of the
crispness of the function that represents a gradual element or set in Definitions 3 and 4. The apparatus
of higher-order fuzzy logic then facilitates the investigation of this higher-order fuzzy notion, which could
be more difficult to study in the classical models of FLt.

5The α-levels of fuzzy or gradual notions are crisp, therefore they follow the rules of classical logic,
i.e., the logic of Boolean algebras. An α-level based definition of truth preservation would correspond to
taking the direct product of Boolean algebras Bα for all levels α ∈ [0, 1]. However, the direct product of
Boolean algebras is a Boolean algebra, therefore the resulting logic would remain classical.
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Case study 2: The entropy of a fuzzy set

Various definitions of the entropy of a fuzzy set have been proposed in traditional fuzzy
mathematics, for instance:

• De Luca and Termini’s [15] entropy Ek(A) = Dk(A) + Dk(A
c)

• Yager’s [39] entropy Yp(A) = 1− `p(A,Ac)/(`p(A, ∅))p

• Kaufmann’s [29] entropy Kp(A) = 2n−1/p · `p(A,A)

• Kosko’s [31] entropy Rp(A) = `p(A, A)/`p(A,A)

where A is a finite [0, 1]-valued fuzzy set; Ac is its additive complement, Ac(x) = 1−A(x);
A is defined as A(x) = 1 if A(x) ≥ 0.5, and 0 otherwise; A = (A)c; p, k are parameters,
p ≥ 1 and k > 0; Dk(A) = −k

∑
i A(xi) log A(xi); and `p is the distance between finite

fuzzy sets defined as `p(A,B) = (
∑

i |A(xi)−B(xi)|p)1/p
.

The common feature of all such entropy measures is that they assign the minimal
(zero) entropy to crisp sets, and maximal (unit) entropy to fuzzy sets with A(x) = 0.5 for
all x in the universe of discourse.6

The definition is motivated (and the name entropy justified) by the idea that the mem-
bership degree 0.5 tells us the least amount of information (“nothing”) about the member-
ship of x in A. In other words, that the membership degree of 0.5 gives us the same degree
of “certainty” that x belongs to A as that x does not belong to A, and so it provides us
with no information (knowledge) as to whether x belongs to A. The membership degrees
of 0 and 1, on the other hand, give us full “knowledge” or “certainty” about the member-
ship of x in A, and thus provide us with maximal information as regards the membership
of x in A. The degree of fuzziness, measured by the entropy measures, thus (in FLt)
expresses the informational contents contained in the fuzziness of the fuzzy set.

In FLd, on the other hand, such concepts of entropy do not have good motivation.7

This is because in FLd, the membership degree cannot be interpreted as the degree of
knowledge or certainty of whether x belongs to A or not, but only as the degree of the
(guaranteed) truth of the statement that x belongs to A. From the FLd point of view
it is not true that A(x) = 0.5 gives us the least information on the membership in A.
On the contrary—each membership degree gives us the same (namely, full) information
about the extent of membership in A.

The difference between the information conveyed by membership degrees in FLt and
FLd can be illustrated by the following consideration. We have the following trivial
observation in all usual systems of FLd that contain a well-behaved implication connec-
tive ⇒.

Fact 5. If it is provable that A(z) ⇒ ϕ(z) for all z, then for any membership degree α,
if the truth degree of A(x) is α, then the truth degree of ϕ(x) is at least α.

Thus in FLd, if we know that x ∈ A is true to degree 0.5 and that all elements of A
satisfy some property ϕ (in the sense of FLd—i.e., that A(z) ⇒ ϕ(z) is valid for all z),
then we know that x satisfies ϕ at least to degree 0.5. Therefore in FLd, the truth degree

6In more detail, they satisfy de Luca and Termini’s [15] axioms for entropy measures E : [0, 1]X → [0, 1],
namely: (i) E(A) = 0 iff A is crisp; (ii) E(A) = 1 iff A(x) = 0.5 for all x ∈ X; (iii) E(A) ≤ E(B) if for
every x ∈ X either A(x) ≤ B(x) ≤ 0.5 or A(x) ≥ B(x) ≥ 0.5; and (iv) E(A) = E(Ac).

7At least not as measures of the informational contents of fuzziness. If definable in a particular fuzzy
logic, they can only serve as measures of fuzziness, without any connection to information.
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of 0.5 does not represent “no knowledge” or “equal possibility of both cases”. Rather, like
any other membership degree, it represents a certain guaranteed degree of participation of
x on the properties of A. In other words, any membership degree α of x ∈ A tells us in
FLd that the properties entailed by the membership in A will be satisfied by x at least
to degree α.

From the informational point of view, in FLd (as shown by Fact 5) the membership
degree 0.5 restricts the possible truth values of ϕ(x), for any property ϕ entailed by the
membership in A, to the interval [0.5, 1]. In this sense, the least informative membership
degree should in FLd be 0 (as it does not restrict the interval at all) and the most
informative degree should be 1 (as it maximally restricts the interval to the single value 1).
However, 0 is also the most informative (and 1 the least informative) degree as regards
the satisfaction by x of the properties of another set, namely Ac. Therefore in FLd, the
informational contents of membership degrees is not determined simply by their value.

Thus from the point of view of FLd, no membership degree conveys more information
than another just by its value. Therefore, no concept of entropy which assigns the least
informational contents to the fuzzy set with A(x) = 0.5 for all x is well-motivated in
FLd. Consequently we have to conclude that the notions of entropy belong to the area
of FLt rather than FLd; and even though they can be defined in higher-order FLd,8 their
significance in FLd and the extent to which FLd can help investigate them is limited. This
does not deny their importance and good motivation in FLt under the interpretations of
membership degrees as indicated above (of knowledge, certainty, etc.); only they are not
meaningful for the concept of guaranteed truth, which is the domain of FLd.

As stressed above, the unmotivatedness of the concept of entropy in FLd is caused by
the fact that membership degrees represent in FLd the degrees of truth (of the statement
“x ∈ A”) rather than the degrees of knowledge or certainty about x ∈ A. The uncertainty
about x ∈ A would not in FLd be expressed by an intermediate membership degree, but
rather by an uncertain membership degree. The first idea how to render uncertain mem-
bership degrees in FLd is, obviously, to take a crisp or fuzzy set of possible membership
degrees, like in interval-valued fuzzy sets [1] or type-2 fuzzy sets [40]. However, in the
framework of FLd, this idea has to be refined: a fuzzy set of membership degrees does not
in FLd represent the degree of certainty or knowledge about the membership degrees, ei-
ther, but only expresses the degree of truth of some property of membership degrees. Thus
it would be necessary to introduce some modality, e.g., “it is known that”, and interpret
the fuzzy set of membership degrees α as expressing the truth degree of the statement “it
is known that the membership degree of x ∈ A is α”, rather than the degree of knowledge
itself. This subtle difference is insignificant for atomic epistemic statements, but plays a
role when considering complex epistemic statements composed by means of propositional
connectives. (For more on this distinction see [24, 22].) The rendering of the uncertainty
of membership in a fuzzy set, which motivates the notion of entropy in FLt, is thus in
FLd much more complicated than what is expressed by simple intermediary membership
degrees.

8For instance, Yager’s entropy Y1 and Kosko’s entropy R1 can be defined in the higher-order fuzzy
logic ÃLΠ [6], since it contains all arithmetical ingredients necessary for their definitions: additive negation
(1−x), product implication (i.e., division), and the Baaz ∆ connective which ensures [6, §7] the definability
of crisp finite sequences, needed for the inductive definition of sums of membership degrees. Any classically
definable entropy measure is eventually definable in higher-order FLd by more sophisticated means, since
classical mathematics is interpretable in standard higher-order fuzzy logics [6, §7]. (By definability we
mean here definability in standard [0, 1] models.)
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Case study 3: Aggregation of fuzzy data

The exclusive interpretation of membership degrees as guaranteed degrees of truth leads to
certain restrictions on admissible logical systems of FLd. Since the intended interpretation
“truth at least to α” is based on an order (“at least”) of truth degrees, logical systems
suitable for FLd have to be among the logics of partially ordered (or at least preordered)
algebras or logical matrices, i.e., among Rasiowa’s implicative logics [37] or Cintula’s
weakly implicative logics [14].9 The property of prelinearity, advocated in [10] as the
characteristic feature of deductive fuzzy logics, then leads to Cintula’s class of weakly
implicative fuzzy logics [14]. Another condition that further constrains the class of logical
systems best suitable for deductive fuzzy logic is the law of residuation [22, 36]. As will
be shown in this section, the law of residuation and related requirements present another
important difference between FLd and FLt.

One of the typical tasks of applied FLt is to gather some fuzzy data ϕ1, . . . , ϕk, ag-
gregate their truth values by means of some aggregation operator

⊙
,10 and draw some

conclusion ψ (possibly, about the action to be performed or the answer to be given) based
on

⊙k
i=1 ϕi. In symbols, to perform an inference (

⊙k
i=1 ϕi) → ψ, where → is a suitable

implication. We have in mind, e.g., the following kinds of applications:

Example 6. In a fuzzy controller based on if-then rules, the input data ϕi are the truth
values of the evaluating expressions “Xi is Yi” given by the measured values of linguistic
variables Xi; the output of a single rule is the truth value of “X is Y ”, inferred from ϕi’s
by suitable operations

⊙
and →.

Example 7. A fuzzy logic based engine for answering database queries (say, for accom-
modation search) may ask for the degrees of the user’s preferences, i.e., the weights of
such variables as price, distance, etc. Based on the aggregated weighted values of these
variables for particular hotels, the engine lists the hotels in descending order by their
suitability for the user.

An important observation about this kind of applications is that just one inference
step is performed for each set of input data:

• When a fuzzy controller performs an action based on the fuzzy inference, the values
of measured variables change, and the next inference is based on the new (changed)
data.

• When listing hotels in the order of the user’s preferences, the evaluation of each
hotel is based on the hotel’s own parameters; the evaluation of the next hotel takes
new (i.e., the next hotel’s) data.

In such cases, therefore, the device may work in a cycle, but each iteration processes a new
set of data. The modus operandi of such applications of FLt is as depicted in Figure 1.

9The defining conditions of (weakly) implicative logics embody the correspondence between the full
truth of implication and the (pre)ordering of truth degrees. Besides the conditions of substitution-
invariant Tarski consequence (common to most systems of formal logic), weakly implicative logics require
the logical validity of (i) the axiom ϕ → ϕ and the rules of (ii) modus ponens (from ϕ and ϕ → ψ
infer ψ), (iii) transitivity of implication (from ϕ → ψ and ψ → χ infer ϕ → χ), and (iv) congruence of all
connectives w.r.t. bi-implication ϕ → ψ and ψ → ϕ. Weakly implicative logics in general admit multiple
degrees of full truth; Rasiowa’s implicative logics forbid them by the additional rule (v) of weakening
(from ϕ infer ψ → ϕ).

10The term “aggregation operator” is here understood in a broad sense, without requiring any fixed
set of axioms for the operator.
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Figure 1: Modus operandi of applied FLt

Another observation is that the data that enter the aggregation and inference are
usually extra-logical (measured in the real world, read from a database etc.). In particular,
they usually do not contain the operators

⊙
and → of the inference mechanism, and so in

FLt inference one usually need not consider nested implications (the formulae expressing
the inference laws are “flat”).

The operations used for aggregation of the input data vary widely among particular
applications. Consequently, various classes of aggregation operators

⊙
are studied in

theoretical FLt, including t-norms and co-norms, uninorms, copulas, semi-copulas and
quasi-copulas, various kinds of averages and means, etc. (for a brief overview see, e.g.,
[30, Ch. 3]).

The situation in FLd is different, as is the typical modus operandi of FLd. The
formally-deductive aims of FLd require the preservation of guaranteed truth values also in
successive (iterated) inferences, which are typical for multiple-step deductions. In formal
derivations we often have intermediary steps and results, lemmata, partial conclusions,
etc., and we want the guaranteed truth degree of a conclusion to remain coherent through-
out long deductions. Therefore, a typical modus operandi of FLd is the one depicted in
Figure 2.
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Figure 2: Modus operandi of FLd

Observe first that in the multiple-step derivations of FLd, the premises of the first
steps still play a role in the following steps, since partial results enter further deductions.
Furthermore, in the formally logical setting of FLd, formulae entering deductions need
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not be purely extralogical and can have inner logical structure, i.e., be built up from
subformulae by means of logical connectives, including those used for inference, i.e., ¯
and →. Thus unlike in FLt, the formulae in FLd inference need not be “flat” and nested
implications can occur. Implication thus plays a double role in FLd deduction: it is
used for making inferences, but can also occur as a connective within a formula that
enters the inference as a premise or comes out as a conclusion. Similarly conjunction
is used for the aggregation of premises, but can also appear as a connective inside the
premises and conclusions. If both roles of the operators are to match, they have to
satisfy conditions that describe the match of the roles. Namely, whenever ϕ1 is a premise
of implication (inference) and ϕ2 → ψ is its conclusion, both roles of implication will
accord iff ϕ1 and ϕ2 together (i.e., aggregated) imply ψ (since both ϕ1 and ϕ2 are after
all premises for ψ—one in implication-as-inference and one in implication-as-connective);
and vice versa, if ϕ1 and ϕ2 jointly imply ψ, then ϕ1 alone should imply ϕ2 → ψ (for
the same reason). Similarly, ϕ1 and ϕ2 aggregated should imply ψ if and only if ϕ1 ¯ ϕ2

implies ψ (this corresponds to the match of both roles for conjunction). Since by the
earlier considerations implication-as-inference is in FLd understood as truth-preservation
(i.e., the relation ≤), the requirement can be formulated as the condition

ϕ1 ¯ ϕ2 ≤ ψ iff ϕ1 ≤ ϕ2 → ψ (1)

The general form for an arbitrary number of premises as in Figure 2 already follows
from (1). This law of residuation is therefore required in FLd for ensuring the coherence
of the guaranteed truth thresholds in multiple-step deductions with nested implications,
while it need not be required in one-step inferences with flat formulae in FLt.

The principle of residuation restricts significantly the class of conjunctive operators ad-
missible in FLd. Together with a few reasonable additional requirements (see Remark 10
below) it confines the FLd-suitable [0, 1]-conjunctions & to left-continuous t-norms (or
residuated uninorms, if we admit degrees of full truth) [20, 28, 33]. Other operators for
fuzzy data aggregation are not meaningful in FLd, though they are both meaningful and
important in FLt (as FLt need not preserve guaranteed truth degree in nested and iterated
inferences).

Like in the case of fuzzy elements and the notion of entropy, many FLt conjunctive
operators are still definable in systems of deductive fuzzy logic: e.g., a broad class of t-
norms which are not left-continuous is representable in the logic ÃLΠ [21, 34]. Nevertheless,
as in the cases above, the apparatus of FLd is most efficient for conjunctions to which the
FLd systems are tailored, i.e., which respect the above constraints.

Remark 8. The constraints on admissible conjunction connectives rule out the meaning-
fulness of most cut-wise definitions in FLd. Since most left-continuous t-norms are not
idempotent, α-cuts are in general not preserved by conjunction in most systems of FLd
(except in Gödel fuzzy logic of the minimum t-norm).11 Thus, e.g., the cut-wise definition
of the intersection of fuzzy sets is from the FLd point of view only meaningful in Gödel
logic; in other systems of FLd, the cut-wise intersection (which equals the minimum-
intersection) does not satisfy the defining condition of intersection that the membership
degree of x in A∩B be the conjunction of the membership degrees of x in A and B, i.e.,
that (A ∩B)x = Ax & Bx.

Thus, e.g., Dubois and Prade’s definitions of elementary operations on gradual sets
proposed in [18] (which are cut-wise, as we noted in the first case study), can only be well-
motivated in FLt. Similar considerations restrict the FLd-meaningfulness of many parts

11Most FLd conjunctions thus do not satisfy the axiom often required in FLt of aggregation operators,
namely that x¯ · · · ¯ x = x.
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of categorial (sheaf) approach to fuzzy sets, which often works cut-wise (i.e., fiber-wise)
and thus belongs to FLt rather than FLd.

Again, this does not diminish the importance of cut-wise notions in FLt; only we
should be aware that they are not well-motivated in FLd. In deductive fuzzy logic, many
cut-wise notions can still be defined, and some of them do have some importance even in
FLd. For instance, in all logics based on continuous t-norms, the minimum conjunction ∧
and maximum disjunction ∨ are definable, and by means of these connectives one can
define the cut-wise operations of min-intersection and max-union. However, their role in
FLd systems is different than that of the notions based on usual (strong) conjunction &;
in particular, min-conjunction cannot be used as a surrogate for strong conjunction, since
both connectives have different meaning. Strong conjunction & represents the use of both
conjuncts, while min-conjunction ∧ represents the use of any one of the conjuncts, as can
be seen from the following equivalences valid in BL and related systems:

[(ϕ1 & ϕ2) → ψ] ↔ [ϕ1 → (ϕ2 → ψ)] (2)

[(ϕ1 ∧ ϕ2) → ψ] ↔ [(ϕ1 → ψ) ∨ (ϕ2 → ψ)] (3)

Since it is (2) that we need in iterated inference rather than (3), minimum conjunction
cannot be used for aggregation of premises in FLd. Similarly, min-intersection does not
represent membership in both fuzzy sets, but only in any of them, and cannot be used in
contexts when both Ax and Bx are required. The following example demonstrates the
methodological consequences of the distinction between the two conjunctions in FLd.

Example 9. The notion of antisymmetry of a fuzzy relation R w.r.t. a similarity E
defined with min-conjunction, i.e., by infxy(Rxy ∧ Ryx → Exy) as in [13] or similarly
in [27], is not well-motivated in FLd, since in antisymmetry we clearly need both Rxy
and Ryx to infer Exy (neither Rxy nor Ryx alone is sufficient for Exy in antisymmetric
relations; cf. (3)). Thus in FLd, we have to define antisymmetry with strong conjunction,
i.e., as infxy(Rxy & Ryx → Exy), even though some theorems of [27, 13] will then fail.
From the deductive point of view, min-conjunction antisymmetry is only well-motivated
in Gödel logic.

Remark 10. As mentioned at the beginning of this section, the requirements on the
transmission of truth in FLd lead to the defining conditions of Rasiowa’s implicative logics
or Cintula’s weakly implicative (fuzzy) logics. However, these conditions only ensure
good behavior of fully true implication, which then corresponds to the order of truth
degrees [14]. Inferentially sound behavior of partially true implication and conjunction
requires further axioms, including the law of residuation (as seen above), since only then
implication internalizes the transmission of partial truth and conjunction internalizes the
cumulation of premises in graded inference. The latter law also makes formal systems of
FLd belong to the well-known and widely studied class of substructural logics (in Ono’s
[36] sense, i.e., the logics of residuated lattices).

Thus from the point of view of deductive fuzzy logic, Cintula’s class of weakly im-
plicative fuzzy logic is still too broad. Best suitable logics for FLd are only those weakly
implicative fuzzy logics that satisfy residuation and several natural requirements of the
internalization of local consequence (namely the logical axioms expressing the antitony
resp. isotony of implication in the first resp. second argument, and associativity and com-
mutativity of conjunction; cf. [5]). The resulting class can be understood as the formal
mathematical delimitation of deductive fuzzy logics. The above conditions characterize
them as those weakly implicative fuzzy logics which are extensions or expansions of the
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logic UL of residuated uninorms [33] or, if we add the law of weakening ϕ → (ψ → ϕ), of
the logic MTL of left-continuous t-norms [20].12

Again this does not imply that other weakly implicative fuzzy logics or logics used
in FLt are deficient. However, only logics from the above defined class suit best to the
motivation of FLd (i.e., transmission of guaranteed partial truth in multi-step deductions)
and admit the construction of formal fuzzy mathematics in the sense of [8]. This is because
their implication and conjunction respectively internalize the local consequence relation
and the cumulation of premises: they have, in Ono’s [36] words, a “deductive face”. Other
logics13 lie outside the primary area of interest of FLd, though they may be of their own
importance and interest in FLt.

Conclusions

The three case studies show that FLd differs from broader FLt in many aspects, including
the area of competence, methods, motivation, formalism, etc. It should perhaps be admit-
ted that symbolic fuzzy logicians on the one hand and researchers in “mainstream fuzzy
logic” on the other hand do rather different things and work in two distinct, even though
related, areas (with some non-empty intersection). Since after the years of usage there is
no chance for changing the name “fuzzy logic” in either tradition, a suitable determinative
adjective (like symbolic, formal, mathematical, or as proposed here, deductive) attached
to the name of the narrower and younger of both areas is probably the best solution to
possible terminological confusions.

It is sometimes complained that fuzzy logic does not have a clear methodology for
defining its notions and the direction of research. FLd, as its very narrow and specific
branch, however, does possess a rather clear methodology, inherited for a large part from
the methodology of non-classical logics and classical foundations of mathematics [22, 8].
This may be a consequence of the fact that FLd has chosen and clarified one of all pos-
sible interpretations of membership degrees, and now studies the properties of this single
clarified concept. FLt, on the other hand, admits many interpretations of membership
degrees and often tries to investigate them together, without separating them properly
and without clarifying carefully which of the possible interpretations is considered.14

A historical parallel can be seen in the early history of classical (crisp) set theory. As
noticed by Kreisel in [32], Cantor’s notion of set was a mixture of at least three concepts—
finite sets of individuals, subsets of some domain, and properties (unbound classes). Part
of the opposition against set theory was due to its confusion of these notions of set: the
crude mixture (as Kreisel calls it) did not possess good properties, and the paradoxes of
naive set theory confirmed the bad feeling. Only after one element of the crude mixture
(viz iterated subsets) was clearly separated by Russell and Zermelo and shown to have

12The class is only slightly broader than Metcalfe and Montagna’s class of “substructural fuzzy logics”
[33], which in addition requires the completeness w.r.t. standard [0, 1] semantics.

13Including Zadeh’s original system with min-conjunction, max-disjunction, (1 − x)-negation and S-
implication, as well as ÃLukasiewicz logic with strong conjunction replaced by min-conjunction—a system
both favored and targeted by many philosophers of vagueness.

14For instance, general definitions (e.g., cut-wise) of operations on fuzzy sets are often given, regardless
of what is the intended interpretation of membership functions. (This is also the case with the operations
on gradual sets defined in [18].) However, suitable definitions may depend on the intended meaning of
membership degrees (as also demonstrated by the unsuitability of many such definitions for FLd), since
different underlying phenomena may have different properties (and thus also different demands on the
behavior of suitable operations).
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good and rich enough properties, the notion of set could start playing its foundational
role in mathematics.

Similarly the theory of fuzzy sets presents a mixture of various different notions of
fuzzy set (truth-based, possibilistic, linguistic, frequentistic, probabilistic, etc.). While
FLd has distilled one element of the mixture (namely the truth-based notion of fuzzy
set), FLt often continues to investigate the crude mixture as a whole, only partially aware
of the distinctions needed to be made. (Not that it never distinguishes the areas of
applicability of its own notions: sometimes it does; but often it forgets to do so or is not
careful enough.)

The methodological success of FLd and its advances should stimulate FLt to distin-
guish with similar clarity the exact components of the crude mixture of notions of fuzzy
set. Theoretical gains from their clear separation and investigation of the most promising
ones would certainly be large (as was, e.g., the gain from conceptual and methodological
clarification of the notion of probability); some areas of FLt besides FLd (e.g., possibility
theory) already seem to be close to such clarification.
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References

[1] K. T. Atanassov. Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20:87–96, 1986.
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[11] L. Běhounek and P. Cintula. Features of mathematical theories in formal fuzzy
logic. In P. Melin, O. Castillo, L. T. Aguilar, J. Kacprzyk, and W. Pedrycz, editors,
Foundations of Fuzzy Logic and Soft Computing (IFSA 2007), volume 4529 of Lecture
Notes in Artificial Intelligence, pages 523–532. Springer, 2007.
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[25] P. Hájek and Z. Haniková. A development of set theory in fuzzy logic. In M. Fit-
ting and E. Orlowska, editors, Beyond Two: Theory and Applications of Multiple-
Valued Logic, volume 114 of Studies in Fuzziness and Soft Computing, pages 273–285.
Physica-Verlag, Heidelberg, 2003.
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From fuzzy logic to fuzzy
mathematics: A methodological
manifesto

Published version: L. Běhounek, P. Cintula: From fuzzy logic to fuzzy mathematics:
A methodological manifesto. Fuzzy Sets and Systems 157 (2006): 642–646.

Abstract: The paper states the problem of fragmentation of contemporary fuzzy math-
ematics and the need of a unified methodology and formalism. We formulate several
guidelines based on Hájek’s methodology in fuzzy logic, which enable us to follow closely
the constructions and methods of classical mathematics recast in a fuzzy setting. As a
particular solution we propose a three-layer architecture of fuzzy mathematics, with the
layers of formal fuzzy logic, a foundational theory, and individual mathematical disciplines
developed within its framework. The ground level of logic being sufficiently advanced, we
focus on the foundational level; the theory we propose for the foundations of fuzzy mathe-
matics can be characterized as Henkin-style higher-order fuzzy logic. Finally we give some
hints on the further development of individual mathematical disciplines in the proposed
framework, and proclaim it a research programme in formal fuzzy mathematics.

Keywords: Non-classical logics, formal fuzzy logic, formal fuzzy mathematics, higher-
order fuzzy logic. MSC: 03A05, 03B52, 03E70, 03E72.

¦

One of the motives for theoretical studies in fuzzy mathematics is the pursuit of formal
reconstruction of the methods commonly used in applied fuzzy mathematics. The greatest
success in such investigations is undoubtedly the area of formal fuzzy logic: this discipline
has recently reached the point when it is reasonable to attempt to use it as a ground
theory for the formalization of other branches of fuzzy mathematics.

This paper tries to provide certain guidelines for such a transition from formal fuzzy
logic to formal fuzzy mathematics. The guidelines are based upon doctrines observed
by the Prague workgroup on fuzzy logic founded and led by Petr Hájek. We attempt to
formulate explicitly some distinct features of Petr Hájek’s approach, which we reconstruct
from his scattered remarks and the general direction of his papers, and implement them in
the form of a research programme. We hope that Petr Hájek will find our reconstruction
of his doctrine faithful enough; or else that he will enter into a fruitful dispute with his
own disciples over the methodological foundations of our discipline. If the former is the
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case, then we deem that the best label for the enterprise described in this paper would
be Hájek’s Programme in the foundations of fuzzy mathematics.

¦
The cornerstone of Hájek’s approach to fuzzy mathematics is the doctrine of working in

a formal axiomatic theory over a fuzzy logic, rather than investigating particular models.
For ease of reference, let us call it the formalistic imperative. Good reasons for such an
approach can be found, both of a philosophical and pragmatic nature.

A philosophical reason is found in the following argument. Fuzzy logic describes
the laws of truth preservation in reasoning under (a certain form of) vagueness. Its
interpretation in terms of truth degrees and membership functions is just a mathematical
model—a classical rendering of vague phenomena. Of course, the laws of fuzzy logic were
originally discovered with the help of this model, and truth degrees form its principal
semantics; but once we believe that the laws capture fuzzy inference correctly, we can
abstract from the model that helped us to find them.

Fuzzy predicates are essentially not different from crisp predicates: the only difference
is the graded boundary of fuzzy sets, due to which some of the laws of classical reasoning
about them fail. The laws of inference valid for fuzzy predicates form fuzzy logic; classical
logic is its limit case, applicable if by chance all predicates involved are crisp. Reason-
ing about fuzzy predicates therefore follows the laws of fuzzy logic in the same manner
as reasoning about crisp predicates follows the laws of classical logic. In mathematics,
such reasoning can be formalized into formal theories, in which the deduction follows the
rules of classical logic if all predicates are crisp, or fuzzy logic if any of them are fuzzy. The
mathematics of structures involving fuzziness can thus assume the form of formal theories
over fuzzy logic, rather than the study of membership functions which uses classical logic.
The former way is to be preferred as a genuinely fuzzy approach, while the latter is only
a secondary classical model of fuzziness.

Admittedly, a formal theory over fuzzy logic is just a notational abbreviation of clas-
sical reasoning about the class of all models of the theory. Nonetheless, the axiomatic
method is the general paradigm of mathematics; one of its main advantages is that the
appropriate choice of the language of the formal theory screens off irrelevant features of
the models. An axiomatic system is thus not only the means of generalization over all
models, but rather an abstraction to their constitutive features.

Obviously, the formalistic imperative applies mainly to the development of mathemat-
ical fuzzy logic and various branches of fuzzy mathematics, not to particular applications
of fuzzy sets. In an application, we are modeling particular phenomena and thus we natu-
rally work with a particular model. For instance, some real-life problems (e.g., processing
of a questionnaire with five grades between absolute yes and absolute no) may invite a
definite algebra of truth values. However, having a general theory may of course help
even in particular cases, since it will describe the general features of the problem. The
programme of developing fuzzy mathematics in a theoretical manner stresses the priority
of general theories over immediate applicational needs.

The idea that fuzzy inference cannot be reduced to a particular model able to account
for its rules entails that in the investigation of fuzzy inference we should not limit ourselves
to one particular fuzzy logic (e.g., ÃLukasiewicz). The model which underlies it—e.g., a
specific t-norm—is particular, while fuzzy reasoning in general is broader. There are
examples of fuzzy reasoning that follow variant inference rules, all of which are suitable
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for different respective contexts of real-life situations and invite explanations in terms
of various individual t-norms or other semantics. The multitude of existing fuzzy logics
varying both in expressive power and inference rules is not only explicable by the need of
capturing of all aspects of fuzzy inference in diverse contexts, but even indispensable for
this enterprise.

Similar considerations are related to Hájek’s preference for fuzzy logics without truth
constants in the language (except for those which are definable). First, the truth con-
stants have little support in natural language. Second, by incorporating the truth values
into the syntax, we force the logic to follow too closely a particular model of vague infer-
ence, viz that using truth values. Of course, we cannot be too dogmatic about rejecting
truth constants: it turns out that in sufficiently strong theories, at least rational truth
constants are definable. Sometimes, the truth degrees are useful for a particular appli-
cation. However, we should be cautious of deliberately introducing them into logic and
thus restricting the possible models of vague inference.

Thus, even though liberal in both the expressive power and inference rules, we—
following Hájek—believe a certain style of logical systems to be a most suitable formalism
for representing fuzzy inference. For brevity’s sake, in what follows we shall call them
Hájek-style fuzzy logics. Put in a nutshell, they are fuzzy logics retaining the syntax of
classical logic (preferably without truth constants), defined as axiomatic systems (rather
than non-axiomatizable sets of tautologies). A prototypical example is Hájek’s Basic
Logic BL, propositional or predicate. This certainly does not mean that other systems
(for instance, with some kind of labelled formulae) have no merits of their own; only they
are not preferred for the development of fuzzy mathematics by the Prague school. In the
following paragraphs we give some reasons for such preferences.

There is a pragmatic motive for retaining as much of classical syntax as possible. The
way of working in theories over Hájek-style fuzzy logics resembles closely the way of work-
ing in classical logic: Hájek-style fuzzy logics are often just weaker variants of Boolean
logic—syntactically fully analogous, just lacking some of its laws. Therefore, many the-
oretical and metatheoretical methods developed for classical logic can be mimicked and
employed, resulting in a quick and sound development of the theory. This feature has
already been utilized in the metamathematics of fuzzy logic—the proofs of the complete-
ness, deduction, and other metatheorems have often been obtained by adjustments of
classical proofs.

To illustrate the utility of this guideline, we allege that an axiomatic theory of fuzzy
sets can more easily be developed as a formal theory of binary membership predicate over
some fuzzy logic than if the graded membership is rendered, e.g., as a ternary predicate
between elements, sets, and truth values in the framework of classical logic. Many con-
structions and even proofs of the classical theory will work in the former case and need
not be rediscovered (nor even reformulated). Even though both theories may turn out
equivalent, the resemblance of fuzzy concepts to classical ones becomes more visible in
Hájek’s approach: cf. the many ‘breakthrough’ definitions of fuzzy set inclusion which, if
put down in Hájek-style fuzzy logic have exactly the form of the classical definition of set
inclusion. This is another reason for preferring the classical syntax in fuzzy logic, over
non-standard logical systems.

The imperative to work deductively in a formal theory explains also our preference
for axiomatic systems over non-axiomatizable sets of tautologies. The infeasibility of
algorithmical recognition of valid inferences in the latter is a strong reason supporting
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the preference. Thus, e.g., predicate fuzzy logics are better conceived as the systems of
axioms and rules for quantifiers than the sets of valid [0, 1]-tautologies, even though the
former usually admit non-intended models.

The respect for the priority of formal theories to models can partly be seen as em-
phasizing the syntax against the semantics of fuzzy logic. Hájek’s approach thus can be
viewed as a syntactic turn in fuzzy logic. The accent on syntax is of course not meant to
contest the fundamental rôle of semantics in logic, nor the heuristic value of the models.
Nevertheless, playing up the importance of formal deduction in fuzzy logic corresponds
to its motivation as a description of the rules of correct reasoning under vagueness.

Such, then, is a reconstruction of the methodological background we adopt. It has
already proved worthy in the area of metamathematics of fuzzy logic. Thus it seems
reasonable to apply its doctrines to other branches of fuzzy mathematics as well.

¦
The need for axiomatization of further areas of fuzzy mathematics besides fuzzy logic

is beyond doubt. Axiomatization has always aided the development of mathematical
theories. There have been many—more or less successful—attempts to formalize or even
axiomatize some areas of fuzzy mathematics. However, these axiomatics are usually
designed ad hoc: some concepts in a classical theory are turned fuzzy, however their
selection is based on non-systematic intuitions or intended applications; seldom all is
fuzzified that could be. (To fuzzify as much as possible is desirable for generality’s sake; if
an application requires some features to be crisp, they can be ‘defuzzified’ by an additional
assumption of the crispness of these particular features.) Many of these axiomatics are
in fact semi-classical, being founded upon the notions of truth degrees and membership
functions, which are merely a classical rendering of fuzzy sets.

Further problems of contemporary fuzzy mathematics lie in its fragmentation. Even if
some axiomatic theories of various parts of fuzzy mathematics exist, they use completely
different sets of primitive concepts and incompatible formalisms. This makes it virtually
impossible to combine any two of them into one broader theory. It would certainly be
better if fuzzy mathematics as a whole could employ a unified methodology in building
its axiomatic theories, because it would facilitate the exchange of results between its
branches. Applying the doctrines sketched above, we propose such a unified methodology
for the axiomatization of fuzzy mathematics. Obviously, in our approach it assumes the
form of constructing formal theories over Hájek-style fuzzy logics.

In the axiomatic construction of classical mathematic, a three-layer architecture has
proved useful, with the layers of logic, foundations, and only then individual mathematical
disciplines. Individual disciplines are thus developed within the framework of a unifying
formal theory, be it some variant of set theory, type theory, category theory, or another
sufficiently rich and general kind of theory. In fuzzy mathematics, the level of logic seems
to be developed far enough so as to support sufficiently strong formal theories. The search
for a suitable foundational theory is thus the task of the day. As hinted above, the close
analogy between Hájek-style fuzzy logics and classical logic gives rise to a hope that fuzzy
analogues of classical foundational theories will be able to harbour all (or at least nearly
all) parts of existing fuzzy mathematics.

As conceivable candidates for a foundational theory, several ZF-style fuzzy set theories
have already arisen. Many of them are certainly capable of doing the job. Nevertheless,
they seem to be more complex than necessary for the task. Largely this is induced by
the fact that such theories have to deal with a specific set-theoretical agenda and take
into account the structure of the whole set universe (expressed, e.g., by the axiom of
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well-foundedness). Moreover, for many of them it is not clear whether they can straight-
forwardly be generalized to other fuzzy logics than the one in which they have been
developed; thus they are only capable of providing the foundation for a limited part of
fuzzy mathematics. Besides the repertoire of ZF-style set theories, fuzzy logic also offers
set theories based on näıve comprehension. Although their axiomatic system is very el-
egant, their consistency is limited to (certain) fuzzy logics where no bivalent operator is
definable (roughly speaking, to infinite-valued ÃLukasiewicz logic or weaker).

If nevertheless a universal foundational theory is successfully found, the development
of individual concepts of fuzzy mathematics has to proceed in a systematic way, taking
into the account the dependencies between them as in classical mathematics. For example,
the notion of cardinality should only be defined after the introduction and investigation
of the notion of function, upon which it is based (and which in turn is based upon the
concept of fuzzy equality, i.e., similarity). When more than one counterpart of a classical
definition suggest themselves, the choice between them should be made according to their
fruitfulness, applicability, and the practice of traditional fuzzy mathematics; in many
cases more than one analogue of the classical notion will have to be introduced and
studied within the theory. Defined notions should also be checked against conformity
with category theory; for instance, a proposed definition of Cartesian product should
accord with that of mapping (one must, however, take into account that many natural
notions of morphism become fuzzy under fuzzy logic).

Only this kind of systematic approach can avoid giving ad hoc definitions of fuzzy
concepts, which often suffer from arbitrariness and hidden crispness, or even references
to particular crisp models of fuzziness (e.g. membership functions) which are not objects
of the formal theory.

¦

As a concrete implementation of the general programme sketched above we propose a
specific foundational theory described below. We do not claim it to be the only possible
way either of doing the foundations of fuzzy mathematics, or of fulfilling our foundational
programme. The methodology itself is independent of this particular solution we propose.
Nevertheless, we think that our theory embodies its guidelines very well and is a viable
foundation for fuzzy mathematics of the present day. Moreover, because of the simplicity
of its apparatus, the work done within its framework can be of use for other possible
systems via a formal interpretation.

By inspecting the existing approaches and having in mind the need for generality
and simplicity, it becomes obvious that a fully fledged set theory is not necessary for
the foundations of fuzzy mathematics. What is necessary is only the ability to perform
within the theory the basic constructions of fuzzy mathematics. On the other hand, a
great variability of the backround fuzzy logic is required in order to encompass the whole
of fuzzy mathematics.

Most notions of classical mathematics can be defined within the first few levels of a
simple type theory. The similarity between Hájek-style and classical theories hints that
this could be true of fuzzy concepts defined in a fuzzified simple type theory as well.
Indeed, many important notions can be defined already at the first level, which is in fact
second-order predicate fuzzy logic. Most notably, elementary fuzzy set theory, or the
axiomatization of Zadeh’s notion of fuzzy set, is contained in second-order fuzzy logic
(second-order models are exactly Zadeh’s universes of fuzzy sets). Some theories (e.g.,
topology), however, need more levels of type hierarchy, thus we employ higher-order fuzzy
logic (in the limit, logic of order ω).
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Unfortunately, fuzzy higher-order logic is not recursively axiomatizable. Since we
prefer axiomatic deductive theories over non-axiomatizable sets of tautologies, we choose
its Henkin-style variant, even though it admits non-intended models. We thus get a
first-order theory, axiomatized very naturally by the extensionality and comprehension
axioms for each order. Moreover, the construction works for virtually all imaginable
fuzzy logics (and many non-fuzzy logics as well). The bunch of foundational theories
we propose thus can be called Henkin-style higher-order fuzzy logic (for an individual
fuzzy logic of one’s choice; expressively rich logics like ÃLΠ seem to be sufficient for all
practical purposes; nevertheless, the investigation of the fragments over weaker logics has
also its own importace). Equipping the theory with the obvious axioms of tuples yields
an apparatus which seems to be of enough expressive power for a great part of fuzzy
mathematics, since a structure on the universe of discourse (metric, measure, etc.) can
then be introduced by means of relations and higher-order predicates. Furthermore, if
the background logic is sufficiently strong, there is a general method of embedding any
classical theory, and even of its natural fuzzification (as well as conscious and controlled
‘defuzzification’ of its concepts if some of their features are to be left crisp). The details
of this formalism can be found in [1].

As indicated above, elementary fuzzy set theory and some parts of the theory of fuzzy
relations are already formalized within our foundational theory. Several other parts of
fuzzy mathematics are currently (re-)developed in our formalism. However, the recon-
struction (and expected further advance) of the whole of fuzzy mathematics is an infinite
task. Everybody is therefore invited to participate in this research programme of system-
atic formal development of fuzzy mathematics, as well as to continue the discussion of its
best foundation.

¦
Acknowledgements. As the reader could easily observe, this methodological pro-

gramme has close links to the works of many predecessors, and in fact only applies their
accomplishments to the area of fuzzy mathematics.

Our formalistic approach to mathematics is close to that of Hilbert’s [6]. Our aspira-
tion to lay down the logical foundations for fuzzy mathematics is only a derivative of the
admirable enterprise of Russell and Whitehead [8]. In some (and only some) respects our
programme is similar to that of Bourbaki [2], though we hope not only to reconstruct and
codify, but also advance the field of our interest. The link to Vienna circle [3] which re-
sults from the circumstances of the first presentation of this manifesto is rather incidental
(though in some aspects one could perhaps find distant parallels).

We cannot mention all the outstanding works of fuzzy logic upon which our programme
is based. Here we mention only the most important works relevant to our approach;
further citations can be found in [1]. Apparently the first monograph close in spirit to our
programme was Gottwald’s [4]. Hájek’s [5] gave firm foundations to the kind of formal
fuzzy logic we use. A great influence in the propagation of rigorous fuzzy logic in the
Czech mathematical community had Novák’s book [7]. And, needless to say, the whole
field of fuzzy mathematics we try to formalize originated with Zadeh’s [9].

Acknowledged support: Libor Běhounek: Support of grant B100300502 of the Grant
Agency of the Academy of Sciences of the Czech Republic is acknowledged. Petr Cintula:
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Fuzzy class theory

Published version: L. Běhounek, P. Cintula: Fuzzy class theory. Fuzzy Sets and
Systems 154 (2005): 34–55.

Abstract: The paper introduces a simple, yet powerful axiomatization of Zadeh’s notion
of fuzzy set, based on formal fuzzy logic. The presented formalism is strong enough to
serve as foundations of a large part of fuzzy mathematics. Its essence is elementary fuzzy
set theory, cast as two-sorted first-order theory over fuzzy logic, which is generalized to
simple type theory. We show a reduction of the elementary fuzzy set theory to fuzzy
propositional calculus and a general method of fuzzification of classical mathematical
theories within this formalism. In this paper we restrict ourselves to set relations and
operations that are definable without any structure on the universe of objects presupposed;
however, we also demonstrate how to add structure to the universe of discourse within
our framework.

Keywords: Formal fuzzy logic, fuzzy set, foundations of fuzzy mathematics, ÃLΠ logic,
higher-order fuzzy logic, fuzzy type theory, multi-sorted fuzzy logic. MSC: 03B52, 03E70,
03E72.

1 Introduction

Fuzzy sets were introduced approximately 40 years ago by L.A. Zadeh [17]. During these
years the notion of fuzziness spread to nearly all aspects of mathematics (fuzzy relations,
fuzzy topology, fuzzy algebra etc.). There have been many (more or less successful)
attempts to formalize or even axiomatize some areas of fuzzy mathematics. Very successful
results were achieved in the area of fuzzy logic (in narrow sense). The work of Hájek,
Gottwald, Mundici, and others established fuzzy logic as a formal theory. This success
allows us to move further with the formalization of other parts of fuzzy mathematics.

Although fuzzy mathematics is nowadays very broad, the notion of fuzzy set is still
a central concept. There have been several previous attempts at formalizing fuzzy sets
in an axiomatic way. Early works, most notably [3] and [4], axiomatized the notion
within classical logic by means of a ternary membership predicate, whose third argument
represented the membership degree. Even though we do not follow this approach here,
our motivation for the axiomatic method conforms with that of [3, pp. 623–4]:

“This unified theory in which sets, functions, etc. are all ‘fuzzy’ helps to obviate
some of the [. . . ] difficulties and to clarify the nature of the others. Further,
it eliminates the necessity of having a predetermined theory of ordinary sets
on top of which the ‘fuzzy’ sets are built as a superstructure by starting out
axiomatically ab initio, as it were, assuming only elementary logic. Further,
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by developing the theory in a manner parallel to the usual development of
other set theories, comparisons between this new theory and the more usual
ones are facilitated.”

The approach we adopt here consists in ‘hiding’ the third argument in the semantic
meta-level of the theory and using formal fuzzy logic instead of classical logic for the
background logic of the theory. The reasons for this design choice are explained in more
detail in [1]. Here it suffices to say that it allows us to draw on the similarity with classical
set theory even more extensively than the former approach, as the formulae of the theory
become virtually the same as in classical mathematics, only governed by a weaker logic.
(See also footnote 6 in Section 7 below.) Axiomatic fuzzy set theories construed in this
way have already been explored by several predecessors; however, their agenda differs
from ours in many respects. The papers [11] and [15] are mainly interested in metamath-
ematical properties of fuzzified Zermelo-Fraenkel set theory, rather than developing fuzzy
mathematics within its framework. The elegant theory of [16] is restricted to one partic-
ular t-norm logic, and so it cannot capture the general notion of fuzzy set. Inspecting
these approaches we came to two conclusions: for the axiomatization of Zadeh’s notion
of fuzzy set, we do not need an analogue of full-fledged set theory, though we do need an
expressively rich fuzzy logic as a logical background.

By an analogue of full-fledged set theory we mean a theory over fuzzy logic, which
contains fuzzy counterparts of all concepts of classical set theory. We observed that real-
world applications of fuzzy sets need only a small portion of set-theoretical concepts.
The central notion in fuzzy sets is the membership of elements (rather than fuzzy sets)
into a fuzzy set. In the classical setting, the theory of the membership of atomic objects
into sets is called elementary set theory, or class theory. It is a theory with two sorts of
individuals—objects and classes—and one binary predicate—the membership of objects
into classes. In this paper we develop a fuzzy class theory. The classes in our theory
correspond exactly to Zadeh’s fuzzy sets.

By an expressively rich logic (which we need) we mean a logic of great expressive
power, yet with a simple axiomatic system and good logical properties (deduction theorem,
Skolem function introduction and eliminability, etc.). ÃLΠ∀ seems to be the most suitable
logic for our needs. In this paper we developed fuzzy class theory over the first-order logic
ÃLΠ, however if you examine the definitions and theorems you notice that nearly all of
them will work in other fuzzy logics as well. We think that fixing the underlying logic will
make important class-theoretical concepts clearer. Fuzzy class theory for a wider class of
fuzzy logics can be a topic of some upcoming paper.

We show that the proposed theory is a simple, yet powerful formalism for working with
elementary relations and operations on fuzzy sets (normality, equality, subsethood, union,
intersection, kernel, support, etc.). By a small enhancement of our theory (adding tools to
manage tuples of objects) we obtain a formalism powerful enough to capture the notion of
fuzzy relation. Thus we can formally introduce the notions of T -transitivity, T -similarity,
fuzzy ordering, and many other concepts defined in the literature. Finally, we extend our
formalism to something which can be viewed as simple fuzzy type theory. Basically, we
introduce individuals for classes of classes, classes of classes of classes etc. This allows
us to formalize other parts of fuzzy mathematics (e.g., fuzzy topology). Our theory thus
aspires to the status of foundations of fuzzy mathematics and a uniform formalism that
can make interaction of various disciplines of fuzzy mathematics possible.

Of course, this paper cannot cover all the topics mentioned above. For the majority of
them we only give the very basic definitions, and there is a lot of work to be done to show
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that the proposed formalism is suitable for them. We concentrate on the development
of basic properties of fuzzy sets. In this area our formalism proved itself worthy, as it
allows us to state several very general metatheorems that effectively reduce a wide range
of theorems on fuzzy sets to fuzzy propositional calculus. This success is a promising sign
for our formalism to be suitable for other parts of fuzzy mathematics as well.

As mentioned above, in this paper we restrict ourselves to notions that can be defined
without adding a structure (similarity, metrics, etc.) to the universe of objects. Never-
theless, our formalism possesses means for adding a structure to the universe (usually by
fixing a suitable class which satisfies certain axioms), which is necessary for the develop-
ment of more advanced parts of fuzzy set theory. Such extensions of our theory will be
elaborated in subsequent papers, for some hints see Section 6.

The proposed methodology of formal fuzzy mathematics is described in more details
in our paper [1], in which we also make further references to related results. Let us just
mention here that some of the roots of our approach (as well as some of the concepts
we employ, like graded properties of fuzzy relations) can already be found in Gottwald’s
monograph [9]. The systematic way of defining fuzzy notions (see Section 7) is hinted at
already in Höhle’s 1987 paper [12].

2 Preliminaries

This section contains formal tools necessary for developing a theory over the multi-sorted
first-order logic ÃLΠ. Readers acquainted with classical multi-sorted calculi can go through
this section quickly.

2.1 Propositional logic ÃLΠ

Here we recall the definitions of the logic ÃLΠ and some of its properties (the definition
and theorems in this section are from [8] and [6]).

Definition 1. The logic ÃLΠ has the following basic connectives (they are listed together
with their standard semantics in [0, 1]; we use the same symbols for logical connectives
and the corresponding algebraic operations):

0 0 truth constant falsum
ϕ →ÃL ψ x →ÃL y = min(1, 1− x + y) ÃLukasiewicz implication
ϕ →Π ψ x →Π y = min(1, x

y
) product implication

ϕ &Π ψ x &Π y = x · y product conjunction

The logic ÃLΠ1
2

has one additional truth constant 1
2

with the standard semantics 1
2
. We

define the following derived connectives:

¬ÃLϕ is ϕ →ÃL 0 ¬ÃLx = 1− x
¬Πϕ ϕ →Π 0 ¬Πx = 1 if x = 0, otherwise 0

1 ¬ÃL0 1
∆ϕ ¬Π¬ÃLϕ ∆x = 1 if x = 1, otherwise 0

ϕ &ÃL ψ ¬ÃL(ϕ →ÃL ¬ÃLψ) x &ÃL y = max(0, x + y − 1)
ϕ⊕ ψ ¬ÃLϕ →ÃL ψ x⊕ y = min(1, x + y)
ϕª ψ ϕ &ÃL ¬ÃLψ xª y = max(0, x− y)
ϕ ∧ ψ ϕ &ÃL (ϕ →ÃL ψ) x ∧ y = min(x, y)
ϕ ∨ ψ (ϕ →ÃL ψ) →ÃL ψ x ∨ y = max(x, y)

ϕ →G ψ ∆(ϕ →ÃL ψ) ∨ ψ x →G y = 1 if x ≤ y, otherwise y
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We assume the usual precedence of connectives. Occasionally we may write ¬G and &G

as synonyms for ¬Π and ∧, respectively. We further abbreviate (ϕ →∗ ψ) &∗ (ψ →∗ ϕ)
by ϕ ↔∗ ψ for ∗ ∈ {G, ÃL, Π}.
Definition 2. An ÃLΠ-algebra is a structure L = (L,⊕,¬ÃL,→Π, &Π, 0, 1) such that:

• (L,⊕,¬ÃL, 0) is an MV-algebra

• (L,∨,∧,→Π, &Π, 0, 1) is a Π-algebra,

• x &Π (y ª z) = (x &Π y)ª (x &Π z).

Furthermore, a structure L = (L,⊕,¬ÃL,→Π, &Π, 0, 1, 1
2
) where the reduct L′ = (L,⊕,

¬ÃL,→Π, &Π, 0, 1) is an ÃLΠ-algebra and the identity 1
2

= ¬ÃL
1
2

holds is called an ÃLΠ1
2
-

algebra.
The standard ÃLΠ-algebra [0,1] has the domain [0, 1] and the operations as stated in

Definition 1 above (analogously for the standard ÃLΠ1
2
-algebra).

The two-valued ÃLΠ algebra is denoted by {0,1}.
Definition 3. The logic ÃLΠ is given by the following axioms and deduction rules:

(ÃL) The axioms of ÃLukasiewicz logic
(Π) The axioms of product logic
(ÃL∆) ∆(ϕ →ÃL ψ) →ÃL (ϕ →Π ψ)
(Π∆) ∆(ϕ →Π ψ) →ÃL (ϕ →ÃL ψ)
(Dist) ϕ &Π (χª ψ) ↔ÃL (ϕ &Π χ)ª (ϕ &Π ψ)

The deduction rules are modus ponens and ∆-necessitation (from ϕ infer ∆ϕ).
The logic ÃLΠ1

2
results from ÃLΠ by adding the axiom 1

2
↔ ¬ÃL

1
2
. The notions of proof,

derivability `, theorem, and theory over ÃLΠ and ÃLΠ1
2

are defined as usual.

Theorem 4 (Completeness). Let ϕ be a formula of ÃLΠ (ÃLΠ1
2

respectively). Then the
following conditions are equivalent:

• ϕ is a theorem of ÃLΠ (ÃLΠ1
2

resp.)

• ϕ is an L-tautology w.r.t. each ÃLΠ-algebra (ÃLΠ1
2
-algebra resp.) L

• ϕ is a [0,1]-tautology.

The following definitions and theorems demonstrate the expressive power of ÃLΠ and
ÃLΠ1

2
. Particularly, Corollary 8 shows that each propositional logic based on an arbitrary

t-norm of a certain simple form is contained in ÃLΠ1
2
.

Definition 5. A function f : [0, 1]n → [0, 1] is called a rational ÃLΠ-function iff there is a
finite partition of [0, 1]n such that each block of the partition is a semi-algebraic set and
f restricted to each block is a fraction of two polynomials with rational coefficients.

Furthermore, a rational ÃLΠ-function f is integral iff all the coefficients are integer and
f({0, 1}n) ⊆ {0, 1}.
Definition 6. Let f be a function f : [0, 1]n → [0, 1] and ϕ(v1, . . . , vn) be a formula. We
say that the function f is represented by the formula ϕ (ϕ is a representation of f) iff
e(ϕ) = f(e(v1), e(v2), . . . , e(vm)) for each evaluation e.

The following theorem was proved in [13]:
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Theorem 7 (Functional representation). A function f is an integral (rational, respec-
tively) ÃLΠ function iff it is represented by some formula of ÃLΠ (ÃLΠ1

2
resp.).

The following theorem was proved in [5], but it can be viewed as a corollary of the
previous theorem.

Corollary 8. Let ∗ be a continuous t-norm which is a finite ordinal sum of the three basic
ones (i.e., of G, ÃL and Π), and ⇒ be its residuum. Then there are derived connectives &∗
and→∗ of the ÃLΠ1

2
logic such that their standard [0,1]-semantics are ∗ and⇒ respectively.

The logic PC (∗) of the t-norm ∗ (see [10]) is contained in ÃLΠ1
2

if & and → of PC (∗)
are interpreted as &∗ and →∗. Furthermore, if ϕ is provable in PC (∗) (and a fortiori,
if it is provable in Hájek’s logic BL∆, see [10]), then the formula ϕ∗ obtained from ϕ by
replacing the connectives & and → of PC (∗) (or BL∆) by &∗ and →∗ is provable in ÃLΠ1

2
.

Convention 9. Further on, the signs ∗ and ¦ will be reserved for t-norms definable in ÃLΠ1
2

(incl. G, ÃL and Π), and the indexed connectives will always have the meaning introduced
in the previous Corollary. However, we omit the indices of connectives whenever they are
irrelevant, i.e., whenever all formulae obtained by subscripting any ∗ to such a connective
are provably equivalent (for example, ¬¬Gϕ, ∆(ϕ → ψ), etc.), or equivalently provable
(e.g., the principal implication in axioms and theorems).

Corollary 10. Let r ∈ [0, 1] be a rational number; then there is a formula ϕ of ÃLΠ1
2

such
that e(ϕ) = r for any [0,1]-evaluation e.

This corollary tells us that in ÃLΠ1
2

we have a truth constant r̄ for each rational number
r ∈ [0, 1]. Using the completeness theorem we get the following corollary.

Corollary 11. The following are theorems of the ÃLΠ1
2

logic:

r &Π s = r &Π s

r →Π s = r →Π s

r →ÃL s = r →ÃL s

where the symbols &Π,→Π,→ÃL on the left-hand side are operations in [0,1] and on the
right-hand side they are logical connectives.

2.2 Multi-sorted first-order logic ÃLΠ∀
In this section we deal with first-order versions of the logics ÃLΠ and ÃLΠ1

2
. Since the

difference between ÃLΠ∀ and ÃLΠ1
2
∀ is purely “propositional”, we focus on the logic ÃLΠ∀;

the definitions and theorems for the logic ÃLΠ1
2
∀ are analogous, for details see [5]. (For

general first-order fuzzy logics see [10] and for multi-sorted first order fuzzy logic see
[7].)

Definition 12. A multi-sorted predicate language Γ for the logic ÃLΠ∀ is a quintuple
(S,¹,P,F,A), where S is a non-empty set of sorts, ¹ is an ordering on S (indicating the
subsumption of sorts), P is a non-empty set of predicate symbols, F is a set of function
symbols, and A is a function assigning to each predicate and function symbol a finite
sequence of elements of S.

Let |A(P )| denote the length of the sequence A(P ). The number |A(P )| is called the
arity of the predicate symbol P . The number |A(f)| − 1 is called the arity of the function
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symbol f . The functions f for which A(f) = <s> are called the individual constants of
sort s. If s1 ¹ s2 holds for sorts s1, s2 we say that s2 subsumes s1.

The logical symbols of ÃLΠ∀ are individual variables xs, ys, . . . for each sort s, the
logical connectives of ÃLΠ, the quantifier ∀ and the identity sign =. For any variable xs,
we abbreviate ¬ÃL(∀xs)¬ÃL as (∃xs).

Definition 13. Let Γ = (S, ¹, P, F, A) be a multisorted predicate language. The
notion of Γ-term is defined inductively as follows:

• Each individual variable of sort s ∈ S is a Γ-term of sort s.

• Let t1, . . . , tn be Γ-terms of respective sorts s1, . . . , sn ∈ S, and f be a function
symbol of Γ such that A(f) = <w1, . . . , wn, wn+1>, where si ¹ wi for i ≤ n. Then
f(t1, . . . , tn) is a Γ-term of sort wn+1.

• Nothing else is a Γ-term.

Definition 14. Let Γ = (S, ¹, P, F, A) be a multisorted predicate language. Let
t1, . . . , tn be Γ-terms of respective sorts s1, . . . , sn ∈ S, and P be a predicate symbol of Γ
such that A(P ) = <w1, . . . , wn> and si ¹ wi for i ≤ n. Then P (t1, . . . , tn) is an atomic
Γ-formula. If t1 and t2 are Γ-terms of arbitrary sorts, then t1 = t2 is also an atomic
Γ-formula.

The notion of Γ-formula is defined inductively as follows:

• Each atomic Γ-formula is a Γ-formula.

• If ϕ1, . . . , ϕn are Γ-formulae and c is an n-ary propositional connective of ÃLΠ,
then c(ϕ1, . . . , ϕn) is also a Γ-formula.

• Let ϕ be a Γ-formula and xs a variable of sort s. Then (∀xs)ϕ is also a Γ-formula.

• Nothing else is a Γ-formula.

Bound and free variables in a formula are defined as usual. A formula is called a
sentence iff it contains no free variables. A set of Γ-formulae is called a Γ-theory.

Convention 15. Instead of ξ1, . . . , ξn (where ξi’s are terms or formulae and n is arbitrary

or fixed by the context) we shall sometimes write just ~ξ.
Unless stated otherwise, the expression ϕ(x1, . . . , xn) means that all free variables of

ϕ are among x1, . . . , xn. Similarly, in propositional logic the expression ϕ(p1, . . . , pn) will
mean that all propositional variables occurring in ϕ are among p1, . . . , pn.

If ϕ(x1, . . . , xn, ~z ) is a formula and we substitute terms ti for all xi’s in ϕ, we denote
the resulting formula in the context simply by ϕ(t1, . . . , tn, ~z ).

The expression (∃!x)∗ϕ(x, ~z ) abbreviates the formula

(∃x)[ϕ(x, ~z ) &∗ (∀y)(ϕ(y, ~z ) →∗ (y = x))]

Definition 16. A term t of sort w is substitutable for the individual variable xs in a
formula ϕ(xs, ~z ) iff w ¹ s and no occurrence of any variable y occurring in t is bounded
in ϕ(t, ~z ).

82



Definition 17. Let L be a linearly ordered ÃLΠ-algebra. An L-structure M for Γ has
the following form: M = ((Ms)s∈S, (PM)P∈P, (fM)f∈F), where Ms is a non-empty domain
for each s ∈ S and Ms ⊆ Mw iff s ¹ w; PM is an n-ary fuzzy relation

∏n
i=1 Msi

→ L
for each predicate symbol P ∈ P such that A(P ) = <s1, . . . , sn>; fM is a function∏n

i=1 Msi
→ Msn+1 for each function symbol f ∈ F such that A(f) = <s1, . . . , sn, sn+1>,

and an element of Ms if f is a constant of sort s.

Definition 18. Let L be a linearly ordered ÃLΠ-algebra and M be an L-structure for Γ.
An M-evaluation is a mapping e which assigns to each variable of sort s an element from
Ms (for all sorts s ∈ S).

Let e be an M-evaluation, x a variable of sort s, and a ∈ Ms. Then e[x → a] is
an M-evaluation such that e[x → a](x) = a and e[x → a](y) = e(y) for each individual
variable y different from x.

Definition 19. Let L be a linearly ordered ÃLΠ-algebra. The value of a term and the truth
value of a Γ-formula in an L-structure M for Γ and an M-evaluation e are defined as
follows:

‖x‖LM,e = e(x)
‖f(t1, t2, . . . , tn)‖LM,e = fM(‖t1‖LM,e, ‖t2‖LM,e, . . . , ‖tn‖LM,e)
‖P (t1, t2, . . . , tn)‖LM,e = PM(‖t1‖LM,e, ‖t2‖LM,e, . . . , ‖tn‖LM,e)

‖t1 = t2‖LM,e = 1 if ‖t1‖LM,e = ‖t2‖LM,e and 0 otherwise
‖0‖LM,e = 0

‖ϕ1 ◦ ϕ2‖LM,e = ‖ϕ1‖LM,e ◦ ‖ϕ2‖LM,e for ◦ ∈ {→ÃL,→Π, &Π}
‖(∀xs)ϕ‖LM,e = inf

a∈Ms

‖ϕ‖LM,e[xs→a]

If the infimum does not exist, we take its value as undefined. We say that an L-structure
M for Γ is safe iff ‖ϕ‖LM,e is defined for each Γ-formula ϕ and each M-evaluation e.

Definition 20. Let L be a linearly ordered ÃLΠ-algebra and ϕ a Γ-formula. The truth
value of the formula ϕ in an L-structure M for Γ is defined as follows:

‖ϕ‖LM = inf {‖ϕ‖LM,e | e is an M-evaluation}
We say that ϕ is an L-tautology iff ‖ϕ‖LM = 1 for each safe L-structure M for Γ. We say
that an L-structure M for Γ is an L-model of a Γ-theory T iff ‖ϕ‖LM = 1 for each ϕ ∈ T .

Convention 21. For a fixed L-model M and an M-evaluation e such that e(xi) = ai (for
all i’s), we shall instead of ‖ϕ(x1, . . . , xn)‖LM,e write simply ‖ϕ(a1, . . . , an)‖ and speak of
the truth value of ϕ(a1, . . . , an).

Definition 22. Let ϕ(x1
s1 , . . . , xn

sn) be a formula of ÃLΠ∀ and M be a safe structure
for the language of ϕ over an ÃLΠ-algebra L. The function χϕ :

∏n
i=1 Msi

→ L such that

χϕ(a1, . . . , an) = ‖ϕ(a1, . . . , an)‖LM is called the characteristic function of ϕ(x1, . . . , xn).

Definition 23. The logic ÃLΠ∀ is given by the following axioms and deduction rules:

(P) Substitution instances of the axioms of propositional ÃLΠ
(∀1) (∀x)ϕ(x, ~z ) → ϕ(t, ~z ), where t is substitutable for x in ϕ
(∀2) (∀x)(χ →ÃL ϕ) → (χ →ÃL (∀x)ϕ), where x is not free in χ
(=1) x = x
(=2) (x = y) → ∆(ϕ(x, ~z ) ↔ ϕ(y, ~z )).

The deduction rules are modus ponens, ∆-necessitation, and generalization. The notions
of proof, theorem, and derivability ` are defined as usual.
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Instead of axiom (=2) we may use the usual axioms of congruence of identity w.r.t. all
predicates and functions plus the axiom of crispness of identity, i.e. (x = y) ∨ ¬(x = y).

Lemma 24. The following are theorems of ÃLΠ∀:
• (x = y) ∨ ¬(x = y)

• (x = y) → (y = x)

• (x = y) &∗ (y = z) →∗ (x = z)

• (x1 = y1) &∗ . . . &∗ (xn = yn) →∗ (ϕ(x1, . . . , xn, ~z ) ↔∗ ϕ(y1, . . . , yn, ~z )).

The theorems of the next lemma will be needed in the following sections.

Lemma 25. All formulae of the following forms are provable in ÃLΠ∀:
(∀x)(ϕ →∗ ψ) → [(∀x)ϕ →∗ (∀x)ψ] (1)

(∀x)(ϕ →∗ ψ) → [(∃x)ϕ →∗ (∃x)ψ] (2)

(∀x)(ϕ ∧ ψ) → [(∀x)ϕ ∧ (∀x)ψ] (3)

(∃x)(ϕ ∨ ψ) → [(∃x)ϕ ∨ (∃x)ψ] (4)

(∀x)(ϕ1 &∗ . . . &∗ ϕk →∗ χ) → [(∀x)ϕ1 &∗ . . . &∗ (∀x)ϕk →∗ (∀x)χ] (5)

(∀x)(ϕ1 &∗ . . . &∗ ϕk →∗ χ) →
→ [(∀x)ϕ1 &∗ . . . &∗ (∀x)ϕk−1 &∗ (∃x)ϕk →∗ (∃x)χ] (6)

Proof. In the proof we use an easy generalization of Corollary 8 to the predicate case.
Parts (1)–(4) are provable in BL∀ (see [10]). Part (5) is proved by a trivial inductive
generalization of the following proof in BL∀:

(∀x)(ϕ & ψ → χ)

↔ (∀x)(ϕ → (ψ → χ))

→ [(∀x)ϕ → (∀x)(ψ → χ)]

→ [(∀x)ϕ → ((∀x)ψ → (∀x)χ)]

↔ [(∀x)ϕ & (∀x)ψ → (∀x)χ].

Finally, part (6) is proved in the same way, only applying (2) instead of (1) when dis-
tributing (∀x) over (ϕk → χ). Q.E.D.

Theorem 26 (Deduction). Let T be a theory and ϕ be a sentence. Then T ` ∆ϕ → ψ
iff T ∪ {ϕ} ` ψ.

Theorem 27 (Strong Completeness). Let ϕ be a Γ-formula, T a Γ-theory. Then the
following are equivalent:

• T ` ϕ

• ‖ϕ‖LM = 1 for each ÃLΠ-algebra L and each safe L-model M of T

• ‖ϕ‖LM = 1 for each linearly ordered ÃLΠ-algebra L and each safe L-model M of T

The following theorem of [7] vindicates the introduction and elimination of function
symbols. Notice the connective ∆, which is provably indispensable for the validity of this
theorem.
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Theorem 28. Let ϕ(xs1
1 , . . . , xsn

n , ys) be a Γ-formula and T be a theory such that

T ` (∀xs1
1 ) . . . (∀xsn

n )(∃ys)∆ϕ(xs1
1 , . . . , xsn

n , ys).

Let f be a new function symbol such that A(f) = <s1, . . . , sn, s>. Then the (Γ ∪ {f})-
theory

T ′ = T ∪ {(∀xs1
1 ) . . . (∀xsn

n )∆ϕ(xs1
1 , . . . , xsn

n , f(xs1
1 , . . . , xsn

n ))}
is a conservative extension of T .

Furthermore, if T ` (∀xs1
1 ) . . . (∀xsn

n )(∃!ys)∆ϕ(xs1
1 , . . . , xsn

n , ys) then for each (Γ∪{f})-
formula ϕ there is a Γ-formula ϕ′ such that T ′ ` ϕ ↔ ϕ′.

3 Class theory over ÃLΠ

3.1 Axioms

Fuzzy class theory FCT is a theory over ÃLΠ∀ with two sorts of variables: object variables,
denoted by lowercase letters x, y, . . ., and class variables, denoted by uppercase letters
X, Y, . . . None of the sorts is subsumed by the other.

The only primitive symbol of FCT is the binary membership predicate ∈ between
objects and classes (i.e., the first argument must be an object and the second a class;
class theory takes into consideration neither the membership of classes in classes, nor of
objects in objects).

The principal axioms of FCT are instances of the class comprehension scheme: for
any formula ϕ not containing X (it may, however, contain any other object or class
parameters),

(∃X)∆(∀x)(x ∈ X ↔ ϕ(x))

is an axiom of FCT. The strange ∆ is neccessary for securing that the required class exists
in the degree 1 (rather than being only approximated by classes satisfying the equivalence
in degrees arbitrarily close to 1). The ∆ is also necessary for the conservativeness of the
introduction of comprehension terms1 {x | ϕ(x)} with axioms

y ∈ {x | ϕ(x)} ↔ ϕ(y)

and their eliminability. In the standard recursive way one proves that ϕ in comprehension
terms may be allowed to contain other comprehension terms.

The consistency of FCT is proved by constructing a model. Let M be an arbitrary set
and L be a complete linear ÃLΠ-algebra. The Zadeh model M over the universe M and
the algebra of truth-values L is constructed as follows:

The range of object variables is M , the range of class variables is the set of all functions
from M to L. For any evaluation e we define ‖x ∈ X‖LM,e as the value of the function
e(X) on e(x). The value of the comprehension term {x | ϕ(x)} is defined as the function
taking an object a to ‖ϕ(a)‖LM,e (in fact, the characteristic function of ϕ(x) where e fixes

the parameters). Then it is trivial that ‖y ∈ {x | ϕ(x)}‖LM,e = ‖ϕ(y)‖LM,e which proves
the comprehension axiom.

If L = [0,1], we call the described model standard.

Definition 29. Let M be a model and A a class in M. The characteristic function χx∈A

is denoted briefly by χA and also called the membership function of A. (Instead of χA(x)
or ‖x ∈ A‖ many papers use just Ax.)

1I.e., the Skolem functions of comprehension axioms, see Theorem 28.
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It can be observed that the crisp formula (∀x)∆(x ∈ X ↔ x ∈ Y ) expresses the iden-
tity of the membership functions of X and Y (as in all models ‖(∀x)∆(x ∈ X ↔ x ∈ Y )‖ =
1 iff the membership functions of X and Y are identical, otherwise 0). Since our intended
notion of fuzzy class is extensional, i.e., that fuzzy classes are determined by their mem-
bership functions, it is reasonable to require the axiom of extensionality which identifies
classes with their membership functions:

(∀x)∆(x ∈ X ↔ x ∈ Y ) → X = Y

(the converse implication follows from the axioms for identity). The consistency of this
axiom is proved by its validity in Zadeh models.

The comprehension scheme of FCT still allows classical models, as the construction
of Zadeh models works for the ÃLΠ-algebra {0,1}. Sometimes it may be desirable to
exclude classical models. This can be done either by taking ÃLΠ1

2
instead of ÃLΠ as the

underlying logic, or equivalently by adding two constants C, c and the axiom of fuzziness
c ∈ C ↔ ¬ÃLc ∈ C without changing the underlying logic. In both cases there is a sentence
with the value 1

2
in any model, and all rational truth constants are therefore definable.

The consistency of this extension follows from the fact that it holds in standard Zadeh
models.

General models of FCT correspond in the obvious way to Henkin’s general models of
classical second-order logic, while Zadeh models correspond to full second-order models.
FCT with its axioms of comprehension and extensionality thus can be viewed as a nota-
tional variant of the second-order fuzzy logic ÃLΠ (monadic, in the form presented in this
section; for higher arities see Section 4). Following the axiomatic method, we prefer FCT
formulated in the Henkin style (as a two-sorted first-order theory, rather than a second-
order logic) because of its axiomatizability. For even though (standard) Zadeh models are
the intended models of FCT, the theory of Zadeh models is not arithmetically definable,
let alone recursively axiomatizable. This follows from the obvious fact that classical full
second-order logic (which itself is non-arithmetical) can be interpreted in the theory of
Zadeh models by inscribing ∆ (or ¬¬G) in front of every atomic formula.

3.2 Elementary class operations

Elementary class operations are defined by means of propositional combination of atomic
formulae of FCT.

Convention 30. Let ϕ(p1, . . . , pn) be a propositional formula and ψ1, . . . , ψn be any
formulae. By ϕ(ψ1, . . . , ψn) we denote the formula ϕ in which all occurrences of pi are
replaced by ψi (for all i ≤ n).

Definition 31. Let ϕ(p1, . . . , pn) be a propositional formula. We define the n-ary class
operation induced by ϕ as

Opϕ(X1, . . . , Xn) =df {x | ϕ(x ∈ X1, . . . , x ∈ Xn)} .

Among elementary class operations we find the following important kinds:

• Class constants. We denote Op0 by ∅ and call it the empty class, and Op1 by V and
call it the universal class.

• α-Cuts. Let α be a truth-constant. Then we call the class Op∆(α→p)(X), i.e.,
{x | ∆(α → (x ∈ X))}, the α-cut of X and abbreviate it Xα. Similarly, Op∆(α↔ p)(X)
is called the α-level of X, denoted by X=α.
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• Iterated complements, i.e., class operations Opϕ where ϕ is p prefixed with a chain
of negations. In ÃLΠ, there are only a few such formulae that are non-equivalent.
They yield the following operations (their definitions are summarized in Table 1):
involutive and strict complements, the kernel and support, and the complement of
the kernel. Except for the involutive complement, all of them are crisp.

• Simple binary operations. Some of the class operations Opp◦q where ◦ is a (primitive
or derived) binary connective have their traditional names and notation, listed in
Table 1 (not exhaustively).

Table 1: Elementary class operations

ϕ Opϕ(X1, . . . , Xn) Name

0 ∅ empty class

1 V universal class

∆(α → p) Xα α-cut

∆(α ↔ p) X=α α-level

¬Gp \X strict complement

¬ÃLp −X involutive complement

¬G¬ÃLp (or ∆p) Ker(X) kernel

¬¬Gp (or ¬∆¬ÃLp) Supp(X) support

p &∗ q X ∩∗ Y ∗-intersection

p ∨ q X ∪ Y union

p⊕ q X ] Y strong union

p & ¬Gq X \ Y strict difference

p &∗ ¬ÃLq X −∗ Y involutive ∗-difference

3.3 Elementary relations between classes

Most of important relations between classes have one of the two forms described in the
following definition:

Definition 32 (Uniform and supremal relations). Let ϕ(p1, . . . , pn) be a propositional
formula. The n-ary uniform relation between X1, . . . , Xn induced by ϕ is defined as

Rel∀ϕ(X1, . . . , Xn) ≡df (∀x)ϕ(x ∈ X1, . . . , x ∈ Xn).

The n-ary supremal relation between X1, . . . , Xn induced by ϕ is defined as

Rel∃ϕ(X1, . . . , Xn) ≡df (∃x)ϕ(x ∈ X1, . . . , x ∈ Xn).

Among elementary class relations we find the following important kinds (they are
summarized in Table 2):
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• Equalities Rel∀p↔∗ q denoted ≈∗. The value of X ≈G Y is the maximal truth degree
below which the membership functions of X and Y are identical. In standard [0,1]-
models, 1− ‖X ≈ÃL Y ‖ is the maximal difference of the (values of) the membership
functions of X and Y , and ‖X ≈Π Y ‖ is the infimum of their ratios. All ≈∗ get
value 1 iff the membership functions are identical. For crisp classes, these notions
of equality coincide with classical equality.

• Inclusions Rel∀p→∗q, denoted ⊆∗. Their semantics is analogous to that of equalities.
They get the value 1 iff the membership function of X is majorized by that of Y .

• Compatibilities Rel∃p&∗q. Their strict and involutive negations may respectively be
called strict and involutive ∗-disjointness.

• Unary properties of height, normality, fuzziness, and crispness.

Table 2: Class properties and relations

Relation Notation Name

Rel∃p(X) Hgt(X) height

Rel∃∆p(X) Norm(X) normality

Rel∀∆(p∨¬p)(X) Crisp(X) crispness

Rel∃¬∆(p∨¬p)(X) Fuzzy(X) fuzziness

Rel∀p→∗q(X,Y ) X ⊆∗ Y ∗-inclusion

Rel∀p↔∗ q(X,Y ) X ≈∗ Y ∗-equality

Rel∃p&∗q(X,Y ) X‖∗Y ∗-compatibility

Notice that due to the axiom of extensionality, the relation Rel∀∆(p↔ q), which is
obviously equivalent to ∆(X ≈∗ Y ), coincides with the identity of classes. Thus it is
∆(X ≈∗ Y ) that guarantees intersubstitutivity salva veritate in all formulae (equalities
generally do not).

It can be noticed that Gödel equality ≈G is highly true only if the membership func-
tions are identical on low truth values; product equality ≈Π is also more restrictive on
lower truth values. However, this does not conform with the intuition that the difference
in the high values (on the “prototypes”) should matter more than a negligible difference
on objects that almost do not belong to the classes under consideration. Equality of in-
volutive complements, −X ≈∗−Y , is therefore a better measure of similarity of classes.
Similarly, −Y ⊆∗−X may give a better measure of containment of X in Y than X ⊆∗ Y .

3.4 Theorems on elementary class relations and operations

The following metatheorems show that a large part of elementary fuzzy set theory can be
reduced to fuzzy propositional calculus.

Theorem 33. Let ϕ, ψ1, . . . , ψn be propositional formulae.
Then ` ϕ(ψ1, . . . , ψn)

iff ` Rel∀ϕ(Opψ1
(X1,1, . . . , X1,k1), . . . , Opψn

(Xn,1, . . . , Xn,kn)) (7)

iff ` Rel∃ϕ(Opψ1
(X1,1, . . . , X1,k1), . . . , Opψn

(Xn,1, . . . , Xn,kn)) (8)
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Proof. The substitution of the formulae x ∈ Xi,j for pi,j into ψi(pi,1, . . . , pi,ki
) everywhere

in the (propositional) proof of ϕ(ψ1, . . . , ψn) transforms it into the proof of

ϕ(x ∈ Opψ1
(X1,1, . . . , X1,k1), . . . , x ∈ Opψn

(Xn,1, . . . , Xn,kn)).

Then use generalization on x to get Rel∀ϕ and ∃-introduction to get Rel∃ϕ.
Conversely, given an evaluation e that refutes ϕ(ψ1, . . . , ψn), we construct a Zadeh

model M refuting (7) and (8) by assigning to the class variables Xi,j the functions Ai,j

such that Ai,j(a) = e(pi,j) for every a in the universe of M. Applying Theorems 4 and
27, the proof is done. Q.E.D.

Corollary 34. Let ϕ and ψ be propositional formulae.
If ` ϕ → ψ then ` Opϕ(X1, . . . , Xn) ⊆ Opψ(X1, . . . , Xn).
If ` ϕ ↔ ψ then ` Opϕ(X1, . . . , Xn) = Opψ(X1, . . . , Xn).
If ` ϕ ∨ ¬ϕ then ` Crisp(Opϕ(X1, . . . , Xn)).

By virtue of Theorem 33, the properties of propositional connectives directly translate
to the properties of class relations and operations. For example:

` ∆p → p proves ` Ker(X) ⊆ X
` p → p ∨ q ” ` X ⊆ X ∪ Y
` 0 → p ” ` ∅ ⊆ X
` p & q → p ∧ q ” ` X ∩∗ Y ⊆ X ∩G Y
` ¬Gp ∨ ¬¬Gp ” ` Crisp(\X)
` ∆(α → p) → ∆(β → p) for α ≥ β ” ` Xα ⊆ Xβ for α ≥ β, etc.

In order to translate monotonicity and congruence properties of propositional connec-
tives to the same properties of class operations, we need another theorem:

Theorem 35. Let ϕi, ϕ
′
i, ψi,j, ψ

′
i,j be propositional formulae. Then

`
k

&∗
i=1

ϕi(ψi,1, . . . , ψi,ni
) →

k′∧
i=1

ϕ′i(ψ
′
i,1, . . . , ψ

′
i,n′i

) (9)

iff

`
k

&∗
i=1

Rel∀ϕi

(
Opψi,1

( ~X), . . . , Opψi,ni
( ~X)

)
→

→
k′∧

i=1

Rel∀ϕ′i

(
Opψ′i,1

( ~X), . . . , Opψ′
i,n′

i

( ~X)

)
(10)

Proof. Without loss of generality, the principal implications of (9) and (10) can be
assumed to be →∗. Replacing all propositional variables pj in the proof of (9) by the
atomic formulae x ∈ Xj then yields the proof of

k

&∗
i=1

ϕi

(
Opψi,1

( ~X), . . . , Opψi,ni
( ~X)

)
→∗

k′∧
i=1

ϕ′i

(
Opψ′i,1

( ~X), . . . , Opψ′
i,n′

i

( ~X)

)
.

Generalization on x and distribution of ∀ over all conjuncts using (1), (5) and (3) of
Lemma 25 proves (10). The converse is proved exactly as in Theorem 33. Q.E.D.
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Examples of direct corollaries of the theorem:

Provability in BL∆ of Proves in FCT

(p → q) → ((p &∗ r) → (q &∗ r)) X ⊆∗ Y → X ∩∗ Z ⊆∗ Y ∩∗ Z
(p → q) → (p → (p ∧ q)) X ⊆∗ Y → X ⊆∗ X ∩G Y
[(p → q) & (q → p)] → (p ↔ q) (X ⊆∗ Y & Y ⊆∗ X) → X ≈∗ Y
(p ↔ q) → [(p → q) ∧ (q → p)] X ≈∗ Y → (X ⊆∗ Y ∧ Y ⊆∗ X)
[(p → r) & (q → r)] → (p ∨ q → r) (X ⊆∗ Z &∗ Y ⊆∗ Z) → X ∪ Y ⊆∗ Z
∆(p → q) → [∆(α → p) → ∆(α → q)] ∆(X ⊆ Y ) → Xα ⊆ Yα

transitivity of →, ↔ transitivity of ⊆∗,≈∗, etc.

Similarly, ÃL ` (¬p ↔ ¬q) ↔ (q ↔ p) proves −X ⊆ÃL−Y ↔ Y ⊆ÃL X, etc.
To derive theorems about Rel∃, we slightly modify Theorem 35:

Theorem 36. Let ϕi, ϕ
′
i, ψi,j, ψ

′
i,j be propositional formulae. Then

`
k

&∗
i=1

ϕi(ψi,1, . . . , ψi,ni
) →

k′∨
i=1

ϕ′i(ψ
′
i,1, . . . , ψ

′
i,n′i

) (11)

iff

`
k−1

&∗
i=1

Rel∀ϕi

(
Opψi,1

( ~X), . . . , Opψi,ni
( ~X)

)
&∗

&∗ Rel∃ϕk

(
Opψk,1

( ~X), . . . , Opψk,nk
( ~X

)
→

→
k′∨

i=1

Rel∃ϕ′i

(
Opψ′i,1

( ~X), . . . , Opψ′
i,n′

i

( ~X)

)
(12)

Proof. Modify the proof of Theorem 35, using (6) of Lemma 25 instead of (5), and then
(4) of the same Lemma to distribute ∃ over the disjuncts. Q.E.D.

Examples of direct corollaries:

Provability in BL∆ of Proves in FCT

p & (p → q) → q Hgt(X) &∗ (X ⊆∗ Y ) → Hgt(Y )
∆(p ∨ q) → ∆p ∨ ∆q Norm(X ∪ Y ) → Norm(X) ∨ Norm(Y )
(p → r) & (p & q) → (q & r) X ⊆∗ Z &∗ X‖∗Y → Y ‖∗Z, etc.

4 Tuples of objects

In order to be able to deal with fuzzy relations, we will further assume that the language of
FCT contains an apparatus for forming tuples of objects and accessing their components.
Such an extension can be achieved, e.g., by postulating variable sorts for any multiplicity
of tuples (all of which are subsumed by the sort of objects), enriching the language with the
functions for forming n-tuples of any combination of tuples and accessing its components,
and adding axiom schemes expressing that tuples equal iff their respective constituents
equal. The definition of Zadeh model then must be adjusted by partitioning the range of
object variables and interpreting the tuples-handling functions. We omit elaborating this
sort of syntactic sugar.
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In what follows, the usual abbreviations of the form {〈x1, . . . , xn〉 | ϕ} for {z | (∃x1) . . .
(∃xn)(z = 〈x1, . . . , xn〉 & ϕ)} will be used.

FCT equipped with tuples of objects contains common operations for dealing with
relations. We can define Cartesian products, domains, ranges and the relational operations
as usual:2

X ×∗ Y =df {〈x, y〉 | x ∈ X &∗ y ∈ Y }
Dom(R) =df {x | 〈x, y〉 ∈ R}
Rng(R) =df {y | 〈x, y〉 ∈ R}
R ◦∗ S =df {〈x, y〉 | (∃z)(〈x, z〉 ∈ R &∗ 〈z, y〉 ∈ S)}

R−1 =df {〈x, y〉 | 〈y, x〉 ∈ R}
Id =df {〈x, y〉 | x = y}

The introduction of tuples of objects also allows an axiomatic investigation of various kinds
of fuzzy relations (e.g., similarities) and fuzzy structures (fuzzy preorderings, graphs, etc.).
We can define the usual properties of relations, as summarized in Table 3 (for brevity’s
sake, we write just Rxy for 〈x, y〉 ∈ R).3

Table 3: Properties of relations

Notation Definition Name

Refl(R) (∀x)(Rxx) reflexive

Sym∗(R) (∀x, y)(Rxy →∗ Ryx) ∗-symmetric

Trans∗(R) (∀x, y, z)(Rxy &∗ Ryz →∗ Rxz) ∗-transitive

Dich(R) (∀x, y)(Rxy ∨ Ryx) dichotomic

Quord∗(R) Refl(R) &∗ Trans∗(R) ∗-quasiordering

Linquord∗(R) Quord∗(R) &∗ Dich(R) linear ∗-quasiordering

Sim∗(R) Quord∗(R) &∗ Sym∗(R) ∗-similarity

Equ∗(R) Sim∗(R) &∗ (∀x, y)(∆Rxy →∗ x = y) ∗-equality

Classical definitions of some properties of relations (e.g., antisymmetry) make use of
the identity predicate on objects. One may be tempted to use the identity predicate =
of ÃLΠ∀ in the rôle of the classical identity in these definitions. However, since = is crisp,
such definitions do not yield useful and genuine fuzzy notions. A fuzzy analogue of the
crisp notion of identity is that of similarity or equality (see Table 3). We can therefore
define these properties relative to a ∗-similarity or ∗-equality S. For details see the last
section.

2Obviously for crisp arguments these operations yield crisp classes; X ×∗ Y is crisp iff both X and Y
are crisp. Unless X and Y are crisp, the property of being a relation from X to Y is double-indexed
(a ∗′-subset of the Cartesian product X ×∗ Y ). Also the definitions of usual properties (e.g., reflexivity,
∗-symmetry, etc.) of a relation on a non-crisp Cartesian product have to be defined with relativized
quantifiers which bring another index. It is doubtful that definitions combining various t-norms will have
any real meaning. The situation is much easier if only relations on crisp classes are considered.

3Following the usual mathematical terminology, ∗-similarity may also be called ∗-equivalence; we
respect the established fuzzy set terminology here. Weak dichotomy (∀x, y)(Rxy ⊕ Ryx) could also be
defined and weak versions of the properties that contain dichotomy, e.g. weakly linear ∗-ordering.
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In this way, the properties of being a ∗-antisymmetric relation, a ∗-ordering, a linear
∗-ordering, a ∗-well-ordering, a ∗-function and a ∗-bijection (w.r.t. some fuzzy ∗-equality)
can be introduced. By means of ∗-bijections, the notions of ∗-subvalence, ∗-equipotence
and ∗-finitude of classes (again w.r.t. some fuzzy ∗-equality) can be defined. A thorough
investigation of these notions, however, exceeds the scope of this paper.

5 Higher types of classes

5.1 Second-level classes

Class theory does not contain an apparatus for dealing with families of classes. In many
cases, a family of classes can be represented by a class of pairs or some other kind of
‘encoding’. For instance, a relation R may be understood as representing the family
of classes Xi = {x | 〈i, x〉 ∈ R} for all i ∈ Dom(R).

In other cases, however, no suitable class of indices can be found and such an ‘encoding’
is not possible. Then it is desirable to extend the apparatus of class theory by classes of
the second level. This is done simply by repeating the same definitions one level higher.
We introduce a new sort of variables for families of classes X ,Y , . . . , a new membership
predicate between classes and families of classes X ∈ X , and the comprehension scheme
for families of classes

(∃X )∆(∀X)(X ∈ X ↔ ϕ(X))

for all formulae ϕ (where ϕ may contain any parameters except for X ). The extensionality
axiom for families of classes now reads

(∀X)∆(X ∈ X ↔ X ∈ Y) → X = Y .

Again it is possible to introduce second-level comprehension terms {X | ϕ(X)}, which
introduction is conservative and eliminable by Theorem 28.

The consistency of this extension is proved by a construction of second-level Zadeh
models over a linear ÃLΠ-algebra L, in which the object variables range over a uni-
verse U , the class variables over the set LU of all functions from U to L, and the second-
level class variables range over the set LLU

of all functions from LU to L. The second-level
class {X | ϕ(X)} is again identified with the characteristic function of ϕ as in Section 3.1.
Obviously, this construction makes both the second-level comprehension scheme and the
axiom of extensionality satisfied in the model; the theory of second-level classes can thus
be viewed as third-order fuzzy logic (we omit details).

All definitions of elementary class relations and operations and all theorems can di-
rectly be transferred from classes to second-level classes. Refining the language, axioms,
and Zadeh models to tuples of classes is also straightforward.

It may be observed that the class operations and relations Opϕ, Rel∀ϕ, and Rel∃ϕ,
which were introduced in Sections 3.2 and 3.3 as defined functors and predicates, are now
individuals of the theory, viz second-level classes.

5.2 Simple fuzzy type theory

If there be need for families of families of classes, it is straightforward to repeat the whole
construction once again to get third-level classes. By iterating this process, we get a
simple type theory over ÃLΠ, for which the class theory described in Sections 3–4 is the
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induction step. The comprehension schemes and Zadeh models can easily be generalized
to allow membership of elements of any type less then n in classes of the n-th level.4

A type theory over a particular fuzzy logic (viz IMTL∆, extended also to ÃL∆) has
already been proposed by V. Novák in [14]. As mentioned in the Introduction, our theory
can be built over various fuzzy logics with ∆; its variant over IMTL∆ and Novák’s type
theory seem to be equivalent (though radically different in notation, as Novák uses λ-
terms).

Since almost all classical applied mathematics can be formalized within the first few
levels of simple type theory, the formalism just described should be sufficient for all appli-
cations of fuzzy sets based on t-norms or other functions definable in ÃLΠ (see Theorem 7).
To illustrate this, we show the formalization of Zadeh’s extension principle.

Definition 37 (Extension by Zadeh’s principle). A (fuzzy) binary relation5 R between
objects is extended by Zadeh’s principle (based on a t-norm ∗) to a relation R∗ between
(fuzzy) classes as follows:

R∗(X, Y ) ≡df (∃x, y)(Rxy &∗ x ∈ X &∗ y ∈ Y )

Since relations between classes are classes of the second level in our simple type theory,
Zadeh’s extension principle in fact assigns to a first-level class R a second-level relation;
such an assignment itself is an individual of the third level. Thus we can define Zadeh’s
principle as an individual of our theory—a special class Z∗ of the third level:

Definition 38 (Zadeh’s extension principle). Zadeh’s extension principle based on ∗ is
a third-level function Z∗ defined as follows (we adopt the usual functional notation for
classes which are functions):

Z∗(R) =df {〈X,Y 〉 | (∃x, y)(Rxy &∗ x ∈ X &∗ y ∈ Y )}
Generally we can extend any fuzzy relation R(n+1) of type n + 1 to one of type n + 2

by Zadeh’s principle of type n + 3 (based on a t-norm ∗). All these ‘principles’ are in fact
individuals of our theory, whose existence follows from the comprehension scheme.

Definition 39 (Zadeh’s extension principle for higher types). Zadeh’s extension principle
for relations of type n + 1 (for n ≥ 0) based on ∗ is the function of type n + 3 defined as
follows:

Z∗(n+3)
(
R(n+1)

)
=df

{〈
X

(n+1)
1 , . . . , X

(n+1)
k

〉 ∣∣∣
∣∣∣ (∃W (n)

1 , . . . , W
(n)
k )

(〈
W

(n)
1 , . . . ,W

(n)
k

〉
∈ R(n+1) &∗

k

&∗
i=1

W
(n)
i ∈ X

(n+1)
i

)}
(13)

6 Adding structure to the domain of discourse

As we have shown, in FCT we can define many properties of individuals of our theory
(objects or classes). Since our theory contains classical class theory (for classes which

4This is done simply by postulating that the n-th sort of variables is subsumed by the k-th sort if
n < k. The sorts can further be refined to allow arbitrary tuples of individuals of lesser types with the
appropriate tuple-forming, component-extracting, and tuple-identity axioms added. The generalization
of Zadeh models is again quite straightforward.

5The generalization to n-ary relations is trivial.
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are crisp), we can introduce arbitrary relations and functions on the universe of objects
which are definable in classical class theory. As they can be described by formulae, their
existence is guaranteed by the comprehension axiom. So the only thing we need to add
is a constant of the appropriate sort and the instance of the comprehension axiom. The
following definition is the formalization of this approach for the first-order theories.

Definition 40. Let Γ be a classical one-sorted predicate language and T be a Γ-theory.
For each n-ary predicate symbol P of Γ let us introduce a new constant P̄ for a class
of n-tuples, and for each n-ary function symbol F we take a new constant F̄ for a class of
(n + 1)-tuples. We define the language FCT(Γ) as the language of FCT extended by the
symbols Q̄ for each symbol Q ∈ Γ. The translation ϕ̄ of a Γ-formula ϕ to FCT(Γ) is
obtained as the result of replacing all occurrences of all Γ-symbols Q in ϕ by Q̄.

We define the theory FCT(T ) in the language FCT(Γ) as the theory with the following
axioms:

• The axioms of FCT

• The translations ϕ̄ of all axioms ϕ of T

• Crisp(Q̄) for each symbol Q ∈ Γ (for the definition of Crisp, see Table 2)

• 〈x1, . . . xn, y〉 ∈ F̄ ∧ 〈x1, . . . xn, z〉 ∈ F̄ → y = z for each n-ary function symbol
F ∈ Γ.

Lemma 41. Let Γ be a classical predicate language, T a Γ-theory, L an ÃLΠ-algebra. If
M is an L-model of FCT(T ), then Mc = (M, (QMc)Q∈Γ), where QMc = Q̄M for each
Q ∈ Γ, is a model (in the sense of classical logic) of the theory T .

Vice versa, for each model M of T there is an L-model N of FCT(T ) such that Nc is
isomorphic to M.

Therefore (in virtue of Theorem 27), T ` ϕ iff FCT(T ) ` ϕ̄, for any Γ-formula ϕ.

Proof. If M is an L-model of FCT, then for each Q ∈ Γ, Q̄M is crisp due to the axiom
Crisp(Q̄) of FCT(T ). Setting the universe of Mc to that of M, and for each symbol
Q ∈ Γ, setting QMc to the set whose characteristic function is Q̄M, we can see that Mc

models T , because the axioms of T , which contain only crisp predicates, are evaluated
classically in Mc.

Conversely, we define M as the standard Zadeh model with the universe of N, in which
F̄M = FN for every function symbol F ∈ Γ, and for every predicate P ∈ Γ, P̄M is realized
as the characteristic function of PN. Then M obviously satisfies all axioms of FCT(T );
the axioms of T are again evaluated classically in M, as the realizations of all predicates
involved are crisp. Q.E.D.

Example 42. Let R be a constant for a class of pairs. Then in each L-model of the theory
Crisp(R), Refl(R), Trans(R), (∀x, y)(Rxy & Ryx → x = y), the constant R is represented
by a crisp ordering on the universe of objects. (For the definitions of Refl and Trans, see
Table 3.)

Example 43. If T is a classical theory of the real closed field, then in each L-model M of
the theory FCT(T ), the universe of objects with ≤̄M, +̄M, −̄M, ·̄M, 0̄M, 1̄M is a real closed
field.

In Lemma 41 we speak of first-order theories only. Nevertheless, it can be extended
to any theory formalizable in classical type theory. Here we present only one example.
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Example 44. Let τ be a constant for a class of classes and T the theory with the axioms:

• Crisp(τ)

• (∀X)(X ∈ τ → Crisp(X))

• (∀X )(Crisp(X ) & X ⊆ τ → {x | (∃X)(X ∈ X & x ∈ X)} ∈ τ)

• (∀X1) . . . (∀Xn)(X1 ∈ τ & . . . & Xn ∈ τ → X1 ∩ . . . ∩Xn ∈ τ) for each n ∈ N

Then in each L-model of the theory T , the constant τ is represented by a classical
topology on the universe of objects.

7 Fuzzy mathematics

If we examine the above definitions we see the crucial rôle of the predicate Crisp. If we
remove this predicate from the above definitions we get the “natural” fuzzification of the
above-mentioned concepts.6

In order to illustrate the methodology of fuzzification, let us concentrate on the con-
cept of ordering. If we remove the predicate Crisp from the definition, then we have to
distinguish which t-norm was used in the axioms of transitivity and antisymmetry. Thus
we get the concept of ∗-fuzzy ordering. This is the way this concept was introduced by
Zadeh. However, some carefulness is due here not to overlook some “hidden” crispness.
There is crisp identity used in the antisymmetry axiom, and also in the reflexivity axiom
which can be written as (∀x, y)(x = y → Rxy). A more general definition is therefore
parameterized also by a fuzzy equality in the following way:

Example 45. Let E and R be two constants of classes of tuples. The following axioms
define the concept of (∗, E)-ordering R:

• Equ∗(E)

• Trans∗(R)

• (∀x, y)(Exy → Rxy)

• (∀x, y)(Rxy &∗ Ryx →∗ Exy)

Observe that E is a ∗-equality, and the last two conditions can be written as R∩∗R−1 ⊆
E ⊆ R. We thus get the notion of fuzzy ordering as defined by Bodenhoffer in [2].

In contemporary fuzzy mathematics the methodology of fuzzification of concepts is
somewhat sketchy and non-consistent: usually only some features of a classical concept
are fuzzified while other features are left crisp.

We would like to propose another “inductive” approach. We propose to follow the
usual “inductive” development of mathematics (in some metamathematical setting—here

6A sketch of this method can already be found in Höhle’s 1987 paper [12, Section 5]:

“It is the opinion of the author that from a mathematical viewpoint the important feature
of fuzzy set theory is the replacement of the two-valued logic by a multiple-valued logic.
[. . . I]t is now clear how we can find for every mathematical notion its ‘fuzzy counterpart’.
Since every mathematical notion can be written as a formula in a formal language, we have
only to internalize, i.e. to interpret these expressions by the given multiple-valued logic.”

95



in simple type theory) and fuzzify “along the way”. In more words: develop a fuzzy
generalization of basic classical concepts (the notion of class, relation, equality—as done
in this paper); then define compound fuzzy notions by taking their classical definitions
and consistently replacing classical sub-concepts in the definitions by their already fuzzi-
fied counterparts. The consistency of this approach promises that no crispness will be
unintentionally “left behind”.

This approach is formal and sometimes may lead to too complex notions. In such
cases, some features of the complex notion may intentionally be left crisp by retaining
some of the crispness axioms. The advantage of the proposed approach is that we always
know which features are left crisp.

The framework presented in this paper provides a unified formalism for various disci-
plines of fuzzy mathematics. This may enable, i.a., an interchange of results and meth-
ods between distant disciplines of fuzzy mathematics, till now separated by differences
in notation and incompatibilities in definitions. It can also bring new (proof-theoretic
and model-theoretic) methods to traditional fuzzy disciplines and enable their further
development in both theory and applications. Finally, the axiomatization of the whole
fuzzy mathematics, independent of particular [0, 1]-functions, can be an important step in
understanding vague phenomena. Further elaboration of the proposed formalism and its
application to various disciplines of fuzzy mathematics is thus a possible direction towards
firm foundations of fuzzy mathematics.
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Abstract: This paper studies fuzzy relations in the graded framework of Fuzzy Class
Theory (FCT). This includes (i) rephrasing existing work on graded properties of binary
fuzzy relations in the framework of Fuzzy Class Theory and (ii) generalizing existing crisp
results on fuzzy relations to the graded framework. Our particular aim is to demonstrate
that Fuzzy Class Theory is a powerful and easy-to-use instrument for handling fuzzified
properties of fuzzy relations. This paper does not rephrase the whole theory of (fuzzy)
relations; instead, it provides an illustrative introduction showing some representative
results, with a strong emphasis on fuzzy preorders and fuzzy equivalence relations.

Keywords: Fuzzy Class Theory, fuzzy relation, fuzzy preorder, fuzzy equivalence rela-
tion, similarity, graded properties. MSC: 04A72, 03E72, 03E70.

1 Introduction

Fuzzy relations are of fundamental importance in almost all sub-fields of fuzzy logic
and fuzzy set theory, including particularly fuzzy preference modeling, fuzzy mathe-
matics, fuzzy inference, and many more. In the most general setting, fuzzy relations
are mappings from the Cartesian product of non-empty domains U1 × · · · × Un (usu-
ally with n ≥ 2) to the unit interval or a more general lattice of truth values L (see
e.g. [38, 41, 42, 47, 52]). Clearly the motivation behind fuzzy relations is to allow more
flexibility by admitting intermediate degrees of relationship [70, 61, 60, 36, 13, 58].

An important class are the so-called binary fuzzy relations that are used to express
graded relationships between two objects coming from the same domain. Technically,
they are defined as U ×U → L mappings, where U is some non-empty set and L is again
the lattice of truth values we consider. There are many important sub-classes, such as,
fuzzy preorders [68, 70, 18], fuzzy orders [70, 13, 47, 16], and fuzzy equivalence relations
[70, 13, 68, 52, 67, 51, 20]. Interestingly, however, the traditional characterizing properties
of these important types of fuzzy relations, such as, reflexivity, symmetry, transitivity, and
so forth, are defined in a strictly crisp way, i.e., as properties that either hold fully or do
not hold at all. One may be tempted to argue that it is somewhat peculiar to fuzzify
relations by allowing intermediate degrees of relationships, but, at the same time, to
still enforce strictly crisp properties on fuzzy relations. This particularly implies that all
results are effective only if some assumptions are fulfilled, but say nothing at all if the
assumptions are only fulfilled to a certain degree (even if they are almost fulfilled).
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To illustrate our point, let us shortly consider a toy example. It is common in the
theory of fuzzy relations to call a fuzzy relation R : U ×U → [0, 1] reflexive if R(x, x) = 1
holds for all x ∈ U . From the reflexivity of a fuzzy relation R, we can infer

R v R ◦∗ R,

where v is the traditional crisp inclusion of fuzzy sets or relations [69],

R1 v R2 if and only if R1(x, y) ≤ R2(x, y) for all x, y ∈ U,

and R◦∗R is the composition of R with itself (with respect to some triangular norm ∗), i.e.,
(R ◦∗ R)(x, y) = sup

z∈U
(R(x, z) ∗R(z, y)).

What, however, happens if a given fuzzy relation R is not reflexive, but almost reflexive?
Let us consider U = {1, 2, 3} and the fuzzy relation (in convenient matrix notation)

R =




1 1 1
0 1 1
0 0 a


 ,

where a ∈ [0, 1]. Using the ÃLukasiewicz t-norm x ∗ÃL y = max(0, x + y − 1), routine
calculations show that

R ◦ÃL R =




1 1 1
0 1 1
0 0 a′


 ,

where a′ = max(0, 2a−1). So we confirm that only if a = 1, we also have a′ = 1, and only
in this case R v R ◦ÃL R holds. What is also apparent, however, is the fact that, the closer
the value a is to 1, the less R exceeds R ◦ÃL R. Actually, in this example, this degree is

a− a′ = a−max(0, 2a− 1) = min(a, 1− a).

For example, if a = 0.99, we obtain a′ = 0.98, and R exceeds R ◦ÃL R only by 0.01.
So we see that, even if some assumptions are not fully satisfied, we may obtain some
meaningful results. The classical theory of fuzzy relations, however, does not offer any
concepts for handling this kind of “gradedness”. We only know that the classical result
is not applicable, since R is not reflexive.

It was actually S. Gottwald who first attempted to eliminate this eyesore by introduc-
ing what he called “graded properties of fuzzy relations” [39, 40, 41]. Let us shortly recall
these ideas in the light of the above example. For instance, Gottwald defined the degree
of reflexivity of a fuzzy relation R as

Refl(R) = inf
x∈U

R(x, x)

and the degree of inclusion with respect to a left-continuous t-norm ∗ (originally intro-
duced in [1]) as

R1 ⊆∗ R2 = inf
x,y∈U

(R1(x, y) ⇒∗ R2(x, y)),

where (x ⇒∗ y) = sup{u ∈ [0, 1] | x ∗ u ≤ y} is the residual implication of ∗. Then it is
straightforward to prove the following result

Refl(R) ≤ (R ⊆∗ R ◦∗ R) (1)
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which perfectly confirms the results that we obtained for the above example, as we have
Refl(R) = a and (by x ⇒ÃL y = min(1, 1− x + y))

(R ⊆ÃL R ◦ÃL R) = min(1, 1− a + a′) = min(1, 1− a + 2a− 1) = a.

Even though these ideas seem meaningful and natural, Gottwald’s approach unfor-
tunately found only little resonance (exceptions are, for instance, [13, 48]). What may
be the reasons? In our humble opinion, the following facts may have contributed to the
reluctance of the research community to adopt and advance Gottwald’s ideas: although
Gottwald’s syntax is geared to classical mathematics for better readability, he is not using
a full-fledged axiomatic framework and is not strictly separating syntax from semantics.
As in our example above, he has to refer to the operations used (t-norms, etc.) explicitly.
Thus the results that he obtains are already quite difficult to prove, but still too basic to
provide solid argumentation in favor of a full-fledged graded theory of fuzzy relations.

This paper aims at reviving and advancing Gottwald’s highly valuable ideas, although
we take a slightly different approach. We use the formal axiomatic framework of Fuzzy
Class Theory (FCT), introduced in [5]. Fuzzy Class Theory is a powerful and expressive,
yet easy-to-read and easy-to-handle, framework for fuzzy mathematics in which it is just
natural to consider properties of fuzzy relations in a graded manner. In Fuzzy Class
Theory, most notions are inspired by (and derived from) the corresponding notions of
classical mathematics [6]; furthermore, the syntax of Fuzzy Class Theory is close to the
syntax of classical mathematical theories; and also the proofs in Fuzzy Class Theory
resemble the classical proofs of the corresponding classical theorems. Therefore, in FCT
it is technically easier to handle graded properties of fuzzy relations than in Gottwald’s
previous works. Thus we are able to access deeper results than what was possible in
Gottwald’s framework.

This paper is organized as follows. In Section 2, we first highlight how to read re-
sults in FCT, as the language of Fuzzy Class Theory may be unusual for some readers.
Section 3 is concerned with basic graded properties of fuzzy relations, which mainly means
rephrasing existing results on graded properties of fuzzy relations in the frame of Fuzzy
Class Theory. Section 4 deals with images under fuzzy relations in the graded framework,
including closures and opening operators, whereas Section 5 deals with bounds, maxima,
and suprema. Section 6 generalizes the classical representation theorems due to Valverde
[68] to the graded framework. In Section 7, we finally generalize the well-known links be-
tween fuzzy equivalence relations and fuzzy partitions to the graded framework. Through-
out the whole paper, we will highlight links between the graded approach presented here
and the existing results available in the literature. Where possible and meaningful, we
provide concrete non-trivial examples.

The aim of this paper is to demonstrate that Fuzzy Class Theory is a powerful and
easy-to-use instrument for handling fuzzified properties of fuzzy relations. As this paper
has the appellative sub-title “Initial Steps”, we do not aim at rephrasing the whole theory
of fuzzy relations (or the whole existing theory of crisp relations, which is even much
larger). Instead, we attempt to provide a kind of illustrative kick-off by picking out some
representative results, with a strong emphasis on two of the most important classes of
binary fuzzy relations—fuzzy preorders and fuzzy equivalence relations.

2 Preliminaries

Fuzzy Class Theory aims at axiomatizing the notion of fuzzy set. A brief overview of
FCT can be found in Appendix B, where also all necessary definitions and conventions
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freely used in the following sections are introduced. For a detailed account of the theory
we refer the reader to the original paper [5] or a freely available primer [7]. In the present
section we only give a brief dictionary explaining how formulae of FCT can be translated
to a more traditional language of fuzzy set theory, and highlight some peculiar features of
FCT that play a role in formal reasoning about the graded properties of fuzzy relations.

2.1 A brief dictionary

We aim this paper at researchers in the theory and applications of fuzzy relations to
attract their interest in graded theories of fuzzy relations. In the traditional theory of
fuzzy relations, it is not usual to separate formal syntax from semantics as it is the case
in FCT. So it may be difficult for some readers who are new to FCT to follow the
results. Therefore, we would like to provide the readers with a dictionary that improves
understanding of the results in this paper and that demonstrates how the results would
translate to the traditional language of fuzzy relations.

FCT strictly distinguishes between its syntax and semantics. This feature has two
important consequences:

• To keep the distinction (and also for certain metamathematical reasons, see [7,
Section 1.1]), the objects of the formal theory are called fuzzy classes rather than
fuzzy sets. The name fuzzy set is reserved for membership functions in the models of
the theory (see Appendix B). Nevertheless (in virtue of the soundness of FCT with
respect to its models composed of traditional fuzzy sets), the theorems of FCT about
fuzzy classes are always valid for fuzzy sets and fuzzy relations. Thus, whenever
we speak of classes, the reader can always safely substitute usual fuzzy sets for our
“classes”.

• FCT screens off direct references to truth values; truth degrees belong to the se-
mantics of FCT, rather than to its syntax (this ensures that FCT renders fuzzy sets
as a primitive notion instead of modeling them by membership functions). Thus,
there are no variables for truth degrees in the language of FCT. The degree to which
an element x belongs to a fuzzy class A is expressed simply by the atomic formula
x ∈ A (which can alternatively be written in a more traditional way as Ax).

The algebraic structure behind the semantics of FCT are MTL4-chains [33]. All
results in this paper hold for fuzzy sets over any MTL4-chain. As noted in Appendix A,
if the domain of truth values is the unit interval [0, 1], MTL4-chains are characterized as
algebras

([0, 1], ∗,⇒, min, max, 0, 1,4),

where ∗ is a left-continuous t-norm, ⇒ is its residual implication, and 4 is a unary
operation defined as

4x =

{
1 if x = 1,

0 otherwise.

This means that we can translate the results to the language of fuzzy relations as in
Table 1, where we may specify an arbitrary universe of discourse U , a left-continuous
t-norm ∗, its residuum ⇒.

Let us now shortly consider some examples of definitions and results. For instance,
the truth degree of A ⊆ B (defined in FCT by the formula (∀x)(x ∈ A → x ∈ B), see
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Table 1: Dictionary of FCT terms.

FCT Fuzzy relations

object variable x element x ∈ U
(fuzzy) class variable A fuzzy set A ∈ F(U)
variable for a (fuzzy) class of (fuzzy) classes A fuzzy set A ∈ F(F(U))
unary predicate symbol fuzzy subset of U , F(U), F(F(U)), etc.
n-ary predicate symbol (n-ary) fuzzy relation on Un, (F(U))n, etc.
strong conjunction & t-norm ∗
implication → residual implication ⇒
weak conjunction ∧ minimum
weak disjunction ∨ maximum
negation ¬ the function ¬x = (x ⇒ 0)
equivalence ↔ bi-residuum, i.e., min(x ⇒ y, y ⇒ x)
universal quantifier ∀ infimum
existential quantifier ∃ supremum
predicate = crisp identity
predicate ∈ evaluation of membership function
class term {x | ϕ(x)} fuzzy set defined as Ax = ϕ(x), for all x ∈ U

Definition B.5) is, in an MTL4-chain, computed as

inf
x∈U

(Ax ⇒ Bx)

which is a well-known concept of fuzzy inclusion (see [1, 13, 16, 40] and many more). The
degree of reflexivity Refl(R), defined in Section 3 as (∀x)Rxx, is nothing else but

inf
x∈U

Rxx.

As another example (cf. Definition B.4), it is easy to see that Ker(A) for some fuzzy set A
exactly gives the crisp set of all values x ∈ U for which Ax = 1 holds. Analogously (see
Definition B.5), Norm(A) evaluates to 1 if and only if there exists an x ∈ U such that
Ax = 1 holds and to 0 otherwise.

The question remains how the theorems in the following sections can be read in a
graded way (although they do not necessarily look graded at first glance). In traditional
(fuzzy) logic, a theorem is read as follows:

If some (non-graded) assumption is true (i.e., fully true, since non-graded),
then some (non-graded) conclusion is (fully) true.

If we can prove an implication in FCT, by soundness, this implication always holds to
degree 1. Now take into account that, in all MTL4-chains (comprising all standard
MTL4-chains), the following correspondence holds:

(x ⇒ y) = 1 if and only if x ≤ y.

So an implication that we can prove in FCT can be read as follows:

The more some (graded) assumption is true (even if partially),
the more some (graded) conclusion is true(i.e., at least as true as the

assumption).
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In other words, the truth degree of an assumption is a lower bound for the truth degree
of the conclusion in provable implications.

Thus, for instance, the assertion (R13) of Theorem 3.6 easily translates into our mo-
tivating example (1).

Remark 2.1. To motivate and illustrate the results in this paper, we will use a significant
number of examples. In order to make them compact and readable, we will, in examples,
deviate from our principle to keep formulae separate from their semantics. Instead of
mentioning models over some logics, we will simply say that we use some standard logic, for
instance, standard ÃLukasiewicz logic (standing for the standard MTL4-chain induced by
the ÃLukasiewicz t-norm; analogously for other logics). In examples, we shall furthermore
not distinguish between predicate symbols and the fuzzy sets or relations that model
them. Instead of saying that a certain model of a fuzzy predicate R fulfills reflexivity
to a degree of 0.8, we will simply write Refl(R) = 0.8. This is not the cleanest way of
writing it, but it is short and expressive, and it should always be clear to the reader what
is meant.

2.2 Some precautions

It can be observed that the defining formulae of most notions in FCT are exactly the
same as the definitions of these properties for crisp relations in classical mathematics.
This correlates with the motivation of fuzzy logic as generalization of classical logic to
non-crisp predicates: classical mathematical notions are then fuzzified in a natural way
just by interpreting the classical definitions in fuzzy logic. This methodology has been
foreshadowed in [44, Section 5] by Höhle, much later formalized in [5, Section 7], and
suggested as a general principle for formal fuzzy mathematics in [6].

Nevertheless, although such a translation of notions of classical mathematics into FCT
is an important guideline, the method cannot be applied mechanically, as some classically
equivalent definitions may no longer be equivalent in the logic MTL4. In some cases, the
most suitable version of the definition can be chosen; in other cases, a notion of classical
mathematics splits into several meaningful notions in FCT. This can be exemplified by
the notion of equality of fuzzy classes:

Besides the primitive crisp identity = of fuzzy classes, at least two graded notions
of natural fuzzy equality, ≈ and u, can be defined (see Definition B.5). Both of these
notions have already appeared in the fuzzy literature. For instance Gottwald [41] uses u
while Bělohlávek [13] uses ≈ for graded equality of fuzzy classes. The two notions are not
equivalent in FCT, as the following counter-example demonstrates.

Example 2.2. Let us consider a two-element set U = {x, y} and standard ÃLukasie-
wicz logic. Let us consider two fuzzy sets A, B ∈ F(U) defined as Ax = By = 1 and
Ay = Bx = 0.5. Then the truth value of A ≈ B is 0.5, while the truth value of A u B
is 0.

Only the following relationships hold between these notions.

Theorem 2.3. The following theorems are provable in FCT:

(L1) A ≈ B ↔ (A ⊆ B ∧B ⊆ A)

(L2) A ≈2 B −→ A u B −→ A ≈ B

(L3) 4(A ≈ B) ←→4(A u B) ←→ A = B
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Proof. We give the proof of this lemma in full detail; proofs in the following sections will
usually be more compressed and easy steps will be omitted.

(L1) By Definition B.5 and the rule of distribution of ∀ over ∧ (which is provable in
MTL4), we have

A ≈ B ←→ (∀x)(Ax ↔ Bx) ←→ (∀x)((Ax → Bx) ∧ (Bx → Ax))

←→ (∀x)(Ax → Bx) ∧ (∀x)(Bx → Ax) ←→ A ⊆ B ∧ B ⊆ A.

(L2) We have the following:

A ≈2 B ←→ (∀x)(Ax ↔ Bx) & (∀x)(Ax ↔ Bx)

−→ (∀x)(Ax → Bx) & (∀x)(Bx → Ax)

←→ A ⊆ B & B ⊆ A ←→ A u B

Moreover, A ⊆ B & B ⊆ A −→ A ⊆ B ∧ B ⊆ A ←→ A ≈ B by (L1).

(L3) The first equivalence follows from (L2) by the rule of 4-necessitation (see Ap-
pendix A) and distribution of 4 over → and &, which is provable in propositional
MTL4. The second equivalence can be proved as

4(A ≈ B) ←→4(∀x)(Ax ↔ Bx) ←→ (∀x)4(Ax ↔ Bx) ←→ A = B

by the axiom of extensionality (see Definition B.1).

Let us add some comments on the meaning of the previous theorem. By definition,
the “strong” bi-inclusion A u B is A ⊆ B & B ⊆ A; compare it with “weak” bi-inclusion
A ≈ B, which by (L1) just uses weak conjunction ∧ instead of &. Indeed, by the second
implication of (L2), u is stronger than ≈. Notice further that (L2) in fact says that the
truth value of A u B is bounded by the truth values of A ≈2 B (a lower bound) and A ≈ B
(an upper bound). In traditional non-graded fuzzy mathematics both notions coincide,
since they are fully true under the same conditions, as shown by (L3); however, under
the graded approach they differ, since in graded fuzzy mathematics we do not require
them to be true to degree 1. This relationship between two related, but non-equivalent
notions is quite common in graded fuzzy mathematics and will be met several times in
this paper.1

Finally, it should be pointed out that, unlike in classical Boolean logic, in fuzzy logic
it does make a difference how many times an assumption is used to prove a certain
conclusion. For instance, if we have to use an assumption ϕ twice to prove a conclusion ψ,
this means

ϕ → (ϕ → ψ).

So finally, by the axiom (A5a) of MTL4 (see Appendix A), we have proved ϕ2 → ψ, but
it need not be possible to prove ϕ → ψ. Such situations will occur frequently in this
paper. For instance, Example 2.2 shows that A ≈ B → A u B indeed does not hold in
FCT, even though A ≈2 B → A u B is provable by (L2).

The warnings listed above may appear as oddities that somehow spoil the beauty and
quality of FCT. Our opinion is, however, that exactly the opposite is the case. Otherwise,
this paper could only reproduce and slightly generalize crisp results with analogous proofs,
without creating really new results. However, due to the above features, FCT indeed
allows to derive new, previously unknown results.

1In [8], it is shown that it occurs regularly under certain conditions in graded generalizations of
non-graded theorems.
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3 Basic properties of fuzzy relations

As announced above, the first item on the agenda of this paper is to embed existing
results on so-called graded properties of fuzzy relations into the framework of FCT. Such
properties were introduced first by S. Gottwald in 1991 [39]. Later on, he extended this
research in his 1993 book [40]; his more recent book [41] contains an up-to-date review
of the topic. Properties of fuzzy relations are studied in the graded manner also in
Bělohlávek’s book [13]. The idea of graded properties of fuzzy relations had also been
followed by Jacas and Recasens [48]. In this section, we closely follow the structure and
philosophy of [41, Section 18.6].

Definition 3.1. In FCT, we define basic properties of fuzzy relations as follows:

Refl(R) ≡df (∀x)Rxx reflexivity
Irrefl(R) ≡df (∀x)¬Rxx irreflexivity
Sym(R) ≡df (∀x, y)(Rxy → Ryx) symmetry

Trans(R) ≡df (∀x, y, z)(Rxy & Ryz → Rxz) transitivity
AntiSym(E)(R) ≡df (∀x, y)(Rxy & Ryx → Exy) (E)-antisymmetry

ASym(R) ≡df (∀x, y)¬(Rxy & Ryx) asymmetry

Note that we slightly deviate from Gottwald in the definition of antisymmetry, which
we generalize by defining it with respect to some relation E (usually a similarity). We
adopt this idea from so-called similarity-based orderings which have turned out to be more
suitable concepts of fuzzy orderings [47, 16]. Let us adopt the convention that the index
E is dropped if E = Id (then it coincides with the concept of antisymmetry that Gottwald
uses). Also note that some authors, e.g., [44, 13], use the minimum conjunction ∧ in the
definition of antisymmetry instead of the strong conjunction &. However, arguments can
be given [4] that, from the deductive point of view, the strong conjunction is appropriate
in the definition of antisymmetry and that the stronger definition with ∧ does not express
an intuitive notion of antisymmetry.

Remark 3.2. Obviously, all of the above properties remain unchanged if we replace R
with its inverse relation R−1 (in case of (E)-antisymmetry, we also have to invert E).
Hence, we can infer the following trivial correspondences:

Refl(R−1) ↔ Refl(R) Irrefl(R−1) ↔ Irrefl(R)

Sym(R−1) ↔ Sym(R) Asym(R−1) ↔ Asym(R)

Trans(R−1) ↔ Trans(R) AntiSym(E−1)(R
−1) ↔ AntiSym(E)(R)

Example 3.3. Let us start with a simple example to illustrate the concepts introduced
above. Consider the domain U = {1, . . . , 6} and the following fuzzy relation (for conve-
nience, in matrix notation):

P1 =




1.0 1.0 0.5 0.4 0.3 0.0
0.8 1.0 0.4 0.4 0.3 0.0
0.7 0.9 1.0 0.8 0.7 0.4
0.9 1.0 0.7 1.0 0.9 0.6
0.6 0.8 0.8 0.7 1.0 0.7
0.3 0.5 0.6 0.4 0.7 1.0




It can be checked easily that P1 is a fuzzy preorder with respect to the ÃLukasiewicz t-
norm max(x+ y− 1, 0), hence, taking standard ÃLukasiewicz logic, we obtain Refl(P1) = 1
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and Trans(P1) = 1. In this setting, one can easily infer Sym(P1) = 0.4 (note that for a
finite fuzzy relation R, in standard ÃLukasiewicz logic, Sym(R) is nothing else but 1 minus
the largest difference between two values Rxy and Ryx) as well as Irrefl(P1) = 0 and
Asym(P1) = 0.

Now let us see what happens if we add some disturbances to P1. We added normally
distributed pseudo-random numbers to the above table (with zero mean and a standard
deviation of 0.05) and truncated these values to the unit interval. Finally, we rounded
the values to two digits and obtained the following fuzzy relation:

P2 =




1.00 1.00 0.56 0.40 0.30 0.00
0.87 1.00 0.33 0.44 0.26 0.02
0.67 0.92 0.93 0.87 0.70 0.39
0.93 1.00 0.64 1.00 0.97 0.67
0.52 0.79 0.82 0.71 1.00 0.59
0.27 0.50 0.61 0.41 0.72 1.00




Then simple computations give the following results: Refl(P2) = 0.93, Irrefl(P2) = 0,
Sym(P2) = 0.41, Trans(P2) = 0.85, and Asym(P2) = 0.

Example 3.4. Now consider U = R and let us define the following parameterized class
of fuzzy relations (with a, c > 0):

Ea,cxy = min(1, max(0, a− 1
c
|x− y|))

It is well known that, for a = 1, we obtain fuzzy equivalence relations with respect to
the ÃLukasiewicz t-norm [67, 68, 25, 27], hence, using standard ÃLukasiewicz logic again,
Refl(E1,c) = 1, Sym(E1,c) = 1, and Trans(E1,c) = 1 for all c > 0. It is also well-known and
easy to see that, for a < 1, reflexivity in the non-graded manner cannot be maintained.
Actually, we obtain

Refl(Ea,c) = min(1, a).

for all a, c > 0. Similarly, it is a well-known fact that, for a > 1, transitivity in the non-
graded sense is violated. This is a fact that, in some sense, has its roots in the Poincaré
paradox [62, 63]. Note that relations like Ea,c (for a ≥ 1) appear prominently in De Cock
and Kerre’s framework of resemblance relations [28]. Regarding graded transitivity, we
obtain the following:

Trans(Ea,c) = min(1, max(0, 2− a))

Observe that Trans(Ea,c) does not depend on c either. This is not surprising, however,
because the parameter c only corresponds to a re-scaling of the domain. Finally, let
us mention the following results (for all a, c > 0):

Irrefl(Ea,c) = max(0, 1− a)

Sym(Ea,c) = 1

Asym(Ea,c) = min(1, max(0, 2− 2a))

We can conclude that the larger a, the more reflexive, but less irreflexive, asymmetric,
and transitive, Ea,c is. Figure 1 shows two examples.

The next lemma provides us with some results that will be helpful in the following.
Note that it is actually a corollary of a general result [22, Theorem 3.5]. Here we give a
direct proof. Some weaker variants can be obtained from [13, Lemma 4.8].
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Figure 1: The fuzzy relations E0.7,2 (left) and E1.4,1 (right). From Example 3.4, we can
infer that Refl(E0.7,2) = 0.7, Trans(E0.7,2) = Refl(E1.4,1) = 1, and Trans(E1.4,1) = 0.6.
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Lemma 3.5. In FCT, we can prove the following:

(R1) R ⊆ S → (Refl(R) → Refl(S))

(R2) S ⊆ R → (Irrefl(R) → Irrefl(S))

(R3) R u S → (Sym(R) → Sym(S))

(R4) R ⊆ S & S ⊆2 R → (Trans(R) → Trans(S))

(R5) S ⊆2 R → (AntiSym(E)(R) → AntiSym(E)(S))

(R6) S ⊆2 R → (ASym(R) → ASym(S))

Proof. Here we prove just (R4), the others are analogous. Obviously S ⊆2 R → (Sxy &
Syz → Rxy & Ryz). So by Trans(R) we get S ⊆2 R → (Sxy & Syz → Rxz), and since
R ⊆ S → (Rxz → Sxz), we get R ⊆ S & S ⊆2 R → (Sxy & Syz → Sxz). Generalization
over x, y, z and quantifier shifts then complete the proof.

The following theorem provides us with a few basic results. Most of them are obvious
translations of results that can be found in [41, Proposition 18.6.1], where (R11) has been
extended to the more general concept of antisymmetry with respect to a fuzzy relation E
(as noted above, this is in line with the similarity-based approach to fuzzy orderings
[47, 16]) and (R13) is new in the graded framework (yet well-known in the non-graded
theory of fuzzy relations).

Theorem 3.6. The following theorems are provable in FCT:

(R7) Refl(R) ↔ Id ⊆ R

(R8) Irrefl(R) ↔ Id ∩R ≈ ∅
(R9) Trans(R) ↔ R ◦R ⊆ R

(R10) Sym(R) ↔ R−1 ⊆ R

(R11) AntiSym(E)(R) ↔ R ∩R−1 ⊆ E

(R12) Asym(R) ↔ R ∩R−1 ≈ ∅
(R13) Refl(R) → R ⊆ R ◦R

Proof. We omit the obvious and concentrate on the following non-trivial issues:
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(R9) Obviously, 〈x, y〉 ∈ (R ◦ R) ↔ (∃z)(Rxz & Rzy). Then, by Trans(R) we get
(∃z)(Rxy), which is just Rxy. Now let us prove the converse direction: for any
x, y, we have that (∃z)(Rxz & Rzy) → Rxy. Then the rule of quantifier shift
completes the proof.

(R10) Starting from R−1xy, i.e., Ryx, by Sym(R) we get Rxy. The other direction is
trivial.

(R13) Rxx & Rxy → (∃z)(Rxz & Rzy). Thus Rxx → (Rxy → (∃z)(Rxz & Rzy)).

The following theorem collects several results that can be found in [41] as well (Propo-
sitions 18.6.1–18.6.5).

Theorem 3.7. The following theorems are provable in FCT:

(R14) Refl(R t Id)

(R15) Irrefl(R \ Id)

(R16) Trans(R) → Trans(R t Id)

(R17) Trans(R \ Id) → Trans(R)

(R18) Trans(R) & AntiSym(R) → Trans(R \ Id)

(R19) AntiSym(R) → ASym(R \ Id)

(R20) ASym(R \ Id) ↔ AntiSym(R \ Id)

(R21) ASym(R) → AntiSym(R t Id)

(R22) Trans(R) & Irrefl(R) → ASym(R)

(R23) Trans(R) & Trans(Q) → Trans(R ∩Q)

Proof. For brevity, we again omit trivial and obvious parts.

(R15) 〈x, x〉 ∈ (R \ Id) ←→ Rxx & x 6= x ←→ 0.

(R16) Observe that for x 6= y we have 〈x, y〉 ∈ (R t Id) ↔ Rxy. We start from
〈x, y〉 ∈ (R t Id) and 〈y, z〉 ∈ (R t Id) and distinguish four cases: if x = y and
y = z then x = z and so 〈x, z〉 ∈ (Rt Id). If x = y and y 6= z, then we have Rxz,
thus obviously 〈x, z〉 ∈ (Rt Id). The case x 6= y and y = z is analogous. The last
case is just the transitivity of R.

(R17) We start from Rxy & Ryz. If x 6= y & y 6= z we get Rxz using Trans(R \ Id). The
cases that either x = y or y = z are trivial.

(R18) Observe that if x 6= y we have 〈x, y〉 ∈ (R\Id) ↔ Rxy. Start from 〈x, y〉 ∈ (R\Id)
and 〈y, z〉 ∈ (R \ Id). Again we distinguish four cases: the only non-trivial one
is x 6= y and y 6= z. Thus we have Rxy and Ryz, observe that from AntiSym(R)
we get that z 6= x (because z = x would give x = y).

(R19) (〈x, y〉 ∈ (R \ Id)) & (〈y, x〉 ∈ (R \ Id)) ←→ (Rxy & Ryx & x 6= y) −→ (x = y &
x 6= y) ←→ 0 (in the second step we used AntiSym(R)).

(R22) From Trans(R) we get Rxy&Ryx → Rxx, which leads to ¬Rxx → ¬(Rxy&Ryx).
As we have ¬Rxx from Irrefl(R), the proof is done.

(R23) From Rxy & Ryz → Rxz and Qxy & Qyz → Qxz we immediately get Rxy &
Ryz & Qxy & Qyz → Rxz & Qxz which is the same as (R∩Q)xy & (R∩Q)yz →
(R ∩Q)xz.
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Example 3.8. Consider standard ÃLukasiewicz logic and the following family of fuzzy
relations (with a ∈ [0, 1] and U = R):

Laxy = min(1, max(0, a− x + y))

Easy computations show that the fuzzy relations La are transitive for all a ∈ [0, 1] (i.e.,
Trans(La) = 1). Obviously, L1 is also reflexive, so it is a fuzzy preorder [16], and L0 is
irreflexive, hence a typical fuzzy strict order [19, 36, 61]. Generally, we obtain Refl(La) = a
and Irrefl(La) = 1− a. Therefore, we can conclude by (R22) that Asym(La) ≥ 1− a for
all a ∈ [0, 1]. This is only a lower bound, however. It is possible to show that

Asym(La) = min(1, max(0, 2− 2a))

holds (compare with Example 3.4). This demonstrates that under transitivity, irreflexivity
is indeed a stronger requirement than asymmetry. In the non-graded framework, this is
an essential fact for simplifying the definition of strict fuzzy orders [19].

Now we turn our attention to the property of extensionality of a fuzzy class with respect
to a fuzzy relation. Previously, extensionality was defined as a crisp property that a given
fuzzy set either had or had not [18, 51, 52, 53]. In FCT, we can generalize extensionality
to the graded framework effortlessly. (See [3] for the changed role of extensionality in the
fully graded theory of fuzzy relations.)

Definition 3.9. In FCT, we define the (degree of) extensionality of a fuzzy class A with
respect to a fuzzy relation E as

ExtE(A) ≡df (∀x, y)(Exy & x ∈ A → y ∈ A).

In the non-graded framework, it is well-known that inf-intersections and sup-unions
of families of extensional fuzzy sets are also extensional [18, 51, 52, 53]. The following
theorem states that a similar result holds in the graded framework.

Theorem 3.10. The following theorems are provable in FCT:

(R24) (J ⊆ J ∩ J ) & (∀A ∈ J ) ExtE(A) → ExtE(
⋂J )

(R25) (J ⊆ J ∩ J ) & (∀A ∈ J ) ExtE(A) → ExtE(
⋃J ).

Proof. By Lemma B.8 (L16) and (L17) we have (∀A ∈ J ) ExtE(A) −→ (Exy → (∀A ∈ J )
(x ∈ A → y ∈ A)) −→ (Exy → ((∀A ∈ J )(x ∈ A) → (∀A ∈ J ∩ J )(y ∈ A))). Now from
J ⊆ J ∩ J we get A ∈ J → A ∈ J ∩ J , and as (∀A ∈ J )(x ∈ A) is exactly x ∈ ⋂J ,
the proof of (R24) is done. The proof of (R25) is analogous, only we use (L18) instead
of (L17).

Remark 3.11. It is easy to see that the condition J ⊆ J ∩ J in the previous theorem
is satisfied to degree 1 in models if and only if A ∈ J only acquires truth values that are
idempotent with respect to conjunction. In particular, it is always true for crisp classes J ,
and in Gödel logic for all classes. In standard ÃLukasiewicz logic, the condition expresses
the closeness of J to crispness (it gets large truth values if and only if all truth values
of A ∈ J are close to 0 or to 1). Thus, in ÃL, the theorem expresses the fact that the
property of extensionality is “almost closed” under intersections and unions of “almost
crisp” families of classes. In standard product logic, the situation is similar, but the
condition is much stricter in smaller truth values: it gets a large truth value if and only
if A ∈ J is either equal to 0, or close to 1.

The condition of the form X ⊆ X ∩ X is encountered quite often in graded fuzzy
mathematics (cf. for instance (C28) of Theorem 5.18 below); we could call it the (graded)
2-contractiveness of X.
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In particular, Theorem 3.10 includes the case of crisp two-element families of fuzzy
classes [18, 51, 52, 53].

Corollary 3.12. The following theorems are provable in FCT:

(R26) ExtE(A) ∧ ExtE(B) → ExtE(A uB)

(R27) ExtE(A) ∧ ExtE(B) → ExtE(A tB)

Example 3.13. Let us consider U = R, standard ÃLukasiewicz logic, E1,1 from Exam-
ple 3.4 and the two fuzzy sets

Ax = min(1
2
, max(0,−2(x− 1))) and Bx = min(2

3
, max(0, 2(x− 2))).

Then we obtain ExtE1,1(A) = 3
4

and ExtE1,1(B) = 2
3
. The two fuzzy sets A and B are

disjoint, i.e. A u B = ∅, hence, ExtE1,1(A u B) = ExtE1,1(∅) = 1. This fact underlines
that (R26) and (R27) provide us with lower bounds for the extensionality of intersec-
tions/unions, but these bounds need not always be very helpful.

In classical mathematics, special properties of relations are rarely studied completely
independently of each other. Instead, these properties most often occur in some combi-
nations in the definitions of special classes of relations—with (pre)orders and equivalence
relations being two most fundamental examples. The same is true in the theory of fuzzy
relations, where fuzzy (pre)orders and fuzzy equivalence relations are the most impor-
tant classes. Compound properties of this kind are defined as conjunctions of some of
the simple properties of Definition 3.1. In the non-graded case, the properties are crisp,
so the conjunction we need is the classical Boolean conjunction. In FCT, however, the
properties are graded, so it indeed matters which conjunction we take. Thus, besides the
(more usual) combinations by strong conjunction & (corresponding to the t-norm in the
standard case), we also define their weak variants combined by weak conjunction (corre-
sponding to the minimum). In this paper, we restrict ourselves to investigation of basic
properties of fuzzy preorders and similarities.2

Definition 3.14. In FCT we define the following compound properties of fuzzy relations:

Preord(R) ≡df Refl(R) & Trans(R) (strong) preorder
wPreord(R) ≡df Refl(R) ∧ Trans(R) weak preorder

Sim(R) ≡df Refl(R) & Sym(R) & Trans(R) (strong) similarity
wSim(R) ≡df Refl(R) ∧ Sym(R) ∧ Trans(R) weak similarity

Example 3.15. Let us shortly revisit Example 3.3. We can conclude the following:

Preord(P1) = 1 Preord(P2) = 0.78

wPreord(P1) = 1 wPreord(P2) = 0.85

Sim(P1) = 0.4 Sim(P2) = 0.19

wSim(P1) = 0.4 wSim(P2) = 0.41

The values in the right-hand column once more demonstrate why it is justified to speak
of strong and weak properties—the stronger (i.e. smaller) the conjunction, the harder a
property can be fulfilled.

2In line with Zadeh’s original work [70], we use the term similarity (relation) synonymously for fuzzy
equivalence (relation).
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For the class of fuzzy relations defined in Example 3.4, we obtain the interesting result

Preord(Ea,c) = wPreord(Ea,c) = max(0, 1− |1− a|),

from which we can infer that Preord(Ea,c) = wPreord(Ea,c) = 1 if and only if a = 1. Note
that Sym(Ea,c) = 1, so Sim(Ea,c) = Preord(Ea,c) and wSim(Ea,c) = wPreord(Ea,c) which
implies that Sim(Ea,c) = wSim(Ea,c) = 1 if and only if a = 1.

For the class of fuzzy relations introduced in Example 3.8, we trivially obtain the
following result: Preord(La) = wPreord(La) = a and Sim(La) = wSim(La) = 0.

Obviously Preord(R) → wPreord(R) and Sim(R) → wSim(R). From Lemma 3.5 we
further obtain:

Lemma 3.16. FCT proves:

(R28) R u2 S → (Preord(R) → Preord(S))

(R29) R ⊆ S & S ⊆2 R → (wPreord(R) → wPreord(S))

(R30) R u3 S → (Sim(R) → Sim(S))

(R31) R ⊆ S & S ⊆2 R → (wSim(R) → wSim(S))

4 Images and dual images

In this section, we address images of fuzzy relations in the framework of FCT. Such opera-
tions are of central importance in fuzzy inference [10, 71], in the theory of fuzzy relational
equations [23, 66], and in the study of properties of fuzzy relations, too [13, 18]. These
concepts are also strongly linked with fuzzy mathematical morphology [15, 17, 56, 57].3

Definition 4.1. In FCT, we define the following operations:

R ↑A =df {y | (∃x)(x ∈ A & Rxy)}
R ↓A =df {x | (∀y)(Rxy → y ∈ A)}

Let us shortly clear up the terminology. In the literature, the image operator R ↑A is
called full image [18], direct image [50], conditioned fuzzy set [10], or simply image of A
under/with respect to R, while R ↓A appears under the names superdirect image [50] and
α-operation [66]; its systematic name in [9] is subproduct preimage. We will simply call
both operators images. Where necessary, we refer to ↓ explicitly as dual image.4

Example 4.2. Let us consider U = R and the fuzzy set

Ax = min(1, max(0, 1
10

(x− 175))).

Straightforward computations then show the following (with the fuzzy relation E1.5,10

defined as in Example 3.4):

(E1.5,10
↑A)x = min(1, max(0, 1

10
(x− 170)))

(E1.5,10
↓A)x = min(1, max(0, 1

10
(x− 180)))

3Note that the references in this paragraph are just pointers to some important works, but do not
cover all the relevant literature.

4The relationship between the operations ↑ and ↓ is in fact an instance of Morsi’s duality [55] combined
with the inversion duality (i.e., the duality between R and R−1).
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Figure 2: The fuzzy set A (middle, solid black) and the result that is obtained when
applying image operators: E1.5,10

↓A (left, light gray) and E1.5,10
↑A (right, medium gray).
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Figure 2 shows a plot of these three fuzzy sets. Note that De Cock and Kerre use the two
image operators in conjunction with their resemblance relations [28] to define linguistic
hedges like for instance roughly and very [29]. If we consider A as a model of tall (in
the context of European men), we can interpret E1.5,10

↑A as a model of roughly tall and
E1.5,10

↓A as a model of very tall according to De Cock’s and Kerre’s argumentation.

The next theorem clarifies some basic properties of images under fuzzy relations. Their
non-graded versions are well-known and easy to prove (see e.g. [18, 40, 41]). The graded
theorems (I6)–(I14) are also corollaries of more general theorems in the paper [9]; here we
give their simple direct proofs.

Theorem 4.3. The following properties of images are provable in FCT:

(I1) R ↑∅ = ∅
(I2) R ↑V = {y | (∃x)(Rxy)}
(I3) R ↑{z} = {y | Rzy}
(I4) R ↓∅ = {x | (∀y)(¬Rxy)}
(I5) R ↓V = V

(I6) R ↑ (A tB) = R ↑A tR ↑B

(I7) R ↓ (A uB) = R ↓A uR ↓B

(I8) R ↑ (A uB) ⊆ R ↑A uR ↑B

(I9) R ↓ (A tB) ⊇ R ↓A tR ↓B

(I10) A ⊆ B → R ↑A ⊆ R ↑B

(I11) A ⊆ B → R ↓A ⊆ R ↓B

(I12) R ⊆ S → R ↑A ⊆ S ↑A

(I13) R ⊆ S → S ↓A ⊆ R ↓A

(I14) R ↑A ⊆ B ↔ A ⊆ R ↓B

Proof. (I1)–(I5) are trivial to prove.

(I6)–(I9) are simple consequences of Lemma B.8 (L10)–(L13).

(I10) From (Ax → Bx) → (Ax & Rxy → Bx & Rxy) we obtain A ⊆ B → ((∃x)(Ax &
Rxy) → (∃x)(Bx & Rxy)).
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(I11) From (Ay → By) → ((Rxy → Ay) → (Rxy → By)) the required statement
follows by generalization and quantifier shifts.

(I12) (Rxy → Sxy) → (Rxy&Ax → Sxy&Ax). Thus R ⊆ S → (x ∈ R↑A → x ∈ S↑A).

(I13) (Rxy → Sxy) → ((Sxy → Ay) → (Rxy → Ay)), then use generalization and
quantifier shifts.

(I14) (∀y)((∃x)(Ax&Rxy) → By) ←→ (∀y)(∀x)(Ax → (Rxy → By)) ←→ (∀x)(Ax →
(∀y)(Rxy → By)).

The previous theorem addressed the monotonicity of images of fuzzy relations and how
these images interact with intersections and unions with respect to the weak conjunction
and disjunction, respectively. The question remains how images of fuzzy relations interact
with intersections with respect to the strong conjunction. The following theorem gives an
answer (for its non-graded version, see [40, Proposition 2.16] or [41, Proposition 18.4.1]).

Theorem 4.4. The following formulae are provable in FCT:

(I15) (R ∩R) ↑ (A ∩B) ⊆ (R ↑A) ∩ (R ↑B)

(I16) (R ↓A) ∩ (R ↓B) ⊆ (R ∩R) ↓ (A ∩B)

Proof. (I15) (∃x)(Rxy & Rxy & Ax & Bx) −→ (∃x)(Rxy & Ax) & (∃x)(Rxy & Bx)
by (L12) of Lemma B.8.

(I16) (∀y)(Rxy → y ∈ A) & (∀y)(Rxy → y ∈ B) −→ (∀y)((Rxy → y ∈ A) & (Rxy →
y ∈ B)) −→ (∀y)(Rxy & Rxy → y ∈ A & y ∈ B)

Remark 4.5. Theorem 4.4 intentionally cites only the first two of three assertions of
[41, Proposition 18.4.1] (and, correspondingly, [40, Proposition 2.16]). If we translate the
third assertion to our terminology, we obtain

(R ↑G A) ∪ (R ↑G B) ⊆ (R ∪R) ↑G (A ∪B),

where R ↑G A stands for the image with respect to the weak conjunction, i.e.,

R ↑G A =df {y | (∃x)(x ∈ A ∧ Rxy)}.
First of all, the third assertion of [41, Proposition 18.4.1] relies on a certain concept of
strong disjunction (a t-conorm in the standard case) which we cannot define in MTL4 (we
can do so only in FCT over stronger logics with involutive negation like IMTL4 or ÃLΠ).
Secondly, this claim actually does not hold. Let us consider the case U = {1, 2}, standard
ÃLukasiewicz logic (with the ÃLukasiewicz t-conorm min(1, x + y) as strong disjunction),
and the following fuzzy relation and fuzzy sets (membership degrees in matrix/vector
notation):

R =

(
0.5 0.4
0.5 0.4

)
A =

(
0.5
0.6

)
B =

(
0.3
0.4

)

Then easy computations show the following:

R ↑G A =

(
0.5
0.5

)
and R ↑G B =

(
0.4
0.4

)
which implies (R ↑G A) ∪ (R ↑G B) =

(
0.9
0.9

)
.

On the other hand, we obtain

R ∪R =

(
1.0 0.8
1.0 0.8

)
and A ∪B =

(
0.8
1.0

)
yielding (R ∪R) ↑G (A ∪B) =

(
0.8
0.8

)
.
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So we have got a counter-example. Note that the converse inclusion does not hold either,
as can be seen from the following counter-example (with analogous computations like
above):

R′ =
(

1.0 0.0
0.0 0.5

)
A′ =

(
0.7
0.6

)
B′ =

(
0.0
0.4

)

Now let us turn our attention to how image operations interact with the common
special properties of fuzzy relations and the concept of extensionality.

Theorem 4.6. The following properties of ↑ are provable in FCT:

(I17) Refl(R) ↔ (∀A)(A ⊆ R ↑A)

(I18) Trans(R) ↔ (∀A)(R ↑ (R ↑A) ⊆ R ↑A)

(I19) Preord(R) → R ↑ (R ↑A) u R ↑A

(I20) wPreord(R) → R ↑ (R ↑A) ≈ R ↑A

(I21) Trans(R) ↔ (∀A)(ExtR(R ↑A))

(I22) A ⊆ B & ExtR(B) → R ↑A ⊆ B

(I23) Refl(R) & ExtR(A) → R ↑A u A

(I24) Refl(R) ∧ ExtR(A) → R ↑A ≈ A

(I25) R ↑A ⊆ A ↔ ExtR(A)

(I26) Refl(R) → (ExtR(A) ↔ (A ≈ R ↑A)

(I27) Refl(R) → (ExtR(A) ↔ (A u R ↑A))

Proof. (I17) Left to right: obviously Rxx & Ax → (∃y)(Rxy & Ax) and generalize as
usual. Right to left: (∀A)(A ⊆ R ↑A) −→ {z} ⊆ R ↑{z} −→ (z = z → Rzz); we
used (I3) in the last step.

(I18) Left to right: From (Rxz → Rxy) → (Ax&Rxz → Ax&Rxy) we get (∀x)(Rxz →
Rxy) → (z ∈ R ↑A → y ∈ R ↑A). Next we get (Rzy → (∀x)(Rxz → Ryx)) →
(Rzy → (z ∈ R ↑A → y ∈ R ↑A)). Thus (∀x)(Rzy → (Rxz → Rxy)) → (Rzy &
z ∈ R↑A → y ∈ R↑A)). Right to left: (∀A)(R↑(R↑A) ⊆ R↑A) −→ (R↑(R↑{z}) ⊆
R ↑ {z}) ←→ (R ↑ {y | Rzy}} ⊆ {y | Rzy} −→ ((∃x)(Rzx & Rxy) → Rzy), and
quantifier shifts complete the proof.

(I19) and (I20) are direct consequences of (I17) and (I18).

(I21) From (∀x)(Ryz → (Rxy → Ryz)) we get (Ryz → ((∃x)(Rxy&Ax) → (∃x)(Rxz&
Ax)). The converse direction: (∀A)(ExtR(R ↑A)) −→ ExtR(R ↑{z}) −→ (Rzx &
Rxy → Rzy).

(I22) From A ⊆ B we get Ax&Rxy → Bx&Rxy and from ExtR(B) we get Bx&Rxy →
By. Thus we have Ax & Rxy → By.

(I23) and (I24) follow directly from (I22) by (I17).

(I25) ((∃x)(Rxy & Ax) → Ay) ↔ (∀x)(Rxy & Ax → Ay).

(I26) and (I27) then follow trivially.

Theorem 4.7. The following properties of ↓ are provable in FCT:

(I28) Refl(R) → R ↓A ⊆ A
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(I29) Trans(R) → R ↓A ⊆ R ↓ (R ↓A)

(I30) Preord(R) → R ↓ (R ↓A) u R ↓A

(I31) wPreord(R) → R ↓ (R ↓A) ≈ R ↓A

(I32) Trans(R) → ExtR(R ↓A)

(I33) B ⊆ A & ExtR(B) → B ⊆ R ↓A

(I34) Refl(R) & ExtR(A) → R ↓A u A

(I35) Refl(R) ∧ ExtR(A) → R ↓A ≈ A

(I36) A ⊆ R ↓A ↔ ExtR(A)

(I37) Refl(R) → (ExtR(A) ↔ (A ≈ R ↓A))

(I38) Refl(R) → (ExtR(A) ↔ (A u R ↓A))

Proof. (I28) (∀y)(Rxy → Ay) → (Rxx → Ax), thus Rxx → (x ∈ R ↓A → Ax).
Generalization and quantifier shifts complete the proof.

(I29) From (Rzy → Rxy) → ((Rxy → Ay) → (Rzy → Ay))
we obtain (∀y)(Rzy → Rxy) → (x ∈ R ↓A → z ∈ R ↓A).
Next we get (Rxz → (∀y)(Rzy → Rxy)) → (Rxz → (x ∈ R ↓A → z ∈ R ↓A)).
Thus (∀y)(Rxz → (Rzy → Rxy)) → (x ∈ R ↓A → (Rxz → z ∈ R ↓A)).

(I30) and (I31) are direct consequences of (I28) and (I29).

(I32) From (∀y)(Rzx → (Rxy → Rzy)) we get (Rzx → ((∀y)(Rzy → Ay) →
(∀y)(Rxy → Ay)).

(I33) From B ⊆ A we get (Rxy → By) → (Rxy → Ax) and from ExtR(B) we get
Bx → (Rxy → By). Thus we have Bx → (Rxy → Ay).

(I34) and (I35) follow directly from (I33) using (I28).

(I36) Left to right: (Ax → (∀y)(Rxy → Ay)) → (∀y)(Rxy & Ax → Ay). The converse
direction follows from (I33).

(I37) and (I38) then follow trivially.

Inspired by the concepts of fuzzy mathematical morphology [15, 24, 56], Bodenhofer
has introduced a general concept of opening and closure operators with respect to arbitrary
fuzzy relations [17]. Now we generalize these ideas to the graded framework.

Definition 4.8. We define the operations of opening and closure of A in R as

R ◦A =df R ↑ (R ↓A)

R •A =df R ↓ (R ↑A)

Furthermore, we define two properties of fuzzy classes, R-openness and R-closedness:

OpenR(A) ≡df R ◦A ≈ A

ClosedR(A) ≡df R •A ≈ A

The following lemma provides us with several properties of opening and closure oper-
ators. In particular, the question arises why R-openness and R-closedness were defined
using ≈ rather than u. A clear answer to this question is given by (I40) and (I41) which
state that it actually does not matter whether we use ≈ or u in the definition of openness
and closedness.
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Theorem 4.9. The following properties of relations are provable in FCT:

(I39) R ◦A ⊆ A ⊆ R •A

(I40) OpenR(A) ↔ R ◦A u A

(I41) ClosedR(A) ↔ R •A u A

(I42) A ⊆ B → R ◦A ⊆ R ◦B

(I43) A ⊆ B → R •A ⊆ R •B

(I44) OpenR(A) ↔ (∃B)(A u R ↑B)

(I45) ClosedR(A) ↔ (∃B)(A u R ↓B)

(I46) OpenR(R ◦A)

(I47) ClosedR(R •A)

Proof. (I39) First, we can show y ∈ R ↑(R ↓A) ←→ (∃x)(Rxy & (∀z)(Rxz → Az)) −→
(∃x)(Rxy & (Rxy → Ay)) −→ (∃x)Ay ←→ Ay. Secondly, we have Ax −→
(Rxy → Rxy &Ax) −→ (Rxy → (∃x)(Rxy &Ax)). Thus Ax → (∀y)(Rxy → y ∈
R ↑A).

(I40) and (I41) are then direct consequences of (I39).

(I42) and (I43) are direct consequences consequence of (I10) and (I11).

(I44) The left-to-right direction is trivial (take B = R ↓A). The converse direction:
By (I14) and (I10), R ↑B ⊆ A ←→ B ⊆ R ↓A −→ R ↑B ⊆ R ↑ (R ↓A). Thus
A u R ↑B ←→ A ⊆ R ↑B ⊆ A −→ A ⊆ R ↑B ⊆ R ↑ (R ↓A) = R ◦A. Since by
(I39) always R ◦A ⊆ A, the proof is done.

(I45) Analogous to the proof of (I44).

(I46) and (I47) are direct consequences of (I44) and (I45), respectively.

Note that, from (I44)–(I47), we can easily deduce the following corollaries:

(I48) R ◦ (R ◦A) = R ◦A

(I49) R • (R •A) = R •A

Thus, we can conclude that the two operators ◦ and • fulfill the most essential properties
we need to require from opening and closure operators (as stated in [17] to motivate the
definition of the two operators). Unlike [17], in classical mathematics (e.g. in topology), it
is more usual to start from an axiomatic framework of openness and closedness (or open-
ing and closure operators, respectively). Such general frameworks have been introduced
in the fuzzy setting by Bělohlávek and Funioková [11, 12, 14]. They require that opening
operators always give subsets, that closure operators always yield supersets, that both op-
erators are monotonic with respect to the graded inclusion and that both operators are
idempotent. Therefore, we can conclude that our two operators perfectly fit into the
axiomatic framework of Bělohlávek and Funioková.

In many classical axiomatic frameworks (including topological ones), it is also common
to represent opening and closure operators as unions of all open subsets and intersections
of all closed supersets, respectively. This is well-known in the non-graded framework; the
following theorem provides a generalization to the graded case.
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Theorem 4.10. The following properties of relations are provable in FCT:

(I50) R ◦A =
⋃{B | OpenR(B) & B ⊆ A} =

⋃{B | 4(OpenR(B) & B ⊆ A)}
(I51) R •A =

⋂{B | ClosedR(B) & A ⊆ B} =
⋂{B | 4(ClosedR(B) & A ⊆ B)}

Proof. To prove (I50), let us denote {B | OpenR(B) & B ⊆ A} as C. We shall prove that

R ◦A ⊆
⋃

Ker(C) ⊆
⋃

C ⊆ R ◦A

Since4OpenR(R◦A) and4(R◦A ⊆ A) respectively by (I46) and (I39), we obtain the first
inclusion R ◦A ⊆ ⋃

Ker(C) by Lemma B.8 (L8). The second inclusion is trivial. To prove
the third inclusion, we use Lemma B.8 (L5): we fix B and show that OpenR(B) & B ⊆ A
implies B ⊆ R ◦A. From OpenR(B) we get that R ◦B ≈ B and from B ⊆ A we get
R ◦B ⊆ R ◦A. Thus B ⊆ R ◦A. The claim (I51) can be proved analogously.

From the two representations (I50) and (I51), we can deduce how opening and closure
operators interact with weak unions and weak intersections.

Corollary 4.11. The following properties of relations are provable in FCT:

(I52) R ◦ (A tB) ⊇ R ◦A tR ◦B

(I53) R • (A uB) ⊆ R •A uR •B

(I54) OpenR(A) & OpenR(B) → OpenR(A tB)

(I55) ClosedR(A) & ClosedR(B) → ClosedR(A uB)

Proof. (I52) From C ⊆ A t B ← C ⊆ A ∨ C ⊆ B we obtain x ∈ C & OpenR(C) &
C ⊆ AtB ← (x ∈ C&OpenR(C)&C ⊆ A)∨(x ∈ C&OpenR(C)&C ⊆ B). Gen-
eralization, quantifier distribution, Lemma B.8 (L10), and (I50) then completes
the proof.

(I53) The proof is analogous, we only use (L9) and (I51) instead of (L10) and (I50).

(I54) and (I55) are then direct consequences of (I52) and (I53), respectively.

As shown in [17], under the presence of reflexivity and/or transitivity, the results
concerning opening and closure operators can be strengthened. We will see in the following
that, by this way, results for images of fuzzy preorders are obtained that are well-known
in the non-graded framework [18].

Theorem 4.12. The following properties of relations are provable in FCT:

(I56) Preord(R) → (R •A u R ↑A)

(I57) wPreord(R) → (R •A ≈ R ↑A)

(I58) Preord(R) → (R ◦A u R ↓A)

(I59) wPreord(R) → (R ◦A ≈ R ↓A)

(I60) Trans(R) → (OpenR(A) → ExtR(A))

(I61) Trans(R) → (ClosedR(A) → ExtR(A))

(I62) Refl(R) → (ExtR(A) → OpenR(A))

(I63) Refl(R) → (ExtR(A) → ClosedR(A))

(I64) wPreord(R) → (ExtR(A) ↔ OpenR(A))
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(I65) wPreord(R) → (ExtR(A) ↔ ClosedR(A))

(I66) Preord(R) → (OpenR(A) ↔ ClosedR(A))

Proof. (I56) and (I57): From (I32) we know Trans(R) → ExtR(R ↓A). Then (I56) follows
from (I23) and (I57) follows from (I24).

(I58) and (I59): From (I21) we know Trans(R) → ExtR(R ↑A). Then (I58) follows from
(I34) and (I59) follows from (I35).

(I60) We start from Trans(R). Using (I32) we get ExtR(R↓A), thus by (I25), R↑(R↓A) ⊆
R ↓A. So by OpenR(A) (i.e. A ≈ R ◦A) we obtain A ⊆ R ↓A. Now we use (I36)
and get ExtR(A).

(I61) Analogously to (I60), by (I21), (I36), and (I25).

(I62) From Refl(R), by (I17), we get R ↓A ⊆ R ↑ (R ↓A). From ExtR(A), we obtain by
(I36) that A ⊆ R ↓A. So finally, we can conclude A ⊆ R ◦A which, with (I39),
proves OpenR(A).

(I63) Analogously to (I62), using (I28), (I25), and the second inclusion of (I39).

(I64)–(I66) then follow trivially.

Example 4.13. Let us consider standard ÃLukasiewicz logic and the following fuzzy set
(with U = R):

Ax =





2x− 5 if x ∈ [2.5, 3]

4− x if x ∈ ]3, 3.5]

0.5 if x ∈ ]3.5, 5]

10.5− 2x if x ∈ ]5, 5.25]

0 otherwise

Further we consider the fuzzy relation E1.2,1 from Example 3.4 for which we know
Refl(E1.2,1) = 1 and Trans(E1.2,1) = Preord(E1.2,1) = wPreord(E1.2,1) = 0.8. Figure 3
shows plots of A, E1.2,1

↑A, and E1.2,1
•A. Basic computations show that ClosedE1.2,1(A) =

0.5. Moreover, we have that (A ≈ E1.2,1
↑A) = 0.3. From (I26) we can infer, therefore, that

ExtE1.2,1(A) = 0.3. It also holds that (E1.2,1
•A ≈ E1.2,1

↑A) = (E1.2,1
•A u E1.2,1

↑A) = 0.8.
Figure 4 shows plots of A, E1.2,1

↓A and E1.2,1
◦A. We can show that OpenE1.2,1

(A) = 0.5

and (A ≈ E1.2,1
↓A) = 0.3. Thus, we can infer ExtE1.2,1(A) = 0.3 also via (I37). Further

we can show that (E1.2,1
◦A ≈ E1.2,1

↓A) = (E1.2,1
◦A u E1.2,1

↓A) = 0.8. If we take into
account that (0.5 → 0.3) = (0.3 ↔ 0.5) = 0.8, these numbers demonstrate that, in this
special case, the estimations provided by Theorem 4.12 are tight.

Finally, we can formulate representations of images under fuzzy preorders. Note that
the first four assertions (I67)–(I70) of the following theorem are “fuzzy representations”,
i.e. they do not determine the truth degree of R ↑A or R ↓A itself. We can only infer from
the degree to which R is a (weak) preorder to which degree the image is guaranteed to
resemble to the intersection (resp. union). The “real” (non-graded) representations (I71)–
(I72), known from [17, 18], are their special cases for R being a preorder to degree 1.

Corollary 4.14. The following properties of relations are provable in FCT:

(I67) Preord(R) → R ↑A u
⋂{X | A ⊆ X & ExtR(X)}

(I68) Preord(R) → R ↓A u
⋃{X | X ⊆ A & ExtR(X)}
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Figure 3: The fuzzy set A from Example 4.13 (light gray), E1.2,1
↑A (medium gray), and

E1.2,1
•A (solid black).
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Figure 4: The fuzzy set A from Example 4.13 (light gray), E1.2,1
↓A (medium gray), and

E1.2,1
◦A (solid black).
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(I69) wPreord(R) → R ↑A u
⋂{X | A ⊆ X ∧ ExtR(X)}

(I70) wPreord(R) → R ↓A u
⋃{X | X ⊆ A ∧ ExtR(X)}

(I71) 4Preord(R) → R ↑A =
⋂{X | 4(A ⊆ X & ExtR(X))}

(I72) 4Preord(R) → R ↓A =
⋃{X | 4(X ⊆ A & ExtR(X))}

Proof. (I67) For any X such that A ⊆ X & ExtR(X) we can infer R ↑ A ⊆ X from
(I22). Hence, the first inclusion R ↑A ⊆ ⋂{X | A ⊆ X & ExtR(X)} follows by (L6) of
Lemma B.8. Conversely, (I17) and (I21) imply Preord(R) → ExtR(R ↑A) & A ⊆ R ↑A.
Then (L7) completes the proof.

The proofs of (I68)–(I70) are analogous. The assertions (I71) and (I72) follow from the
proofs of (I67) and (I68), respectively, if we take basic properties of 4 into account.

Remark 4.15. At the beginning of this section, we mentioned the close relationship
of images, closures and openings with concepts in fuzzy mathematical morphology. In
(crisp) mathematical morphology, images are considered as crisp subsets of an Abelian
group (U, +,0) (more commonly, a linear vector space structure is assumed). Given a
set A (the image) and a set B (the so-called structuring element), the four standard
operations (on the image A with respect to the structuring element B) can be defined as
follows:

A⊕B =df {y | (∃x)(Ax & B(y − x))} (dilation)
AªB =df {x | (∀y)(B(y − x) → Ay)} (erosion)

A •B =df (A⊕B)ªB (closure)
A ◦B =df (AªB)⊕B (opening)

The language in the definitions above has been chosen intentionally to comply fully with
the language of FCT. Thus, if we consider gray level images as U → L mappings (with the
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standard case L = [0, 1] being the natural choice), we can generalize the four morphologi-
cal operations to gray level images and gray level structuring elements simply by the above
formulae. In the standard case L = [0, 1], the well-known t-norm based fuzzy mathemati-
cal morphology is obtained [15, 17, 56, 57]. This is not at all new, but it demonstrates that
the expressive power of FCT allows rather effortless generalizations—the obvious secret is
the commonality of its syntax with classical Boolean logic. As demonstrated in [17], the
operations of fuzzy mathematical morphology can be embedded in the concepts of this
section in the following way:

1. If we define a fuzzy relation R as Rxy = B(y−x) for a given structuring element B,
then the following four equalities hold:

A⊕B = R ↑A

AªB = R ↓A

A •B = R •A

A ◦B = R ◦A

2. If R is a shift-invariant fuzzy relation, i.e. if

4(∀x, y, z)(Rxy ↔ R(x + z)(y + z))

holds, then the above equalities are satisfied if we define the structuring element B
as Bx = R0x.

This relationship particularly implies that we can transfer all results of this section to
fuzzy mathematical morphology without any restriction. For the non-graded case, most
of these results are already known [17, 24], but it is worth to mention that, hereby, we have
generalized fuzzy mathematical morphology to the graded framework almost effortlessly.
It may be questionable whether a graded framework of fuzzy mathematical morphology
is useful in image processing practice, but it is certainly interesting from a theoretical
perspective.

5 Bounds, maxima, and suprema

The aim of this section is to study the lattice-like structure induced by a fuzzy relation.
We follow the philosophy of Demirci’s approach [31, 32]. Note that this is not a classical
axiomatic approach to lattices; instead, lattice-theoretical notions are defined on the basis
of a given fuzzy relation, where Demirci assumes that fuzzy relation under consideration
is a similarity-based fuzzy ordering [16, 47]. As in the previous sections, we do not restrict
ourselves to a particular class of fuzzy relations in advance, but we infer gradual results
from the degrees to which the relation fulfills some properties (in particular, reflexivity
and transitivity).

Throughout this section, assume that R denotes a binary fuzzy relation that is arbi-
trary, but fixed.

Definition 5.1. The properties of being an upper or lower class in X with respect to R
are defined as follows:

UpperX
R (A) ≡df (∀x ∈ X)(∀y ∈ X)[Rxy → (Ax → Ay)]

LowerX
R (A) ≡df (∀x ∈ X)(∀y ∈ X)[Rxy → (Ay → Ax)]
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Let us further make the conventions UpperR(A) ≡df UpperV
R(A) and LowerR(A) ≡df

LowerV
R(A). Further, to ease notation, we omit the lower index R unless we require

special properties of R or unless a relation different from the default choice R is used.

Remark 5.2. Note that UpperR(A) is in fact nothing else but ExtR(A) and that LowerR(A)
is just ExtR−1(A). We make this terminological distinction in order to increase readability
and to make explicit that we have some preorder-related notions in mind.

Remark 5.3. There is an “inversion duality” between the pairs of notions defined in this
section, consisting in the observation that the second notion of each pair is just the first one
applied to the inverse relation. Thus, LowerX

R (A) ↔ UpperX
R−1(A) in Definition 5.1 above,

R
5
A = (R−1) 4A in Definition 5.7 below, MinR(A) = MaxR−1(A) in Definition 5.9, and

InfR(A) = SupR−1(A) in Definition 5.14. As the theorems on the dual notions follow
trivially by taking R−1 for R, we shall usually not write them down explicitly.

As a first simple result, we consider the antitony of (degrees of) upperness and lower-
ness.

Proposition 5.4. The following properties are provable in FCT:

(C1) (X ⊆ Y )2 → (UpperY
R(A) → UpperX

R (A))

(C2) (X ⊆ Y )2 → (LowerY
R(A) → LowerX

R (A))

Proof. (X ⊆ Y )2 implies x ∈ X & y ∈ X → x ∈ Y & y ∈ Y . Assuming UpperY
R(A),

equivalently (∀x)(∀y)(x ∈ X & y ∈ X & Rxy → (Ax → Ay)), we can thus infer (∀x)(∀y)
(x ∈ Y & y ∈ Y & Rxy → (Ax → Ay)), which proves (C1). Then (C2) follows trivially
by duality.

Note that in Proposition 5.4 we need to require an assumption twice. The following
simple example demonstrates that the proof of Proposition 5.4 cannot be improved in the
sense that the “doubled assumption” could only be used once.

Example 5.5. Let us consider standard ÃLukasiewicz logic and U = {x, y} and define
fuzzy sets A,X, Y by Xx = Xy = Ax = 1, Y x = Y y = 0.9 and Ay = 0.8. Using the fuzzy
relation R defined as Rxx = Ryy = Ryx = 0 and Rxy = 1, we obtain that X ⊆ Y is true
to a degree of 0.9. Furthermore, we have UpperX

R (A) = 0.8 and UpperY
R(A) = 1; thus the

truth degree of X ⊆ Y → (UpperY
R(A) → UpperX

R (A)) is only 0.9.

As X ⊆ V is always true to a degree of 1, we can infer the following simple corollary
on upperness from Proposition 5.4 (by the duality of Remark 5.3, we omit the same result
for lowerness).

Corollary 5.6. UpperR(A) → (∀X) UpperX
R (A)

Like in classical mathematics, we can define the classes of all upper (and dually, lower)
bounds of a class:

Definition 5.7. The upper cone and the lower cone of a class A (with respect to R) are
defined as follows:

R 4A =df {x | (∀a ∈ A)Rax}
R
5
A =df {x | (∀a ∈ A)Rxa}
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If we do not suppose any special conditions involving R, we write just 4A and
5
A instead

of R 4A and R
5
A, respectively.

Note that R 4A appears in some literature as an image operator in its own right. It
is called sub-direct image by some authors (e.g. [29]). In [9], the systematic names of the

operators 4 and
5

are subproduct image and superproduct preimage, respectively.

Theorem 5.8. The following properties of cones are provable in FCT for an arbitrarily
fixed R:

(C3) Trans(R) → UpperR(R 4A)

(C4) A ⊆ B → 4B ⊆ 4A

(C5) A ⊆ 54A

(C6) 454A = 4A

(C7) 4(A ∪B) ⊆ 4A ∩ 4B

(C8) 4A ∪ 4B ⊆ 4(A ∩B)

(C9)
⋂

A∈A

4A = 4
( ⋃

A∈A
A

)

(C10)
⋃

A∈A

4A ⊆ 4
( ⋂

A∈A
A

)

(Converse inclusions and implications have well-known crisp counter-examples.)

Proof. (C3) Trans(R) implies Rxy → (Rax → Ray), which implies Rxy → ((a ∈ A →
Rax) → (a ∈ A → Ray)), whence we get the required assertion Rxy → ((∀a ∈ A)
Rax → (∀a ∈ A)Ray) by generalization and quantifier shifts.

(C4) The required (∀x ∈ A)(x ∈ B) → (∀y)[(∀x ∈ B)Rxy → (∀x ∈ A)Rxy] follows by
generalization and distribution of the quantifiers from (Ax → Bx) → [(Bx →
Rxy) → (Ax → Rxy)].

(C5) The required a ∈ A → (∀x)((∀y ∈ A)Ryx → Rax) follows by generalization from
a ∈ A → ((∀y ∈ A)Ryx → Rax), which is a variant of the specification axiom
(∀y)(y ∈ A → Ryx) → (a ∈ A → Rax).

(C6) By the dual of (C5) it is proved that 4A ⊆ 45(4A). By (C5) and (C4), it is proved

that 4(54A) ⊆ 4A. By the axiom of extensionality, we are done.

(C7) and (C8) follow directly from the antitony of cones: by (C4), 4(A ∪ B) ⊆ 4A and
4(A ∪B) ⊆ 4B, therefore 4(A ∪B) ⊆ 4A ∩ 4B; analogously for 4(A ∩B).

(C9) This assertion can be proved as follows:

x ∈
⋂

A∈A

4A ←→ (∀A ∈ A)(∀a ∈ A)Rax

←→ (∀a)[(∃A ∈ A)(a ∈ A) → Rax] ←→ x ∈ 4
( ⋃

A∈A
A

)

(C10) Similarly to (C9), we can infer the following:

x ∈
⋃

A∈A

4A ←→ (∃A ∈ A)(∀a ∈ A)Rax

−→ (∀a)[(∀A ∈ A)(a ∈ A) → Rax] ←→ x ∈ 4
( ⋂

A∈A
A

)
,
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where the middle implication follows from Lemma B.8 (L4) by generalization and
appropriate quantifier shifts.

It is worth mentioning that the following two corollaries can be inferred directly from
(C9) and (C10):

(C11) 4(A tB) = 4A u 4B

(C12) 4A t 4B ⊆ 4(A uB)

Theorems (C4)–(C12) as well as their duals are also corollaries of more general theo-
rems found in [9]. Now let us move closer to the lattice-theoretical notions at which this
section aims. First of all, we define maxima and minima.

Definition 5.9. The classes of all maxima and minima of a class A with respect to R
are defined as follows:

MaxR A =df A ∩ (R 4A)

MinR A =df A ∩ (R
5
A)

The index R is dropped under the same conditions as noted above.

Remark 5.10. Observe that Definition 5.9 is just a more compact way of expressing
the usual definition of maxima and minima as those elements of A that are larger resp.
smaller than all elements in A, i.e.,

(C13) MaxR A = {x ∈ A | (∀y ∈ A)Ryx}
(C14) MinR A = {x ∈ A | (∀y ∈ A)Rxy}
Notice further that since the property of being an upper (or lower) bound is graded in FCT,
maxima (minima) have to be defined as fuzzy classes (unlike in classical mathematics,
where they are determined uniquely and therefore can be defined as single elements).

Example 5.11. Let us consider the fuzzy set A from Example 4.13 and standard ÃLukasie-
wicz logic again. Further consider the fuzzy relation L1 from Example 3.8 which is a fuzzy
preorder [16]. Figure 5 shows A, L1

4A and MaxL1 A, while Figure 6 shows A, L1
5
A and

MinL1 A. The results we obtain for the lower cone and the minimum are what one may
expect intuitively. The results we obtain for the upper cone and the maximum in this
case demonstrate, however, that quite peculiar results may be obtained for more unusual
fuzzy sets.5

As the above example suggests, cones, minima and maxima may not be as intuitive
and simple concepts as in classical mathematics. The following theorem demonstrates
that still properties hold that one would expect intuitively.

Theorem 5.12. The following properties of maxima are provable in FCT:

(C15) A ⊆ B & x ∈ MaxR A & y ∈ MaxR B → Rxy

5Although unusual, the results are nevertheless not counter-intuitive and in Figure 5 they can be
explained by the shape of the membership function of A: the gradual decrease of A to the right makes
the maximum subnormal (compare it with right-open crisp intervals which have no maximum at all),
and the increase of the membership function in the left part induces a second peak of the maximum
(as the α-cuts of A for large α have their maxima exactly there).
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Figure 5: The fuzzy set A from Example 4.13 (light gray), its upper cone L1
4A (medium

gray), and its maximum MaxL1 A (solid black).
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Figure 6: The fuzzy set A from Example 4.13 (light gray), its lower cone L1
5
A (medium

gray), and its minimum MinL1 A (solid black).
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(C16) x ∈ MaxR A & y ∈ MaxR A → Rxy & Ryx

(C17) x ∈ MaxR A & y ∈ MaxR A & AntiSym(E) R → Exy

Proof. (C15) We have to prove

(A ⊆ B) & (x ∈ A & x ∈ R 4A) & (y ∈ B & y ∈ R 4B) → Rxy.

Now A ⊆ B & y ∈ R 4B implies y ∈ R 4A by (C4) which, together with x ∈ A,
implies Rxy.

(C16) To prove this, we simply have to combine the antecedents and consequents of the
following two trivial assertions

x ∈ A & y ∈ R 4A → Rxy

y ∈ A & x ∈ R 4A → Ryx

and the proof is completed.

(C17) follows directly from (C16).

A nonchalant interpretation of (C15) is that the larger (with respect to inclusion) A
is, the larger (with respect to R) MaxR A is. The property (C16) can be interpreted as
the fact that MaxR A is “fuzzily” unique up to the symmetrization of R. In the case
that, in a non-graded setting, R is a fuzzy preorder, it is easily possible to show that its
symmetrization is a similarity [16, 68]. Then (C16) means nothing else than that MaxR A
is a fuzzy point [53]. The property (C17) generalizes this to any relation R antisymmetric
(to some degree) with respect to E.

The following theorem shows that maxima are upper classes inside the fuzzy class that
is considered (to the degree R is transitive).
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Theorem 5.13. The following property of maxima is provable in FCT:

(C18) Trans(R) → UpperA
R(MaxR A)

Proof. By (C3), Trans(R) implies x ∈ R 4A & Rxy → y ∈ R 4A which implies the
required x ∈ A & y ∈ A & Rxy & (x ∈ A & x ∈ R 4A) → (y ∈ A & y ∈ R 4A).

Now we can finally define suprema and infima. Not surprisingly, the suprema are
defined as the least upper bounds, i.e., the minima of the upper cone. Again the condition
of being a supremum is graded, as the notion of a bound itself is graded. Dually, the infima
are defined as the greatest lower bounds.

Definition 5.14. The classes of all suprema and infima of a class A with respect to R
are defined as follows:

SupR A =df MinR(R 4A)

InfR A =df MaxR(R
5
A)

The index R is dropped under the same conditions as noted above.

Obviously, we can rewrite the definitions in the following way:

(C19) Sup A = 4A ∩ 54A

(C20) Inf A =
5
A ∩ 45A

As shown by the following theorem, suprema and infima are interdefinable.

Theorem 5.15. The following property of suprema is provable in FCT:

(C21) Sup A = Inf(4A)

Proof. By (C20) and (C6), Inf(4A) =
54A ∩ 454A =

54A ∩ 4A = Min(4A) = Sup A.

Since suprema are a special kind of minima, the general properties of the latter hold
for suprema as well; further properties of suprema hold by virtue of the properties of
cones. Some of such properties of suprema are summarized in the following theorem.

Theorem 5.16. The following properties of suprema are provable in FCT:

(C22) A ⊆ B & x ∈ SupR A & y ∈ SupR B → Rxy

(C23) x ∈ SupR A & y ∈ SupR A → Rxy & Ryx

(C24) x ∈ SupR A & y ∈ SupR A & AntiSym(E) R → Exy

(C25) Trans(R) → UpperA
R(SupR A)

(C26) Trans(R) → LowerR4A
R (SupR A)

Proof. (C22) Follows from (C4) and the dual of (C15).

(C23) and (C24) follow respectively from the duals of (C16) and (C17).

(C25) By (C3), Trans(R) implies x ∈ 4A & Rxy → y ∈ 4A. Furthermore, by (C5),

y ∈ A → y ∈ 54A. Combining the antecedents and consequents of these impli-
cations we get the required x ∈ A & y ∈ A & Rxy & (x ∈ 4A & x ∈ 54A) →
(y ∈ 4A & y ∈ 54A).

(C26) Follows fr om the dual of (C18).
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Figure 7: The fuzzy set A from Example 4.13 (light gray), its infimum InfL1 A (dashed
black), and its supremum SupL1

A (solid black).
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Suprema differ from maxima already in crisp sets. The following example shows how
the difference may look like in fuzzy sets.

Example 5.17. Let us revisit Example 5.11. Figure 7 shows the fuzzy set A along with
InfL1 A and SupL1

A. (Compare with Figures 5 and 6.)

The following theorem provides us with two results on how suprema and maxima are
related to each other. For the precondition A ⊆ A ∩ A in (C28) see Remark 3.11.

Theorem 5.18. The following interrelations between maxima and suprema are provable
in FCT:

(C27) A ∩Max A ⊆ A ∩ Sup A ⊆ Max A

(C28) A ⊆ A ∩ A → Max A u A ∩ Sup A

Proof. (C27) Using (C5), we can infer A ∩ 4A ∩ A ⊆ A ∩ 4A ∩ 54A ⊆ A ∩ 4A.

(C28) A ⊆ A ∩ A → A ∩ 4A ⊆ A ∩ 4A ∩ A which, together with the proof of (C27),
yields the converse implication to A ∩ Sup A ⊆ Max A of (C27).

By means of suprema and infima, the notion of lattice completeness can be defined [32].
A systematic study of complete lattices and fuzzy lattice completions in FCT will be part
of a subsequent paper. For some particular cases, see [2].

6 Valverde-style characterizations of preorders and

similarities

This section aims at generalizing some of the most important and influential theorems in
the theory of fuzzy relations to FCT—Valverde’s representation theorems for fuzzy pre-
orders and similarities [68]. In the tradition of Cantor [21], Valverde uses score functions
to represent relations. Actually, he uses score functions that map into the unit interval,
so these functions can also be considered as fuzzy sets. This interpretation facilitates an
easy reformulation of these results in FCT.

Let us first consider the fuzzy relation R` defined as

R`xy ≡df (∀z)(Rzx → Rzy)

(for a given fuzzy relation R). This is called the left trace of R [35, 36]. Analogously we
define the right trace (which will be used in Section 7) as

Rrxy ≡df (∀z)(Ryz → Rxz).
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Now we can formulate another characterization of graded reflexivity and transitivity
besides those of Theorem 3.6.

Theorem 6.1. The following properties hold in FCT:

(V1) Refl(R) ↔ R` ⊆ R

(V2) Trans(R) ↔ R ⊆ R`

Proof. (V1) By definition, R` ⊆ R ↔ (∀x, y)[(∀z)(Rzx → Rzy) → Rxy]. Thus to
prove the first implication of (V1), we need to show that Rxy is implied by Refl(R)
and (∀z)(Rzx → Rzy). Specifying x for z in the latter, we get Rxx → Rxy, which
implies Rxy by Refl(R). To prove the converse implication, we can specify x for y
in (∀x, y)[(∀z)(Rzx → Rzy) → Rxy] and get (∀x)[(∀z)(Rzx → Rzx) → Rxx],
i.e. (∀x)(1 → Rxx), i.e. (∀x)Rxx.

(V2) Trans(R) ←→ (∀z, x, y)(Rzx & Rxy → Rzy) ←→ (∀x, y)(∀z)[Rxy → (Rzx →
Rzy)] ←→ (∀x, y)[Rxy → (∀z)(Rzx → Rzy)] ←→ R ⊆ R`

Corollary 6.2. The following is provable in FCT:

(V3) wPreord(R) ↔ R ≈ R`

(V4) Preord(R) ↔ R u R`,

(V5) R ≈2 R` −→ Preord(R) −→ R ≈ R`.

So we have obtained graded versions of Fodor’s characterizations [35, Theorems 4.1,
4.3, and Corollary 4.4]. Note that, regardless of the symmetry of R, we can replace R`

in the above characterizations by the right trace as well (since (Rr)−1 = (R−1)`, and
reflexivity and transitivity are invariant to inversion by Remark 3.2).

Remark 6.3. Observe that the following holds obviously (cf. Definitions B.7 and 5.7):

R←{x} = {z | (∃y ∈ {x})Rzy} = {z | Rzx}
R
5{x} = {z | (∀a ∈ {x})Rza} = {z | Rzx}

So we can rewrite (V3) as follows:

wPreord(R) ↔ (∀x, y)
(
Rxy ↔ R←{x} ⊆ R←{y})

wPreord(R) ↔ (∀x, y)
(
Rxy ↔ R

5{x} ⊆ R
5{y})

In words, a relation R is a weak preorder to the degree it coincides with graded inclusion
between the cones (or preimages) of crisp singletons.

Now we have all prerequisites for formulating and proving a graded version of Valverde’s
representation theorem for preorders. In order to make notations more compact, let us
define two graded notions of Valverde preorder representation (a strong one and a weak
one), for a given fuzzy relation R and a fuzzy class of fuzzy classes A:

ValP(R,A) ≡df (R u {〈x, y〉 | (∀A ∈ A)(Ax → Ay)})
wValP(R,A) ≡df (R ≈ {〈x, y〉 | (∀A ∈ A)(Ax → Ay)})

The predicates ValP and wValP express the degree to which the fuzzy class A represents
the relation R.

Then we can prove the following essential result for preorders and weak preorders.
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Theorem 6.4. FCT proves the following:

(V6) (A ⊆ A ∩A) & ValP2(R,A) −→ Preord(R) −→ (∃A)(Crisp(A) & ValP(R,A))

(V7) (A ⊆ A∩A)&wValP3(R,A) −→ wPreord(R) −→ (∃A)(Crisp(A)&wValP(R,A))

Proof. We prove just (V6), the proof of (V7) is analogous. To show the first implication
we define SA =df {〈x, y〉 | (∀A ∈ A)(Ax → Ay)}. If we show (A ⊆ A∩A) → Preord(SA),
then the application of (R28) and some quantifier shifts complete the proof.

Obviously Refl(SA) is a theorem, now we show (A ⊆ A ∩ A) → Trans(SA). First we
have:

SAxy & SAyz ←→ (∀A ∈ A)(Ax → Ay) & (∀A ∈ A)(Ay → Az)

−→ (A ∈2 A → (Ax → Ay) & (Ay → Az))

−→ (A ∈2 A → (Ax → Az)),

whence ((A ⊆ A ∩ A) & SAxy & SAyz) → (A ∈ A → (Ax → Az)). Finally, by
generalization we get (A ⊆ A∩A) & SAxy & SAyz −→ (∀A ∈ A)(Ax → Az) ←→ SAxz,
thus (A ⊆ A ∩A) → Trans(SA).

To prove the second implication, just take A =
{
A | (∃z)(A = {x | Rzx})}, observe

that Crisp(A) and use (V4).

Theorem 6.4 gives bounds for the degree to which a relation is a fuzzy preorder,
depending on its Valverde-representability by a family of fuzzy classes. Notice that by a
restatement of Theorem 6.4, also the degree of the Valverde-representability of a relation
by a crisp family of fuzzy classes can be estimated from the degree of its being a preorder:

Corollary 6.5. Preord2(R) −→ [(∃A)(Crisp(A) & ValP(R,A))]2 −→ Preord(R)

Proof. Follows immediately from Theorem 6.4 by taking into account that the assertion
Crisp(A) → A ⊆ A∩A holds.

Obviously, (V6) is more complicated than Valverde’s original result; it is an example
where the graded framework does not provide us with just a plain copy of the non-
graded (or crisp) result. The following corollary gives us a result that is comparable with
Valverde’s original theorem.

Corollary 6.6. FCT proves the following:

(V8) 4Preord(R) ←→ R = R`

←→ (∃A)(4(A ⊆ A ∩A) &4ValP(R,A))
←→ (∃A)(Crisp(A) &4ValP(R,A))

Proof. The first equivalence is a simple consequence of (V4). To prove that 4Preord(R)
implies the last formula inspect the proof of the second implication of (V6) and observe
that we can show that 4Preord(R) → Crisp(A) &4ValP(R,A) for A =

{
A | (∃z)(A =

{x | Rzx})}.
The fact that the last formula implies the third one is a simple consequence of prov-

ability of Crisp(A) → A ⊆ A∩A.
The final implication we need to prove (that the third formula implies 4Preord(R))

is a simple consequence of the first implication of (V6).

Observe that also the analogous formulae with wPreord and wValP are equivalent to
those in (V8).
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Example 6.7. Let us shortly revisit Example 3.3 (in which we use standard ÃLukasiewicz
logic). The fuzzy relation P1 was actually constructed from the following crisp family of
three fuzzy sets A = {A1, A2, A3} that are defined as follows (for convenience, in vector
notation):

A1 = (0.7, 0.8, 0.2, 0.5, 0.4, 0.6)

A2 = (0.3, 0.5, 0.6, 0.4, 0.7, 1.0)

A3 = (1.0, 1.0, 0.6, 0.4, 0.3, 0.0)

Example 6.8. Consider U = {1, 2, 3}, standard ÃLukasiewicz logic, and the following
fuzzy relation:

R =




1.00 1.00 0.60
0.00 1.00 1.00
0.00 0.00 1.00




It is easy to see that Refl(R) = 1 and Trans(R) = 0.6, hence, Preord(R) = wPreord(R) =
0.6. Now consider the crisp class A = {A1, A2, A3}, where A1, A2 and A3 are fuzzy classes
defined as follows:

A1 = (1.00, 0.85, 0.70)

A2 = (0.00, 1.00, 0.85)

A3 = (0.00, 0.00, 1.00)

Then we obtain the following (according to the definition SA =df {〈x, y〉 | (∀A ∈ A)(Ax →
Ay)} from the proof of Theorem 6.4):

SA =




1.00 0.85 0.70
0.00 1.00 0.85
0.00 0.00 1.00




Obviously, R ⊆ SA = 0.85 and SA ⊆ R = 0.90, so we have R u SA = 0.75 and
R ≈ SA = 0.85, thus, ValP(R,A) = 0.75 and wValP(R,A) = 0.85. Note further that
Crisp(A) = 1 holds, which also implies (A ⊆ A ∩ A) = 1. These findings demonstrate
that the reverse implications

(∃A)(Crisp(A) & ValP(R,A)) −→ Preord(R)

(∃A)(Crisp(A) & wValP(R,A)) −→ wPreord(R)

both do not hold in general. Moreover, we see that the double exponent in the first
formula of (V6) and the triple exponent in the first formula of (V7) cannot be improved.

Although the last formula in (V8) is a perfect copy of Valverde’s non-graded represen-
tation, the corollary still contains a graded feature—note that unlike Valverde’s theorem,
in which a crisp family of functions is used, the class A in the third equivalent formula
may still be a fuzzy class of fuzzy classes, if only it satisfies 4(A ⊆ A ∩A). Recall from
Remark 3.11 that in Gödel logic, this condition is fulfilled by all fuzzy classes A, and that
in any logic it is satisfied by a system A in a model if all degrees of membership in A are
idempotent with respect to conjunction.

The degree of A ∈ A may be considered as a weighting factor that controls the
influence of a specific A on the final result. Corollary 6.6 requires all membership degrees
in A to be idempotent to ensure that the relation represented by A is a fuzzy preorder,
but its graded version in Theorem 6.4 also shows that (loosely speaking) it will almost be
a fuzzy preorder if A almost satisfies A ⊆ A∩A (e.g., in standard ÃLukasiewicz logic if it
is close to crispness).
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Example 6.9. Let us consider a [0, 1]-valued fuzzy logic with the triangular norm

x ∗ y =

{
max(x + y − 1

2
, 0) if x ∈ [0, 1

2
]
2
,

min(x, y) otherwise,

i.e. a simple ordinal sum with a scaled ÃLukasiewicz t-norm in [0, 1
2
]
2

and the Gödel t-norm
anywhere else. It is clear that the set of idempotent elements of this t-norm is {0}∪ [1

2
, 1]

and that the corresponding residual implication is given as

x ⇒ y =

{
1 if x ≤ y,

max(y, 1
2
− x + y) otherwise.

Now reconsider U = {1, . . . , 6} and the three fuzzy sets A1, A2 and A3 from Example 6.7
and define a fuzzy class of fuzzy classes A such that AA1 = 0.9, AA1 = 1.0, and AA3 =
0.8. Since all three values are idempotent elements of ∗, we can be sure by (V8) that the
construction R1 =df {〈x, y〉 | (∀A ∈ A)(Ax → Ay)} always gives us a fuzzy preorder in
the given logic. In this particular example, we obtain the following:

R1 =




1.0 1.0 0.2 0.4 0.3 0.0
0.3 1.0 0.2 0.4 0.3 0.0
0.3 0.5 1.0 0.4 0.3 0.0
0.4 1.0 0.2 1.0 0.4 0.1
0.3 0.5 0.3 0.4 1.0 0.2
0.3 0.5 0.2 0.4 0.4 1.0




If we repeat this construction and define a fuzzy relation R2 =df {〈x, y〉 | (∀A ∈ A)(Ax →
Ay)} with A defined as above, but the connectives interpreted in standard ÃLukasiewicz
logic, we obtain the following:

R2 =




1.0 1.0 0.6 0.6 0.5 0.2
0.8 1.0 0.5 0.6 0.5 0.2
0.7 0.9 1.0 0.8 0.9 0.6
0.9 1.0 0.8 1.0 1.0 0.8
0.6 0.8 0.9 0.7 1.0 0.9
0.3 0.5 0.6 0.4 0.7 1.0




.

Straightforward calculations show that Refl(R2) = 1 and Trans(R2) = Preord(R2) =
wPreord(R2) = 0.8. This is not at all contradicting to (V6) and (V7), as A ⊆ A ∩ A
holds only to a degree of 0.8 in standard ÃLukasiewicz logic.

In his landmark paper [68], Valverde not only considers fuzzy preorders, but also
similarities (as obvious from the title of his paper). So the question naturally arises how
we can modify the above results in the presence of symmetry. As will be seen next, the
modifications are not as straightforward as in the non-graded case. Let us first define the
fuzzy relation R`s as

R`sxy =df (∀z)(Rzx ↔ Rzy)

(for a given fuzzy relation R). This is called the left symmetric trace of R.
The following lemma demonstrates how this notion is related to the defining prop-

erties of similarity. More or less unexpectedly, the result is not that straightforward for
symmetry.
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Theorem 6.10. The following are theorems of FCT:

(V9) R`s ⊆ R ↔ Refl(R)

(V10) R ⊆ R`s → Trans(R)

(V11) R u R`s → Sym(R)

(V12) Sym(R) & Trans(R) → R ⊆ R`s

Proof. (V9) Analogous to the proof of (V1).

(V10) Follows from (V2) by observation that R`s ⊆ R`.

(V11) Obviously we can get R ⊆ R`s −→ (Rxy → (Ryx ↔ Ryy)) −→ (Rxy → (Ryy →
Ryx)). So R ⊆ R`s & Refl(R) → (∀y)(Rxy → Ryx). Finally (V9) completes the
proof.

(V12) We need to show that Rzx ↔ Rzy is implied by Sym(R), Trans(R), and Rxy.
First by Trans(R) and Rxy we get Rzx → Rzy; secondly, by Sym(R) and Rxy
we get Ryx, whence by Trans(R) we get Rzy → Rzx.

The following theorem provides us with an analogue of Corollary 6.2, unfortunately,
with looser bounds on the left-hand side.

Corollary 6.11. FCT proves:

(V13) R ≈4 R`s −→ R u2 R`s −→ Sim(R) −→ R u R`s −→ R ≈ R`s

(V14) R ≈2 R`s −→ R u R`s −→ wSim(R)

(V15) wSim2(R) −→ Refl(R) ∧ (Trans(R) & Sym(R)) −→ R ≈ R`s

The question arises whether it is really necessary to require u rather than ≈ in (V11).
The following example tells us that this is indeed the case. It also implies that R ≈ R`s →
wSim(R) does not hold in general.

Example 6.12. Consider U = {1, 2}, standard ÃLukasiewicz logic, and the following fuzzy
relation:

R =

(
0.5 1.0
0.0 0.5

)

It is obvious that Refl(R) = 0.5 and Sym(R) = 0. Moreover, routine calculations show
that Trans(R) = 1. To compute R u R`s, we have to consider the truth values of
Rxy ↔ (∀z)(Rzx ↔ Rzy) for all x, y ∈ U :

x = 1, y = 1: min(

z=1︷ ︸︸ ︷
0.5 ↔ (0.5 ↔ 0.5) ,

z=2︷ ︸︸ ︷
0.5 ↔ (0.0 ↔ 0.0) ) = 0.5

x = 1, y = 2: min( 1.0 ↔ (0.5 ↔ 1.0) , 1.0 ↔ (1.0 ↔ 0.5) ) = 0.5
x = 2, y = 1: min( 0.0 ↔ (1.0 ↔ 0.5) , 0.0 ↔ (0.5 ↔ 0.0) ) = 0.5
x = 2, y = 2: min( 0.5 ↔ (1.0 ↔ 1.0) , 0.5 ↔ (0.5 ↔ 0.5) ) = 0.5

So, we finally obtain R ≈ R`s = 0.5 and R u R`s = 0.

Now we can formulate a graded version of Valverde’s representation theorem for sim-
ilarities. Analogously to the above considerations, let us define the graded notion of
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Valverde similarity representation (strong one and weak one) for a given fuzzy relation R
and a fuzzy class A as

ValS(R,A) ≡df R u {〈x, y〉 | (∀A ∈ A)(Ax ↔ Ay)},
wValS(R,A) ≡df R ≈ {〈x, y〉 | (∀A ∈ A)(Ax ↔ Ay)}.

In the same way as for preorders, we can prove graded versions of Valverde’s repre-
sentation theorem of similarities and weak similarities.

Theorem 6.13. FCT proves the following:

(V16) (A ⊆ A ∩A) & ValS3(R,A) −→ Sim(R) −→ (∃A)(Crisp(A) & ValS(R,A))

(V17) (A ⊆ A ∩A) & wValS3(R,A) −→ wSim(R)

(V18) wSim2(R) −→ Refl(R)∧(Trans(R)&Sym(R)) −→ (∃A)(Crisp(A)&wValS(R,A))

Again, (V16) is more complicated than Valverde’s original representation of similari-
ties. In the following corollary, analogously to preorders, we can infer a result very similar
to Valverde’s original theorem in case that the corresponding properties are fulfilled to
degree 1.

Corollary 6.14. FCT proves the following:

(V19) 4 Sim(R) ←→ R = R`s

←→ (∃A)(4(A ⊆ A ∩A) &4ValS(R,A))
←→ (∃A)(Crisp(A) &4ValS(R,A))

Again, like in the case of preorders, the formulae in (V19) are equivalent to the variants
with wSim and wValS. Also observe that again (V19) contains a graded ingredient—the
class A may (under the same condition as in preorders) be a fuzzy class of fuzzy classes.

Example 6.15. Consider U = [0, 3], standard ÃLukasiewicz logic, and the following four
fuzzy sets:

A1x = max(0, min(1, x))

A2x = max(0, min(1, x− 1))

A3x = max(0, min(1, x− 2))

A4x = max(0, min(1, x− 3))

Figure 8 shows plots of two fuzzy similarities that we obtain by the construction that is
provided by (V19):

E1xy = (∀A ∈ A1)(Ax ↔ Ay)

E2xy = (∀A ∈ A2)(Ax ↔ Ay)

where A1 = {A1, A2, A3, A4}, i.e. a crisp finite family of fuzzy sets. Hence, E1 is the fuzzy
relation obtained from Valverde’s original construction. The fuzzy class A2, however, is
defined such that A2A1 = A2A3 = A2A4 = 1 and A2A2 = 0.6, i.e. we assign a lower
weight of 0.6 to the second fuzzy set. Since then A2 ⊆ A2 ∩ A2 is true to degree 0.6,
Theorem 6.13 only ensures that E2 is a similarity to degree 0.6. In this case the bound is
tight, since indeed Sim(E2) = 0.6.
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Figure 8: Plots of the two fuzzy relations E1 (left) and E2 (right) from Example 6.15.
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Example 6.16. Consider U = {1, 2, 3}, standard ÃLukasiewicz logic, and the following
fuzzy relation:

R =




1.00 1.00 0.60
1.00 1.00 1.00
0.40 1.00 1.00




It is trivial to see that Refl(R) = 1, Sym(R) = 0.8 and Trans(R) = 0.4, hence, Sim(R) =
0.2 and wSim(R) = 0.4. Now consider the crisp class A = {A1, A2, A3}, where A1, A2

and A3 are fuzzy classes defined as follows:

A1 = (1.00, 0.75, 0.50)

A2 = (0.75, 1.00, 0.75)

A3 = (0.50, 0.75, 1.00)

Then we obtain the following (according to the analogous definition S ′A = {〈x, y〉 |
(∀A ∈ A)(Ax ↔ Ay)}):

S ′A =




1.00 0.75 0.50
0.75 1.00 0.75
0.50 0.75 1.00




We obtain R ⊆ S ′A = 0.75 and S ′A ⊆ R = 0.90, so we have R u S ′A = 0.65 and R ≈ S ′A =
0.75, thus, ValS(R,A) = 0.65 and wValP(R,A) = 0.75. Of course, Crisp(A) = 1 and
(A ⊆ A ∩ A) = 1 hold, too. So, analogously to Example 6.8, we have a counterexample
that demonstrates that the reverse implication

(∃A)(Crisp(A) & ValS(R,A)) −→ Sim(R)

does not hold in general. Moreover, we see that the triple exponents in (V16) and (V17)
cannot be improved.

7 Similarities and partitions

The one-to-one correspondence between equivalence relations and partitions is one of the
most fundamental correspondences in classical mathematics. It is clear, therefore, that
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fuzzy partitions have been studied intensively in connection with similarity relations.
The first approach to fuzzy partitions by Ruspini [64] does not facilitate a direct cor-
respondence with similarity relations. Only more logically oriented approaches to fuzzy
partitions that were introduced more recently are able to provide a smooth interplay with
similarity relations. In this section, we demonstrate how the well-accepted (non-graded)
approach by De Baets and Mesiar [26] (for similar or complementary studies, see also
[13, 41, 30, 45, 53, 52, 42]) can be transferred to our graded framework.

Definition 7.1. Consider a fuzzy relation R. For a given element x, we define the afterset
of x (with respect to R) as

[x]R =df {y | Rxy}.
It is clear that, if R is a similarity, [x]R can be understood as the equivalence class of x.

Note that Gottwald, in his studies [40, 41], defines the equivalence class of x inversely as
the foreset {y | Ryx}. We stick to the afterset-based definition in this section. The choice
is immaterial, since the aftersets of R are the foresets of R−1 and vice versa, and R and
R−1 satisfy Refl, Sym, and Trans both to the same degrees (see Remark 3.2).

The following lemma provides us with some easy-to-see links to concepts we have
introduced earlier in this paper.

Lemma 7.2. The following properties of aftersets are provable in FCT:

(P1) [x]R = R 4{x} = R ↑{x}
(P2) [x]R ⊆ [y]R ←→ (∀z)(Rxz → Ryz) ←→ Rryx

Now we can prove some basic properties of aftersets (note that semantically equivalent
results for left-continuous t-norms can be found in [41, Section 18.6]).

Theorem 7.3. The following properties are provable in FCT:

(P3) Refl(R) ↔ (∀x)(x ∈ [x]R)

(P4) Refl(R) ↔ (∀x, y)([x]R ⊆ [y]R → Rxy)

(P5) Refl(R) & Sym(R) → (∀x, y)([y]R ⊆ [x]R → Rxy)

(P6) Refl(R) → (∀x, y)([x]R ≈ [y]R → Rxy)

(P7) Refl2(R) & Sym(R) → (∀x, y)([y]R u [x]R → R2xy)

(P8) Trans(R) ↔ (∀x, y)(Rxy → [y]R ⊆ [x]R)

(P9) Trans(R) & Sym(R) → (∀x, y)(Rxy → [x]R ⊆ [y]R)

(P10) Trans(R) & Sym(R) → (∀x, y)(Rxy → [x]R ≈ [y]R)

(P11) Trans2(R) & Sym(R) → (∀x, y)(R2xy → [x]R u [y]R)

Proof. (P3) Follows directly from the definition of Refl(R).

(P4) Follows from Refl(R) ↔ Rr ⊆ R (compare with (V1)) and (P2).

(P5) Take (P4) and apply symmetry.

(P6) Trivial consequence of (P4).

(P7) Use (P4) and (P5).

(P8) Follows from Trans(R) ↔ R ⊆ Rr (compare with (V2)) and (P2).
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(P9) Use (P8) and symmetry.

(P10) and (P11) both follow from (P8) and (P9).

From Theorem 7.3, we can now infer a first important result—that similarities can be
represented by their aftersets (i.e., equivalence classes).

Corollary 7.4. The following can be proved in FCT:

(P12) Sim(R) → (∀x, y)(Rxy ↔ [x]R ≈ [y]R)

(P13) Sim2(R) → (∀x, y)(R2xy ↔ [x]R u [y]R)

In classical mathematics, the notion of quotient set is essential for the study of the cor-
respondence between equivalence relations and partitions. As also in previous literature,
we define quotient classes in perfect analogy to the crisp case.

Definition 7.5. For a given fuzzy relation R, we define the quotient class V/R as the
class of all aftersets (equivalence classes):

V/R =df {A | (∃x)(A = [x]R)}

It is clear that the name quotient class is best justified if R is a similarity. Let A be a
class of (fuzzy) classes resulting from some similarity in this way. By investigating prop-
erties of A, we found four constituting properties: crispness, normality of its members,
covering, and disjointness (in a wider sense). They are defined as follows.

Definition 7.6. Let A be a fuzzy class of fuzzy classes. We define the following properties
of A:

NormM(A) ≡df (∀A ∈ A)(∃x)4Ax

Cover(A) ≡df (∀x)(∃A ∈ A)4Ax

Disj(A) ≡df (∀A,B ∈ A)(A ‖ B → A ≈ B)

Correspondingly, we can define the degree to which A is a partition as

Part(A) ≡df Crisp(A) & NormM(A) & Cover(A) & Disj(A)

The first three properties are self-explanatory, Disj(A) is a straightforward (graded)
generalization of the disjointness criterion that is well-known from the literature [26, 45,
53, 52]. Without explicitly referring to this as a notion of fuzzy partition, some authors
[45, 53, 52] studied the disjointness property in conjunction with normality (and crisp-
ness, as they are working in a non-graded framework). The covering property was
later introduced by De Baets and Mesiar [26] and similarly studied by Demirci [30] and
Bělohlávek [13]. The degree Part(A) to which a class of classes A is a partition is thus
a straightforward (graded) generalization of the concept of T -partition introduced by
De Baets and Mesiar [26].6

6An alternative option in Definition 7.5 is taking {A | (∃x)(A ≈ [x]R)} for the quotient class. This
would yield a meaningful, fully fuzzified notion of quotient class and the results of this section would
only need a slight adaptation (the 4’s in Definition 7.6 could be dropped in exchange for some more
exponents in definitions and proofs). The usage of = in Definition 7.5 is motivated mainly by keeping
the direct correspondence with De Baets and Mesiar’s notion.
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Observe that the properties Crisp(A), NormM(A), and Cover(A) are crisp. Thus, we
have

Part(A) ↔ Crisp(A) ∧ NormM(A) ∧ Cover(A) ∧ Disj(A),

i.e. there is no need to define a separate concept of a “weak fuzzy partition”. Moreover,
it follows that

(Part(A) ↔ 0) ∨ (Part(A) ↔ Disj(A)).

In other words, the truth value of Part(A) for a given A is either 0 or equal to the truth
value of Disj(A).

Theorem 7.7. FCT proves the following properties of the quotient V/R:

(P14) Crisp(V/R)

(P15) 4Refl(R) → Cover(V/R)

(P16) 4Refl(R) → NormM(V/R)

(P17) Trans2(R) & Sym(R) → Disj(V/R)

(P18) Trans2(R) & Sym(R) & 4Refl(R) → Part(V/R)

Proof. (P14)–(P16) are straightforward to prove.

(P17) From Trans(R) and Sym(R), we get Ryx & Rzx → Ryz, which, using the
definition, can be written as x ∈ [y]R & x ∈ [z]R → Ryz. Using (P8) and
Trans(R) again, we get x ∈ [y]R & x ∈ [z]R → [y]R ⊆ [z]R. In the same way, we
get x ∈ [z]R & x ∈ [y]R → [z]R ⊆ [y]R. Combining these two formulae, we get
Trans2(R) & Sym(R) → (x ∈ [z]R & x ∈ [y]R → [z]R ≈ [y]R). Then apply-
ing generalization (for x), quantifier shifts, and the definition of ‖ completes the
proof.

(P18) Immediate consequence of (P14)–(P17).

Now, after we have studied the properties of the quotient of a given fuzzy relation, the
question arises how we can extract a fuzzy relation (a similarity in the ideal case) from a
given fuzzy partition.

Definition 7.8. For a given fuzzy class of fuzzy classes A we define a fuzzy relation RA

in the following way:7

RA =df {〈x, y〉 | (∃A ∈ A)(Ax & Ay)}

This definition allows us to relate properties of partitions with properties of the induced
relations in a meaningful graded manner.

Theorem 7.9. The following properties of RA are provable in FCT:

(P19) Sym(RA)

(P20) Cover(A) →4Refl(RA)

(P21) Disj(A) → Trans(RA)

(P22) Part(A) −→ 4 Sym(RA) &4Refl(RA) & Trans(RA) −→ Sim(RA)

7Note that the definition RA is not the only possible definition of how to “extract” a fuzzy relation
from a family of subsets. Another often-used way to do that is R = {〈x, y〉 | (∀A ∈ A)(Ax ↔ Ay)}, see,
e.g., [26, 52, 68].
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Proof. (P19) Trivial.

(P20) Cover(A) −→ (∃X ∈ A)4(x ∈ X) −→ 4(∃X ∈ A)(x ∈ X & x ∈ X) ←→
4RAxx

(P21) From RAxy & RAyz, we get (∃A,B ∈ A)(Ax & Ay & By & Bz). Since from
Disj(A) we get (Ay & By) → A ≈ B, we have (∃A,B ∈ A)(Ax & A ≈ B & Bz).
As A ≈ B & Bz → Az, we obtain (∃A ∈ A)(Ax & Az), i.e., RAxz, and the proof
is done.

(P22) Immediate consequence of (P19)–(P21).

The property (P18) has told us that the quotient of a similarity is a partition. Now
(P22) entails that partitions induce similarities. Note, however, that this is not yet a proof
of one-to-one correspondence. We do not know yet whether these correspondences are
invertible, i.e., (i) whether the quotient of a similarity induced by a partition is the same
as the original partition, and (ii) whether the quotient of a given similarity induces the
same similarity. The following final theorem gives answers to these questions—fortunately
in a fully graded manner.

Theorem 7.10. FCT proves the following:

(P23) Sim(R) → (RV/R u R)

(P24) Part(A) −→ Crisp(A)& NormM(A)& Disj(A) −→ (∀A ∈ A)(∃B ∈ V/RA)(AuB)

(P25) Part(A) −→ Crisp(A) & Cover(A) & Disj(A) −→ (∀B ∈ V/RA)(∃A ∈ A)(A u B)

Proof. (P23) We shall show that Sym(R) & Trans(R) → RV/R ⊆ R and that Refl(R) →
R ⊆ RV/R. The first part is proved by the following steps:

RV/Rxy −→ (∃A ∈ V/R)(Ax & Ay)
−→ (∃A)((∃z)([z]R = A) & Ax & Ay)
−→ (∃A)(∃z)([z]R = A & Ax & Ay)
−→ (∃A)(∃z)([z]R = A & Ax & [z]R = A & Ay)
−→ (∃z)(x ∈ [z]R & y ∈ [z]R)
−→ (∃z)(Rzx & Rzy)
−→ (∃z)(Rxz & Rzy), by Sym(R),
−→ Rxy, by Trans(R).

The second part is proved by the following steps:

Rxy −→ [x]R = [x]R & x ∈ [x]R & y ∈ [x]R, by Refl(R),
−→ (∃z)([z]R = [z]R & x ∈ [z]R & y ∈ [z]R)
−→ (∃A)(∃z)([z]R = A & Ax & Ay)
−→ (∃A)((∃z)([z]R = A) & Ax & Ay)
−→ (∃A ∈ V/R)(Ax & Ay)
−→ RV/Rxy.

(P24) Let us choose a fuzzy set A ∈ A. Since Crisp(A) is assumed, 4A ∈ A holds.
Since NormM(A) holds, we know that there exists an x such that 4Ax. Now we
choose B = [x]RA , i.e. By ←→ RAxy ←→ (∃C ∈ A)(Cx & Cy). Since 4Ax and
4A ∈ A we get:

Ay −→ A ∈ A & Ax & Ay −→ (∃C ∈ A)(Cx & Cy),
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i.e. we have proved

Crisp(A) & NormM(A) → A ⊆ B (2)

Conversely, we can prove the following:

By ←→ (∃C ∈ A)(Cx & Cy)
−→ (∃C ∈ A)(Ax & Cx & Cy), by 4Ax,
−→ (∃C ∈ A)(A ≈ C & Cy), by Disj(A),
−→ (∃C ∈ A) Ay
−→ Ay

So we have proved

Crisp(A) & NormM(A) & Disj(A) → B ⊆ A. (3)

Finally, we can join (2) and (3) to complete the proof (as the properties Crisp
and NormM are crisp).

(P25) Let us consider an arbitrary B ∈ V/RA. Since Crisp(V/RA) holds by (P14), we
have 4(B ∈ V/RA), which means that there exists an x such that B = [x]RA =
{y | RAxy}. By (P20), we have Cover(A) → 4Refl(RA). Hence, we have 4Bx.
From Cover(A) and Crisp(A) we can deduce that we can choose an A ∈ A such
that 4Ax. Hence, we can deduce the following:

Ay −→ A ∈ A & Ax & Ay −→ (∃C ∈ A)(Cx & Cy) −→ By

So we have proved the following:

Crisp(A) & Cover(A) → A ⊆ B (4)

Conversely, we can prove

Crisp(A) & Cover(A) & Disj(A) → B ⊆ A. (5)

completely analogously to the proof of (3) (just to get 4Ax we use Cover(A)
instead of NormM(A)). Finally, we can join (4) and (5) to complete the proof.

Nonchalantly speaking, we can say that (P24) and (P25) together mean that the
more A is a partition, the more similar A and V/RA are. The question arises as to
whether they are equal if A is a partition to a degree of 1. The next corollary gives a
positive answer and lists some other well-known non-graded results [13, 26, 30] that are
consequences of graded results from above.

Corollary 7.11. FCT proves the following:

(P26) 4 Sim(R) →4Part(V/R)

(P27) 4 Sim(R) → RV/R = R

(P28) 4Part(A) →4 Sim(RA)

(P29) 4Part(A) → V/RA = A
Proof. The assertions (P26), (P27) and (P28) are immediate consequences of (P18), (P23)
and (P22), respectively. The assertion (P29) can be proved as follows: from Part(A), we
know that A is a crisp set and, by (P14), we know that V/RA is crisp too. Then, using
4Part(A), (P24) implies A ⊆ V/RA and (P25) implies V/RA ⊆ A, which completes the
proof.
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Let us close this section with a simple example that illustrates the above results.

Example 7.12. Let us consider U = {1, 2, 3, 4}, standard ÃLukasiewicz logic, and the
crisp class A = {A1, A2, A3, A4}, where A1, A2, A3, A4 are fuzzy sets defined in the follow-
ing way:

A1 = (1.0, 0.4, 0.3, 0.0)

A2 = (0.0, 1.0, 0.7, 0.0)

A3 = (0.1, 0.2, 1.0, 0.5)

A4 = (0.0, 0.1, 0.5, 1.0)

Obviously, Crisp(A) = Cover(A) = NormM(A) = 1. To compute Disj(A), we first
compute the degrees of compatibility (overlapping) and equality:

‖ A1 A2 A3 A4

A1 1.0 0.4 0.3 0.0
A2 0.4 1.0 0.7 0.2
A3 0.3 0.7 1.0 0.5
A4 0.0 0.2 0.5 1.0

≈ A1 A2 A3 A4

A1 1.0 0.0 0.1 0.0
A2 0.0 1.0 0.2 0.0
A3 0.1 0.2 1.0 0.5
A4 0.0 0.0 0.5 1.0

From these values, we see that the pair (A2, A3) is the one for which compatibility
exceeds equality to the largest extent. So, we obtain

Disj(A) = (A2 ‖ A3 → A2 ≈ A3) = (0.7 → 0.2) = 0.5

which implies Part(A) = 0.5. We can derive RA as follows:

RA =




1.0 0.4 0.3 0.0
0.4 1.0 0.7 0.1
0.3 0.7 1.0 0.5
0.0 0.1 0.5 1.0




Obviously Refl(RA) = Sym(RA) = 1 (any other result would contradict our findings
above). Straightforward calculations show that

Sim(RA) = wSim(RA) = Trans(RA) = 0.9.

Hence, we can conclude that the bounds in (P21) are not necessarily tight (which proves
that the converse implication cannot generally hold).

Now let us consider the quotient U/RA. Obviously, U/RA = {B1, B2, B3, B4} with

B1 = (1.0, 0.4, 0.3, 0.0)

B2 = (0.4, 1.0, 0.7, 0.1)

B3 = (0.3, 0.7, 1.0, 0.5)

B4 = (0.0, 0.1, 0.5, 1.0)

and we immediately see the discrepancy between A and U/RA. Interestingly, we have
A1 ⊆ B1, A2 ⊆ B2, A3 ⊆ B3, and A4 ⊆ B4. This is not surprising, however, if one
looks at the proofs of (P24) and (P25), where we show that, for an A ∈ A, we can find a
B ∈ V/RA such that A ⊆ B. Not surprisingly either, A1 is most similar to B1, just as A2
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is most similar to B2, and so on. Simple calculations show that the truth values of the
formulae on the right-hand sides of (P24) and (P25) are both 0.5.

If we compute RU/RA , we obtain the following fuzzy relation:

RU/RA =




1.0 0.4 0.3 0.0
0.4 1.0 0.7 0.1
0.3 0.7 1.0 0.5
0.0 0.1 0.5 1.0




Then routine computations show that this fuzzy relation is a similarity. So, at least in
the setting of this example, successive application of computing quotients and induced
similarities yields increasing degrees to which the relations are similarities and the classes
of fuzzy sets are partitions.

8 Concluding remarks

In this paper, we have rephrased and generalized results on binary fuzzy relations to
the graded framework of Fuzzy Class Theory (FCT). While Section 3 was more or less
concerned with rewriting Gottwald’s previously published results, Sections 4–7 have gen-
eralized results that were known in the non-graded framework of traditional theory of
fuzzy relations to the fully graded framework of FCT. These new results hereby demon-
strate that Fuzzy Class Theory is indeed a very powerful and easy-to-use framework for
handling fuzzified properties of fuzzy relations.

This paper has never been intended as a comprehensive treatise that covers the whole
theory of crisp or fuzzy relations. We only tried to communicate the idea of how to apply
Fuzzy Class Theory to generalizing existing (and possibly discovering new) results on
fuzzy relations in the fully graded framework of FCT. Obviously, much is left for future
studies, and we would like to encourage everybody interested in this topic to adopt the
framework and advance the results.

A First-order MTL4: Basic definitions

Monoidal t-norm based logic (MTL for short) was introduced by Esteva and Godo in [33]
as an extension of Höhle’s monoidal logic [46] by the axiom of prelinearity (i.e., the axiom
(A6) below). In this appendix we recall the definitions and some of the basic properties
of MTL and its expansion by the connective 4. We start with the propositional variant
and then expand it to the first-order predicate variant.

The formulae of propositional logic MTL are composed from a countable set of propo-
sitional atoms by using three basic binary connectives →, ∧, and &, and a nullary con-
nective 0. Further connectives can be defined as:

ϕ ∨ ψ ≡df ((ϕ → ψ) → ψ) ∧ ((ψ → ϕ) → ϕ),
¬ϕ ≡df ϕ → 0,

ϕ ↔ ψ ≡df (ϕ → ψ) ∧ (ψ → ϕ),
1 ≡df ¬0.

Convention A.1. In order to avoid unnecessary parentheses, we stipulate that unary
connectives take precedence over ∧, ∨, and &, which in turn bind more closely than →
and ↔.
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The deduction rule of MTL is Modus Ponens (from ϕ and ϕ → ψ infer ψ) and the
following formulae are the axioms of MTL:

(A1) (ϕ → ψ) → ((ψ → χ) → (ϕ → χ))

(A2) ϕ & ψ → ϕ

(A3) ϕ & ψ → ψ & ϕ

(A4a) ϕ & (ϕ → ψ) → ϕ ∧ ψ

(A4b) ϕ ∧ ψ → ϕ

(A4c) ϕ ∧ ψ → ψ ∧ ϕ

(A5a) (ϕ → (ψ → χ)) → (ϕ & ψ → χ)

(A5b) (ϕ & ψ → χ) → (ϕ → (ψ → χ))

(A6) ((ϕ → ψ) → χ) → (((ψ → ϕ) → χ) → χ)

(A7) 0 → ϕ

The logic MTL4 was introduced in [33] as an expansion of the logic MTL by a unary
connective 4, the deduction rule of necessitation (from ϕ infer 4ϕ), and the following
axioms:

(41) 4ϕ ∨ ¬4ϕ

(42) 4(ϕ ∨ ψ) → (4ϕ ∨4ψ)

(43) 4ϕ → ϕ

(44) 4ϕ →44ϕ

(45) 4(ϕ → ψ) → (4ϕ →4ψ)

Formulae derived from these axioms by means of the mentioned deduction rules are
called theorems of MTL4.

Definition A.2. An MTL-algebra is a structure L = (L, ∗,⇒,∧,∨, 0, 1), where

1. (L,∧,∨, 0, 1) is a bounded lattice

2. (L, ∗, 1) is a commutative monoid

3. x ≤ (y ⇒ z) if and only if x ∗ y ≤ z for all x, y, z ∈ L (residuation)

4. (x ⇒ y) ∨ (y ⇒ x) = 1 for all x, y ∈ L (prelinearity)

Definition A.3. A structure L = (L, ∗,⇒,∧,∨, 0, 1,4) is called an MTL4-algebra if
(L, ∗,⇒,∧,∨, 0, 1) is an MTL-algebra and if the additional connective4 has the following
properties (for all x, y ∈ L):

1. 4x ∨ (4x ⇒ 0) = 1

2. 4(x ∨ y) ≤ (4x ∨4y)

3. 4x ≤ x

4. 4x ≤ 44x
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5. 4(x ⇒ y) ≤ 4x ⇒4y

6. 41 = 1

If the lattice order of an MTL4-algebra L is linear, we say that L is an MTL4-chain.
If the lattice reduct of L is the real unit interval with the usual order, we say that L is
a standard MTL4-chain. It can be easily shown that in each MTL4-chain the following
holds:

4x =

{
1 if x = 1

0 otherwise

The structure ([0, 1], ∗,⇒, min, max, 0, 1,4) is a standard MTL4-chain if and only if ∗ is
a left-continuous t-norm and ⇒ its residuum.

Given an MTL4-algebra, we can evaluate formulae of MTL4 by assigning elements of
L to propositional atoms and computing values of compound formulae using operations
of L. A formula is a tautology of a given MTL4-algebra if it always evaluates to 1.

The completeness theorem for MTL and MTL4 with respect to standard algebras was
proved in [49]: a formula is a theorem in MTL4 if and only if it is a tautology of each
standard MTL4-algebra.

Now we introduce the language of first-order MTL4 logic (we give a slightly simplified
account, omitting the subsumption of sorts; for full details see [5]).

Definition A.4. A predicate language Γ is a tuple (S,P,F, a), where S is a non-empty
set of sorts of variables, P is a non-empty set of predicate symbols, F is a set of function
symbols, and a is an arity function which assigns a sequence of sorts (s1, . . . , sk) to each
predicate symbol and a sequence of sorts (s1, . . . , sk, sk+1) to each function symbol (k ≥ 0
in both cases). Functions with arity (s1) are called object constants of sort s1. The set P
is supposed to contain a symbol = of arity (s, s) for each sort s. For each sort s, there
are countably many variables xs

1, x
s
2, . . .

For the rest of this appendix, fix a predicate language Γ and an MTL4-chain L.

Definition A.5. Any variable xs of sort s is a term of sort s. If F ∈ F is a function
symbol of arity (s1, . . . , sk, sk+1), then for any terms t1, . . . , tk of respective sorts s1, . . . , sk,
the expression F (t1, . . . , tk) is a term of sort sk+1.

Atomic formulae have the form P (t1, . . . , tk), where t1, . . . , tk are terms of respective
sorts s1, . . . , sk and P ∈ P is a predicate symbol of arity (s1, . . . , sk). Where convenient,
we switch to infix notation for binary predicate symbols.

Formulae are built from atomic formulae by using the connectives of MTL4 and the
quantifiers ∀, ∃ (for a formula ϕ and a variable x, both (∀x)ϕ and (∃x)ϕ are formulae).

Definition A.6. An occurrence of a variable x in a formula ϕ is bound if it is in the scope
of a quantifier over x; otherwise it is called free. A formula ϕ is called a sentence if all
occurrences of variables in ϕ are bound.

A term t is substitutable for the object variable xs of sort s in a formula ϕ(xs) if and
only if t is also of sort s and no variable occurring in t becomes bound in ϕ(t).

Definition A.7. First-order MTL4 logic (with crisp identity) has the following axioms:

(P) The axioms resulting from the axioms of MTL4 by substituting first-order for-
mulae for propositional formulae

(∀1) (∀x)ϕ(x) → ϕ(t), where t is substitutable for x in ϕ
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(∃1) ϕ(t) → (∃x)ϕ(x), where t is substitutable for x in ϕ

(∀2) (∀x)(χ → ϕ) → (χ → (∀x)ϕ), where x is not free in χ

(∃2) (∀x)(ϕ → χ) → ((∃x)ϕ → χ), where x is not free in χ

(∀3) (∀x)(χ ∨ ϕ) → χ ∨ (∀x)ϕ, where x is not free in χ

(=1) x = x

(=2) x = y → (ϕ(x) ↔ ϕ(y)), where y is substitutable for x in ϕ

The deduction rules are those of MTL4 and generalization: from ϕ infer (∀x)ϕ.

We define the notion of a theorem in the same way as in the propositional case.

Definition A.8. A theory is a set of formulae. A formula is provable in a theory T if
it is derivable from the axioms of first-order MTL4 and formulae belonging to T by the
deduction rules. We denote this fact by T ` ϕ.

Definition A.9. An L-structure M has the form: M = ((Ms)s∈S, (PM)P∈P, (FM)F∈F),
where each Ms is a non-empty set; each PM is a k-ary fuzzy relation PM :

∏k
i=1 Msi

→ L
for each predicate symbol P ∈ P of arity (s1, . . . , sk); and FM is a k-ary function
FM :

∏k
i=1 Msi

→ Msk+1
for each function symbol F ∈ F of arity (s1, . . . , sk, sk+1). Fur-

thermore, =M is the crisp identity of the elements of Ms for each s ∈ S.

In words: an L-structure consists of (i) domains for all sorts of variables, (ii) an inter-
pretation of all predicate symbols by L-fuzzy relations defined on appropriate domains,
and (iii) an interpretation of all function symbols by crisp functions between appropriate
domains.

Definition A.10. Let M be an L-structure. An M-evaluation is a mapping v which
assigns an element from Ms to each object variable x of sort s. For an M-evaluation v ,
a variable x of sort s, and a ∈ Ms we define the M-evaluation v [x 7→ a] as

v [x 7→ a](y) =

{
a if y = x

v(y) otherwise

Definition A.11. Let M be an L-structure and v an M-evaluation. We define the values
of terms and the truth values of formulae in M for an M-evaluation v as:

‖x‖LM,v = v(x)
‖F (t1, . . . , tn)‖LM,v = FM(‖t1‖LM,v , . . . , ‖tn‖LM,v) for each F ∈ F
‖P (t1, . . . , tn)‖LM,v = PM(‖t1‖LM,v , . . . , ‖tn‖LM,v) for each P ∈ P
‖c(ϕ1, . . . , ϕn)‖LM,v = cL(‖ϕ1‖LM,v , . . . , ‖ϕn‖LM,v) for each connective c

‖(∀x)ϕ‖LM,v = inf
a∈M

‖ϕ‖LM,v [x→a]

‖(∃x)ϕ‖LM,v = sup
a∈M

‖ϕ‖LM,v [x→a]

If an infimum or supremum does not exist, we consider its value as undefined. We
say that a structure M is safe if and only if ‖ϕ‖LM,v is defined for each formula ϕ and
each M-evaluation v . Note that, in a standard MTL4-algebra (or more generally in any
MTL4-algebra whose lattice reduct is a complete lattice), the safeness of a structure is a
superfluous condition, as the suprema and infima of all sets exist.
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Definition A.12. A formula ϕ is valid in a structure M (denoted as M |= ϕ) if
‖ϕ‖LM,v = 1 for each M-evaluation v . A structure M is a model of a theory T if M |= ϕ
for each ϕ in T .

Finally we present the (strong) completeness theorem which relates syntactical and
semantical aspects of the first-order MTL4 logic (see [54, 33] for a proof). Recall that
the direction from provability to validity is usually called soundness, whereas the converse
direction one is called completeness.

Theorem A.13. Let T be a theory and ϕ a formula. Then the following are equivalent:

1. T ` ϕ.

2. M |= ϕ for each MTL4-chain L and each safe L-model M of T .

3. M |= ϕ for each standard MTL4-chain L and each L-model M of T .

Thus by (1)⇒(2) we get that if a formula is provable in a given theory T , then it is
valid in all models of T over all MTL4-chains. Conversely, by (3)⇒(1) we get that if a
formula is valid in all models of T over all all standard MTL4-chains, then it is provable
in T .

B Fuzzy Class Theory: Basic definitions

In this section, we present an overview of Fuzzy Class Theory (FCT) in order to provide
the reader with the necessary background. Note that this is only a brief introduction to the
most basic concepts of FCT with the aim to keep the paper self-contained. Readers who
want to understand all proof details or even to make proofs in FCT themselves should
not expect to find all necessary material in this appendix. Instead, they are referred to
the freely available primer [7].

Fuzzy Class Theory has the aim to axiomatize the notion of fuzzy set. In the first
paper [5], it was based on the logic ÃLΠ [34]. In this paper, we use the logic MTL4;
obviously all definitions and basic results of [5] can be transferred from ÃLΠ to MTL4. For
an introduction to MTL4, see Appendix A (for a more extensive overview of propositional
MTL, see [33]; a more detailed treatment on first-order MTL4 with crisp equality can be
found in [43]).

Definition B.1. Fuzzy Class Theory (over MTL4) is a theory over multi-sorted first-
order logic MTL4 with crisp equality. We have sorts for individuals of the zeroth order
(i.e., atomic objects) denoted by lowercase variables a, b, c, x, y, z, . . . ; individuals of the
first order (i.e., fuzzy classes) denoted by uppercase variables A, B, X, Y, . . . ; individuals
of the second order (i.e., fuzzy classes of fuzzy classes) denoted by calligraphic variables
A,B,X ,Y , . . . ; etc. Individuals ξ1, . . . , ξk of each order can form k-tuples (for any k ≥ 0),
denoted by 〈ξ1, . . . , ξk〉; tuples are governed by the usual axioms known from classical
mathematics (e.g., that tuples equal if and only if their respective constituents equal).
Furthermore, for each variable x of any order n and for each formula ϕ there is a class
term {x | ϕ} of order n + 1.

Besides the logical predicate of identity, the only primitive predicate is the membership
predicate ∈ between successive sorts (i.e., between individuals of the n-th order and
individuals of the (n + 1)-st order, for any n).8 The axioms for ∈ are the following (for
variables of all orders):

8By this requirement, Russell’s paradox is avoided in a similar fashion as in type theory [65].
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(∈1) y ∈ {x | ϕ(x)} ↔ ϕ(y), for each formula ϕ (comprehension axioms)

(∈2) (∀x)4(x ∈ A ↔ x ∈ B) → A = B (extensionality)

Notice that for proving theorems of FCT from the axioms, we have to use the logic
MTL4 rather than classical Boolean logic.

Observation B.2. Since the language of FCT is the same at each order, defined symbols
of any order can be shifted to all higher orders as well. Since furthermore the axioms of
FCT have the same form at each order, all theorems on FCT-definable notions are pre-
served by uniform upward order-shifts.

Convention B.3. For better readability, let us make the following conventions:

• We use the notations (∀x ∈ A)ϕ, (∃x ∈ A)ϕ as abbreviations for (∀x)(x ∈ A → ϕ)
and (∃x)(x ∈ A & ϕ), respectively.

• The notation {x ∈ A | ϕ} is short for {x | x ∈ A & ϕ}.
• We use {〈x1, . . . , xk〉 | ϕ} as abbreviation for

{x | (∃x1) . . . (∃xk)(x = 〈x1, . . . , xk〉& ϕ)}.

• The formulae ϕ & . . . & ϕ (n times) are abbreviated ϕn; instead of (x ∈ A)n, we
can write x ∈n A (analogously for other predicates).

• Furthermore, x /∈ A is shorthand for ¬(x ∈ A); analogously for other binary predi-
cates.

• We use Ax and Rx1 . . . xn synonymously for x ∈ A and 〈x1, . . . , xn〉 ∈ R, respec-
tively.

• A chain of implications ϕ1 → ϕ2, ϕ2 → ϕ3, . . . , ϕn−1 → ϕn will for short be written
as ϕ1 −→ ϕ2 −→ · · · −→ ϕn; analogously for the equivalence connective.

Definition B.4. In FCT, we define the following elementary fuzzy set operations:

∅ =df {x | 0} empty class
V =df {x | 1} universal class

Ker(A) =df {x | 4(x ∈ A)} kernel
A ∩B =df {x | x ∈ A & x ∈ B} intersection
A uB =df {x | x ∈ A ∧ x ∈ B} min-intersection
A tB =df {x | x ∈ A ∨ x ∈ B} max-union
A \B =df {x | x ∈ A & x /∈ B} difference

Definition B.5. Further we define in FCT the following elementary relations between
fuzzy sets:

Norm(A) ≡df (∃x)4(x ∈ A) normality
Crisp(A) ≡df (∀x)4(x ∈ A ∨ x /∈ A) crispness

A ⊆ B ≡df (∀x)(x ∈ A → x ∈ B) inclusion
A u B ≡df (A ⊆ B) & (B ⊆ A) (strong) bi-inclusion
A ≈ B ≡df (∀x)(x ∈ A ↔ x ∈ B) weak bi-inclusion
A ‖ B ≡df (∃x)(x ∈ A & x ∈ B) compatibility
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Definition B.6. The union and intersection of a class of classes are functions defined as⋃
A =df {x | (∃A ∈ A)(x ∈ A)}

⋂
A =df {x | (∀A ∈ A)(x ∈ A)}

Definition B.7. In FCT, we define the following operations:

R ← A =df {x | (∃y)(y ∈ A & Rxy)} pre-image
R ◦ S =df {〈x, y〉 | (∃z)(Rxz & Szy)} composition
R−1 =df {〈x, y〉 | Ryx} converse relation

Id =df {〈x, y〉 | x = y} identity relation

The following lemma lists a collection of results that are helpful in this paper.

Lemma B.8. The following results are provable in FCT:

(L4) ϕ & (ψ → χ) → ((ϕ → ψ) → χ)

(L5)
⋃{B | ϕ(B)} ⊆ A ↔ (∀B)(ϕ(B) → B ⊆ A)

(L6) A ⊆ ⋂{B | ϕ(B)} ↔ (∀B)(ϕ(B) → A ⊆ B)

(L7) ϕ(C) → ⋂{B | ϕ(B)} ⊆ C

(L8) ϕ(C) → C ⊆ ⋃{B | ϕ(B)}
(L9) (∀x)(ϕ ∧ ψ) ↔ (∀x)ϕ ∧ (∀x)ψ

(L10) (∃x)(ϕ ∨ ψ) ↔ (∃x)ϕ ∨ (∃x)ϕ

(L11) (∃x)(ϕ ∧ ψ) → (∃x)ϕ ∧ (∃x)ψ

(L12) (∃x)(ϕ & ψ) → (∃x)ϕ & (∃x)ψ

(L13) (∀x)ϕ ∨ (∀x)ψ → (∀x)(ϕ ∨ ψ)

(L14) (∃x)(ϕ & χ) ↔ (∃x)ϕ & χ, where x is not free in χ

(L15) (∀x)ϕ & (∀x)ψ → (∀x)(ϕ & ψ)

(L16) (∀x ∈ A)(χ → ψ) → (χ → (∀x ∈ A)ψ), where x is free in χ

(L17) (∀x ∈ A)(ϕ → ψ) → ((∀x ∈ A)ϕ → (∀x ∈ A ∩ A)ψ)

(L18) (∀x ∈ A)(ϕ → ψ) → ((∃x ∈ A ∩ A)ϕ → (∃x ∈ A)ψ)

The models of FCT are systems (closed under definable operations) of fuzzy sets (and
fuzzy relations) of all orders over some crisp universe U , where the membership functions
of fuzzy subsets take values in some MTL4-chain (see [33] and Appendix A). Intended
models are those which contain all fuzzy subsets and fuzzy relations over U (of all orders);
we call such models full. Models in which moreover the MTL4-chain is standard (i.e.,
given by a left-continuous t-norm on the unit interval [0, 1]) correspond to Zadeh’s [69]
original notion of fuzzy set; therefore we call them Zadeh models.

FCT is sound with respect to Zadeh (or full) models; thus, whatever we prove in FCT
is true about real-valued (or L-valued for any MTL4-chain L) fuzzy sets and relations.
Although the theory of Zadeh models is not completely axiomatizable,9 the axiomatic
system of FCT approximates it very well: the comprehension axioms ensure the existence
of (at least) all fuzzy sets which are definable (by a formula of FCT), and the axioms of
extensionality ensure that fuzzy sets are determined by their membership functions. This
axiomatization is sufficient for almost all practical purposes; it can be characterized as
simple type theory over fuzzy logic (cf. [59]) or Henkin-style higher-order fuzzy logic.

9Due to Gödel’s Incompleteness Theorem [37], as natural numbers are definable in Zadeh models over
MTL4.
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[47] U. Höhle and N. Blanchard. Partial ordering in L-underdeterminate sets. Information
Sciences, 35(2):133–144, 1985.

[48] J. Jacas and J. Recasens. Fuzzified properties of fuzzy relations. In Proceedings of
the 9th IPMU Conference, volume 1, pages 157–161, Annecy, 2002.

[49] S. Jenei and F. Montagna. A proof of standard completeness for Esteva and Godo’s
logic MTL. Studia Logica, 70(2):183–192, 2002.

[50] E. E. Kerre, editor. Introduction to the Basic Principles of Fuzzy Set Theory and
Some of Its Applications. Communication and Cognition, Gent, 1993.

[51] F. Klawonn. Fuzzy sets and vague environments. Fuzzy Sets and Systems, 66:207–
221, 1994.

[52] F. Klawonn and J. Castro. Similarity in fuzzy reasoning. Mathware and Soft Com-
puting, 3(2):197–228, 1995.

[53] R. Kruse, J. Gebhardt, and F. Klawonn. Foundations of Fuzzy Systems. John Wiley
& Sons, New York, 1994.

[54] F. Montagna and H. Ono. Kripke semantics, undecidability and standard complete-
ness for Esteva and Godo’s logic MTL∀. Studia Logica, 71(2):227–245, 2002.

[55] N. N. Morsi, W. Lotfallah, and M. El-Zekey. The logic of tied implications, part 2:
Syntax. Fuzzy Sets and Systems, 157:2030–2057, 2006.

[56] M. Nachtegael and E. E. Kerre. Classical and fuzzy approaches towards mathematical
morphology. In E. E. Kerre and M. Nachtegael, editors, Fuzzy Techniques in Image
Processing, volume 52 of Studies in Fuzziness and Soft Computing, chapter 1, pages
3–57. Physica-Verlag, Heidelberg, 2000.

[57] M. Nachtegael, E. E. Kerre, and A. M. Radzikowska. On links between fuzzy mor-
phology and fuzzy rough sets. In Proceedings of 8th IPMU Conference, volume 3,
pages 1381–1388, Madrid, 2000.

[58] H. Nguyen and E. Walker. A First Course in Fuzzy Logic. CRC Press, Boca Raton,
1997.

[59] V. Novák. On fuzzy type theory. Fuzzy Sets and Systems, 149(2):235–273, 2004.

151



[60] S. V. Ovchinnikov. Stucture of fuzzy binary relations. Fuzzy Sets and Systems,
6:169–195, 1981.

[61] S. V. Ovchinnikov. An introduction to fuzzy relations. In D. Dubois and H. Prade,
editors, Fundamentals of Fuzzy Sets, volume 7 of The Handbooks of Fuzzy Sets, pages
233–259. Kluwer Academic Publishers, Boston, 2000.
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Relational compositions in Fuzzy
Class Theory
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Abstract: We present a method for mass proofs of theorems of certain forms in a formal
theory of fuzzy relations and classes. The method is based on formal identification of fuzzy
classes and inner truth values with certain fuzzy relations, which allows transferring basic
properties of sup-T and inf-R compositions to a family of more than 30 composition-
related operations, including sup-T and inf-R images, pre-images, Cartesian products,
domains, ranges, resizes, inclusion, height, plinth, etc. Besides yielding a large number
of theorems on fuzzy relations as simple corollaries of a few basic principles, the method
provides a systematization of the family of relational notions and generates a simple
equational calculus for proving elementary identities between them, thus trivializing a
large part of the theory of fuzzy relations.

Keywords: Fuzzy relation, sup-T-composition, inf-R-composition, BK-product, fuzzy
class theory, formal truth value. MSC 2000: 03E72, 03E70.

1 Introduction

The theory of fuzzy relations is a prerequisite to any other discipline of fuzzy mathematics.
In this paper we show a method for mass proofs of theorems of certain forms in a formal
theory of fuzzy relations. The method is based on transferring the properties of sup-T
and inf-R relational compositions [42, 2] to a family of related notions in the theory of
fuzzy sets and relations. We work in the formal framework of higher-order fuzzy logic,
also known as Fuzzy Class Theory (FCT), introduced in [12]; we follow the methodology
of [15].

Some part of the method we employ has already been briefly and informally sketched
in Bělohlávek’s book [18, Remark 6.16]. Our formal setting allows us to extend it to a
larger family of notions and exploit the analogies between composition-related notions
systematically, thus obtaining a large number of theorems on fuzzy relations for free.
Furthermore, the syntactical apparatus of FCT makes it possible to show the soundness
of this method by means of formal interpretations [9].

In consequence of methodological assumptions of deductive fuzzy logic explained
in [10], our framework is constrained by certain requirements. First, our fuzzy sets can
only take membership degrees in MTL4-algebras [23] (possibly expanded by additional
operators). In particular, if the system of membership degrees is the real unit interval
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[0, 1], then our conjunction is bound to be a left-continuous t-norm ∗ and implication its
residuum ⇒. Thus we do not deal with more general conjunctive or implicational oper-
ators, such as mean conjunctions, Kleene–Dienes or early Zadeh implication, etc., which
have also been considered for relational products [2]. Secondly, we always assume that
we work over a fixed crisp ground set V . That is, our atomic objects (urelements) x are
always elements of V (so for all x means actually for all x ∈ V ); our fuzzy sets are always
elements of the system F(V ) of all fuzzy subsets of V (so their membership functions are
defined for all x ∈ V ); our n-ary fuzzy relations are elements of F(V n); our second-order
fuzzy sets are elements of F(F(V )), or F(⋃∞

n=1F(V n)
)

if fuzzy sets of fuzzy relations are
considered; etc.

For simplicity, our exposition only deals with homogeneous binary fuzzy relations.
Nevertheless, the results can easily be extended to heterogeneous binary fuzzy rela-
tions (see Remarks 4.10 and 5.6); a further extension to fuzzy relations of larger arities is
hinted at in Remark 5.23.

The paper presents an application of formal methods of FCT to fuzzy relational no-
tions; hence it is inevitably loaded with heavy formalism. Its details may therefore be
hard to follow for readers unfamiliar with the apparatus of FCT or formal fuzzy logic.
Nevertheless, some of the results and the general picture of interrelations between the
composition-based notions might still be of interest to readers who are not interested in
formalistic details. Therefore we shall first give an informal account of the methods pre-
sented in the paper and indicate which parts of the paper could be relevant for a broader
audience.

The basic idea of the paper is to systematically exploit the similarity of the definitions
of several fuzzy relational concepts. For instance, the definition of sup-T-composition of
fuzzy relations, which in the traditional style of fuzzy mathematics reads

(R ◦ S)xy =
∨
z

Rxz ∗ Szy, (1)

is very similar to the definitions of the preimage and image of a fuzzy set under a fuzzy
relation, which read, respectively,

(R ←A)x =
∨
z

Rxz ∗ Az (2)

(S →A)y =
∨
z

Az ∗ Szy (3)

(where ∗ is a left-continuous t-norm). As observed in [18, Remark 6.16], the similarity
extends to the point that many properties of sup-T-composition transfer to the proper-
ties of images and preimages. By formalization of the definitions in a suitable formal
framework (viz, that of FCT), we are able to delimit a class of relational notions (listed
in Tables 1–5 below) and a class of their properties that transfer automatically, without
the need of separate proofs.

Obviously the reason why many properties of sup-T-compositions transfer to images
and preimages is the same form of the definitions (1)–(3), the only difference being the
absence of one of the variables occurring in (1) from the formulae (2) and (3). The
definitions (2) and (3) can actually be reduced to instances of (1), by substituting a dummy
object 0 for the variable to be eliminated from (1). By this trick, the fuzzy set A in the
definition of preimage becomes identified with a suitable fuzzy relation S, namely such S
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that Sz0 = Az and Szy = 0 for y 6= 0, where 0 is an arbitrarily chosen (but fixed)
element.

It turns out to be useful to employ this representation of a fuzzy set by a suitable fuzzy
relation systematically, as it will enable us to reduce several more notions to relational
compositions. Thus in general we identify a fuzzy set A with the fuzzy relation RA such
that

RAxy =

{
Ax if y = 0

0 otherwise

(in the following sections, the relation RA is denoted simply by A or even just A). The
operation of preimage then satisfies RR←A = R ◦RA, i.e., is represented as a special case
of R ◦ S (for S = RA). Simplifying the notation, we may write simply R ←A = R ◦ A.
Similarly, the operation of image satisfies RR→A = RT ◦RA (or simply R →A = RT ◦A),
where RT is the transposition of R, i.e., RTxy = Ryx (the transposition is needed for
substituting 0 for the first rather than second variable in the definition of R ◦S, to match
with the definition of R →A).

With the identification of A and RA, we can extend the compositional representation
to further notions, for instance the Cartesian product of two fuzzy sets,

(A×B)xy = Ax ∗By.

This is done by substituting the dummy object 0 for the variable z in the definition (1)
of R ◦ S (notice that

∨
z becomes void if z is fixed to the single element 0), which yields

A × B = RA ◦ RT
B, or simply A × B = A ◦ BT. The properties of sup-T-compositions

(e.g., associativity) thus automatically transfer to Cartesian products as well.
Besides fuzzy sets, single membership degrees can also be represented by suitable

fuzzy relations: namely, if both arguments in Rxy are replaced by 0, then the expression
R00 denotes the particular membership degree of the single pair 00 in R. Conversely, a
membership degree α can be represented by a fuzzy relation Rα defined as

Rαxy =

{
α for x = y = 0

0 otherwise.

(Again, in the following sections we simply write α or just α instead of Rα.) This
representation of membership degrees by fuzzy relations yields further composition-based
relational notions, obtained by replacing more than one variable by the dummy object 0
in (1).

For instance, replacing all three variables x, y, z in (1) by 0 will yield the conjunction ∗
of truth degrees, as clearly Rα∗β = Rα ◦Rβ (notice that

∨
z is again void as z is fixed to

the single value 0). Similarly, by setting x = z = 0 (or y = z = 0) we obtain the operation
of α-resize αA, defined as (αA)x = α ∗ Ax for all x, satisfying, as again the supremum
over z = 0 is void, RαA = Rα ◦RA, or simply αA = α ◦ A. Finally, by setting x = y = 0
in (1) we obtain the graded relation of compatibility (or the height of intersection) of two
fuzzy sets,

(A ‖ B) =
∨
z

(Az ∗Bz),

with RA‖B = RT
A ◦RB.

Further useful notions can be obtained, e.g., by substituting the maximal fuzzy set,
i.e., the fuzzy set V such that V x = 1 for all x, for some of the arguments in the above
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definitions. Thus, e.g., the graded property of height of a fuzzy set,

Hgt A =
∨
z

Az,

arises as V ‖ A, i.e., RHgt A = RT
V ◦RA, or Hgt A = V T ◦ A. Similarly the domain and

range of a fuzzy relation R are defined as R←V and R→V , respectively, i.e., Dom R = R◦V
and Rng R = RT ◦ V .

Such properties of sup-T-composition that are preserved under restricting its argu-
ments to relations of the form RA or Rα then automatically transfer to all members of
the above family of notions. Among such properties are, e.g., the associativity of ◦, its
monotony with respect to fuzzy inclusion, its invariance or monotony under unions and
intersections, etc. Representing the family of notions as special cases of composition thus
yields a mass proof method for their properties, as it is only necessary to prove such
properties for the single notion of sup-T-composition ◦; their validity for the whole family
of derived notions then follows automatically.

Furthermore, the associativity and transposition properties of sup-T-composition

(R ◦ S) ◦ T = R ◦ (S ◦ T ) (4)

(R ◦ S)T = ST ◦RT (5)

allow us to derive interrelations between the composition-based notions by simple equa-
tional calculations. For instance, R → (S →A) = (S ◦ R) →A is proved by the following
identities, which just apply (4) and (5) to the derived notions:

R → (S →A) = RT ◦ (ST ◦ A) = (RT ◦ ST) ◦ A = (S ◦R)T ◦ A = (S ◦R) →A.

The application of the simple rules (4), (5) to nested composition-based notions thus
yields an infinite number of easily derivable corollaries.

The method just described for sup-T-compositions can also be applied to other kinds of
fuzzy relational products—for instance, the BK-products, i.e., the inf-R-composition / and
the related products . and ¤, introduced by Bandler and Kohout in [2] and defined as

(R / S)xy =
∧
z

(Rxz ⇒ Szy) (6)

(R . S)xy =
∧
z

(Szy ⇒ Rxz) (7)

(R ¤ S)xy =
∧
z

((Rxz ⇒ Szy) ∧ (Szy ⇒ Rxz)) (8)

(where ⇒ is the residuum of the left-continuous t-norm ∗). The elimination of some
variables from (6)–(8), formally achieved by the same trick of substituting the dummy
object 0, produces a family of notions analogous to those based on sup-T-composition.
The family includes further well-known operations, such as:

• The graded inclusion of fuzzy sets (A ⊆ B) =
∧

z(Az ⇒ Bz), which can be repre-
sented as the BK-product RT

A /RB, or simply AT / B, and thus is the BK-analogue
of compatibility (A ‖ B) = AT ◦B

• The operation of plinth, Plt A =
∧

z Az = V T / A, which is the BK-analogue of
height Hgt A = V T ◦ A
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• The implication ⇒ itself, as Rα⇒β = Rα / Rβ: thus by our conventions, α ⇒ β can
also be written as α / β; it is the BK-analogue of the conjunction ∗.

The BK-analogues of the operations of image, preimage, Cartesian product, and α-resize
are also important and appear frequently in fuzzy mathematics (see Examples 5.9–5.14
below). The present approach systematizes these notions and suggests their systematic
names (e.g., /-image, .-preimage, etc.).

Again, the well-known properties of BK-products, such as their monotony with re-
spect to inclusion, their invariance or monotony under unions and intersections, etc., are
transferred to the whole family of BK-based notions. Furthermore, (4) and (5) jointly
with the identities valid for BK-products

(R / S)T = ST . RT

R / (S / T ) = (R ◦ S) / T

R / (S . T ) = (R / S) . T

enable us to derive interrelations between all sup-T and BK-based notions by easy equa-
tional calculations. The resulting simple equational calculus contains more than thirty
notions from both sup-T and BK families and covers a large part of the theory of fuzzy sets
and fuzzy relations. The calculus thus may serve as a basis for an automated generation
of a broad class of valid theorems on fuzzy sets and fuzzy relations.

The present paper carries out the above ideas in a rigorous manner within the formal
framework of Fuzzy Class Theory:

Section 2 briefly introduces the apparatus of FCT over the logic MTL4 and gives
definitions of the standard notions employed in the paper. It also contains several lemmata
needed later for proofs of some theorems; readers who are not interested in formal proofs
can safely skip them.

Section 3 gives a formal account of the representation of fuzzy sets A and membership
degrees α by the fuzzy relations RA and Rα (denoted there just A and α for the sake
of simplicity) and illustrates it on the matrix representation of fuzzy relations, under
which fuzzy sets correspond to (file) vectors and membership degrees to scalars. For
the representation of truth degrees, however, it is necessary first to internalize semantic
truth values within the theory: recall that FCT has no variables for truth degrees, so a
model that represents them by some FCT-defined fuzzy sets has to be constructed first.
The construction of inner truth values is important for many parts of fuzzy mathematics
formalized in FCT (cf. Remark 3.5). Nevertheless, the readers who are not interested
in metamathematical issues can safely skip the part on the internalization and simply
assume that we have the lattice L of truth values α at our disposal within the theory.

The formal definition of the family of notions based on sup-T-compositions is given
in Section 4, where the reduction to compositions is also illustrated by showing how they
work under the matrix and graph representations of fuzzy relations. The notions based
on BK-products are then treated in Section 5; their importance for fuzzy mathematics
is exemplified by Examples 5.9–5.14. The basic properties of sup-T-compositions are
given in Theorem 4.2 and Corollary 4.3, and those of BK-compositions in Theorem 5.3
and Corollary 5.4. Their automatic consequents for the derived notions are listed in
Corollaries 4.7–4.14 and 5.15–5.19. Independently of the formalism employed in their
derivation, these corollaries may be of interest for a broader fuzzy community as a reference
table listing a number of properties of fuzzy relational notions.
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2 Preliminaries

Fuzzy Class Theory FCT, introduced in [12], is an axiomatization of Zadeh’s notion of
fuzzy set in formal fuzzy logic. Here we use its variant defined over MTL4 [23], the logic
of all left-continuous t-norms enriched with the connective 4, since it is arguably [10] the
weakest fuzzy logic with good inferential properties for fully graded fuzzy mathematics
and its expressive power is sufficient for our needs. The results of the present paper are
readily transferable to any well-behaved extension of MTL4(formally, to any deductive
fuzzy logic in the sense of [10]), e.g., ÃLukasiewicz, product, or Gödel logic, Hájek’s basic
logic BL, etc. [30, 23].

We assume the reader’s familiarity with first-order MTL4; for details on this logic
see [23, 32]. We only recapitulate its standard [0, 1] semantics here:

& . . . any left-continuous t-norm ∗
→ . . . the residuum ⇒ of ∗, defined as x ⇒ y =df sup{z | z ∗ x ≤ y}
∧, ∨ . . . min, max
¬ . . . ¬x =df x ⇒ 0
↔ . . . bi-residuum: min(x ⇒ y, y ⇒ x)
4 . . . 4x =df 1− sgn(1− x)
∀, ∃ . . . inf, sup

For reference, the following definition lists the axioms of multi-sorted first-order MTL4
with crisp identity.

Definition 2.1. The language of multi-sorted first-order logic MTL4 with identity con-
sists of the binary connectives→, &, and ∧, unary connective4, propositional constant 0,
quantifiers ∀ and ∃, binary predicate =, an arbitrary fixed set of predicate and function
symbols of arbitrary arities, a pre-ordered set of sorts of variables, and countably many
variables of each sort. There are the following defined connectives:

ϕ ∨ ψ ≡df ((ϕ → ψ) → ψ) ∧ ((ψ → ϕ) → ϕ)

¬ϕ ≡df ϕ → 0

ϕ ↔ ψ ≡df (ϕ → ψ) ∧ (ψ → ϕ)

1 ≡df ¬0

The deduction rules of first-order MTL4 are the modus ponens (from ϕ and ϕ → ψ
infer ψ), 4-necessitation (from ϕ infer 4ϕ), and generalization (from ϕ infer (∀x)ϕ), for
all well-formed formulae ϕ and ψ of the given language.

The axioms of first-order MTL4 with crisp identity are the following, for all well-
formed formulae ϕ, ψ, χ of the given language:

(MTL1) (ϕ → ψ) → ((ψ → χ) → (ϕ → χ))
(MTL2) (ϕ & ψ) → ϕ
(MTL3) (ϕ & ψ) → (ψ & ϕ)
(MTL4a) (ϕ & (ϕ → ψ)) → (ϕ ∧ ψ)
(MTL4b) (ϕ ∧ ψ) → ϕ
(MTL4c) (ϕ ∧ ψ) → (ψ ∧ ϕ)
(MTL5a) (ϕ → (ψ → χ)) → ((ϕ & ψ) → χ)
(MTL5b) ((ϕ & ψ) → χ) → (ϕ → (ψ → χ))
(MTL6) ((ϕ → ψ) → χ) → (((ψ → ϕ) → χ) → χ)
(MTL7) 0 → ϕ
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(41) 4ϕ ∨ ¬4ϕ
(42) 4(ϕ ∨ ψ) → (4ϕ ∨4ψ)
(43) 4ϕ → ϕ
(44) 4ϕ →44ϕ
(45) 4(ϕ → ψ) → (4ϕ →4ψ)

(∀1) (∀x)ϕ(x) → ϕ(t) if t is substitutable for x in ϕ(x)
(∃1) ϕ(t) → (∃x)ϕ(x) if t is substitutable for x in ϕ(x)
(∀2) (∀x)(χ → ϕ(x)) → (χ → (∀x)ϕ(x)) if x is not free in χ
(∃2) (∀x)(ϕ(x) → χ) → ((∃x)ϕ(x) → χ) if x is not free in χ
(∀3) (∀x)(χ ∨ ϕ(x)) → (χ ∨ (∀x)ϕ(x)) if x is not free in χ

(=1) x = x
(=2) x = y → (ϕ(x) ↔ ϕ(y)) if y is substitutable for x in ϕ(x)

In (∀1)–(=2), x and y can be of any sort of variables in the given language. (Recall that
in multi-sorted logics, the definition of substitutability requires the compatibility of sorts
besides the usual conditions.)

By appropriate restrictions of language we get the propositional logics MTL4 or MTL
(without 4) and the first-order logics MTL4 or MTL, with or without crisp identity.

Convention 2.2. In order to save some parentheses, we apply usual rules of precedence
to propositional connectives of MTL4, namely, → and ↔ have lower priority than other
binary connectives, and unary connectives have the highest priority. We use the sign ≡
for equivalence-by-definition. A chain of implications ϕ1 → ϕ2, ϕ2 → ϕ3, . . . , ϕn−1 → ϕn

can be written as ϕ1 −→ ϕ2 −→ · · · −→ ϕn (and similarly for the equivalence connective).

Besides the axioms, we shall use the theorems of first-order MTL4 listed in [23, 16]
without mention, as they are standard instruments for proving in MTL4 (for more de-
tails on proof techniques in MTL4, see [13, 16]). Furthermore we shall need the following
lemmata:

Lemma 2.3. MTL4 proves:

1. 4¬ϕ ↔4(ϕ ↔ 0)

2. 4¬ϕ &4¬ψ →4(ϕ ↔ ψ)

3. ϕ & (χ → ψ) → (χ → ϕ & ψ)

4. ϕ & (ψ → χ) → ((ϕ → ψ) → χ)

5. (∃y)(∀x)ϕ → (∀x)(∃y)ϕ

6. χ & (∀x)ϕ → (∀x)(χ & ϕ)), if x is not free in χ.

Proof. 1. By (MTL7) and 4-necessitation, 4(0 → ϕ) is a theorem; thus 4¬ϕ ←→
(4(ϕ → 0) ∧4(0 → ϕ)) ←→4(ϕ ↔ 0).

2. By 1., 4¬ϕ → 4(ϕ ↔ 0) and 4¬ψ → 4(0 ↔ ψ), whence the statement follows
by the (4-necessitated) transitivity of ↔.

3. follows from the MTL-theorems ζ ←→ (1 → ζ) ←→ (1&ζ) and (ϑ → ϕ)&(ψ → χ) →
(ϑ & ψ → ϕ & χ) with 1 for ϑ.

4. is proved by the following chain of equivalences:
[(ϕ → ψ) & (ψ → χ) → (ϕ → χ)] ←→ [ϕ → ((ϕ → ψ) & (ψ → χ) → χ)] ←→
[ϕ → ((ψ → χ) → ((ϕ → ψ) → χ))] ←→ [(ϕ & (ψ → χ)) → ((ϕ → ψ) → χ)].
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5. From the instance (∀x)ϕ → ϕ of (∀1) we get (∀y)((∀x)ϕ → ϕ) by generalization,
whence (∃y)(∀x)ϕ → (∃y)ϕ follows by quantifier distribution. Generalization over x and
a quantifier shift completes the proof.

6. is proved by the following chain of equivalences and implications:
(∀x)(χ & ϕ → χ & ϕ) ←→ (∀x)(χ → (ϕ → χ & ϕ)) ←→ [χ → (∀x)(ϕ → χ & ϕ)] −→
[χ → ((∀x)ϕ → (∀x)(χ & ϕ))] ←→ [χ & (∀x)ϕ → (∀x)(χ & ϕ)]
by (MTL5a,b), (∀2), and quantifier distribution.

Lemma 2.4. The following shifts of relativized quantifiers (cf. Convention 2.6 below) are
provable in first-order MTL (with or without 4), if x is not free in χ and y is not free
in ϑ:

1. (∃y)(χ & (∀x)(ϑ → ϕ)) → (∀x)(ϑ → (∃y)(χ & ϕ))

2. (∀x)(ϕ → (χ → ψ)) ↔ (χ → (∀x)(ϕ → ψ))

3. (∀x)(ϕ → (ψ → χ)) ↔ ((∃x)(ϕ & ψ) → χ)

4. (∃x)(ϕ & (χ → ψ)) → (χ → (∃x)(ϕ & ψ))

5. (∃x)(ϕ & (ψ → χ)) → ((∀x)(ϕ → ψ) → χ)

Proof. 1. is proved by the following chain of implications based respectively on Lemma 2.3,
statements (6, 5, 3), and the shift of ∃ over implication:
(∃y)(χ & (∀x)(ϑ → ϕ)) −→ (∃y)(∀x)(χ & (ϑ → ϕ)) −→ (∀x)(∃y)(χ & (ϑ → ϕ)) −→
(∀x)(∃y)(ϑ → χ & ϕ) −→ (∀x)(ϑ → (∃y)(χ & ϕ)).

2. follows from the following chain of equivalences:

(∀x)(ϕ → (χ → ψ)) ←→ (∀x)(χ → (ϕ → ψ)) ←→ (χ → (∀x)(ϕ → ψ))

3.–5. follow in a similar way from (MTL5a,b), Lemma 2.3(3) and Lemma 2.3(4),
respectively, by usual quantifier shifts.

We now proceed to the definition of the apparatus of Fuzzy Class Theory (i.e., Henkin-
style higher-order fuzzy logic) over MTL4.

Definition 2.5. Fuzzy Class Theory FCT is a formal theory over a multi-sorted first-order
deductive fuzzy logic (in this paper, MTL4), with the sorts of variables for

• Atomic objects (‘urelements’), denoted by lowercase letters x, y, . . .

• Fuzzy classes of atomic objects (uppercase letters A,B, . . . )

• Fuzzy classes of fuzzy classes of atomic objects (calligraphic letters A,B, . . . )

• Etc., in general for fuzzy classes of the n-th order (X(n), Y (n), . . . )

Besides the crisp identity predicate =, the language of FCT contains:

• The membership predicate ∈ between objects of successive sorts

• Class terms {x | ϕ} of order n + 1, for any formula ϕ and any variable x of any
order n

• Symbols 〈x1, . . . , xk〉 for k-tuples of individuals x1, . . . , xk of any order
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FCT has the following axioms (for all formulae ϕ and variables of any order):

• The logical axioms of multi-sorted first-order logic MTL4 with crisp identity

• The tuple-identity axioms (for all k): 〈x1, . . . , xk〉 = 〈y1, . . . , yk〉 → x1 = y1 & . . . &
xk = yk

• The comprehension axioms : y ∈ {x | ϕ(x)} ↔ ϕ(y)

• The extensionality axioms : (∀x)4(x ∈ A ↔ x ∈ B) → A = B

The models of FCT are systems (closed under definable operations) of fuzzy sets of
all orders over a fixed crisp universe of discourse, with truth degrees taking values in an
MTL4-chain L (e.g., the interval [0, 1] equipped with a left-continuous t-norm). Thus all
theorems on fuzzy classes provable in FCT are true statements about L-valued fuzzy sets,
for any MTL4-chain L.

For details on the apparatus of FCT we refer the reader to [12, 14] or a freely available
primer [16]. Peculiar properties of fuzzy mathematics axiomatized over formal fuzzy logic
are described in [17]. The following features of FCT are worth mentioning here:

• In FCT, fuzzy sets are rendered as a primitive notion, rather than modeled by
membership functions. In order to capture this distinction, the objects of FCT
are called fuzzy classes rather than fuzzy sets; the name fuzzy set is reserved for
membership functions in the models of the theory.1 Nevertheless, since FCT is sound
w.r.t. models formed of all fuzzy subsets, the reader can always safely substitute
fuzzy sets for our classes.

• Not only the membership predicate ∈, but all defined notions of FCT are in gen-
eral fuzzy (unless they are defined as provably crisp). FCT thus presents a fully
graded approach to fuzzy mathematics. The importance of full gradedness in fuzzy
mathematics is explained in [16, 11, 8]: its main merit is in that it allows inferring
relevant information even when a property of fuzzy sets is not fully satisfied.

• Since FCT is a formal theory over the fuzzy logic MTL4, its theorems have to be
derived by the rules of MTL4 rather than classical Boolean logic which is used
in usual mathematical theories. For details on proving theorems in FCT see [16]
or [13].

• Since the language and axioms of FCT have the same form for all orders of fuzzy
classes, it is sufficient to formulate conventions, definitions, and theorems only for
the lowest order, as they can be propagated to all higher orders automatically.

Convention 2.6. In formulae of FCT, we employ usual abbreviations known from clas-
sical and fuzzy mathematics, including the following ones:

1The difference between fuzzy sets and classes is not just terminological: due to the first-order axiom-
atization, some fuzzy subsets may be missing from a model of FCT. An extreme example is provided
by models consisting only of crisp subsets: it can be observed that they satisfy all axioms of FCT
over MTL4. Such non-intended models can be excluded by additional axioms ensuring the existence of
non-crisp classes.
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Ax ≡df x ∈ A
x1 . . . xk =df 〈x1, . . . , xk〉

x /∈ A ≡df ¬(x ∈ A), and similarly for 6=
(∀x ∈ A)ϕ ≡df (∀x)(x ∈ A → ϕ)
(∃x ∈ A)ϕ ≡df (∃x)(x ∈ A & ϕ)
{x ∈ A | ϕ} =df {x | x ∈ A & ϕ}

(∀τ)ϕ ≡df (∀z)(z = τ → ϕ),
for any term τ of the same sort as z, and z not free in ϕ

(∃τ)ϕ ≡df (∃z)(z = τ & ϕ), ”
{τ | ϕ} =df {z | z = τ & ϕ}, ”

{x1, . . . , xn} =df {z | z = x1 ∨ . . . ∨ z = xn}
t1 = · · · = tn ≡df (t1 = t2) & . . . & (tn−1 = tn)

ϕn ≡df ϕ & . . . & ϕ (n times)
y = F (x) ≡df Fxy, if 4(∀xyy′)(Fxy & Fxy′ → y = y′) is proved or assumed⋃

ϕ τ =df

⋃{τ | ϕ} for any term τ ,

and similarly for
⋂

(see Definition 2.12 for
⋃

,
⋂

)

Convention 2.7. Let ϕ be a propositional formula and let all propositional variables
that occur in ϕ be among p1, . . . , pk. The result of substitution of first-order formulae
ψ1, . . . , ψk respectively for the variables p1, . . . , pk in ϕ(p1, . . . , pk) will be symbolized by
ϕ(ψ1, . . . , ψk).

Definition 2.8. In FCT, we define the following class constants and operations:

∅ =df {x | 0} empty class
V =df {x | 1} universal class

Ker A =df {x | 4Ax} kernel
−A =df {x | ¬Ax} complement

A−B =df {x | Ax & ¬Bx} difference
A ∩B =df {x | Ax & Bx} (strong) intersection

A ∩∧ B =df {x | Ax ∧Bx} min-intersection
A ∪∨ B =df {x | Ax ∨Bx} max-union

Generally for any propositional formula ϕ(p1, . . . , pk) of MTL4 we define the correspond-
ing class operation

Opϕ(A1, . . . , Ak) =df {x | ϕ(A1x, . . . , Akx)}
Example 2.9. A ∩B = Opp&q(A,B), −A = Op¬p(A), Ker A = Op4p(A), ∅ = Op0, etc.

Definition 2.10. In FCT, we define the following elementary relations between fuzzy
classes:

A ⊆ B ≡df (∀x)(Ax → Bx) inclusion
A ≈ B ≡df (∀x)(Ax ↔ Bx) weak bi-inclusion

A ⊆4 B ≡df (∀x)4(Ax → Bx) crisp inclusion
A ‖ B ≡df (∃x)(Ax & Bx) compatibility

Hgt(A) ≡df (∃x)Ax height
Crisp(A) ≡df (∀x)4(Ax ∨ ¬Ax) crispness

Generally for any propositional formula ϕ(p1, . . . , pk) of MTL4 we define two induced
elementary relations between fuzzy classes

Rel∀ϕ(A1, . . . , Ak) ≡df (∀x)ϕ(A1x, . . . , Akx)

Rel∃ϕ(A1, . . . , Ak) ≡df (∃x)ϕ(A1x, . . . , Akx)
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Example 2.11. (A ⊆ B) ≡ Rel∀p→q(A,B) and Hgt(A) ≡ Rel∃p(A) by definition, and

(A = B) ↔ Rel∀4(p↔q)(A, B) by the axiom of extensionality.

Metatheorems of [12, §3.4] reduce proofs of a broad class of theorems on elementary
operations and relations between fuzzy classes to simple propositional calculations. In
the present paper we shall freely use corollaries of these metatheorems (like A ∩ B ⊆ A,
Ker A ⊆ A, etc.), as their direct proofs in FCT are easy anyway.

Definition 2.12. In FCT, we define the following higher-order fuzzy class operations:

⋃A =df {x | (∃A ∈ A)(x ∈ A)} class union⋂A =df {x | (∀A ∈ A)(x ∈ A)} class intersection
Pow A =df {X | X ⊆ A} power class

Definition 2.13. In FCT, we define the following relational operations:

A×B =df {xy | Ax & By} Cartesian product
Dom(R) =df {x | Rxy} domain
Rng(R) =df {y | Rxy} range

R →A =df {y | (∃x)(Ax & Rxy)} image
R ←B =df {x | (∃y)(By & Rxy)} pre-image

RT =df {xy | Ryx} transposition
Id =df {xy | x = y} identity relation
An =df {x1 . . . xn | Ax1 & . . . & Axn} Cartesian power

In particular, Vn is the class of all n-tuples of atomic objects. Subclasses of Vn are
called n-ary fuzzy relations ; the condition that a class R is an n-ary relation is expressed
by the formula R ⊆4 Vn. Instead of “unary relations” we usually speak simply of fuzzy
classes, unless we want to stress the distinction from the general meaning of the term
“class”, which includes relations of arities larger than one.2

Since all classes in FCT are in principle fuzzy, we often omit the word “fuzzy” and
speak simply of classes and relations, meaning “fuzzy (including possibly crisp) classes or
relations”. Since crisp classes are just a special kind of fuzzy classes, we do not distinguish
operations on crisp relations from their counterparts operating on fuzzy relations (unlike
certain traditions in the theory of fuzzy relations), and use the same symbols for both
kinds of arguments; if necessary, the crispness of arguments can explicitly be expressed
in the formula by means of the predicate Crisp introduced in Definition 2.10.

The operation of transposition (see Definition 2.13) applied to R yields its converse
relation RT. The following simple properties of transposition will be needed in subsequent
sections:

Proposition 2.14. FCT proves:

1. RTT = R

2. R ⊆4 Id → RT = R

2Formally, we should explicitly mark the arities of variables in all formulae. We omit the arity marks
for better readability, since usually the arities are either immaterial or determined by the context. If
needed, the arity of a variable can be expressed by the formula x ∈ Vn if x is a variable just for n-tuples
of objects, or x ∈ V if x is a variable for objects of any arity. The lowercase variables in Definitions 2.8–
2.13 are universal (i.e., represent any tuples of objects), the defined notions can therefore be applied to
fuzzy relations as well as classes.
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3. For any propositional formula ϕ(p1, . . . , pn),

Rel∀ϕ(RT
1 , . . . , RT

n ) ↔ Rel∀ϕ(R1, . . . , Rn)

Rel∃ϕ(RT
1 , . . . , RT

n ) ↔ Rel∃ϕ(R1, . . . , Rn)

In particular, R ⊆ S ↔ RT ⊆ ST and R = S ↔ RT = ST.

4. (Opϕ(R1, . . . , Rn))T = Opϕ(RT
1 , . . . , RT

n ) for any propositional formula ϕ(p1, . . . , pn).

In particular, (R ∩ S)T = RT ∩ ST, (−R)T = −(RT), ∅T = ∅, etc.

5.
⋃

R∈A
RT =

( ⋃
R∈A

R
)T

,
⋂

R∈A
RT =

( ⋂
R∈A

R
)T

Proof. 1. By definition, xy ∈ RTT ←→ yx ∈ RT ←→ xy ∈ R; therefore, by the axiom of
extensionality, RTT = R.

2. For arbitrary x, y we take the following crisp cases:3 if x = y, then Rxy ↔ Ryx
by the axiom of identity (=2); if x 6= y, then 4¬Rxy & 4¬Ryx by the assumption
R ⊆4 Id, hence Rxy ↔ Ryx by Lemma 2.3(2). In both cases we have Rxy ↔ RTxy, so
by 4-necessitation, generalization, and the axiom of extensionality we get R = RT.

3. By renaming bound variables we get (∀xy)ϕ(R1yx, . . . , Rnyx) ↔ (∀yx)ϕ(R1xy, . . . ,
Rnxy), and similarly for Rel∃ϕ.

4. By expanding the definitions we get xy ∈ (Opϕ(R1, . . . , Rn))T ←→ ϕ(R1yx, . . . ,
Rnyx) ←→ ϕ(RT

1 xy, . . . , RT
nxy) ←→ xy ∈ Opϕ(RT

1 , . . . , RT
n ).

5. xy ∈ ⋃
R∈A RT ←→ (∃R ∈ A)(yx ∈ R) ←→ yx ∈ ⋃

R∈A R ←→ xy ∈ (⋃
R∈A R

)T
,

and analogously for
⋂

.

3 Representation of fuzzy classes and truth values by

fuzzy relations

Fuzzy classes and truth values can be represented as fuzzy relations of a certain form,
as described below. This representation will allow us straightforwardly to apply the
properties of fuzzy relational compositions to many derived concepts which involve fuzzy
classes or truth values.

The identification of fuzzy classes and truth values with certain fuzzy relations will in
this paper be described only informally. It can, nevertheless, be carried out in a rigorous
formal way by means of syntactic interpretations of formal theories in FCT. We do not
elaborate the apparatus of interpretations here as it would make the paper too much
loaded with formalism, and simpler methods are sufficient for theorems stated in this
paper. Technical details on syntactic interpretations in FCT, including the interpretations
used for the identifications made in this paper, can be found in [9].

Convention 3.1. Let 0 be an arbitrarily chosen, but fixed, atomic object (i.e., an el-
ement of V1). The fuzzy class {0} (i.e., the crisp singleton of the urelement 0) will be
denoted by 1.

3Recall that the soundness of proofs by cases follows from the provability of (ϕ → χ) ∧ (ψ → χ) →
(ϕ ∨ ψ → χ) in MTL.
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Convention 3.2. A fuzzy class A ⊆4 V1 will be identified with the fuzzy relation A×1 =
{〈x, 0〉 | x ∈ A}. When representing the fuzzy class A, the fuzzy relation A × 1 will be
written as A (the same letter in boldface).

Obviously, the relation A×1 is isomorphic in a very natural sense to the original fuzzy
class A: each of the original elements x got replaced by a pair x0, but its membership
degree has not changed (Ax0 ≡ Ax); thus the structure of the fuzzy class has been
preserved. Consequently, all of its properties that do not refer to the actual names of its
elements have been preserved as well under this identification. Furthermore, the original
class A can uniquely be reconstructed from the relation A×1 as A = {x | 〈x, 0〉 ∈ A×1}.
Also the identity of classes is preserved under the translation, since A = B iff A×1 = B×1
(which follows easily from 〈x, 0〉 = 〈y, 0〉 ↔ x = y, one of the axioms for tuples). The
relations of the form A×1 thus faithfully represent fuzzy classes among fuzzy relations.4

This identification is quite natural and well-known. If the universe of discourse is finite,
consisting of elements x1, . . . , xn, fuzzy relations can be represented by (n × n)-matrices
of truth values, R = (Rxixj)ij:

R =




Rx1x1 Rx1x2 · · · Rx1xn

Rx2x1 Rx2x2 · · · Rx2xn
...

...
. . .

...
Rxnx1 Rxnx2 · · · Rxnxn




Assume that 0 denotes the element x1. The fuzzy class A is then identified with the
relation

A =




A0 0 · · · 0
Ax2 0 · · · 0

...
...

. . .
...

Axn 0 · · · 0




which by the usual convention of linear algebra can be written as the (file) vector n×1,

A =




A0
Ax2

...
Axn




Notice that Convention 3.2 just extends this representation in a formal way to arbitrary
(not only finite) fuzzy classes.

A similar trick will allow us to represent truth values as certain relations. First observe
that truth values can be internalized in FCT as subclasses of an arbitrary crisp singleton,
e.g., of 1, in the following way:

• The truth value of a formula ϕ is represented by the class ϕ =df {0 | ϕ}. Then by
definition, ϕ ⊆4 1 and ϕ ↔ (0 ∈ ϕ).

4In the language of formal interpretations we can describe this fact rigorously by observing that A 7→
A×1 is a faithful interpretation of the theory of fuzzy classes FCT2,2 (i.e., a fragment of FCT containing
only variables for atomic individuals and fuzzy classes) in the theory of binary fuzzy relations FCT2,3

(i.e., a fragment of FCT containing only variables for atomic individuals, pairs of atomic individuals, and
fuzzy classes). The interpretation provides a faithful translation between the properties of fuzzy classes
and the corresponding fuzzy relations. For details see [9].

165



• Vice versa, every α ⊆4 1 represents the truth value of a formula—e.g., of 0 ∈ α,
since (∀α ⊆4 1)(0 ∈ α = α) by Proposition 3.4(1) below.

The truth values are thus represented by subclasses of 1, where the truth value represented
is the degree of membership of 0 in the subclass. We shall therefore call the elements of
Ker Pow 1 the inner (or formal) truth values and denote them by lowercase Greek letters
α, β, . . . The system of formal truth values will for brevity’s sake be denoted by L:

L =df Ker Pow 1

The ordering of truth values is represented by the relation ⊆4 between their formal
counterparts: by Proposition 3.4(2) below, (ϕ → ψ) ↔ (ϕ ⊆ ψ) and (ϕ ↔ ψ) ↔ (ϕ ≈ ψ)
for any formulae ϕ and ψ. Furthermore, there is the following correspondence between
the propositional connectives and class operations on L:

ϕ & ψ = ϕ ∩ ψ

ϕ ∧ ψ = ϕ ∩∧ ψ

ϕ ∨ ψ = ϕ ∪∨ ψ

¬ϕ = 1 \ ϕ

0 = ∅, etc., in general:

c(ψ1, . . . , ψn) = 1 ∩Opc(p1,...,pn)(ψ1, . . . , ψn)

for any definable n-ary propositional connective c, by Proposition 3.4(3) below. Using

this correspondence, we can also denote the operations ∩,∩∧,∪∨, . . . on L by &,∧,∨, . . .
and call them formal connectives on inner truth values.

Since inner truth values represent the semantical concept of truth value within the the-
ory, we shall occasionally use the lattice-theoretical notation

∨
α∈A α and

∧
α∈A α instead

of (∃α ∈ A)(0 ∈ α) and (∀α ∈ A)(0 ∈ α), respectively, forA ⊆4 L. Proposition 3.4(4) be-
low shows that

∨
α∈A α and

∧
α∈A α respectively correspond to the union and intersection

of the class A ⊆4 L.

Remark 3.3. It should be noticed that in an L-valued model M of FCT (for an MTL4-
chain L), the lattice L of inner truth values need not coincide with the lattice L of semantic
truth values, but can be a proper sublattice of L: in general, only those elements of L are
represented in L which are the truth values of FCT-formulae in M. Thus, for instance, in
any standard model of FCT the system L of semantic truth values is the real unit interval
[0, 1]; however, crisp standard models of FCT (cf. footnote 1 on page 161) have only two
inner truth values, ∅ and 1.

It can also be observed that by the axioms of comprehension,
∨

α∈A α and
∧

α∈A α
exist for any class A ⊆4 L; thus FCT proves that L is a complete lattice, even though
the system L of semantic truth values need not in general be complete: recall that only the
safeness of the structure is required in the semantics of first-order fuzzy logic, i.e., the
existence of all suprema and infima that are the truth values of formulae (see [30] for
details). The difference is again due to the fact that the existence of suprema and infima
is only ensured for such subsets A of L which are represented in the model, rather than
all subsets of L.

Nevertheless, in the intended full models of FCT, i.e., those formed by all fuzzy
subsets, inner truth values correspond exactly to the semantical ones.

Now we give proofs of the statements mentioned above:
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Proposition 3.4. FCT proves:

1. (∀α ⊆4 1)(α = {0 | 0 ∈ α})

2. (ϕ → ψ) ↔ (ϕ ⊆ ψ) for any formulae ϕ and ψ

3. ϕ(ψ1, . . . , ψn) = 1 ∩Opϕ(ψ1, . . . , ψn), for any propositional formula ϕ(p1, . . . , pn)

4.
∨
α∈A

α =
⋃
α∈A

α and
∧
α∈A

α =
⋂
α∈A

α for any A ⊆4 L

Proof. 1. It is sufficient to prove x ∈ α ↔ (x = 0 & 0 ∈ α) from the assumption α ⊆ {0};
the result then follows by 4-necessitation and generalization. Now (x = 0 & 0 ∈ α) →
x ∈ α follows directly from the identity axioms, and x ∈ α → (x = 0 & 0 ∈ α) follows
(by taking crisp cases x = 0 and x 6= 0) from the assumption (∀x ∈ α)(x = 0).

2. By definitions, ϕ ⊆ ψ ←→ {0 | ϕ} ⊆ {0 | ψ} ←→
{x | x = 0 & ϕ} ⊆ {x | x = 0 & ψ} ←→ (∀x)((x = 0 & ϕ) → (x = 0 & ψ));
thus it is sufficient to prove

(ϕ → ψ) ↔ (∀x)((x = 0 & ϕ) → (x = 0 & ψ)) (9)

Now (ϕ → ψ) → ((x = 0 & ϕ) → (x = 0 & ψ)), from which the left-to-right direction
of (9) follows by generalization; vice versa, by specifying 0 for x in (9) we get: (9) −→
((0 = 0 & ϕ) → (0 = 0 & ψ)) ←→ (ϕ → ψ).

3. By definitions,

1 ∩Opϕ(ψ1, . . . , ψn) = {x | (x = 0) & ϕ((x = 0 & ψ1), . . . , (x = 0 & ψn))}

Denote the latter class by A and take crisp cases on x: if x 6= 0, then Ax ↔ 0 since
(x = 0) ↔ 0; if x = 0, then Ax ↔ (x = 0) & ϕ(ψ1, . . . , ψn) since (x = 0 & ψi) ↔ ψi for
all i. Thus in both cases Ax ↔ (x = 0) & ϕ(ψ1, . . . , ψn), i.e., A = {0 | ϕ(ψ1, . . . , ψn)} =
ϕ(ψ1, . . . , ψn).

4. If x = 0, then (∃α ∈ A)(x ∈ α) ↔ x = 0 & (∃α ∈ A)(x ∈ α); if x 6= 0, then
(∃α ∈ A)(x ∈ α) ↔ 0, since α ∈ A & x ∈ α −→ α ∈ L & x ∈ α −→ x = 0 by
A ⊆4 L and (∀α ∈ L)(α ⊆4 {0}). In both cases we have (∃α ∈ A)(x ∈ α) ↔ x = 0 &
(∃α ∈ A)(x ∈ α), thus

⋃
α∈A

α = {x | (∃α ∈ A)(x ∈ α)} = {x | x = 0 & (∃α ∈ A)(x ∈ α)} =
∨
α∈A

α

The proof for
∧

is analogous.

Remark 3.5. Inner truth values are an important construction in FCT (and generally
in any formal theory of fuzzy sets), neither limited to nor motivated by the purposes
of the present paper. The construction presented here is rather standard (cf., e.g., [41])
and shows, i.a., that FCT is strong enough to internalize its own semantics. By means of
inner truth values, usual semantical notions like membership functions can be defined and
investigated within the formal theory. However, since this is not the aim of the present
paper, we leave this topic aside and turn back to the representation of truth values by
fuzzy relations.
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Now as the truth values are represented by special fuzzy classes (viz, the subclasses of 1),
they can be identified with certain fuzzy relations by Convention 3.2. Namely, an inner
truth value α ⊆4 1 is identified with the fuzzy relation α × 1 = {〈0, 0〉 | 0 ∈ α}. By the
same convention, when representing the truth value α, the fuzzy relation α × 1 can be
denoted by boldface α.

Again, if the universe of discourse is finite and consists of elements 0, x2, . . . , xn, an
inner truth value α is identified with the relation

α =




α0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


 =




α0
0
...
0




which by usual conventions of linear algebra can be identified with the (1 × 1)-matrix
(or scalar)

(
α0

)
. (Recall that α0, i.e., 0 ∈ α, has the truth value that is represented by α.

In the informal matrix expressions, we shall write just α instead of α0 further on.)
It can again be noticed that the apparatus of Fuzzy Class Theory employed here just

extends the usual correspondence between fuzzy relations, sets, and truth values on the
one hand and matrices, vectors, and scalars of truth values on the other hand, to arbitrary
(not only finite) fuzzy relations and classes, and provides a uniform way of formal handling
thereof. In particular, the reduction of fuzzy classes and truth values to fuzzy relations
will allow us to extend the apparatus of sup-T and inf-R compositions of fuzzy relations to
fuzzy classes and truth values, apply the results on compositions to a rich variety of derived
notions, and get the proofs of their properties for free.

We conclude this section with some conventions and observations that will be useful
later.

Convention 3.6. Unless explicitly said otherwise, we shall always assume that R, S, or T
(possibly subscripted) denote fuzzy relations ⊆4 V2; A, B, or C (possibly subscripted)
denote unary classes ⊆4 V1; and α, β, γ (possibly subscripted) denote inner truth values
⊆4 1.

Proposition 3.7. FCT proves that (∀α ⊆4 1)(α ⊆4 Id); therefore, (∀α ⊆4 1)(αT = α)
by Proposition 2.14(2).

Proof. From (x ∈ α → x = 0) → (x ∈ α & y = 0 → x = y), which follows from the
axioms of identity, we get by generalization and distribution of quantifiers (∀x)(x ∈ α →
x = 0) → (∀xy)(x ∈ α & y = 0 → x = y), i.e., α ⊆ 1 → {x0 | x ∈ α} ⊆ {xy | x = y}.
Then 4-necessitation finishes the proof.

4 Sup-T-composition and derived notions

The usual definition of composition of fuzzy relations R and S is as follows:

Definition 4.1. R ◦ S =df {xy | (∃z)(Rxz & Szy)}
Since & is interpreted by a (left-continuous) t-norm and ∃ by the supremum, ◦ is also

called the sup-T-composition of R and S. It generalizes Zadeh’s original definition [42] of
max-min-composition to infinite domains and arbitrary left-continuous t-norms. Notice
that the defining formula is the same as the defining formula of the relational compo-
sition in classical mathematics, the fuzziness being introduced only by the semantics of
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the logical symbols ∃ and &. This makes it the “default” definition of fuzzy relational
composition according to the methodology of [15].

The following properties of sup-T-compositions are well-known (see, e.g., [21], [18],
etc.). We repeat them here for reference and give their proofs in FCT.

Theorem 4.2. FCT proves the following properties of sup-T-compositions:

1. Transposition: (R ◦ S)T = ST ◦RT

2. Monotony: R1 ⊆ R2 → R1 ◦ S ⊆ R2 ◦ S

3. Union:
( ⋃

R∈A
R

)
◦ S =

⋃
R∈A

(R ◦ S)

4. Intersection:
( ⋂

R∈A
R

)
◦ S ⊆

⋂
R∈A

(R ◦ S)

(The converse inclusion has well-known crisp counter-examples.)

5. Associativity: (R ◦ S) ◦ T = R ◦ (S ◦ T )

Proof. 1. (R ◦ S)T = {xy | (∃z)(Ryz & Szx)} = {xy | (∃z)(STxz & RTzy)} = ST ◦RT.
2. (R1xz → R2xz) ←→ (R1xz → R2xz) & (Szy → Szy) −→ ((R1xz & Szy) →

(R2xz & Szy)), followed by generalization and distribution of quantifiers.
3. (∃z)[(∃R ∈ A)(Rxz) & Szy] ←→ (∃z)(∃R ∈ A)(Rxz & Szy) ←→

(∃R ∈ A)(∃z)(Rxz & Szy).
4. The claim is proved by the following chain of implications (see Lemma 2.4 for the

shifts of relativized quantifiers needed here):

(∃z)[(∀R ∈ A)(Rxz) & Szy] −→ (∃z)(∀R ∈ A)(Rxz & Szy) −→
(∀R ∈ A)(∃z)(Rxz & Szy) (10)

The existence of crisp counter-examples to the converse inclusion follows from the fact
that even though the first implication in (10) can be converted in classical logic, the
second one cannot (the quantifiers do not commute).

5. {xy | (∃w)((∃z)(Rxz &Szw) & Twy)} = {xy | (∃z)(Rxz & (∃w)(Szw &Twy))}
Corollary 4.3. By Theorem 4.2(1) and Proposition 2.14(1, 3, 5), FCT proves the mirror
variants of Theorem 4.2(2,3,4), too:

1. S1 ⊆ S2 → R ◦ S1 ⊆ R ◦ S2

2. R ◦
⋃
S∈A

S =
⋃
S∈A

(R ◦ S)

3. R ◦
⋂
S∈A

S ⊆
⋂
S∈A

(R ◦ S), with crisp counter-examples to the converse inclusion.

By means of the identification of fuzzy classes with fuzzy relations by Convention 3.2,
the statements of Theorem 4.2 and Corollary 4.3 can be transferred to further relational
notions besides sup-T-composition, by the following method.

Comparing, e.g., the (equivalent variant of the) definition of the preimage of a fuzzy
class A under a fuzzy relation R with the definition of relational composition,

R ←A =df {x | (∃z)(Rxz & Az)}
R ◦ S =df {xy | (∃z)(Rxz & Szy)}
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one can recognize the same pattern of the defining expression: the only difference is that
in the definition of the preimage, the second argument as well as the result are unary
rather than binary (the variable y is missing). However, our identification of the fuzzy
classes A and R ←A with the fuzzy relations A = A × 1 and (R ←A) × 1, respectively,
reduces the definition of preimage exactly to that of composition, by supplying the dummy
argument 0 for the missing variable y:

(R ←A)× 1 = {x0 | (∃z)(Rxz & Az)} = {x0 | (∃z)(Rxz & (A× 1)z0)} = R ◦ (A× 1)

Thus B = R ←A iff B = R ◦A.5

Consequently, the properties of compositions stated in Theorem 4.2(2–4) and Corol-
lary 4.3 automatically translate to properties of preimages:

R1 ⊆ R2 → R1
←A ⊆ R2

←A

A1 ⊆ A2 → R ←A1 ⊆ R ←A2(⋃
R∈A R

) ←A =
⋃

R∈A(R ←A)

R ←⋃
A∈A A =

⋃
A∈A(R ←A)(⋂

R∈A R
) ←A ⊆ ⋂

R∈A(R ←A)

R ←⋂
A∈A A ⊆ ⋂

R∈A(R ←A)

Again, the converse inclusions for intersection are not generally valid even for crisp rela-
tions and classes, since there are crisp counter-examples even with relations of the form
A× 1.

For a proof of the properties, one only needs to realize that the predicates involved
(⊆, =) are invariant under the transformation ·×1 as well as under its inverse, the opera-
tions involved (

⋃
,
⋂

) commute with both of these transformations, and that (R←A)× 1
is R ◦A, to which Theorem 4.2 applies. Another proof consists in the observation that
the proof of Theorem 4.2 remains sound when deleting all occurrences of the variable y.
A general method for proving the invariance of theorems of certain forms under transla-
tions like our identification of A with A× 1 is available, in virtue of theorems on formal
interpretations of theories over fuzzy logic (cf. footnote 4 and see [9]). Here we shall take
these results for granted, since the method of inspecting the proofs and verifying their in-
variance under the substitution of 0 for some variables is always available and sufficiently
simple for all theorems listed in this paper.

In the same manner, the notion of image of a fuzzy class under a fuzzy relation,
R→A =df {y | (∃z)(Az &Rzy)}, is obtained by substituting 0, only this time for x rather
than y, in the definition of fuzzy relational composition, as

(R →A)× 1 = {y0 | (∃z)(Az & Rzy)}
= {y0 | (∃z)(Az0 & Rzy)}
= {y0 | (∃z)(RTyz & Az0)}
= RT ◦A

Thus B = R →A iff B = RT ◦ A, so the image of A under R can simply be equated
with RT ◦A. Again the above properties of compositions translate into those of images.

5Having adopted Convention 3.6, we could abandon the distinction between A and A altogether and
simply equate R←A = R ◦A, since the convention ensures that A is a unary class even if R ◦A is written
out of any context. We keep the distinction here only for the sake of clarity.
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(Notice that this time, we also need to employ Proposition 2.14(5) to get the preservation
of unions and intersections under images, since R is transposed in RT ◦A.)

As mentioned in the Introduction, the method of transferring the results on relational
compositions to related notions like images or preimages has already been suggested in [18,
Remark 6.16]. In our formal setting we can exploit the method systematically:

There are three variables in the definition of sup-T-composition and each of them can
be replaced by the dummy value 0. This yields seven relational operations derived from
sup-T-composition of fuzzy relations: they are summarized in Table 1.

{xy | (∃z)(Rxz & Szy)} = R ◦ S . . . composition R ◦ S

x = 0 {0y | (∃z)(AT0z & Rzy)}T = (AT ◦R)T = RT ◦A . . . image R →A
y = 0 {x0 | (∃z)(Rxz & Az0)} = R ◦A . . . pre-image R ←A

z = 0 {xy | (∃0)(Ax0 & BT0y)} = A ◦BT . . . Cartesian product A×B

x, y = 0 {00 | (∃z)(AT0z & Bz0)} = AT ◦B . . . compatibility A ‖B

x, z = 0 {0y | (∃0)(αT00 & AT0y)}T = (αT ◦AT)T = A ◦α . . . α-resize αA
y, z = 0 {x0 | (∃0)(Ax0 & α00)} = A ◦α . . . α-resize αA

x, y, z = 0 {00 | (∃0)(α00 & β00)} = α ◦ β . . . conjunction α & β

Table 1: Operations derived from the sup-T-composition

We shall comment on the notions in the table. The first three lines have been described
in detail above. The image and preimage have also been called the inclusive afterset and
inclusive foreset, respectively, by Bandler and Kohout [5].

The fourth notion, arising from setting z to 0, is the usual Cartesian product of the
classes A and B. Notice that fixing z = 0 makes the quantification over z void, so the
comprehension term indeed equals {xy | Ax & By}. The resulting term A ◦ BT just
reflects the valid equation A×B = (A× 1) ◦ (1×B).

Setting both x and y to 0 in the fifth line of Table 1 makes the result a fuzzy singleton—
a class to which only the pair 〈0, 0〉 belongs to the degree (∃z)(Az&Bz). The latter formula
expresses the compatibility A ‖ B of the fuzzy properties (or classes) A and B, i.e., the
height of their intersection. Since fuzzy singletons internalize truth values,6 the resulting
expression represents the truth value of A ‖ B; thus AT ◦ B = A ‖ B = Hgt(A ∩B).
We shall denote the operation ‖, since the result is a formal truth value—the fuzzy
singleton—rather than the semantical truth value of A ‖ B.

The sixth notion in Table 1, which for the lack of an established name we call the α-
resize of A and denote by αA, is derived from composition by fixing x, z = 0 (notice that
the same notion is obtained also by fixing y, z = 0). The operation is widely applicable in
fuzzy set theory and often is used implicitly or without notice (see Examples 5.13 and 5.14
below).

Finally, fixing all x, y, z to 0 yields the operation of formal conjunction of two formal
truth values (i.e., the intersection of the two fuzzy singletons that represent them).

Remark 4.4. It has already been observed by Zadeh in [42] that in the finite case, the
sup-T-composition of fuzzy relations is computed in the same manner as the product of
the corresponding matrices, only performing & instead of multiplication and taking the
supremum (∃) instead of the sum: ( ‖(R ◦ S)xixj‖ )ij = ( ‖(∃xk)(Rxixk & Sxkxj)‖ )ij =

6According to the conventions of Section 3, fuzzy truth values are represented by fuzzy singletons
α ⊆4 {0}, which classes we have identified with fuzzy relations α = α × 1 ⊆4 {〈0, 0〉}. Thus among
fuzzy relations, formal truth values are indeed represented by fuzzy singletons of 00.
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( supk(‖Rxixk‖ ∗ ‖Sxkxj‖) )ij. The calculation is represented by the following diagram:7

◦




Sx1x1 · · · Sx1xn
...

. . .
...

Sxnx1 · · · Sxnxn







Rx1x1 · · · Rx1xn
...

. . .
...

Rxnx1 · · · Rxnxn







(R ◦ S)x1x1 · · · (R ◦ S)x1xn
...

. . .
...

(R ◦ S)xnx1 · · · (R ◦ S)xnxn




Because of this correspondence, the sup-T-composition is by some authors also called
the sup-T-product of fuzzy relations. The correspondence extends to the derived notions
(since after all, file and row vectors as well as scalars are just special cases of matrices).
Thus, e.g., taking the pre-image of a fuzzy class A in a fuzzy relation R can in the finite
case be calculated as the sup-T-product of the matrix (Rxixj)ij and the vector (Axj)j:

◦




Ax1
...

Axn







Rx1x1 · · · Rx1xn
...

. . .
...

Rxnx1 · · · Rxnxn







(R←A)x1
...

(R←A)xn




Similarly, the α-resize of a class A is the product of the (n×1)-vector A and the scalar α:

◦ (
α

)




Ax1
...

Axn







(αA)x1
...

(αA)xn




By the usual convention, we write transposed file vectors as row vectors; thus, e.g., for
a fuzzy class A over a finite domain we can write AT = (Ax1, . . . , Axn). The difference
between the Cartesian product A ◦ BT and the compatibility AT ◦ B illustrates the
importance of distinguishing transposed classes from non-transposed ones:

◦ (
Bx1 · · · Bxn

)




Ax1
...

Axn







(A×B)x1x1 · · · (A×B)x1xn
...

. . .
...

(A×B)xnx1 · · · (A×B)xnxn




◦




Bx1
...

Bxn




(
Ax1 · · · Axn

) (
A ‖ B

)

Notice that compatibility corresponds to the scalar (sup-T-)product of the vectors A
and B. Finally, conjunction is the product of two scalars,

◦ (
α

)
(
β

) (
α & β

)

7The element in the i-th row and j-th file in the resulting matrix is obtained as the supremum over
the values (for all k) of the conjunction of the k-th element in the row and the k-th element in the file,
respectively. The diagram just shows the usual way of calculating the matrix product, in which we now
take suprema and conjunctions instead sums and products.
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Obviously, infinite matrices can be considered as well as finite ones (matrices of arbi-
trary cardinalities have been used, e.g., in [4]). Thus it can be seen that the apparatus
of FCT just formalizes the natural correspondence between fuzzy relations, classes, and
truth values on the one hand and (finite or infinite) matrices, vectors, and scalars on the
other hand. This will be reflected by the following convention:

Convention 4.5. For the sake of convenience, we shall sometimes employ the matrix
terminology and even in the formal theory of FCT call the relations of the form A × 1
(file) vectors, 1 × A row vectors, and fuzzy singletons α ⊆4 {00} scalars, for arbitrary
(not only finite) classes A and α. We shall sometimes speak of the type of a fuzzy relation,
meaning one of these four categories which the relation belongs to.

Remark 4.6. In the graph-theoretical representation of fuzzy relations, a binary fuzzy
relation R is identified with a (possibly infinite) weighted node graph, where nodes repre-
sent the elements of the domain V1 of R, and weighted arrows between the nodes indicate
the truth values of the relation R between pairs of the elements. Our representation A
of a fuzzy class A among fuzzy relations can thus be visualized as a (possibly infinite)
graph with arrows from elements x of V1 to 0 weighted by the values of Ax, and all other
arrows weighted by 0 (see Figure 1). Similarly, the transposed class AT is represented by
a graph with arrows from 0 to the elements of V1 weighted by Ax. Inner truth values are
represented by graphs with the only non-zero arrow between 0 and itself, weighted with
the truth value it represents.

Sup-T-compositions of the derived notions then work as expected in such node graphs.
For instance it can be seen in Figure 1 that the composition of AT and B is an arrow
from 0 to 0 aggregating all values Ax&Bx, which indeed represents the compatibility of A
and B, while the composition of A and BT is a relation between all pairs xy weighted
by Ax & By (as the only non-zero path from x to y goes through 0), which represents the
Cartesian product A×B.
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Figure 1: Graph representations of A, AT, α, A◦BT, and AT ◦B (zero-weighted arrows
not indicated)

Besides the operations listed in Table 1, further important relational operations are
definable from compositions—e.g., by taking the universal class V for an argument in
some of the derived notions. Some of such derived notions are listed in Table 2.

Indeed, our conventions identify the domain Dom R = {x | (∃z)Rxz} of a fuzzy
relation R with the vector {x0 | (∃z)(Rxz & 1)} = {x0 | (∃z)(Rxz & Vz0)} = R ◦V, and
similarly for Rng.
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domain Dom R = R ←V . . . R ◦V
range Rng R = R →V . . . RT ◦V

height Hgt A = A ‖ V = V ‖ A . . . AT ◦V = VT ◦A

Table 2: Further operations derived from sup-T-compositions

The third operation in Table 2 yields the formal truth value of the height Hgt A ≡df

(∃z)Az of a fuzzy class A, which our conventions indeed identify with the scalar
{00 | (∃z)(Vz0 & Az0)} = VT ◦ A. In other words, (00 ∈ VT ◦ A) ↔ Hgt A, and
therefore we can equate the height of A with the scalar VT ◦ A. Like with ‖ or &, we
denote the operation by Hgt (overlined) as it yields an inner truth value (i.e., a fuzzy
singleton) and needs to be formally distinguished from Hgt (which is a defined predicate
and evaluates to semantic truth values in a model).

The point of the reduction of the above notions to compositions is of course that the
properties of sup-T-compositions automatically transfer to all of them. Thus we now get
dozens of theorems on fuzzy relational operations entirely for free.

First we apply Theorem 4.2(2) and Corollary 4.3(1) to the derived notions:

Corollary 4.7. FCT proves the monotony of all notions listed in Tables 1 and 2 w.r.t.
inclusion. In particular,

R1 ⊆ R2 → R1 ◦ S ⊆ R2 ◦ S
R1 ⊆ R2 → R1

→A ⊆ R2
→A

R1 ⊆ R2 → R1
←A ⊆ R2

←A
A1 ⊆ A2 → A1 ×B ⊆ A2 ×B
A1 ⊆ A2 → (A1 ‖ B → A2 ‖ B)
A1 ⊆ A2 → αA1 ⊆ αA2

(α1 → α2) → (α1 & β → α2 & β)

S1 ⊆ S2 → R ◦ S1 ⊆ R ◦ S2

A1 ⊆ A2 → R →A1 ⊆ R →A2

A1 ⊆ A2 → R ←A1 ⊆ R ←A2

B1 ⊆ B2 → A×B1 ⊆ A×B2

B1 ⊆ B2 → (A ‖ B1 → A ‖ B2)
(α1 → α2) → α1A ⊆ α2A
(β1 → β2) → (α & β1 → α & β2)

R1 ⊆ R2 → Rng R1 ⊆ Rng R2

R1 ⊆ R2 → Dom R1 ⊆ Dom R2

A1 ⊆ A2 → (Hgt A1 → Hgt A2)

Some comments (which apply to subsequent corollaries as well) are in order here:

Remark 4.8. Notice that, as usual in FCT, the theorems have the form of provable
implications. Thus they are effective even if the antecedent is only partially valid: due to
the semantics of implication, they express the fact that the consequent is at least as true
as the antecedent. Therefore the theorems are stronger than the assertions of the form “if
the antecedent is fully true (to degree 1), then so is the consequent”, which are more usual
in traditional fuzzy mathematics. The traditional theorems, which in formal fuzzy logic
would have the form 4ϕ →4ψ rather than ϕ → ψ, follow from those proved in FCT as
their special cases with the antecedents true to degree 1. Recall further that in FCT, not
only the membership predicate ∈, but all defined predicates are in general fuzzy (unless
they are defined as provably crisp). Thus, e.g., A ⊆ B does not express the fact that the
membership function of B majorizes that of A (although this is the meaning of its being
true to degree 1): according to its definition, A ⊆ B yields the truth value of the formula
(∀x)(Ax → Bx), i.e., the infimum of all values Ax → Bx. This kind of gradual inclusion
has already been considered by Klaua in the 1960’s (as reported in [29]) with ÃLukasiewicz
implication; by Bandler and Kohout [3] with a broader class of implicational operators;
and by many authors afterwards.
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Remark 4.9. Many of the particular theorems listed here are known, even in their gradual
forms (see esp. [27, 18]), and all of them have rather simple proofs in FCT. Therefore
the main contribution of the present approach is rather the systematic method by which
these propositions can be proved all at once, as corollaries of the simple statements of
Theorem 4.2.

Remark 4.10. Although we present our methods for homogeneous relations only, they
can be extended to heterogeneous relations in the following way. Heterogeneous fuzzy
relations R ⊆4 X × Y (for crisp X, Y ⊆4 V) can always be understood as homogeneous
fuzzy relations R ⊆4 V × V by taking for V the disjoint union of the two domains X,Y
and defining Rxy as 0 outside the domain X × Y of R. Since 0 is neutral w.r.t. ∃, the
values of sup-T-compositions are not changed by this extension to V2. The result of
composition R ◦S ⊆4 V2 of heterogeneous fuzzy relations R ⊆4 X ×Y and S ⊆4 Y ×Z
can then again be interpreted as the heterogeneous fuzzy relation R ◦ S ⊆4 X ×Z, since
it is easily proved in FCT that R ⊆4 X×Y & S ⊆4 Y ×Z → R◦S ⊆4 X×Z. Although
the theory of heterogeneous relations is not exhausted by this reduction to homogeneous
relations (as, i.a., the domains of relations are lost by the reduction), at least it enables
to apply the results of the present paper to heterogeneous fuzzy relations.

The following two remarks regard formal and notational aspects of the presented
results. Readers that are not interested in formalistic details can safely skip them.

Remark 4.11. We translate the theorems directly into their variants with fuzzy classes A
and inner truth values α rather than their relational counterparts A, α, although the
latter are more direct corollaries of Theorem 4.2. The translation is made possible by the
“isomorphism” of A and A × 1 mentioned in Section 3 and can be made precise by the
methods of faithful formal interpretations described in [9]. We do not elaborate on these
details here since for the theorems listed in the present paper, their preservation under
the translation is perspicuous enough in each particular case.

Remark 4.12. We use the operations Hgt, ‖ in Corollary 4.7, although more direct
corollaries of Theorem 4.2 would contain their counterparts operating on inner truth
values (Hgt, ‖). This is allowed by the fact that they directly correspond to each other,
as (00 ∈ Hgt A) ↔ Hgt A, and similarly for other scalar notions. Consequently, by
Proposition 3.4(2), the inclusion Hgt A1 ⊆ Hgt A2 translates to implication Hgt A1 →
Hgt A2 (and similarly for ‖ and other scalar operations).

In particular, formal conjunction (i.e., the intersection of fuzzy singletons, α ∩ β)
translates into usual conjunction (as 00 ∈ α∩β ↔ ϕ&ψ for α = ϕ and β = ψ), and simi-
larly inclusion of formal truth values translates into implication (both by Proposition 3.4).
The monotony of α ◦β w.r.t. inclusion thus expresses the monotony of conjunction w.r.t.
implication—a theorem that can of course be proved in a much simpler way (even proposi-
tionally). We include it here for the sake of completeness, and to show that FCT “knows”
the formal counterpart of this propositional law (i.e., that its internalization operating on
inner truth values is provable in FCT).

Now we shall continue listing (some of) the corollaries of Theorem 4.2 and Corollary 4.3
for the derived notions.

Corollary 4.13. FCT proves the following relational properties w.r.t. unions and inter-
sections:
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(⋃
R∈A R

) ◦ S =
⋃

R∈A(R ◦ S)(⋃
R∈A R

) →A =
⋃

R∈A(R →A)(⋃
R∈A R

) ←A =
⋃

R∈A(R ←A)(⋃
A∈A A

)×B =
⋃

A∈A(A×B)(⋃
A∈A A

) ‖ B ↔ (∃A ∈ A)(A ‖ B)

α
⋃

A∈A A =
⋃

A∈A(αA)(∨
α∈A α

)
& β ↔ ∨

α∈A(α & β)

R ◦⋃
S∈A S =

⋃
S∈A(R ◦ S)

R →⋃
A∈A A =

⋃
A∈A(R →A)

R ←⋃
A∈A A =

⋃
A∈A(R ←A)

A×⋃
B∈A B =

⋃
B∈A(A×B)

A ‖ ⋃
B∈A B ↔ (∃B ∈ A)(A ‖ B)(∨

α∈A α
)
A =

⋃
α∈A(αA)

α &
∨

β∈A β ↔ ∨
β∈A(α & β)

Dom(
⋃

R∈A R) =
⋃

R∈A Dom R

Rng(
⋃

R∈A R) =
⋃

R∈A Rng R

Hgt(
⋃

A∈A A) ↔ (∃A ∈ A)(Hgt A)

(⋂
R∈A R

) ◦ S ⊆ ⋂
R∈A(R ◦ S)(⋂

R∈A R
) →A ⊆ ⋂

R∈A(R →A)(⋂
R∈A R

) ←A ⊆ ⋂
R∈A(R ←A)(⋂

A∈A A
)×B ⊆ ⋂

A∈A(A×B)(⋂
A∈A A

) ‖ B → (∀A ∈ A)(A ‖ B)

α
⋂

A∈A A ⊆ ⋂
A∈A(αA)(∧

α∈A α
)

& β → ∧
α∈A(α & β)

R ◦⋂
S∈A S ⊆ ⋂

S∈A(R ◦ S)

R →⋂
A∈A A ⊆ ⋂

A∈A(R →A)

R ←⋂
A∈A A ⊆ ⋂

A∈A(R ←A)

A×⋂
B∈A B ⊆ ⋂

B∈A(A×B)

A ‖ ⋂
B∈A B → (∀B ∈ A)(A ‖ B)(∧

α∈A α
)
A ⊆ ⋂

α∈A(αA)

α &
∧

β∈A β → ∧
β∈A(α & β)

Dom(
⋂

R∈A R) ⊆ ⋂
R∈A Dom R

Rng(
⋂

R∈A R) ⊆ ⋂
R∈A Rng R

Hgt(
⋂

A∈A A) → (∀A ∈ A)(Hgt A)

The converse inclusions and implications have (well-known) crisp counter-examples, ex-
cept those with the Cartesian product, resize, and conjunction, which only have fuzzy
counter-examples in MTL and do hold in stronger fuzzy logics like Gödel or ÃLukasiewicz.

Proof. Since all of the inclusions and implications are direct corollaries of Theorem 4.2(3,4)
and Corollary 4.3(2,3), we only need to prove the claim about counter-examples to con-
verse inclusions and implications:

As can be seen from the proof of Theorem 4.2(4), the crisp counter-examples can
be found whenever the quantification over z in formula (10) in the proof is not void,
which (by definitions in Tables 1–2) is the case for all operations in Tables 1–2 except the
resize, ×, and &. For the latter three operations, the second implication in (10) can be
converted (thus they do not have crisp counter-examples), but still the converse to the
first implication of (10) is not generally valid in MTL.8 The first implication of (10) is
nevertheless convertible (and so the converse inclusions and implications do hold for the
resize, ×, and &) in stronger logics like ÃLukasiewicz or Gödel.

Relational operations can also be nested, whenever the types of their results permit.
The associativity and transposition properties of sup-T-compositions proved in Theo-
rem 4.2(1,5), Proposition 2.14(1), Proposition 3.7, and Lemma 4.15 (below) then yield an
infinite number of identities between expressions composed of the operations from Tables 1

8A (well-known) counter-example in MTL is, e.g., a [0, 1]-model with α = 0.5, βn = 0.5 + 1
n for all

natural n, and the nilpotent minimum [25] for &; then α &
∧

βn is 0, while
∧

(α & βn) is 0.5. (The
counter-examples for the resize and Cartesian product are similar.)
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and 2: some of these are listed in the following corollary. We abandon the distinction
between A and A here in order to make the chains of identities more compact (cf. foot-
note 5); similarly we do not distinguish scalar operations from the defined predicates they
represent, e.g., Hgt from Hgt (cf. Remark 4.12).

Corollary 4.14. FCT proves the following identities:

(A×B)T = (A ◦BT)T = B ◦ AT = B × A
R ◦ (A×B) = R ◦ (A ◦BT) = (R ◦ A) ◦BT = (R ←A)×B
(A×B) ◦R = A ◦BT ◦R = A ◦ (RT ◦B)T = A× (R →B)

A× αB = A ◦ (B ◦ α)T = A ◦ α ◦BT = αA×B
A× Rng R = A ◦ (RT ◦ V)T = A ◦ VT ◦R = (A× V) ◦R

R → (S →A) = RT ◦ (ST ◦ A) = (S ◦R)T ◦ A = (S ◦R) →A
R →αA = RT ◦ A ◦ α = α(R →A)

R →Rng S = RT ◦ ST ◦ V = (S ◦R)T ◦ V = Rng(S ◦R)
(A×B) →C = (A ◦BT)T ◦ C = B ◦ AT ◦ C = (A ‖ C)B
R ← (S ←A) = R ◦ S ◦ A = (S ◦R) ←A

R ←αA = R ◦ A ◦ α = α(R ←A)
R ←Dom S = R ◦ S ◦ V = Dom(R ◦ S)

α(βA) = (A ◦ β) ◦ α = A ◦ (α ◦ β) = (α & β)A
α(Dom R) = R ◦ V ◦ α = R →αV
α(Rng R) = RT ◦ V ◦ α = R ←αV

Dom(A×B) = A ◦BT ◦ V = (Hgt B)A
Rng(A×B) = (A ◦BT)T ◦ V = B ◦ AT ◦ V = (Hgt A)B

A ‖ B = AT ◦B = (AT ◦B)T = BT ◦ A = B ‖ A
α & β = (α ◦ β)T = βT ◦ αT = β & α

A ‖ (R →B) = AT ◦RT ◦B = (R ◦ A)T ◦B = (R ←A) ‖ B
A ‖ αB = AT ◦B ◦ α = α & (A ‖ B)

A ‖ Dom R = AT ◦R ◦ V = (RT ◦ A)T ◦ V = Hgt(R →A)
A ‖ Rng R = AT ◦RT ◦ V = (R ◦ A)T ◦ V = Hgt(R ←A)

α & (β & γ) = α ◦ β ◦ γ = (α & β) & γ
Hgt αA = VT ◦ A ◦ α = α & Hgt A

Hgt Dom R = VT ◦R ◦ V = (RT ◦ V)T ◦ V = Hgt Rng R

Corollary 4.14 actually lists provable identities between almost all terms with two
nested sup-T-operations: it only omits some uninteresting cases like (A ‖ B)T = A ‖ B,
formal artifacts like Hgt(Hgt A) = Hgt A, and identities easily reducible to those above
by the commutativity of ‖ and & or the interdefinability R→A = (RT)←A and Rng R =
Dom RT. Identities between more complex terms composed of sup-T-operations can be
derived by similar simple calculations like those above. For proving some of them, also
the following lemma is needed:

Lemma 4.15. FCT proves the following identities:

1. VT ◦V = 1

2. A ◦ 1 = A, α ◦ 1 = α

Proof. 1. VT ◦V = {00 | (∃z)(VT0z & Vz0)} = {00 | (∃z)(Vz & Vz)} = {00 | 1} = 1.
2. follows similarly from the provability in MTL of α & 1 ↔ 1 and (∃z)1 ↔ 1.

Example 4.16. By Lemma 4.15 we get (A × V) ←αV = A ◦ VT ◦ V ◦ α = A ◦ 1 ◦ α =
A ◦ α = αA.
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5 BK-products and derived notions

Besides sup-T-composition, many other products of fuzzy relations have been defined in
the literature. Perhaps the most notable among these is the relational product which can
be called inf-R-composition, as it replaces the supremum in the definition of composition
by infimum and the t-norm by its residuum.9 It has been introduced by Bandler and
Kohout in [1] for crisp relations and generalized to fuzzy relations in [2]; referring to
the initials of the authors, inf-R-composition is also known as the BK-product of fuzzy
or crisp relations. Depending on the direction of the residual implication (left-to-right,
right-to-left, or both) we get three variants of BK-products:

Definition 5.1. We define the following three products of fuzzy relations R, S:

R / S =df {xy | (∀z)(Rxz → Szy)} . . . BK-subproduct
R . S =df {xy | (∀z)(Rxz ← Szy)} . . . BK-superproduct
R ¤ S =df {xy | (∀z)(Rxz ↔ Szy)} . . . BK-squareproduct

The prefix BK may be omitted if no confusion can arise. By the BK-product (simpliciter)
we shall mean the BK-subproduct.

For the motivation and utility of BK-products see [35, 36]. In this paper we give
further illustrations of their importance and ubiquity in the theory of fuzzy relations.

Remark 5.2. BK-products have some properties that are felt undesirable in certain
kinds of applications of fuzzy relations. As an especially problematic property is by
many authors seen the fact that (R / S)xy is 1 whenever (∃z)(Rxz) is 0. To avoid this
particular feature of BK-products, De Baets and Kerre proposed a redefinition of the
same notion in [21]: in our notation, De Baets and Kerre’s modified definition of R / S
reads {xy | (∃z)(Rxz) & (∀z)(Rxz → Szy)}, and similarly for . and ¤. Following
De Baets and Kerre’s paper, some authors when speaking about BK-products refer to
the modified definition rather than Bandler and Kohout’s original definition. As this may
lead to confusion, we need to stress that in the present paper, we always refer to the
original definitions by Bandler and Kohout (i.e., those of Definition 5.1), and never to
the modification by De Baets and Kerre.

Our sticking to Bandler and Kohout’s original definition is justified not only by the
suitability for our needs, but also by the fact that De Baets and Kerre’s elimination of the
“useless pairs” from the product is only suitable in certain applications of fuzzy relational
products. In other areas of fuzzy mathematics (e.g., the theory of fuzzy orderings, as
shown below), the original notion of BK-product is well-motivated, and the “useless pairs”
play important roles in various manifestations of BK-products throughout the theory.
This suggests that the emended definition by De Baets and Kerre should not replace the
original definition by Bandler and Kohout, but only complement it; from this point of
view it seems unfortunate that the authors of [21] chose to overload the definition and
notation of BK-products rather than to use a modified name and symbols.

In what follows, we shall need the following (well-known) properties of BK-products.

Theorem 5.3. FCT proves the following properties of BK-products:

1. Transposition: (R / S)T = ST . RT

9The relationship between sup-T and inf-R composition is an instance of Morsi’s duality [40].

178



2. Monotony: R1 ⊆ R2 → R2 / S ⊆ R1 / S, S1 ⊆ S2 → R / S1 ⊆ R / S2

3. Intersection:
⋂

R∈A
(R / S) =

( ⋃
R∈A

R
)

/ S,
⋂
S∈A

(R / S) = R /
⋂
S∈A

S

4. Union:
⋃

R∈A
(R / S) ⊆

( ⋂
R∈A

R
)

/ S,
⋃
S∈A

(R / S) ⊆ R /
⋃
S∈A

S

(Converse inclusions have crisp counter-examples.)

5. Residuation: R / (S / T ) = (R ◦ S) / T

6. Exchange: R / (S . T ) = (R / S) . T

7. Interdefinability: R ¤ S = (R / S) ∩∧ (R . S)

Proof. Claims 1–3 are proved similarly as the corresponding statements of Theorem 4.2
(for the shifts of relativized quantifiers needed here, see [16] and Lemma 2.4). The two
inclusions of claim 4 are respectively proved by the following chains of implications:

(∃R ∈ A)(∀z)(Rxz → Szy) −→ (∀z)(∃R ∈ A)(Rxz → Szy) −→
(∀z)[(∀R ∈ A)Rxz → Szy]

(11)

(∃S ∈ A)(∀z)(Rxz → Szy) −→ (∀z)(∃S ∈ A)(Rxz → Szy) −→
(∀z)[Rxz → (∃S ∈ A)Szy]

(12)

The existence of crisp counter-examples to the converse inclusions follows from the fact
that the first implications in (11)–(12) cannot be converted in classical logic (as the
quantifiers do not commute), while the second implications can.

5. xy ∈ R / (S / T ) ←→ (∀z)(Rxz → (∀t)(Szt → Tty)) ←→
(∀zt)(Rxz → (Szt → Tty)) ←→ (∀zt)(Rxz & Szt → Tty) ←→
(∀t)((∃z)(Rxz & Szt) → Tty) ←→ xy ∈ (R ◦ S) / T ,
and similarly for 6.

7. xy ∈ R ¤ S ←→ (∀z)(Rxz ↔ Szy) ←→ (∀z)[(Rxz → Szy) ∧ (Rxz ← Szy)] ←→
(∀z)(Rxz → Szy) ∧ (∀z)(Rxz ← Szy) ←→ xy ∈ (R / S) ∩∧ (R . S).

By transposition of the statements of Theorem 5.3 we get the following properties of
BK-products:

Corollary 5.4. FCT proves:

1. Transposition: (R . S)T = ST / RT, (R ¤ S)T = ST ¤ RT

2. Monotony: R1 ⊆ R2 → R1 . S ⊆ R2 . S, S1 ⊆ S2 → R . S2 ⊆ R . S1

3. Intersection:
⋂

R∈A
(R . S) =

( ⋂
R∈A

R
)

. S,
⋂
S∈A

(R . S) = R .
⋃
S∈A

S

4. Union:
⋃

R∈A
(R . S) ⊆

( ⋃
R∈A

R
)

. S,
⋃
S∈A

(R . S) ⊆ R .
⋂
S∈A

S

(Converse inclusions have crisp counter-examples.)

5. Residuation: (R . S) . T = R . (S ◦ T )
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{xy | (∀z)(Rxz → Szy)} = R / S . . . /-product R / S

x = 0 {0y | (∀z)(AT0z → Rzy)}T = (AT / R)T = RT . A . . . /-image R /→A
y = 0 {x0 | (∀z)(Rxz → Az0)} = R / A . . . /-pre-image R ←/A

z = 0 {xy | (∀0)(Ax0 → BT0y)} = A / BT . . . Cartesian /-product A×/ B

x, y = 0 {00 | (∀z)(AT0z → Bz0)} = AT / B . . . inclusion A ⊆ B

x, z = 0 {0y | (∀0)(αT00 → AT0y)}T = (αT / AT)T = A . α . . . left α-resize α→A
y, z = 0 {x0 | (∀0)(Ax0 → α00)} = A / α . . . right α-resize A→α

x, y, z = 0 {00 | (∀0)(α00 → β00)} = α / β . . . implication α → β

/-range Rng/ R = R /→V . . . RT . V
plinth Plt A = V ⊆ A . . . VT / A

Table 3: Operations derived from the BK-subproduct

{xy | (∀z)(Rxz ← Szy)} = R . S . . . .-product R . S

x = 0 {0y | (∀z)(AT0z ← Rzy)}T = (AT . R)T = RT / A . . . .-image R .→A
y = 0 {x0 | (∀z)(Rxz ← Az0)} = R . A . . . .-pre-image R ←.A

z = 0 {xy | (∀0)(Ax0 ← BT0y)} = A . BT . . . Cartesian .-product A×. B

x, y = 0 {00 | (∀z)(AT0z ← Bz0)} = AT . B . . . converse inclusion A ⊇ B

x, z = 0 {0y | (∀0)(αT00 ← AT0y)}T = (αT . AT)T = A / α . . . right α-resize A→α
y, z = 0 {x0 | (∀0)(Ax0 ← α00)} = A . α . . . left α-resize α→A

x, y, z = 0 {00 | (∀0)(α00 ← β00)} = α . β . . . converse implication α ← β

.-domain Dom. R = R ←.V . . . R . V

Table 4: Operations derived from the BK-superproduct

Applying the identifications of the previous section to BK-products in the same way
as we did to sup-T-products, we get the derived notions listed in Tables 3–5. We write
just ⊆,→,↔, Plt, instead of the more correct ⊆,→,↔, Plt (cf. Remark 4.12).

Remark 5.5. Notice that some of the analogues of notions based on sup-T-compositions
are omitted from Tables 3–5 due to their triviality. The BK-subdomain Dom/ R = R←/V,
i.e., R / V, is always equal to V (similarly for .-range) and the superproduct analogue
of height or plinth always equals 1. Therefore, by Theorem 5.3(7), the squareproduct
analogue of Dom is in fact Dom., the squareproduct analogue of Rng is Rng/ R, and the
squareproduct analogue of plinth is just plinth.

Remark 5.6. Unlike in sup-T-compositions, where the behavior of 0 w.r.t. & ensured the
right type (in the sense of Convention 3.6) of the result of products for subclasses of V×1
and 1× 1 (e.g., that R ◦A ⊆4 V× 1), in BK-products this is not automatic (since 0 → 0
is 1 rather than 0). For BK-compositions, the right type of the result has to be explicitly
controlled by intersecting it with V × 1 or 1× 1, according to the types of operands: for
instance, the correct definition of R /→A is (RT /A)∩ (V×1) rather than just RT /A, and
for Plt A it is (VT /A)∩ (1× 1) rather than just VT /A. We omit the intersection in the
definitions, since the right type is already indicated by Convention 3.6 and the properties
studied in this paper are obviously preserved by the intersection controlling the type; thus
the values of BK-compositions outside their target domain V × 1 or 1 × 1 can safely be
ignored. A similar adjustment (by defining Rxy as 1 rather than 0 outside the domain
X × Y of R) has to be made when using BK-compositions of heterogeneous rather than
homogeneous relations (cf. Remark 4.10).
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{xy | (∀z)(Rxz ↔ Szy)} = R ¤ S . . . ¤-product R ¤ S

x = 0 {0y | (∀z)(AT0z ↔ Rzy)}T = (AT ¤ R)T = RT ¤ A . . . ¤-image R ¤→A
y = 0 {x0 | (∀z)(Rxz ↔ Az0)} = R ¤ A . . . ¤-pre-image R ←¤ A

z = 0 {xy | (∀0)(Ax0 ↔ BT0y)} = A ¤ BT . . . Cartesian ¤-product A×¤ B

x, y = 0 {00 | (∀z)(AT0z ↔ Bz0)} = AT ¤ B . . . weak bi-inclusion A ≈ B

x, z = 0 {0y | (∀0)(αT00 ↔ AT0y)}T = (αT ¤ AT)T = A ¤ α . . . left-right α-resize α↔A
y, z = 0 {x0 | (∀0)(Ax0 ↔ α00)} = A ¤ α . . . left-right α-resize α↔A

x, y, z = 0 {00 | (∀0)(α00 ↔ β00)} = α ¤ β . . . equivalence α ↔ β

Table 5: Operations derived from the BK-squareproduct

Corollary 5.7. By Theorem 5.3(1) and the definitions of Tables 3 and 4 we have the
following interdefinability between derived BK-notions:

A×. B = A . BT = (B / AT)T = (B ×/ A)T

R ←. A = R . A = RTT . A = RT /→A
Dom. R = R . V = RTT . V = Rng/ RT

Corollary 5.8. By Theorem 5.3(7), the squareproduct notions are definable in terms
of the corresponding subproduct and superproduct notions by means of min-intersection
(or min-conjunction):

R ¤→A = (R /→A) ∩∧ (R .→A)

R ←¤ A = (R ←/ A) ∩∧ (R ←. A)

A×¤ B = (A×/ B) ∩∧ (A×. B)

A ≈ B = (A ⊆ B) ∧ (B ⊆ A)

α↔A = (α→A) ∩∧ (A→α)

α ↔ β = (α → β) ∧ (β → α)

The importance of the ten sup-T-based operations studied in the previous section is
beyond doubt. The following examples show that the BK-related notions abound in fuzzy
mathematics as well. Thus the present section can also be viewed as the systematization
of these miscellaneous notions and their properties.

Example 5.9. The operation of subproduct preimage R ←/ A appears frequently in the
theory of fuzzy relations [27, 18, 19]. In [26], R ←/ is called the right backward strong
powerset operator of R; the operation is denoted by ↓ in [27]. It is also a quantifier
construction in fuzzy description logic [31], where it is written as (∀R.A). Further graded
properties of this operation besides those studied here can be found in [27, 11]. The
superproduct image R .→ is studied, e.g., in [26] where it is called the right forward strong
powerset operator of R.

Example 5.10. In the theory of fuzzy orderings, the subproduct image R /→A and super-
product preimage R←.A denote the fuzzy set of all upper resp. lower bounds of the fuzzy
set A w.r.t. a fuzzy ordering R (also called the upper and lower cone of A w.r.t. R). The
operations R/→ and R←., respectively, are called the exclusive image and exclusive preim-
age in [5] and the left forward and left backward strong powerset operator of R in [26].
The operation /→ has also appeared in [22] and has been used for fuzzy inference in [20].
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Figure 2: Fuzzy sets A and B and their Cartesian squareproduct A ×¤ B under the
ÃLukasiewicz t-norm

Example 5.11. For some applications of BK-products /, ., ¤ themselves see [35, 36].
Besides the practically oriented applications, their theoretical importance comes from the
fact that many other relational notions can be expressed by means of BK-products. For
example, fuzzy preorders can be characterized in terms of BK-products [7] by

Refl R ↔ RT / R ⊆ R

Trans R ↔ R ⊆ RT / R

The operation RT / R and its dual R / RT are sometimes called the left resp. right trace
of R and are of their own importance [24, 11].

Example 5.12. The Cartesian products ×,×/,×.,×¤ are used to model sets of fuzzy
rules:

{(x is Ai) and (y is Bi)}i∈I . . .
⋃

i∈I(Ai ×Bi)
{if (x is Ai) then (y is Bi)}i∈I . . .

⋂
i∈I(Ai ×/ Bi)

{(x is Ai) whenever (y is Bi)}i∈I . . .
⋂

i∈I(Ai ×. Bi)
{(x is Ai) iff (y is Bi)}i∈I . . .

⋂
i∈I(Ai ×¤ Bi)

The first three operations are used in many applications of fuzzy control theory, even
though × is often misinterpreted as “implication” [38] rather than the Cartesian product
based on strong conjunction. The Cartesian squareproduct ×¤ is rather neglected in the
fuzzy literature, even though in many approximation problems it is more appropriate
than ×/ and ×., as it captures fuzzy equivalence between input and output fuzzy sets,
expressing that “x is A to a similar degree as y is B” (see Figure 2).

Example 5.13. The α-resizes αA, α→A,A→α, α↔A occur in fuzzy control applications.
There are two competing approaches to approximate inference over a knowledge base
formalized as a set of fuzzy rules. The classical approach is FATI (first aggregate then
infer). The FITA (first infer then aggregate) method of activation degrees was first used
by Holmblad and Ostergaard [33] in a fuzzy control algorithm for a cement kiln. It can
briefly be described as follows [28]:

For each actual input fuzzy set A and each input–output data pair (Ak, Bk) one de-
termines a modification B∗

k of the “local” output Bk, and aggregates the modified “local”
outputs into one global output: B∗ =

⋃
i∈I B∗

i . The particular choice by Holmblad and
Ostergaard for B∗

k was B∗
k(y) = Hgt(A ∩∧ Ak) ·Bk(y), which is in fact the Hgt(A ∩∧ Ak)-

resize of Bk under the product t-norm.
To take another example, if Zadeh’s compositional rule of inference is applied to a

knowledge formalized by ×, which in our formalism reads
(⋃

i∈I(Ai ×Bi)
)→A, it can be

simplified by using α-resizes in virtue of the identity
(⋃

i∈I(Ai ×Bi)
) →A =

⋃
i∈I(A ‖ Ai)Bi
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which follows from Corollaries 4.13 and 4.14. Analogously, the authors of [39] speak
about the consequent dilatation rule proposed in [37], where the degrees of subsethood
A ⊆ Ai for i ∈ I are used to compute the final output which is in our notation written as
B∗ =

⋂
i∈I(A ⊆ Ai)→Bi (cf. the appropriate identities from Corollaries 5.16 and 5.17).

The main argument in favor of practical applications of α-resizes is the speed of com-
putations. It is much faster to resize and then aggregate than to use the FATI approach
because the values for the resizes are computed only once and then used multiple times.

Example 5.14. In theoretical investigation of fuzzy relations, α-resizes appear for in-
stance in the following contexts: closedness under SK-intersections for a set K of desig-
nated truth values [18, Def. 7.4] is equivalent [18, Th. 7.6] to closedness under intersections
of “K-shifted” sets (α→A); furthermore, A→α and αA have been used to characterize a
system of closed sets of a similarity space in [18, Th. 7.62]; the system of all extensional
fuzzy sets can be characterized by means of α→A, A→α and αA [34, Th. 3.2]; the α-
properties of binary fuzzy relations studied in [6] are related to α-resizes of a relation
[6, Th. 4.24]; etc.

The above list of applications of inf-R-compositional notions is by no means exhaustive.
Like with the notions based on the sup-T-composition, the point of our construction is the
possibility of applying Theorem 5.3 and Corollary 5.4 to all notions defined in Tables 3–5.
Thus we are given the following corollaries entirely for free (Remarks 4.8–4.12 apply to
these corollaries as well):

Corollary 5.15. In consequence of Theorem 5.3(2) and Corollary 5.4(2), FCT proves:

R1 ⊆ R2 → R1
/→A ⊆ R2

/→A A1 ⊆ A2 → R /→A2 ⊆ R /→A1

R1 ⊆ R2 → R2
←/ A ⊆ R1

←/ A A1 ⊆ A2 → R ←/ A1 ⊆ R ←/ A2

A1 ⊆ A2 → A2 ×/ B ⊆ A1 ×/ B B1 ⊆ B2 → A×/ B1 ⊆ A×/ B2

A1 ⊆ A2 → (A2 ⊆ B → A1 ⊆ B) A1 ⊆ A2 → (B ⊆ A1 → B ⊆ A2)
A1 ⊆ A2 → α→A1 ⊆ α→A2 (α1 → α2) → (α2)→A ⊆ (α1)→A
A1 ⊆ A2 → (A2)→α ⊆ (A1)→α (α1 → α2) → (A→α1 → A→α2)

(α1 → α2) → [(α2 → β) → (α1 → β)] (β1 → β2) → [(α → β1) → (α → β2)]

R1 ⊆ R2 → Rng/ R1 ⊆ Rng/ R2

A1 ⊆ A2 → (Plt A1 → Plt A2)

R1 ⊆ R2 → R2
.→A ⊆ R1

.→A A1 ⊆ A2 → R .→A1 ⊆ R .→A2

R1 ⊆ R2 → R1
←. A ⊆ R2

←. A A1 ⊆ A2 → R ←. A2 ⊆ R ←. A1

A1 ⊆ A2 → A1 ×. B ⊆ A2 ×. B B1 ⊆ B2 → A×. B2 ⊆ A×. B1

R1 ⊆ R2 → Dom. R1 ⊆ Dom. R2

Corollary 5.16. By Theorem 5.3(3, 4) and Corollary 5.4(3, 4), FCT proves:

⋂
R∈A(R /→A) =

(⋂
R∈A R

)
/→A

⋂
A∈A(R /→A) = R /→⋃

A∈A A⋂
R∈A(R ←/ A) =

(⋃
R∈A R

) ←/ A
⋂

A∈A(R ←/ A) = R ←/
⋂

A∈A A⋂
A∈A(A×/ B) =

(⋃
A∈A A

)×/ B
⋂

B∈A(A×/ B) = A×/

⋂
B∈A B

(∀A ∈ A)(A ⊆ B) ↔ (⋃
A∈A A

) ⊆ B (∀B ∈ A)(A ⊆ B) ↔ A ⊆ ⋂
B∈A B⋂

α∈A(α→A) =
(∨

α∈A α
)
→A

⋂
A∈A(α→A) = α→

⋂
A∈A A⋂

A∈A(A→α) =
(⋃

A∈A A
)
→α

⋂
α∈A(A→α) = A→

∧
α∈A α∧

α∈A(α → β) ↔ (∨
α∈A

) → β
∧

β∈A(α → β) ↔ (
α → ∧

β∈A β
)
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⋂
R∈A Rng/ R = Rng/ ⋂

R∈A R

(∀A ∈ A)(Plt A) ↔ Plt
⋂

A∈A A

⋂
R∈A(R .→A) =

(⋃
R∈A R

)
.→A

⋂
A∈A(R .→A) = R .→⋂

A∈A A⋂
R∈A(R ←. A) =

(⋂
R∈A R

) ←. A
⋂

A∈A(R ←. A) = R ←.
⋃

A∈A A⋂
A∈A(A×. B) =

(⋂
A∈A A

)×. B
⋂

B∈A(A×. B) = A×.

⋃
B∈A B

⋂
R∈A Dom. R = Dom. ⋂

R∈A R

⋃
R∈A(R /→A) ⊆ (⋃

R∈A R
)

/→A
⋃

A∈A(R /→A) ⊆ R /→⋂
A∈A A⋃

R∈A(R ←/ A) ⊆ (⋂
R∈A R

) ←/ A
⋃

A∈A(R ←/ A) ⊆ R ←/
⋃

A∈A A⋃
A∈A(A×/ B) ⊆ (⋂

A∈A A
)×/ B

⋃
B∈A(A×/ B) ⊆ A×/

⋃
B∈A B

(∃A ∈ A)(A ⊆ B) → (⋂
A∈A A

) ⊆ B (∃B ∈ A)(A ⊆ B) → A ⊆ ⋃
B∈A B⋃

α∈A(α→A) ⊆ (∧
α∈A α

)
→A

⋃
A∈A(α→A) ⊆ α→

⋃
A∈A A⋃

A∈A(A→α) ⊆ (⋂
A∈A A

)
→α

⋃
α∈A(A→α) ⊆ A→

∨
α∈A α∨

α∈A(α → β) → ((∧
α∈A α

) → β
) ∨

β∈A(α → β) → (
α → ∨

β∈A α
)

⋃
R∈A Rng/ R ⊆ Rng/ ⋃

R∈A R

(∃A ∈ A)(Plt A) → Plt
⋃

A∈A A

⋃
R∈A(R .→A) ⊆ (⋂

R∈A R
)

.→A
⋃

A∈A(R .→A) ⊆ R .→⋃
A∈A A⋃

R∈A(R ←. A) ⊆ (⋃
R∈A R

) ←. A
⋃

A∈A(R ←. A) ⊆ R ←.
⋂

A∈A A⋃
A∈A(A×. B) ⊆ (⋃

A∈A A
)×. B

⋃
B∈A(A×. B) ⊆ A×.

⋂
B∈A B

⋃
R∈A Dom. R ⊆ Dom. ⋃

R∈A R

The converse implications and inclusions have crisp counter-examples.

Proof. We only need to prove the claim about converse inclusions and implications, as
the rest are direct corollaries of the indicated theorems. The existence of crisp counter-
examples follows from the fact that neither of implications in the proof of Theorem 5.3(4)
is in general convertible in classical logic. In the case of ×/, ×., →, and →, for which the
quantification over z in formulae (11)–(12) in the proof is void, the only crisp counter-
examples are with A = ∅. For non-empty A, the latter converses hold in those extensions
of MTL in which the law of double negation ¬¬ϕ → ϕ is valid (i.e., the extensions of
IMTL, e.g., ÃLukasiewicz logic), since the second implications in formulae (11)–(12) are
convertible under double negation (but not generally in MTL).

Corollary 5.17. By Theorem 5.3(5, 6) and Corollary 5.4(5), FCT proves, i.a., the fol-
lowing identities:

(R ←A)×/ B = R / (A×/ B) by (R ◦ A) / BT = R / (A / BT)
(Dom R)×/ A = R / (V ×/ A) (R ◦ V) / AT = R / (V / AT)

(αA)×/ B = A×/ (α→B) (α ◦ A) / BT = A / (α / BT)
A×/ (R .→B) = (A×/ B) . R A / (RT / B)T = A / (BT . R) = (A / BT) . R
A×/ (R /→B) = (A×B) / R A / (RT . B)T = A / (BT / R) = (A ◦BT) / R
A×/ (Rng/ R) = (A× V) / R A / (RT . V)T = A / (VT / R) = (A ◦ VT) / R

A×/ (B→α) = (A→α)×. B A / (B / α)T = A / (α . BT) = (A / α) . BT
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(R ◦ S) ←/ A = R ←/ (S ←/ A) by (R ◦ S) / A = R / (S / A)
(R / S) /→A = S /→ (R →A) (R / S)T . A = (ST . RT) . A = ST . (RT ◦ A)
(R . S) /→A = S .→ (R /→A) (R . S)T . A = (ST / RT) . A = ST / (RT . A)

(A×B) ←/ C = A→(B ⊆ C) (A ◦BT) / C = A / (BT / C)
(A×/ B) /→C = (A ‖ C)→B (A / BT)T . C = (B . AT) . C = B . (AT ◦ C)
(A×. B) /→C = B→(C ⊆ A) (A . BT)T . C = (B / AT) . C = B / (AT . C)

R ←/ (A→α) = (R ←A)→α R / (A / α) = (R ◦ A) / α
α→(Rng/ R) = R /→ (αV) α / (RT . V) = (RT . V) . α = RT . (α ◦ V)
α→(R /→A) = R /→ (αA) α / (RT . A) = (RT . A) . α = RT . (α ◦ A)
α→(R ←/ A) = R ←/ (α→A) α / (R / A) = R / (α / A)

α→(β→A) = (α & β)→A α / (β / A) = (α ◦ β) / A
α→(A→β) = A→(α → β) α / (A / β) = A / (α / β)

A→(α → β) = (αA)→β A / (α / β) = (A ◦ α) / β
Rng/(R / S) = S /→ (Rng R) (R / S)T . V = (ST . RT) . V = ST . (RT ◦ V)
Rng/(R . S) = S .→ (Rng/ R) (R . S)T . V = (ST / RT) . V = ST / (RT . V)

Rng/(A×/ B) = (Hgt A)→B (A / BT)T . V = (B . AT) . V = B . (AT ◦ V)
Rng/(A×. B) = B→(Plt A) (A . BT)T . V = (B / AT) . V = B / (AT . V)

A ⊆ (R ←/ B) = (R →A) ⊆ B by AT / (R / B) = (AT ◦R) / B = (RT ◦ A)T / B
A ⊆ (R /→B) = B ⊆ (R ←. A) AT / (RT . B) = (AT / RT) . B = (R . A)T . B

(αA) ⊆ B = α → (A ⊆ B) (α ◦ A)T / B = (α ◦ AT) / B = α / (AT / B)
A ⊆ (α→B) = α → (A ⊆ B) AT / (α / B) = α / (AT / B)
A ⊆ (B→α) = (A ‖ B) → α AT / (B / α) = (AT ◦B) / α

α → (β → γ) = (α & β) → γ α / (β / γ) = (α ◦ β) / γ
α → (β → γ) = β → (α → γ) α / (β / γ) = (α ◦ β) / γ = (β ◦ α) / γ = β / (α / γ)

Plt(R /→A) = A ⊆ (Dom. R) VT / (RT . A) = (VT / RT) . A = (R . V)T . A
Plt(R ←/ A) = (Rng R) ⊆ A VT / (R / A) = (VT ◦R) / A = (RT ◦ V)T / A

Plt(α→A) = α → Plt A VT / (α / A) = α / (VT / A)
Plt(α→A) = αV ⊆ A VT / (α / A) = (VT ◦ α) / A = (α ◦ V)T / A
Plt(A→α) = (Hgt A) → α VT / (A / α) = (VT ◦ A) / α

Plt(Rng/ R) = Plt(Dom. R) VT / (RT . V) = (VT / RT) . V = (R . V)T . V

Remark 5.18. Some of the identities of Corollary 5.17 express important theorems on
fuzzy relations. For instance, the identity (A ⊆ (R ←/ B)) ↔ ((R →A) ⊆ B) entails the
equivalence of two characterizations of the property of extensionality of a fuzzy class A
w.r.t. a fuzzy relation R defined as ExtR A ≡df (∀xy)(Rxy & Ax → Ay), since the latter
can be expressed as (R →A) ⊆ A. The next identity (A ⊆ (R /→B)) ↔ (B ⊆ (R ←. A))
expresses a graded theorem on fuzzy preorders (cf. Example 5.10) that all elements of A
are upper bounds of B iff all elements of B are lower bounds of A. These theorems are
well-known in the non-graded setting; here we get their graded variants (i.e., also for
partially valid inclusions) for free.

Corollary 5.19. Furthermore, by Corollary 5.7, FCT proves the following identities dual
to Corollary 5.17 for superproduct notions:
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(R ◦ S) .→A = S .→ (R .→A)
(R . S) ←. A = R ←. (S ←A)
(R / S) ←. A = R ←/ (S ←. A)

(A×B) .→C = B→(A ⊆ C)
(A×/ B) ←. C = A→(C ⊆ B)
(A×. B) ←. C = (B ‖ C)→A

R .→ (A→α) = (R →A)→α
α→(R .→A) = R .→ (α→A)
α→(R ←. A) = R ←. (αA)

α→(Dom. R) = R ←. (αV)
Dom.(R / S) = R ←/ (Dom. S)
Dom.(R . S) = R ←. (Dom S)

Dom.(A×/ B) = A→(Plt B)
Dom.(A×. B) = (Hgt B)→A

A×. (R →B) = (A×. B) . R
A×. (Rng R) = (A×. V) . R

A×. (αB) = (α→A)×. B
(R ←/ A)×. B = R / (A×. B)
(R ←. A)×. B = R . (A×B)

(Dom. R)×. B = R . (V ×B)

A ⊆ (R .→B) = (R ←A) ⊆ B
Plt(R .→A) = (Dom R) ⊆ A
Plt(R ←. A) = A ⊆ (Rng/ R)

Although not used in the previous corollaries, the following lemma is needed for some
more complex identities between BK-based terms:

Lemma 5.20. FCT proves:

1. V / AT = V ◦AT, V / α = V ◦α

2. A / 1 = V, A . 1 = A, α / 1 = 1, α . 1 = α

Proof. V / AT = {xy | Vx0 → A0y} = {xy | A0y} = {xy | Vx0 & A0y} = V ◦AT, and
analogously for the other identities.

Example 5.21. The following identities are among corollaries of Lemma 5.20:

R ←/ V = V by R / V = R / (V / 1) = (R ◦ V) / 1
(A ⊆ V) = 1 AT / V = AT / (A / 1) = (AT ◦ A) / 1

α→V = V V . α = (V / 1) . α = V / (1 . α) = V / 1
(V × V) ←. A = V (V ◦ VT) . A = (V / VT) . A =

= V / (VT . A) = V / (AT / V)T = V / 1

Remark 5.22. The corollaries in this and the previous section show that a fairly large
fragment of the elementary theory of fuzzy relations can be reduced to identities provable
by several simple equational rules, namely those of Propositions 2.14(1) and 3.7, The-
orems 4.2(1,5) and 5.3(1,5,6), and Lemmata 4.15 and 5.20. These rules can be viewed
as axioms of an equational calculus for proving identities between fuzzy relational opera-
tions. It seems to be an open problem if there are elementary theorems on fuzzy relations
expressible as identities in the language of ◦, T, V, 1, BK-products, and the notions listed
in Tables 1–4, which are not provable from these equational rules (possibly extended by
some missing identities), though provable in FCT (and, for that matter, if there are any
such identities in which the elementary theories of fuzzy and crisp relations differ).

Remark 5.23. Sup-T-compositions and BK-products operate on binary fuzzy relations,
i.e., fuzzy classes of ordered pairs of elements xy. The inner structure of these elements
x, y can be arbitrary: if they are, for instance, themselves ordered pairs x1x2 and y1y2,
then relational products are in fact operating on ordered quadruples. Composition-based
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notions with class operands (e.g., ⊆) are thus applicable to binary fuzzy relations as
well. In this way, inclusion of fuzzy relations R ⊆ S can be regarded as the BK-product
(R′)T / S ′, where for a binary relation R and quaternary relations P, Q we define

P / Q =df {x1x2y1y2 | (∀z1z2)(Px1x2z1z2 → Qz1z2y1y2)}
PT =df {y1y2x1x2 | Px1x2y1y2}
R′ =df {xy00 | Rxy}

The corollaries shown above thus apply to inclusion, compatibility, Cartesian products,
etc., not only of unary fuzzy classes, but also fuzzy relations of arbitrary arities. In this
way, many further notions of the theory of fuzzy relations are reducible to sup-T- and
BK-compositions: e.g., symmetry of a fuzzy relation R is expressible as (R′)T / (RT)′;
cf. also Example 5.11 for transitivity and reflexivity and Remark 5.18 for extensionality.
The machinery demonstrated above thus can be used also for proving properties of such
relational notions.

6 Conclusions

We have shown a method for mass proofs of theorems of certain forms in the theory of fuzzy
relations. Its soundness is based on the notion of relative interpretation between theories
over fuzzy logics, which allows a representation of fuzzy classes and formal truth values
as certain kinds of fuzzy relations. This expands the applicability of simple properties
of sup-T-compositions and BK-products of fuzzy relations to a larger language (of more
than 30 operations) which includes many important concepts of the theory of fuzzy sets
and fuzzy relations. Consequently, a large number of theorems of the latter theory are
reduced to corollaries of a few simple properties of relational products, thus becoming
verifiable by simple equational computations.

Among all possible kinds of fuzzy relational compositions, in this paper we have re-
stricted our attention only to the sup-T-composition and BK-products, because they
generate the most interesting families of derived notions, which occur most often in fuzzy
mathematics. Similar investigation of notions based on other kinds of relational products
is a topic left for future work.

Besides the practical consequences (e.g., for automated proofs of relational theorems)
the results show that using a suitable formal apparatus provided by first-order and higher-
order fuzzy logic enables exploitation of formal syntactic methods that can trivialize a
large part of fuzzy mathematics. Together with the metatheorems of [12, §3.4] on fuzzy
class operations, the methods presented here effectively reduce elementary fuzzy set theory
and a large part of fuzzy relational theory to calculations in propositional fuzzy logic and
simple relational algebra. Moreover they show that for a certain class of results, the
fuzziness of fuzzy relations does not present an additional difficulty to the usual theory
of crisp relations: it can be observed that Theorems 4.2 and 5.3, upon which all of the
corollaries are based, hold equally for fuzzy and crisp relations. Thus a large part of
the theory of crisp relations generalizes straightforwardly to fuzzy relations if a suitable
framework of formal fuzzy logic is employed.

Acknowledgments: Libor Běhounek: Supported by grant No. B100302502 of the
Grant Agency of the Academy of Sciences of the Czech Republic. Martina Daňková:
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[31] P. Hájek. Making fuzzy description logic more general. Fuzzy Sets and Systems,
154(1):1–15, 2005.
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Extensionality in graded properties
of fuzzy relations

Published version: L. Běhounek: Extensionality in graded properties of fuzzy rela-
tions. In Proceedings of 11th IPMU Conference, pp. 1604–1611, Edition EDK, Paris 2006.

Abstract: New definitions of graded reflexivity, symmetry, transitivity, antisymmetry,
and functionality of fuzzy relations are proposed which are relative to an indistinguishabil-
ity relation E on the universe of discourse. It is shown that if considered non-graded (i.e.,
either fully present or else fully absent), the new definitions reduce to the usual ones under
full extensionality of the relation w.r.t. E. However, if graded properties of R (e.g., transi-
tivity to some degree) are taken into account, the new definitions have to be distinguished
from the conjunction of the original property and E-extensionality of R. Some arguments
and results are given which suggest that the new concepts are well-motivated.

Keywords: Fuzzy relations, extensionality, similarity, graded properties.

1 Graded properties of fuzzy relations

In traditional fuzzy mathematics, fuzzy relations are defined as binary functions from
some universe of discourse U to [0, 1] (or another suitable lattice L of truth values). The
usual properties of fuzzy relations are then defined as follows:

Definition 1.1. Let T be a (left-continuous) t-norm. We say that a fuzzy relation R is
reflexive iff R(x, x) = 1 for all x; symmetric iff R(x, y) ≤ R(y, x) for all x, y; T -transitive
iff T (R(x, y), R(y, z)) ≤ R(x, z) for all x, y, z; etc.

These conditions, formulated in ordinary mathematics over classical logic, can also
be expressed by certain formulae of fuzzy logic. Let us work in the first-order fuzzy
logic MTL∆ with crisp identity predicate =, or in any of its extensions.1 In its usual
semantics, binary predicates of its formal language are interpreted as fuzzy relations over
the domain of discourse. A suitable defining formula for the reflexivity of R is then
∀xRxx; for symmetry, ∀xy(Rxy → Ryx); for transitivity, ∀xyz(Rxy & Ryz → Rxz); etc.
Each of these formulae has the truth value 1 iff the respective condition of Definition 1.1
is satisfied.

1MTL, introduced in [5], is the logic of left-continuous t-norms; see [9] for its most important extensions
and an exposition of the semantics of first-order fuzzy logic. We use extensions that contain the ∆
connective as we need to express the full truth of some statements. The crisp identity predicate is
inessential in this paper and is only used for expository purposes: it will be consistently replaced by a
fuzzy predicate E.
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If the conditions of Definition 1.1 are not satisfied, then the property of R simply
does not hold (its truth value is 0). The defining formulae in first-order fuzzy logic,
however, may even in such cases yield meaningful non-zero truth values. For instance,
if R(x, x) = 0.999 for all x, then the truth value of ∀xRxx is 0.999. It is clear that such
a relation is “almost reflexive” (all pairs xx are almost fully in R), even though it is not
reflexive according to Definition 1.1. Since furthermore the formula ∀xRxx has the same
form as the formula which defines reflexivity in classical mathematics, it is natural to take
its truth value for the degree of graded reflexivity of R, and say that R is 0.999-reflexive.
(Similarly for symmetry, transitivity, and other properties of fuzzy relations.)

The graded properties of fuzzy relations have been introduced in Gottwald’s paper [6]
and systematically studied in his monograph [7]; more recently they have been elaborated
in Gottwald’s [8, §18.6], Bělohlávek’s [3, §4.1], and Jacas and Recasens’ [12]. The graded
approach to the properties of fuzzy relations is important for several reasons:

• Graded properties generalize the traditional (non-graded) ones: R is reflexive (in
the traditional sense) iff the truth value of graded reflexivity is exactly 1. In all
other cases, the graded properties provide a fine-grained scale of the degrees of their
validity, while the non-graded properties are then simply false.

• The graded approach allows to infer relevant information when the traditional con-
ditions are almost, but still not completely, fulfilled. E.g., in the example above,
R is 0.999-reflexive: if we prove that (graded) reflexivity of R implies (in the sense
of fuzzy logic) some property ϕ, we shall know that ϕ holds at least to the degree
0.999. On the contrary, from the non-graded reflexivity of Definition 1.1 we cannot
infer anything as it is simply false.

• Graded properties can easily be handled by first-order fuzzy logic: valid inferences
about them can be proved by the formal rules of fuzzy logic. The semantics of fuzzy
logic (relative to a particular t-norm) then translates the formal theorems into the
laws valid for “real” fuzzy relations.

• Graded properties are “fuzzier” than their non-graded counterparts: if we take
seriously the idea of general fuzziness of concepts, there is no reason to presuppose
that the properties of fuzzy relations should only be crisp (i.e., either true or false
as in Definition 1.1).

In the rest of this paper we shall always work with graded properties of fuzzy relations.
Suspending Definition 1.1, we now define (graded) reflexivity, symmetry, transitivity,
antisymmetry,2 and functionality in the first-order logic MTL as follows:

Definition 1.2.

Refl R ≡ ∀xRxx

Sym R ≡ ∀xy(Rxy → Ryx)

Trans R ≡ ∀xyz(Rxy & Ryz → Rxz)

Asym R ≡ ∀xy(Rxy & Ryx → x=y)

Fnc R ≡ ∀xyy′(Rxy & Rxy′ → y=y′)

2Even though many authors (e.g., [3], [11]) use min-conjunction in the definition of antisymmetry,
arguments can be given that strong conjunction is in order here.
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These definitions can be combined (by strong conjunction), yielding more complex
graded notions of proximity, similarity (fuzzy equivalence), fuzzy preorder, and fuzzy
order:

Definition 1.3.

Prox R ≡ Refl R & Sym R

Sim R ≡ Prox R & Trans R

Preord R ≡ Refl R & Trans R

Ord R ≡ Preord R & Asym R

It can be observed that the defining formulae in Definition 1.2 are exactly the same
as the definitions of these properties for crisp relations in classical mathematics. This
correlates with the motivation of fuzzy logic as the generalization of classical logic to
non-sharp predicates: classical mathematical notions are then fuzzified in a natural way
just by interpreting the classical definitions in fuzzy logic. This methodology has been
foreshadowed in [11, §5] by Höhle, much later formalized in [1, §7], and suggested as an
important guideline for formal fuzzy mathematics in [2].3

2 Indistinguishability-relative properties

The adoption of graded properties of fuzzy relations can be viewed as part of the pursuit
of a full-blown (rather than half-way) fuzzification of classical notions: the semi-classical
(bivalent) notions of Definition 1.1 have been replaced by fuzzy notions of Definition 1.2.
In general, according to the methodology of [2], one wants to fuzzify as much as one can,
and find and eliminate hidden crispness in definitions wherever possible.

A case of such hidden crispness can be descried in the above definitions of antisymme-
try and functionality: they refer to the (crisp) identity predicate =. In the fuzzy world,
we should be ready to admit that not only crisp identity, but also a fuzzy similarity rela-
tion can play the role here.4 The corrected definitions of these two notions will therefore
replace = with a similarity relation E:

Definition 2.1.

Asym(E) R ≡ ∀xy(Rxy & Ryx → Exy)

Fnc(E) R ≡ ∀xyy′(Rxy & Rxy′ → Eyy′)

Indeed, such definitions of E-antisymmetry and E-functionality can be found in the
literature (e.g., [3], [4], [11]).

These two cases of “hidden” crispness were patent—the crisp identity was explicitly
present in the formula. What I want to propose in this paper is to avoid another, less
explicit case of hidden crispness present in the definitions of properties of fuzzy relations.
The kind of hidden crispness I address is caused by multiple occurrences of the same
variable in the defining formula: in such cases, a hidden identity predicate is present,
which should again be eliminated by replacing it with fuzzy similarity.

3Of course, the method cannot be applied mechanically: but due to the motivation of fuzzy logical
connectives and quantifiers, it often yields intuitive notions, and only occasionally a deeper analysis is
required; an example of the latter situation are the new definitions presented in this paper.

4The intuitions behind the definitions of antisymmetry and functionality will be preserved especially
if the similarity is interpreted as the indistinguishability of individuals.
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Consider reflexivity, ∀xRxx. If we suppose that there is a relation E which measures
the degree of indistinguishability of individuals, we find that the formula ∀xRxx is no
longer adequate for the intuitive notion of reflexivity. The reason is that it only takes
into account R on pairs xx, even though Rxy should also be taken into consideration
on reflexivity if y is indistinguishable from x (i.e., on condition Exy). The need for
this is often obvious: if the value of R is, for example, obtained by some independent
measurements on its two arguments, we may often fail to recognize whether the two
arguments independently presented to us (e.g., by Nature) are indeed identical or just
indistinguishable. Thus we should rather define:

ReflE R ≡ ∀xy(Exy → Rxy) (1)

From the formal point of view, the reason why the original definition ceased to be ade-
quate in the presence of indistinguishability was that the double occurrence of x in ∀xRxx
contained a hidden identity predicate: it was in fact ∀xy(x=y → Rxy), in which (1) has
replaced = by E, just as did Definition 2.1.

The same considerations can be carried out for other properties of fuzzy relations, and
the hidden crispness caused by multiple occurrences of variables in the defining formulae
be cured in the same way: by first making the hidden identity predicates explicit, and
then replacing them with the (fuzzy) indistinguishability relation E. This leads to the
following definitions:

Definition 2.2.

ReflE R ≡ ∀xx′(Exx′ → Rxx′)

SymE R ≡ ∀xx′yy′(Exx′ & Eyy′ & Rxy → Ry′x′)

TransE R ≡ ∀xx′yy′zz′(Exx′ & Eyy′ & Ezz′ & Rxy & Ry′z → Rx′z′)

AsymE R ≡ ∀xx′yy′(Exx′ & Eyy′ & Rxy & Ry′x′ → Exy)

FncE R ≡ ∀xx′yy′(Exx′ & Rxy & Rx′y′ → Eyy′)

PreordE R ≡ ReflE R & TransE R

OrdE R ≡ PreordE R & AsymE R

ProxE R ≡ ReflE R & SymE R

SimE R ≡ PreordE R & SymE R

Generally we do not impose any restriction on E in this definition: so any assumptions
regarding the properties of E will always be explicitly stated in theorems. By convention,
the index E can be dropped if E is the identity (this accommodates Definitions 1.2
and 1.3).

It can be objected that the main motivation of these definitions is not yet (and gen-
erally can never be) accomplished: the formulae in Definition 2.2 still contain two occur-
rences of each variable, and by the same argument as above we cannot be sure whether
the individuals denoted by them are indeed identical or just E-indistinguishable. In order
to eliminate the double occurrences in the new definitions, we would have to make the
same trick again, ending up in an infinite regress:

Refl0E R ≡ ∀xRxx

Refl1E R ≡ ∀xy(Exy → Rxy)

Refl2E R ≡ ∀xx′yy′(Exx′ & Eyy′ & Exy → Rx′y′)

· · ·
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There are at least three possible answers to this objection:5

First, in the formula Refl1E R, each variable occurs only once under R. Conceivably,
establishing the truth value of the indistinguishability E can be much easier than the
measurement of R (e.g., E can be obvious, intuitive, etc.). Thus in some cases it may
only be necessary to distinguish the arguments of R, not E.

Second, observe that Refl2E R ↔ Refl1E′ R, where6

E ′xy ≡ ∃x′y′(Ex′x & Ey′y & Ex′y′) (2)

Thus the iterated E-properties have the same form as the non-iterated ones (only with
a different E ′). The theory of iterated properties (abstracting from particular E’s) is
therefore the same as that of non-iterated ones.

Finally, under the reasonable assumption that E is a similarity (to degree 1), the
iterated notions coincide with the non-iterated ones:7

Lemma 2.3. ∆ Sim E → E ′ = E

Proof. Observe that by (2),8

E ′ = E−1 ◦ E ◦ E

By known results (see, e.g., [3] or [8]) which can be transferred to MTL∆, if E is fully
symmetric, then E−1 = E; and if E is fully reflexive and fully transitive, then E = E ◦E.
Thus if ∆ Sim E, then E ′ = E.

Corollary 2.4. ∆ Sim E → (Refl2E R ↔ Refl1E R)
(Similarly for Sym2E, Trans2E, Asym2E, and Fnc2E.)

This ensures that under the assumption that the indistinguishability relation is a (full)
similarity, all of the iterated notions coincide with those of Definition 2.2.

Remark 2.5 By the same argument as above, one should prefer ∆ SimE E as the pre-
condition for Lemma 2.3 and Corollary 2.4. However, by Proposition 3.5 below,

∆ SimE E ↔ ∆ Sim E

Thus the simpler precondition ∆ Sim E is sufficient.

5We present them for the case of reflexivity; for other properties they are fully analogous.
6Since by the rules of MTL,

∀xx′yy′(Exx′ & Eyy′ & Exy → Rx′y′)
↔ ∀x′xy′y(Ex′x & Ey′y & Ex′y′ → Rxy)
↔ ∀xy(∃x′y′(Ex′x & Ey′y & Ex′y′) → Rxy)

7Recall that we work formally in the logic MTL∆ or some of its extensions; therefore, by stating a
lemma or a theorem in this paper we mean that it is provable in MTL∆.

8E−1 is the inverse relation and ◦ denotes relational composition:

E−1xy ≡ Eyx

(R ◦ S)xy ≡ ∃z(Rxz & Szy)

The identity of fuzzy relations is defined as the identity of their membership functions (which ensures
their intersubstitutivity salva veritate):

R = S ≡ ∀xy∆(Rxy ↔ Sxy)
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Remark 2.6 In a completely graded approach to fuzzy relations we should not be satisfied
with the non-graded results of Lemma 2.3 and Corollary 2.4 (as they do not allow to
infer anything unless E is a similarity to degree 1). Graded variants of Lemma 2.3 and
Corollary 2.4 can indeed be derived by a more careful proof.9 For instance,

Sim2 E → (Refl2E R ↔ Refl1E R)

Sim4 E → (Sym2E R ↔ Sym1E R)

Sim6 E → (Trans2E R ↔ Trans1E R), etc.,

where Simn E stands for Sim E & . . . & Sim E (n times). (The same abbreviations for
multiple conjunctions will also be used for Refl, Sym, etc.)10

3 E-relative properties vs. extensionality w.r.t. E

In the non-graded approach, the motivation of our E-properties leads to the notion of
extensionality of a relation R w.r.t. a relation (usually a similarity) E. Indeed, the
definition of extensionality expresses the same idea of the congruence of R w.r.t. E.
The graded definition of extensionality (of which the non-graded version is obtained by
requiring its 1-validity) reads as follows:

Definition 3.1.

ExtE R ≡ ∀xx′yy′(Exx′ & Eyy′ & Rxy → Rx′y′)

It can be shown that in the non-graded approach, extensionality is a sufficient substi-
tute for E-properties (see Corollary 3.4 below). However, if graded properties are taken
into account, E-properties can only partially be reduced to the conjunction of the usual
properties and extensionality:

Theorem 3.2. 1. Refl2 E & ExtE R → (ReflE R ↔ Refl R)

2. Prox2 E & ExtE R → (SymE R ↔ Sym R)

3. Prox3 E & Ext2
E R → (TransE R ↔ Trans R)

4. Prox2 E & ExtE R → (AsymE R ↔ Asym(E) R)

5. Prox E & ExtE R → (FncE R ↔ Fnc(E) R)

9From graded variants of the statements used in the proof of Lemma 2.3, see [8, Prop. 18.6.1] or
[3, L. 4.21], it follows that Sim2 E → (E′xy ↔ Exy). This is then used once for each variable occurring
in the defining formula of Refl1E , Sym1E , etc.

In fact, the precondition Sim2 E can be weakened a bit: it suffices if Refl2 E & Sym E & Trans2 E, i.e.,
if E is a preorder similarity, Sim E&Preord E. (Notice that in the graded approach, notions like transitive
similarity or reflexive preorder are meaningful and strengthen non-trivially the respective conditions.)

10By [10], ϕ&ϕ can be interpreted as “very ϕ”. Thus informally, Refl2 E can be understood as requiring
E to be very reflexive, Refl3 E even more reflexive, etc. One must, however, be careful here, since ϕ & ϕ
is not the only possible interpretation of “very”, and the meaning of “very” in natural language usually
differs from this particular one. Therefore this kind of reading of the exponents can only be understood
as a rough, ‘heuristic’ aid.
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Proof. We shall show e.g. the proof for antisymmetry, the other proofs are analogous.
First we prove in first-order MTL that

Refl2 E → (AsymE R → Asym(E) R)

By specifying x for x′ and y for y′ in AsymE R we get Exx & Eyy & Rxy & Ryx → Exy.
Detaching Exx and Eyy by double use of Refl E, we get Asym(E) R by generalization
on xy.

Next we prove that

Sym2 E & ExtE R → (Asym(E) R → AsymE R)

Clearly Ex′x & Ey′y & Ry′x′ implies Ryx by ExtE R, which together with Rxy implies
Exy by Asym(E) R. Thus by Sym E & Exx′ → Ex′x and Sym E & Eyy′ → Ey′y we have

Sym2 E & ExtE R & Asym(E) R → (Exx′ & Eyy′ & Rxy & Ry′x′ → Exy), whence the
required formula follows by generalization.

Notice that for the reduction of TransE R to Trans R we needed ExtE R twice. The
following counter-example shows that single ExtE R is not sufficient.

Example 3.3. Let the universe of discourse comprise six elements a, a′, b, b′, c, c′ with
Eaa = Ea′a′ = Ebb = Eb′b′ = Ecc = Ec′c′ = 1,
Eaa′ = Ea′a = Ebb′ = Eb′b = Ecc′ = Ec′c = 0.9,
Rab = Rb′c = 1,
Rab′ = Ra′b = Rac = Rbc = Rb′c′ = 0.8,
Ra′b′ = Rac′ = Ra′c = Rbc′ = 0.7,
Ra′c′ = 0.5, and Exy = Rxy = 0 otherwise.
Then for the ÃLukasiewicz t-norm, the truth value of Prox E is 1, that of ExtE R is 0.9,
and that of Trans R is 1; thus the truth value of Prox3 E & ExtE R & Trans R is 0.9, while
that of TransE R is only 0.8.

Similarly, single ExtE R is not enough for complex notions like similarity or preorder,
where we must sum up the exponents; thus, e.g., (SimE R ↔ Sim R) ← Refl7 E&Sym5 E&
Ext3

E R.
As a corollary to Theorem 3.2 we get the reduction of E-properties to the usual ones

by E-extensionality for non-graded notions:

Corollary 3.4. Let ∆ Prox E &∆ ExtE R. Then the following equivalences are 1-valid:

ReflE R ↔ Refl R

SymE R ↔ Sym R

TransE R ↔ Trans R

AsymE R ↔ Asym(E) R

FncE R ↔ Fnc(E) R

PreordE R ↔ Preord R

ProxE R ↔ Prox R

SimE R ↔ Sim R

Proof. By ∆-necessitation applied to Theorem 3.2 and the appropriate distribution of
the ∆’s.
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As a corollary we can see that if E is a full similarity, it is already a full similarity
w.r.t. itself:

Proposition 3.5. ∆ Sim E ↔ ∆ SimE E

Proof. From Corollary 3.4 and the following Lemma 3.6.

Lemma 3.6. Trans2 E & Sym E → ExtE E

Proof. Exx′ & Exy & Eyy′ → Ex′y′ by applying symmetry to the first conjunct and then
transitivity twice.

Corollary 3.4 explains why most of the E-properties have not yet been defined in the
fuzzy literature: in the (prevalent) non-graded approach, in order to satisfy the natural
idea of congruence w.r.t. E it is sufficient for R to be (fully) E-extensional, provided E
is a (full) proximity (or even similarity).

There have been three notable exceptions to the absence of E-properties from the
literature: the (E)-notions of Definition 2.1 (e.g., in [3], [4], [11]), and E-reflexivity whose
non-graded variant sometimes occurs as one of the axioms of similarity-based fuzzy or-
dering (e.g., in [4]). Corollary 3.4 sheds some light on why this is so:

First, notice that full extensionality reduces AsymE R and FncE R only to Asym(E) R
resp. Fnc(E) R; thus the two notions of Definition 2.1 are indispensable even in the non-
graded approach.11

Second, the E-reflexivity has been explained in the non-graded theory of fuzzy orders
as a combination of ordinary reflexivity and extensionality, to which it is indeed equivalent
under certain conditions:

Theorem 3.7. ∆ Prox E & ∆ Trans R → (∆ ReflE R ↔ ∆ Refl R & ∆ ExtE R)

Proof. By ∆-necessitation from the following easy lemma, which shows how the situation
changes under gradedness; its proof is similar to that of Theorem 3.2.

Lemma 3.8. 1. Prox E & Trans2 R → (Refl2
E R → ExtE R & Refl R)

2. Refl E → (ExtE R & Refl R → ReflE R)

Thus, since the preconditions of Theorem 3.7 are always presupposed in the non-
graded definition of similarity-based fuzzy ordering, ReflE R indeed plays the role of both
reflexivity and E-extensionality there; and since therefore E-extensionality is already
ensured by ReflE R, it is not necessary to introduce it into the definition of transitivity in
the non-graded theory of fuzzy orderings.

This explains why E-transitivity and E-symmetry12 have not been defined in the
theory of fuzzy relations, even though ReflE, Asym(E), and Fnc(E) have. Theorem 3.2
further shows that in graded properties of fuzzy relations, E-notions have nevertheless to
be distinguished from the simple presence of E-extensionality.

11In [3] they are already generalized to their graded versions.
12∆ ReflE R has also been used in the non-graded definition of E-extensional similarity, in which the

preconditions of Theorem 3.7 are satisfied as well; therefore it supplies the definition with the needed
∆ExtE R, and thus it is not necessary to build extensionality into the definitions of symmetry or transi-
tivity there, either.
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4 Some generalizations

In this paper we restricted our attention to reflexivity, symmetry, transitivity, antisym-
metry, and functionality (and some combinations thereof), as they are the most usual
properties of fuzzy relations found in the literature. The definitions and results can,
however, be easily extended to a wider class of graded properties of fuzzy relations.13

A further generalization of FncE might consist in considering different indistinguisha-
bility relations on the domain and codomain of the fuzzy relation. Thus we could define
FncE1,E2 R ≡ ∀xx′yy′(E1xx′&Rxy &Rx′y′ → E2yy′). However, this definition can always
be reduced to Definition 2.2 by taking the disjoint union of E1 and E2 on the disjoint
union of (the supports of) the domain and codomain of R.14

Finally, the E-relative properties treated in this paper require that indistinguishable
individuals behave uniformly, just as if they were equal. In some situations, however,
it may be sufficient that any (rather than all) objects among those indiscernible are
in relation R. Thus we can define the ‘existential’ versions of E-relative properties as
follows:

Definition 4.1.

Refl∃E R ≡ ∀x∃x′(Exx′ & Rxx′)

Sym∃
E R ≡ ∀xy(Rxy → ∃x′y′(Exx′ & Eyy′ & Ry′x′))

Trans∃E R ≡ ∀xyz(Rxy & ∃y′(Eyy′ & Ry′z) → ∃x′z′(Exx′ & Ezz′ & Rx′z′))

These notions are weaker than those of Definition 2.2 if E is reflexive enough:

Observation 4.2.

Refl E ↔ (ReflE R → Refl∃E R)

Refl2 E ↔ (SymE R → Sym∃
E R)

Refl2 E ↔ (TransE R → Trans∃E R)

The differences between both variants of E-properties are shown by their characteri-
zations in terms of relational compositions:15

Observation 4.3.

ReflE R ↔ E ⊆ R

Refl∃E R ↔ I ⊆ R ◦ E−1

SymE R ↔ E−1 ◦R−1 ◦ E ⊆ R

Sym∃
E R ↔ R ⊆ E ◦R−1 ◦ E−1

TransE R ↔ E−1 ◦R ◦ E ◦R ◦ E ⊆ R

Trans∃E R ↔ R ◦ E ◦R ⊆ E ◦R ◦ E−1

13The methods shown here work at least for properties given by formulae ∀x1 . . . xn

(
&ϕi → ψ

)
, where

all ϕi and ψ are atoms of the form Rxkxl or xk=xl.
14Still, FncE1,E2 can sometimes be a convenient notation; e.g., Fnc(E) of Definition 2.1 is in fact Fnc=,E .
15R ⊆ S is defined as ∀xy(Rxy → Sxy) and Ixy ≡ x=y. Notice that even the notion of relational

composition should be made E-relative under the presence of indistinguishability E, namely

(R ◦E S)xy ≡ ∃zz′(Rxz & Ezz′ & Sz′y)

Obviously R ◦E S = R ◦ E ◦ S.
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The choice of the appropriate variant of an E-property depends on the context; in
particular, whether the objects are given to us (e.g., by Nature) or we can choose them;
or alternatively, whether indistinguishable objects must all behave as required, or only
one object suffices to witness the property.
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Abstract: In the framework of Henkin style higher-order fuzzy logic ÃLΠω we construct
fuzzy real numbers as fuzzy Dedekind cuts over crisp rationals, and show some of their
properties provable in ÃLΠω. The definitions of algebraic operations and a theory of fuzzy
intervals are sketched.

Keywords: Fuzzy Dedekind completion, fuzzy real numbers, higher-order fuzzy logic.

1 Introduction

In [1], Henkin-style higher-order fuzzy logic ÃLΠ has been introduced and proposed as a
unified foundational theory for fuzzy mathematics. This paper contributes to the pro-
gramme of developing fuzzy mathematics within its framework by introducing the struc-
ture of fuzzy real numbers. A solid theory of fuzzy reals is indispensable for the more
advanced disciplines of unified formal fuzzy mathematics, such as fuzzy measure theory
or fuzzy probability.

The approach adopted in this paper conforms to the methodology of the Manifesto [2].
Real numbers and other concepts are therefore constructed in full analogy with classical
mathematics, taking advantage of the similarity of both formalisms.

The method of construction of real numbers applied here is certainly not the only
possible one, even within the framework of Henkin-style higher-order fuzzy logic. Another
readily available method consists in implanting the first-order axioms of the real closed
field in higher-order fuzzy logic. The systematic development of alternative notions of
real number within higher-order fuzzy logic and their careful comparison, especially from
the point of view of real-life applicability, is part of a broader long-term programme.
Although the usability of the present notion for applications cannot yet be predicted,
it nevertheless seems capable of capturing many features of fuzzy numbers already used
in applied fuzzy mathematics, and furthermore shows many properties of independent
mathematical interest. As sketched in Section 6, it can serve as a basis for a formal
theory of fuzzy intervals, which is very close to applied practice.

We are going to construct fuzzy real numbers as fuzzy Dedekind cuts over crisp ratio-
nals. The reason why we use crisp rather than fuzzy rationals reflects the usual definitions
of fuzzy numbers as fuzzy sets of (some kind of) common crisp numbers. However, unlike
most definitions of fuzzy numbers, Dedekind cuts do not express the ‘density’ of the fuzzy

201



number across the underlying crisp numbers, but rather its distribution (cumulative den-
sity), similar to the probabilistic distribution function. Intuitively, the membership q ∈ A
of a rational number q in a Dedekind fuzzy real number A expresses (the truth value of)
the fact that q majorizes the fuzzy real.

In somewhat different settings, fuzzy Dedekind completion has already been studied
in [7] and [3]. Dedekind reals in an axiomatic fuzzy set theory (over a slightly different
logic) appear also in [8].

In [5], Dubois and Prade require of fuzzy reals that they be objects whose every α-cut
is a (crisp) real. Interestingly, Dedekind fuzzy reals do meet this requirement, since every
α-cut of a fuzzy Dedekind cut is a crisp Dedekind cut, i.e., a crisp real (represented by the
cut). We will see in Section 4 that (unlike the proposal of [5]) a monotonicity condition
α ≤ β → Aα ≤ Aβ is met here, which seems essential for some of the motivational
aspects of fuzzy notions rendered horizontally (as sets of cuts); a thorough discussion of
these requirements is yet to be carried out.

2 Preliminaries

For the ease of reference, we repeat here the definitions and axioms of Henkin-style higher-
order fuzzy logic ÃLΠ, which will be our framework in the rest of the paper. For details,
see [1].

Definition 2.1. The logic ÃLΠ (introduced in [6]) has the following primitive connectives
(listed here with their standard [0, 1]-semantics):

The truth constant falsum 0 = 0
Product conjunction x &Π y = x · y
Product implication x →Π y = min(1, y/x), where 0/0 = 1
ÃLukasiewicz implication x →ÃL y = min(1, 1− x + y)

We define various derived connectives of ÃLΠ:

1 is ¬ÃL0, i.e. 1
¬ÃLx is x →ÃL 0, i.e. 1− x
¬Πx is x →Π 0, i.e. 0/x
∆x is ¬Π¬ÃLx, i.e. ∆x = 1 if x = 1, else 0
x &ÃL y is ¬ÃL(x →ÃL ¬ÃLy), i.e. max(0, x + y − 1)
x ∧ y is x &ÃL (x →ÃL y), i.e. min(x, y)
x ∨ y is (x →ÃL y) →ÃL y, i.e. max(x, y)
x⊕ y is ¬ÃLx →ÃL y, i.e. min(1, x + y)
xª y is x &ÃL ¬ÃLy, i.e. max(0, x− y)
x →G y is ∆(x →ÃL y) ∨ y, i.e. 1 if x ≤ y, else y

Bi-implications ↔ÃL, ↔Π, and ↔G are defined as usual. Furthermore, for any t-norm ∗
representable in ÃLΠ, the connectives &∗, →∗, ¬∗, and ↔∗ can be defined. We employ the
usual precedence of connectives.

Convention 2.2. We omit the t-norm indices of connectives and other defined symbols
whenever they do not matter, i.e., whenever the substitution of any other t-norm index
would yield a formula provably equivalent (or, in case of axioms and theorems, just
equiprovable) to the original one. An index subscripted to a closing parenthesis distributes
to all connectives and other indexed symbols within its scope that do not have their index
explicitly marked.
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Definition 2.3. The propositional logic ÃLΠ has the following axioms:

(ÃL) The axioms of ÃLukasiewicz logic
(Π) The axioms of Product logic
(ÃLΠ) ∆(ϕ →ÃL ψ) →ÃL (ϕ →Π ψ)
(ΠL) ∆(ϕ →Π ψ) →ÃL (ϕ →ÃL ψ)
(D) (ϕ &Π (χª ψ)) ↔ÃL ((ϕ &Π χ)ª (ϕ &Π ψ))

The deduction rules of ÃLΠ are modus ponens and ∆-necessitation (from ϕ infer ∆ϕ).

Definition 2.4. The first-order logic ÃLΠ [4] adds the deduction rule of generalization and
the following axioms for quantifiers and (crisp) identity:

(∀1) (∀x)ϕ(x) → ϕ(t) if t is substitutable for x in ψ
(∀2) (∀x)(χ →ÃL ϕ) → (χ →ÃL (∀x)ϕ) if x is not free in χ
(=1) x = x
(=2) x = y → ∆(ϕ(x) ↔ ϕ(y))

The symbol (∃x) is an abbreviation for ¬ÃL(∀x)¬ÃL.

Definition 2.5. The Henkin-style second-order logic ÃLΠ is a theory in the multi-sorted
first-order logic ÃLΠ, with sorts for objects (lowercase variables) and classes (uppercase
variables). Both of the sorts subsume subsorts of n-tuples, for all n ≥ 1. Apart from the
obvious necessary function symbols and axioms for tuples (tuples equal iff their respective
constituents equal), the only primitive symbol is the membership predicate ∈ between
objects and classes. The axioms for ∈ are (i) the comprehension axioms

(∃X)∆(∀x)(x ∈ X ↔ ϕ),

for all ϕ not containing X, which enable the (eliminable) introduction of comprehension
terms {x | ϕ} with axioms y ∈ {x | ϕ(x)} ↔ ϕ(y) (where ϕ may be allowed to contain
other comprehension terms); and (ii) the extensionality axiom

(∀x)∆(x ∈ X ↔ x ∈ Y ) → X = Y.

Convention 2.6. Formulae (∀x)(x ∈ X →∗ ϕ), (∃x)(x ∈ X &∗ ϕ) are abbreviated
(∀x ∈ X)∗ϕ and (∃x ∈ X)∗ϕ, resp.; x /∈∗ X stands for ¬∗(x ∈ X); alternatively we write
Ax and Rx1 . . . xn for x ∈ A and 〈x1, . . . , xn〉 ∈ R, resp.

Definition 2.7. The Henkin-style logics ÃLΠ of higher orders are obtained by repeating
the previous definition on each level of the type hierarchy. Obviously, all defined symbols
of any type can then be shifted to all higher types as well. (Consequently, all theorems
are preserved by uniform upward type-shifts.) Types may be allowed to subsume all lower
types.

Henkin-style ÃLΠ of order n will be denoted by ÃLΠn, the whole hierarchy by ÃLΠω. The
types of terms are either denoted by a superscripted parenthesized number (e.g., X(3)),
or understood from the context.

Definition 2.8. In ÃLΠ2, we define the following relations and operations:
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∅ =df {x | 0}
Ker(X) =df {x | ∆(x ∈ X)}

Xα =df {x | ∆(α → x ∈ X)}
\∗X =df {x | x /∈∗ X}

X ∩∗ Y =df {x | x ∈ X &∗ x ∈ Y }
X ∪ Y =df {x | x ∈ X ∨ x ∈ Y }

Crisp(X) ≡df (∀x)∆(x ∈ X ∨ x /∈ X)
Fuzzy(X) ≡df ¬Crisp(X)

X ⊆∗ Y ≡df (∀x)(x ∈ X →∗ x ∈ Y )
X ≈∗ Y ≡df (∀x)(x ∈ X ↔∗ x ∈ Y )
X ×∗ Y =df {〈x, y〉 | x ∈ X &∗ y ∈ Y }

R−1 =df {〈x, y〉 | Ryx}
Id =df {〈x, y〉 | x = y}

We shall freely use all elementary theorems on these notions which follow from the
metatheorems proved in [1], and thus can be checked by simple propositional calcula-
tions.

Definition 2.9. In ÃLΠ2, we can also define the usual properties of relations:

Reflexivity Refl(R) ≡df (∀x)(Rxx)
Dichotomy Dich(R) ≡df (∀x, y)(Rxy ∨ Ryx)
∗-Symmetry Sym∗(R) ≡df (∀x, y)(Rxy →∗ Ryx)
∗-Transitivity Trans∗(R) ≡df (∀x, y, z)(Rxy & Ryz → Rxz)∗

∗-Antisymmetry AsymE,∗(R) (w.r.t. E) ≡df (∀x, y)(Rxy & Ryx → Exy)∗
∗-Quasi-ordering QOrd∗(R) ≡df (Refl(R) & Trans(R))∗

∗-Ordering OrdE,∗(R) (w.r.t. E) ≡df (QOrd(R) & AsymE(R))∗
∗-Linear ordering LOrdE,∗(R) (w.r.t. E) ≡df (OrdE(R) & Dich(R))∗

∗-Function FncE,∗(R) (w.r.t. E) ≡df (∀x, y, z)(Rxy & Rxz → Eyz)∗

We adopt the convention that the index E can be dropped if ∆(E = Id). If ∆Fnc∗(F ),
we can write y = F (x) instead of ∆Fxy.

Definition 2.10. The class union and class intersection are the functions
⋃(n+3)
∗ and⋂(n+3)

∗ , respectively, assigning a class A(n+1) to a class of classes A(n+2) and defined as
follows:

⋃
∗
A =df {x | (∃A ∈ A)∗(x ∈ A)}

⋂
∗
A =df {x | (∀A ∈ A)∗(x ∈ A)}

3 Formal theory of suprema and infima

The notions defined in this section are most meaningful for (quasi)orderings. Neverthe-
less, the definitions can be formulated for just any relation and most of the results hold
regardless of any properties of the relation involved.

Definition 3.1. The upper and lower ∗-cone of a class A w.r.t. ≤ is defined as follows:

A↑∗ =df {x | (∀a ∈ A)∗(a ≤ x)}
A↓∗ =df {x | (∀a ∈ A)∗(x ≤ a)}

204



Let us fix some relation ≤ and denote its converse as usual by ≥. The usual definition
of suprema and infima as least upper bounds and greatest lower bounds can then be
formulated as follows (notice that they are fuzzy classes, since the property of being a
supremum is graded):

Definition 3.2. The classes of ∗-suprema and ∗-infima of a class A w.r.t. ≤ are defined as

≤- Sup∗ A =df A↑∗ ∩∗ A↑∗↓∗

≤- Inf∗ A =df A↓∗ ∩∗ A↓∗↑∗

Example 3.3.
⋃
∗A is a ∗-supremum of A w.r.t. ⊆∗. Similarly,

⋂
∗A ∈ ⊆∗- Inf∗A.

The following lemmata on suprema and infima, needed for the formal theory of
Dedekind reals, are mostly known in the algebraic setting (see e.g. [3]); here we recon-
struct them in the formal theory ÃLΠω. In the rest of this section we drop the ≤ sign in
≤- Sup∗ and ≤- Inf∗, and assume all formulae indexed by ∗. We formulate the lemmata
only for suprema, omitting their dual versions.

Lemma 3.4. Sup A = Inf A↑

Lemma 3.5. (x ∈ Sup A & y ∈ Sup A) → (x ≤ y & y ≤ x)

Corollary 3.6. The ∗-suprema w.r.t. ⊆∗ are ≈∗-unique. By the extensionality axiom, the
element of the kernel of ⊆∗- Sup∗A is unique w.r.t. identity. (Generally, 1-true suprema
w.r.t. R are E-unique if R is antisymmetric w.r.t. E.)∗

Lemma 3.7. (A ⊆ B & x ∈ Sup A & y ∈ Sup B) → x ≤ y

4 Fuzzy Dedekind reals

In [1] it is shown that any classical nth-order theory can be interpreted in ÃLΠn by adding
the axioms of crispness of all predicates and functions in the language of the theory.
Thus we may assume that in ÃLΠω we have at our disposal a theory of crisp natural
numbers (obtained e.g. by the interpretation of 1st- or 2nd-order Peano arithmetic or
any sufficiently strong theory of natural numbers in ÃLΠω). By the standard construction
we get integers and rationals as certain pairs of natural numbers, with the usual crisp
ordering and operations. Further on we shall therefore presuppose the existence of the
class Q of crisp rational numbers, equipped with all usual relations and operations. We
shall freely use any classical theorem of the classical theory of rational numbers, as they
are provable in ÃLΠω due to Lemma 41 of [1].

We require the following axioms of Dedekind cuts A ⊆ Q (which will represent
Dedekind reals):

1. (∀p, q ∈ Q)[(p ≤ q → (p ∈ A → q ∈ A)]

2. (∀p ∈ Q)[(∀q ∈ Q)(q > p → q ∈ A) → p ∈ A]

The first axiom (which says that A is an upper set) reflects the intuitive motivation
(see Section 1) that the membership p ∈ A of a rational p in the Dedekind fuzzy real A
expresses (the truth value of) the fact that p majorizes the fuzzy real: thus if q ≥ p, then
a fortiori q majorizes A at least in the degree p does.
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The second axiom (the right-continuity of the membership function of A) is aimed
at excluding the “left-continuous” doppelgangers of cuts with discontinuous membership
functions. The reason for this requirement is the same as in classical mathematics, where
the set of all cuts must similarly be pruned. Keeping the left-closed cuts corresponds to
the choice of the informal meaning of q ∈ A as “A ≤ q” (rather than “A < q”).

Definition 4.1. The (second order) class R of fuzzy Dedekind reals is the class of all
A ⊆ Q that satisfy both axioms 1 and 2 above. (It exists by the comprehension axiom
of ÃLΠ3.)

Crisp cuts in R correspond to (all and only) classical real numbers. A crisp cut with
the least element q can be identified with the rational number q itself; if the distinction
is necessary, we denote the cut by q. Crisp cuts lacking the least element represent
classical irrational numbers; those which are definable can be given the same names as in
classical mathematics, e.g.

√
2 =df {q ∈ Q | q2 > 2}. We denote the empty cut ∅ by +∞

and the whole Q by −∞.
Zadeh’s extension principle does not yield a useful notion of ordering for cumula-

tive distributions (e.g., we would have A ≤ B for any crisp A,B 6= +∞, as surely
(∃p, q ∈ Q)(Ap & Bq & p ≤ q)). On the other hand, the usual definition of ordering as
inclusion (reversed, as we chose the upper cuts) used in classical Dedekind completions is
well-motivated and works well:

Definition 4.2. Let A,B ∈ R, then

A ≤∗ B ≡df B ⊆∗ A

Obviously, ≤∗ extends the order on Q, i.e., (∀p, q ∈ Q)(p ≤ q ↔ p ≤ q). Moreover, it
embodies our original motivation of interpreting q ∈ A as “A ≤ q”, since it can be proved
that for q ∈ Q and A ∈ R,

q ∈ A ↔ A ≤∗ q. (1)

It follows immediately from the properties of inclusion that ≤∗ is an (≈∗, ∗)-ordering,
though not linear. Like in classical mathematics, +∞ is the greatest and −∞ the least
real.

There are several candidates for the definition of strict ordering < on R. Here we only
give one of the strongest <-like notions, which is analogous to the intuitionistic relation
of apartness:

Definition 4.3. For A,B ∈ R,

A ¿ B ≡df (∃q)(∆Aq & ∆¬Bq)

Reals A such that −∞¿ A ¿ +∞ are bounded, and thus can be called proper reals.

Like in classical mathematics, the chief merit of the Dedekind completion is the exis-
tence of all suprema and infima:

Theorem 4.4. A ⊆ R → ⋂
∗A ∈ R

From Example 3.3 and Corollary 3.6 it follows that
⋂
∗A is the unique 1-true ∗-

supremum w.r.t. ≤∗. On the contrary,
⋃
∗A need not be in R (it is an upper subset of Q,

but not necessarily left-closed). Nevertheless, due to Lemma 3.4, all infima exist in R as
well. We shall denote the unique element of Ker(≤∗- Sup∗A) by sup∗A (and similarly for
inf∗A). The suprema and infima that already existed in Q are obviously (since all sets
involved are crisp) preserved.

206



5 Algebraic operations

We only sketch the definitions of addition and multiplication of fuzzy reals.
Since addition of rationals is monotonous w.r.t. ≤, Zadeh’s principle yields a well-

motivated extension of + to fuzzy reals: if defined as

q ∈ A +∗ B ≡df (∃a ∈ A)∗(∃b ∈ B)∗(q = a + b)

then q ∈ A +∗ B (i.e. A +∗ B ≤∗ q) is true just as much as Aq and Bq (i.e. A, B ≤∗ q)
guarantee. It can be proved that addition of fuzzy reals is commutative and associative,
0 is the neutral element, and it extends addition of crisp reals.

A similarly straightforward application of Zadeh’s principle to multiplication on Q
(which is not monotonous w.r.t.≤) would yield a counter-intuitive results. Like in classical
Dedekind reals, one must restrict Zadeh’s extension to subdomains of rationals where
multiplication is monotonous (i.e., positive and negative rationals) and take the union of
Zadeh’s extensions on these pieces (I omit the details here for space reasons).

A task yet to be done is to define further operations on reals (subtraction, division,
exponentiation, etc.) with suitable properties. Preliminary results (to be presented in a
subsequent paper) suggest that these tasks are viable.

6 Fuzzy intervals

The formal theory presented in the previous sections can be extended to a theory of fuzzy
intervals (often called just ‘fuzzy numbers’), of which we give a brief sketch here.

Observe that since no special property of Q has been used, the results of the previous
sections hold for the fuzzy Dedekind completion of any crisp poset (in particular, it always
yields a fuzzy complete lattice). From the applicational point of view, probably the most
useful are fuzzy intervals over crisp reals; further on we shall therefore assume that the
crisp numbers (denoted by lowercase variables) are crisp reals instead of rationals (the
results, however, again hold for any crisp ordered domain).

By (1), an upper Dedekind cut A is in fact an upper interval {q | A ≤ q}. Obviously,
the results for upper Dedekind cuts can be dualized for lower cuts as well; thus in the
same way, a lower cut B is a lower interval {q | B ≥ q}. A fuzzy interval

[A,B]∗ =df {q | A ≤ q &∗ q ≤ B}
is therefore an intersection of an upper cut A and a lower cut B. In other words, the upper
cut A represents the left endpoint of an upper interval [A, +∞); similarly B represents
the right endpoint of (−∞, B], and [A,B]∗ = [A, +∞) ∩∗ (−∞, B].

The operations of Section 5 have been motivated by (1); thus they are subject to
this ‘interval interpretation’. We thus get an algebra of intervals with natural operations
induced by the cut operations on the endpoints, e.g.

[A,B]∗ +∗ [C, D]∗ =df [A +∗ C,B +∗ D]∗

The crisp points where the kernel of an interval ends play an important role. In virtue
of the lattice completeness of the system of cuts we can define them within the theory:

Definition 6.1. Let A be an upper cut and B a lower cut. Then we define the upper cut
A← and the lower cut B→ as follows:

A← =df inf {q | ∆Aq}
B→ =df sup {q | ∆Bq}
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(If the system of underlying crisp numbers is a complete lattice, as in the case of crisp
reals, the cuts A← and B→ can be identified with the corresponding crisp numbers.)

Observe that in virtue of axiom 2 for Dedekind cuts (Section 4), A← is in fact a
minimum of the kernel of the cut (and dually). These crisp endpoints are preserved by
arithmetical operations on cuts (since kernels behave classically in good definitions); thus,
e.g., (X +∗ Y )← = X← + Y ←. (On the other hand, one can easily find counterexamples
to X ≤∗ Y → X← ≤∗ Y ← or the converse; only ∆(X ≤ Y ) → X← ≤ Y ← holds.)

It can be observed that a fuzzy interval is normal iff A← ≤ B→. In such a case the
membership function of [A,B] is that of A on (−∞, A←], that of B on [B→, +∞), and 1
on [A←, B→].

If A← = B→, then there is exactly one element in the kernel of [A,B]. We will call
such degenerate intervals fuzzy points. Due to the axioms for Dedekind cuts, fuzzy points
satisfy the most usual requirements on ‘fuzzy real numbers’ (singleton kernel, convexity
of cuts, monotony of membership function towards the central point). Conforming to the
tradition of fuzzy mathematics, we can therefore (ambiguously, but intelligibly) denote
representatives of the (crisp) equivalence class {[A, B] | A← = B→ = r} by r̃.

The set of all fuzzy points is closed under usual arithmetical operations (since, as
stated above, they preserve the crisp endpoints of cuts). Furthermore, their arithmetics
(sketched above) extends the arithmetics of crisp numbers (thus, e.g., 1̃+1̃ = 2̃). However,
the arithmetics of fuzzy points differs somewhat from the traditional arithmetics of fuzzy
intervals, as our operations are defined separately for the upper and lower endpoints of
fuzzy intervals. It is beyond the scope of this short paper to argue why this is well-
motivated; it will be elaborated in more details in a separate paper. At present we only
propose this new formal theory of fuzzy intervals and fuzzy points (or, “fuzzy numbers”)
for further study and for trying it in applications.
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[1] L. Běhounek and P. Cintula. Fuzzy class theory. Fuzzy Sets and Systems, 154(1):34–55,
2005.

[2] L. Běhounek and P. Cintula. From fuzzy logic to fuzzy mathematics: A methodological
manifesto. Fuzzy Sets and Systems, 157(5):642–646, 2006.
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1 Introduction

Fuzzy logic is a branch of many-valued logics aimed at capturing comparative degrees of
truth and reasoning under vagueness. For a long time, fuzzy sets and fuzzy logic were
rather an engineering tool than a well-developed mathematical theory. The advances in
metamathematics of fuzzy logic achieved during past few years (esp. [5]), however, set the
theory on a firm ground and made it possible to develop fuzzy generalizations of various
branches of classical mathematics in the axiomatic way.

One of the fields in which many-valued logics can fruitfully be applied is the logic of
questions. The importance of a many-valued approach to questions follows, i.a., from the
fact that many questionnaires employ scaled answers rather than simple yes–no ones. In
many cases, the scale of answers directly corresponds to comparative degrees of truth,
which is the domain of fuzzy logic.1 Furthermore, many questions in natural language
ask for information about predicates which are not ‘black and white’ (i.e., ‘crisp’, in fuzzy
terminology), but show a natural scale of truth.2

This paper develops a fuzzy generalization FGS of Groenendijk-Stokhof’s system of
erotetic logic (as described in [3] and [4], further referred to as GS). Since Groenendijk-
Stokhof’s system (also known as the partition semantics of questions) is based on inten-
sional semantics of classical logic, fuzzy intensional semantics is developed first, within
the framework of fuzzy class theory [1]. Our attention is restricted to propositional FGS,
i.e. fuzzy yes–no questions.3

2 Classical Groenendijk–Stokhof semantics

In this section we repeat the basic definitions of intensional semantics for classical propo-
sitional logic and classical propositional Groenendijk-Stokhof system. For details, see [3]
and [4].

Definition 2.1 (Intensional semantics). Let W be a non-empty set. By a valuation in
W we mean a function ‖·‖ taking formulae to subsets of W , such that ‖¬ϕ‖ = W−‖ϕ‖,

1E.g., the scale ‘yes, rather yes, rather no, no’. However, fuzzy logic is not applicable if the set of
answers contains options like ‘I don’t know’, since these are not truth degrees.

2For instance, if John is middle-sized, then the answer to the question ‘Is John tall?’ should be neither
‘yes’ nor ‘no’, but something in-between.

3While classical propositional GS is trivial, its fuzzified version is less so.
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‖ϕ & ψ‖ = ‖ϕ‖ ∩ ‖ψ‖, ‖ϕ ∨ ψ‖ = ‖ϕ‖ ∪ ‖ψ‖, ‖ϕ → ψ‖ = (W−‖ϕ‖) ∪ ‖ψ‖. The pair
W = 〈W, ‖·‖〉 is called a logical space, the elements of W indices or possible worlds, the
subsets of W propositions.

The proposition ‖ϕ‖ is called the intension of ϕ (in W). The extension of ϕ in w ∈ W
is the truth value of the statement that w ∈ ‖ϕ‖; it will be denoted by ‖ϕ‖w.4

A formula ϕ holds in a logical space W = 〈W, ‖·‖〉 (written W |= ϕ) iff ‖ϕ‖ = W .
A formula ϕ is a tautology (written |= ϕ) iff it holds in any logical space. A formula ϕ
entails a formula ψ in 〈W, ‖·‖〉 iff ‖ϕ‖ ⊆ ‖ψ‖. A formula ϕ entails a formula ψ (written
ϕ |= ψ) iff ϕ entails ψ in any logical space.

Intensional semantics is adequate w.r.t. classical propositional calculus; i.e., a formula
is provable in classical propositional calculus iff it is a tautology of intensional semantics.
GS extends this semantics to interrogative formulae ?ϕ (read whether ϕ), where ϕ is any
propositional formula.

Definition 2.2 (Semantics of interrogative formulae). Let W = 〈W, ‖·‖〉 be a logical
space. The extension ‖?ϕ‖w of ?ϕ in w ∈ W is the proposition {w′ ∈ W | ‖ϕ‖w′ = ‖ϕ‖w}.

The intension ‖?ϕ‖ of ?ϕ in W is the equivalence relation {〈w, w′〉 ∈ W 2 | ‖ϕ‖w =
‖ϕ‖w′}. The partition of W induced by this equivalence relation will be denoted by
W/‖?ϕ‖.

Definition 2.3 (Answerhood and entailment of interrogatives). Let 〈W, ‖·‖〉 be a logical
space.

We say that ψ is a direct answer to ?ϕ in W iff ‖ψ‖ ∈ W/‖?ϕ‖. We say that ψ is
an answer to ?ϕ in W (written ψ |=W ?ϕ) iff ψ entails a direct answer to ?ϕ in W .

We say that ?ψ entails ?ϕ in W (written ?ψ |=W ?ϕ) iff every answer to ?ψ is an
answer to ?ϕ in W . We say that ?ψ and ?ϕ are equivalent in W (written ?ψ ≡W ?ϕ)
iff ?ψ entails ?ϕ in W and vice versa.

We say that these relations hold generally iff they hold in any logical space.

It is easy to prove that ?ψ |=〈W,‖·‖〉 ?ϕ iff the partition W/‖?ψ‖ refines the partition
W/‖?ϕ‖, and that equivalence of interrogatives corresponds to the identity of partitions.

3 T-norm based fuzzy logic

In this section, the main ideas of t-norm based fuzzy logic are outlined and basic definitions
are given. For details see [5].

T-norm based fuzzy logic is founded upon a few natural assumptions regarding the
semantics of fuzzy conjunction: truth-functionality, associativity, commutativity, mono-
tonicity, continuity, and classical values on {0, 1}. Such binary functions on [0, 1] had
already been studied in probability theory under the name continuous triangular norms
(or continuous t-norms). Given a continuous t-norm ∗, the semantics of other proposi-
tional connectives can be defined in a natural way (e.g., the semantics of implication is the
maximal function such that the internalization of modus ponens is valid). Generalizing
Tarski’s definitions in the obvious way, for each [0, 1]-valuation v of propositional variables
and any formula ϕ we get a unique semantic value ‖ϕ‖v ∈ [0, 1]. A formula is a tautology

4Thus if w ∈ ‖ϕ‖, we say that the extension of ϕ in w is 1 (the truth value ‘true’); if w /∈ ‖ϕ‖, we say
that it is 0 (the truth value ‘false’). The intension of ϕ can be identified with the function that assigns
to each possible world w ∈ W the extension of ϕ in w.
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w.r.t. a continuous t-norm ∗ iff it gets the value 1 under each valuation v. The set of all
tautologies w.r.t. a continuous t-norm ∗ is called the logic of ∗ and denoted by PC(∗).

It turns out that some formulae are tautologies w.r.t. any continuous t-norm; we call
them t-tautologies. It can be proved that the set of all t-tautologies is finitely axiomatiz-
able. This gives rise to Basic Fuzzy Logic BL:

Definition 3.1 (BL). Propositional logic BL is determined by the following axiom schemata
and the deduction rule of modus ponens (the primitive connectives are →, &, and ⊥).

(BL1) (ϕ → ψ) → ((ψ → χ) → (ϕ → χ))

(BL2) (ϕ & ψ) → ϕ

(BL3) (ϕ & ψ) → (ψ & ϕ)

(BL4) (ϕ & (ϕ → ψ)) → (ψ & (ψ → ϕ))

(BL5a) (ϕ → (ψ → χ)) → ((ϕ & ψ) → χ)

(BL5b) ((ϕ & ψ) → χ) → (ϕ → (ψ → χ))

(BL6) ((ϕ → ψ) → χ) → (((ψ → ϕ) → χ) → χ)

(BL7) ⊥ → ϕ

Further connectives are defined as follows:

ϕ ∧ ψ ≡df ϕ & (ϕ → ψ)

ϕ ∨ ψ ≡df ((ϕ → ψ) → ψ) ∧ ((ψ → ϕ) → ϕ)

ϕ ↔ ψ ≡df (ϕ → ψ) & (ψ → ϕ)

¬ϕ ≡df ϕ → ⊥
> ≡df ¬⊥

There are three salient continuous t-norms:5 the minimum, also known as the Gödel
t-norm x ∗ y = min(x, y), the product x ∗ y = x · y, and the ÃLukasiewicz t-norm x ∗ y =
max(0, x+y−1). The sets of all tautologies w.r.t. these t-norms are called Gödel, product,
and ÃLukasiewicz fuzzy logic, denoted G, Π and ÃL, respectively.6 They are axiomatizable
by the following respective schematic extensions of BL:

(G) ϕ → (ϕ & ϕ)

(ÃL) ¬¬ϕ → ϕ

(Π) (¬(ϕ & ϕ) → ¬ϕ) & (¬¬ϕ → (((ψ & ϕ) → (χ & ϕ)) → (ψ → χ)))

The [0, 1]-semantics of ∧, ∨, ⊥ and> in any logic PC(∗) is that of minimum, maximum,
0, and 1, respectively. Furthermore, in any PC(∗), ‖ϕ → ψ‖ = max{z | z ∗ ‖ϕ‖ ≤ ‖ψ‖};
in particular, ‖ϕ → ψ‖v = 1 iff ‖ϕ‖v ≤ ‖ψ‖v. Consequently ‖ϕ ↔ ψ‖v = 1 iff ‖ϕ‖v =
‖ψ‖v, and ‖¬ϕ‖v = 1 iff ‖ϕ‖v = 0.

Except for G, all PC(∗) lack contraction (i.e., ϕ & ϕ is generally stronger than ϕ),
which justifies the presence of min-conjunction ∧. If we add the law of excluded middle
(i.e., the schema ϕ ∨ ¬ϕ) to BL, we get classical logic.

A further unary propositional connective ∆ (Baaz’s delta) with the [0, 1]-semantics
‖∆ϕ‖v = 1 iff ‖ϕ‖v = 1, otherwise ‖∆ϕ‖v = 0, is often introduced. The resulting logics

5Not only are they most often used in applications, but it is proved that any continuous t-norm is a
special kind of ordinal sum of these three t-norms (Mostert–Shields’ characterization theorem).

6 ÃL and G coincide respectively with ÃLukasiewicz and Gödel infinite-valued logics. G extends intuition-
istic logic with Dummett’s prelinearity axiom (ϕ → ψ) ∨ (ψ → ϕ).
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BL∆, G∆, ÃL∆, and Π∆ are axiomatized by the axioms of the respective fuzzy logic plus
the following axioms for ∆:

(∆1) ∆ϕ ∨ ¬∆ϕ

(∆2) ∆(ϕ ∨ ψ) → (∆ϕ ∨∆ψ)

(∆3) ∆ϕ → ϕ

(∆4) ∆ϕ → ∆∆ϕ

(∆5) ∆(ϕ → ψ) → (∆ϕ → ∆ψ)

The deduction rules for logics with ∆ are modus ponens and ∆-necessitation (from ϕ
infer ∆ϕ).

In order to develop fuzzy mathematics, fuzzy predicate calculus is necessary. The
syntax of first-order fuzzy logic is classical (except for the differences in propositional
connectives, i.e. the presence of two conjunctions and possibly ∆). The quantifiers ∀
and ∃ are governed by the following axiom schemata (which assume that the term t is
substitutable for x in ϕ and that x is not free in χ):

(∀1) (∀x)ϕ(x) → ϕ(t)

(∃1) ϕ(t) → (∃x)ϕ(x)

(∀2) (∀x)(χ → ϕ) → (χ → (∀x)ϕ)

(∃2) (∀x)(ϕ → χ) → ((∃x)ϕ → χ)

(∀3) (∀x)(χ ∨ ϕ) → (χ ∨ (∀x)ϕ)

The deduction rules are those of propositional logic plus generalization (from ϕ infer
(∀x)ϕ). Equality can be regarded as a logical symbol governed by the axioms of reflexivity
x = x and universal intersubstitutivity x = y → ∆(ϕ(x) ↔ ϕ(y)).

The standard semantics for fuzzy predicate calculi is a straightforward generalization
of Tarski’s semantics to [0, 1]. The interpretation of predicates and functors of arity n in
a model with the universe M are functions from Mn to [0, 1] (for predicates) or to M (for
functors); equality is interpreted as the identity on M . The semantics of ∀ and ∃ is that
of infimum and supremum, respectively. The first-order logics G and G∆ are complete
w.r.t. the standard [0, 1]-semantics; first-order BL, ÃL and Π (with or without ∆), however,
are not.7

4 Fuzzy class theory

Within fuzzy predicate calculus, axiomatic theory of fuzzy sets can be developed. For
most purposes, however, one does not need a full-fledged set theory over fuzzy logic,
since it is usually not necessary to consider the membership of sets in sets. The theory
of membership of (atomic) individuals in fuzzy sets—i.e., fuzzy class theory—is much
simpler; it has been elaborated in [1] over a richer fuzzy logic ÃLΠ, which contains all
the connectives of G∆, ÃL∆, and Π∆. An easy inspection of proofs in [1] shows that
the theorems of [1] that do not mix connectives of different logics remain valid in its

7They are complete w.r.t. special classes of distributive residuated lattices. Since our main motivation
is the interval [0, 1], we shall not discuss this general semantics (it can be found in [5]). The results of [1]
reduce the relevant part of fuzzy class theory (see Section 4) to fuzzy propositional calculus, for which
the completeness w.r.t. [0, 1] holds.
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fragments G∆, ÃL∆, and Π∆. The adaptation of fuzzy class theory FCT developed in [1]
for an extension F of BL∆ will be denoted by FCT.

The language of FCT has two sorts of variables: object variables x, y, . . . and class
variables X, Y, . . . (there are no universal variables). The only primitive predicate is
the membership predicate ∈ between objects and classes. FCT enjoys full class com-
prehension, i.e., for any formula ϕ(x) there is a function symbol8 {x | ϕ(x)} and the
comprehension axiom y ∈ {x | ϕ(x)} ↔ ϕ(y). The classes are understood extensionally,
therefore FCT adopts the axiom of extensionality (∀x)∆(x ∈ X ↔ x ∈ Y ) → X = Y .

The intended models consist of a universe U , which is the range of object variables,
and the set U [0,1] of all functions from U to [0, 1], which is the range of class variables.
The truth value of the formula x ∈ X in a model M under an evaluation e of class and
object variables is defined as the value of the function e(X) on e(x). The semantic value
of the comprehension term {x | ϕ(x)} in M under e is the function f : U → [0, 1] such that
for any a ∈ U , f(a) is the truth value of ϕ(x) in M under the evaluation ex:a, where ex:a

coincides with e except that ex:a(x) = a. It is easy to prove all comprehension axioms as
well as extensionality in such models; for details see [1].

We repeat here several definitions and theorems of [1] that will be needed later on.

Definition 4.1 (Fuzzy class operations and relations).

∅ =df {x | ⊥} empty class
V =df {x | >} universal class

−X =df {x | ¬(x ∈ X)} complement
X ∪ Y =df {x | x ∈ X ∨ x ∈ Y } union
X ∩ Y =df {x | x ∈ X & x ∈ Y } strong intersection
X ⊆ Y ≡df (∀x)(x ∈ X → x ∈ Y ) inclusion

Convention 4.2. In what follows, let the notation ϕ(p1, . . . , pn) imply that the formula
ϕ contains no propositional variables other than p1, . . . , pn. The formula ϕ & . . . & ϕ
(n times) is abbreviated by ϕn. Furthermore, we abbreviate (∀x)(x ∈ X → ϕ) as
(∀x ∈ X)ϕ, (∃x)(x ∈ X & ϕ) as (∃x ∈ X)ϕ, and {x | x ∈ X & ϕ} as {x ∈ X | ϕ}. If
ϕ(p1, . . . , pn) is a propositional formula and ψ1, . . . , ψn are any formulae, then ϕ(ψ1, . . . , ψn)
denotes the formula ϕ in which all occurrences of pi are replaced by ψi (for all i ≤ n).

Definition 4.3 (n-ary class operation). Let ϕ be a propositional formula. We define the
n-ary class operation induced by ϕ as

Opϕ(X1, . . . , Xn) =df {x | ϕ(x ∈ X1, . . . , x ∈ Xn)}.

The following lemmata are corollaries of more general theorems of [1]; their direct
proofs are given in Appendix A.

Lemma 4.4. Let ϕ(p1, . . . , pn) and ψ(p1, . . . , pn) be propositional formulae. Then F `
ϕ → ψ iff FCT ` Opϕ(X1, . . . , Xn) ⊆ Opψ(X1, . . . , Xn).

Lemma 4.5. FCT ` (X ⊆ Y & Y ⊆ Z) → X ⊆ Z.

8For function symbols in fuzzy logics see [6].
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5 Fuzzy intensional semantics

We want to generalize classical intensional semantics to fuzzy intensional semantics, i.e.,
to allow propositions to be fuzzy sets. Since we have a formal theory of fuzzy sets, viz
the theory of fuzzy classes FCT, we want to define the semantical notions in this theory
(thus we shall be able to prove results on entailment within its framework). First we shall
give an intuitive motivation for our definitions.

Let us work in FCT. Given a (possibly fuzzy) class W (to be informally interpreted
as a logical space), certain class operations of FCT (union, intersection, etc.) on (possibly
fuzzy) subclasses of W correspond directly to propositional connectives (disjunction, con-
junction, etc., respectively). Subclasses A ⊆ W can therefore aptly be called propositions
and taken for the range of intensions of propositional formulae of fuzzy logic F . The
extension of a proposition A in w ∈ W is expressed by the formula ‘w ∈ A’.9

It is natural to say that the proposition A entails B iff for all w ∈ W , the extension of
A in w implies that of B in w.10 This condition can be expressed as (∀w ∈ W )(w ∈ A →
w ∈ B), i.e., according to the definitions of FCT, W ∩A ⊆ B. Similarly we can say that
a proposition A holds in W iff it holds in all indices w ∈ W , formally (∀w ∈ W )(w ∈ A),
i.e. W ⊆ A.

In these considerations, propositions A ⊆ W represent intensions of propositional
formulae of a fuzzy logic F . The assignment ‖·‖ of propositions A ⊆ W to formulae obey-
ing the rules of correspondence between propositional connectives and class operations
(e.g., ‖ϕ ∨ ψ‖ = ‖ϕ‖ ∪ ‖ψ‖) can therefore be construed as an intensional semantics for
propositional formulae in the logical space 〈W, ‖·‖〉.

We of course intend tautologicity to be defined as validity in all logical spaces, i.e., for
all couples 〈W, ‖·‖〉. However, the assignment ‖·‖ is not an object of our theory;11 thus
we cannot quantify over it, and another formal solution is required.

It can be observed that in classical intensional semantics, the function ‖·‖ is in fact
a translation of propositional formulae to the language of a theory of subsets of some
basic set. Similarly, we can define fuzzy intensional semantics by giving a translation
of propositional formulae to the language of a theory of fuzzy subsets of some basic set
(favourably, a part of fuzzy class theory FCT).12 Interpreting propositional variables
as class variables, propositional connectives as the corresponding class operations, and
choosing a class variable W , we get the generality we need. The translation is adequate
in the sense that a propositional formula is provable in fuzzy logic F iff the general validity
of its translation is provable in FCT (and so holds in every model of FCT).

Let us elaborate this idea formally:13

9These definitions look the same as in the classical case, but notice that now the extensions can have
truth values between 0 and 1 and the propositions can be fuzzy classes.

10This definition (of local entailment) allows the inference from A to B in w if A entails B (by detach-
ment). Note that the entailment itself is a fuzzy notion.

11It could become an object of the theory after some strenghtening of FCT, which would allow us to
encode propositional formulae and classes of classes, but we shall not pursue this line here.

12We are thus giving an interpretation (a direct syntactic model) of fuzzy propositional calculus in
FCT. By means of this interpretation, any model of FCT together with a valuation of free variables
yields a fuzzy intensional model for the original propositional formulae.

13Since W can be construed as only a part of a larger logical space W ′ (whose subclass W is the class of
those worlds to which we currently restrict our attention), we shall not further require that propositions
be subclasses of W . The relativization of quantifiers in the definitions guarantees that only the worlds in
W are taken into account when evaluating entailment of propositions.

216



Definition 5.1 (Fuzzy intensional semantics). The translation ‖·‖ of the formulae of
propositional fuzzy logic F to FCT is defined as follows:

The translation ‖pi‖ of an atomic formula pi is a class variable Ai. The translation of
a complex formula ϕ(p1, . . . , pn) is

‖ϕ(p1, . . . , pn)‖ =df Opϕ(‖p1‖, . . . , ‖pn‖).14

Theorem 5.2 (Adequacy of fuzzy intensional semantics).

F ` ϕ iff FCT ` W ⊆ ‖ϕ‖

The proof is given in Appendix A. Similarly it is shown that F ` ϕ → ψ iff FCT `
W ∩ ‖ϕ‖ ⊆ ‖ψ‖. This correspondence justifies writing |= ϕ instead of W ⊆ ‖ϕ‖, and
ϕ |= ψ instead of W ∩‖ϕ‖ ⊆ ‖ψ‖.15 The notation can conveniently be generalized to any
class terms of FCT, defining (|= A) ≡df (W ⊆ A) and (A |= B) ≡df (W ∩ A ⊆ B).16 We
further define logical equivalence of propositions as their mutual entailment: (A ≡ B) ≡df

(A |= B) & (B |= A).

Theorem 5.3 (Properties of fuzzy entailment). It is provable in FCT that ∆(W ⊆
W ∩W ) implies17

[(A |= B) & (B |= C)] → (A |= C) (1)

[(A ≡ B) & (B ≡ C)] → (A ≡ C) (2)

[(A ≡ A′) & (B ≡ B′)] → [(A |= B) ↔ (A′ |= B′)] (3)

(ϕ |= ψ) → (¬ψ |= ¬ϕ) (4)

Proof: See Appendix A. QED

It should be stressed that the semantic notions defined here are graded, and can have
truth values between 0 and 1. Thus even though the theorems on fuzzy answerhood
derived here have syntactically the same form as their classical counterparts, in FCT
they express more general statements, namely that the truth value of the consequent is
not less than that of the antecedent. Thus, e.g., the formula (4) should be interpreted as
‘¬ψ entails ¬ϕ at least in the degree in which ϕ entails ψ’, rather than a crisp statement
that ‘¬ϕ entails ¬ψ if ϕ entails ψ’. The same is true about the notions of answerhood
and entailment of questions defined in the next Section.

14It can be observed that the definition works naturally, i.e., ‖ϕ ∨ ψ‖ = ‖ϕ‖ ∪ ‖ψ‖, etc.
15Formulae of F are translated by ‖·‖ to class terms of FCT (thus their semantical values in models

of FCT are fuzzy propositions). The semantical notions of tautologicity and entailment are expressed as
certain formulae of FCT. They can combine to complex semantical statements like (ϕ |= χ) & (ψ |= χ) →
(ϕ & ψ |= χ), which again are formulae of FCT (so in models they may have truth values between 0
and 1). If they are provable in FCT, we take them for valid semantical laws (they are 1-true in all
models.)

16Thus we can also write A |= ‖ϕ‖, or shortly A |= ϕ, etc.
17This condition is automatically satisfied in G, or if W is crisp. For each of the statements it can be

somewhat weakened: e.g., the condition W ⊆ W ∩W ∩W is sufficient for (1).
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6 Fuzzy semantics for questions

Having defined intensional semantics in FCT for propositional formulae, we want to
extend this semantics to interrogative formulae ?ϕ. There are two (classically equivalent)
options as to how to understand the question ?ϕ:

a. What is the truth value of ϕ?

b. Is it the case that ϕ?

We shall discuss both cases separately. We first interpret ?ϕ as the question about
the truth value of ϕ.

Let us fix some crisp logical space W .18 Then ψ answers such a question (which
fact we shall symbolize ψ |=t ?ϕ) iff the truth value of ψ determines the truth value of
ϕ. This amounts to the condition that for any indices w,w′ ∈ W , if ‖ψ‖w = ‖ψ‖w′ ,
then ‖ϕ‖w = ‖ϕ‖w′ . Since the identity of truth values is expressed by the equivalence
connective defuzzified by ∆ (see Section 3), and the extension of ϕ in w is expressed by
w ∈ ‖ϕ‖ (see Section 5), the defining condition for ψ |=t ?ϕ in FCT reads

(∀w, w′ ∈ W )[∆(w ∈ ‖ψ‖ ↔ w′ ∈ ‖ψ‖) → ∆(w ∈ ‖ϕ‖ ↔ w′ ∈ ‖ϕ‖)]. (5)

Again we can extend the notation and write A |=t ?ϕ, ψ |=t ?B, and A |=t ?B for
arbitrary class terms A and B, not restricting our definition to propositions definable by
propositional formulae.

If we define the truth-equivalence relation RX induced by (a proposition) X as19

RX =df {〈u, v〉 | ∆(u ∈ X ↔ v ∈ X)}

then the answerhood condition can be rewritten as

A |=t ?B ≡df W 2 ∩RA ⊆ RB.

Following GS, we can identify the intension of ?ϕ and the relation R‖ϕ‖. The proposition
{w′ ∈ W | 〈w, w′〉 ∈ R‖ϕ‖} can be understood as the direct true answer to ?ϕ in w, i.e.,
the extension of ?ϕ in w. Truth-value based entailment and equivalence of ?B and ?C
can be defined standardly as

?B |=t ?C ≡df (∀A)[(A |=t ?B) → (A |=t ?C)] (6)

?B ≡t ?C ≡df (?B |=t ?C) & (?C |=t ?B) (7)

It can be observed that these notions of answerhood and entailment are crisp. In fact,
they correspond to answerhood and entailment for questions ?α(‖ϕ‖w = α) of classical
predicative GS in the intended models of FCT.20 As such, they bring little new to the
topic; there is, however, a natural fuzzification of these semi-classical notions, obtained
by omitting one or both of the ∆’s in (5):

18Fuzzy W is also meaningful, but the definitions would need much more careful discussion.
19We need to extend the language of FCT by tuples of objects 〈x1, . . . , xn〉 here. This can be done

by adding functors for forming tuples and accessing their components, and axiom schemata saying that
tuples equal iff their respective components equal. We then define W 2 =df {〈u, v〉 | u ∈ W & v ∈ W}.
For details see [1].

20See Section 4 and [4].
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Definition 6.1 (Fuzzy truth-value based answerhood).

A |=ft ?B ≡df (∀w,w′ ∈ W )[∆(w ∈ A ↔ w′ ∈ A) → (w ∈ B ↔ w′ ∈ B)]

A |=fft ?B ≡df (∀w,w′ ∈ W )[(w ∈ A ↔ w′ ∈ A) → (w ∈ B ↔ w′ ∈ B)]

The corresponding notions of entailment and equivalence of questions are defined as in
(6) and (7), respectively.

It can be observed that the third option, viz discarding only the first ∆ in (5), would
lead to a counter-intuitive notion of answerhood, since it would admit cases when ϕ itself
does not answer ?ϕ (this follows from the fact that χ → ∆χ is not a theorem of BL∆).

All A |=t ?B, A |=ft ?B, and A |=fft ?B are 1-true in a model if the partition of W
by the truth-levels of A refines the partition by the truth-levels of B.21 Unlike crisp |=t,
which otherwise is absolutely false, its graded variants |=ft and |=fft partially tolerate the
flaws in the match of truth-levels. The truth value of A |=ft ?B is high iff the truth
value of B does not change too much within the truth-levels of A.22 In other words, a
proposition more-or-less answers ?B if its truth value more-or-less determines the truth
value of B. Different t-norm logics provide different measures of tolerance for imperfection
in satisfying the answerhood condition.

The answerhood notion |=fft strengthens the condition and requires further that the
closeness of the truth values of the answer imply the closeness of those being asked for.
In ÃL, A |=fft ?B is 1-true iff for any w,w′ ∈ W , the difference of the truth values of A in w
and w′ does not exceed the difference of the truth values of B in w and w′. For Π and G,
replace the word ‘difference’ in the previous sentence respectively by ‘ratio’ and ’smaller’
(where ‘the smaller of the truth values’ means 1 if they are equal).

Obviously |=ft is the weakest of the three notions:

Theorem 6.2. FCT proves

(A |=fft ?B) → (A |=ft ?B) (8)

(A |=t ?B) → (A |=ft ?B) (9)

For the proof see Appendix A; counter-examples to the remaining implications are
easy to find.23

Theorem 6.3. Let ◦ be ft or fft. Then FCT proves

(A ≡ B) → (A |=◦ ?B) (10)

(A ≡ B) → (?A ≡◦ ?B) (11)

(A ≡ B) → [(A |=fft ?C) ↔ (B |=fft ?C)] (12)

(?A |=◦ ?B) → [(?B |=◦ ?C) → (?A |=◦ ?C)] (13)

(?A ≡◦ ?B) → [(?B ≡◦ ?C) → (?A ≡◦ ?C)] (14)

21We slightly abuse the language here for brevity’s sake. It would be more accurate to speak about the
partition of the evaluation of W and the truth-levels of the evaluations of A and B in the model. We use
a similar license in the following paragraphs.

22The exact meaning of ‘does not change too much’ is given by the semantics of the equivalence
connective, which in t-norm logics expresses the closeness of truth values. In particular, in ÃL and Π it
respectively expresses the difference and ratio of truth values, while in G it yields the smaller of the truth
values (unless they are equal, in which case it is 1-true).

23E.g., to disprove (A |=ft ?B) → (A |=fft ?B), use a two-element intended model with the universe
{a, b} and assign the function {〈a, 0.5〉 , 〈b, 0.6〉} to A, {〈a, 0.5〉 , 〈b, 0.7〉} to B, and {〈a, 1〉 , 〈b, 1〉} to W .
Then the truth value of A |=ft ?B in ÃL is 1, while A |=fft ?B evaluates only to 0.9.
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For the proofs see Appendix A. Two-element counter-examples show that (10) and
(11) are not valid for t in place of ◦, and that fft in (12) cannot be replaced by t or ft.

Because of their motivation, the notions of answerhood defined above are sensitive
with respect to operations that can change the (exact or approximate) match of truth
values. Therefore, answerhood is not preserved by usual logical operations (except for
equivalence).24 An example of preservation properties that can be proved is the following
theorem:

Theorem 6.4. Let ¦ be a (primitive or defined) connective congruent w.r.t. ↔, i.e., such
that F ` [(ϕ ↔ ψ) & (ϕ′ ↔ ψ′)] → [(ϕ ¦ ϕ′) ↔ (ψ ¦ ψ′)]. Then FCT proves

[(ϕ |=ft ?ψ) & (ϕ |=ft ?ψ′)] → [ϕ |=ft ?(ψ ¦ ψ′)]

For the proof, see Appendix A. In particular, the statement holds for &, ∧, ∨, or ↔
substituted for ¦, and can easily be generalized to any arity of ¦. A further discussion of
the truth-value based notion of answerhood, entailment, and equivalence of questions is
given in Section 7.

Let us now investigate the other interpretation of ?ϕ. We again work in FCT and
now allow W to be fuzzy. The yes–no question ‘Is it the case that ϕ?’ is answered by
a proposition A iff A either entails ϕ (then it is an affirmative answer) or entails ¬ϕ
(a negative answer):

Definition 6.5. A proposition A is an affirmative answer to ?ϕ iff A |= ϕ. It is a
negative answer to ?ϕ iff A |= ¬ϕ. It is a yes–no answer (in symbols A |= ?ϕ) iff it is an
affirmative answer or a negative answer:

A |= ?ϕ ≡df (A |= ϕ) ∨ (A |= ¬ϕ)

Since entailment of fuzzy propositions is generally a fuzzy notion, so is yes–no answer-
hood: answers can be, not only fully affirmative or negative, but also partially affirmative
or partially negative (or neither).

Theorem 6.6. FCT proves that ∆(W ⊆ W ∩W ) implies25

(A |= B) → [(B |= ?ϕ) → (A |= ?ϕ)] (15)

(A ≡ B) → [(B |= ?ϕ) ↔ (A |= ?ϕ)] (16)

(ϕ ≡ ψ) → [(A |= ?ϕ) → (A |= ?ψ)] (17)

Proof: See Appendix A. QED

Theorem 6.7. FCT proves that if ∆(W ⊆ W ∩ W ), then affirmative and negative
answers exclude each other, i.e.,

[(ψ+ |= ϕ) & (ψ− |= ¬ϕ)] → (|= ¬(ψ+ & ψ−))

Proof: See Appendix A. QED

24Again, the two-element counter-examples to [(ϕ |=◦ ?χ) & (ψ |=◦ ?χ)] → (ϕ¦ψ |=◦ ?χ) for ¦ replaced
by &, ∧, or ∨ are easy to find.

25See footnote 17 on page 217.
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It can be noticed that the consequent in Theorem 6.7 cannot be strengthened to
|= ¬(ψ+ ∧ ψ−). In ÃL, e.g., an answer ψ can be both partially affirmative and partially
negative (only ψ & ¬ψ must be false).26

Following GS, we can define yes–no entailment and equivalence of questions in the
standard way:

Definition 6.8 (yes–no entailment and equivalence of questions).

?ϕ |= ?ψ ≡df (∀A)[(A |= ?ϕ) → (A |= ?ψ)]

?ϕ ≡ ?ψ ≡df (?ϕ |= ?ψ) & (?ψ |= ?ϕ)

Theorem 6.9. It is provable in FCT that ∆(W ⊆ W ∩W ) implies

(?ϕ |= ?ψ) → [(?ψ |= ?χ) → (?ϕ |= ?χ)] (18)

(?ϕ ≡ ?ψ) → [(?ψ ≡ ?χ) → (?ϕ ≡ ?χ)] (19)

(ϕ ≡ ϕ′) → [(?ϕ |= ?ψ) → (?ϕ′ |= ?ψ)] (20)

(ψ ≡ ψ′) → [(?ϕ |= ?ψ) → (?ϕ |= ?ψ′)] (21)

(ϕ ≡ ψ) → (?ϕ |= ?ψ) (22)

(?ϕ |= ?ψ) → (?ϕ |= ?¬ψ) (23)

Proof: See Appendix A. QED

Since obviously ϕ |= ϕ, from (22) and (23) it follows that ?ϕ |= ?ϕ and ?ϕ |= ?¬ϕ.
The converse, ?¬ϕ |= ?ϕ, does not hold generally, since ¬¬ϕ → ϕ is not a theorem
of BL. There are examples from natural language that this result does not contradict
intuition: if negation behaves in some context as the bivalent negation of G or Π (there
are such contexts—e.g., not guilty can be regarded as bivalent, even though there are
degrees of guilt), then a negative answer to ?¬ϕ need not be affirmative enough to ?ϕ.
The equivalence of ?ϕ and ?¬ϕ does, however, hold in ÃL or for crisp ϕ.

7 Conclusions

We have seen that the two interpretations of the question ?ϕ in fuzzy logic give rise to two
different kinds of fuzzy answerhood notions. Although these notions coincide in classical
logic, their properties in fuzzy logic are considerably different. It appears that the number
of interesting theorems that can be derived in FCT is larger with yes–no answerhood than
with truth-value based answerhood. The following observations can shed some light upon
this fact.

The definition of yes–no answerhood |= conforms better to the methodology of [2],
according to which the truth-value semantics of fuzzy logic is only secondary to the rules
of inference that hold for fuzzy propositions. Since there is little sense in asserting that
some fuzzy proposition (e.g., ‘John loves Mary’) is true exactly in the degree (say) 0.7845,
fuzzy truth values must only be regarded as a model underlying the rules of inference valid
for fuzzy propositions (even though these rules may originally have been descried by means

26An example from natural language for such a situation is, e.g., an answer to the question ‘Is he old?’
giving some middle age, which both partially affirms and partially denies seniority. (Yet, since old and
not old are mutually exclusive, the truth degrees of affirmation and denial must be low enough for their
strong conjunction to be false.)
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of this model). The doctrine of not speaking explicitly about the truth degrees, but rather
hiding them in the semantical meta-level of a formal theory, is one of the design principles
of FCT, which has been used here as the framework for fuzzy intensional semantics and
erotetic logic.

Although formulated formally in FCT (ergo, without an explicit reference to truth
values), the definitions of |=t, |=ft, and |=fft capture in fact the answerhood conditions
for the question about the truth value of ϕ, rather than about the fuzzy proposition ϕ
itself.27 Therefore these notions, though useful when working with particular models, are
not particularly well-suited for investigation in FCT, which only captures general laws
valid in all models, rather than particular truth values. Nevertheless, the theorems of
Section 6 show that at least some properties of truth-value answerhood are universally
valid and can be proved in FCT.

Fuzzy intensional semantics developed here for the purposes of fuzzy erotetic logic is
general enough to serve as the basis for a similar fuzzification of other kinds of modal
(epistemic, deontic, etc.) logic. Since our semantic notions of entailment and answerhood
are defined as certain formulae of FCT, they are compatible with the formalism proposed
in [2] and [1] as a unified framework for a large part of fuzzy mathematics, and directly
applicable in other formal theories within the framework.

A Formal proofs

In this Appendix, we give the formal proofs of the theorems of the preceding sections. In
the proofs we shall freely use the transitivity of implication, (i.e., the axiom (BL1) plus
twice modus ponens), (BL3), (BL5a), and (BL5b) without explicit notices. All statements
of the form BL ` ϕ or BL∆ ` ϕ refer to [5] where they are proved.

Lemma A.1. The following formulae are theorems of BL∆:

(∀w)(ϕ → ψ) → [(∀w)ϕ → (∀w)ψ] (24)

(ϕ → ψ) → [(χ → ϕ) → (χ → ψ)] (25)

(ϕ → ψ) → [ν → (ϕ → ψ)] (26)

[(ϕ → ψ) & (ϕ′ → ψ′)] → [(ϕ & ϕ′) → (ψ & ψ′)] (27)

[(ϕ → ψ) & (ϕ′ → ψ′)] → [(ϕ ∨ ϕ′) → (ψ ∨ ψ′)] (28)

[(ϕ → ψ) & (ϕ′ → ψ′)] → [(ϕ ∧ ϕ′) → (ψ ∧ ψ′)] (29)

[ϕ → (ψ → χ)] → [(ϕ → ψ) → (ϕ2 → χ)] (30)

(ϕ → ψ) → (∆ϕ → ψ) (31)

(∆ϕ → ∆ψ) → (∆ϕ → ψ) (32)

[(ν → ν3) & ((ν & ϕ) → ψ) & ((ν & ψ) → χ)] → ((ν & ϕ) → χ) (33)

[(ν → ν2) & ((ν & ϕ) → ψ)] → ((ν & ¬ψ) → ¬ϕ) (34)

∆(ν → ν2) → (ν → ν3) (35)

Proof: (24) and (27) are proved in [5].
(26) is an instance of BL ` ϕ → (ψ → ϕ).

27This can be seen from the fact that propositions stronger than A need not answer ?ϕ, even if A itself
does. This would be counter-intuitive for answerhood of the question about ϕ, but is quite natural for
querying about truth values, since the truth values of stronger propositions may be much different from
those of A and the distinctions may become lost.
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(25) follows from (BL1) by (BL5a), (BL3), and (BL5b).
(28) From (ϕ → ψ) → [(ψ → (ψ ∨ ψ′)) → (ϕ → (ψ ∨ ψ′))], which is an instance of

(BL1), and BL ` ψ → (ψ ∨ ψ′) we get (ϕ → ψ) → (ϕ → (ψ ∨ ψ′)). Similarly, using in
addition BL ` (ψ′ ∨ ψ) → (ψ ∨ ψ′), we get (ϕ′ → ψ′) → (ϕ′ → (ψ ∨ ψ′)). Thus by (27)
we get [(ϕ → ψ) & (ϕ′ → ψ′)] → [(ϕ → (ψ ∨ ψ′)) & (ϕ′ → (ψ ∨ ψ′))], whence (28) follows
from BL ` [(ϕ → χ) & (ϕ′ → χ)] → [(ϕ ∨ ϕ′) → χ].

(29) is proved similarly as (28), only using ∧ instead of ∨ and antecedents instead of
consequents of implications.

(30) follows from the instance [(ϕ → (ψ → χ)) & (ϕ → ψ)] → [(ϕ & ϕ) → (ψ &
(ψ → χ))] of (27) and BL ` [ψ & (ψ → χ)] → χ.

(31) follows from (∆3) and the instance (∆ϕ → ϕ) → [(ϕ → ψ) → (∆ϕ → ψ)] of
(BL1).

(32) follows from (∆3) and the instance (∆ψ → ψ) → [(∆ϕ → ∆ψ) → (∆ϕ → ψ)]
of (25).

(33) Take the instance of (BL1)
((ν & ϕ) → ψ) → [(ψ → χ) → ((ν & ϕ) → χ)]; thence by (26) we get
((ν & ϕ) → ψ) → [ν → [(ψ → χ) → ((ν & ϕ) → χ)]]; applying (30) we get
((ν & ϕ) → ψ) → [[ν → (ψ → χ)] → [((ν3 & ϕ) → χ)]],
whence (33) readily follows.

(34) From BL ` (ϕ → ψ) → (¬ψ → ¬ϕ) by (26) we get
ν → [(ϕ → ψ) → (¬ψ → ¬ϕ)]; then by (30) we have
[(ν & ϕ) → ψ] → [(ν2 & ¬ψ) → ¬ϕ], whence (34).

(35) The instance [∆(ν → ν2) & ν] → ν2 of (∆3) used twice in (27) and BL∆ `
(∆ϕ & ∆ϕ) ↔ ∆ϕ yield [∆(ν → ν2) & ν2] → ν4, i.e., ∆(ν → ν2) → (ν2 → ν4). Since
∆(ν → ν2) → (ν → ν2) by (∆3), we get also ∆(ν → ν2) → (ν → ν4), whence by (BL2)
we obtain (35). QED

Proof of Lemma 4.4 The substitution of x ∈ Xi for pi (for all i ≤ n) everywhere in
the proof of ϕ → ψ in F transforms it into the proof of

ϕ(x ∈ X1, . . . , x ∈ Xn) → ψ(x ∈ X1, . . . , x ∈ Xn)

in first-order F . Generalization on x then yields

(∀x)(ϕ(x ∈ X1, . . . , x ∈ Xn) → ψ(x ∈ X1, . . . , x ∈ Xn))

which is exactly Opϕ(X1, . . . , Xn) ⊆ Opψ(X1, . . . , Xn) by the definitions and axioms of
FCT.

Conversely, let e be an evaluation that refutes ϕ → ψ (we use the Completeness
Theorem for propositional fuzzy logics here, see [5]). We construct a model M of FCT that
refutes Opϕ(X1, . . . , Xn) ⊆ Opψ(X1, . . . , Xn) as follows. Let the universe of M contain a
single element a, and let the class variables Xi be represented by the functions that assign
e(pi) to a. It is trivial to check that M models FCT and refutes Opϕ(X1, . . . , Xn) ⊆
Opψ(X1, . . . , Xn). By the Soundness Theorem of the first-order logic F (see [5]) the proof
is done. QED

Proof of Lemma 4.5: From the instance (x ∈ X → x ∈ Y ) → [(x ∈ Y → x ∈ Z) →
(x ∈ X → x ∈ Z)] of (BL1), generalization on x and distribution of the quantifier by (24)
yields the required formula [(∀x)(x ∈ X → x ∈ Y ) & (∀x)(x ∈ Y → x ∈ Z)] →
(∀x)(x ∈ X → x ∈ Z). QED
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Proof of Theorem 5.2 In BL it is provable that ϕ is equivalent to > → ϕ. Since
further Op> = V, we get from Lemma 4.4:

F ` ϕ(p1, . . . , pn) iff

iff F ` > → ϕ(p1, . . . , pn)

iff FCT ` Op>(‖p1‖, . . . , ‖pn‖) ⊆ Opϕ(‖p1‖, . . . , ‖pn‖)
iff FCT ` V ⊆ ‖ϕ(p1, . . . , pn)‖
iff FCT ` W ⊆ ‖ϕ(p1, . . . , pn)‖

The last equivalence follows in one direction from the monotonicity of ⊆ (Lemma 4.5);
the other direction is obtained by generalization on W and specification to V. QED

Proof of Theorem 5.3: (1) follows from (33) and a general theorem of [1], but it
is not difficult to derive it from (33) directly. Substitute w ∈ W , w ∈ A, w ∈ B, and
w ∈ C into (33) for ν, ϕ, ψ, and χ, respectively. Then generalizing on w and distributing
the quantifier by (24) (using (BL5)), we get (1) expanded according to the definitions of
FCT. (Use (35) to get the stated precondition of the theorem.)

(2) follows from (27) and the instances of (1):
[(A |= B) & (B |= C)] → (A |= C) and [(C |= B) & (B |= A)] → (C |= A).

(3) It follows from (1) that
[(A′ |= A) & (B |= B′)] → [(A |= B) → (A′ |= B′)] and
[(A |= A′) & (B′ |= B)] → [(A′ |= B′) → (A |= B)]. Now use (27).

(4) follows from (34) in the same way as (1) from (33). (Note that the converse of (4)
does not hold.) QED

Proof of Theorem 6.2: (8) is proved by generalization on w ∈ W and w′ ∈ W of
the instance [(w ∈ A ↔ w′ ∈ A) → (w ∈ B ↔ w′ ∈ B)] → [∆(w ∈ A ↔ w′ ∈ A) →
(w ∈ B ↔ w′ ∈ B)] of (31), and distribution of both quantifiers over the principal im-
plication by (24). (The rule of bounded generalization follows from (26); the analogue of
(24) for quantifiers relativized to a crisp domain follows easily from (30).)

(9) is proved in the same way as (8) from the instance [∆(w ∈ A ↔ w′ ∈ A) →
∆(w ∈ B ↔ w′ ∈ B)] → [∆(w ∈ A ↔ w′ ∈ A) → (w ∈ B ↔ w′ ∈ B)] of (32). QED

Proof of Theorem 6.3 In the proof, the restriction of all quantifiers to W is omitted
for simplicity’s sake. It is an easy, but tedious exercise to verify that the proof works in
the same way with all quantifiers restricted to crisp W . We shall use Xww′ as shorthand
for w ∈ X ↔ w′ ∈ X.

(10) A ≡ B amounts to A ⊆ B & B ⊆ A here, whence by specification we get
(A ≡ B) → [(w′ ∈ A → w′ ∈ B) & (w ∈ B → w ∈ A)]. The transitivity of implication
entails [(w′ ∈ A → w′ ∈ B) & (w ∈ B → w ∈ A) & (w ∈ A ↔ w′ ∈ A)] → (w ∈ B →
w′ ∈ B); thus we get [(A ≡ B) & (w ∈ A ↔ w′ ∈ A)] → (w ∈ B → w′ ∈ B). Similarly
[(A ≡ B) & (w′ ∈ A ↔ w ∈ A)] → (w′ ∈ B → w ∈ B). Since BL ` [(χ → ϕ) &
(χ → ψ)] → [(χ → (ϕ ∧ ψ))] and BL ` [(ϕ → ψ) ∧ (ψ → ϕ)] → (ϕ ↔ ψ), we get
(A ≡ B) → [(w ∈ A ↔ w′ ∈ A) → (w ∈ B ↔ w′ ∈ B)]. Generalization on w and w′ plus
the axiom (∀2) conclude the proof. (10) for |=ft follows a fortiori (see Theorem 6.2).

(11) In the proof of (10) we have proved (A ≡ B) → (Aww′ → Bww′). By (25)
with χ instantiated to Cww′ we get (A ≡ B) → [(Cww′ → Aww′) → (Cww′ → Bww′)].
Generalization on w, w′ plus (∀2) and (24), and generalization on C plus (∀2) conclude
the proof. (11) for |=ft is proved in the same way, only using ∆Cww′ when instantiating χ
in (25).
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(12) As in the proof of (10) we prove (A ≡ B) → (Bww′ → Aww′). Since further BL `
[Aww′ & (Aww′ → Cww′)] → Cww′, we get [(A ≡ B) & Bww′ & (Aww′ → Cww′)] →
Cww′, i.e., (A ≡ B) → [(Aww′ → Cww′) → (Bww′ → Cww′)]. Generalization on w
and w′ plus the axiom (∀2) conclude the proof.

(13) From the instance ((D |= ?A) → (D |= ?B)) → [((D |= ?B) → (D |= ?C)) →
((D |= ?A) → (D |= ?C))] of (BL1), by generalization on D and distribution of the
quantifier by (24) we get (13).

(14) follows from (13) by (27). QED

Proof of Theorem 6.4 Let us denote ‖ϕ‖, ‖ψ‖, ‖ψ′‖, and ‖ψ ¦ ψ′‖ by A, B, B′, and C
respectively, and adopt the conventions of the Proof of Theorem 6.3.

The precondition of the present theorem gives (Bww′ & B′ww′) → Cww′, whence
[∆Aww′ → (Bww′ & B′ww′)] → (∆Aww′ → Cww′) by (25). Thence by (27) and
BL∆ ` ∆χ → (∆χ & ∆χ) we get [(∆Aww′ → Bww′) & (∆Aww′ → B′ww′)] →
(∆Aww′ → Cww′). By generalization on w and w′ and distribution of the quantifiers by
(24) we get the required formula.

That &, ∧, ∨, and ↔ substituted for ¦ satisfy the precondition of the theorem follows
from (27), (29), (28), and transitivity of ↔, respectively. QED

Proof of Theorem 6.6: (15) From (1) we have
[(A |= B) & (B |= ϕ)] → (A |= ϕ) and [(A |= B) & (B |= ¬ϕ)] → (A |= ¬ϕ).
Thence by (28) it follows that
[((A |= B) & (B |= ϕ)) ∨ ((A |= B) & (B |= ¬ϕ))] → ((A |= ϕ) ∨ (A |= ¬ϕ));
now by BL ` [(χ & ψ) ∨ (χ & ψ′)] ↔ [χ & (ψ ∨ ψ′)] we get
[((A |= B) & ((B |= ϕ) ∨ (B |= ¬ϕ)))] → ((A |= ϕ) ∨ (A |= ¬ϕ)), which is (15).

(16) From (15) we get
(A |= B) → [(B |= ?ϕ) → (A |= ?ϕ)] and (B |= A) → [(A |= ?ϕ) → (B |= ?ϕ)],
whence by (27) we get (16).

(17) From (1) it follows that
(ϕ |= ψ) → [(A |= ϕ) → (A |= ψ)] and, using (4),
(ψ |= ϕ) → [(A |= ¬ϕ) → (A |= ¬ψ)]. Then
[(ϕ ≡ ψ) & ((A |= ϕ) ∨ (A |= ¬ϕ))] → ((A |= ψ) ∨ (A |= ¬ψ)) as in (15). QED

Proof of Theorem 6.7: By (27) we get
[(ψ+ → ϕ) & (ψ− → ¬ϕ)] → [(ψ+ & ψ−) → (ϕ & ¬ϕ)].
Since BL ` (χ → (ϕ & ¬ϕ)) → ¬χ, we have
[(ψ+ → ϕ) & (ψ− → ¬ϕ)] → ¬(ψ+ & ψ−).
Then proceed as in the proof of (34) and (1). QED

Proof of Theorem 6.9: (18) and (19) are proved exactly as (13) and (14).
(20) From (17) we have (ϕ ≡ ϕ′) → [(A |= ?ϕ′) → (A |= ?ϕ)]. Thus from

((A |= ?ϕ′) → (A |= ?ϕ)) → [((A |= ?ϕ) → (A |= ?ψ)) → ((A |= ?ϕ′) → (A |= ?ψ))],
which is an instance of (BL1), we get
(ϕ ≡ ϕ′) → [((A |= ?ϕ) → (A |= ?ψ)) → ((A |= ?ϕ′) → (A |= ?ψ))].
Then generalize on A and distribute the quantifier according to (∀2) and (24).

(21) From (17) we have (ψ ≡ ψ′) → [(A |= ?ψ) → (A |= ?ψ′)].
As in the proof of (20) we derive
(ψ ≡ ψ′) → [((A |= ?ϕ) → (A |= ?ψ)) → ((A |= ?ϕ) → (A |= ?ψ′))]
and proceed as in the previous case.
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(22) From (17) we have (ϕ ≡ ψ) → [(A |= ?ϕ) → (A |= ?ψ)].
Then generalize on A and use (∀2).

(23) From BL ` ψ → ¬¬ψ we can infer ψ |= ¬¬ψ and by (1) get
(A |= ψ) → (A |= ¬¬ψ), whence
[(A |= ?ϕ) → (A |= ?ψ)] → [(A |= ?ϕ) → (A |= ?¬ψ)].
To finish the proof we generalize on A and apply (24). QED
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Topology in Fuzzy Class Theory:
Basic notions

Published version: L. Běhounek, T. Kroupa: Topology in Fuzzy Class Theory: Basic
notions. Lecture Notes in Artificial Intelligence 4529 (2007): 513–522.

Abstract: In the formal and fully graded setting of Fuzzy Class Theory (or higher-
order fuzzy logic) we make an initial investigation into basic notions of fuzzy topology. In
particular we study graded notions of fuzzy topology regarded as a fuzzy system of open
or closed fuzzy sets and as a fuzzy system of fuzzy neighborhoods. We show their basic
graded properties and mutual relationships provable in Fuzzy Class Theory and give some
links to the traditional notions of fuzzy topology.

1 Introduction

Fuzzy topology is among the fundamental disciplines of fuzzy mathematics whose develop-
ment was stimulated from the very beginning of the invention of fuzzy sets [10]. Following
the role of topology in classical mathematics, fuzzy topology should capture the notions
of openness, neighborhood, closure, etc., within the setting of fuzzy set theory. The pa-
per [15] by Höhle and Šostak, which is contained in the special issue of Fuzzy Sets and
Systems (1995) on fuzzy topology, mentions and classifies a number of conceptual frame-
works (lattice-, model-, and category-theoretical) that have arisen during past decades.
A detailed and up-to-date exposition of many-valued and fuzzy topologies, mostly based
on a categorical viewpoint, is contained in the monograph [14] by Höhle.

This paper follows the footsteps of Ying’s attempt [17] to establish fuzzy topology as
a non-elementary theory over many-valued logic. We make initial steps towards under-
standing fuzzy topology as an axiomatic higher-order theory over Hájek-style [12] formal
fuzzy logic, following the methodology for formal fuzzy mathematics described in [7].
According to the classification proposed in [15], the models of our theory are closest to
“L-fuzzy topologies as characteristic morphisms”. However, the apparatus of Fuzzy Class
Theory, employed in this paper, makes our notions and the way in which they can be
studied quite distinct from (and in some aspects more general than) other approaches to
fuzzy topology.

The paper is organized as follows: Section 2 gives a brief exposition of Fuzzy Class
Theory and the definitions needed in the paper. Section 3 studies the graded notion of
fuzzy topology regarded as a fuzzy system of open (or closed) fuzzy sets. Section 4 then
studies graded fuzzy topologies regarded as fuzzy systems of fuzzy neighborhoods.
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2 Preliminaries

Fuzzy Class Theory FCT, introduced in [5], is an axiomatization of Zadeh’s notion of
fuzzy set in formal fuzzy logic. Here we use its variant defined over IMTL4 [11], the
logic of all left-continuous t-norms whose residual negation is involutive (we shall call
them IMTL t-norms; the most important example is the ÃLukasiewicz t-norm x ∗ y =df

max(0, x + y − 1)).

Remark 2.1. We have the following reasons for choosing IMTL4 for the ground logic:
the logic MTL4 [11] of all left-continuous t-norms is arguably [3] the weakest fuzzy logic
with good inferential properties for fully graded fuzzy mathematics in the framework of
formal fuzzy logic [7]. IMTL4 extends it with the law of double negation, which is in
fuzzy topology needed for the correspondence between open and closed fuzzy sets. A
generalization of fuzzy topology to the logic MTL4 (with independent systems of open
and closed fuzzy sets) will be the subject of some future paper.

We assume the reader’s familiarity with IMTL4; for details on this logic see [11]. Here
we only recapitulate its standard [0, 1] semantics:

& . . . a left-continuous t-norm ∗ with involutive residual negation
→ . . . the residuum ⇒ of ∗, defined as x ⇒ y =df sup{z | z ∗ x ≤ y}
∧, ∨ . . . min, max
¬ . . . x ⇒ 0; in IMTL4 it is involutive, due to the axiom ¬¬ϕ → ϕ
∨ . . . the t-conorm dual to ∗ (since ϕ ∨ ψ is defined as ¬(¬ϕ & ¬ψ))
↔ . . . the bi-residuum: min(x ⇒ y, y ⇒ x)
4 . . . 4x = 1− sgn(1− x)
∀, ∃ . . . inf, sup; by involutiveness, (∃x)¬ϕ ↔ ¬(∀x)ϕ

Definition 2.1. Fuzzy Class Theory FCT is a formal theory over multi-sorted first-order
fuzzy logic (in this paper, IMTL4), with the sorts of variables for

• atomic objects (lowercase letters x, y, . . . )

• fuzzy classes of atomic objects (uppercase letters A,B, . . . )

• fuzzy classes of fuzzy classes of atomic objects (Greek letters τ, σ, . . . )

• fuzzy classes of the third order (calligraphic letters A,B, . . . )

• etc., in general for fuzzy classes of the n-th order (X(n), Y (n), . . . )

Besides the crisp identity predicate =, the language of FCT contains:

• the membership predicate ∈ between objects of successive sorts

• class terms {x | ϕ}, for any formula ϕ and any variable x of any order

• symbols 〈x1, . . . , xk〉 for k-tuples of individuals x1, . . . , xk of any order

FCT has the following axioms (for all formulae ϕ and variables of all orders):

• the logical axioms of multi-sorted first-order logic IMTL4

• the axioms of crisp identity: (i) x = x, (ii) x = y → (ϕ(x) → ϕ(y)),
(iii) 〈x1, . . . , xk〉 = 〈y1, . . . , yk〉 → x1 = y1 & . . . & xk = yk

228



Table 1: Abbreviations used in the formulae of FCT

Ax ≡df x ∈ A
x1 . . . xk =df 〈x1, . . . , xk〉

x /∈ A ≡df ¬(x ∈ A), and similarly for other predicates
(∀x ∈ A)ϕ ≡df (∀x)(x ∈ A → ϕ)
(∃x ∈ A)ϕ ≡df (∃x)(x ∈ A & ϕ)

(∀x, y ∈ A)ϕ ≡df (∀x ∈ A)(∀y ∈ A)ϕ, similarly for ∃
{x ∈ A | ϕ} =df {x | x ∈ A & ϕ}

{t(x1, . . . , xk) | ϕ} =df {z | z = t(x1, . . . , xk) & ϕ}
ϕn ≡df ϕ & . . . & ϕ (n times)

• the comprehension axioms: y ∈ {x | ϕ(x)} ↔ ϕ(y)

• the extensionality axioms: (∀x)4(x ∈ A ↔ x ∈ B) → A = B

Remark 2.2. Notice that in FCT, fuzzy sets are rendered as a primitive notion rather
than modeled by membership functions. In order to capture this distinction, fuzzy sets
are in FCT called fuzzy classes; the name fuzzy set is reserved for membership functions
in the models of the theory.

The models of FCT are systems of fuzzy sets of all orders over a fixed crisp universe
of discourse, with truth degrees taking values in an IMTL4-chain (e.g., the interval [0, 1]
equipped with an IMTL t-norm). Thus all theorems on fuzzy classes provable in FCT are
true statements about L-valued fuzzy sets, for any IMTL4-chain L. Notice however that
the theorems of FCT have to be derived from its axioms by the rules of the fuzzy logic
IMTL4 rather than classical Boolean logic. For details on proving theorems of FCT see
[8] or [6].

Convention 2.1. In formulae of FCT, we employ usual abbreviations known from clas-
sical mathematics, including those listed in Table 1. Usual rules of precedence apply
to the connectives of IMTL4. Furthermore we define standard defined notions of FCT,
summarized in Table 2, for all orders of fuzzy classes.

Remark 2.3. Notice that in FCT, not only the membership predicate ∈, but all defined
notions are in general fuzzy (unless they are defined as provably crisp). FCT thus presents
a fully graded approach to fuzzy mathematics. The importance of full gradedness in fuzzy
mathematics is explained in [8, 4, 2]: its main merit lies in that it allows inferring relevant
information even when a property of fuzzy sets is not fully satisfied. Fuzzy topology has
a long tradition of attempting full gradedness, cf. graded definitions and theorems e.g. in
[14, 17].

Remark 2.4. It should be noted that fully graded theories have some peculiar features
in which they differ from both classical mathematics and traditional fuzzy mathematics.
A detailed account of the unusual features of fully graded theories is given in [9]; some
of them can also be found in [8] (available online). Here we only briefly stress the main
features of graded mathematics:

• Since ϕ → ϕ&ϕ is not a generally valid law of fuzzy logic, premises may occur several
times in theorems. A typical graded theorem has the form ϕk1

1 & . . . & ϕkn
n → ψ,
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Table 2: Defined notions of FCT

∅ =df {x | 0} empty class
V =df {x | 1} universal class

Ker A =df {x | 4Ax} kernel
αA =df {x | α & Ax} α-resize
−A =df {x | ¬Ax} complement

A ∩B =df {x | Ax & Bx} (strong) intersection
A ∪B =df {x | Ax ∨Bx} (strong) union
A×B =df {xy | Ax & By} Cartesian product⋃

τ =df {x | (∃A ∈ τ)(x ∈ A)} class union⋂
τ =df {x | (∀A ∈ τ)(x ∈ A)} class intersection

Pow(A) =df {X | X ⊆ A} power class
Crisp(A) ≡df (∀x)4(Ax ∨ ¬Ax) crispness

ExtE A ≡df (∀x, y)(Exy & Ax → Ay) E-extensionality
A ⊆ B ≡df (∀x)(Ax → Bx) inclusion
A u B ≡df (A ⊆ B) & (B ⊆ A) (strong) bi-inclusion

where ϕk abbreviates ϕ & . . . & ϕ (k times, where ϕ0 is 1). The multiplicity ki of
the premise ϕi shows how strongly it influences (the lower bound for) the truth of
ψ (when only partially true), and depends on how many times the premise is used
in the derivation of ψ from ϕ1, . . . , ϕk. The exponent k in ϕk can also take the
conventional value “4”, where ϕ4 is understood as 4ϕ (recall that ϕ4 → ϕn for
all n).

• If a complex notion Φ is defined as a conjunction ϕ1 & . . . & ϕn, then the conjuncts
ϕi will get different multiplicities in different theorems. It is therefore appropri-
ate to parameterize Φ by the multiplicities of the components ϕi and define it as
Φk1,...,kn ≡df ϕk1

1 & . . .&ϕkn
n . (All graded topological notions in the following sections

will be defined in this way.) We can write just Φk instead of Φk1,...,kn if ki = k for
all i, and just Φ if ki = 1 for all i.

The following defined predicates will be employed in the next sections.

Definition 2.2. We define the following (graded) unary predicates:

∪-closedness: uc(τ) ≡df (∀A,B ∈ τ)(A ∪B ∈ τ)
∩-closedness: ic(τ) ≡df (∀A,B ∈ τ)(A ∩B ∈ τ)⋃

-closedness: Uc(τ) ≡df (∀ν ⊆ τ)
(⋃

ν ∈ τ
)

⋂
-closedness: Ic(τ) ≡df (∀ν ⊆ τ)

(⋂
ν ∈ τ

)
⊆-upperness: Upper(τ) ≡df (∀A,B)(A ⊆ B & A ∈ τ → B ∈ τ)
being a filter: Filterv,e,u,i(τ) ≡df (V ∈ τ)v & (∅ /∈ τ)e & Upperu(τ) & ici(τ)

3 Topology as a system of open (closed) fuzzy classes

In classical mathematics, topology can be introduced in several equivalent ways—by open
sets, closed sets, neighborhoods, closure, etc. In FCT, however, these approaches yield
different concepts. In this paper, we make an initial investigation into two of them, namely
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the system of open (or closed) classes (in this section) and the system of neighborhoods
(in Sect. 4). Due to the limited size of this paper we present only some of the initial
results and have to omit all proofs.

The fuzzification of the concept of open (closed) fuzzy topology presented in Def. 3.1
follows the methodology sketched in [13, §5] and formally elaborated in [5, §7], i.e., rein-
terpreting the formulae of the classical definition in fuzzy logic.1

Definition 3.1. We define an (open) (e, v, i, u)–fuzzy topology and a closed (e, v, u, i)–
fuzzy topology respectively by the predicates

OTope,v,i,u(τ) ≡df (∅ ∈ τ)e & (V ∈ τ)v & ici(τ) & Ucu(τ)

CTope,v,u,i(σ) ≡df (∅ ∈ σ)e & (V ∈ σ)v & ucu(σ) & Ici(σ)

(see Remark 2.4 for the meaning of the parameters e, v, u, i).

Note that this concept of topology is graded, i.e., the predicate OTope,v,i,u determines
the degree to which τ is an open (e, v, i, u)–fuzzy topology.

Example 3.1. Let ∗ be an IMTL t-norm and ⇒ its residuum. The ∗-based Zadeh models
of open (1, 1,4,4)–fuzzy topology, i.e., of the predicate

OTop1,1,4,4(τ) ≡ ∅ ∈ τ & V ∈ τ & 4 ic(τ) & 4Uc(τ)

are functions τ : [0, 1]V → [0, 1] satisfying the following conditions:

(i) τ(A) ∗ τ(B) ≤ τ(A ∩B) for every A,B ∈ [0, 1]V

(ii)
∧

A∈[0,1]V
(ν(A) ⇒ τ(A)) ≤ τ (

⋃
ν) for every ν : [0, 1]V → [0, 1]

where (A∩B)(x) = A(x) ∗B(x) and (
⋃

ν) (x) =
∨

A∈[0,1]V
(ν(A) ∗A(x)). Since both (i) and

(ii) are crisp, the degree to which τ is a (1, 1,4,4)-fuzzy topology equals τ(∅) ∗ τ(V).
These models cover fuzzy topologies studied under the name “L-fuzzy topologies of Höhle
type” [15].

In IMTL4, open and closed topologies are interdefinable:

Definition 3.2. Let τc =df {A | −A ∈ τ}.
Theorem 3.1. FCT proves: OTop(τ) ↔ CTop(τc), CTop(σ) ↔ OTop(σc).

Definition 3.3. Given a class of classes τ , we define the interior and closure in τ as
follows:

Intτ (A) =df

⋃
{B ∈ τ | B ⊆ A}

Clτ (A) =df

⋂
{B ∈ τc | A ⊆ B}

1The requirement that both ∅ and the ground set be open can meaningfully be reinterpreted in fuzzy
logic in several ways; here we restrict ourselves to the weakest one, requiring openness just for the two
classes ∅ and V. Stronger notions of topology (e.g., stratified topology [14] with the condition αV ∈ τ for
all truth degrees α) will be studied in subsequent papers.
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Theorem 3.2. It is provable in FCT:

(i) Intτ (A) ⊆ A

(ii) A ⊆ B → Intτ (A) ⊆ Intτ (B)

(iii) A ∈ τ → Intτ (A) u A

(iv) Intτ (A ∩B) ∩ Intτ (A ∩B) ⊆ Intτ (A) ∩ Intτ (B)

Theorem 3.3 (OTop and the interior operator). It is provable in FCT:

(i) OTop0,0,0,1(τ) → Intτ (A) ∈ τ

(ii) OTop0,0,0,1(τ) → Intτ (Intτ (A)) u Intτ (A)

(iii) OTop0,0,1,0(τ) → Intτ (A) ∩ Intτ (B) ⊆ Intτ (A ∩B)

(iv) OTop0,1,0,0(τ) → Intτ (V) u V

Since Clτ (A) = − Intτ (−A) is provable in FCT, the next two theorems are just dual
counterparts of Th. 3.2 and 3.3.

Theorem 3.4. It is provable in FCT:

(i) A ⊆ Clτ (A)

(ii) A ⊆ B → Clτ (A) ⊆ Clτ (B)

(iii) A ∈ τc → Clτ (A) u A

(iv) Clτ (A) ∪ Clτ (B) ⊆ Clτ (A ∪B) ∪ Clτ (A ∪B)

Theorem 3.5 (OTop and the closure operator). It is provable in FCT:

(i) OTop0,0,0,1(τ) → Clτ (A) ∈ τc

(ii) OTop0,0,0,1(τ) → Clτ (Clτ (A)) u Clτ (A)

(iii) OTop0,0,1,0(τ) → Clτ (A ∪B) ⊆ Clτ (A) ∪ Clτ (B)

(iv) OTop0,1,0,0(τ) → Clτ (∅) u ∅
Definition 3.4. A predicate expressing that A is a neighborhood of x in τ is defined as

Nbτ (x,A) ≡df (∃B ∈ τ)(B ⊆ A & x ∈ B)

The system of all neighborhoods of x will be denoted by νx =df {A | Nbτ (x,A)}.
Theorem 3.6 (OTop and neighborhoods). It is provable in FCT:

(i) x ∈ ⋂
νx

(ii) Nbτ (x, A) ↔ x ∈ Intτ (A)

(iii) OTop(τ) → Filter(νx) & (∀A ∈ νx)(∃B ∈ νx)(B ⊆ A & (∀y ∈ B) Nbτ (y, B))
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In general, the system of all open fuzzy topologies is not closed under arbitrary inter-
sections. Nevertheless, the system of all open 4–fuzzy topologies is at least closed under
crisp intersections, which allows introducing the notion of open fuzzy topology generated
by a subbase of fuzzy classes:

Theorem 3.7. Let X be a fuzzy class of the third order. Then FCT proves:

Crisp(X ) & (∀τ ∈ X )
(4OTop(τ)

) →4OTop
(⋂X )

Definition 3.5. Let σ be a fuzzy class of fuzzy classes. Then we define

τσ =df

⋂
{τ ′ | 4(OTop(τ ′) & σ ⊆ τ ′)}

By Th. 3.7, FCT proves that 4OTop(τσ), and obviously also that τσ is the least open
4–fuzzy topology containing σ.

Example 3.2. Interval open fuzzy topology. Let ≤ be a crisp dense ordering (e.g., of real
or rational numbers). The fuzzy properties of being an upper resp. lower class in ≤ are
defined by the predicates

Upper≤(A) ≡df (∀p, q)(p ≤ q & Ap → Aq)

Lower≤(A) ≡df (∀p, q)(p ≥ q & Bp → Bq)

Fuzzy intervals [A,B] in ≤ can be defined [1] as intersections A ∩ B of two fuzzy classes
A,B, where 4Upper≤(A) & 4Lower≤(B). An open fuzzy interval can be defined by the
following fuzzy predicate:2

Op([A,B]) ≡df 4(Upper≤(A)) & (∀p)(Ap → (∃q < p)Aq) &

4(Lower≤(B)) & (∀p)(Bp → (∃q > p)Bq)

By Th. 3.7, the fuzzy system σ = {[A,B] | Op([A,B])} of open fuzzy intervals generates an
open fuzzy topology τσ—the interval open fuzzy topology of≤. It can be shown that σ itself
is ∩-closed; since furthermore ∩ distributes over

⋃
, FCT proves that τσ = {⋃ ν | ν ⊆ σ}

(just like in the crisp interval topology).

4 Topology given by a neighborhood relation

The following definition of fuzzy topology is an internalization in fuzzy logic of the con-
ditions required from the system of neighborhoods.3

Definition 4.1. We define a neighborhood (i, j, k, l)–fuzzy topology by the predicate

NTopi,j,k,l(Nb) ≡df 4(Nb ⊆ V ×Ker Pow(V)) &

((∀x,A)(Nb(x,A) → x ∈ A))i &

((∀x,A, B)(Nb(x,A) & A ⊆ B → Nb(x, B)))j &

((∀x,A, B)(Nb(x,A) & Nb(x,B) → Nb(x,A ∩B)))k &

((∀x,A)(Nb(x,A) → (∃B ⊆ A)(Nb(x,B) & (∀y ∈ B) Nb(y,B)))l

2Observe that it generalizes the notion of crisp open interval, by the requirement of the appropriate
left- or right- continuity of the characteristic function of the interval.

3The first condition only determines the type of the neighborhood predicate (i.e., that it is a relation
between points and classes), therefore its full validity is required.
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Definition 4.2. Let 4(Nb ⊆ V×Ker Pow(V)). Then we define (as usual) the system of
Nb-open classes:

τNb =df {A | (∀x ∈ A) Nb(x,A)}

It can be shown that even if Nb is a neighborhood fuzzy topology to degree one,
τNb still need not be an open fuzzy topology (in particular, it need not be closed under
arbitrary unions). Only the following holds:

Theorem 4.1. FCT proves: 4NTop(Nb) → (∀σ ⊆ τNb) (
⋃

(σ ∩ σ) ∈ τNb).

This motivates a modified notion of open fuzzy topology:

Definition 4.3. We define the following predicates:

U2c(τ) ≡df (∀σ ⊆ τ)
(⋃

(σ ∩ σ) ∈ τ
)

O2Tope,v,i,u(τ) ≡df (∅ ∈ τ)e & (V ∈ τ)v & ici(τ) & U2c
u(τ)

Theorem 4.2. FCT proves:

(∃x,A) Nb(x,A) & NTop1,3,1,1(Nb) → O2Top(τNb) & (Nb(x,A) ↔ NbτNb
(x,A))

Thus, a “sufficiently monotone” non-empty neighborhood topology determines a corre-
sponding open “topology” which is closed under the operation

⋃
(σ∩σ) rather than under

usual unions
⋃

σ. Such systems are met quite often in fully graded fuzzy topology:

Example 4.1. It is well-known from traditional fuzzy mathematics that the system of
fuzzy sets fully extensional w.r.t. a fuzzy relation R is closed under unions of arbitrary crisp
systems of fuzzy sets and under min-intersections of crisp pairs of fuzzy sets (i.e., it forms
a fuzzy topology in the traditional, non-graded sense of [16]). In the graded framework
of FCT it can be proved that the fuzzy system of R-extensional classes {A | ExtR A} is
closed under

⋃
(σ ∩ σ) (but not under arbitrary fuzzy unions), and provided R ⊆ R ∩ R

(which holds e.g. if R is crisp), it satisfies O2Top.

Both OTop and O2Top topologies are closed under crisp unions, which leads to a
further generalization of the notion of open fuzzy topology:

Definition 4.4. We define the following predicates:

U4c(τ) ≡df (∀σ ⊆ τ)
(
Crisp(σ) → ⋃

σ ∈ τ
)

O4Tope,v,i,u(τ) ≡df (∅ ∈ τ)e & (V ∈ τ)v & ici(τ) & U4cu(τ)

The models of O4Top are among frequently studied fuzzy topological structures called
“L-fuzzy topologies of Šostak-type” according to the classification proposed in [15].

The definition of the interior operator needs to be modified to have good properties
in neighborhood fuzzy topologies:

Int′τNb
(A) =df

⋃
{B | 4(B ∈ τNb & B ⊆ A)}

Theorem 4.3. It is provable in FCT:

(i) NTop0,1,0,0(Nb) →4(Int′τNb
(A) ∈ τNb)
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(ii) A ⊆ B → Int′τNb
(A) ⊆ Int′τNb

(B)

(iii) 4(A ∈ τNb) → Int′τNb
(A) = A

Theorem 4.4 (NTop and interior operator). It is provable in FCT:

(i) 4(V ∈ τNb) → Int′τNb
(V) = V

(ii) Int′τNb
(A) ⊆ A

(iii) NTop0,1,0,0(Nb) → Int′τNb
(Int′τNb

(A)) = Int′τNb
(A)

(iv) NTop0,0,1,0(Nb) → Int′τNb
(A) ∩ Int′τNb

(B) ⊆ Int′τNb
(A ∩B)

(v) Int′τNb
(A ∩B) ∩ Int′τNb

(A ∩B) ⊆ Int′τNb
(A) ∩ Int′τNb

(B)

The following theorem guarantees that neighborhoods defined from a (sufficiently
union-closed) open fuzzy topology are exactly the neighborhoods in the sense of pred-
icate NTop.

Theorem 4.5 (OTop and NTop). It is provable in FCT:

OTop1,1,1,2(τ) → NTop(Nbτ ) & (A ∈ τ ↔ (∀x ∈ A) Nbτ (x,A))

Example 4.2. Interval neighborhood fuzzy topology. The (fuzzy) system of open fuzzy
intervals of Example 3.2 allows introducing the interval neighborhood fuzzy topology w.r.t.
a crisp dense ordering ≤, by taking

Nb(x,X) ≡df (∃A,B)4 (Op([A,B]) & [A,B] ⊆ X & x ∈ [A,B])

Then it can be shown that FCT proves4NTop(Nb), and in virtue of Th. 4.2,4O2Top(τNb)
and Nb = NbτNb

. Notice, however, that the interval open topology of Example 3.2 differs
from the interval neighborhood topology introduced here, since in the latter all classes
open to degree 1 are crisp.

5 Conclusions

We have introduced two notions of fuzzy topology in the graded framework of Fuzzy Class
Theory and investigated their basic properties; where appropriate, we gave links to similar
notions of fuzzy topology studied previously in traditional fuzzy mathematics. Most of
our notions generalize usual concepts of fuzzy topology by allowing full gradedness of all
defined predicates and functions. Proofs of the graded theorems, though omitted here
due to the limited space, are rather simple and show the strength of the apparatus of
higher-order fuzzy logic in fuzzy topology. The results open a wide area of fully graded
topological theory and show the possibility of the investigation of more advanced graded
topological notions by means of Fuzzy Class Theory.
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Abstract: Fuzzy topology based on interior operators is studied in the fully graded
framework of Fuzzy Class Theory. Its relation to graded notions of fuzzy topology given
by open sets and neighborhoods is shown.

Keywords: Fuzzy topology, Fuzzy Class Theory, interior operator, neighborhood.

1 Introduction

Fuzzy topology is a discipline of fuzzy mathematics developed since the beginning of the
theory of fuzzy sets [13, 16, 21, 20, 22, 19]. Besides established approaches to fuzzy topol-
ogy (categorial, lattice-valued, etc.), recent advances in metamathematics of fuzzy logic
have enabled an approach to fuzzy topology based on formal fuzzy logic. The framework
of higher-order fuzzy logic, also known as Fuzzy Class Theory [4], is especially suitable for
fuzzy topology, as it easily accommodates fuzzy sets of fuzzy sets (of arbitrary orders),
which are constantly encountered in fuzzy topology.

In classical mathematics, topology can be defined in several equivalent ways: by a
system of open (closed) sets, by a system of neighborhoods, or by an interior (closure)
operator. These definitions, however, are no longer equivalent in fuzzy logic. Notions
of fuzzy topology given by open sets and neighborhoods have been investigated in the
framework of Fuzzy Class Theory in [9]. In the present paper we focus on fuzzy topology
given by interior operators. Unlike the authors of previous studies of interior and closure
operators (e.g., [15, 10, 11]), we work in the fully graded and formal framework of Fuzzy
Class Theory, following the methodology of [6]. This approach yields a specific kind
of results [8], incomparable to those obtained in traditional fuzzy mathematics: they
are on the one hand more general (namely fully graded, i.e., admitting partially valid
assumptions), while on the other hand limited to the scope of applicability of deductive
fuzzy logic [2].

2 Preliminaries

Fuzzy Class Theory FCT, introduced in [4], is an axiomatization of Zadeh’s notion of
fuzzy set in formal fuzzy logic. We use its variant defined over MTL4 [14], the logic of all
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left-continuous t-norms, which is arguably [2] the weakest fuzzy logic with good inferential
properties for fully graded fuzzy mathematics in the framework of formal fuzzy logic [6].

We assume the reader’s familiarity with MTL4; for details on this logic see [14]. Here
we only recapitulate its standard real-valued semantics:

& . . . a left-continuous t-norm ∗
→ . . . the residuum ⇒ of ∗, defined as x ⇒ y =df sup{z | z ∗ x ≤ y}
∧, ∨ . . . min, max
¬ . . . x ⇒ 0
↔ . . . the bi-residuum: min(x ⇒ y, y ⇒ x)
4 . . . 4x = 1− sgn(1− x)
∀, ∃ . . . inf, sup

Definition 2.1. Fuzzy Class Theory FCT is a formal theory over multi-sorted first-order
fuzzy logic (in this paper, MTL4), with the sorts of variables for

• Atomic objects (lowercase letters x, y, . . . )

• Fuzzy classes of atomic objects (uppercase letters A, B, . . . )

• Fuzzy classes of fuzzy classes of atomic objects (Greek letters τ, σ, . . . )

• Fuzzy classes of the 3rd order (in this paper denoted by sans serif letters A, B, a, b, . . . )

• Etc., in general for fuzzy classes of the n-th order (X(n), Y (n), . . . )

Besides the crisp identity predicate =, the language of FCT contains:

• The membership predicate ∈ between objects of successive sorts

• Class terms {x | ϕ} of order n + 1, for any variable x of any order n and any
formula ϕ

• Symbols 〈x1, . . . , xk〉 for k-tuples of individuals x1, . . . , xk of any order

FCT has the following axioms (for all formulae ϕ and variables of all orders):

• The logical axioms of multi-sorted first-order logic MTL4

• The axioms of crisp identity:

x = x

x = y → (ϕ(x) → ϕ(y))

〈x1, . . . , xk〉 = 〈y1, . . . , yk〉 → xi = yi

• The comprehension axioms:

y ∈ {x | ϕ(x)} ↔ ϕ(y)

• The extensionality axioms:

(∀x)4(x ∈ A ↔ x ∈ B) → A = B
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Table 1: Abbreviations used in the formulae of FCT

Ax ≡df x ∈ A
x1 . . . xk =df 〈x1, . . . , xk〉

x /∈ A ≡df ¬(x ∈ A)
(∀x ∈ A)ϕ ≡df (∀x)(x ∈ A → ϕ)
(∃x ∈ A)ϕ ≡df (∃x)(x ∈ A & ϕ)

(∀x1, . . . , xk ∈ A)ϕ ≡df (∀x1 ∈ A) . . . (∀xk ∈ A)ϕ
(∃x1, . . . , xk ∈ A)ϕ ≡df (∃x1 ∈ A) . . . (∃xk ∈ A)ϕ

{x ∈ A | ϕ} =df {x | x ∈ A & ϕ}
{t(x1, . . . , xk) | ϕ} =df {z | z = t(x1, . . . , xk) & ϕ}

y = F (x) ≡df Fxy, if 4Fnc F (see Tab. 2) is proved or assumed
ϕn ≡df ϕ & . . . & ϕ (n times)
ϕ4 ≡df 4ϕ

Note that in FCT, fuzzy sets are rendered as a primitive notion rather than modeled
by membership functions. In order to capture this distinction, fuzzy sets are in FCT called
fuzzy classes; the name fuzzy set is reserved for membership functions in the models of
the theory.

The models of FCT are systems of fuzzy sets (and fuzzy relations) of all orders over
a crisp universe of discourse, with truth degrees taking values in an MTL4-chain L (e.g.,
the interval [0, 1] equipped with a left-continuous t-norm); thus all theorems on fuzzy
classes provable in FCT are true statements about L-valued fuzzy sets. Notice however
that the theorems of FCT have to be derived from its axioms by the rules of the fuzzy
logic MTL4 rather than classical Boolean logic. For details on proving theorems of FCT
see [7] or [5].

In formulae of FCT we employ usual abbreviations known from classical mathemat-
ics or traditional fuzzy mathematics, including those listed in Table 1. Usual rules of
precedence apply to the connectives of MTL4. Furthermore we define standard derived
notions of FCT, summarized in Table 2, for all orders of fuzzy classes.

Fuzzy counterparts of classical mathematical notions are in the present paper defined
following the methodology sketched in [18, §5] and further elaborated in [4, §7], namely
by choosing a suitable formula that expresses the classical definitions and re-interpreting
it in fuzzy logic.

A distinguishing feature of FCT is that not only the membership predicate ∈, but all
defined notions are in general fuzzy (unless they are defined as provably crisp). FCT thus
presents a fully graded approach to fuzzy mathematics. The importance of full gradedness
in fuzzy mathematics is explained in [7, 3, 1]: its main merit lies in that it allows inferring
relevant information even when a property of fuzzy sets is not fully satisfied. Fuzzy
topology has a long tradition of attempting full gradedness, cf. graded definitions and
theorems in [19, 22].

3 Open fuzzy topology

In classical mathematics, topology introduced by means of open sets is given by a crisp
system τ of crisp subsets of a ground set V, where τ is required to satisfy certain conditions
(closedness under

⋃
,∩, ∅, V, and possibly further properties, e.g., separation axioms).
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Table 2: Defined notions of FCT

∅ =df {x | 0} empty class
V =df {x | 1} universal class

KerA =df {x | 4Ax} kernel
αA =df {x | α & Ax} α-resize
−A =df {x | ¬Ax} complement

A ∩B =df {x | Ax & Bx} (strong) intersection
A uB =df {x | Ax ∧Bx} min-intersection
A ∪B =df {x | Ax ∨Bx} (strong) union
A×B =df {xy | Ax & By} Cartesian product
Rng R =df {y | (∃x)Rxy} range⋃

τ =df {x | (∃A ∈ τ)(x ∈ A)} class union⋂
τ =df {x | (∀A ∈ τ)(x ∈ A)} class intersection

Pow A =df {X | X ⊆ A} power class
Hgt A ≡df (∃x)Ax height
PltA ≡df (∀x)Ax plinth

CrispA ≡df (∀x)4(Ax ∨ ¬Ax) crispness
ReflR ≡df (∀x)Rxx reflexivity

TransR ≡df (∀x, y, z)(Rxy & Ryz → Rxz) transitivity
PreordR ≡df ReflR & TransR preorder

FncR ≡df (∀x, y, y′)(Rxy & Rxy′ → y = y′) functionality
A ⊆ B ≡df (∀x)(Ax → Bx) inclusion
A ≈ B ≡df (A ⊆ B) ∧ (B ⊆ A) weak bi-inclusion
A u B ≡df (A ⊆ B) & (B ⊆ A) strong bi-inclusion

Generalization by admitting fuzzy subsets leads in FCT to regarding open fuzzy topology
as a (possibly fuzzy) class of (possibly fuzzy) subclasses of the ground class V, i.e., a fuzzy
class τ of the second order.1

When investigating open fuzzy topologies, we are interested in such τ that satisfy
analogous (but fuzzified) closure conditions as in classical topology. These are given by
the following predicates that express the (degree of) closedness of τ under

⋃
and ∩:

ic(τ) ≡df (∀A,B ∈ τ)(A ∩B ∈ τ)

Uc(τ) ≡df (∀σ ⊆ τ)
(⋃

σ ∈ τ
)

These conditions (plus ∅ ∈ τ and V ∈ τ) can be regarded as characteristic of open fuzzy
topology. However, when studying open fuzzy topologies, we do not in general require
that these axioms be satisfied as in classical topology. This is because they are (like all
formulae of FCT) interpreted in many-valued logic; thus they need not be simply true or
false, but are always true to some degree. By restricting our attention just to the systems
that fully satisfy the above axioms, we would completely disregard systems that satisfy
them to a degree of, e.g., 0.9999, even though graded theorems of FCT can provide us
with useful information about such systems. Therefore we study all systems τ , no matter
to which degree they satisfy the above axioms. Similarly we proceed also in fuzzification
of other definitions of fuzzy topology in the following sections.

1We keep the ground class crisp to avoid problems with quantification relativized to a fuzzy domain;
generalization to fuzzy topological spaces with fuzzy universes is a topic for future work. Since in this
paper we always work within a single topological space, we can identify the ground class with the universal
class V.
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It turns out [9] that besides the predicate Uc, also predicates of the following forms
are often met in the study of fuzzy topology (for m,n ≥ 1):

Ucm,n(τ) ≡df (∀σ)
(
σ ⊆m τ → ⋃

(σ ∩ n. . . ∩ σ) ∈ τ
)

Note that because ϕ & ϕ is not generally equivalent to ϕ in MTL4 (nor in stronger fuzzy
logics except for Gödel fuzzy logic or stronger), σ ∩ n. . . ∩ σ does not generally equal σ
(only σ ∩ n. . . ∩ σ ⊆ σ holds for all σ). Similarly (σ ⊆ τ)m is in general stronger than
simple σ ⊆ τ if m > 1. Recall that the larger m, the stronger ϕm; informally ϕm can be
understood as m-times stressed ϕ (consult, e.g., [7] for the role of multiple conjunction in
formal proofs). Thus, like Uc, the predicate Ucm,n expresses the closedness of τ under a
certain operation similar to the union of subsystems, only the condition of what counts
as a subsystem is strengthened by m and the union itself is strengthened by n.

By convention, we also admit the value “4” for either m or n or both (cf. the last line
of Table 1). Then, e.g., Uc4,1(τ) expresses the closedness of τ under the unions of crisp
subsystems of τ , while Uc1,4(τ) expresses the closedness of τ under the unions of kernels
of subsystems of τ (i.e., only full members of the subsystem enter the union).

For convenience, we define a predicate that puts the properties monitored in open fuzzy
topologies together. Since each of the properties can appear with varying multiplicity in
theorems, we have to add further indices that parameterize the multiplicity of each of the
conditions:

Definition 3.1. We define the predicate indicating the degree to which τ is an (e, v, i, u,
m, n)–open fuzzy topology as

OTope,v,i,u
m,n (τ) ≡df (∅ ∈ τ)e & (V ∈ τ)v & ici(τ) & Ucu

m,n(τ)

For the sake of brevity, we drop the subscripts if both equal 1, and similarly for the
superscripts.

The properties of open fuzzy topologies have been studied in [9]. Since in this paper
we are mainly interested in the interior operator, we repeat here the definition of the
interior operator induced by an open fuzzy topology and list its basic properties.

Definition 3.2. Given a class of classes τ , we define the interior of a class A in τ as

Intτ (A) =df

⋃
{B ∈ τ | B ⊆ A}

Proposition 3.3. It is provable in FCT:

(i) Intτ (A) ⊆ A

(ii) A ∈ τ → Intτ (A) u A

(iii) A ⊆ B → Intτ (A) ⊆ Intτ (B)

(iv) Intτ (A uB) ⊆ Intτ (A) u Intτ (B)

Proposition 3.4. It is provable in FCT:

(i) V ∈ τ → Intτ (V) u V
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(ii) Uc(τ) → Intτ (Intτ (A)) u Intτ (A)

(iii) ic(τ) → Intτ (A) ∩ Intτ (B) ⊆ Intτ (A ∩B)

Propositions 3.3 and 3.4 show that the interior operator generated by an open fuzzy
topology τ satisfies properties expected from an interior operator—unconditionally in
Proposition 3.3, and to a guaranteed degree (depending on the degree to which τ satisfies
the conditions required from open fuzzy topologies) in Proposition 3.4.

If the antecedent conditions in Propositions 3.3 and 3.4 are fulfilled to the full degree,
so are the conclusions. In particular, we have the following corollary:

Corollary 3.5. FCT proves:

(i) 4(A ∈ τ) → Intτ (A) = A

(ii) 4Uc(τ) → Intτ (Intτ (A)) = Intτ (A)

In words, whenever a fuzzy class A is fully in τ , it equals its interior (no matter what
conditions τ does or does not satisfy to which degree). Similarly, if τ is fully closed under
fuzzy unions, interiors are stable in τ .

It will further be seen in Section 5 that an open fuzzy topology can vice versa be
recovered from a primitive interior operator, under conditions similar to those above.

4 Neighborhood fuzzy topology

In classical mathematics, topology can also be introduced by assigning a system of neigh-
borhoods to each point of a ground set V. Such a neighborhood system can be represented
by a relation Nb between elements and subsets of V, where Nb(x,A) represents the fact
that A ⊆ V is a neighborhood of x ∈ V. The notion of neighborhood-based fuzzy topol-
ogy, obtained by fuzzification of the classical notion in FCT, just allows the relation Nb
and the class A in Nb(x,A) to be fuzzy.2 Thus in FCT, neighborhood fuzzy topologies
will be second-order relations between atomic objects and first-order classes, i.e., classes
Nb such that 4(Nb ⊆ V ×Ker Pow V).

Neighborhood systems are in classical topology required to satisfy certain conditions.
Fuzzified versions of these conditions will be of interest in neighborhood-based fuzzy
topology, too:

Definition 4.1. Let Nb be a second-order class such that 4(Nb ⊆ V × Ker Pow(V)).
Then we define the following predicates:

N1(Nb) ≡df (∀x) Nb(x, V)

N2(Nb) ≡df (∀x,A)(Nb(x,A) → x ∈ A)

N3(Nb) ≡df (∀x,A, B)(Nb(x,A) & A ⊆ B → Nb(x,B))

N4(Nb) ≡df (∀x,A, B)(Nb(x,A) & Nb(x,B) → Nb(x,A ∩B))

N5(Nb) ≡df (∀x,A)(Nb(x,A) → (∃B)(B ⊆ A & Nb(x,B) & (∀y ∈ B) Nb(y,B))

For convenience, we aggregate them in the following defined predicate:

2We again keep the ground set V crisp for simplicity and identify it with the universal class; see
footnote 1.
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Definition 4.2. We define the predicate indicating the degree to which Nb is a (k1, . . . , k5)–
neighborhood fuzzy topology as follows:

NTopk1,...,k5(Nb) ≡df Nb ⊆4 V ×Ker Pow(V) &
5

&
i=1

Nki
i (Nb)

Basic properties of neighborhood fuzzy topologies and their relation to open fuzzy
topologies have been summarized in [9]. Here we restrict our attention to their relationship
to interior-based topologies. The following definition internalizes in FCT the classical
definition of the interior of a class A:

Definition 4.3. Given a binary predicate Nb between elements and classes, we define

IntNb(A) =df {x | Nb(x,A)}

The behavior of IntNb w.r.t. Kuratowski’s (fuzzified) axioms of interior operators is
studied in the following section.

5 Interior fuzzy topology

In classical topology, an interior operator is a function Int that assigns to each subset A of
a ground set V a set Int(A) ⊆ V. In FCT we allow both the argument A and the output
Int(A) of the function to be fuzzy.3 Fuzzy interior operators are thus construed as crisp
second-order functions, i.e., classes Int such that Int ⊆4 Ker Pow(V) × Ker Pow(V) &
4Fnc(Int).

The degrees to which Int satisfies (fuzzy versions of) Kuratowski’s axioms for interior
operators are given by the following predicates:

Definition 5.1. For second-order classes Int such that Int ⊆4 Ker Pow(V)×Ker Pow(V) &
4Fnc(Int) we define the following predicates:

K1(Int) ≡df Int(V) u V

K2(Int) ≡df (∀A)(Int(A) ⊆ A)

K3(Int) ≡df (∀A)(Int(Int(A)) u Int(A))

K4(Int) ≡df (∀A, B)(Int(A) ∩ Int(B) ⊆ Int(A ∩B))

Unlike in classical topology, in MTL4 these conditions do not imply the monotonicity
of Int. Therefore we define also the following predicates:

Mon(Int) ≡df (∀A, B)(A ⊆ B → Int(A) ⊆ Int(B))

K5(Int) ≡df (∀A, B)(Int(A uB) ⊆ Int(A) u Int(B))

Although Mon and K5 are not equivalent, the following relationships between them hold:

Proposition 5.2. It is provable in FCT:

1. K5(Int) → Mon(Int)

3Again we keep V crisp and identify it with the universal class as in footnote 1. The function Int itself
is conceived as crisp as well, to keep the correspondence to logical functions of [17]; if needed, it can be
fuzzified by a similarity relation as in [1].
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2. Mon2(Int) → K5(Int)

3. 4K5(Int) ↔4Mon(Int)

For convenience, we gather the conditions K1–K5 into one predicate ITop:4

Definition 5.3. We define the notion of (k1, . . . , k5)–interior fuzzy topology by the pred-
icate

ITopk1,...,k5(Int) ≡df Int ⊆4 Ker Pow(V)×Ker Pow(V) & 4Fnc(Int) &
5

&
i=1

Kki
i (Int)

Open classes can be defined by means of the interior operator as usual:

τInt =df {A | A ⊆ Int(A)}

The following graded theorem shows that if Int satisfies Kuratowski’s axioms to a large
degree, then τInt satisfies the properties of open fuzzy topologies to a large degree, and
the interior operator generated by τInt equals Int to a large degree. Notice, however, that
we have only got OTop2,1(τInt) rather than OTop(τInt); in other words, we can only prove
that the system of classes open w.r.t. a fuzzy Kuratowski interior operator is closed under
unions of families “doubly included” in the system.

Theorem 5.4. FCT proves:

ITop1,1,1,1,2(Int) → OTop2,1(τInt) & (∀A)(Int(A) u IntτInt
(A))

Corollary 5.5. FCT proves:

4 ITop(Int) →4OTop2,1(τInt) & Int = IntτInt

Vice versa, interiors in well-behaved open fuzzy topologies are well-behaved fuzzy
interior operators:

Theorem 5.6. FCT proves:

OTop0,1,1,1(τ) → ITop(Intτ ) & (∀A)(A ∈ τ ↔ A ⊆ Intτ (A))

Corollary 5.7. FCT proves:

4OTop(τ) →4 ITop(Intτ ) & τ = τIntτ

Neighborhoods can also be defined by means of the interior operator as usual:

NbInt(x,A) ≡df x ∈ Int(A)

It is immediate that NbInt and IntNb of Definition 4.3 are mutually inverse, i.e.,

Int = IntNbInt

Nb = NbIntNb

Moreover we have the following correspondence between the predicates ITop and NTop:

4It is not much important whether we take K5 or Mon in the definition of ITop, as Proposition 5.2
“translates” between the two variants.
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Theorem 5.8. FCT proves:

1. ITop1,2,2,1,1(Int) → NTop(NbInt)

2. NTop1,3,3,2,1(Nb) → ITop(IntNb)

As a corollary, we get the perfect match between the conditions ITop and NTop when
true to degree 1:

Corollary 5.9. FCT proves:

4 ITop(Int) ↔4NTop(NbInt), Int = IntNbInt

4NTop(Nb) ↔4 ITop(IntNb), Nb = NbIntNb

We conclude by giving three examples of interior-based fuzzy topology.

Example 5.10. The operation sending a fuzzy class to its kernel is an interior operator
that fully satisfies all of Kuratowski’s axioms, as FCT proves

Ker V = V

Ker A ⊆ A

Ker Ker A = Ker A

Ker A ∩Ker B = Ker(A ∩B)

Ker(A uB) = Ker A uKer B

by [4, §3.4]. Thus 4 ITop(Ker); we call it the kernel fuzzy topology.
In the kernel fuzzy topology, a class is fully open iff it is crisp: 4(A ∈ τKer) ↔ Crisp A.

Partially open classes are those whose fuzzy elements only have low membership degrees.
Since all crisp classes (including singletons) are open in the kernel fuzzy topology, it is a
generalization of the notion of discrete crisp topology, with which it coincides in 2-valued
models.

Example 5.11. Define the interior of A as (Plt A)V (see Table 2 for the definitions of
plinth and resize); i.e., x ∈ Int A ≡df (∀y)Ay. In other words, the membership function
of Int A is constant and all elements belong to Int A to the degree which is the infimum
of the membership function of A. Then it is provable in FCT that 4 ITop(Int); we call it
the plinth fuzzy topology.

A class is fully open in the plinth topology iff it is a resize of the universal class. Thus,
the plinth fuzzy topology is stratified (stratified topologies are defined as those in which
all classes αV are open [21, 19]). Partially open in the plinth topology are such classes
whose membership functions have small amplitudes (i.e., the differences between their
suprema and infima), as τInt = {A | Hgt A → Plt A}. Since the only crisp open classes in
the plinth topology are ∅ and V, it is a generalization of the notion of anti-discrete crisp
topology (with which it coincides in 2-valued models).

Example 5.12. In [12], an operation of the opening of a fuzzy set under a fuzzy relation
has been introduced. In [3] the definition has been generalized to the graded framework
of FCT and its graded properties have been investigated. The definition can be rephrased
as follows:

IntR(A) =df {y | (∃x)(Rxy & (∀z)(Rxz → Az))}
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From results proved in [3] it follows that for any relation R, the operator fully satisfies the
conditions K2, K3, and K5. If R is a crisp preorder, then furthermore IntR fully satisfies
K4. Since K1(IntR) is equivalent to V ⊆ Rng R, we get

4Preord R & Crisp R →4 ITop(IntR)

This result can be generalized to a larger class of fuzzy relations: e.g., instead of crispness,
R = R∩R is sufficient for4K4(IntR) if4Preord R; both conditions can further be relaxed
if ITop is not required to degree 1. Furthermore it is shown in [3] that for any R we have
IntR = IntτIntR

.
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[10] R. Bělohlávek and T. Funioková. Fuzzy interior operators. International Journal of
General Systems, 33(4):415–430, 2004.
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Part III

Mandatory annexes





Abstracts

English abstract

The dissertation consists of the author’s published papers on logic-based fuzzy mathe-
matics. It is accompanied with a cover study (Part I of the thesis), which introduces
the area of logic-based fuzzy mathematics, argues for the significance of the area of re-
search, presents the state of the art, indicates the author’s contribution to the field, and
comments on the papers comprising the thesis.

Fuzzy mathematics can be characterized as the study of fuzzy structures, i.e., math-
ematical structures in which the two values 0, 1 are at some points replaced by a richer
system of degrees. Under the logic-based approach, fuzzy structures are formalized by
means of axiomatic theories over suitable systems of fuzzy logic, whose rules replace
the rules of classical logic in formal derivation of theorems. The main advantages of the
logic-based approach are the general gradedness of defined notions, methodological clarity
provided by the axiomatic method, and the applicability of a foundational architecture
mimicking that of classical mathematics. Logic-based fuzzy mathematics is part of a
broader area of non-classical mathematics (i.e., mathematical disciplines axiomatizable
in non-classical logics), as well as a specific subfield of general fuzzy methods. Following
earlier isolated developments in logic-based fuzzy set theory and arithmetic, a systematic
logic-based study of fuzzy mathematics was made possible by recent advances of first-
order fuzzy logic that opened the way for Henkin-style higher-order fuzzy logic (or simple
fuzzy type theory), which is capable of serving as a foundational theory for logic-based
fuzzy mathematics. The author’s contribution to the development of logic-based fuzzy
mathematics has been presented in the published papers that comprise the main body of
the thesis.

The paper On the difference between traditional and deductive fuzzy logic clarifies
methodological assumptions of formal fuzzy logic, contrasts them to those of traditional
fuzzy mathematics, and indicates necessary conditions on systems of fuzzy logic suitable
for logic-based fuzzy mathematics as developed in this thesis. The paper From fuzzy logic
to fuzzy mathematics: a methodological manifesto (co-authored by P. Cintula) formu-
lates methodological guidelines for logic-based fuzzy mathematics and proposes a founda-
tional architecture analogous to that of classical mathematics, with three layers formed
by first-order fuzzy logic, a foundational theory axiomatized in fuzzy logic, and particular
mathematical disciplines developed within the foundational theory.

The paper Fuzzy class theory (co-authored by P. Cintula) introduces Henkin-style
higher-order fuzzy logic (also called Fuzzy Class Theory or FCT) as an axiomatic ap-
proximation of Zadeh’s notion of fuzzy set, and proposes it as a foundational theory for
logic-based fuzzy mathematics. Metatheorems are proved for FCT that reduce a large
part of elementary fuzzy set theory to propositional fuzzy logic, and the interpretability
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of classical higher-order theories in FCT (by which classical mathematical structures are
available within the theory) is shown in the paper.

The paper Relations in Fuzzy Class Theory: initial steps (co-authored by U. Boden-
hofer and P. Cintula) develops the basic theory of fuzzy relations in FCT, which is a
prerequisite for all other parts of formal fuzzy mathematics. The topics studied include
basic graded properties of fuzzy relations, relational images and bounds, Valverde char-
acterization theorems, and fuzzy partitions. The paper Relational compositions in Fuzzy
Class Theory (co-authored by M. Daňková) reduces a large family of fuzzy relational and
set-theoretical notions to fuzzy relational compositions, and presents methods for mass
proofs of theorems on these notions. The paper Extensionality in graded properties of
fuzzy relations introduces indistinguishability-relative graded properties of fuzzy relations
and studies their relationship to the property of extensionality, to which they reduce in
traditional fuzzy mathematics, but not in the logic-based setting.

The paper Towards a formal theory of fuzzy Dedekind reals constructs fuzzy real
numbers as the lattice completion of the classical real line by fuzzy Dedekind cuts and
gives some hints for logic-based fuzzy interval arithmetics. The paper Fuzzification of
Groenendijk–Stokhof propositional erotetic logic employs FCT as the formal semantics for
a logic of fuzzy questions. Finally, the papers Topology in Fuzzy Class Theory: basic no-
tions and Interior-based topology in Fuzzy Class Theory (both co-authored by T. Kroupa)
introduce logic-based notions of fuzzy topology defined respectively by open or closed sets,
neighborhoods, and interior operators, and study their mutual relationships.

Český abstrakt (Czech abstract)

Předložená disertačńı práce sestává z autorových publikovaných článk̊u o logických
základech fuzzy matematiky, doplněných shrnuj́ıćı studíı (tvoř́ıćı úvodńı část disertace), ve
které je představen na formálnělogický př́ıstup k fuzzy matematice. Dále je v ńı dokládána
d̊uležitost výzkumu v tomto oboru a charakerizován jeho současný stav, popsán auto-
r̊uv př́ıspěvek k oboru a podány komentáře k jednotlivým článk̊um, z nichž se disertace
skládá.

Fuzzy matematiku lze vymezit jako studium fuzzy struktur, tj. takových matematic-
kých struktur, v nichž je dvojice hodnot 0, 1 na některých mı́stech nahrazena bohatš́ım
systémem stupň̊u. V př́ıstupu založeném na formálńı logice jsou fuzzy struktury zachyceny
prostřednictv́ım axiomatických teoríı ve vhodných systémech fuzzy logiky, jejichž pravidla
jsou použita pro formálńı odvozováńı teorémů namı́sto pravidel klasické logiky. Hlavńımi
výhodami logického př́ıstupu k fuzzy matematice jsou všeobecná gradualita definovaných
pojmů, metodologická čistota daná aplikaćı axiomatické metody a použitelnost podobné
základové architektury jako v klasické matematice. Na logice založená fuzzy matema-
tika je součást́ı neklasické matematiky (tj. rodiny matematických teoríı axiomatizovatel-
ných v neklasických logikách), a zároveň tvoř́ı specifickou část širš́ıho oboru fuzzy metod.
Systematické zkoumáńı fuzzy matematiky v př́ıstupu založeném na logice, navazuj́ıćı na
předchoźı ojedinělé výzkumy podobného př́ıstupu k teorii fuzzy množin a aritmetice, bylo
umožněno nedávným pokrokem v oblasti prvořádové fuzzy logiky. Dı́ky němu bylo možno
vyvinout henkinovskou fuzzy logiku vyšš́ıho řádu (čili jednoduchou fuzzy teorii typ̊u), jež
může sloužit jako základová teorie pro formálńı fuzzy matematiku. Autorovy př́ıspěvky
k výzkumu logických základ̊u fuzzy matematiky byly publikovány v článćıch, které tvoř́ı
hlavńı část disertace.
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Článek On the difference between traditional and deductive fuzzy logic (K rozd́ılu mezi
tradičńı a deduktivńı fuzzy logikou) vyjasňuje metodologické předpoklady formálńı fuzzy
logiky ve srovnáńı s předpoklady tradičńı fuzzy matematiky a stanovuje požadavky na
systémy fuzzy logiky vyhovuj́ıćı takovému př́ıstupu k fuzzy matematice, jaký je rozv́ıjen
v této disertaci. V článku From fuzzy logic to fuzzy mathematics: a methodological mani-
festo (Od fuzzy logiky k fuzzy matematice – metodologický manifest, spoluautor P. Cin-
tula) jsou formulovány metodologické zásady na logice založeného př́ıstupu k fuzzy ma-
tematice a je navržena jej́ı základová architektura zp̊usobem analogickým k základ̊um
klasické matematiky, se třemi vrstvami tvořenými prvořádovou fuzzy logikou, v ńı axio-
matizovanou základovou teoríı a jednotlivými matematickými discipĺınami vyv́ıjenými
v rámci této základové teorie.

V článku Fuzzy class theory (Teorie fuzzy tř́ıd, spoluautor P. Cintula) je zavedena hen-
kinovská fuzzy logika vyšš́ıho řádu (zvaná též teorie fuzzy tř́ıd, zkr. FCT z angl. Fuzzy
Class Theory), jakožto axiomatická aproximace Zadehova pojmu fuzzy množiny. Tato
teorie je zde navržena za základovou teorii pro formálńı fuzzy matematiku. V článku jsou
dokázány metavěty FCT, které redukuj́ı značnou část elementárńı teorie fuzzy množin na
výrokovou fuzzy logiku, a je ukázána interpretovatelnost klasických teoríı vyšš́ıho řádu
v FCT (d́ıky ńıž jsou v FCT k dispozici klasické matematické struktury).

V článku Relations in Fuzzy Class Theory: initial steps (Relace v teorii fuzzy tř́ıd –
počátečńı kroky, spoluautoři U. Bodenhofer a P. Cintula) jsou v rámci FCT vybudovány
základy teorie fuzzy relaćı, jež tvoř́ı nezbytný předpoklad zkoumáńı ostatńıch partíı fuzzy
matematiky. V článku se zkoumaj́ı zejména základńı graduálńı vlastnosti fuzzy relaćı,
obrazy, závory, valverdovské charakterizace a fuzzy rozklady. V článku Relational composi-
tions in Fuzzy Class Theory (Skládáńı relaćı v teorii fuzzy tř́ıd, spoluautorka M. Daňková)
popisuje redukci rozsáhlé rodiny pojmů teorie fuzzy relaćı a fuzzy množin na pojem sklá-
dáńı fuzzy relaćı a ukazuje metodu hromadných d̊ukaz̊u vět o těchto pojmech. Článek
Extensionality in graded properties of fuzzy relations (Extenzionalita u graduálńıch vlast-
nost́ı fuzzy relaćı) zavád́ı graduálńı vlastnosti fuzzy relaćı definované relativně v̊uči dané
relaci nerozlǐsitelnosti a studuje jejich vztah k vlastnosti extenzionality, s ńıž v tradičńı
fuzzy matematice splývaj́ı, v př́ıstupu založeném na logice se však od ńı lǐśı.

Článek Towards a formal theory of fuzzy Dedekind reals (Předběžné poznámky k for-
málńı teorii dedekindovských fuzzy reálných č́ısel) podává konstrukci fuzzy reálných čisel
pomoćı svazového zúplněńı klasické reálné č́ıselné osy fuzzy dedekindovskými řezy a uvád́ı
některé výsledky potřebné k vybudováńı fuzzy intervalové aritmetiky. V článku Fuzzifi-
cation of Groenendijk–Stokhof propositional erotetic logic (Fuzzifikace výrokové Groenen-
dijkovy–Stokhofovy erótetické logiky) je aparát FCT použit jako formálńı sémantika pro
logiku fuzzy otázek. V závěrečných článćıch Topology in Fuzzy Class Theory: basic notions
(Topologie v teorii fuzzy tř́ıd – základńı pojmy) a Interior-based topology in Fuzzy Class
Theory (Topologie definovaná pomoćı operátoru vnitřku v teorii fuzzy tř́ıd, spoluautor
obou článk̊u T. Kroupa) jsou v rámci př́ıstupu založeném na logice zavedeny pojmy fuzzy
topologie definované pomoćı otevřených či uzavřených množin, okoĺı bod̊u a operátoru
vnitřku a prozkoumány jejich vzájemné vztahy.
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