FACULTY
OF MATHEMATICS
AND PHYSICS

Charles University

MASTER THESIS

Be. Ondrej Stanék

Visual Programming Backend for a Mobile
Robot

Department of Software Engineering

Supervisor of the master thesis: RNDr. David Obdrzélek, Ph.D.
Study programme: Informatics

Study branch: Software Systems

Prague 2017

I would like to thank my supervisor, RNDr. David Obdrzalek, Ph.D., for
supporting me over the years in the field of robotics. His advice and comments
helped to shape this thesis and T am grateful for his feedback.

I would like to dedicate this work to my beloved grandfather Standa, who led
my first steps in electronics and programming.

I declare that I carried out this master thesis independently, and only with
the cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb.., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 subsection 1 of
the Copyright Act.

In Prague, date

i

Nézev prace: Podpora vizudlniho programovani mobilniho robota
Autor: Be. Ondfej Stanék

Katedra: Katedra softwarového inZenyrstvi

Vedouci diplomové prace: RNDr. David Obdrzalek, Ph.D.

e-mail vedouciho: David.Obdrzalek@mff.cuni.cz

Abstrakt: V této praci se autor zabyva navrhem a implementaci feSeni pro progra-
movani malych mobilnich roboti pomoci vizualnich programovacich prostredki.
Soucasti prace je vybér vhodného front-endu pro vizualni programovani i vy-
tvofeni back-end vrstvy umoziujici béh programu v mobilnim robotovi. Pro
vykonavani kodu je vytvoren virtualni stroj, ktery bézi v ramci pivodniho firm-
ware robota na 8-bitovém mikrokontroleru s omezenymi prostiedky. Vrstva ge-
neratoru kodu pireklada vizualni reprezentaci programu do sekvence instrukci
bajtkodu, jez je nésledné interpretovana v mobilnim robotovi. Regeni podpo-
ruje typické rysy proceduralnich programovacich jazykil, zejména: promeénné,
vyrazy, podminéné piikazy, cykly, staticka pole, funkéni volani a rekurzi. Diraz
je kladen na robustnost implementace. K ovéfeni a udrzeni kvality kodu jsou
pouzity metody automatického testovani.

Klicova slova: vizualni programovaci jazyk, virtualni stroj, mobilni robot, Blockly

iii

Title: Visual Programming Backend for a Mobile Robot
Author: Be. Ondiej Stanék

Department: The Department of Software Engineering
Supervisor: RNDr. David Obdrzéalek, Ph.D.

Supervisor’s e-mail address: David.Obdrzalek@mff.cuni.cz

Abstract: In this work, the author designs and implements a solution for pro-
gramming small mobile robots using a visual programming language. A suitable
visual programming front-end is selected and back-end layers are created that
allow execution of the program in a mobile robot. The author designs and im-
plements a virtual machine that runs alongside the original robot firmware on
an 8-bit microcontroller with limited resources. A code generator layer compiles
the visual representation of the program into a sequence of bytecode instructions
that is interpreted on board of the mobile robot. The solution supports typical
features of procedural programming languages, in particular: variables, expres-
sions, conditional statements, loops, static arrays, function calls and recursion.
The emphasis is put on robustness of the implementation. To verify and maintain
code quality, methods of automated software testing are used.

Keywords: visual programming language, virtual machine, mobile robot, Blockly

v

Contents

1 Introduction
1.1 Motivationo
1.2 Organization of the Thesis

I Analysis

2 Existing Solutions

2.1 Wonder Workshopo
22 CodeBug
2.3 Event-driven Programming
3 Visual Programming Languages
3.1 Google Blocklyo
3.2 MIT Scratch
4 Target Robotic Platform
4.1 Feature Overview
4.2 Resources Analysis Lo
4.2.1 Program Space o oo
4.2.2 Operation Memory
4.2.3 Performance Lo
4.3 Functional Specification
4.3.1 Free Movement
4.3.2 Line Following
4.3.3 Signalization LEDs00
434 Button
5 Virtual Machines and Interpreters
5.1 Implementations for Embedded systems.
5.1.1 EmbedVM
5.1.2 NanoVM
5.1.3 AmForth
5.2 Stack Computerso

ot

16
16
19
19
19
20
20
20
21
22
22

5.2.1 Reverse Polish Notation 26

5.2.2 Forth Programming Language 26

6 Test Automation 28
6.1 Testing Frameworks oo 29
6.1.1 CppUTest o 30

6.1.2 Check 30

IT Design 31
7 Visual Programming Language 33
7.1 Front-end 34
7.2 DataTypes 34
7.2.1 Universal Data Type 35

7.2.2 Collections 40

7.3 Concurrency and Synchronization 41

8 Testing 42
81 Unit Testing 42
8.1.1 Executing Tests on Target Architecture 44

8.2 Imtegration Tests 44
III Implementation 47
9 Virtual Machine (VM) 48
9.1 Scheduling and Preemption 48
9.2 Virtual Memory Map 51
9.2.1 Program Spaceo o1

922 Stacks 52

923 RAM 52

9.3 Input/Output 52
9.3.1 Shared Memory (Register File) 52

9.3.2 System Calls 0. 54

9.3.3 Synchronization on Events 55

9.3.4 Movement Commands 56

9.4 Instruction Set 56
9.4.1 Push Immediate, o6

9.4.2 Operators 57

9.4.3 Jumps o8

9.4.4 Conditional Branches 59

9.4.5 Memory Addressing 60

9.4.6 Data Stack Manipulation 60

9.4.7 Subroutines

10 Code Generation
10.1 Intermediate Assembly Language
10.2 Bytecode L
10.3 Library Functions oL
10.4 Generating Code L Lo
10.4.1 Expressions
10.4.2 Variables oo
10.4.3 Conditional Statements
10.4.4 Loops o o o
10.4.5 Arrayso e
10.4.6 List oL
10.4.7 Functions and Procedures

11 Integration Test Suite

Conclusion
Text Summary
Future Works

Bibliography

List of Abbreviations

63
63
64
64
64
65
66
67
68
71
72
74

7

78
78
79

81

85

Chapter 1

Introduction

We are surrounded with technology. Almost every electronic device around us
embeds a computer program - a wrist watch, a cellphone, a washing machine, a
thermostat, a credit card... The untouchable yet crucial components of all these
devices are computer programs that govern their operation. With the emerging
era of the Internet of Things (IoT), programmable electronic devices become even
more inevitably part of our lives.

The world is changing and this process could be also reflected in the curric-
ula for schoolchildren. Children are introduced to science subjects to help them
understand what the word around s and how it works. Nowadays, when pro-
grammed devices become part of a modern world, basic coding skills could be
added to the curriculum to teach children also about this new aspect of the mod-
ern world. The unveiling of programming concepts to children could help them
realize that all the technology they see around is based on simple concepts that
they can grasp and practice.

Coding is a skill that becomes relevant in more and more professions that rely
on I'T in some way. Coding, scripting, programming - whatever we call it - is a tool
to achieve automation of some routine tasks, that would be performed manually
otherwise. A secretary, an accountant, a researcher, a banker or a businessman
could benefit from little scripts that he or she writes for their own use to achieve
their goals faster and in more efficient manner. There is a merit in making coding
accessible outside the realm of professional software developers. There is much
wider audience that may benefit from the software tools that drive todays world.
We see this happening, there are projects around that open coding to general
public |15, 3|, and this effort is likely to continue in future.

The purpose of this work is to make the coding accessible and fun. We propose
a new tool that could be used in the educational system.

1.1 Motivation

Learning coding might be challenging for novices. At their first attempts, all
they might see is just a bunch of errors reported by the computer. Often, this
is discouraging. If we look carefully, the errors are often of syntax nature. The
textual representation of a computer program imposes quite high formal syntax
requirements on the novice programmer and takes his mind away from the real
problem solving. However, it is the problem solving that should be taught, not the
nuances of a particular programming language. Visual programming languages
address this issue nicely - they are constructed in a way that no syntax error
can ever occur, which makes the learning process significantly easier. Specially,
visually appealing interface might help children to start putting together their
first programs prior they are sound in typing (or even reading).

The question is, what the program will do? Well, this depends on the platform
where we are programming. It might control a virtual character on a computer
screen, but as well, the program could drive a toy in the real world!

In this thesis, we build a solution that enables visual programming of a mobile
robot, so that the programs and algorithms can be tested in real environment.

1.2 Organization of the Thesis

This thesis is divided into three parts.

Part T is an analysis of existing solutions and approaches. Chapter 2 de-
scribes existing robotic toys enabled with a visual programming interface and the
event-driven programming paradigm is discussed. Visual programming editors
are analyzed in Chapter 3. Chapter 4 defines the target robotic platform for
which a specific visual programming language will be developed. In Chapter 5,
the existing implementations of virtual machines are analyzed, with a focus on
the general concept of stack machines. The importance of test automation is
explained in chapter Chapter 6 and some testing frameworks are suggested.

Part II “Design” builds on the background research done in the Analysis part
and presents the design of the solution. Chapter 7 proposes a visual programming
language for the defined robotic platform and the features and properties of the
visual programming language are specified. Chapter 8 suggests a method of
automated testing and provides guidelines for implementation of the automated
test suite.

Part III contains detailed description of the proposed Virtual Machine (Chap-
ter 9) and Code Generator (Chapter 10) implementation, including numerous
code examples. Finally, the implementation details about the automated test
suite are mentioned in Chapter 11.

Part 1

Analysis

Chapter 2

Existing Solutions

On the market, there are several solutions that enable visual programming of
toy robots. Lego Mindstorms originated in 90s and introduced a programmable
block that could execute programs designed visually on a PC. With the boom of
smartphones, tablets and connected toys, there are many new competitors in the
STEM' educational field. A reliable wireless link between a robot and a smart-
phone/tablet allowed offloading the computation from a robot to a smartphone
or tablet. We can classify the programmable toys into two categories; standalone
and connected. Standalone programmable toys execute the user program on the
board of the robot - they are independent. Connected programmable toys always
need a supplementary device that executes the user program.

Both approaches have their pros and cons. Tablets may have many times
bigger computational performance than the robot hardware itself, so there are
almost no limitations for the feature set of the visual language. Debugging of a
visual program that executes in a tablet will be generally a simpler problem than
debugging a program running in the real robot. The downside is that the user is
not really programming a robot, but a tablet that controls a robot. From the pure
educational standpoint, there is a value in showing that robot can execute the
program independently. Such option opens new possibilities and is more versatile.
The child can create a program for the robot, and once the program is loaded
to the robot, the tablet is not needed anymore. The robot can be transported
and used outdoors. There can be multiple robots programmed with the same or
different programs, each performing its program autonomously.

We do an analysis of two existing solutions, one being a connected toy, the
second a standalone programmable platform. There are many more solutions,
such as Lego Mindstorms [17| or Fishertechnik [9], but we will focus only on
products that use an open-source visual programming front-end.

LSTEM: science, technology, engineering and mathematics

2.1 Wonder Workshop

Dash & Dot are toy robots from the Wonder Workshop company [22|. The mission
of the Dash and Dot robots is to make learning to code fun. Dash is a mobile
robot that can travel around, while his companion Dot is a stationary robot.
Both robots are equipped with a speaker, microphones, infra-red sensors and
attachement points for accessories. Dash & Dot are connected toys; they can be
controlled from a tablet or smartphone wirelessly, over BLE2. Wonder Workshop
supplements their robots with several apps for controlling and programming the
robots. The apps are designed to teach childern the concepts of coding.

The Xylo is a music app where children can compose songs. The interface of
the app is very visual and intuitive; the child touches the xylophone tone bars
that he or she wants to play at the selected time instance. This way, the child
programs a sequence of tones. A concept of loops is also introduced - user can
configure any part of the song to be repeated n-times. After the song is composed,
the Dash robot will re-play the song on a small xylophone, which comes as an
accessory.

The Go application controls the movement of the robot. The child can plan
a trajectory for a robot by finger-drawing. The designed movement is then per-
formed by the Dash robot. There are also controls for real-time driving available.

There is an application called Wonder that introduces children to state ma-
chine programming. The user can design custom finite state automaton that
controls the robot. The automaton is represented as graph consisting of states
(vertices) and transitions (edges). The states are actions that the robot will per-

form, such as “set motor speeds”, “stop motors”, “move forward 10cm”, “rotate 90

degrees”, “play sound” etc.. The edges signalize the allowed transitions between
the states, which could be “obstacle detected”, “button pressed”, “clap heard”,
etc.. There is a visualization during the state machine execution - the state that
is currently being performed is highlighted.

The Wonder Workshop Blockly application teaches procedural programming.
The user puts together a program in a visual editor based on Google Blockly
(see Section 3.1). The Wonder Workshop visual programming language is event-
driven. The programmer can assign event-handling code to each event, and the
code is executed when the event arrives. An event can be a press of a button
on the Dash or Dot robot, detection of an obstacle or acoustic stimulus such as
voice or clap. The most usual entry point of a program is the “Start” event, which
triggers when the “Play” button in the Blockly application is pressed.

The programing paradigm is event-driven and the concurrent execution of
event handlers is not allowed.

Citation from Wonder Workshop FAQ: “Right now, Blockly does not allow
concurrent block execution.” 23]

This means that only one event handler can execute at a time. This restriction

?Bluetooth Low Energy

Start
Drive when EEERIND Wren
-—
[]
Look [Aicoos | S
Dash Top Button Left

Light

e (Y bacioard |

Left Bi rd
Sound normal | sey (XD

Right normal

Stop Wheels Turn Left (1)

°

L@

Figure 2.1: Dash & Dot - Blockly editor (screenshot)

is common for event-driven programming, and the same restriction applies to
JavaScript, for instance.

The Wonder Workshop Blockly programming language has limited support for
variables. The child can use up to 5 global variables, conveniently distinguished
by pictures of fruit. Each variable can hold an integer number ranging from -9999
to 9999.

There is a basic support for user defined procedures. So far, there is no support
for procedure arguments. User defined functions® are not supported.

The user program is executed in the tablet, not in the robot itself. [24]
“Programs do not need to be compiled and downloaded on to the robot; they are
meant to run in real-time, allowing for easier learning and debugging.“ [25]

2.2 CodeBug

The CodeBug [6] is a programmable wearable device. Tt features a 5x5 LED* array
to display simple icons, animations or scrolling text. The programs for CodeBug
are created in an online visual editor based on the Blockly library. The user
programs are compiled to a binary executable. The compiled user program is to
be loaded to the CodeBug via USB cable. The CodeBug MCU? is preprogrammed

3a callable unit that returns a value
4Light-Emitting Diode
Smicrocontroller unit

Figure 2.2: CodeBug (source: https://www.codebug.org.uk/media/codebug_front.jpg)

with a bootloader. The bootloader can make the CodeBug act as a USB drive
when button is held during connection to a PC. The user program is then copied
on the drive and executed. Once loaded, the user program can run independently
of the PC, which is unique to other solutions which usually interpret the user
program in tablet, smartphone or PC.

The CodeBug online editor has a simulation engine to run the user programs in
the web browser. This allows convenient debugging of the code that is executed in
the simulator. The simulator can also simulate hardware accessories that extend
the features of CodeBug in terms of number of LEDs.

The visual programming language supports variables, expressions, conditional
statements, loops and input/output functions. To date, user defined functions
and collections are not supported.

2.3 Event-driven Programming

Event-driven programming is a paradigm in which the program is composed of
event handling routines. When an event occurs, the appropriate handler routine
is executed. This action-reaction principle is well suited for describing behavior
of a mobile robot that reacts to inputs from its environment. The event driven
approach is also often used in GUI applications, where events are generated by
user’s interaction with the graphic control elements in the application. An ex-
ample of event driven language is JavaScript, which is widely used in web-based
interactive applications.

The principle of asynchronous processing of events might suggest that the

10

https://www.codebug.org.uk/media/codebug_front.jpg

event handlers are executed in parallel, however, this is not the case for many
event-driven architectures. The aforementioned JavaScript implements event
handling in a single thread, which guarantees that event handlers are always
executed in series, and as such, there is no need to introduce synchronization.
JavaScript is special in a way - because the API is purely asynchronous, no func-
tion can ever block. If a programmer misuses some event handler to perform
intensive computation (or worse, an infinite loop), the model of event dispatching
fails, as the event loop is blocked and no more events can be served by the system.

On Android platform, the GUI model also relies on event handlers, which are
processed in a single thread (called UI thread). It is also required that the GUI
elements are only manipulated from that single thread. This design ensures that
all routines that interact with GUI are always serialized and executed from the
single UI thread, and therefore, no synchronization or locking is required. Need-
less to say, the programmer must ensure that routines running on the UI thread
do not block, otherwise, the whole GUI becomes unresponsive. This example
shows that the single event loop architecture is used even on systems that have
full support for threading and synchronization (Android is programmed in Java).

Citation: “While it is generally possible to apply multithreading, most of
the aforementioned frameworks and platforms rely on a single-threaded execu-
tion model. In this case, there is a single event loop and a single event queue.
Single-threaded execution makes concurrency reasoning very easy, as there is no
concurrent access on states and thus no need for locks.” |29

As pointed out, the single-threaded execution model is widely used on many
platforms because of its simplicity. Unfortunately, such model is not well suited
for programming mobile robots. Let’s consider an example of a simple program
that makes a robot to go in a square. Assume that the API has a blocking Mowve-
Forward(distance_ c¢cm) and Rotate(angle deg) routines that block the program
execution until the robot completes the movement.

var count = 4;

while (count > 0) {
MoveForward (10) ;
Rotate (90);
count = count - 1;

Such code is simple and should be easy to explain to a child. Now let’s imagine
how such behavior would be programmed if the APT for controlling movement of
the robot was non-blocking (asynchronous). In Javascript, the asynchronous ver-
sions MoveForward_ async(distance_ cm, callback) and Rotate async(angle deg,
callback) take as argument a callback function that is performed after the move-

ment command is finished. The JavaScript non-blocking implementation could
look like this:

var count;

11

var callbackl;
var callback?2;

callbackl = function() {
if (count > 0) {
count = count - 1;
MoveForward_async (10, callback2);

callback2 = function() {
Rotate_async (90, callbackl);

count = 4;
callback1(); // makes the robot to go in a square

It is obvious that the callback API is much more complex to comprehend and
use. We believe that API for robot control should use the blocking approach.
However, this means that the event handling cannot be implemented on a single
thread anymore (as JavaScript event loop or Android UI thread do). Because
we introduced a blocking API, the event handlers don’t finish immediately any
longer, and there can be more event handlers in a process of evaluation at a time.
Spawning separate threads for each handler would solve the problem, but at the
same time it would add the complexity of a multi-threaded application, with all
the inherent synchronization concerns. Alternatively, an asynchronous pattern
such as async/await [31] could be used to ease the troubles of asynchronous
programming.

Another alternative would be to use a completely different modeling tool
which is better suited for describing concurrency. Grafcet |50, 30|, for instance,
is an industrial solution derived from a theoretical concept of Petri nets. If we
could refrain from the procedural programming paradigm, it would be a viable
alternative for visual programming of mobile robots.

To conclude, the event-driven programming paradigm can be achieved on a
single-threaded system as long as the API doesn’t block. Specially, the API must
not contain the pause() method that waits for a specified amount of time. If there
is a function that blocks the execution, the event-driven programming paradigm
can be still used, but requires concurrent execution of the event handlers, which
can be achieved by threads and context-switching.

12

Chapter 3

Visual Programming Languages

Visual programming is a broad term that covers various approaches. Some visual
programming languages use diagrams to model a dataflow (such as MATLAB
Simulink or LabVIEW), other depict graphically a state machine or a Petri net
(Grafcet [50, 30]). In this thesis, we will focus on educational visual programming
languages, which introduce children to a concept of procedural programming
dressed in a graphical interface.

3.1 Google Blockly

Blockly [12] is a web-based library for building visual programming editors. It is
an open-source project licensed under the Apache 2.0 License [2]. The library is
programmed in JavaScript and runs client-side. It supports major web browsers
including Chrome, Firefox, Safari, Opera and Internet Explorer, as well as mobile
touchscreen devices.

The visual program is made of basic blocks that interconnect together in sim-
ilar manner as puzzle pieces. The interconnection mechanism enforces semantical
correctness of the program. Blocks can be only connected in a way that makes
semantic sense. This way, the user can never make a syntax error and he can
focus solely on the logic of the program. The program can be then exported to
JavaScript, Python, PHP or Dart. Blockly generates well formated, syntactically
correct code. Basically, the library translates the visual program (blocks) into a
syntactically correct code (text).

The library offers set of basic blocks and it can be extended with a new custom
blocks. There is a Block Factory [13] tool for designing new blocks. Interestingly,
the Blockly Factory itself is based on the Blockly visual programming language.

Blockly is designed for dynamically typed languages. As such, Blockly doesn’t
enforce static type checking for variables. There is a strong parallel with JavaScript,
and Blockly perform very well in exporting visual program to JavaScript code or
similar scripting languages. Variables in Blockly can hold any data type same as
JavaScript variables would.

13

Loops

Math

Text

Lists — _
Colour [
Variables [set to |

Functions - -

L null

test

T

Figure 3.1: Blockly Library [12] (screenshot)

However, Blockly does have a support for minimal type checking, which can
be extended further. The Open Roberta [20] project extended the Blockly type
checking to support statically typed languages. User declares variables and their
types at the beginning of the program and the editor then enforces all the type
checks statically, at design time. In the Open Roberta editor, the types are
visualized by colors. For instance, the editor doesn’t allow to connect number
(blue) block to an input where a string (green) is expected.

Blockly library supports functions and procedures. User can specify argu-
ments that the function or procedure will accept. The type of arguments or re-
turn value is not specified and Blockly doesn’t put any restriction on data types.
This is reasonable, as the target class of scripting languages doesn’t require static
type checking neither. In many ways, Blockly reflects the features of its target
scripting languages. Unfortunately, there is one shortcoming that relates to scope
of variables. Blockly currently supports global variables only. Local variables in
functions cannot be declared. This is a significant drawback especially when it
comes to recursion. The absence of local variables significantly limits the pos-
sibilities of recursive function calls. There are various ways how Blockly could
be extended to support variable scoping, which was discussed thoroughly in the
Blockly forum [4]. For example, the Open Roberta approach of declaring vari-
ables could be used. To date, however, the Open Roberta editor doesn’t have
support for functions or procedures.

14

touch sensor Port pressed?

4+ Q program start
get [EEETSXA ultrasonic sensor Port X2 BN GIRVE Y variableNumber [Number v BB

Control) - -
get IR colour sensor Port [EK2 PN OIS variableString [String v K
i N OIRVIEWS variableBoolean [l Boolean v K true v

| variableBoolean v
== variableNumber v |\:+)

-o¢ variableString v el L text o2

get infrared sensor Port X2

reset encoder

get encoder

button pressed?

Variables

reset gyroscope Port X2

get [ETRTRA gyroscope Port

getvalue timer in ms

reset timer [FK2

Figure 3.2: Open Roberta Lab [20] - Blockly based editor with static type check-
ing (screenshot)

3.2 MIT Scratch

MIT Scratch [18] is an online visual programming environment. It is a platform
built around an event-based visual programming language. Apart from the vi-
sual program editor, it offers set of tools for creating and editing multimedia
content. The user can design entities called “sprites” that perform in a virtual
environment (“scene”). Each sprite on the scene can be scripted in the Scratch
visual programming language. The user can execute the scripts in a simulated
environment within a web browser.

The Scratch visual programming language is event-based. Behavior of a sprite
is driven by one or more event handling routines, which can trigger f.e. when the
simulation is started, when key is pressed, when there is a mouse interaction
etc... Specially, the sprite entities can communicate with each other by message
passing. Receiving a message is an event that can be handled by the sprite’s
script. This opens possibilities of agent-based modeling.

15

Chapter 4

Target Robotic Platform

Mobile robots are widely used for educational purposes. The smaller the robot
is, the less space is required for its operation. In classroom settings, small robots
that can operate on student desks are often welcomed.

The size is also an important factor when it comes to swarm robotics exercised
at universities. Smaller robots are easier to manipulate, they occupy significantly
less space if used in bigger quantities, require less power for their operation and
generally they are safer. In case of improper handling or user program failure,
the damage caused by a mobile robot is likely to be proportional to the energy it
can dissipate.

There are many competitions organized that motivate students and hobbyists
to build mobile robots. Especially line-following contests are very popular among
novices in robotics. Line-following robots are usually based on low-performance
8-bit MCUs, which are fully sufficient for the task.

The line following robots use simple sensors and the computational require-
ments are low, so the robots can be compact and inexpensive. There are mini-
malistic line-following robots [27, 38, 41, 43, 39] that can fit into a match-box'
and yet they are programmable, some of them even feature obstacle detection
and wireless communication interface 38, 41, 43, 39].

4.1 Feature Overview

In this section, we will summarize the features typical for small line-following
robots.

Robots have two individually propelled wheels, providing a differential steer-
ing capability. They are equipped with a sensor module that detects the position
of the line. There is a button [27, 43, 39| for controlling the robot operation.
Optionally, the robot can detect the color of the surface [39]. There might be a
uni-directional [38, 41, 43| or a bi-directional [39] wireless communication inter-
face present.

linner dimension 48 x 32 x 12 mm

16

Figure 4.1: ChaN’s Desktop Line Following Robot, 2004, [27]
(source: http://elm-chan.org/works/ltc/rp/1tc02. jpeg)

Lithium-ion button cells
3.6V, 2x40mAh

Remote control
receiver

Power switch
Signalization LED
Front obstacle sensor

Connector for programming
and debugging

Figure 4.2: OStan’s PocketBot, 2008, [38]
(source: http://ostan.cz/pocketBot/images/top_view_descr.jpg)

Figure 4.3: Twinsen’s PocketBot, 2009, [41]
(source: http://twinsen.info/img/portfolio/2/2.jpg)

17

http://elm-chan.org/works/ltc/rp/ltc02.jpeg
http://ostan.cz/pocketBot/images/top_view_descr.jpg
http://twinsen.info/img/portfolio/2/2.jpg

Figure 4.4: Bodie’s Fuzee, 2011, [43]
(source: http://bodie.xf.cz/img/fuzee/2. jpg)

Figure 4.5: OStan’s PocketBot2, 2011, [39]

18

http://bodie.xf.cz/img/fuzee/2.jpg

4.2 Resources Analysis

This section is of a big importance, as it describes the hardware limitations that
must be taken into account in design phase of the Virtual Machine. The Virtual
Machine implementation should be able to run on an 8-bit microcontroller (MCU)
comparable to the Atmel ATmega8, as used in projects [27, 43, 38, 41|. The
resources of such MCU are typically limited to few kilobytes of program memory
(FLASH), single kilobytes or even less amount of runtime data memory (typically
SRAM) and clock frequency of typically 8 to 20 MHz. The embedded system has
only a single thread of execution. No real-time operating system is expected due
to very limited resources of the MCU. It is expected that all the tasks performed
by the firmware are scheduled statically.

This section analyses the typical robot firmware in terms of functionality,
interfaces and resource requirements. We will start with evaluation of the free
resources available to the Virtual Machine. The considered 8-bit MCUs have
Harward architecture, where the storage for program instructions and data are
physically separated.

4.2.1 Program Space

The compiled firmware is stored in non-volatile FLASH memory. The available
free Program Space on a given robotic platform can be found at compile time.
On the reference platform, there is 6kB of free FLASH memory available. Tt is
expected that the Virtual Machine implementation should not exceed 5kB limit
for the FLASH space. At least 1kB of flash should be left free for debugging
routines or future firmware changes. This footprint limitation will impose some
trade-offs on the Virtual Machine design.

4.2.2 Operation Memory

The Virtual Machine should be able to run on MCUs that offer as little as 1kB
of SRAM. It has to run alongside with all the functionality implemented in the
original robot’s firmware, which needs some SRAM for its own operation. We can
assume that the system doesn’t use dynamic allocation of memory. It is quite
usual that heap memory is not used at all on small embedded systems. As such,
the only memory that is allocated at runtime is on the stack. The worst-case
stack size of the reference robot firmware was analyzed to be 80 bytes. The size
of the data segment is known at compile time. It is expected that there will be
always at least 500 bytes of SRAM available for the Virtual Machine. However,
the Virtual Machine should be able to use more memory if there is free RAM
space available on the target platform.

19

4.2.3 Performance

The third important measure are the available computational resources. The
MCU has an 8-bit architecture and it is clocked at frequency as low as SMHz.
There is no hardware support for floating point numbers (FPU?), therefore, any
operations on floats are costly. The worst case CPU utilization of the reference
firmware was measured to be 76%. The tasks carried out by the firmware are
periodic. That means the load to the core occurs in periodic chunks, which
are interleaved with quiet periods when the MCU is in idle-mode. The tasks are
scheduled statically, one strictly after another within one period of the main loop.
At every iteration of the main loop, the MCU core processes first all pending tasks
and then turns into idle mode until next period arrives. The Virtual Machine
should take use of these idle periods at the end of each main loop cycle to execute
the user program. This way, the Virtual Machine operation will not interfere
with firmware tasks that are already scheduled in the firmware. For the sake of
completeness, we have to mention there are several interrupt handlers that trigger
asynchronously, but the overall utilization due to interrupts is neglectable.

4.3 Functional Specification

In this section, we point out the main aspects of the line-following robot that
the Virtual Machine (and user program) will interact with. The previous section
listed the hardware limitations imposed on the Virtual Machine, while this sec-
tion lays out feature requirements on the Virtual Machine driven by a functional
capabilities of the robots. These feature requirements are derived from funda-
mental functions of the robot, such as line-following, handling of external events,
free movement and others. The Virtual Machine (and the user program execut-
ing within) should have full control over the robot. When executing, the user
program will override the robot’s implicit behavior. Still, the user program will
take advantage of the drivers and modules already implemented in the firmware
of the robot.
We list the functional requirements on the Virtual Machine in this section.

4.3.1 Free Movement

Mobile robots can move in their environment. A simple interface for controlling
a differential driven robot is to set directly the speed of left and right wheel.
Another option is to issue basic movement commands parametrized with speed
and distance or angle (move forward, rotate in place).

2floating-point unit

20

Linefollower - Fork

r=5cm

ISTROBOT

Figure 4.6: Istrobot Line-Following competition allows line forks on the race
track. One path can be shorter than the other. [16]
(source: http://www.robotika.sk/contest/2016/images/LinefollowerFork.png)

4.3.2 Line Following

Line-following robots can move automatically, guided by a path marked on a
surface. There are many competitions in the line-following discipline. The ob-
jective is to finish the race in shortest time possible. Some competitions make
the discipline more challenging by placing obstacles on the track, introducing line
forks, changes in line color etc... If the rules of the particular competition allow
it, it is beneficial to optimize the race strategy ad hoc, for each individual race
track. The speed of line-following is a major factor that can be optimized for
individual parts of the track. Various landmarks on the tracks can hint where
the line-following speed should be adjusted for best performance of the racing
robot. The need for quick and easy modification of the robot’s control program
is another motivation for introducing the visual programming language.

It is expected that the robot’s firmware can control the line-following speed
and handle line forks. Optionally, the firmware might have functions implemented
to recognize significant track characteristics, such as line color, curvature change
marks [14] or other checkpoints placed on the race track. Then, the user program
can adjust behavior of the robot accordingly:

Citation: “Difficult segments of the track can be marked in red, so the robot
knows it had better to slow down. In the same manner, the straight segments can
be marked with a blue tape, indicating that the speed can be increased safely.” [39]

When robot is following a line, the Virtual Machine (and user program) can
access and alter these:

e line-following speed
e detect line forks

e choose way on line forks

21

http://www.robotika.sk/contest/2016/images/LinefollowerFork.png

Figure 4.7: The color of the line can change to red, green or blue. Istrobot [16]
(source: http://www.robotika.sk/contest/2016/images/LinefollowerColor.png)

e recognize color of the line
e recognize checkpoints on the track

e recognize line position and width

e read line sensors

4.3.3 Signalization LEDs

Robots are usually equipped with one or more LEDs for visual signalization. It
is expected that the LED brightness can be controlled from the firmware. The
user program should be able to control the signalization LEDs of the robot.

4.3.4 Button

In case there is button installed in the robot, the user program should be able
to detect button presses. Typically, the button will be used to start / stop the
function of the user program, or to pass some information to the running user
program, such as selected operation mode, race strategy, etc.. Button press is a
simple external event that could be used as a synchronization point of the user
program with real environment - as a simple program breakpoint, for example.

22

http://www.robotika.sk/contest/2016/images/LinefollowerColor.png

Chapter 5

Virtual Machines and Interpreters

Virtual machine (VM) is a concept of an abstract processor or computer system
that executes some form of computer program, usually referred to as bytecode!.
The bytecode accepted by the VM is defined by its instruction set. The particu-
lar virtual machine can be implemented on various platforms where it provides
standardized and isolated execution environment for its bytecode. The concept
of virtual execution environment allows to restrict memory access and manage
CPU time and other resources that will be used by the user program running
within the VM. In many implementations, the virtualization often comes at a
cost of reduced performance, as the bytecode has to be interpreted on the target
platform.

Virtual machines often incorporate the stack machine model. The instruc-
tions of such machine operate on the stack and unlike register machines, there is
no need to specify operands for an instruction. Therefore, the footprint of a stack
machine code tends to be smaller compared to code for a register machine. Code
generators for stack machines are more straightforward to implement, because
stack machine can evaluate expressions in postfix notation right away, and no
register allocation is necessary.

Interpreter, as opposed to a virtual machine, usually processes human-readable
program statements and the interpreted languages provide much higher abstrac-
tion. Interpreters process the input in text format (ASCII) and therefore they
include a parser. Compared to VMs, interpreters have often bigger resource re-
quirements, which is also designated by the expressiveness of a language they can
interpret.

Both wirtual machines and interpreters can provide isolated execution envi-
ronment and can manage the resources assigned to the user program. In this
chapter, will focus on some implementations relevant to embedded systems.

Iresembles machine code, but it is universal and portable

23

5.1 Implementations for Embedded systems

There are several implementations of virtual machines and interpreters that can
run on embedded systems; a Python interpreter [21], complete implementation of
Java Virtual Machine [28], a BASIC interpreter [44] or a JavaScript interpreter
[8] just to list a few. Many occupy tens of kilobytes of program footprint and have
relatively high requirements on available RAM. We will focus only on compact
implementations that are known to work on low-performance systems comparable
to the target platform identified in Section 4.2.

5.1.1 EmbedVM

Embedded Virtual Machine (EmbedVM) [49] is a small virtual machine designed
for 8-bit microcontrollers. It emulates a 16-bit stack machine. Integer data
types of 8 and 16 bit width are supported. The VM is supplied with a compiler
that compiles from a custom C-like programming language to bytecode, that is
then interpreted by the VM. The compiler is based on the Flex? [10] and GNU
Bison parser [11] which makes its own source code very lightweight. The custom
programming language supports arrays of the base data types. The instruction
set of the EmbedVM is documented, but to date, there is no documentation for
the custom programming language that is accepted by the compiler.

There is a set of automated tests to verify the function of the compiler and
the VM. The test framework is programmed in bash and works on a principle of
comparison the expected and actual output of a program under test.

The EmbedVM was ported to the Atmel AVR platform and requires as low
as 3kB of program memory. The implementation does not rely on any dynamic
memory allocation. All memory accesses of the VM (and the user program run-
ning within) are performed through two callback functions, which allows easy
sand-boxing of the user code and also gives high flexibility. For example, the
virtual memory can be mapped to an external chip. Also, this gives the possi-
bility to assign a memory mapped hardware, which can be operated by the user
program.

The user program can perform I/O operations?, either through memory mapped
devices, or by calling a universal user function that accepts variable number of
arguments.

5.1.2 NanoVM

NanoVM [19] is a minimalistic implementation of the Java Virtual Machine
(JVM) for Atmel AVR microcontrollers. It occupies 8kB of program space and
requires 1kB RAM space and 512B of non-volatile EEPROM memory to store the

2The Fast Lexical Analyzer
3input /output operations

24

bytecode (user program). It uses the available resources of the Atmel ATmega8
MCU to the fullest extent. NanoVM implements its own garbage collector, sup-
ports float numbers, inheritance and includes several native classes for I/O. Tt
runs a subset of the JVM command set. The bytecode for the NanoVM is pro-
duced by a standard Java compiler. However, some post-processing of the class
files generated by the Java Compiler is necessary in order to run in the NanoVM.
The NanoVMTool is used to load the class files into the NanoVM hosted on
an embedded system. When the application is to be loaded to the host, the
NanoVMTool searches classpath for all required classfiles. Then, it processes the
bytecode from classes to reduce the JVM command set. Finally, the bytecode is
loaded to the embedded system where is to be executed by the NanoVM. The
execution speed is about 20k Java opcodes per second on an 8MHz MCU. [19]

5.1.3 AmForth

Unlike the EmbedVM and NanoVM, AmForth [1] is an interactive interpreter. It
interprets the Forth programming language. The Forth statements (called words
in the Forth terminology) can be processed in interactive mode, as they are
received by the embedded system. Interactive approach is interesting on its own,
as it allows easy and effective development and debugging. In compilation mode,
AmForth translates the Forth words into bytecode, which improves performance
of the Forth program.

The AmForth interpreter works on the Atmel AVR Atmega controllers and
requires 8 to 12kB of FLASH memory and 200 bytes of RAM. The downside is
that the interpreter is designed to run on bare metal and it cannot be integrated
into an existing project:

Citation: “Embedding amforth into other programs (e.g. written in C) is
almost tmpossible. Amforth is designed to run stand-alone and does not follow
any conventions that may be used on other systems.” |1]

However, the Forth language itself has properties that make it well suited for
low-performance embedded systems. The most pronounce characteristics of the
language is its post-fix notation* which greatly simplifies evaluation of expres-
sions.

5.2 Stack Computers

Historically, stack computers played an important role in the early era of digital
computers, dating to early 1940’s. The Forth programming language designed
by Charles “Chuck” Moore initiated an era of second-generation stack computers
[34]. The second-generation stack computers had hardware support for the stack-
based Forth programming language and were favored in embedded systems due

4also known as the Reverse Polish Notation

25

to their simplicity, fast interrupt response and high code density.

Citation: “Many of the designs for these stack computers have their roots in
the Forth programming language. This is because Forth forms both a high level
and assembly language for a stack machine that has two hardware stacks: one
for expression evaluation/parameter passing, and one for return addresses. In
a sense, the Forth language actually defines a stack based computer architecture
which is emulated by the host processor while executing Forth programs. The
sitmilarities between this language and the hardware designs is not an accident.
Members of the current generation of stack machines have without exception been
designed and promoted by people with Forth programming backgrounds.” [40]

Although the stack computers were superseded in the early 1980’s by the
RISC? architecture, the concept of a stack computer is still used in so called
stack-based virtual machines, whose instructions operates on a pushdown stack.
Java Virtual Machine (JVM) being one of them.

5.2.1 Reverse Polish Notation

Reverse Polish Notation (RPN) is a parenthesis-free mathematical notation for
expressions. The operators are written after their arguments, therefore, the RPN
is also known as postfiz notation. Evaluation of postfix expressions is straightfor-
ward to implement on a pushdown automaton. The automaton parses input that
consists of numbers and operators. When a number is encountered, it is pushed to
the stack. Operators pop their arguments from the stack, perform the computa-
tion and the result is pushed back on the stack. Unlike infix notation, the postfix
notation is unambiguous, and therefore, no parentheses and operator-precedence
grammar is required.

5.2.2 Forth Programming Language

Forth programming language is based on the concept of postfix expression eval-
uation. A word® in Forth is a generalized concept of a postfix operator that
processes arguments passed on stack and pushes the result back to the stack.

Forth is a concatenative programming language; every expression in Forth can
be seen as a function, and concatenation of expressions is equivalent to function
composition. The concatenative property of the language opens possibilities of
algebraic manipulation of Forth programs. For example, straightforward code
size optimization can be performed. The program is searched for repeated occur-
rences of an identical code fragment. The repeated code fragment is factored to a
new Forth word, and all occurrences are replaced with that single new word. Con-
catenative property guaranties that such manipulation can be done mechanically,
without any understanding of the context or semantic of the language.

SReduced Instruction Set Computer
6analogous to a procedure or function in other programming languages

26

The Forth uses two pushdown stacks, one data stack that is manipulated by
the programmer directly, and a return stack that is used internally for storing
return address during word invocation (similar to function calls). Although the-
oretically, one stack would be enough, having separated data and return stack
simplifies the programming as the return addresses and computations are not
mixed together.

27

Chapter 6

Test Automation

Software testing investigates whether a software meets requirements laid out by
its specification. The challenge for the software tester is to fully comprehend the
specification and assess if the implementation doesn’t diverge from the specifi-
cation. Specially, the tester needs to think about various use-case scenarios and
corner-cases that could lead to a failure of the software implementation. The soft-
ware tester is responsible for designing test scenarios and executing them. Out of
these two activities, only the later one could be automated. The test automation
releases the tester from performing tedious and routine work and allows him to
focus more on the test scenario design, which is more creative.

Automation of the tests execution is especially important when testing be-
comes part of the development cycle, which is usual for some software engineer-
ing approaches, such as continuous delivery or agile development. When tests are
expected to be executed repeatedly, test automation should be considered.

Citation: “Test Automation is an investment. The initial investment may
be substantial, but the return on the investment is also substantial. After the
number of automation test runs exceeds 15, the testing form that point forward is
essentially free.” [32]

Automated testing, however, introduces some new challenges. The responsi-
bilities of a tester and a developer become linked to an extent where boundaries
between these two activities disappear and the tester becomes a developer and /or
maintainer of the automated test suite.

Citation: “What most of us probably do not understand is that a suite of
automated tests is really a software system itself with the same problems faced by
the system it 1s designed to test. Il is prone to errors and extremely sensitive to
changes. So, any time a client-server system is tested with automated test scripts,
you are really dealing with two systems that have to be maintained. This doubles
the maintenance problem.” |36, pg. 215-216]

When a tester discovers a bug, he can design a new automated test that
demonstrates the problem. The developer can then use such test for localizing
and fixing the bug in the software. It is a welcomed bonus that the automated
test will prevent the same issue to appear later due to regressions.

28

Citation: “The purpose of software testing is to identify new errors, while
the purpose of debugging is to locate and remove known errors. Fat test cases
(test cases that cover many test conditions) are used to identify new errors. Lean
test cases (test cases covering only a single test condition) are used to locate and
remove known errors. So, test cases that are not independent are better and more
economical for finding errors because of fewer are required, but additional test
cases that are independent are frequently required to find and remove the errors.”
[36, pg. 80|

Automated testing helps to assure and maintain code quality. Tt is especially
useful for detecting regression issues that can occur due to code refactoring or
branch merges.

There are two approaches to automated testing that are well suited for a
software system suggested in this thesis; unit testing and integration testing. The
purpose of unit tests is to verify function of individual code fragments and to help
locating and fixing bugs. On the other side, integration tests can exercise the
whole software system and discover any problems that can arise on the interface
level or any interoperability issues between the parts of the system. End-to-end
integration tests treat the system as a black box, and are only tied to the input and
output interface of the system under test. As such, they are very universal and
independent on the system architecture and its inner structure. Such integration
tests are usually valid and useful even when the whole software system goes
through significant architectonic changes. The end-to-end tests are of a big value,
as they can assess whether significant changes in the system design didn’t break
a function that was working before. To give an example, sufficiently big end-to-
end integration test suite could help to assess if adding a code optimization to
a compiler was successful or not. More interestingly, the statistics performed on
the test programs in the end-to-end test suite could yield some interesting data
about improvements in efficiency of the compiled code.

6.1 Testing Frameworks

Testing frameworks suggest guidelines for writing test cases and offer tools for
effective implementation of these guidelines. Usually, the testing framework de-
fines how to organize test cases, introduces methods for expressing and verifying
expectations. Next, the framework should have some mocking capability that
allows to hook into the application under test. Finally, the framework should
execute the test cases and report test results.

In this chapter, we will focus on frameworks that can be used for testing C
code, as this is the implementation language for the Virtual Machine.

29

6.1.1 CppUTest

CppUTest 7] is a unit testing framework for C and C++ projects. The testing
framework itself is written in C++, but uses only a subset of the C+—+ features,
which makes it lightweight. For this reason, it is frequently used in embedded
systems. It comes together with CppUMock, a framework for building test mocks.
Concept of a mock functions and mock objects is important in unit testing in
general. The code under test often has some dependencies to other objects or
functions. For the purpose of unit testing, these dependencies should be replaced
with a mock implementation that is bound to the testing framework. This way,
the testing framework can verify if the code under test exercises its dependencies
correctly, i.e. if it passes the right parameters to output functions, etc..

CppUTest has a mechanism for memory leak detection, supports test groups
with custom setup and teardown methods. It can be also configured to generate
test coverage report and has support for Eclipse IDE.

6.1.2 Check

Check [5] is a unit testing framework implemented in C. It is inspired by JUnit
for Java and has similar features as the CppUTest framework described above.
There is one big difference thought - the Check framework runs each test in a
separate address space, so that the (potentially buggy) code under test cannot
corrupt the testing framework itself. This property is especially important for
testing C code, which is known to be prone to memory problems. Each test has
a timeout that assures the test will not hang indefinitely. When the timeout of
a test expires, it is reported as an error and Check continues with other tests.
The Check testing framework relies on Autotools and it is more complex than
CppUTest.

30

Part 11

Design

31

After the analysis of various visual programming languages, existing robotic
applications, features and computational capabilities of selected line-following
robots, we have solid ground to continue with the design phase.

In this section, we will commit to important design decisions and reason about
them. First, we will develop a specification for the Visual Programming language,
which will in turn lay out requirements for the Virtual Machine.

32

Chapter 7

Visual Programming Language

The proposed Visual Programming Language will be shaped by the specific fea-
tures of line-following robots on one hand, and by their resource limitations on
the other. We will design a domain-specific language that will reflect the needs of
mobile robot programming. However, many of the language features are general
so that they can be applied to other applications as well.

To some extent, we can divide the specs of the language to two categories;
core language specification and domain-specific language extensions. The core
language specs are mainly derived from the computational capabilities of the
hardware, while the domain-specific language extensions reflect the particular
features and functions of the target robotic platform. In a way, the core language
specification could be applied to any visual-programming-enabled robot or device
of comparable or greater computational power.

In Section 4.2, we described the limitations of the target hardware. It has
shown the 8-bit embedded system is short of memory and performance. Certainly
there will be some trade offs due to these limitations, but our goal is to develop
a language that supports the fundamental concepts of procedural programming.
The purpose of the proposed Visual Programming Language is education in the
first place. We believe that these concepts are especially important to learn
programming:

e variables and expressions
e conditional statements

e cycles

e arrays

e procedures and functions

e recursion

33

This is an outline of the core language specification. To make the programming
experience fun, of course the user program should have control over the robot’s
movement and sensor data. For this we need to develop an input/output mech-
anism between the user program and the real environment.

For example, basic recursive algorithms such as depth-first search (DFS) can
be demonstrated when line-following robot searches a maze made of lines and
intersections. That way, the line-following feature can help to demonstrate the-
oretical concepts. Interface for line following control is an example of a domain-
specific language extension.

7.1 Front-end

The front-end part is a key piece of every visual programming language. The
graphic user interface (GUI) is what lays out feature boundaries of the language
itself. The front-end capabilities define the important aspects of the overall lan-
guage design. From a certain point of view, it is the GUI what defines the visual
programming language. That is so because the GUI can enforce the semantics
of the program, given that the block components of the program are designed to
interconnect only when it is semantically correct.

We chose Google Blockly library as the visual programming editor front-end.
The Blockly library supports most of the desired language features listed in the
beginning of this chapter. There are already implementations on the market
that demonstrate Blockly library is highly customizable. Another good reason
for favoring Blockly is good support of different platforms and touch screen sup-
port. The project is well maintained and has live contributors community around.
These facts together make it a solid base for the proposed Visual Programming
Language.

7.2 Data Types

Very important decision is to select the data types supported by the proposed
Visual Programming Language. This decision will have a big impact on the
Virtual Machine performance, user program code size and thus code transfer
time.

The hardware doesn’t have native support for floating point arithmetics. Em-
ulating floating point arithmetics in software is inefficient and requires linking ad-
ditional library routines that blow up the firmware footprint. Because of resource
limitations, a decision was made that only integer numbers will be supported.

Programming languages often have string data type, but for simple line-
following robots, there is no way how the robot could read or output a string
variable. As there would be no use for it, the string data type doesn’t need to
be supported.

34

7.2.1 Universal Data Type

Programming languages usually support basic data types such as integers, booleans,
characters or enumerations. These data types have usually different bit width.
For example, integer might be 32 bit long while character data type is only 8 bit
long.

Because the different bit width and different operations that can be performed
on the basic data types, programming languages usually feature a type system.
The type system prevents execution errors that could happen when an operation
is applied to unsupported data types. Common languages have either static or
dynamic type system, however, some languages don’t have type system at all.
We call them untyped languages:

Citation: “Languages that do not restrict the range of variables are called
untyped languages: they do not have types or, equivalently, have a single universal
type that contains all values. In these languages, operations may be applied to
mappropriate arguments: the result may be a fized arbitrary value, a fault, an
exception, or an unspecified effect. The pure A-calculus is an extreme case of
an untyped language where no fault ever occurs: the only operation is function
application and, since all values are functions, that operation never fails.” |35]

As explained earlier, the Blockly library doesn’t enforce static type checking
on variables at design time, as it relies on the dynamic type checking of the target
language (JavaScript, Python..) at runtime. The language for the target Virtual
Machine, however, will be much simpler than any script language. In fact, the
Virtual Machine will accept a bytecode similar to assembler, which is an untyped
language by its nature. Enforcing type checking at the level of Virtual Machine
would be costly and wouldn’t make much sense, as there is no way how to signal
where in the code the exception occurred at runtime.

Other option is to enforce static type checking at the level of Blockly editor,
but this adds extra complexity for the user, requiring him to specify types explic-
itly for every variable. Therefore, we decided that there will be no type checking
whatsoever, and the language will be effectively untyped. Instead of various data
types, there will be a single universal data type of 8 bits in width. This greatly
simplifies the design of the Virtual Machine and the Compiler. The value of a
variable will be interpreted based on context where the variable is used. Because
there are only few contexts in which the variable can be used, the risk of con-
fusion or failure is limited. Principally, the beginner user will use the universal
data type in Number Context only, which is very easy to grasp. In this use case,
user will never come across other contexts. In the following text, we will explain
the relations and representation of other data type contexts. These are used in-
ternally and are wrapped into nice graphic interface that limits any confusion
for the user. Eventually, the power-user may use this advanced concept when he
requires full control. Finally, we will use the minimal type checking feature of
Blockly for constants, that can be verified statically at design time.

35

Number Context

If the universal data type is supplied to arithmetic operations, it will be treated
as an 8-bit signed integer. The values range from -128 to 127, which is equivalent
with the int8_t data type range in the C language. Based on our estimation
and analysis of some use case scenarios, we believe that this range is sufficient
for most practical calculations that user will perform and it is a well balanced
trade-off between the usability on one hand and code footprint and performance
on the other.

Because the range of integer data type is always limited, it is necessary to
define behavior of arithmetic operations when the result would fall beyond the
accepted range. Common practice is to use modular arithmetics and allow the
calculations to overflow. We believe that for children, the concept of integer
overflow /underflow is too difficult to grasp and would cause a lot of confusion.
Therefore, we decide to use saturation arithmetics':

Citation: “If the result of an operation is greater than the mazimum, it is
set ("clamped") to the mazximum; if it is below the minimum, it is clamped to
the minimum. The name comes from how the value becomes "saturated” once it
reaches the extreme values; further additions to a maximum or subtractions from
a minimum will not change the result.” [46]

Saturation arithmetics will be used implicitly, but the power-user will still
have an option to switch the virtual machine into modular arithmetics mode,
which certainly has other advantages.

For the division and modulo operations, not all argument values are allowed.
The result of such operations is not defined if the second argument is equal to 0.
In this case, the Virtual Machine should signal an exception and terminate the
user program.

Boolean Context

Boolean data type will be handled in similar manner as in C.2 The value 0 will
be evaluated as false, while any non-zero value is evaluated as true.

Color Context

Line-following robots might have a color sensor installed. The color sensor out-
puts raw color data sampled on the three channels (red, green, blue). The user
program could process the raw color sensor data and perform color classification
on its own. Alternatively, the color classification can be done in the firmware.
No matter which approach the implementation will take, it would be beneficial
to define an enumerated data type context that describes the basic classified col-
ors. For the enumerated colors, we will use the base red, green, blue colors and

!The saturation arithmetics is commonly used in Digital Signal Processing (DSP).
2C language doesn’t have any built in boolean type either

36

their combinations; cyan, magenta, yellow, black and white. These colors are
represented in the universal data type as numbers, see table 7.1

| color | code (dec) | code (binary) | comment

blacK 0 000 no color component
Red 1 001 = 20 (basic color)
Green 2 010 = 2! (basic color)
Blue 4 100 = 22 (basic color)
Cyan 6 110 = Green + Blue = 2 + 4
Magenta 5 101 = Red + Blue =1 + 4
Yellow 3 011 = Red + Green = 1 + 2
White 7 111 = Red + Green + Blue = 1 + 2 + 4

Table 7.1: Color codes

The table 7.1 suggests that some arithmetics operations still make sense when
they are performed in the color data type context. See the figure 7.1 for additive
color mixing (left) and subtractive color mixing (right). In particular, for additive
color mixing the operator of choice is bitwise OR, while for subtractive color
mixing the operator is bitwise AND.

G

Figure 7.1: Additive (on left) and subtractive (on right) color mixing (By SharkD
at English Wikipedia Later versions were uploaded by Jacobolus at en.wikipedia. - Transferred
from en.wikipedia to Commons., Public Domain, https://commons.wikimedia.org/w/index.
php?curid=2529435)

When the universal data type is interpreted in color context, only the three
least significant bits (0 to 2) are taken into account. Bits 3 to 7 are ignored
(masked out).

Intersection and Direction Context

When a robot performs line following, it can encounter intersections. Intersection
is a point on line where there are two or more possibilities in which direction the
robot could continue. Anytime the robot reaches an intersection, it needs to

37

https://commons.wikimedia.org/w/index.php?curid=2529435
https://commons.wikimedia.org/w/index.php?curid=2529435

decide what to do next - which way to continue. We also consider a degenerated
case when robot has no way to continue (i.e. when it reaches line end) to be a
special case of an intersection.?

Both the intersection types and decisions are encoded into numbers, see table
7.2. The logic is similar to the binary representation of colors in previous section.
The four least significant bits (0 to 3) denote the direction or intersection type,
bits 4 to 7 are ignored (masked out).

| intersection /direction | code (decimal) | code (binary) |
DIRECTION_ERROR 0000

0
DIRECTION_STRAIGHT 1 0001
DIRECTION_LEFT 2 0010
DIRECTION_RIGHT 4 0100
DIRECTION_BACK 8 1000
INTERSECTION_LINE_END 8 1000
INTERSECTION_T_END 14 1110
INTERSECTION_PLUS 15 1111
INTERSECTION_T_JOINT_LEFT 11 1011
INTERSECTION_T_JOINT_RIGHT 13 1101

Table 7.2: Intersection and direction codes

When robot arrives at intersection, the user program can retrieve the intersec-
tion type encoded to a 4-bit code, which specifies one of five possible intersection

types:

Plus “4” intersection - crossing of two perpendicular lines, resembles the
“plus” sign. Robot has four options to go; left, right, straight or back.

“T”-end intersection - a situation when robot is moving towards “I” on the
bottom line, so that at the intersection there are three options to go: left, right
or back.

“T”-joint left intersection - robot follows a straight line and it sees there is
a perpendicular line coming from the left. It has three options to go: strainght,
left or back.

“T”-joint right intersection - analogical to previous case

3in the case of special “line-end” intersection, the robot has only one direction to choose - go
back

38

Line end - a degenerated case of an intersection. The line doesn’t continue, so
the robot has only one possible direction to go: backwards

These five intersection types are encoded in binary form. The user program
can tell right away which directions are possible based on the binary code of the
intersection. For example, if the robot encounters “I”-end intersection, the binary
code of this intersection is 1110, which means that the robot can go either left
(0010y), right (0100y) or back (1000y).

Bitwise operations can be used to detect if the intersection type allows to
continue in certain direction. For example, the expression (intersection &
0001,) is true if the intersection variable is INTERSECTION_PLUS(1111,),
INTERSECTION_T_JOINT_LEFT (1011,) or INTERSECTION_T_JOINT_RIGHT

(1101,) and false otherwise.

The decision at the intersection is expressed in a similar manner. The user
program will signal the direction to the firmware as a 4-bit decision mask. The
firmware takes the decision mask and performs bitwise AND with the intersection
type. The result states which direction the robot should continue. If the result is
DIRECTION_ERROR (0000y), it means the user program chose a direction that is
not suitable for the current intersection. In that situation, the firmware signals a
failure and the user program is terminated. If the result is exactly one direction
(left, right, straight or back), the robot choses just that direction.

Interestingly, the result can allow more than one possible direction. For
example, if the robot reaches “T-end” intersection (1110,) and the decision
mask is set to (DIRECTION_STRAIGHT | DIRECTION_LEFT ‘ DIRECTION_BACK) =
(1011,), the result of the operation is (1110, & 1011,) = 10104, which means
the robot can decide left or back (but not right). In this case, the robot could
choose between the available directions randomly.

If the user program doesn’t specify any decision mask, a default decision mask
(0111y) can be used. This means the robot, by default, can select left, right or
straight randomly, but will never turn back. Specially, the robot will stop at line
end if the default decision mask is applied (it forbids the robot to go back).

This section described the general concept of intersection handling at the
level of Virtual Machine and the Bytecode. In the Visual Editor, this concept
will be simplified graphically, in fact the user will never come across these low-
level details unless he is willing to program his robot at the very low-level, as a
power-user.

Other Enumeration Contexts

In previous two subsections, we explained how the universal data type can encode
enumerated data types. The bit representation can be chosen such that some
binary or arithmetic operations still make sense, even though they are applied to
an enumerated type. This concept might be also applicable for any other platform

39

specific enumerations, such as states of other sensors, detection of checkpoints on
the race track, etc. ..

7.2.2 Collections

In previous section we introduced the single universal data type and described how
it will be interpreted in different contexts. The proposed Visual Programming
Language should support collections of this single data type. Two basic collections
will be supported: arrays and lists.

Array

The proposed Visual Programming Language will support static arrays. Size of
the array has to be specified when it is declared (it has to be known at compile
time). Due to performance and memory limitations, we do not allow dynamic
array allocation. The user can declare any number of static arrays, the only limit
is the size of the available virtual memory.

Arrays are indexed from zero. The runtime environment will take care of
bounds checking; anytime the user will attempt to read or write array element
that is out of bounds, an exception is signalized and the user program is termi-
nated.

List

List is an abstract data type that is more intuitive than an array, because the
user doesn’t need to specify length when he wants to use it. The length of a list
can grow dynamically at runtime. Initially, the list is empty and has zero length.
User can intuitively add elements to the list and the list grows as required. This
dynamic property adds some complexity to the implementation of the dynamic
list data type.

Because of the hardware limitations, we decided that the proposed Visual
Programming Language will support only one instance of a list data structure.
There will be only one singleton list available to the user. This limitation is
imposed due to the limited resources and absence of dynamic memory allocation.

The Singleton List will support these operations:

e append an element to the end of the list (list length is increased by 1)

retrieve element at specified position

delete element at specified position (list length is decreased by 1)

write element at specified position

get list length

40

e search in list (get index of a specific element)

Any access to beyond the end of the list triggers the “out of bounds” error and
the user program is terminated.

7.3 Concurrency and Synchronization

Generally, single-threaded programs are easier to design, maintain and under-
stand. Therefore, they are better suited for education and for first steps in
robotics. The proposed Visual Programming Language will have only a single
thread of execution. Still, the user thread can synchronize on external events
that occur asynchronously. The user program itself, however, cannot create con-
current asynchronous tasks.

Line following is a built-in asynchronous service that runs concurrently to the
user program. The user program can start or stop this service at any time. While
the line following service is running, the robot travels on a line with a given speed,
and signals various events to the user thread. The user program keeps executing
in parallel and can synchronize on the events and process them. These events
are, for example: intersection, line color change, track checkpoint detected etc. ..

There are other events that the user program can synchronize to, such as
button press or internal real-time clock.

The proposed Visual Programming Language introduces a universal wait
block. See Figure 7.2. The wait block is configurable and user can select which
events the program flow should wait for. When any of the selected events occurs,
the appropriate code is executed and the program flow continues to a block im-
mediately following the wait block. When the wait block is nested inside a loop,
the user can handle the incoming events repeatedly.

wait for events...
color changed
do
button
do

intersection

Figure 7.2: Universal Wait Block

41

Chapter 8

Testing

Testing is an important part of the development cycle. The testing process will be
automated so that it can be executed efficiently and repeatedly. The automated
test suite will be developed simultaneously with the implementation of the Virtual
Machine and the Compiler. The automated tests will ensure that the Virtual
Machine and the Compiler meet their specification and handle exceptional cases
correctly, as defined in the specification.

Automated tests will also help to discover any regression issues that could
occur when new features are added, or when some part of the source code is
refactored. Specially, integration tests will be crucial for verifying merges with
upstream Blockly repository.

Some automated tests will be derived directly from the specification. In the
early phase, we will use the Test Driven Development (TDD) model. First, a
test case is created from the specification and then the actual implementation is
produced. This process is repeated iteratively until the specification is covered
by test cases and fully implemented.

Some automated tests are created to verify specific use-case scenarios. These
tests are complex, they can combine various language features in a single pro-
gram and then verify that there are no unexpected side-effects when the program
executes. Other automated tests are created ad-hoc, based on results of manual
testing, when a bug is found, or after a code review.

When there is an erratic behavior observed in a particular user program, an
automated test is created to demonstrate the issue. This test has two functions;
first, the failing test can be executed in debugging environment to locate precisely
the bug in the source code. Second, the test will ensure that the same bug will
not reappear in future (regression).

8.1 Unit Testing

There will be a unit test suite for the Virtual Machine implementation. The
VM has a clearly defined interface which allows to test it independently of the

42

firmware. We will use the CppUTest framework for automated testing the VM.
The CppUTest framework is written in C+—+, but it is well suited also for testing
C code. The C source files of the VM are compiled by a GCC C compiler and then
linked to the test suite, which uses the CppUTest library. The test suite mocks
the functions that the VM implementation uses for interfacing the firmware.

We will demonstrate the mocking mechanism on an example. When the user
program invokes instruction to move forward, the VM calls a firmware function
system_move (). The firmware then makes the robot move by a specified distance.
In the test suite environment, the system_move () function is reimplemented to
notify the CppUTest framework that the VM actually called a system_move ()
and passes the arguments.

void system_move(int8_t distance_mm,
int8_t speed_mmps) {
mock_c () ->actualCall ("system_move")
->withIntParameters ("distance_mm", distance_mm)
->withIntParameters ("speed_mmps", speed_mmps);

The particular unit test can then verify if the system_move () function was
called at the correct time with correct arguments. A minimalistic example for
such unit test is shown in Program Listing 8.1.

TEST(VM_unitTests, MovelInstuction)
{
instructionSet_t codel[] = {
INSTRUCTION_CONSTANT (10) ,
INSTRUCTION_CONSTANT (25) ,
INSTRUCTION_MOVE ,
INSTRUCTION_BREAKPOINT
};
VM_loadProgram(code, sizeof(code), 100);

mock () .expectOneCall ("VM_event_programStarted");
VM_startProgram() ;
mock () . checkExpectations () ;

mock () . expectOneCall ("system_move")
.withIntParameter ("distance_mm", 10)
.withIntParameter ("speed_mmps", 25);

VM_RunUntilBreakpoint () ;

mock () . checkExpectations () ;

Listing 8.1: Simplified main loop implementation

43

Please note that we used a special BREAKPOINT instruction at the end of the
test program. The VM_RunUntilBreakpoint() function is an interface of the
testing framework that exercises the VM to process instructions until it reaches
the INSTRUCTION_BREAKPOINT.

8.1.1 Executing Tests on Target Architecture

We explained that the VM source code is compiled and linked to the testing suite.
Here, we need to make an important disclaimer. The unit tests are executed on a
regular PC, so they are built for the x86 architecture. The VM module has to be
also compiled for the x86 architecture so that it can be linked with the test suite.
In production, however, the VM and the firmware are compiled for the Atmel
AVR architecture. Because of the differences between compilers and architectures,
there is a particular set of issues that the automated tests cannot discover. It is
generally advised to run the automated tests in an environment that is the same
as in production. Unfortunately, this is not feasible for the particular 8-bit MCU,
so we have to rely on executing tests in the x86 environment.

Still, the set of problems that can arise due to architectural differences is
very specific, and the VM is implemented to overcome any possible compatibility
issues. Static code analysis tools could be used to verify this rigorously.

8.2 Integration Tests

The purpose of the integration tests is to verify that a complex system is working
correctly as a whole. In our particular case, the integration tests will exercise the
whole chain. The chain consists of Blockly Editor, Code Generator, Assembly
Compiler, Program Encoder, Program Decoder and finally, the Virtual Machine.
The whole chain is depicted in Figure 8.1. One part of the chain is implemented
in JavaScript (on the PC side) and the second part is implemented in C (runs in
robot). The integration tests will feed a visual program (stored in Blockly native
XML format) into the chain. The chain will perform all compilation steps, from
code generation to bytecode loading to the Virtual Machine. Finally, the test suite
starts the compiled program in the Virtual Machine and observes its behavior
through mocked functions, as shown in previous section. The visual program
might be enhanced with special breakpoint blocks, which allows stepping of the
program and evaluate the intermediate computations, in similar manner as for
traditional debugging techniques.

The integration testing is very powerful, as it exercises every single compo-
nent in the system and tests the correctness of the interconnection between the
components. The test cases are often created from real user programs, so they
are very helpful in testing the VM, and are generally more convenient to create
than unit tests because of their high-level nature.

44

Blockly: Assembly Bytecode

i
1 .
T - D
i code
<xml> —‘—) generator : text Assembler binary

Visual Program

memory
configuration

Y

i
i
i

Virtual Machine

implemented in C

Figure 8.1: Integration test overview - the whole chain

We will show an example of a simple integration test. We have a user program
implemented in Blockly editor, as shown in Figure 8.2. The program has special
breakpoint blocks which allow easy stepping when the program is executed in
the test suite.

repeatq q get color |(: color-l
do tnove distance: @] mm speed: mm/s

turn angle: deg speed: mm/s

Figure 8.2: Simple Blockly program for Integration Test

The visual program from Figure 8.2 is saved in Blockly native XML format,
and the XML source is then used by the integration test to exercise the complete
chain. Please see Program Listing 8.2. The test first loads the XML to the test
suite with the Blockly_load_program_full_chain() function. This function
starts Blockly, compiles the XML program to bytecode and simulates loading the
bytecode to the Virtual Machine. After all this is done, the compiled bytecode

45

program is ready to be executed in the Virtual Machine and the workflow is then
the same as for unit tests, described in previous section.

TEST(IntegrationTests, MoveUntilRedIsFound)

{
std::string xmlSource = "<zxml>...</xml>";
Blockly_load_program_full_chain(xmlSource);

mock () . expectOneCall ("VM_event_programStarted");
VM_startProgram() ;
mock () . checkExpectations () ;

for(int 1 = 0; i < 10; i++) {
mock () .expectOneCall ("system_move")
.withIntParameter ("distance_mm", 10)
.withIntParameter ("speed_mmps", 30);
VM_RunUntilBreakpoint () ;
mock () .checkExpectations () ;
}

VM_signal_surfaceColor (COLOR_RED) ;

mock () .expectOneCall ("system_rotate").
withIntParameter ("angle_deg", 90).
withIntParameter ("speed_mmps", 30);

VM_RunUntilBreakpoint () ;

mock () . checkExpectations () ;

Listing 8.2: Integartion Test Example

This integration test simulates a situation that the robot makes 10 steps, of
lem each, until it finally reaches the red color surface. Then, the while loop exits
and the robot makes a 90 degree turn left. From this example, you can see that
it is up to the integration test to simulate the inputs for the user program. In
this case, the integration test simulated change of the surface color. This was
done by the VM_signal_surfaceColor (), which is an interface function of the
Virtual Machine. Normally, this function would be called by the firmware when
it detects surface color change, but in this simulated case, it is triggered by the
test suite.

There is about a hundred integration tests in the test suite, each of them ver-
ifies a specific use case. Often, the test cases are complex and they test advanced
user programs that involve recursion, array manipulation, lists and other features
of the language. The tests are derived from real use case scenarios and are a great
source of data when it comes to bytecode instruction statistics, for instance.

46

Part 111

Implementation

47

Chapter 9
Virtual Machine (VM)

The Virtual Machine is implemented in C as a module to the original robot’s
firmware. The interface between the VM and the firmware is clearly specified,
which allows porting the VM to different platforms. The independence of the
VM and the firmware is especially important for standalone automated testing
of the Virtual Machine implementation.

With the limited resources of the target 8-bit MCU in mind, the features of the
Virtual Machine have to be chosen deliberately. Many design decisions that will
shape the VM were already made in the Chapter 7. The language features were
chosen such that the implementation of the VM can be minimalistic. Only this
way, the implementation can meet the resource limitations imposed in Section
4.2.

9.1 Scheduling and Preemption

It is expected that modules in the robot’s firmware use co-operative static schedul-
ing. The VM is implemented to obey this non-preemptive multitasking style
imposed by the firmware design.

Citation: “Co-operative scheduling is where the currently running process vol-
untarily gives up executing to allow another process to run. The obvious disad-
vantage of this is that the process may decide to never give up execution, probably
because of a bug causing some form of infinite loop, and consequently nothing else
can ever run.” [33]

The CPU resources are time-multiplexed between the firmware tasks and VM
(user program). The VM can only run when the firmware already finished all its
tasks and it is waiting for next iteration of the main loop. When the CPU would
turn idle otherwise, the control is passed to the VM module. The VM has to
co-operate and give back the CPU resources before the next main loop iteration
comes. This way, all the tasks that are already scheduled in the original firmware
are not touched and the VM uses CPU only when it would be idle anyway, so
the hard real-time requirements that the original firmware has to meet are not

48

affected in any way.

The VM module is implemented to co-operate with the firmware when it comes
to CPU resources. There is a non-preemptive scheduling contract between the
VM module and the firmware. In contrast, the user program (bytecode) running
within the VM module is scheduled preemptively. The VM is in full control of
how many bytecode instructions will be executed within one main loop iteration.
When the time is up, the VM module preempts the user program execution and
gives control back to the firmware.

We conduced a test to measure the Worst-Case Execution Time (WCET) of
any bytecode instruction. We use this WCET estimation to reason about the
correctness of the user program preemption mechanism.

In Figure 9.1 we demonstrate the time multiplexing scheme between the VM
module and the firmware. The time for which the VM executes changes dynam-
ically depending on the firmware load. The VM module has to accommodate
flexibly to fill the idle slot. There is a WCET estimation that the firmware will
utilize the CPU at 76% at most in single main loop iteration. That means the
slot length for the VM is always at least 24% of each main loop period.

D

Harizontal H
Firmware v

Sl executing

Bytecode instruction
1 evaluated
i .

CEERE EEE ERE.RRE.]

Figure 9.1: Scheduling of the Virtual Machine and firmware within one main loop
iteration (digital oscilloscope screenshot)

The entry point of the VM module is the VirtualMachine_task() function.
The function takes one argument - a pointer to a callback function. The callback
function will be called before a bytecode instruction should be evaluated. The
callback function estimates if there is enough time left to perform next bytecode
instruction. If not, the VM must postpone evaluation of the instruction to next

49

main loop cycle and return control back to the firmware. See the Program Listing
9.1 for a simplified code snippet that demonstrates the static scheduling of the
tasks.

do {
VXS

* The main loop of the firmware carries out almost

¥ all tasks. Only few tasks are implemented <in
¥ asynchronous manner, using interrupts.
* Those are:
* - UART data transmission
¥ - PWM signal generation for motors and LEDs
¥ - mawn loop timing
*/
VX

* The main loop need to be performed at regular
¥ time intervals. At the start of the loop,

* we clear the time counter:

*/

MainLoopTiming_reset () ;

ProcessSensors_task () ;
LineFollowing_task () ;
/*
. other statically scheduled tasks of the firmware
*/
char preemption_check_callback(void) {
char preempted = 0;
/ *
*
¥ checks 1if there i1s enough time to
¥ evaluate next bytecode instruction
*/
return preempted;

by

// evaluates bytecode instructions until the
preemption_check_callback returns 1
VirtualMachine_task (preemption_check_callback);

VXS

* Blocks the exzecution until 2t <s time for

50

* the next loop iteration.
¥ During watting, the CPU 2s 4n idle mode.
*/

MainLoopTiming_wait () ;

} while (!ShutDownRequested()); // ¢f shut down was
requested, we leave the loop and turn robot off

Listing 9.1: Simplified main loop implementation

9.2 Virtual Memory Map

User program (bytecode) runs in a sand-boxed environment governed by the
Virtual Machine module. Previous section showed the CPU resources available
to the user program are strictly controlled. Restricting memory access is of the
same importance. The execution of (potentially malicious) user code must not
under any circumstances compromise the consistency of the firmware. The user
program can only access virtual memory that was assigned to it. Any attempt to
reach outside the virtual memory area terminates the user program immediately.

Following sections describe the virtual memory layout. The boundaries of the
memory segments are configurable and can be set to fit the needs of arbitrary
user program'. Before user program is loaded, the memory arrangement can be
reconfigured.

RAM stacks program space

registers|| static || list [P data stack (> {|call stack _

Figure 9.2: Virtual Memory Map (not to scale)

9.2.1 Program Space

The bytecode instructions (user program) are loaded in the Program Space seg-
ment. The size of the program space segment is usually configured so that the
user program fills the segment completely and no memory is wasted.

!programs generally can have varying memory requirements. Some programs have bigger
footprint but doesn’t require much RAM space, some use recursion which is demanding on size
of the stack, some might use dynamic list or big arrays stored in RAM..

o1

9.2.2 Stacks

The virtual machine uses two stacks for the bytecode execution. The Data Stack
is used for expression evaluation, passing function parameters and storing local
variables. The Call Stack stores the subroutine return addresses and pointers to
subroutine activation frames.

The two stacks share a common stack memory segment. The Data Stack
grows from the lower addresses up, while the Call Stack grows from the upper
addresses down. This way, the stack memory is used efficiently. When user
program runs out of stack memory, stack overflow error is signalized and user
program is immediately terminated. The size of the stack space is configurable.

9.2.3 RAM

Virtual RAM segment contains a register file, statically allocated data (variables
and arrays) and a dynamic list data structure. Register file is always mapped
to a fixed address both in virtual memory and in host RAM. Register file allows
input/output operations between the sand-boxed user code, Virtual Machine and
other modules in the firmware. The register file is basically a shared memory
between the user program and the firmware. Function of every register is well
defined and values are handled carefully when used by internal modules of the
firmware.

9.3 Input/Output

The user program retrieves signals or data from the environment (Input) and
controls the robot movement and its LEDs (Output).

Virtual Machine communicates with the host firmware through well defined in-
terface. Two main approaches for input/output operations are supported: Shared
Memory and System Calls.

9.3.1 Shared Memory (Register File)

The Register File contains 8-bit registers which can have input function, output
function or both.

Input register is a register that is updated by the firmware and represents
some state or configuration of the execution environment or outer world. The user
program reads input registers and uses the data for calculations and program flow
control.

02

Output register is written by the user program and processed by the VM
(or eventually, by firmware). For instance, the user program can control line-
following or LEDs intensities by writing the output registers.

Some registers have both input and output function. There is a register that
stores the current line following speed, for instance. This register can be written
by the user program (when the user program wants to override current line-
following speed), but it can be as well written by the firmware (when the speed is
updated externally, with a remote control, for instance). The user program can
read the register to verify what is the actual line following speed.

Some registers are used to configure the properties of the VM, and some have
a special function for indirect memory addressing, which is used for operations
on arrays and lists.

Persistent Registers

Persistent registers (REGISTER_PERSISTENT_n) are used for storing data that
should persist through program resets. User program can read and write these
registers. The persistent registers could be also updated externally, by a re-
mote control, for instance. The motivation for persistent registers arose from
the need of parametrized user programs. User program can be designed to load
its configuration from persistent registers. Anytime such user program needs to
be reconfigured, only the persistent registers are updated. This is a fast process
and it is more convenient than re-compilation and loading the whole user pro-
gram again. Persistent registers retain their values throughout power-cycle and
bytecode reprogramming.

Line Following Registers

REGISTER LINE FOLLOWING SPEED (input/output register)
This register sets the current line-following speed of the robot. It can be written
and read both by the firmware and the user program.

REGISTER INTERSECTION TYPE (input register)

Anytime the firmware detects an intersection, this register is updated with the
detected intersection type (see 7.2.1 on page 37). Note that an event is generated
anytime the register is written, no matter if the value was changed or not. This
way, the wait block can still detect the intersection event, even if the robot
repeatedly visits, let’s say, “+” intersections.

REGISTER INTERSECTION DECISION (output register)
User program can select direction at next intersection by writing this register.

53

REGISTER LAST INTERSECTION DECISION (input register)
Anytime the firmware makes a decision at intersection, this register is updated
with a direction that was selected. The user program can record the decisions
that the robot made at intersections, and use them later, for example in a maze
search program.

Real Time Clock Register

Real Time Clock register (REGISTER_REAL_TIME) is increased every second by 1.
By default, the current value of the Real Time Clock register shows how many
seconds passed since the user program execution started. User program can write
the register anytime to override its value. The program flow can be synchronized
to changes of the register by the WAIT instruction, see Subsection 9.3.3 for more
details.

Button register

When a button is pressed, the register REGISTER_BUTTON_PRESS_COUNT is incre-
mented by 1. The user program can synchronize on changes of the register, as
shown in 9.3.3 on the next page.

Other I/0 registers

Other functions of the firmware can be mapped to the Register File. There can
be registers dedicated for accessing the data measured by a color sensor, obstacle
sensor etc.. External events (such as an command received from a remote control)
can write a dedicated input register and the user program can synchronize on such
events using the WAIT instruction, as shown in 9.3.3 on the following page.

9.3.2 System Calls

Other way how the user program can interact with the environment is to per-
form system calls. Frequently used 1/O operations are more efficient to invoke
through a dedicated bytecode instructions. Other reason to prefer system calls to
input/output registers is when atomicity of operation is required. For instance,
setting the color on an RGB LED requires 3 bytes to be written into a register
file. If the operation is not made atomically?, the first two bytes can be written
in one main loop cycle, while the last byte would be written in the next main
loop cycle, effectively creating a delay of several milliseconds between the register
updates. This would cause unwanted artifact in the color reproduction. That is
why for this case, it is preferred to use a dedicated system call that takes 3 bytes

2the bytecode has a way how to enforce atomicity of multiple registers read /write operations,
however, this method introduces some performance overhead

54

as arguments and performs the write always at once. Setting motor speeds is also

done through a system call (dedicated instruction) for exactly the same reason.
Because the instruction set is limited, not all functions can have a dedicated

system call. That is why we decided to combine these two 1/0O approaches.

9.3.3 Synchronization on Events

The register file can be updated asynchronously by the firmware. An update
of the register file can happen when the button is pressed, when surface color
changes, or when robot arrives at intersection, for instance. All of these are events
that are potentially interesting for the user program and should be processed as
soon as they occur. It is inefficient for the user program to poll the register
file for changes. Many MCU architectures have interrupts that trigger when an
external event occurs, so that it can be immediately served by an appropriate
interrupt routine. However, the interrupt subsystem is often complicated, the
program needs to install interrupt routines and manage interrupt vector tables.
We assume that the typical use case is to synchronize the program flow with an
external event (i.e. block the program execution until the right event comes in).
It is not expected that there is any performance-intense computation done while
the user program is waiting for an external event. Implementing interrupts in the
Virtual Machine would create unnecessary complexity for the user.

We introduce a simplified way of synchronization on external events that cor-
responds with the specification laid out in the Section 7.3. There is a special WAIT
instruction in the instruction set. The WAIT instruction suspends the execution
of the user program until any register in the register file is updated. When this
event occurs, the VM pushes the address of the updated register on the data
stack and the user program is resumed. Then, it is up to the user program how
it handles the new information about the updated register.

We will demonstrate the concept on an example. Let’s say the user program
is waiting for a button press. Such code fragment would be implemented as a
loop that waits for any register update, and when any update occurs, it verifies
if the address of the register of interest (REGISTER_BUTTON_PRESS_COUNT) was re-
turned by the WAIT instruction. If so, the program exits the loop and handles the
situation. Otherwise, it starts new iteration of the loop, waiting for next event.
In pseudocode, we would write this synchronization fragment as:

while (wait () !'= addressOf (REGISTER_BUTTON_PRESS_COUNT));

The wait() statement blocks the execution of the user program until any
register is updated. When this happens, the wait() returns the address of the
updated register.

This concept can be extended so that the user program can wait for any subset
of events and handle each separately. In the rare case that two or more events

%)

fire at the same time, the events are ordered by priority® and served one after
another. Anytime the WAIT instruction serves an event, the dirty flag on that
register is cleared. The user program may clear the dirty registers flags explicitly
if it needs to.

9.3.4 Movement Commands

The firmware has an interface for two basic movement commands; move straight
and rotate. These two commands are invoked via the INSTRUCTION_MOVE and
INSTRUCTION_ROTATE instructions. These are blocking commands - they block
the program flow until the movement is finished.

INSTRUCTION MOVE takes two arguments, passed on the data stack.
First argument is the speed in millimeters per second (mmps). Second argument
is the distance to travel, in millimeters. If either the first or the second argument
is negative, robot moves backwards. If both arguments are negative, robot moves
forward.

INSTRUCTION ROTATE takes two arguments, passed on the data stack.
First argument is the speed in millimeters per second®. Second argument is the
angle in degrees. If either the first or the second argument is negative, robot
rotates clockwise. If either both arguments are positive or both arguments are
negative, robot rotates counter-clockwise.

9.4 Instruction Set

The Virtual Machine interprets bytecode instructions. All instructions are exactly
8-bit long. Instructions don’t need to carry any additional information about
operands, as the operands are implicit. Instructions read their operands from the
top of the Data Stack (DS). If there is any result to be stored, it pushed back to
the Data Stack.

9.4.1 Push Immediate

Pushing a constant to the Data Stack is a very frequent operation. A significant
part of a any program will be commands for loading the Data Stack with a
constant data. Note that every instruction takes its arguments from the top of
the Data Stack, therefore, loading a constant to the Data Stack is heavily used
and worth optimization, especially in terms of code footprint.

3the priority of events corresponds to their register addresses, lower address has higher
priority

4the speed in millimeters per second refers to the peripheral speed at circumference of robot’s
wheel. We use this unit for the reasons of consistency among the movement commands.

56

The first half of instruction space (instruction codes from 0 to 127) is inter-
preted as constants. Anytime the VM decodes an instruction with MSB® equal
to 0, it interprets the instruction code as an unsigned integer and pushes that
number to the top of the Data Stack immediately. This can be seen also from a
different perspective: There is a special PUSH_IMMEDIATE instruction that carries
some embedded data within. The instruction is of format Oxxxxxx, where the 7
least significant bits carry the immediate value that will be pushed on the top of
the Data Stack.

Apparently, the PUSH_IMMEDIATE instruction can only load 7-bit numbers,
which happens to be only the positive range (0 to 127) out of the (-128 to 127)
universal data type range. The PUSH_IMMEDIATE instruction can be combined
with the INSTRUCTION_NEG_ONES_COMPLEMENT, which does a bitwise NOT oper-
ation to the top value on the Data Stack.

For example, pushing integer constant 4 is done by instruction code 00000100,
while pushing integer -4 is done by instruction code 00000011 (pushes number 3
on the stack) followed by INSTRUCTION_NEG_ONES_COMPLEMENT, which performs
a bitwise NOT on the top element on the stack. Finally, we have 11111100 on
the stack, which is integer -4 in two’s complement form [47].

9.4.2 Operators

Instruction performing arithmetics or binary operations always pop their operands
from the top of the Data Stack and push the result back to the Data Stack.
Arithmetics

All the arithmetics operations are done in saturation arithmetics [46]. The divi-
sion and the modulo operation terminates user program if the operation is not
defined on given arguments (the divisor is 0).

] instruction \ stack operation \ comment ‘

INSTRUCTION_ADD | a, b — (a + b) | sum of two integers
INSTRUCTION_SUB | a, b — (a - b) | subtracts the top integer
INSTRUCTION_MUL | a, b — (a * b) | multiplies two integers,
INSTRUCTION_DIV | a, b — (a / b) | divides with the top integer
INSTRUCTION_MOD | a, b — (a % b) | reminder of division
INSTRUCTION_ABS a — abs(a) calculates absolute value

Table 9.1: Arithmetic Operators

®most significant bit

57

Binary

Binary operators perform bitwise operations on their arguments. From other
perspective, these can be also seen as set operations, where AND stands for set
intersection, OR stands for set union and XOR stands for symmetric difference.
This set interpretation mates well with the Color Context and Intersection and
Direction Context in 7.2.1 and 7.2.1 respectively.

The INSTRUCTION_NEG_TWOS_COMPLEMENT calculates two’s complement of the
argument on the top of the stack. Saturation arithmetics is in effect, so argument
-128 turns to 127 after the operation. Normally, it should be 128 but this doesn’t
fit the 8bit data range, therefore, truncation must occur.

‘ instruction ‘ stack operation ‘ comment ‘
INSTRUCTION_AND a, b — (a & b) | bitwise AND
INSTRUCTION_OR a, b — (a|b) | bitwise OR
INSTRUCTION_XOR a, b— (a - b) bitwise XOR
INSTRUCTION_NEG_ONES_COMPLEMENT a— (Na) bitwise NOT
INSTRUCTION_NEG_TWOS_COMPLEMENT a— (—a) two’s complement

Table 9.2: Binary Operators

Logic

Logic operations pop operands from stack, evaluate them and then push the true
(1) or false (0) constant on the Data Stack. Logic operators are listed in Table
9.3.

‘ instruction ‘ stack operation ‘ comment ‘

INSTRUCTION_LOGIC_AND | a, b — (a && b) | true if both arguments are true
INSTRUCTION_LOGIC_OR a, b — (al| b) | trueif at least one argument is true

INSTRUCTION_EQ a, b — (a == D) | true if arguments are equal
INSTRUCTION_COMPEQ a, b — (a > b) | trueif a greater or equal than b
INSTRUCTION_COMP a, b — (a >b) | trueif a is greater than b

Table 9.3: Logic Operators

9.4.3 Jumps

Instructions that change program flow unconditionally are called jumps. The
jump instructions need an argument that specifies what address the program
execution should jump to. The address can be either absolute or relative.

58

Technically, the jump is performed by updating the current address in Pro-
gram Counter (PC). In case of relative jumps, the PC is incremented by a con-
stant, in case of absolute jumps, the value of PC is overwritten with a completely
new (absolute) address.

INSTRUCTION RJUMP is always accompanied with a relative 8-bit ad-
dress. The address is not passed on stack, but it is stored in the program space
immediately after the INSTRUCTION_JUMP opcode. The address is interpreted as
signed integer in two’s complement form. Therefore, the relative jump can be
performed either forward or backward, depending on the sign of the argument.

INSTRUCTION JUMP is always accompanied with an absolute 16-bit ad-
dress®. The address is interpreted as unsigned integer and loaded to the Program
Counter. This performs a jump in program flow and next instruction is fetched
from the target address.

9.4.4 Conditional Branches

Conditional branches are similar to jumps, but the actual jump will occur only
when a certain condition is met, otherwise, the program flow continues uninter-
rupted.

INSTRUCTION BRANCH SHORT theinstruction is accompanied with
a relative 8-bit address, in the same fashion as the INSTRUCTION_RJUMP. However,

the jump is only performed when the top of the stack is 0 (false). Otherwise, the

jump is not performed and program flow continues with the following instruction.

The top element of the stack is always popped and discarded when this branch

instructions are evaluated.

INSTRUCTION BRANCH ABSOLUTE analogical to the
INSTRUCTION_JUMP, but the jump only happens when the value popped from the
stack is 0 (false).

INSTRUCTION INDIRECT BRANCH same as the
INSTRUCTION_BRANCH_SHORT, to an exception that it doesn’t pop data from stack,
but it branches if value of REGISTER_Z is equal to value of REGISTER_F. Otherwise,
the branching doesn’t occur. This instruction was introduced to increase the
efficiency of array and list operations.

5The universal data type cannot represent pointer to every instruction in program space as
it is an 8-bit integer. We also considered an option that instruction addressing in the program
space would be aligned to 4 byte blocks. Then the jump addresses could be truly 8-bit, but
all the jumps destination would need to be aligned to 4 byte boundary and the code footprint
would grow in vain.

59

9.4.5 Memory Addressing

The RAM can be addressed directly or indirectly. For direct addressing, we have
INSTRUCTION_LOAD and INSTRUCTION_STORE. These instructions take an address
as an argument on stack. The address is always interpreted as 8-bit unsigned
number. The width of the address data type implies that only the first 256 bytes
of RAM can be addressed directly. The register file is mapped to the beginning
of RAM, therefore, it can be manipulated using direct addressing.

INSTRUCTION LOAD pops an 8-bit address argument from stack, then
pushes on the stack the value stored at the specified RAM address.

INSTRUCTION STORE pops an 8-bit address argument and a byte data
from the stack (in this order), then writes the data byte to the specified RAM
address.

An indirect addressing scheme is used to address RAM beyond the 256 byte
boundary. Indirect addressing uses the B and Z registers. Specially, indirect
addressing can be used also for addressing data within the 256 byte boundary,
which might be convenient and efficient for array manipulation.

REGISTER B Base address offset register, usually set to the address of the
first element in array or list.

The value of the register is interpreted as 8-bit unsigned number multiplied
by a factor of 2.

REGISTER Z Relative address register. Its value is interpreted as 8-bit un-
signed integer. Together with the Base Address Register, it is used for indirect
addressing of the RAM. The RAM address is calculated by the formula: address
= (REGISTER_B * 2) + REGISTER_Z

Note that the maximum addressable space is 2656 * 2 + 255 = 765 bytes. Be-
cause memory resources are limited on the target platform, this is not an issue.

INSTRUCTION INDIRECT LOAD Pushes on stack a value located at
address calculated from the B and Z registers.

INSTRUCTION INDIRECT STORE Pops a value from stack and stores
it to RAM address calculated from the B and Z registers.

9.4.6 Data Stack Manipulation

There are several instructions that manipulate the Data Stack. Operations on
the Data Stack are necessary for passing and accessing arguments, locals and

60

return values of subroutines. Data stack manipulation can be also leveraged in
code optimization.

INSTRUCTION DELETE Removes the top element from the Data Stack.
INSTRUCTION CLONE Duplicates the top element of the Data Stack.

INSTRUCTION SWAP Interchanges the two elements on the top of the
Data Stack.

INSTRUCTION STACK RESIZE Allocates or deallocates space on the
Data Stack, depending on the argument. The argument is passed on stack as an
8-bit signed integer. If argument is negative, the stack height gets increased by
that value. If argument is positive, the stack height gets decreased. Note that
this instruction manipulates the Data Stack Top pointer, but doesn’t overwrite
any data on the Data Stack itself.

INSTRUCTION PICK Picks a buried element on the Data Stack, addressed
relatively from the top of the stack, and copies it to the top of the stack. The
address is passed as an argument on stack.

9.4.7 Subroutines

Support for subroutines (functions and procedure calls) is integrated in the ar-
chitecture of the Virtual Machine on many levels; there is a set of dedicated
instructions, a dedicated Call Stack (CS) that enables subroutine recursion and
a system for handling activation frames of subroutines.

INSTRUCTION CALL Performs a subroutine call. The program flow jumps
to the address of the subroutine, specified as a 16-bit unsigned number stored in
the 2 bytes that immediately follow the INSTRUCTION CALL opcode. First,
the return address (calculated as PC + 3) and the current Frame Pointer (FP)
is pushed to the Call Stack. Then, the Program Counter (PC) is updated with
the subroutine address and the Frame Pointer (FP) is updated with the current
Data Stack top pointer.

INSTRUCTION RET Subroutine finishes with the return instruction (RET).
This instruction pops the return address and the previous Frame Pointer from the
Call Stack (CS) and updates the Program Counter and Frame Pointer register.

61

INSTRUCTION POINTER CALL Function pointers are supported by
the VM. The Pointer Call instruction is similar to the INSTRUCTION_CALL, to
an exception that it pops the subroutine address from Data Stack as an 8-bit
unsigned integer. This address is multiplied” by factor of 2 before it is copied to
the Program Counter.

INSTRUCTION FRAME LOAD Loads an element buried in the Data
Stack, addressed relatively to the current Frame Pointer. The instruction pops
its relative address parameter from the Data Stack.

This instruction is necessary for accessing arguments and locals of subroutines
that are stored in the Data Stack. It is different from the INSTRUCTION_PICK,
because the element address is relative to the Frame Pointer, which is always
constant inside the scope of the subroutine.

INSTRUCTION FRAME STORE Stores an element to a location in the
Data Stack, addressed relatively to the current Frame Pointer. It is analogous to
the INSTRUCTION_FRAME_LOAD. This instruction is used for updating subroutine
locals and for storing the return value.

The use of these instructions will be shown in detail the following chapter, 10.4.7
on page 74.

"This implies that when pointers to functions are used, compiler must ensure that functions
entry points are 2-byte aligned. Function pointer support is an advanced feature that currently
doesn’t have any use in the proposed Visual Programming language, but might come in handy
in hand-optimized bytecode.

62

Chapter 10

Code Generation

The Visual Program will be eventually complied to a bytecode that is interpreted
by the Virtual Machine. The process of visual program compilation is carried in
two steps, see Figure 10.1.

Visual Program Assembler Bytecode
AN
Blockly Assembly
Code Generator Compiler

Figure 10.1: Compilation process

The Visual Program in Blockly Editor is internally represented as a tree data
structure, very similar to Abstract Syntax Tree (AST) known from compiler the-
ory 26, pg 69-70]. The Blockly library has modules called code generators that
traverse the program tree and generate JavaScript, Python, Dart or PHP.

We extend the Blockly library with a new code generator that generates the
intermediate assembly code, which will be later processed to a bytecode.

10.1 Intermediate Assembly Language

The proposed Intermediate Assembly Language is a symbolic machine code.
Structurally, it is very close to the final bytecode interpreted by the VM. Most of
the assembler instructions have one-to-one correspondence to the VM bytecode
instructions. However, these instructions take symbolic labels as arguments, in
contrast to bytecode where all arguments are numeric.

The proposed Intermediate Assembly Language is a human readable code
that can be manually created and edited. But, this was not the reason why
this assembly language was initially introduced. The reason is more pragmatic;
Blockly code generators are better suited for generation of high-level languages

63

than a machine code / bytecode. It is easier to generate a language that uses
symbolic references and later translate this language to a bytecode in a separate
pass.

Citation: “The compiler may produce an assembly-language program as its
output, because assembly language is easter to produce as output and is easier to
debug. The assembly language is then processed by a program called an assembler
that produces relocatable machine code as its output.” [26]

10.2 Bytecode

The proposed Bytecode is directly interpreted by the Virtual Machine. It is a
sequence of bytes that constitutes the compiled user program. It is straightfor-
ward to translate the bytes back to instruction names, so sometimes the bytecode
is represented as a sequence of instructions rather than sequence of bytes. All
arguments and constants are, however, numeric, therefore, it is very impractical
to modify the bytecode once it was generated.

10.3 Library Functions

The proposed Visual Programming Language has a library of predefined functions
that the user program can invoke. At code generation phase, the dependencies
to library functions are resolved and the library function bodies are linked to the
user program assembly.

Internally, the library functions are stored in the form of position independent
code [45], which in fact is a compiled bytecode that meet these requirements:

e uses only relative jumps or branches

e constitutes a callable unit, compatible with the calling conventions of the
proposed Visual Programming Language

Some library functions are programmed in bytecode directly and hand-optimized,
some were designed in the Visual Programming Language itself and compiled to
a position independent bytecode.

10.4 Generating Code

In this section, we will describe how the high-level language constructs are com-
piled to the Assembly Language.

64

10.4.1 Expressions

In the Blockly visual programming language, expressions are formed easily by
nesting puzzle-like blocks. This graphical notation is interesting because it im-
plicitly captures the semantics and order of evaluation. In the Figure 10.2, there
is the expression 2 - (3 4+ 4) depicted in visual programming language. In textual
source code, the operators are infix and therefore, we had to add a parenthesis
to keep the semantics of the expression. In Blockly, however, the nesting of the
blocks already carries the information about order of evaluation of the arithmetics
operations.

|al@ (ejma]

Figure 10.2: Expression in Blockly

Internally, such Blockly code fragment is represented as a tree with the nu-

meral constants blocks as leafs and operator blocks as internal nodes. See Figure
10.3.

Figure 10.3: Abstract representation of an expression in Blockly

Evaluation of expressions in the Virtual Machine is trivial. The VM uses the
Data Stack for expression evaluation. As it is, the VM can right away evaluate
expressions in postfix notation (also known as Reverse Polish notation).

The Assembly code generator performs a post-order traversal on the expres-
sion tree. For this particular example, the post-order traversal would produce a
sequence 2, 3,4, +, x. When we map the constants and operators to the Assembler
instructions, we receive a code that can be executed by the VM right away:

PUSH_CONST (2)
PUSH_CONST (3)
PUSH_CONST (4)
INSTRUCTION_ADD
INSTRUCTION_MUL

65

The Virtual Machine processes the instruction one after another. First, it fills
4

the Data Stack with integers: 3 . Then it performs the ADD operation on the
2

two topmost elements and stores the result to the stack: . Finally, it performs

2
the MUL operation, and the stack contains single element, 14, which is result of
the calculation.

This simple concept is applied also for expressions that contain variable ref-
erences or function calls. The postfix evaluation is the key concept here.

10.4.2 Variables

In Blockly, all variables are global. Blockly editor doesn’t have any means how to
limit scope of variables. As a consequence, there is no point in declaring a variable
on some explicit place in the program. This allows to omit variable declarations
completely.

Because of this fact, and because there is only one universal data type (as
explained in Subsection 7.2.1), the Assembly code generator is very minimalistic.

v (@)
Figure 10.4: Set Variable and Get Variable blocks

In the proposed Assembly Language, the programmer can use labeled memory
cells. Textual labels are automatically mapped to free (unused) cells in the RAM
memory. Anytime the assembly programmer wants to introduce a new labeled
memory cell, he just uses its name with a special prefix. For instance, addr$var
is a valid Assembly statement that means “address of RAM memory cell labeled
var“. The Assembly compiler maintains a table of allocated labels. When it
detects the addr$var for the first time, the var symbol is not yet in the table,
therefore, it is added and an address of next free memory cell is assigned to it.
Further references to addr$var will be always translated to that specific address
in RAM.

The Get Variable block is then translated to two Assembly instructions:

addr$var
INSTRUCTION_LOAD

This is enough for the Assembly Language. After this code is compiled to
bytecode, the addr$var placeholder instruction will be replaced by a real address
of a memory cell in RAM. Then, this bytecode fragment will load data from a
particular memory address to the top of the Data Stack.

The Set Variable block is translated in similar manner:

66

PUSH_CONST (6)
addr$var
INSTRUCTION_STORE

The STORE instruction takes the address of variable var and stores there what-
ever was calculated on the Data Stack. In this case, it is the constant 6, but in
general, it could be result of an expression or a value returned from a function
call.

Here, we need to make an important disclaimer. The lack of local variables
would be in some situations very limiting, for example when recursive algorithms
are considered. The proposed Visual Programming Language doesn’t have true
local variables, as Blockly editor doesn’t support such constructs. However, the
function parameters are handled in a way that allow to overcome these limitations
and emulate local variables in functions. This will be explained further in Section
10.4.7. However, the proposed Virtual Machine and bytecode have full support
for local variables, that are allocated on the Data Stack.

10.4.3 Conditional Statements

Translation of conditional if and if/else blocks uses the branch instructions.
The proposed Assembly Language provides an abstraction for the branch in-
structions. There is a branch(label) meta instruction that performs a con-
ditional jump to a specified label if the value popped from the Data Stack is
equal to 0 (false). The Assembly compiler later resolves the symbolic label
to a real address in the Program Space and replaces the branch meta instruc-
tion with either relative branch (INSTRUCTION_BRANCH_SHORT) or absolute branch
(INSTRUCTION_BRANCH_ABSOLUTE).

We demonstrate translation of the if block on a simple code fragment, see
Figure 10.5.

| (emm| e (o]
do(ié&ﬂ@mnw {0

bn/ove distance: C | mm speed: mm/s

Figure 10.5: If block - code fragment

Such code fragment is translated to Assembler as shown in Table 10.1.

Conditional statements if/else-if/else are translated in similar manner,
but these use more labels and every code branch is trailed with an unconditional
jump instruction to the end label.

67

Assembler: Bytecode:

addr$speed 0 PUSH_CONST(37)
INSTRUCTION_LOAD 1 INSTRUCTION_LOAD
PUSH_CONST (0) 2 PUSH_CONST (0)
INSTRUCTION_EQ 3 INSTRUCTION_EQ
branch(labell) 4 INSTRUCTION_BRANCH_SHORT
5 DATA(5)
PUSH_CONST (30) 6 PUSH_CONST(30)
addr$speed 7 PUSH_CONST(37)
INSTRUCTION_STORE | 8 INSTRUCTION_STORE
labell:
PUSH_CONST (20) 9 PUSH_CONST(20)
addr$speed 10 PUSH_CONST(37)

INSTRUCTION_LOAD 11 INSTRUCTION_LOAD
INSTRUCTION_MOVE 12 INSTRUCTION_MOVE

Table 10.1: If block fragment translated to Assembler and Bytecode

10.4.4 Loops

Blockly editor supports while loops and for loops. We will show on examples
how these blocks are translated to Assembler and Bytecode.

While Loop Block
Figure 10.6 and Table 10.2 shows how the while block is translated.

repeat q C: get color |(: color -I
do Emove distance: mm speed: mm/s

Figure 10.6: While loop - code fragment

Repeat n-times Block

The repeat n-times block example is a special case of the for loop. Because
this case is simple, we will start with this first. Please refer to Figure 10.7 and
Table 10.3. The translated Bytecode initializes the cycle counter variable on the
stack and then decreases it in every iteration, until it is not equal to 0. Finally,
the loop exits and program flow continues beyond the repeat block. It is very
important to keep the stack consistent, so we have to delete the cycle counter
variable from the stack when the loop finishes.

68

Assembler: Bytecode:

labell:

REGISTER_SURFACE_COLOR | 0 PUSH_CONST(14)

INSTRUCTION_LOAD 1 INSTRUCTION_LOAD

COLOR (red) 2 PUSH_CONST(1)

INSTRUCTION_EQ 3 INSTRUCTION_EQ

INSTRUCTION_NOT 4 INSTRUCTION_NOT

branch(label?2) 5 INSTRUCTION_BRANCH_SHORT
6 DATA(T7)

PUSH_CONST (20) 7 PUSH_CONST(20)

PUSH_CONST (30) 8 PUSH_CONST(30)

INSTRUCTION_MOVE 9 INSTRUCTION_MOVE

jump (labell) 10 INSTRUCTION_JUMP_RELATIVE
11 INSTRUCTION_DATA(-10)

label2: 12

Table 10.2: While loop block fragment translated to Assembler and Bytecode

repeat times
do Lmove distance: mm speed: mm/s

tu/rn angle: deg speed: mm/s

Figure 10.7: Repeat n-times - code fragment

For Loop Block

In Blockly, the for loop is implemented using the count with block, which in
essence corresponds to usual for loop known from other programming languages.
However, there are some subtle differences that on one hand simplify the use, but
make the compilation more tricky.

count with (KA from ((ERNVES | to C @Ik | by (CYED |
do

Figure 10.8: The Blockly count with block has a function of typical for loop

From the Blockly documentation: “The count with block (called a for loop
in most programming languages) advances a variable from the first value to the

second value by the increment amount (third value), running the body once for

each value.” |37]
The count with block accepts three numeric inputs; FROM, TO and BY. If the
FROM number is lower than the TO number, the control variable is incremented by

69

Assembler: Bytecode:
PUSH_CONST (4) 0 PUSH_CONST(4)
labell:
INSTRUCTION_CLONE
PUSH_CONST (0)
INSTRUCTION_COMP
branch(label2)

INSTRUCTION_CLONE
PUSH_CONST (0)
INSTRUCTION_COMP
INSTRUCTION_BRANCH_SHORT
DATA(11)
PUSH_CONST(50)
PUSH_CONST (30)
INSTRUCTION_MOVE
PUSH_CONST (90)
PUSH_CONST (30)
INSTRUCTION_ROTATE
PUSH_CONST (1)

PUSH_CONST (50)
PUSH_CONST (30)
INSTRUCTION_MOVE
PUSH_CONST (90)
PUSH_CONST (30)
INSTRUCTION_ROTATE
PUSH_CONST (1)

O O© 0 NO Ol b WN -

e
= O

INSTRUCTION_SUB 12 INSTRUCTION_SUB

jump(labell) 13 INSTRUCTION_JUMP_RELATIVE
14 DATA(-12)

label?2:

INSTRUCTION_DELETE | 15 INSTRUCTION_DELETE

Table 10.3: Repeat n-times block fragment translated to Assembler and Bytecode

the absolute value of the BY number. The loop can also count down, if the FROM
is bigger than TO, then the control variable is decremented by the absolute value
of the BY number.

The JavaScript generator for the “count with” block produces quite a lot of
code in the most general case to handle corner cases:

var 1i;
var FROM;
var TO;
var BY;

var i_inc = Math.abs (BY);
if (FROM > TO) A
i_inc = -i_inc;
}
for (i = FROM;
i_inc >= 0 7?7 i <= TO : i >= TO;
i += i_inc) {

In the most general case, the generated code has to decide at runtime which
direction to count and what is the condition to exit the loop.

70

The count with block should behave the same when compiled to bytecode
and executed in the target robot. The JavaScript code generator could be used as
reference when implementing the Assembly generator. However, it turns out that
such approach would not be optimal in code footprint. Moreover, the JavaScript
generator for the count with block doesn’t take into account that the variable
actually might have limited range and saturation of the control variable might
occur. This would cause infinite loops for certain settings of input parameters,
for example when FROM and TO are set to boundaries of the integer data type,
-128 and 127 in case of the proposed Virtual Machine.

To prevent faulty infinite loops, we need to update the inner implementation
of the count with block, but not change the specification that users are already
used to.

One observation is that the loop doesn’t care about the sign of the BY argu-
ment. As a side effect, the code in the for loop is always performed at least once,
no matter how the FROM, TO and BY values are set. We use this observation to
construct Assembly generator that generates more efficient bytecode.

The tricky part is the restricted range for the integer data type in the VM.
This has shown to be quite complicated problem for the correct for loop im-
plementation. To resolve this, we need to test variable truncation at runtime.
Anytime the control variable would be truncated when the increment is added,
we exit the loop.

The Assembly generator for the count with block generates code that fulfills
the same specification as the original JavaScript generator, but it is tailored for the
VM architecture. There are many automated tests that prove the implementation
is correct.

Break and Continue

Blockly allows break and continue control flow statements within loops. This
language feature is supported in the Assembly generator as well. Internally, the
control flow statements are implemented as jumps to specific labels inside the
loop control code. For the correctness, it was crucial to prove that such jumps
always keep the state of the data stack consistent. This was later verified by
number of automated tests.

10.4.5 Arrays

(declare array of length (XY CI get element C\‘:I from array
q get length of array | Erzarray set element C‘:I to value C‘:I

Figure 10.9: Array support in Blockly

71

Array is a new feature added to Blockly. Arrays in Blockly are declared
statically and their size and memory location is known at compile time. Arrays
are indexed from zero. Bounds checking is always performed prior read or write
operation. If the index is out of bounds, the user program is terminated and
robot signalizes the “index out of bounds” error. User can declare any number of
arrays, only the RAM size of the VM is the limit.

Declaration

Array is declared with a the declare array block. User specifies a name of the
array and its length. The declaration block doesn’t have any connections and
can be located anywhere in the workspace. Once the array is declared in the
workspace, it can be accessed from anywhere in the user program - it has a global
scope.

Array occupies a fixed space in the static array pool, which is a continuous
segment in RAM. Within this memory segment, start of each array is aligned to
the 2-byte boundary, which is a requirement for the indirect addressing via the
REGISTER_B.

Get Array Size

Length of array can be requested using the “get size of array” block. The block
has a drop-down menu that contains list of all arrays that were declared in the
workspace. Since the size of all arrays is known at compile time, the generator
for this block always generates constants and its implementation is trivial.

Get Element

The get item block retrieves an element from a particular array, which is selected
from the drop-down menu. The index of the desired element is supplied as input.

Set Element

The set item block implementation is similar to the previous one. We present
the Assembly code generated for the set element, as the get element is very
similar. Please refer to Figure 10.10 and Table 10.4. The generated bytecode
does index bound checking. The bound checking is performed by four additional
instructions. The INSTRUCTION_CONDITIONAL_FAIL pops a number from stack
and if it is other than 0, it terminates the user program and signalizes an error.

10.4.6 List

List is a data structure supported by the Blockly library. The default JavaScript
Blockly code generator implements the list functionality through dynamic array.
The proposed Visual Programming Language doesn’t support dynamic allocation

72

(declare array of length

Erzarray set element to value

Figure 10.10: Writing array element in Blockly

Assembler: comment

arrayPool#0 is resolved to a 2-byte aligned address of the array in RAM
REGISTER_B

INSTRUCTION_STORE loads the address of the array’s first element to REGISTER B
PUSH_CONST (5) the new value

PUSH_CONST(3) stored to array element 3

INSTRUCTION_CLONE bounds checking

PUSH_CONST (10)

INSTRUCTION_UINT8_COMPEQ compares unsigned array indices
INSTRUCTION_CONDITIONAL_FAIL | fails if result of the comparison is true
INSTRUCTION_RELATIVE_STORE write to an array

Table 10.4: set element block fragment translated to Assembly

due to resource limitations. However, we believe that the list data structure is
important for educational purposes, therefore, we added at least a limited support
for the list data structure. There is only one singleton List available to the user.
The List is initially empty and grows when user appends elements to the List. The
List is allocated in the RAM at compile time, it starts at the first free addressable
memory location and grows up. Unlike arrays, the length of the List can change
at runtime. The List can accommodate at most 127 elements, given that there is
enough free memory available in RAM.

The code generation procedure is analogous to the Array implementation
(including the dynamic bounds checking), except that the length of the list is not
constant, so it is maintained at runtime in a dedicated variable.

length of List]
append value C‘:I to the end of List

d get last element and remove it from List

q get element C‘:I from List

GiList set element C‘:I to value C‘:I
Ee/:move element at index C‘:I from List

Figure 10.11: Singleton List support

73

10.4.7 Functions and Procedures

In Section 10.4.2 we claimed that Blockly has only global variables. There is one
exception though; variables in functions are handled specially. First, arguments
of functions and procedures are passed by value. Second, variable shadowing
[48] is applied to arguments of functions and procedures. In practice, this means
when function has a named argument x, and there is a global variable x, these two
variables have different storage, thus they do not refer to the same object. In the
scope of the function, all references to the x symbol actually refer to an argument
of the function, not to the global variable. We say that the global variable x is
shadowed by the inner variable. Because all arguments are passed by value, the
storage space for arguments is always allocated on stack. Every invocation of a
function has its own stack frame where its arguments are allocated.

It is very important to understand how function and procedures work in
Blockly, so that the compiled bytecode executes in the same fashion as Blockly
visual program would. The semantics of function calls cannot be learned from the
original Blockly visual programming language itself. The original Blockly visual
language is never interpreted directly, it is always the generated code (JavaScript,
Python..) that can be executed, not the program in its visual form. For this rea-
son, we will investigate how the Blockly visual program translates to JavaScript,
and how the generated JavaScript code would execute. In Figure 10.12 there is a
visual program in Blockly that demonstrates a simple function call to a function
that returns double of its argument. The question we shall ask is, what values
are applied to the set wheel speed block?

set to to with: X

set (YR to (i double with: Lsetto q
X Xv
€ return (j|

set motors:
left

right

Figure 10.12: Example of a simple function call

To answer this question, we need to evaluate the generated JavaScript code:

var x;
var y;

function double(x) {

X = X *x 2;
return x;

x = 20;

74

y = double(x);
system_setWheelSpeeds (x, y);

The argument x of function double shadows the global x variable. When the
function executes, it can never modify the global x, it writes to a local x whose
value is then returned and written to global y. Eventually, the
system_setWheelSpeeds (20, 40) is called.

We see that the proposed Assembly code generator should:

e pass function arguments by value
e ensure variable shadowing

The arguments are stored in a subroutine activation frame on Data Stack. For
functions, the activation frame also stores the return value. The caller is responsi-
ble for allocation and deallocation of the activation frame on the Data Stack. On
the Call Stack, the activation frame containing return address and previous frame
pointer are created automatically when the INSTRUCTION_CALL is executed.

it !

i !

: argument N :

b i (o ;
i ! i !
i ! i !
3 | R [}
1 = i ! return address i
i argument 2 i i i
I = ! i !
iy [! - !
I argument 1 ! i !
O : i caller's :
| | | H]
i | return value /argument0 ! i frame pointer :
[= ! Iy L= 4
i ! i [

B LT el T e et e e e o) fe e T e e e e e e e e e

on Data Stack on Call Stack

Figure 10.13: Activation frame is created both on Data Stack and Call Stack

The callee can then address the arguments via the FRAME_STORE and FRAME_LOAD
instructions. These instructions take an address relative to the activation frame
start, which is retrieved from the current Frame Pointer. For functions, the re-
turn value is always stored to the address 0 in the activation frame. Note that
this location is also used for passing argument (0. The compiler must ensure the
argument 0 is never used again by the callee after the return value has been
written.

In Table 10.5, we present how the example from Figure 10.12 is complied to
Assembly.

Although the original Blockly visual programming editor doesn’t support local
variables in functions and procedures, the locals could be easily supported by the

75

Assembler:

comment

addr$x
INSTRUCTION_LOAD
call(double)

addr$y
INSTRUCTION_STORE
double:

PUSH_CONST(0)
INSTRUCTION_FRAME_LOAD
PUSH_CONST(2)
INSTRUCTION_MUL
PUSH_CONST(0)
INSTRUCTION_FRAME_STORE
INSTRUCTION_RET

initialization of the x variable

caller loads value of x to the activation frame

calls the function

when function executed, the return value is on stack
and the caller stores the return value to variable y
setting the motors

label of the function

callee loads the argument 0

multiplies the value by two

and stores the result back to the activation frame

returns control back, pops record from the Call Stack

Table 10.5: Program with a function call translated to Assembly code

proposed VM and compiler. There is, however, a workaround how to use locals
even in Blockly. The idea is to declare locals as extra arguments of the function
or procedure. This effectively allocates extra variables in the activation frame,
which later the callee can use as local variables allocated on stack.

76

Chapter 11

Integration Test Suite

In Chapter 8, we described the integration test suite design and typical test
cases. Here, we will point out some interesting implementation details about the
integration test suite. As was shown in Figure 8.1, some parts of the chain are
implemented in JavaScript, while others are implemented in C. This makes the
implementation of a test suite challenging. Fortunately, the interface between the
JavaScript part and the C part is simple. The Blockly editor compiles the visual
program to Assembler, which is in turn translated to Bytecode and encoded into
a format that can be transmitted to the robot. All this is done in JavaScript.

On the side of the robot, the received data is fed to the Program Decoder
module, written in C. The Program Decoder module verifies data checksum to
combat any transmission errors and then loads the program into the VM. At this
point, the VM is ready to execute the Bytecode, and further program testing is
conduced same way as for the unit tests (see Section 8.1).

The test suite implements function Blockly_load_program_full_chain(),
which takes an XML source as an argument and feeds that into the whole chain.
Internally, this function communicates with a separate process that caries out
interpretation of JavaScript part of the chain. We use the rhino JavaScript engine
to interpret all the JavaScript code. The rhino process loads the JavaScript part
of the chain and uses it to translate the XML visual program source into a packed
bytecode format, that can be received by the robot. The data is then output to
the C++ part of the test suite and used to exercise the Program Decoder, which
loads the VM with compiled bytecode.

Because the loading of Blockly into rhino JavaScript engine is costly, it
is done only once when the rhino process is started, and later calls to the
Blockly_load_program_full_chain() use the rhino process that is already ini-
tialized and running. This greatly reduces the overhead, but creates a little
dependency between the individual test cases.

To date, there is about 143 automated tests that together perform more than
60.000 checks. The whole test suite executes under 10 seconds on a modern PC.

7

Conclusion

The author designed and implemented a solution that enables visual programming
of small mobile robots. He chose a suitable visual programming front-end and
adapted it for programming line-following robots. He extended the Blockly visual
programming language with support for arrays and synchronization to external
events. Next, he added several domain-specific features inherent to line-following
robots. A code generation layers were implemented, which compile the visual
program representation into a bytecode that is executed on board of a mobile
robot.

The Author designed and implemented a compact Virtual Machine that can
run on an 8-bit microcontroller with minimum system requirements. Yet, the
solution has full support for variables, expressions, conditional statements, loops,
static arrays, functions calls and recursion. The implementation occupies 5kB of
FLASH footprint and 30 bytes of RAM when compiled for the AVR platform.
The recommended additional RAM space for the user program virtual memory
is 500B at least.

The solution is stable and robust, which was confirmed by a comprehensive
automated test suite that supplements the implementation.

Text Summary

We analyzed existing visual programming languages for programming mobile
robots. We explained the challenges implied by event-driven programming para-
digm and pointed out why this approach might not be suitable, both in terms
of performance requirements and complexity imposed on the user. We chose
procedural programming paradigm as a viable alternative.

We analyzed two open-source visual programming front-ends for building vi-
sual programming editors. The analysis showed that the Blockly library is highly
customizable and although it primarily targets dynamically typed languages, it
can be further extended with type checking. For these reasons, we selected it as
a front-end of the proposed visual programming language.

Then, we characterized the category of small line-following robots and de-
picted their common characteristics. We continued with detailed analysis of
available computational resources on the target robotic platform. The analy-

78

sis showed the resources are very limited, which imposes some restrictions and
challenges that must be addressed during the design phase.

We analyzed existing implementations of virtual machines and interpreters
that could potentially run on such performance-limited system. Finally, we ex-
plained the importance of test automation and suggested two testing frameworks.

In the Design part, we laid out the specification of the Visual Programming
Language and defined its features. We explained the concept of a universal data
type and the interpretation contexts in which it can be used. Two basic collections
of this data type were specified. Next, an important synchronization feature of
the language was presented, which allows to synchronize the program flow to
external events.

We proposed the design of the automated test suite and showed how mocking
of dependencies is achieved in the CppUTest framework. We demonstrated the
unit testing and integration testing on code examples.

In the Implementation part, the proposed Virtual Machine is described thor-
oughly. The mechanism of scheduling and preemption is explained. Next, the
arrangement of the virtual memory is described and the input/output approaches
are explained in detail. Then, the instruction set of the Virtual Machine is doc-
umented.

Finally, the Code Generator is described. We reason about the need for an
intermediate assembly language representation and explain the code generation
process. We demonstrated how the individual language features are compiled to
a bytecode on numerous code examples and specified the subroutine calling con-
vention. The support for library functions is explained. After all, the integration
test suite implementation is described.

Future Works

While this thesis described a complete solution that enables visual programming
of a mobile robot, there are opportunities how the work could be extended further,
for example:

Backward compatibility of bytecode might be a desired feature if it is ex-
pected that the instruction set of the VM will be extended in future. For this
reason, it would be beneficial to organize the instruction space into distinct cat-
egories, based on the data stack size difference before and after applying the
particular instruction.! This mechanism could be designed such that legacy im-
plementations of the VM can silently process unknown instructions without cor-
rupting the data stack integrity. (Of course, there would be no other action

!For example, the CLONE instruction will be in category “+17, as it pushes one element on
the stack. On the other side, the ADD instruction pops two elements and pushes one, therefore,
it would be in the “-1” category.

79

for such unknown instruction, but in certain situations, this might be a desired
behavior.)

Bytecode compression could be implemented to reduce the program trans-
mission time. It was calculated that the instruction entropy of the programs in
the test suite is 6.078 bits. Currently, each instruction is encoded in 8 bits. The
test suite is reasonably big and contains representative user programs, therefore,
it can be expected that in real use-cases, programs will have similar instruction
frequency histogram. This would allow to reduce the transmission time by ap-
proximately 25% (best case).

Bytecode optimization layer could be implemented to achieve smaller pro-
gram footprint and better runtime performance. Global Stack Allocation [42]
method or similar could be implemented. The integration test suite can verify
if the optimization layer works and some statistics about the efficiency of the
optimization can be generated.

80

Bibliography

[1] AmForth. http://amforth.sourceforge.net/. Accessed: 2017-01-02.

[2] Apache license. http://www.apache.org/licenses/LICENSE-2.0. Ac-
cessed: 2017-01-02.

[3] Arduino. https://www.arduino.cc/. Accessed: 2017-01-02.

[4] Blockly discussion group. https://groups.google.com/forum/
?fromgroups=#!topic/blockly/rGMz3NnFVRI. Accessed: 2017-01-02.

[5] Check - unit testing framework for C. https://libcheck.github.io/
check/. Accessed: 2017-01-02.

|6] CodeBug. https://www.codebug.org.uk. Accessed: 2017-01-02.

[7] CppUTest. http://cpputest.github.io/. Accessed: 2017-01-02.

[8] Espruino. http://www.espruino.com/. Accessed: 2017-01-02.

[9] Fishertechnik. http://www.fischertechnik.de. Accessed: 2017-01-02.

[10] flex, the fast lexical analyzer generator. http://flex.sourceforge.net/.
Accessed: 2017-01-02.

[11] GNU Bison. https://www.gnu.org/software/bison/. Accessed: 2017-01-
02.

[12] Google Blockly. https://developers.google.com/blockly/. Accessed:
2017-01-02.

[13] Google Blockly Factory. https://blockly-demo.appspot.com/static/
demos/blockfactory/index.html. Accessed: 2017-01-02.

[14] High-speed line-follower rules. http://www.robotgames.com/wp-content/
uploads/2012/01/WCRG-2012-High-Speed-Line-Follower-Rev0.pdf.
Accessed: 2017-01-02.

[15] Hour of code. https://hourofcode.com. Accessed: 2017-01-02.

81

http://amforth.sourceforge.net/
http://www.apache.org/licenses/LICENSE-2.0
https://www.arduino.cc/
https://groups.google.com/forum/?fromgroups=#!topic/blockly/rGMz3NnFVRI
https://groups.google.com/forum/?fromgroups=#!topic/blockly/rGMz3NnFVRI
https://libcheck.github.io/check/
https://libcheck.github.io/check/
https://www.codebug.org.uk
http://cpputest.github.io/
http://www.espruino.com/
http://www.fischertechnik.de
http://flex.sourceforge.net/
https://www.gnu.org/software/bison/
https://developers.google.com/blockly/
https://blockly-demo.appspot.com/static/demos/blockfactory/index.html
https://blockly-demo.appspot.com/static/demos/blockfactory/index.html
http://www.robotgames.com/wp-content/uploads/2012/01/WCRG-2012-High-Speed-Line-Follower-Rev0.pdf
http://www.robotgames.com/wp-content/uploads/2012/01/WCRG-2012-High-Speed-Line-Follower-Rev0.pdf
https://hourofcode.com

[16] Istrobot. http://www.robotika.sk/contest/2016/index.php?page=
rules&type=follower. Accessed: 2017-01-02.

[17] Lego Mindstorms. https://www.lego.com/en-au/mindstorms. Accessed:
2017-01-02.

[18] MIT Scratch. https://scratch.mit.edu/. Accessed: 2017-01-02.

[19] NanoVM - Java for the AVR. http://www.harbaum.org/till/nanovm/
index.shtml. Accessed: 2017-01-02.

[20] Open Roberta Lab. http://lab.open-roberta.org/. Accessed: 2017-01-
02.

[21] python-on-a-chip. https://code.google.com/archive/p/
python-on-a-chip/. Accessed: 2017-01-02.

[22] Wonder Workshop. https://www.makewonder.com/. Accessed: 2017-01-02.

[23] Wonder Workshop FAQ. https://help.makewonder.com/customer/
portal/questions/12615136-concurrent. Accessed: 2015-07-23.

[24] Wonder ~ Workshop — FAQ. https://help.makewonder.com/
customer/portal/questions/11310719-any-possibility-of-\
downloading-behavior-to-the-robots-directly-. Accessed: 2015-
07-23.

[25] Wonder Workshop FAQ. https://help.
makewonder.com/customer/portal/articles/
1394965-what-are-the-technical-specifications-of-the-robots-.
Accessed: 2015-07-23.

[26] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Com-
pilers: Principles, Techniques, and Tools (2nd Edition). Addison Wesley,
2006.

[27] ChaN. Desktop line following robot. http://elm-chan.org/works/ltc/
report.html. Accessed: 2017-01-02.

[28] Grinberg Dmitry. uJ - a Java VM for microcontrollers. http://dmitry.
gr/index.php?r=05.Projects&proj=12.%20uJ%20-%20a%20micro%20JVM.
Accessed: 2017-01-02.

[29] Benjamin Erb. Concurrent programming for scalable web architectures.
Diploma thesis, Institute of Distributed Systems, Ulm University, April 2012.
http://www.benjamin-erb.de/thesis Accessed: 2017-01-02.

82

http://www.robotika.sk/contest/2016/index.php?page=rules&type=follower
http://www.robotika.sk/contest/2016/index.php?page=rules&type=follower
https://www.lego.com/en-au/mindstorms
https://scratch.mit.edu/
http://www.harbaum.org/till/nanovm/index.shtml
http://www.harbaum.org/till/nanovm/index.shtml
http://lab.open-roberta.org/
https://code.google.com/archive/p/python-on-a-chip/
https://code.google.com/archive/p/python-on-a-chip/
https://www.makewonder.com/
https://help.makewonder.com/customer/portal/questions/12615136-concurrent
https://help.makewonder.com/customer/portal/questions/12615136-concurrent
https://help.makewonder.com/customer/portal/questions/11310719-any-possibility-of-downloading-behavior-to-the-robots-directly-
https://help.makewonder.com/customer/portal/questions/11310719-any-possibility-of-downloading-behavior-to-the-robots-directly-
https://help.makewonder.com/customer/portal/questions/11310719-any-possibility-of-downloading-behavior-to-the-robots-directly-
https://help.makewonder.com/customer/portal/articles/1394965-what-are-the-technical-specifications-of-the-robots-
https://help.makewonder.com/customer/portal/articles/1394965-what-are-the-technical-specifications-of-the-robots-
https://help.makewonder.com/customer/portal/articles/1394965-what-are-the-technical-specifications-of-the-robots-
http://elm-chan.org/works/ltc/report.html
http://elm-chan.org/works/ltc/report.html
http://dmitry.gr/index.php?r=05.Projects&proj=12.%20uJ%20-%20a%20micro%20JVM
http://dmitry.gr/index.php?r=05.Projects&proj=12.%20uJ%20-%20a%20micro%20JVM
http://www.benjamin-erb.de/thesis

[30]

[31]

32]

33]

[34]

135]

[36]

37]

38

[39]

[40]

[41]

[42]

Nathalie Gaertner and Bernard Thirion. Grafcet: an analysis pattern for
event driven real-time systems. In PLoP 1999 conference. Université de
Haute-Alsace, 1999. http://hillside.net/plop/plop99/proceedings/
gaertner/gaertner.pdf Accessed: 2017-01-02.

Mariana Goranova, Elena Kalcheva-Yovkova, and Stanimir Penkov. Task-
based asynchronous pattern with async and await. In International Scien-
tific Conference Computer Science’2015, pages 150-155. Technical University
of Sofia, 2015. http://e-university.tu-sofia.bg/e-publ/files/2245_
TAP.pdf Accessed: 2017-01-02.

James Hancock. When to Automate Testing A Cost-Benefit Analysis.
Testers” Network, 1998.

Wienand Tan. Computer science from the bottom up. http://wuw.
bottomupcs.com/scheduling.html. Accessed: 2017-01-02.

Charles Eric LaForest. Second-generation stack computer archi-
tecture. Bachelor Thesis, University of Waterloo, Canada, April
2007. http://fpgacpu.ca/stack/Second-Generation_Stack_Computer_
Architecture.pdf Accessed: 2017-01-02.

Cardelli Luca. Type systems. http://www.lucacardelli.name/Papers/
TypeSystems.pdf. Accessed: 2017-01-02.

Daniel J. Mosley and Bruce A. Posey. Just Enough Software Test Automa-
tion. Pearson Education, Inc., 2002.

Fraser Neil. Loops - google/blockly wiki. https://github.com/google/
blockly/wiki/Loops. Accessed: 2017-01-02.

Stanék Ondfej. PocketBot. http://www.ostan.cz/pocketBot/. Accessed:
2017-01-02.

Stanék Ondfej. PocketBot2. http://www.ostan.cz/PocketBot2/. Ac-
cessed: 2017-01-02.

Jr. Philip J. Koopman. Stack Computers: the new wave. Ellis Hor-
wood, 1989. http://users.ece.cmu.edu/ koopman/stack_computers/
index.html Accessed: 2017-01-02.

Asaftei Robert. http://twinsen.info/project-details.php?id=2. Ac-
cessed: 2017-01-02.

Mark Shannon and Chris Bailey. Register allocation for stack machines. In
22nd EuroForth Conference, pages 13-20, 2006. http://www.complang.
tuwien.ac.at/anton/euroforth2006/papers/shannon.pdf Accessed
2017-01-02.

83

http://hillside.net/plop/plop99/proceedings/gaertner/gaertner.pdf
http://hillside.net/plop/plop99/proceedings/gaertner/gaertner.pdf
http://e-university.tu-sofia.bg/e-publ/files/2245_TAP.pdf
http://e-university.tu-sofia.bg/e-publ/files/2245_TAP.pdf
http://www.bottomupcs.com/scheduling.html
http://www.bottomupcs.com/scheduling.html
http://fpgacpu.ca/stack/Second-Generation_Stack_Computer_Architecture.pdf
http://fpgacpu.ca/stack/Second-Generation_Stack_Computer_Architecture.pdf
http://www.lucacardelli.name/Papers/TypeSystems.pdf
http://www.lucacardelli.name/Papers/TypeSystems.pdf
https://github.com/google/blockly/wiki/Loops
https://github.com/google/blockly/wiki/Loops
http://www.ostan.cz/pocketBot/
http://www.ostan.cz/PocketBot2/
http://users.ece.cmu.edu/~koopman/stack_computers/index.html
http://users.ece.cmu.edu/~koopman/stack_computers/index.html
http://twinsen.info/project-details.php?id=2
http://www.complang.tuwien.ac.at/anton/euroforth2006/papers/shannon.pdf
http://www.complang.tuwien.ac.at/anton/euroforth2006/papers/shannon.pdf

[43] Doc¢ekal Tomas. Fuzee linefollower. http://www.bodie.xf.cz/files/
fuzee.htm. Accessed: 2017-01-02.

[44] Renxin Wang. MY-BASIC. https://github.com/paladin-t/my_basic.
Accessed: 2017-01-02.

[45] Wikipedia. Position-independent code. https://en.wikipedia.org/wiki/
Position-independent_code. Accessed: 2017-01-02.

[46] Wikipedia. Saturation arithmetics. https://en.wikipedia.org/wiki/
Saturation_arithmetic. Accessed: 2017-01-02.

[47] Wikipedia. Two’s complement. https://en.wikipedia.org/wiki/Two}
27s_complement. Accessed: 2017-01-02.

[48] Wikipedia. Variable shadowing. https://en.wikipedia.org/wiki/
Variable_shadowing. Accessed: 2017-01-02.

[49] Clifford Wolf. Embedvm: a small embeddable virtual machine for microcon-
trollers. http://www.clifford.at/embedvm/. Accessed: 2017-01-02.

[50] Hanzalek Zdenék. Petriho sité a GRAFCET. http://labe.felk.cvut.
cz/"tkrajnik/sdu/data/K333/Hanz01.PN.automatizace.pdf Accessed:
2017-01-02.

84

http://www.bodie.xf.cz/files/fuzee.htm
http://www.bodie.xf.cz/files/fuzee.htm
https://github.com/paladin-t/my_basic
https://en.wikipedia.org/wiki/Position-independent_code
https://en.wikipedia.org/wiki/Position-independent_code
https://en.wikipedia.org/wiki/Saturation_arithmetic
https://en.wikipedia.org/wiki/Saturation_arithmetic
https://en.wikipedia.org/wiki/Two%27s_complement
https://en.wikipedia.org/wiki/Two%27s_complement
https://en.wikipedia.org/wiki/Variable_shadowing
https://en.wikipedia.org/wiki/Variable_shadowing
http://www.clifford.at/embedvm/
http://labe.felk.cvut.cz/~tkrajnik/sdu/data/K333/Hanz01.PN.automatizace.pdf
http://labe.felk.cvut.cz/~tkrajnik/sdu/data/K333/Hanz01.PN.automatizace.pdf

List of Abbreviations

ASCIIT American Standard Code for Information Interchange
AST Abstract Syntax Tree

CPU Central Processing Unit

DS Data Stack

DSP Digital Signal Processing

EEPROM Electrically Erasable Programmable Read-Only Memory

FP Frame Pointer

FPU Floating Point Unit

GCC GNU Compiler Collection

IDE Integrated Development Environment

Input/Output Virtual Machine

JVM Java Virtual Machine

LED Light-Emitting Diode

MCU Microcontroller Unit

PC Program Counter

RISC Reduced Instruction Set Computing
RPN Reverse Polish Notation
SRAM Static Random Access Memory
TDD Test-driven Development

VM Virtual Machine

WCET Worst-case Execution Time
XML Extensible Markup Language

85

	Introduction
	Motivation
	Organization of the Thesis

	I Analysis
	Existing Solutions
	Wonder Workshop
	CodeBug
	Event-driven Programming

	Visual Programming Languages
	Google Blockly
	MIT Scratch

	Target Robotic Platform
	Feature Overview
	Resources Analysis
	Program Space
	Operation Memory
	Performance

	Functional Specification
	Free Movement
	Line Following
	Signalization LEDs
	Button

	Virtual Machines and Interpreters
	Implementations for Embedded systems
	EmbedVM
	NanoVM
	AmForth

	Stack Computers
	Reverse Polish Notation
	Forth Programming Language

	Test Automation
	Testing Frameworks
	CppUTest
	Check

	II Design
	Visual Programming Language
	Front-end
	Data Types
	Universal Data Type
	Collections

	Concurrency and Synchronization

	Testing
	Unit Testing
	Executing Tests on Target Architecture

	Integration Tests

	III Implementation
	Virtual Machine (VM)
	Scheduling and Preemption
	Virtual Memory Map
	Program Space
	Stacks
	RAM

	Input/Output
	Shared Memory (Register File)
	System Calls
	Synchronization on Events
	Movement Commands

	Instruction Set
	Push Immediate
	Operators
	Jumps
	Conditional Branches
	Memory Addressing
	Data Stack Manipulation
	Subroutines

	Code Generation
	Intermediate Assembly Language
	Bytecode
	Library Functions
	Generating Code
	Expressions
	Variables
	Conditional Statements
	Loops
	Arrays
	List
	Functions and Procedures

	Integration Test Suite
	Conclusion
	Text Summary
	Future Works

	Bibliography
	List of Abbreviations

