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Abstract: Understanding the mechanisms by which the brain processes and
transmits information is a major goal of computational neuroscience. Neurons
transform stimuli into sequences of action potentials, but the efficiency of this
“neuronal code” is not fully understood. While spike count or temporal patterns
alone may partially explain stimuli encoding, combining both features provides a
more comprehensive representation.

In my thesis, I investigated information transmission in neuronal systems from
the rate coding perspective by focusing on the instantaneous firing rate, which
integrates rate coding and temporal coding features. Using classical statistical
models of neural activity, I found that dispersion measures of the inter-spike
intervals can differ significantly from the instantaneous rate dispersion measures in
a model-dependent manner. Applying our findings to experimental data revealed
that this approach offers deeper insights into the information-encoding mechanisms
of neurons. Building on this foundation, I investigated the influence of biophysical
properties on rate coding. Basic integrate-and-fire models lack firing rate and
membrane voltage saturation, which is inconsistent with observed neural activity.
Incorporating reversal potentials increased the slope of the “firing rate vs. input”
curve, but did not achieve saturation. Extending the model to include two nodes
(dendritic and somatic) effectively limited both voltage and firing rate, aligning
the model more closely with biological observations.

In order to understand the rate coding principles that govern information transmis-
sion in neuronal systems, I studied how the olfactory receptor neurons (ORNSs) of
the male moth Agrotis ipsilon optimize information transmission under challenging
sensory conditions. Analyzing responses to pheromones amid varying concent-
rations of volatile plant compounds (VPCs) showed that these backgrounds can
suppress neural responses in pheromone-responsive ORNs but also increase the
information transmitted per spike. This study highlights ORNs’ optimization me-
chanisms for navigating complex olfactory landscapes, enabling insects to detect
crucial pheromonal cues despite environmental interference.

Extending my research from neuron populations to neural networks, I investigated
the effect of spike frequency adaptation (SFA) on neural variability quenching in
cortical networks. Using a model with excitatory and inhibitory subpopulations, I
demonstrated that SFA mechanisms significantly influence trial-to-trial variability,
crucial for efficient information transmission.

Overall, my work provides a comprehensive analysis of information transmission
from the perspective of rate coding, progressing from single neuron to complex
neural networks. These findings enhance our understanding of the underlying
mechanisms of neural coding, offering refined models that better reflect biological
realities.

Keywords: Neural coding, variability, randomness, olfaction, rate coding
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1. Introduction

Neurons, the fundamental units of the nervous system, exhibit a specialized
structure tailored to transmit information throughout the body. A typical neuron
consists of a cell body (soma), dendrites, and an axon. The soma houses the
nucleus and metabolic machinery necessary for the neuron’s survival and function.
Dendrites extend from the soma-like branches, receiving signals from other
neurons and conducting them towards the cell body. The axon, a long, slender
projection, carries electrical impulses away from the soma to other neurons,
muscles, or glands. At the axon terminals, neurotransmitters are released to
communicate with target cells across synapses. Action potentials, or spikes, are
the fundamental mechanisms through which neurons send signals. These are
sudden changes in the electrical charge of the neuron’s membrane, initiated by the
influx of sodium ions when the membrane potential reaches a certain threshold
(Fig. 1A). This creates a rapid depolarization, followed by a repolarization phase,
where potassium ions exit the cell, restoring the resting membrane potential. This
process propagates along the axon, enabling the neuron to transmit information
rapidly and efficiently over long distances. Action potentials are all-or-none events,
ensuring clear, consistent signal transmission regardless of the stimulus intensity,
once the threshold is surpassed (Fig. 1B).
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Figure 1: Neuronal action potentials and spike train visualization. A
This plot illustrates the extracellular recording of the membrane potential of the
olfactory receptor neuron of the noctuid moth Agrotis ipsilon. Each peak
represents the influx of sodium ions triggering an action potential, followed by
the efflux of potassium ions to restore the resting membrane potential. B
Displayed below the membrane potential plot, the raster plot highlights the
occurrence times of action potentials, or spikes, confirming the all-or-none nature
of these events. Each vertical line corresponds to a single spiking event,
showcasing the spike train. The data used in the figures in this section were
obtained courtesy of our colleagues at INRAE, France.



The shape of the action potentials typically does not differ much (Dayan and
Abbott, 2005). Moreover, their duration is relatively short compared to other
timescales of the system. Therefore, in order to analyze the information that the
neuron is sending further on, it is sufficient to look at the occurrence times of action
potentials as their defining quality. A sequence of action potentials generated by a
single neuron is called a “spike train”. A spike train can be recorded by placing an
electrode in the soma or close to it (Safronov et al., 2000). It remains a subject of
research how specific and varied information is encoded within sequences of these
seemingly indistinguishable spikes. Measures to quantify neural data from different
perspectives are an active area of research (Perkel, 1968; Victor and Purpura,
1997; Rieke et al., 1996; Buracas and Albright, 1999; Nemenman et al., 2004),
however, most of the proposed encoding schemes can be grouped into the following
two categories: whether the information is embedded in the precise timing of the
spikes (temporal code) or in their frequency (rate code).

The classic rate coding paradigm suggests that the neurons encode information

through the average number of spikes sent along the axon per observation time
window (also called the firing rate) (Dayan and Abbott, 2005). The description of
the neuronal activity through the rate coding scheme is relatively straightforward
and is characterized by the firing rate. Early studies demonstrated that the firing
rate of neurons could vary significantly in response to the changes in sensory
inputs. One of the foundational studies in neuroscience, conducted by Adrian and
Zotterman (1926), demonstrated that the firing rate of sensory neurons in a frog
changes in direct proportion to the intensity of the stimulus. However, subsequent
research reveals that this relationship is generally non-linear (Kandel et al., 1991).
Hubel and Wiesel (1962) found that the neurons in the visual cortex encode
various stimulus features like orientation, direction, and spatial frequency through
modulations in their firing rate. In a pivotal study, Georgopoulos et al. (1986)
established that the firing rate of the motor cortex neurons of rhesus monkeys
varied predictably with the direction of arm movement. These findings support
the rate coding hypothesis that neurons could encode various aspects of different
stimuli through a variation in their firing rate.
Subsequent research has demonstrated that neurons can encode information
without necessarily altering the mean firing rate in response to a stimulus (Perkel,
1968; Gerstner and Kistler, 2002; Rigotti et al., 2013; Dettner et al., 2016). This
has prompted further exploration into other coding schemes, such as temporal
coding.

The temporal coding hypothesis states that the timing of individual spikes
relative to each other and to external events is also employed in the embedding of
neural information in the spike train (Theunissen and Miller, 1995). Perkel (1968)
gives a classic overview of temporal coding. One example of temporal coding is
seen in the phase locking observed in the auditory system, where neurons fire at a
particular phase of a sound wave, thus encoding its frequency without necessarily
changing the overall firing rate (Koppl, 1997). Another example is spike timing-
dependent plasticity (STDP), where the precise timing of spikes between two
neurons can lead to the strengthening or weakening of synapses, thereby encoding
information through changes in synaptic strength rather than through changes in
firing rate (Dan and Poo, 2006). Temporal pairwise spike correlation has been re-
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ported to capture information transmission in single neurons (Dettner et al., 2016).

Over the last century, the attempts to accurately measure and interpret firing
rates have led to the development of numerous methods, reflecting advances in
both theoretical frameworks and experimental techniques. These methods range
from simple counting of spikes within a fixed window (Gerstein and Kiang, 1960)
to more complex approaches that consider the temporal dynamics of firing (Omi
and Shinomoto, 2011; Shimazaki and Shinomoto, 2010), accommodating the often
non-stationary nature of neural activity.

It is challenging to determine the time-dependent firing rate from a few spike
trains, therefore most of the established methods use trial averaging (Fig. 3),
however, averaging might phase out some of the important temporal features
(Nawrot et al., 1999; Baker et al., 2001; Yu et al., 2005), thus extracting the
time-dependent firing rate from limited data remains a persistent problem. We
briefly review the established methods of firing rate estimation developed over the
years, from classical to more recent ones in Attachment I.

Significant advances have been made in understanding and estimating the
firing rate in non-stationary processes, where neural firing patterns change over
time. However, challenges in neural coding persist. Transitioning to stationary
processes, where the statistical properties of the firing rate are assumed to remain
constant over time (Moore et al., 1966), presents its own set of difficulties. Despite
the apparent simplicity of stationary processes, accurately estimating the firing
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Figure 2: Response variability in spontaneously active neuron
population. The traces represent the spontaneous electrical activity recorded
from the nine separate olfactory receptor neurons of the noctuid moth Agrotis
ipsilon over 10 seconds. This spontaneous activity reflects the inherent
heterogeneity in neuronal activity, demonstrating a range of firing patterns and
membrane potential oscillations that occur even in the absence of olfactory input.
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Figure 3: Neuronal response variability to identical stimulus. Olfactory
receptor neurons of noctuid moth Agrotis ipsilon exhibit variable responses to the
identical stimulus profile (shown with a grey background). Individual responses
are depicted in light blue, illustrating the range of firing rates across trials,
whereas aggregate behavior is highlighted in dark blue.

rate requires careful consideration of various factors, such as the selection of
appropriate time windows for spike counting and the resolution of temporal
binning, which can substantially influence the perceived firing rate (Shimazaki
and Shinomoto, 2007). Moreover, the inherent variability in neuronal firing—even
within what is considered stationary activity—mnecessitates robust statistical
methods for signal discrimination from background noise (Stein, 1965; Kostal
et al., 2007; Nawrot, 2010). This complexity is increased by the physiological
realities of neuronal behavior, where even supposedly steady-state firing rates are
subject to underlying fluctuations driven by various factors, from synaptic inputs
to intrinsic cellular mechanisms (Tomko and Crapper, 1974).

To overcome some of these challenges the concept of instantaneous firing
rate has gained popularity as an alternative to the classically defined firing rate
(Longtin and St-Hilaire, 2000; Rospars et al., 2003; Lemon and Smith, 2006;
Chacron et al., 2007; Miller et al., 2014; Sinha et al., 2021). Instantaneous firing
rate, defined as the reciprocal value of the duration of the interval between two
spikes, can offer a more detailed and dynamic account of neural activity (Kostal
et al., 2018). Despite being used in many studies as the alternative to firing rate,
there are several differences between the “instantaneous firing rate” and “firing
rate”, the key difference being that the mean instantaneous firing rate is typically
higher than the mean firing rate. In Kostal et al. (2018), the authors demonstrate
that the statistical properties of the instantaneous firing rate vary significantly
depending on the timing of observation relative to neuronal spikes. Under the
specific framework of equilibrium renewal processes, the mean instantaneous
firing rate is equal to the mean firing rate. Our work in Attachment II builds on
this by exploring the stochastic characteristics of the instantaneous firing rate,



revealing that it can uncover aspects of neural data that may not be evident from
inter-spike interval (ISI) analysis alone. Furthermore, the instantaneous firing
rate is instrumental in bridging the conceptual gap between rate coding and
temporal coding paradigms, offering a more comprehensive understanding of
neural information processing.

While the rate coding paradigm has dominated the field, enabling significant
advancements in understanding neural communication, it is critical to address the
complexity and limitations of current models in capturing the true essence of
neuronal behavior. The original Hodgkin-Huxley model (Hodgkin and Huxley,
1952) neglects the stochastic nature of ion channel gating or the anatomical
structure of the neuron. Subsequent studies have tried to fill these gaps (Fox,
1997; Schneidman et al., 1998; Li et al., 2010). Models like the FitzHugh-Nagumo
model (Fitzhugh, 1961) and the Rall model (Rall, 1962) have each tried to focus
on different aspects of neuronal dynamics, the former focuses on the generation
and propagation of action potential while the latter focuses on the properties
of dendrites. These basic models also do not consider the effect of synaptic
input on neuronal dynamics, a limitation that was addressed in Destexhe et al.
(1994). The integrate-and-fire (IF') model proposed by Lapicque (2007) focuses
on the integration of synaptic inputs and the generation of action potentials
once a threshold is exceeded. Over time various versions of the IF model have
been developed, that included stochastic activity in the input current (Gerstein
and Mandelbrot, 1964; Stein, 1965, 1967), incorporation of the dependence of
excitatory and inhibitory postsynaptic potential amplitudes on the membrane
potential relative to their respective reversal potentials (Tuckwell, 1978). Many
of these basic models often assume neurons can fire at infinitely high rates
in response to increasing stimulus intensity. However, this assumption does
not align with observed biological constraints, such as the absolute refractory
period, which imposes a natural limit on the firing frequency of neurons. These
limitations highlight the necessity for models that can inherently incorporate
mechanisms for saturation of the firing frequency, reflecting more accurately
the physiological constraints observed in real neuronal systems. The research
presented in Attachment III addresses this gap by introducing and comparing
four simple neural models, including both single-point and two-point versions
of the leaky integrate-and-fire (LIF) model, with and without consideration of
reversal potentials.

Substantial progress has been made in understanding neuronal coding through
the analysis of action potentials and firing rates in neurons. These principles also
apply to more specialized contexts, such as olfactory receptor neurons (ORNSs)
in insects. ORNs are essential in processing odor signals, with their diverse
sensitivities and complex response properties forming the basis of odor coding
(Yao et al., 2005). Insects rely on these cues for locating food sources, mates, and
suitable habitats, making the study of ORNs essential for understanding insect
behavior and ecology.

The complexity of neuronal coding in ORNs becomes particularly apparent when
considering the role of volatile plant compounds (VPCs) in the environment. These
compounds can significantly influence the firing patterns of ORNs, thus affecting
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Figure 4: Inhibitory effect of volatile plant compounds (VPCs) on the
firing rate of olfactory receptor neurons (ORNSs) in Agrotis ipsilon
moths. This graph illustrates the modulatory influence of (Z)-3-hexenyl acetate,
a common VPC, on the firing patterns of ORNs sensitive to sex pheromones in
Agrotis ipsilon moths. The control (grey line) demonstrates the baseline firing
rate of the ORNs in the absence of VPCs, while the presence of VPCs (blue line)
shows a notable suppression in neuronal activity. The shaded areas indicate the
periods during which the pheromone stimulus is applied. Below, the
corresponding raster plot provides a spike train representation under the VPC
background.

an insect’s ability to detect and respond to crucial olfactory signals. Studies have
demonstrated that VPC backgrounds can alter the response to pheromones in
ORNSs (Conchou et al., 2020, 2021; Rangan, 2012), affecting both qualitative and
quantitative coding, as well as increasing response variability (Dupuy et al., 2017).
The addition of VPCs has been observed to suppress response in pheromone-
responsive ORNs, suggesting a complex interaction between VPCs and pheromone
signaling (Rouyar et al., 2015). Furthermore, VPCs like linalool, geraniol, or
(Z)-3-hexenyl acetate have been found to suppress the response of specific ORNS;,
indicating a suppressive effect at the level of the pheromone receptor protein
(Vandroux et al., 2022), as shown in Fig. 4. Nonetheless, there is a significant
gap in understanding how VPCs may influence the information transmission
capabilities of these neurons. Our work in Attachment IV examines how different
concentrations of VPCs affect the coding efficiency of pheromone-responsive ORNs
in male moths of the Agrotis ipsilon species. Through a series of experiments,
we demonstrate that higher concentrations of specific VPCs can facilitate the
encoding efficiency of pheromone signals by ORNs, in terms of information per
evoked spike.

Another aspect of rate coding, that has been the subject of intensive research
is the concept of variability. Studies have shown that neural variability can be
categorized into stimulus-evoked variability, reflecting trial-to-trial fluctuations in
response characteristics (Fig. 3), and ongoing variability, representing spontaneous
fluctuations in neural activity (Arazi et al., 2017). Furthermore, prestimulus

8



neural variability is shown to be higher compared to poststimulus variability,
suggesting that sensory input reduces ongoing neural variability, a phenomenon
known as variability quenching (Monier et al., 2003; Churchland et al., 2006,
2010). In our article in Attachment V, we investigate the mechanisms underlying
neural variability quenching. Spike frequency adaptation (SFA), which refers to the
decrease of the firing rate of a neuron in response to sustained input, has been used
to create more realistic neural networks. We investigate how different mechanisms
of SFA influence the quenching of neural response variability. Using a cortical model
with excitatory and inhibitory neuron subpopulations, we demonstrate that SFA
implemented through dynamic firing threshold decreases trial-to-trial variability,
whereas SFA through after-hyperpolarization currents increases variability.

In the following chapters, I provide an introduction to the theoretical framework
for the neural coding problem, point process models of neural activity, biophysical
models of neural activity, insect olfaction, and information-theoretical methods
used to study it. More detailed information is provided in the attached manuscripts.
In chapter 3, I provide a summary of the main results and a discussion of the
attached work.
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2. Theory and methods

2.1 Firing rate and efficient coding

The concept of firing rate has been central to the field of computational neuros-
cience, however, determining the firing rate from neuronal spike data introduces
several challenges. The most commonly accepted definition of firing rate is based
on counting the number of spikes in a given time interval and dividing it by
the duration of the time interval, however, this approach assumes the stationa-
rity of the underlying counting process of spikes. This assumption is rarely met
in dynamic experimental environments (Rieke et al., 1996; Fenton and Muller,
1998). The task of accurately determining time-dependent firing rates becomes
significantly more complex with limited data, a common scenario in neuroscience
research. Sparse or incomplete spike records can result in unreliable estimates of
firing rate, therefore most of the established methods use trial averaging, however,
averaging might phase out some of the important temporal features (Dayan and
Abbott, 2005; Kostal et al., 2007). Furthermore, the temporal dynamics of neu-
ral activity, characterized by bursts of rapid firing interspersed with periods of
silence or low activity, add another layer of complexity to firing rate analysis.
Traditional methods that average spikes over extended intervals may overlook
these nuanced patterns, potentially omitting crucial information encoded in the
temporal structure of the spike train (Keat et al., 2001; Fairhall et al., 2001). Thus
extracting the time-dependent firing rate from limited data remains a persistent
problem.

Another critical challenge arises from the heterogeneity of neuronal popu-
lations. Neurons within a network can exhibit a wide range of firing behaviors,
influenced by their intrinsic properties and the complex dynamics of synaptic
inputs (van Vreeswijk and Sompolinsky, 1996; Sekirnjak and du Lac, 2002). This
diversity means that a single analytical approach to determine the firing rate may
not be universally applicable across different neuron types or functional states,
highlighting the need for more sophisticated, adaptable methods to accurately
capture the dynamics of neuronal communication (Paninski, 2004).

The concept of the instantaneous firing rate addresses some of these challenges
by offering a refined analysis tool that provides an instantaneous view of neuronal
activity. The definition of instantaneous firing rate is based on the calculation
of the inverse of the average inter-spike interval (ISI). Firing rate defined this
way is used both in experimental and theoretical studies (Burkitt and Clark,
2000; Van Rullen and Thorpe, 2001) and it is identical to count-based firing
rate under certain conditions. Since the instantaneous firing rate is derived from
the inverse of the ISI, it is sensitive to the time-dependent changes in neural
activity and captures the underlying fluctuations well. This approach allows for
a more detailed examination of the dynamics of neural firing, accommodating
the variability, and complexity inherent in neuronal processes. By focusing on the
probability distribution of spikes at each moment, the instantaneous firing rate
method offers a way to navigate these challenges.
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2.1.1 Classical firing rate

Spike trains can be modeled as stochastic processes. The class of stochastic
processes whose realization consists of a sequence of point events in time is called
stochastic point process (Cox and Miller, 1965). A spike train, in the context of
neural activity, can be described as a series of discrete events (spikes) that indicate
when a neuron fires. In general, there are two ways of describing a spike train:

e Spike time representation: A spike train can be depicted by the specific
times at which each individual spike occurs, typically denoted as X7, X, . ...
This representation provides a sequence of spikes based on the exact moment
of neuronal firing.

e ISI representation: Alternatively, a spike train can be described through
the ISIs, defined as T; = X;;; — X;. This approach focuses on the time
elapsed between consecutive spikes, which is crucial for understanding the
temporal dynamics of the spike train.

A process is termed stationary when its statistical properties, such as the pro-
bability distributions of spike counts in various intervals, remain constant over
time. A specific class of stationary point processes is the renewal point process,
where the intervals between spikes (7;) are modeled as independent and identically
distributed (i.i.d.) variables. Renewal processes, with their probability distribution
function fr are commonly used to model spontaneously active cells, emphasizing
the independence of successive spikes (Tuckwell, 2010).

In renewal processes, the firing rate can be estimated by dividing the number of
spikes N (w) in a time window [0, w] by the width of the window w. The intensity
A of the point process, which represents the expected rate of spikes per unit time,

is defined as: E(N(w)) .
w
li = =\ 2.1
d T T BT (2.1)

When w is finite, the above equation holds true for renewal processes only if the
origin time ty is not related to the point process realization. The corresponding
renewal process is referred to as equilibrium renewal process, as opposed to the
ordinary renewal process which starts from an arbitrary spiking event (Cox and
Miller, 1965).

When the firing rate varies with time or depends on the history of the process, the
process becomes non-stationary. This complicates the analysis but often provides
richer insights into the dynamic nature of neural activity (Johnson, 1996). Below
are some well-established methods to estimate the firing rate for non-stationary
processes:

Frequencygram method uses the reciprocal values of ISIs to calculate the
instantaneous firing rate, assuming that the spike rate varies significantly
over short periods. This method is exemplified by its application in studies
such as Bessou et al. (1968), who initially applied these principles in their
experiments.

Time histograms segment the observation period into bins, averaging the
spikes within each bin to approximate the firing rate (Johnson, 1978). This

12



method’s efficiency in capturing the temporal variations of the firing rate is
heavily dependent on choosing an appropriate bin size (Shinomoto, 2010).

Kernel smoothing techniques provide a continuous estimate of firing rates
by convolving spike train data with a kernel function, such as Gaussian,
to better handle variations compared to simple binning (Parzen, 1962;
Silverman, 1986).

Optimized kernel smoothing refines this approach by adjusting the
kernel’s bandwidth, either globally or locally, enhancing the fit to data
characteristics and minimizing estimation errors. Nawrot et al. (1999) and
Cherif et al. (2008) contribute significantly to this method, focusing on the
optimization of bandwidth to improve the accuracy of firing rate estimates.

Gaussian process firing rate models the firing rate as a Gaussian pro-
cess, providing a robust framework for handling variability in firing rates
over time and across trials by employing inhomogeneous gamma interval
processes Barbieri et al. (2001). This probabilistic approach is supported
by Cunningham et al. (2007), who apply it within the context of neural
prosthetic decoding.

Bayesian adaptive regression splines fit a spline model to spike data
using a Bayesian approach to determine the number and positions of knots
optimally. Dimatteo et al. (2001) demonstrate the application of BARS,
showing its effectiveness in capturing rapid changes in firing rate while
smoothing out noise.

Bayesian binning combines features of binning and smoothing by using
variable bin widths, adapted based on the data (Endres et al., 2007). This
method balances flexibility in capturing the dynamics of firing rates with
computational simplicity.

Bayesian adaptive kernel smoothing (BAKS) integrates kernel smoo-
thing with adaptive techniques to dynamically optimize bandwidth based on
the observed data (Ahmadi et al., 2018). This sophisticated method treats
bandwidth as a random variable, continually updating its distribution based
on the observed spikes to capture true firing rates accurately. Ahmadi et al.
(2018) demonstrate the application of BAKS in both simulated and real
neural data scenarios.

A more detailed overview of these methods is given in Tomar (2019).

2.1.2 Instantaneous firing rate

Instead of using the classically defined firing rate, researchers have often used
“instantaneous firing rate” which is typically defined as the inverse of the ISIs
(1/T) (Pauluis and Baker, 2000). Examples of this can be found in theoretical
studies like Burkitt and Clark (2000), Van Rullen and Thorpe (2001) and Harris
and Waddington (2012) and in experimental studies like Martinez-Conde et al.
(2000), Rospars et al. (2003) and Lemon and Smith (2006).

The advantage in using instantaneous rate over the count-based defined firing rate
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lies in the fact that instantaneous rate is based on ISIs and ISI statistics is easily
available as compared to count-based statistics, however, as proven in Lansky
et al. (2004), the mean instantaneous firing rate is higher than or equal to the

mean firing rate,
1 1
E(=]|>== 2.2
(7) > & 2

with equality if all the ISIs are of the same length. This scenario is rare in actual
neuronal data, where variability in ISI length is the norm due to the stochastic
nature of neuronal firing.

The discrepancy noted in Eq. (2.2) actually achieves equality under a specific
condition when the “time instant” at which the instantaneous rate is assessed
does not typically align with the occurrence of a spike. As detailed in Kostal et al.
(2018), the selection of the time instant for measuring the instantaneous rate is
determined in relation to an “external” time frame, which is consistent across
different trials and asynchronous with respect to individual spike train realizations.
Consequently, this results in the probabilities of observed ISIs, denoted as T,
being proportional to their lengths, expressed as T~ At fr(t). Here, \ represents
the mean firing rate calculated as the mean inverse of these length-biased ISIs.
Furthermore, in this setup, the instantaneous rate R =1/ T is treated as a random
variable with its probability density function (pdf) described by:

fR(r):IE(T) PEE

For a comprehensive breakdown of the mathematical derivations and assumptions
leading to this formulation, please refer to Kostal et al. (2018). From the above
equation, we can conclude that

E(%) CE(R) = - =\ (2.4)

We focused on the case of the equilibrium renewal process and analyzed the
variability and randomness of the instantaneous rate for commonly used renewal
point process models of stationary neural activity (Tomar and Kostal, 2021).

2.2 Variability and randomness quantification

2.2.1 Variability quantification

Understanding the variability in neural activity is essential for comprehending
the complexities of neural codes and the mechanisms underlying brain function.
Whether it be the variability of ISIs or firing rate, this variability is not necessarily
noise or a secondary effect of neural processing, rather it is integral to the encoding
and transmission of information within brain regions (Perkel, 1968).

The factors influencing the variability in ISIs can be several, like intrinsic
properties of neurons, synaptic inputs, and the dynamics of the neural network.
Intrinsic neuronal properties, such as the distribution of ion channels and firing
thresholds, contribute to the variability in firing patterns (Hodgkin and Huxley,
1952). Synaptic inputs from other neurons, which can be either excitatory or
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inhibitory, introduce another layer of complexity and variability to the timing of
action potentials (Shadlen and Newsome, 1998). The state of the neural networks
and the connection between the neurons also significantly impact the variability
in neural activity (Amit and Brunel, 1997).

Decoding and understanding the nature and source of variability in neural activity
is an important aspect of understanding the information transmission among
neurons. To quantitatively assess the variability in neural firing patterns, especially
the variability in ISIs, researchers utilize various measures. In the analysis of
[SIs, described by a continuous positive random variable T', one of the primary
statistical measures used is the standard deviation o (7). This measure is defined
mathematically as:

o(T) = VE(IT - E(T)]), (2.5)

where E(T") represents the expected value of T'. To provide a relative measure of
dispersion that is independent of the units of T, the coefficient of variation Cy (7"
is employed,

o(T)

Cy(T) = == = Xo(T 2.6
with A = 1/E(T"). The coefficient of variation Cy (7T') is a dimensionless quantity,
making it particularly useful for comparing the variability of ISI distributions that
have different means, unlike the standard deviation which is unit-dependent. Ex-
panding on the concept of variability, the standard deviation for the instantaneous
rate R can be derived from the pdf given earlier:

o(R) = /AE(1/T) — 22, (2.7)

where A represents the mean firing rate. The corresponding relative dispersion
measure for the instantaneous rate, known as the coefficient of variation of the
instantaneous rate Cy (R) is calculated as:

Cy(R) = —1. (2.8)

These formulations of Cy(7") and Cy (R) are useful in quantifying how dispersed
the values are around the mean of a distribution, offering a normalized perspective
that is particularly advantageous when comparing distributions with different
mean values. However, it is crucial to acknowledge that while o or C'y, effectively
capture the spread of a distribution, they do not encompass all aspects of variability.
Specifically, they do not provide information on the randomness or predictability
of outcomes, nor do they reflect differences in distributions beyond the second
moment, such as skewness and kurtosis. Thus, while these metrics are informative
for assessing variability and dispersion, they may not fully characterize the complex
behavior observed in neuronal spike trains, where higher moments and non-linear
dynamics can also be significant (Kostal et al., 2007).

Trial-to-trial variability quantification

To compare the trial-to-trial variability of two neurons with the same mean spike
count E[N(w)], we can use the variance of the observed spikes Var[N(w)]. A
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relative dispersion measure, called the Fano factor, for trial-to-trial variability can
be obtained by scaling the variance with the mean of the spike counts:

_ Var[N (w)]

= E N W)

(2.9)

A Fano Factor of one indicates that the spike counts follow a Poisson distribution
(the variance equals the mean), typical of random processes. Trial-to-trial variability
can also be estimated using Cy (T') for a steady-state spike train, in which case,

FFy,=CV? (2.10)

where F'Fy is the Fano factor calculated from the infinite length time window
(w — 400).

2.2.2 Randomness quantification

To further understand the concept of randomness within spike trains, the field of
computational neuroscience has turned to entropy-based measures, specifically
differential entropy, as described by Shannon (1948). Differential entropy h for a
continuous random variable X with pdf fx is defined by the equation:

h(fx) :—/fx(a:) In fx (2)dz. (2.11)

This measure quantifies the uncertainty or randomness inherent in the outcomes of
the variable. However, h(fx) on its own cannot serve as a comprehensive measure
of randomness, as it can yield both positive and negative values depending on the
scale of the random variable X. To address this limitation, Kostal and Lansky
(2015) introduced an entropy-based dispersion coefficient (o), which normalizes
the entropy value to create a more stable and interpretable metric:

on =exp(h(fx) —1). (2.12)

This coefficient utilizes the asymptotic equipartition property, which suggests that
for a large number of independent and identically distributed random variables,
the mean of their natural logarithms approaches the differential entropy (Kostal
et al., 2013).

Building upon these entropy measures, the relative entropy-based measure of
dispersion (Y, analogously to the coefficient of variation C'y, for standard deviation,
is given by

Ch = /\O'h. (213)
A significant attribute of C}, is that its maximum value is 1. This occurs specifically
when the pdf fr is an exponential distribution, reflecting the maximum entropy

state among all distributions with a given mean, thus representing the highest
degree of randomness possible under those conditions.

16



2.3 Renewal point process models of steady state
neuronal activity

2.3.1 Gamma distribution

The gamma distribution is commonly used in experimental data analysis, particu-
larly in neuroscience, to describe the distribution of inter-spike intervals (ISIs)
(Baker and Lemon, 2000; Shimokawa et al., 2010; Chen and Nitz, 2011; Xue et al.,
2013; Li et al., 2015). This distribution has been found to be a suitable descriptor
for the stochastic nature of ISIs in spike data analysis (Ikeda and Manton, 2009).
The pdf of the Gamma distribution is mathematically defined as follows:

bataflefbt
t) = ——— 2.14
fT( ) F(CL) ) ( )
where I'(2) = OOO r*~le7®dz denotes the gamma function, and a > 0, b > 0 serve

as the shape and rate parameters respectively. These parameters are crucial as
they determine the skewness and scale of the distribution, allowing it to accurately
model a broad spectrum of ISI patterns observed in neural activities (Dayan and
Abbott, 2005). The mean firing rate (\) and the coefficient of variation (Cy (7))
of the gamma distribution are given by:

b 1

A= Cy(T) = 7 (2.15)

Using these parameters, the entropy of the ISI distribution can be expressed as:

h(fr) = log (P(b) at+(1—a)y (a)>’ (2.16)

where ¢(x) = I'"(z)/T'(z) is the digamma function, representing the derivative of
the logarithm of the gamma function. The dispersion coefficient of randomness
is then derived by combining the entropy and the parameters of the gamma
distribution:

r
Cu(T) = %eaﬂlaﬁp(a)l. (2.17)

The distribution also facilitates the derivation of the instantaneous rate distribu-
tion, which follows an inverted gamma distribution:

patlp—a—2 —b/r

e
= 2.18
From this, the coefficient of variation for the rate Cy (R) is calculated as:
1
Cv(R) = — 9> 1. (2.19)

Finally, the differential entropy for the rate distribution fr(r) is expressed as:
A(fr) = log(D(a + 1)bele+D-ar2viarn), (2.20)
and the corresponding dispersion coefficient of randomness is:

Ch(R) = al'(a + 1)eo~(at2vlatl), (2.21)
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2.3.2 Lognormal distribution

The lognormal distribution is a probability distribution of a random variable
whose logarithm is normally distributed. In the context of ISI analysis, it is a com-
mon descriptor in experimental data analysis (Burns and Webb, 1976; Bhumbra
et al., 2004). Experimental data from neuronal firing often exhibit right-skewed,
long-tailed distributions, which can be well-described by the lognormal distri-
bution. Additionally, Buzsaki and Mizuseki (2014) demonstrate that lognormal
distributions in neural activity, resulting from multiplicative biological processes,
crucially influence brain dynamics and network functionality. These distributions
provide a robust framework for modeling neural variability and understanding
the disproportionate impact of highly active neurons on cognitive functions.

The pdf for a lognormal distribution is given by:

Frlt) = Ot\l/%exp{ _ W} (2.22)

where m is the scale parameter and ¢ > 0 is the shape parameter (Crow and
Shimizu, 2018). This formulation highlights the lognormal’s capacity to model
distributions where the majority of the data is concentrated around a central
value, with a long tail extending towards higher values. The mean firing rate and
the coefficient of variation for the lognormal distribution are calculated as:

N T = Ve — L (2.23)

m602/27

The differential entropy of the distribution is expressed as:
1 22
h(fr) = 5 log(2meo“m?), (2.24)

and the dispersion coefficient of randomness for the distribution is:
Cu(T) = o/ 2me= (7" +1/2, (2.25)

The instantaneous rate distribution follows the pdf:

falr) = —zm 7%1 —exp{ - (1“%‘12””)2} (2.26)
with the coefficient of variation for the rate given by:
Cy(R) = Ve — 1. (2.27)
The differential entropy for the rate distribution is derived as:
h(fr) = %log (j%;ﬁ) (2.28)
The dispersion coefficient is evaluated as:
Ch(R) = ov/2me~ @ +D/2, (2.29)
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2.3.3 Inverse Gaussian distribution

The inverse Gaussian distribution has been proposed as a suitable model for
describing the temporal structure of point processes in neuroscience, particularly
in the context of neural spike train data analysis. This distribution is adept
at capturing the asymmetric behavior of tails and the early response times
characteristic of neuronal firing patterns. Tejo and Niklitschek-Soto (2016) provided
theoretical arguments supporting the use of the inverse Gaussian distribution for
modeling ISIs, highlighting its suitability in the neural activity framework. Tsubo
et al. (2012) also included the inverse Gaussian distribution as part of a wide class
of distributions suitable for describing ISIs in cortical neurons. Moreover, Rossoni
and Feng (2006) derived a renewal process model with an inverse Gaussian density
as the ISI distribution from a stochastic integrate-and-fire (IF)) model, further
supporting its relevance in neuroscience. The distribution is defined with a mean
a > 0 and a scale parameter b > 0 with its pdf defined as:

fr(t) = \/%exp{ = %(t ;ta)Z } (2.30)

This formula highlights the distribution’s capability to model time intervals where
events, like neuronal spikes, exhibit variability that is not necessarily symmetric
around the mean. The parameters a and b play critical roles, where a represents
the mean ISI, and b adjusts the distribution’s tail, influencing the skewness and
kurtosis. The mean firing rate and coefficient of variation for the ISIs are given by:

r=21 cu(r) = Vb (2.31)

The differential entropy for this distribution is calculated as:

1 3el/? 11
h(fT) = 5 10g(27ra2b€) + \/ﬁK(l’o) ( — 5, g), (232)

where Kl(,l’o)(z) is the derivative of the modified Bessel function of the second
kind (Abramowitz and Stegun, 1948), which helps quantify the randomness or
unpredictability inherent in the ISI distribution.,

KI9(2) = —K,(2). (2.33)

v

The dispersion coefficient of randomness is:

) 3el/b 11
CW(T) =/ = exp{ml((l’o)<— 5,5)}. (2.34)

For the instantaneous firing rate, the corresponding distribution follows:

fr(r) = \/%exp{ - %W} (2.35)

This rate distribution retains the coefficient of variation:

Cv(R) = Vb, (2.36)
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and its differential entropy is similarly derived as:

1 27be 3el/b 11
h =1 KOO — = ), 2.
(fR) 9 0og ( a2 ) + \/ﬁ 27 ( 37)

Lastly, the dispersion coefficient for the rate distribution mirrors that of the ISIs:

2mh 3el/b 11
— /2= O 7 ¢ K 0) N
Ch(R) =1/ - eXDp { \/2_7rbK ( 5 b) } (2.38)

2.3.4 Shifted exponential distribution

The shifted exponential distribution is another statistical model used to describe
[SIs in neuroscience, particularly for neurons that display a distinct refractory
period followed by a period of exponential-like firing rates. This model is an adap-
tation of the exponential distribution, modified to incorporate a shift parameter
that accounts for the absolute refractory period during which no spike can occur
regardless of input (Grollier et al.; 2020). In the context of auditory nerve fibers,
deviations from strictly exponential ISI distributions are commonly attributed
to the refractoriness of these fibers (Heil et al., 2007). Additionally, in the study
of interspike interval distributions in the barn owl, it was found that the ISI
distributions are better explained as resulting from the action of a brief refractory
period on excitatory events generated by a homogeneous stochastic process, where
the distribution of interevent intervals is a mixture of an exponential and a gamma
distribution with the same scaling parameter (Neubauer et al., 2009). The pdf for
the shifted exponential distribution, characterized by a rate parameter a > 0 and
a refractory period 7 > 0, is given by:

0 t<rT
t) = ’ - 2.39
fT( ) {ae‘“(t_T), t> T ( )
This results in a mean firing rate and coefficient of variation expressed by:
a 1
= Cy(T) = . 2.40
1+ar’ v(T) 1+ar ( )

The differential entropy for this distribution is straightforwardly computed as:

h(fr) =log (2) (2.41)

leading to a dispersion coefficient of randomness given by:

Cu(T) = - jm. (2.42)

For the instantaneous rate, the distribution is defined as:

fr(r) = {0’ ) AL (2.43)

me_“(?_ﬂ, r<1/r,

with the coefficient of variation for the rate:

Cv(R) = /(1 +a7)ev T(0,a1) — 1, (2.44)
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where T'(s,x) = fmoo t*~le~tdt is the upper incomplete gamma function (Abra-
mowitz and Stegun, 1948). Finally, the differential entropy for the rate distribution
and the dispersion coefficient are derived as:

h(fr) =

log ( a? ) ~ 3(1+e"T(0,a7) + (1 +a7)log7) N 2+ at (2.45)

1+ ar 14+ ar 14+ ar

Expression for the dispersion coefficient is derived through Eq. (2.13),

Ch(R) 1+ar 1+ar

(2.46)
This model of the shifted exponential distribution provides an insightful framework
for understanding how neurons manage their firing rates following a refractory
period, incorporating the complexity of neural firing dynamics into a quantifiable
mathematical model.

a 1+ar

2.3.5 Mixture of two exponential distributions with refrac-
tory period

The mixture of exponential distributions assumes that the ISIs are generated from
multiple underlying exponential processes, each with its own characteristic rate
parameter (Obeso et al.; 2000; Dorval et al., 2008). This model is particularly
effective in scenarios where neurons exhibit multiple operational modes—such
as different phases of activity or varying responses to stimuli. For instance, a
neuron might display a fast-firing mode under certain conditions and switch to a
slower firing mode under others. Each mode can be represented by an exponential
distribution with a different rate, and the overall ISI distribution is modeled as a
weighted sum of these exponentials (Bhumbra and Dyball, 2004; Heil et al., 2007).
Okada et al. (2020) demonstrated the use of mixtures of exponential distributions
to model long-tailed distributions of inter-event times, providing a statistical
framework for analyzing ISIs. Trapani and Nicolson (2011) found that in the
lateral line organs of a zebrafish when the depolarizing currents were blocked,
the ISI data of afferent neurons was best described by a mixture of exponential
distribution.

The pdf of the mixed exponential distribution with refractory period 7 > 0 and
mixture components with parameter a > 0,b > 0,a # b is given by

0 t<rT
oo =T 2.47
i {pae“(”) + (1 —p)be =7t > 1, (240

where p € (0,1). In this case,

N ab
~ pb(1+ar)+ (1 —p)a(l +b7)’

(2.48)

The analytical expressions for the Cy and C}, are difficult to obtain although
they can be calculated numerically.
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2.4 Biophysical models of neuronal dynamics

Biophysical models of neuronal dynamics are essential for unraveling the complex
mechanisms governing neuronal behavior. These models integrate various factors
like ion channels, membrane properties, and external influences to simulate and
predict neuronal activity accurately, aiding in understanding brain function and
neurological disorders.

2.4.1 Leaky integrate-and-fire model

The leaky integrate-and-fire (LIF) model is a simplified, yet realistic, neuronal
model that describes the fundamental principles governing the electrical behavior
of neurons (Lapicque, 2007). It represents the neuron’s membrane potential V()
as it integrates incoming signals and leaks charge over time until a threshold is
reached, prompting an action potential (Gerstner and Kistler, 2002; Burkitt, 2006).
The behavior of the depolarization V() of the neuronal membrane is described
by the differential equation

—2 + p)dt,  V(t;) = v, (2.49)

where 7 > 0 is the membrane time constant (7 = RC, where R is the membrane
resistance and C' is its capacitance) dictating the rate at which the membrane
potential decays towards its resting potential in the absence of any input; y € R is
measured in mV per unit time, which reflects the input signal resulting from the
dendritic currents generated by the sensory stimulation or action of other neurons;
t; is the moment of the last firing of an action potential with the condition t > ¢;
ensuring that the equation describes the membrane potential after the last spike.
The solution to this equation is:

! (t—1t;))], (2.50)

1(t—tj))vg+,u7[1 —exp(— -

V(t)=exp(——
(1) = exp (- -
with asymptotic voltage given by V(oo) = p7. The model postulates that the
firing of an action potential occurs when V' first surpasses a firing threshold S,
where S > vy. Following a spike, the membrane potential resets to vy, typically
OmV. If s = t;41 — t; represents the ISI length, then the voltage at the next firing

instant is:
V(tj41) = exp ( - ;) Vo + 1T [1 — exp < — ;)} . (2.51)

Given constant input p, the ISIs are consistent, defining the firing frequency as:

) =1/s = Sy

(2.52)

illustrating how the firing frequency increases with p and approaches infinity as
increases substantially. The relationship, known as the gain function or transfer
function, shows how neuronal firing frequency adapts based on input intensity
and the decay dynamics dictated by 7.
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2.4.2 Leaky integrate-and-fire model with reversal poten-
tials

The LIF model incorporating reversal potentials enhances the classical LIF fra-
mework by introducing reversal potentials, providing a more detailed representation
of neuronal dynamics. This extension allows the model to capture the impact of
excitatory and inhibitory inputs more accurately. Originally, Stein’s stochastic
neuronal model, which includes reversal potentials, provides an insight into neuro-
nal behavior under stochastic conditions (Stein, 1970; Lansky and Lanska, 1987).
The differential equation describing this model is:

V(#)

T

dv(t) = — dt +a(Ve(t) = V(t))dN(t) + i(V(t) — Vi(t))dM(t), V(t;) = vo,
(2.53)

where 7 > 0 continues to signify the membrane time constant, and a and ¢
are constants representing the strengths of excitatory and inhibitory inputs, re-

spectively, with excitatory and inhibitory reversal potentials denoted by V and V.

The terms N(t), M(t) represent independent homogeneous Poisson pro-
cesses with specific intensities, modeling the arrival of synaptic inputs. These
processes underscore the inherent variability in neuronal firing, with a and
¢ indicating the proportionate changes in membrane potential per input
pulse. The depolarization decreases as the membrane potential approaches
the excitatory reversal potential Vg, and hyperpolarization diminishes as it
nears the inhibitory reversal potential V7, keeping the potential within these limits.

To formulate a deterministic counterpart of model (2.53), a reconfiguration of
the model parameters {1, A a,,i,} is needed such that A} — +oo, A, — +o0,
a, — 04, i, — 0_, fulfilling the condition \fa, — ug > 0 and X\, i, — p; <
0. This adjustment ensures that while the rate of synaptic events escalates,
their individual impact diminishes but in such a way that the overall impact of
the excitatory and inhibitory input on the neuron, represented by pp and pu;
respectively, remain constant. The resulting deterministic model, reflecting the
average effects of synaptic inputs, is represented by:

AV(0) = (=2 + = ) VOO 4 sVilt) — Vi) . (254)

This model differs from the classical LIF model by considering the effects of
excitatory and inhibitory inputs on the leakage time constant. The asymptotic
voltage of this model is:
) = peVe — Vi
2+ pp —
which, unlike the classical LIF model, remains finite even as excitation pp increases
indefinitely. The effective time constant 7.; = 7/(1 + 7up — 7417) and the effective
input per = pgVe — prVr dictate the firing frequency as:

V(oo (2.55)

_ SVe—mu(Ve—Vi)) (7 —pr) [iE
Ve(Ve — S)In*(Vg/(Ve = 8))  W(Veg/(Ve—S))  W(Ve/(Vep — 5()2)56)

fa
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2.4.3 Two point leaky integrate-and-fire model

The two-point LIF model represents an advanced iteration of the classic LIF
framework that can capture the dual-compartmental nature of neuronal dynamics.
This model distinguishes itself by simulating the neuron as comprising two inter-
connected points or compartments: one representing the soma (cell body) and the
other representing the dendritic structure.
The relevance of such a model is underscored by research that highlights the
importance of dendritic processing in neural computation. Studies have shown
that dendrites are not merely passive conduits for electrical signals but actively
participate in neural computation, significantly influencing the output of the neu-
ron (Hausser et al., 2000; Poirazi et al., 2003; London and Hausser, 2005; Ujfalussy
et al., 2015). The two-point LIF model, by incorporating this dual-compartment
approach, offers a framework to explore these complex interactions within neurons.
In Lansky and Rodriguez (1999) the coding properties of a two-point neuronal
model based on two LIF models were studied. The governing equations for the
membrane potentials V;(t) and V5(¢) in the dendritic and somatic compartments,
respectively, are given by:

dVi(t) = (— VlT(t) 4 B - h) | u) dt (2.57)
and
AVa(t) = (— VZT(t) LA T_ Vé(t)) dt, (2.58)

where 7 > 0 is the same time constant as in Eq. (2.49) and 7,. > 0 is a junctional
time constant representing the conductance between the compartments. These
equations describe the leakage through the membrane, the electrical coupling
between compartments, and the input received by the soma. The initial conditions
for these dynamics specify that when the somatic V() reaches the firing threshold
S, Vi(t) resets to 0, while the dendritic compartment V;(¢) continues evolving
without reset. This indicates no backward spike propagation into the dendrite.
The asymptotic solutions for the dendritic and somatic potentials are:

(T 4+ 70 ) 10

Ve = 2.59
1(00) 2T + 7, ( )
and
21
| = . 2.60
2<OO) 27 + 7, ( 6 )

Firing occurs when the stimulation p is sufficient, i.e., the asymptotic depolari-
zation at the somatic compartment V5(00) exceeds the firing threshold S. The
condition for rheobase stimulation is derived from this requirement:

ST+ 21
Lo = — . (2.61)

T T

The general solutions for the membrane potentials during suprathreshold sti-
mulation are given by complex expressions that stabilize to constant interspike
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intervals (ISIs) in a steady state:

Vi) =Valoc) + g exp (~ 11— 1)) (- +1al0)
_ %exp (_TT;:TQT (t tj)) (TTIgT - Vl(tj)) (2.62)

and

Valt) =Va(o0) + exp (2t - 1)) (-u7 + Vile)

tyow (- -0) (2 -nw). )

2 T T T, + 27

where t; is the time instant of the last spike emission, ¢ > t;. Solving these
equations for long-lasting suprathreshold stimulation, the system achieves its
steady-state characterized by a constant V;(¢;) for each j leading to constant ISIs.

Given the system reaches steady-state under long-lasting suprathreshold sti-
mulation, and considering two consecutive spikes at times ¢; and ¢;;; with an ISI
length s = t;,; —t;, the firing frequency f can be derived as,

P (e e Y (L Sy
1 o (e777 +e )(2 Mo) + Moe , (2.64)
This equation captures the dynamics of firing frequency as a function of the input
i and the threshold pg defined by the minimum required stimulation to trigger
firing. The input-output transfer function of the model, which describes how the

firing frequency escalates with increasing stimulation pu, is represented by,

1 7+ 27 T

pu— . 2-
Ja 21 T+ T +S(7}+7’)M (2.65)

This formulation provides a comprehensive understanding of how the dual-
compartment nature of the neuron processes and responds to synaptic inputs,
defining both the transient and steady-state behavior of the neuronal firing dyna-
mics.

2.4.4 Two point leaky integrate-and-fire model with rever-
sal potentials

To address the limitations encountered in previous neuronal models, particularly
the issue of infinite firing rates, we can extend the two-point model by incorporating
dynamics that include reversal potentials. This is achieved by integrating the
modifications from the model (2.54) into the two-compartment framework of
equations (2.57) and (2.58). The revised model equations are as follows:

L el — WD)

Ty

T usVilt) - sz(t)> at
(2.66)

i) =~ e~ i)
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and

AV (t) = (—VQ(” AU Vz(t)) dt. (2.67)

T Tr

In these equations, the inclusion of the effective time constant 7., = 7/(1 +
Tpp — Tiy) and the effective input .y = Ve — Vi allows for a more realistic
representation of synaptic dynamics. The asymptotic behavior of the model
provides insights into the long-term dynamics of the membrane potentials in both
compartments:

_ Hep(Tr 4 T)
Vi(oo) = L+ 7ef(rr+7) (2.68)
Va(c0) ref (2.69)

1 + Tep(rr +7)

These expressions reveal how the equilibrium potentials are influenced by both
the intrinsic properties of the neuron and the external inputs modulated through
excitatory and inhibitory mechanisms.

Although an analytical expression for the firing rate is challenging to derive
for this complex model, numerical methods can be employed to calculate the
firing rates for given parameter sets. This approach allows for an exploration
of the neuron’s response under various physiological conditions, enhancing our
understanding of neural responsiveness and stability in a biologically plausible
framework.

2.5 Spiking neuron models

While the leaky integrate-and-fire models offer a simplified approach to under-
standing neuronal dynamics, capturing only the basic elements of membrane
potential changes, they lack the physiological details necessary to accurately
describe more complex behaviors seen in real neurons. Spiking models bridge
this gap by providing detailed mechanisms of action potential generation and
propagation, specifically through the use of voltage-dependent ion channels.

Exponential integrate-and-fire model

To address the limitations of traditional LIF models and add biophysical realism,
conductance-based models like the Hodgkin-Huxley model were developed
(Hodgkin and Huxley, 1952). These models include detailed representations of
ionic currents and are capable of capturing the intricate dynamics of neuronal
action potentials. However, the complexity of these models, which may involve
tuning hundreds of parameters, makes them less practical for certain applications
(Roth and H&usser, 2001; Bower and Beeman, 2012).

This complexity and the realization that some behaviors can be accura-
tely modeled with fewer parameters led to the development of generalized
integrate-and-fire models. These models, such as the quadratic (Ermentrout, 1996;
Latham et al., 2000) and exponential integrate-and-fire models (Fourcaud-Trocmé
et al., 2003), address the shortcomings of both the simple LIF and the complex
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Hodgkin-Huxley models by introducing a smoother spike initiation zone, adding
subthreshold dynamics or adaptation mechanisms (Izhikevich, 2003; Richardson
et al., 2003), and varying the input simulation from current to conductance-based
(Destexhe et al., 2003). These generalizations provide a more realistic approach to
modeling neuronal behavior while maintaining computational simplicity.

The adaptive exponential integrate-and-fire (AdEx) model emerges as a syn-
thesis of these efforts. It incorporates the exponential mechanism for spike initiation
and an adaptation equation that allows it to capture a wide range of neuronal
behaviors observed in biological systems. The equation describes the model:

Ka

C— = —g.(V — EL) + grka exp ( > +w+ 1, (2.70)

where gy, is the leak conductance, E}, is the resting potential, w is an adaptation
variable, I is the injected current. The slope factor k, and threshold potential
Vr characterize the exponential function. When the voltage reaches a threshold
(for e.g. 20mV), a spike is triggered and the voltage sets to a reset value V.,
with V, = E. In the case that k, — 0 the model transforms into a standard
integrate-and-fire model with firing threshold S (Lapicque, 2007). The adaptation
current w is described by the following equation:

d
de—zf —a(V - Ep) —w, (2.71)

where 7, is a time constant and a is the sub-threshold adaptation. Every time
a spike is triggered, the variable w increases by a fixed amount b. Hence, the
adaptation variable w accumulates during a spike train, whereas voltage is reset
to V..

The AdEx model can produce multiple firing patterns depending on the parameters,
e.g. initial bursting, regularly bursting, tonic spiking, adapting, accelerating,
irregular spiking, or delayed initiation. Additionally, this model is particularly
notable for its ability to systematically extract model parameters from experimental
data, enhancing its practical utility and relevance.

Spike frequency adaptation models

Another biological phenomenon that is not an inherent part of the above-described
neuronal models is spike frequency adaptation (SFA). SFA is a phenomenon
observed in many neurons where the firing rate decreases progressively during
sustained input or after an initial burst of activity. SFA plays a crucial role in
stabilizing neuronal network dynamics (Barranca et al., 2019). Different LIF
models with SFA mechanisms have been shown to effectively replicate the activity
of a variety of neurons (Rauch et al., 2003; Jolivet et al., 2008; Teeter et al., 2018).
The biophysical mechanisms responsible for SFA can be grouped into two broad
categories: inactivation of depolarizing currents or activation of hyperpolarizing
currents (Gutkin and Zeldenrust, 2014). In integrate-and-fire models, SFA is
implemented through either a dynamic firing threshold or hyperpolarizing currents.
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Dynamic threshold models

This refers to the mechanisms by which the excitability threshold of a neuron
changes dynamically, often in response to recent activity. Inactivation of sodium
channels leads to a dynamic threshold in the LIF models where the equation for
the membrane voltage remains exactly the same but another equation governing
the spiking threshold is added to the dynamics (Benda et al., 2010). In models
where threshold dynamics are integrated within the neuron’s overall response
properties, like the AdEx model, the dynamic threshold is modeled by introducing
a slow-gating variable s that represents the inactivation of sodium channels during
depolarization (Martina and Jonas, 1997; Benda and Herz, 2003; Benda et al.,
2010). The variable 0 < s < 1 that inactivates during depolarization, affects the
exponential term which is linked to the spiking mechanism:

C% :—gL(V—EL)—i—nganp ( ]{]_ ) (1—s)+w+l, (272)
r S = oV~ By~ w, (2.73)
= (V)= 5~ B.(V)s 27

where (V') and B5(V') are the voltage-dependent rate functions for the activation
and deactivation of the gating variable s.

Hyperpolarizing currents

Hyperpolarizing currents within a neuron make the membrane potential more
negative relative to the resting potential. This current typically flows through
specific ion channels and acts to decrease the likelihood of the neuron firing
an action potential. Hyperpolarizing currents can be mediated by the influx of
negatively charged ions (such as chloride ions) or the efflux of positively charged
ions (such as potassium ions) from the neuron. After-hyperpolarization (AHP)
currents are a specific type of hyperpolarizing current that occurs in neurons
following the firing of an action potential, triggered by the influx of calcium
ions. In integrate-and-fire models, this SFA mechanism is incorporated by adding
potassium conductance that increases with each spike and decays exponentially
to zero:

dv V-5
CE = —g.(V — EL) — grkaexp ( 2 ) — ganp(t)(V — Ex) +w+ 1,
(2.75)
dw
r W = oV~ By~ (2.76)
dganp gAHP
T F— + Ek AHP ( k); ( 77)

where Tagp represents the time constant governing the decay of the hyperpolarizing
conductance, Aagp indicates the increment in conductance triggered by each action
potential, and t; denotes the times at which the neuron fires action potentials.
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Spiking neural networks

Spiking neural networks (SNNs) are a class of artificial neural networks that more
closely mimic the behavior of biological neural networks. These networks incorpo-
rate the precise timing of spikes to encode and process information, reflecting the
dynamic nature of biological communication among neurons. The connectivity of
neurons within an SNN can be described by a connectivity matrix W containing
the synaptic weights. The membrane potential of the i-th neuron in a network of

N neurons- where neurons 1, ..., Ne are excitatory and neurons Neye, ..., N are
inhibitory—is given by the following equations:
dV; -
C T = —gL(‘/Z» — EL) + I;xt’ (278)
Iéxt - _géxc(‘/i - Eéxc) - gfnh(v; - Efnh)? (279)
dg g NGXC
G e T2 2wt~ ), (280)
7j=1 tSE'E'
dg g =
inh inh
o ey D D wid(t—t), (2.81)

j:chc+1 ts€7;'

where w;; represents the synaptic strength from the j-th neuron to the i-th neuron,
7, are the times at which the j-th neuron fires action potentials.

2.6 Insect Olfactory System

Insects navigate their complex chemical environments primarily through an evolved
olfactory system, with olfactory receptor neurons (ORNs) playing an important
role in detecting a vast array of volatile compounds. These compounds, ranging
from pheromones to diverse volatile plant compounds (VPCs), inform behaviors
critical for survival and reproduction (Hansson and Stensmyr, 2011; Knudsen et al.,
2006). Understanding the mechanisms of olfactory detection and processing in
insects thus offers insights into fundamental principles of sensory neuroscience and
ecological interactions (Conchou et al., 2019). In my thesis, I focus on principles of
efficient information processing that these ORNs employ in complex environments
(Conchou et al., 2020; Gupta and Stopfer, 2014).

2.6.1 Olfactory receptor neurons and the role of volatile
plant compounds

ORNSs are essential components of the insect olfactory system, specialized for
the detection of odor molecules. Located predominantly on the antennae, these
neurons are equipped with receptor proteins that bind specific volatile compounds,
initiating a cascade of cellular events leading to the generation of neural signals
(Hansson and Stensmyr, 2011). This specificity allows insects to detect and dis-
criminate among a wide variety of olfactory cues, from pheromones crucial for
reproductive communication to volatile plant compounds (VPCs) that indicate
food sources or potential hazards (Knudsen et al., 2006). We focus on the moth
ORNs that are tuned to sex pheromones for our study.
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Historically, the interaction between ORNs and VPCs has been a subject of signi-
ficant interest, particularly concerning how VPCs interfere with the detection of
pheromones. Studies have shown that certain VPCs can modulate the activity of
ORNSs, affecting the firing rate and altering the neural representation of pheromone
signals (Party, V et al., 2009). This modulation is not just about the competition
for receptor sites but involves complex adjustments in the response properties of
neurons. VPCs have been found to increase response variability in ORNs, besides
altering qualitative and quantitative coding (Dupuy et al., 2017). The findings in
Conchou et al. (2021) suggest that VPCs can impact the firing of MGC neurons,
masking the response to pheromones.

While considerable research has focused on the impact of VPCs on the firing
rates of ORNS, less attention has been given to how these interactions affect the
overall information-processing capabilities of the olfactory system. Firing rate
changes, while indicative of neural activity modulation, do not fully capture the
nuances of information encoding and decoding within these sensory neurons. Our
study aims to bridge this gap by examining not just how VPCs influence the
firing rates of ORNs but more crucially, how they impact the processing and
encoding of information. By focusing on the information-theoretic aspects of
ORN responses, we aim to explore the deeper implications of VPC interference
on olfactory signaling.

To this end, we stimulated the ORNs of male Agrotis ipsilon with intermittent
puffs of pheromone against varying concentrations of VPC backgrounds to
mimic the natural environment. Each pheromone-responsive ORN was recorded
during an 8-minute sequence, consisting of two distinct 40-second stimulations
separated by a 2-minute gap. Each 40-second stimulation involved repeating
the same 2-second trial 20 times. This trial comprised a sequence of short
pheromone puffs and blanks of random durations, generated using a white
noise pattern, where the durations of puffs and blanks followed an exponential
distribution. Meanwhile, the background was either (1) absent (control stimuli)
or (2) delivered continuously. The background onset started 2 ms before
the pheromone stimulation to assess the response of pheromone-responsive
ORNs to individual VPCs. The order of presentation for the two distinct
stimulations—pheromone with no background and pheromone with continuous
background—was randomized. The analysis included 186 ORNs recorded over two
distinct 40-second stimulations per ORN: one with pheromone and no background,
and another with pheromone and a background of (Z)-3-hexenyl acetate or linalool.
The minimum and maximum number of neurons per VPC concentration were 11
and 21, respectively. During high-concentration VPC backgrounds, some neu-
rons stopped responding altogether; these neurons were excluded from the analysis.

This approach allows us to investigate the sophisticated mechanisms by which
moths navigate their olfactory environment, providing insights into the resilience
and adaptability of the olfactory system in a world of complex and dynamic
chemical landscapes.
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2.6.2 Firing Rate Estimation

The firing rate of ORN was estimated with kernel density estimation using a
Gaussian kernel (Shimazaki and Shinomoto, 2010; Tomar, 2019)

A= i Kot —t,) (2.82)

where t; is the spike time and K,,(s) is the normal distribution bandwidth w =
20ms, defined as

Ko(s) = — exp—(52 ) (2.83)

2w 2_U12

2.6.3 Neural response model fitting

To assess the impact of a VPC background on ORNSs’ ability to encode pheromone
signals, we formulated two models. The first model quantifies the neuronal response
solely to pheromones. It uses a Gaussian kernel for firing rate estimation and a
weighted history function to incorporate the influence of firing rates from the
preceding 200ms, diminishing progressively over 4 time bins. The probability of
detecting a pheromone at a specific time bin j, denoted as prob;, is modeled using
the logistic function:

eBo+B1A;+B2xw;

prob; = (2.84)

1+ eBot+Bre;+Ba*w;

where \; represents the firing rate at time bin j, w; denotes the weighted history
at time bin j, and Fy, 81 and (B are regression coefficients derived from the model.
The second model incorporates the VPC background to evaluate its modulatory
effects on the neuronal encoding of pheromone signals. This approach allows us to
compare how VPCs influence pheromone perception in a dynamic environmen-
tal context. We assess model performance using the Area Under the Receiver
Operating Characteristic Curve (AUC-ROC), where high AUC values suggest
effective differentiation between the presence and absence of pheromone signals.
The average AUC value for trial k across all neurons, considering the VPC type
and concentration, is given by:

1 m
ay = — ; i (2.85)

This metric facilitates a comprehensive analysis of the models under various VPC
conditions, providing insights into the nuanced interactions between VPCs and
pheromone signal processing.

2.6.4 Stimulus prediction model

To quantify the impact of a VPC background on the encoding efficiency of ORNs
for pheromone signals, we employed logistic regression. Utilizing predictor variables
of firing rate and weighted history, we initially trained the logistic model on three
trials and then used it to predict pheromone presence across 16 subsequent trials
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under each background condition. The first trial was excluded from training due to
the high firing rates exhibited by ORNs, as they tend to adapt in the later trials.
Trials of 2 seconds were subdivided into 200 bins of 10ms, during which firing
rates were calculated under control (A,;) and VPC-enhanced (Ayvpc) backgrounds.
Model accuracy in predicting stimulus conditions was evaluated, with “prediction
accuracy’ reflecting the proportion of correct predictions:

1 m
S E i 2.
m p Pr, ( 86)

where py; represents the accuracy for neuron i in trial £, and m is the number of
neurons. To determine the efficiency of prediction relative to the neuron’s spiking
activity, we calculated the average prediction accuracy per spike, p;, which adjusts
for the number of spikes ay; fired by neuron i:

Z Phii (2.87)

Q4

This metric provides a normalized measure of model performance on a per-spike
basis, enhancing our understanding of neuronal efficiency under varying sensory
conditions.

2.6.5 Mutual Information

Information theory is crucial for quantifying neuronal information transfer, specifi-
cally how neuronal spike trains reflect external stimuli (Shannon, 1948; Quian Qui-
roga and Panzeri, 2009; Kostal et al., 2013).

Entropy measures the uncertainty of a random variable X as:

ZP ) log, P(x), (2.88)

where X is distributed according to P(X ), measured in bits for logarithms base 2.
Conditional entropy, for two variables X and Y, quantifies the uncertainty of X
given Y:

H(X|Y) = ZP H(X|Y =y). (2.89)

This metric assesses how Y 1nﬂuences the uncertainty in X.
Mutual information (I(R,S)) evaluates the reduction in uncertainty about a
stimulus (5) given the neural response (R):

I(R,S) = H(S) — H(S|R). (2.90)

In our analysis, we computed mutual information between the stimulus and the
response for a particular trial k£ of a given concentration d, using spike data from
neurons under different VPC concentrations, denoted by Iy 4( Rk a, Sk.a). To assess
efficiency, we derived mutual information per spike for each trial by:

It a(Rk.a, Sk,a)

Ii.(Ry, Sk) = -

(2.91)

where a4 is the number of spikes in trial £ under a given VPC background
condition d. This approach quantifies the efficiency of information transfer per
spike across different experimental conditions.
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3. Results

3.1 Comprehensive overview of firing rate esti-
mation methods

Attachment I

Neuronal firing rate estimation is an essential tool for interpreting neural
activity and understanding the underlying mechanisms of information processing
in the brain (Dayan and Abbott, 2005). The firing rate, generally defined as
the number of action potentials per unit of time, is a fundamental metric for
quantifying neuronal output. The problem of firing rate estimation, especially
if the rate itself is not stable but evolves over time, has been a topic of signifi-
cant interest for researchers (Cunningham et al.,; 2009; Davis et al., 2011). The
methodologies for estimating this rate have evolved significantly, each with its
own set of assumptions, advantages, and limitations. We wrote a comprehensive
review of firing rate estimation methods, examining their theoretical foundations,
application contexts, and implications for neural data analysis.
Early attempts at firing rate estimation relied heavily on simple time window
averaging, where the count of spikes within predefined intervals was normalized
by the duration of those intervals (Gerstein and Kiang, 1960; Johnson, 1978).
This method, while straightforward, introduced variability related to the choice of
window size, often requiring a balance between temporal resolution and statistical
reliability.
Advancements in computational techniques led to the adoption of kernel-based
methods, offering a more sophisticated approach to firing rate estimation (Nawrot
et al., 1999; Shimazaki and Shinomoto, 2007; Cherif et al., 2008; Shimazaki and
Shinomoto, 2010). By convolving spike trains with a predefined kernel function,
these methods produce a continuous estimate of the firing rate over time. The
choice of kernel, typically Gaussian or exponential, influences the smoothness and
responsiveness of the rate estimate. Kernel-based methods highlight the impor-
tance of parameter selection, where kernel width plays a critical role in capturing
the dynamics of neuronal firing patterns.
Further refinement of firing rate estimation methodologies introduced Bayesian
frameworks, incorporating prior knowledge and probabilistic models to infer fi-
ring rates (Dimatteo et al., 2001; Cunningham et al., 2007; Endres et al., 2007;
Mochizuki and Shinomoto, 2014; Ahmadi et al., 2018). These approaches allowed
for the estimation of firing rates as probabilistic distributions, providing means
to quantify uncertainty in the rate estimates. Additionally, adaptive methods
emerged, capable of adjusting estimation parameters in real-time based on the
characteristics of the spike train, thus enhancing the accuracy of firing rate recon-
structions in varying neural activity regimes.
The evolution of firing rate estimation methods from simple averages to complex
computational models reflects the growing understanding of neural coding mecha-
nisms. Each method offers a unique lens through which neuronal activity can be
interpreted, highlighting the diverse temporal and spatial scales at which neural
information processing occurs. The choice of estimation method, therefore, is not
merely a technical consideration but a reflection of the underlying hypotheses re-
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garding neural function and information flow. This review of firing rate estimation
methods was published in the journal Biosystems (Tomar, 2019).

3.2 Variability and randomness in instantaneous
rate analysis

Attachment 11

While the above section highlighted the firing rate estimation methods in
non-stationary processes, in this study we focus on a specific class of stationary
point processes called the renewal point process. Renewal processes are often used
to model the activity of spontaneously active cells (Tuckwell, 1990). For a special
subclass of renewal point processes, called the equilibrium renewal processes, the
mean instantaneous firing rate is equal to the mean firing rate.
Our goal is to determine if analyzing the instantaneous firing rate within these
processes offers any additional insight. To do this, we compared the dispersion
coefficients for ISIs with those for the instantaneous rate.

For the gamma distribution, we find that the dispersion measures Cy (T') and
Cy(R) are linked by the equation Cy(R) = Cy(T)/+/1 — Cy(T)? (Fig. 5A). This
result shows that the variability and randomness of the instantaneous firing rate
can diverge significantly from those of the ISIs. It indicates that the instantaneous
firing rate might reveal different aspects of neuronal dynamics that are not
evident through ISI analysis alone.

For the lognormal distribution, there is a “symmetric” relationship between
fr(t) and fr(r) (Kostal et al., 2018), fr(r; A) = fr(r;1/A), i.e. the shape of the
probability distributions of ISI and instantaneous rates are the same for A = 1.
Furthermore, the relationship between Cy (7) and Cy(R) is that of an identity
(Fig. 5A). The same holds for the relationship between C},(T") and Cj(R) (Fig. 5B).
Since the inverse Gaussian distribution also satisfies the “symmetrical” property,
the relationship between the dispersion measures of ISI and the instantaneous
rate is of identity for this distribution as well. This consistency across domains
supports the idea that certain statistical properties of neuronal firing are invariant
to the perspective from which they are analyzed, be it temporal or rate-based.

For shifted exponential distribution, since Cy (7") depends on the firing rate
and the refractory period through the equation Cy(T) = 1 — A7, we varied the
values of these parameters in order to analyze the relationship between Cy (T')
and Cy(R) (Fig. 5A). This section highlights how physiological constraints, such
as the inability of a neuron to fire immediately after an action potential, influence
the statistical characteristics of neuronal activity.

For the mixed exponential distribution, since the analytical expressions are
difficult to obtain we used a few different set of parameter values to look at the
behavior of dispersion coefficients. To emphasize the significance of our findings,
we applied our analysis to experimental data from the study of spontaneously
active afferent neurons in the Zebrafish lateral line by Song et al. (2018). This
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Figure 5: Exploring the relationship between statistical dispersion in
interspike intervals (ISIs) and instantaneous rate across distributions
and experimental data. A and B illustrate the relationship between the Cy s
Cps of the interspike interval and instantaneous rate. The relationship is not
straightforward due to the fact that rate distribution is obtained from
length-biased sampling of ISIs. C Cy(T') and Cy (R) reveal separate aspects of
the data sets. Overall Cy (R) helps differentiate among the data sets with similar
Cy(T) values. D We can see that Cy(R) further differentiates the data sets with
equal C(T). The data sets which might have similar randomness on the ISI scale,
can be differentiated on the basis of their instantaneous rate randomness.

application showed that instantaneous rate dispersion measures can offer a new
perspective on the data, distinct from what is provided by ISI dispersion measures
(Fig. 5C and 5D).

Our findings suggest that the instantaneous firing rate’s variability and ran-
domness are not merely reflections of ISI properties, this is due to the fact that
the instantaneous rate distribution is obtained from a length-biased sampling of
the ISIs (Eq. 2.3). Moreover, we illustrate that different models of neuronal firing
can exhibit unique relationships between temporal variability and rate variability,
offering new perspectives on how information may be encoded and processed in
neural circuits. This study contributes to a comprehensive examination of the
instantaneous firing rate. The results were published in the journal Frontiers in
Computational Neuroscience (Tomar and Kostal, 2021).
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3.3 Intrinsic firing rate saturation in neuronal
models

Attachment III

In our published study, we concentrated on intrinsic firing rate saturation
across four simplified neural models: the basic leaky integrate-and-fire (LIF)
model, the LIF model with reversal potentials, a two-point LIF model, and a
two-point LIF model incorporating reversal potentials. The term “two-point”
refers to models that consider two nodes (representing dendritic and somatic
compartments) instead of a singular (somatic) node, providing a more detailed
simulation of neuronal behavior.

Our analysis primarily revealed that the inclusion of reversal potentials
significantly influences the firing rate’s response to input currents. While reversal
potentials elevate the slope of the firing rate versus input curve by reducing the
effective membrane time constant, they do not inherently lead to saturation of
the firing rate. Interestingly, the two-point model without reversal potentials
exhibited no limitations on voltage or firing rate, demonstrating that the model’s
structure alone does not guarantee a realistic saturation effect.

In contrast, the two-point model with reversal potentials marked a crucial
finding of our study. This configuration not only limited the maximum attainable
voltage but also limited the firing rate, showcasing a built-in saturation frequency.
For increasing pp the depolarization V; at the dendritic compartment is limited
by Vg. Using this with Eq. (2.67) yields the maximum firing frequency,

T+ Ty
Vet ) ?
VeT—S(t+7r)

fmcwc = (31)

77 1In (

where 7 is the membrane time constant, 7, is the junctional time constant and S
is the firing threshold.

This is a significant departure from common neuronal models, which often require
external mechanisms, such as absolute refractory periods, to impose a ceiling on
firing rates. For a thorough analysis, we compared the transfer functions across
models as seen in Fig. 6. These comparisons highlighted distinct behaviors in how
each model approaches its firing rate limit, with the two-point model with reversal
potentials demonstrating a clear saturation effect — a characteristic more aligned
with observed neuronal behavior than unlimited firing rates suggested by simpler
models.

Our findings underscore the importance of model selection in neuronal simu-
lations. The intrinsic firing rate saturation observed in the two-point model with
reversal potentials offers a closer approximation to biological neuron behavior,
particularly under conditions of high input currents. This work contributes a
crucial perspective to the understanding of neuronal firing mechanisms, suggesting
that more complex models can provide insights into the limitations of neuronal
firing rates that simpler models cannot. The outcomes of this investigation were
detailed in our publication in the journal Biosystems (Tomar et al., 2022).
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Figure 6: Transfer function plots for different leaky integrate-and-fire
(LIF) neuron models with input normalized to rheobase. A Transfer
function of a standard LIF neuron model. (B) LIF model with incorporation of a
reversal potential with p; set to 0. (C) Two-point LIF model with parameter
values set at 7 = bms, 7, = 2.5ms and S = 15mV. (D) Two-point LIF model with
reversal potential, with parameter values set at 7 = bms, S = 15mV, Vi = 60mV,
Vi = —10mV and 7, is 2.5ms, dms and 10ms for the different cases. There is an
intrinsic saturation of the firing frequency.

3.4 Efficient information transmission in moth
olfactory receptor neurons

Attachment IV

In our investigation into the coding efficiency of moth pheromone receptor
neurons (Phe-ORNs) against a backdrop of volatile plant compounds (VPCs), we
aim to explore the impact of environmental odors on insect sensory processing.
Utilizing the olfactory system of male Agrotis ipsilon moth as our model, we
expose ORNs to intermittent puffs of pheromone amidst varying concentrations
of VPCs, namely linalool and (Z)-3-hexenyl acetate, to simulate naturalistic
olfactory scenes. Our findings reveal a complex relationship where high VPC
concentrations significantly influence the ORN response to pheromone signals,
ultimately affecting the moth’s ability to navigate its olfactory landscape.

We found that (Z)-3-hexenyl acetate and linalool at high concentrations activate
neuronal firing, leading to a suppression of the neuronal response to pheromones
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Figure 7: The inhibiting effect of various concentrations of
(Z)-3-hexenyl acetate on the neural response in moth ORNSs. Average
firing rate of ORNs when exposed to (Z)-3-hexenyl acetate at -2s and pheromone
introduced at Os (indicated by the grey shaded area). The control is represented
by the black dashed line.

as seen in Fig. 7. This effect suggests that the presence of VPCs at certain
concentrations can interfere with the neurons’ ability to respond to pheromones,
potentially impacting the moth’s olfactory navigation capabilities. This suppression
was most pronounced at the highest tested concentrations of VPCs, suggesting a
threshold beyond which the presence of environmental odors begins to interfere
with pheromone detection. Through information theoretical methods, we quantify
the impact of VPC background on the information transmission abilities of these
ORNS.

The study examines the ORN’s coding efficiency through logistic regression
models, comparing the presence or absence of pheromones amidst varying odor
backgrounds. Despite the overall suppression of neuronal firing rates by high
VPC concentrations, the coding efficiency of ORNs—measured by prediction
accuracy per spike—increases. Additionally, the mutual information per spike,
which quantifies the amount of information a single spike conveys about the
stimulus, was found to increase at higher VPC concentrations. This increase aligns
with the previous observations. These findings suggest that while the neurons may
fire less frequently in the presence of high VPC concentrations, each spike carries
more information about the presence of pheromones, indicating an enhancement
in signal encoding efficiency under these conditions.

To ensure that the improvement in coding efficiency at high VPC concent-
rations is not merely a result of neural adaptation to repetitive stimuli but is
an independent effect of the VPC concentration levels themselves, we compared
neurons with equal average firing rates exposed to varying concentrations of VPC.
If the improved per-spike prediction accuracy was an effect of adaptation, then
we would expect all neurons with similar firing rates to show similar prediction
accuracies, regardless of the VPC concentration they were exposed to. However,
we found that neurons exposed to higher concentrations of VPCs had better
prediction accuracy per spike, even when their firing rates were comparable to
those of neurons exposed to lower VPC concentrations. This finding suggests that
the presence of high VPC concentrations itself, rather than any form of neural
adaptation to repeated stimulus exposure, enhances the neuron’s ability to encode
pheromone signals.

Our results highlight a fascinating ecological interaction, where environmental
odors, rather than merely obstructing pheromone detection, may play an important
role in enhancing the coding efficiency of Phe-ORNs. This enhancement suggests
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Figure 8: Stimulus prediction model has a high efficiency per spike
under high concentrations of (Z)-3-hexenyl acetate. This figure
demonstrates the predictive accuracies as well as the predictive accuracies per
spike in Phe-ORNs exposed to intermittent pheromones amidst variable
(Z)-3-hexenyl acetate concentrations. The x-axis represents the trial number,
indicating repeated exposure, while the y-axis measures predictive accuracy in A
and B, displaying a decrease in accuracy at higher concentrations. In contrast,
y-axis measures predictive accuracies per spike in C and D, displaying an
increase in efficiency per spike at higher concentrations of (Z)-3-hexenyl acetate.
Each line corresponds to a different concentration of VPC, with the control group
depicted as black dots. These results suggest an adaptive response in the ORNs’
coding ability under high VPC conditions, potentially hinting at an evolutionary
advantage in complex olfactory environments.

an adaptive advantage in complex olfactory environments, where the ability to
discern mating signals amidst a plethora of plant odors is crucial for reproductive
success.

In conclusion, our study contributes significantly to the field of sensory biology
by revealing how high concentrations of VPCs can facilitate the coding efficiency
of ORNSs independently of spike-frequency adaptation. This investigation not only
sheds light on the complex mechanisms of olfactory perception in moths, but also
hints at the broader ecological and evolutionary strategies employed by these
insects to thrive in complex chemical landscapes. This manuscript for this study
is attached in Attachment I'V.

3.5 Neural variability quenching in networks

Attachment V

Stimulus-evoked quenching of trial-to-trial variability of neural activity is
a widely observed phenomenon across different brain areas (Goris et al., 2014;
Chang et al., 2012). To understand the underlying mechanisms, we constructed a
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recurrent neural network representing the sensory cortex with different neurons
having different stimulus preferences, thus replicating the experimental conditions
observed in studies like Monier et al. (2003) and Churchland et al. (2010). The
stimulus was represented by an increased input intensity dependent on the preferred
stimulus and the associated increase in inhibitory input given by the network
properties. In this way, we could reproduce the variability quenching effect with
stimulus onset.

We considered a recurrent neural network of 10000 neurons, with 7500 excita-
tory and 2500 inhibitory neurons. Each neuron was modeled as an exponential
leaky integrated-and-fire neuron, and the probability of a connection from one
neuron to another was set to 5% (Zerlaut et al., 2018). We also considered a
proximity-based connection matrix, where neurons with peak response to similar
stimuli had a stronger probability of connection, as is observed in cortical neurons
(Ko et al., 2011). We compared two types of networks, specified by different spike
frequency adaptation (SFA) of the neurons:

1. SFA through after-hyperpolarization currents (AHP),
2. SFA through dynamic firing threshold.

Every neuron received a background input until it was presented with an additional
input. In the case of a fixed connection matrix, the neurons receiving strong input
responded with an increased firing activity, and neurons receiving a weak input
decreased their firing activity due to increased inhibitory input from the network
activity, regardless of the SFA mechanism. In contrast, in the case of a proximity-
based connection matrix, we observed that neurons on the edge of the network
exhibit lower activity due to the lack of connections whereas neurons with an
increased number of connections and significantly high stimuli show clusters of
increased activity (Fig. 9A-B).

For both connectivity matrices, we ran the simulation 3600 times to obtain
the trial-to-trial variability of each neuron before and after the stimulus. We
plotted the variance of the response of each neuron against the mean response.
Neurons with the AHP-mediated SFA increased their trial-to-trial variability after
the stimulus onset. In contrast, neurons with the SFA mediated by a dynamic
threshold decreased their trial-to-trial variability after the stimulus onset (Fig. 9).

This model describes a possible mechanism for the reduction in trial-to-trial
variability with stimulus onset. To further develop this work, we will investigate
the impact of varying the connection probabilities for excitatory-excitatory (EE),
excitatory-inhibitory (EI), inhibitory-excitatory (IE), and inhibitory-inhibitory (II)
connections on neural variability. Additionally, we aim to explore the functional
role of excitatory and inhibitory neuron clusters within these diverse connectivity
frameworks. The results of this study are enclosed with this thesis in the form of
a manuscript (Attachment V).
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Figure 9: Neural variability quenching in recurrent neural networks
with proximity-based connectivity. A-B: Throughout the 12s simulation, all
neurons receive a consistent background input. Starting at 6s, each neuron
receives an additional input that varies according to its specific stimulus
preference. The vertical arrangement of neurons indicates the strength of
additional input received, with neurons at the bottom receiving none and those
at the top receiving the strongest input. The raster plots display the activity of
the 7500 excitatory neurons under different spike frequency adaptation (SFA)
mechanisms: after-hyperpolarization (AHP) current (A) and dynamic threshold
(B). C-D: Using proximity-based connectivity, we conducted 3600 simulation
repetitions. The plots show the variance of each neuron’s response across these
trials against its mean response. Neurons with AHP SFA (C) exhibited increased
trial-to-trial variability following the stimulus onset. Conversely, neurons with
dynamic threshold SFA (D) showed a reduction in trial-to-trial variability
post-stimulus.
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Conclusions

In this thesis, I examined the information transmission mechanisms in neuronal
systems from the rate coding perspective. By incorporating measures such as
the instantaneous firing rate, I provided a more nuanced understanding of
neural encoding. Through detailed analysis and comparison of existing models,
I evaluated how biophysical properties influence the dynamics of firing rate.
My research demonstrated the significant impact of environmental stimuli
on information transmission and highlighted the crucial role of adaptation
mechanisms in maintaining efficient neural communication.

The neural coding problem is a key research area in neuroscience. To make
further advances in this area, it is important to understand how neurons
encode information and what principles they use to optimize this information
transmission. Several studies have been done to determine which features of the
spike train contain relevant information about the stimuli. Some of the candidates
for these features over the year have been the average number of spikes per
observation time window (Gerstner et al., 1997) or the occurrence frequency of a
pair or trio of spikes (Oram et al., 1999) or the pairwise autocorrelation function
along with the pairwise cross-correlation across noisy trials (Dettner et al., 2016).
Fukushima et al. (2015) found that temporal coding carries more information
than spike counts when discriminating between different versions of the bird’s
own song in the zebra finch auditory system. Foffani et al. (2009) showed that
spike timing is more critical for discriminating between tactile stimuli when
stimulus discriminability is low, while spike count becomes increasingly important
as discriminability improves. These findings underscore that rate coding alone
cannot capture the complexity of neuronal coding, highlighting the need to
integrate metrics like the instantaneous firing rate that encapsulate both spike
count and temporal properties of neural data. This approach allows for a more
accurate representation of neural activity compared to averaging over longer time
windows (Ostojic and Brunel, 2011). Furthermore, the instantaneous firing rate is
directly proportional to input variance, highlighting its sensitivity to changes in
stimulus statistics which makes it a valuable metric for understanding how neural
populations encode information and respond to varying inputs (Fourcaud-Trocmé
and Brunel, 2005).

Despite the advancements provided by metrics like the instantaneous firing
rate, another significant obstacle in understanding information transmission me-
chanisms lies in the limitations of biophysical models. Brette (2015) argued that
single-compartment integrate-and-fire (IF) models are more realistic than single-
compartment Hodgkin-Huxley models. However, single-compartment IF models
fail to capture several crucial features of neuronal behavior, like the effects of
dendritic spikes (Gorski et al., 2018) or the impact of multiplicative dendritic
integration (An et al., 2019) and neither do they have an intrinsic saturation of
the firing rate. More detailed models can address these limitations, sometimes
at the cost of computational efficiency. The two-compartment IF models with
reversal potentials have an intrinsic saturation of the firing rate. Additionally,
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a two-dimensional integrate-and-fire model incorporating an exponential spike
mechanism with an adaptation equation has been proposed to effectively describe
neuronal activity (Brette and Gerstner, 2005). This model called the adaptive
exponential IF (AdEx) model, can replicate various firing patterns observed in
neurons (Naud et al., 2008; Gdrski et al., 2021). A spiking neural network, where
single neuron dynamics is based on the AdEx model and the network dynamics
consist of excitatory and inhibitory subpopulation with recurrent architecture
and excitatory feedforward input captures the trial-to-trial variability typically
observed in cortical neurons. This trial-to-trial variability of spiking activity in
cortical neurons has been recognized as a source of information about the state of
neurons and their involvement in behavioral tasks (Hussar and Pasternak, 2010).
Using the SNN model, our research demonstrated that stimulus onset can lead to
a quenching of neural variability, dependent on the spike frequency adaptation
(SFA) mechanisms employed. These findings emphasize the importance of SFA
mechanisms in shaping neural response dynamics and their critical role in accura-
tely modeling neural variability in cortical networks.

Empirical research into the influence of environmental stimuli on olfactory receptor
neurons (ORNs) provides new insights into how external factors modulate neural
coding strategies. The study on volatile plant compounds (VPCs) and their effect
on ORNs demonstrated that high concentrations of VPCs enhance information
per spike despite reducing overall firing rates, suggesting an adaptive mechanism
that optimizes information transmission in complex sensory environments.

The research presented offers a detailed exploration of information transmission
in neuronal systems from the rate coding perspective. By integrating advanced mo-
dels and empirical studies, and focusing on biophysical properties and adaptation
mechanisms, new insights are provided into how neurons encode and adapt to
varying inputs, enhancing our understanding of neural dynamics and information
processing.
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Neuronal firing rate is traditionally defined as the number of spikes per time window. The concept is essential for
the rate coding hypothesis, which is still the most commonly investigated scenario in neuronal activity analysis.
The estimation of dynamically changing firing rate from neural data can be challenging due to the variability of
spike times, even under identical external conditions; hence a wide range of statistical measures have been
employed to solve this particular problem. In this paper, we review established firing rate estimation methods,
briefly summarize the technical aspects of each approach and discuss their practical applications.

1. Introduction

Neuronal activity is composed of electric impulses called action
potentials or spikes. Spikes are abrupt and transient changes in mem-
brane voltage that travel to other neurons via axons, and are assumed to
be the main channel of communication between neurons. It is a general
assumption that spikes carry neural information through their occur-
rence times since their shape and duration are very similar (Dayan and
Abbott, 2001). A set of spikes in time recorded from a single neuron is
referred to as a spike train.

One of the most persistent problems in neuroscience has been the
question of neuronal coding, i.e., the exact quantitative description of
the way information is represented in a spike train: whether the in-
formation is embedded in the precise timing of the spikes (temporal
code) or their frequency (rate code). As the interspike interval (ISI)
between two successive spikes often vary, both within and across trials
(Shadlen and Newsome, 1998; Stein et al., 2005; Gerstner and Kistler,
2002; Koyama and Kostal, 2014), there are two main ways of inter-
preting this irregularity (Shadlen and Newsome, 1994). The rate coding
hypothesis (Adrian and Zotterman, 1926) suggests that it might be due
to stochastic forces, then the irregular ISIs reflect a random process.
Therefore, the pooled response from many neurons would be required
for firing rate estimation. In this scenario, the exact temporal pattern of
spikes contains little information. On the other hand, according to the
temporal coding hypothesis the irregularity might be due to pre-synaptic
events, in which case the timings of spikes and their patterns may carry
important information (Perkel and Bullock, 1968; Shadlen and
Newsome, 1994; Kostal et al., 2007; Kostal and Shinomoto, 2016). A
wide range of methods from probability theory and stochastic point
processes have been applied to obtain embedded information content in
a neural spike train (Cox, 1966; Moore et al., 1966; Tuckwell, 2005;
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https://doi.org/10.1016/j.biosystems.2019.103980

Kostal and Lansky, 2006).

The classic rate coding paradigm suggests that the communicated
information is embedded in the spikes sent along the axon per ob-
servation time window (also called the firing rate) (Dayan and Abbott,
2001). In most sensory systems, the firing rate increases, generally non-
linearly, with increasing stimulus intensity (Kandel et al., 1991). In this
paper, we focus on the problem of firing rate estimation, especially if
the rate itself is not stable but evolves in time.

It is challenging to determine the time dependent firing rate from a
few spike trains. Most of the established methods use trial averaging;
however, averaging might phase out some of the critical temporal
features (Nawrot et al., 1999; Baker et al., 2001; Byron et al., 2006),
thus extracting the time dependent firing rate from limited data re-
mains a persistent problem. We briefly review the established methods
of firing rate estimation developed over the years, from classical to
more recent approaches.

The paper is organized as follows: the concept of firing rate is ex-
plained in detail using point process theory in Section 2, whereas Sec-
tion 3 presents a concise overview of stationary and non stationary
neural activity, which is an important classification from a statistical
point of view. Finally, in Section 4 a brief description of each method is
presented.

2. Firing rate

Spike times 0 < s; < s, < ... are often modeled as a realization of
a stochastic point process (Cox, 1966; Perkel et al., 1967; Tuckwell,
2005) i.e., the nth spike time is a random variable, denoted as S,,. It is
assumed that the time instant ¢t = 0 is not related to the actual spike
times, i.e., it is fixed with respect to a reference (laboratory) time before
the point process realization (Kostal et al., 2018; Cox, 1966). The
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(a) Spike train as a stochastic point process
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Fig. 1. Neuronal spiking activity and firing rate estimation. (a) Spikes occur at times S; the corresponding interspike intervals (ISIs) are denoted as X;, and the
associated counting process up to time instant t is N(O, t). (b) Examples of spike trains simulated under identical statistical conditions. For most of the firing rate
estimation methods, individual spike trains are superimposed but few methods, like Frequencygram (Section 4.1) and Bayesian Adaptive Kernel Smoothing (Section
4.8), work with individual recordings as well. (c) Estimation of underlying firing rate (green) from the spike train data, using the time histogram method, compared
with the true underlying firing rate (dashed). (d) Firing rate estimation (blue) using the kernel smoothing method with Gaussian kernel, against the true underlying
firing rate (dashed). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

interspike intervals (ISIs), X;, are defined as X; = S;4+1— S, i =1, 2, ....
The associated counting process, N(t;, t,), for any t, > t, is a random
variable describing the number of spikes in the time interval (t;, t-]. The
spike times S; and the process N(O, t) are related by {S; = t} = {N(O,
t) = i}.

The firing rate A(t) of the point process at some time t is the limit of
the expected number of events in an interval beginning at t divided by

the duration of the interval (Fig. 1) (Johnson, 1996),

A0 = lim E[N(t, t + ¢)]
el0 €

@

where the mean (expected) spike count in (t;, t;] is denoted as
E[N (&, )]
Generally, the firing rate may depend on the time and history of the
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point process. If the firing rate A(t) depends on time, then the process is
non stationary. The part of the rate that depends on history takes into
account the detailed interactions between past spike times and the
current ones (Johnson, 1996). One example of such interactions is the
refractory time, a period where the rate takes the value zero, right after
a spike occurs.

The firing rate A(t) specifies the statistical structure of the process
(Johnson, 1996). However, without any prior information about the
point process, the experimental data might not be enough to determine
the limit given in Eq. (1) uniquely. Alternatively, in such cases, the
firing rate is often defined as the actual number of spikes in a suffi-
ciently long (finite) time window of duration w, chosen by the experi-
menter. This term is called the firing frequency and it's defined as
(Adrian, 1928; Dayan and Abbott, 2001)

_E[N({, t+w)]
- w ' 2

Formally, little can be said about the relationship between A(t) and
v(t, w) without knowing the exact probabilistic description of the un-
derlying point process. From a practical point of view, assumptions are
needed about the underlying statistical models of spike data used for
the analysis. More details about the commonly used underlying sto-
chastic processes are given in the following sections.

v(t, w)

3. Stationary neural activity

A point process is stationary if the probability distribution of the
number of events in an interval (t;, t,] is invariant under translation,
i.e., is the same for (t; + h, t, + h] for all h (Cox, 1966). In a practical
sense, stationarity implies that the firing rate of the point process does
not display any trends or shift from one instant of time to the other:

A =¢, 3

where C is constant. Cox (1965) addresses the issue of estimating the
rate function for a large class of stationary point processes.

One class of stationary point process, known as renewal processes
exhibits the property of independent and identically distributed inter-
vals between events (Cox, 1962). In renewal processes, the time to the
first spike after t = 0 does not follow the same probability distribution
as the consequent ISIs. The sequence of random variables corre-
sponding to the ISIs after time t is thus not stationary (Cox, 1962).
Consider a spike train with an underlying renewal process conveniently
characterized by the random variable X (the ISI length), then it follows
from the “elementary renewal theorem” (Cox, 1966; Rudd and Brown,
1997; Kostal et al., 2018),

1 .
= —— = lim v(t, w).

EX) w-ow @
Stationary neural activity is typical in the case of spontaneous activity
or steady-state stimulations (Moore et al., 1966). However, neural re-
sponses are often non-stationary (Perkel et al., 1967), hence the case of
stationary neural activity is of limited interest for the purpose of this
paper. In what follows, we generally focus on non-stationary processes
that describe the behavior of the spike trains.

4. Methods for firing rate estimation

In the following sections, it is assumed that the data from n spike
trains have been recorded under independent and statistically identical
trials. Let (0, T] <denote the duration of trials and
0 <s; < s3... < s, = T be the spike times for a particular spike train.
We denote the estimated underlying firing rate with A(¢).

4.1. Frequencygram

One of the oldest methods that deal with time-dependent changes in
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the firing rate employs the concept of “instantaneous firing rate”, where
the reciprocal values of ISIs are used to determine the firing rate. The
instantaneous firing rate for a given spike train sy, s, ..., at a time point
t is estimated as

/‘t([) = ;, Si—1 St <5

Si — Si—1 (5)
In an experiment conducted in Bessou et al. (1968), an ‘instantaneous
frequency meter’ is used to record the discharges of spindle primary
endings as a succession of points. The superposition of a large number
of records of ‘instantaneous’ frequency, under certain conditions, lead
to the construction of graphs called frequencygrams. Knight (1972)
worked on the efficiency analysis of such methods for periodic signals.
Following the analogy of frequencygram, under the renewal model, the
instantaneous firing rate F is a random variable obtained from the ISI
random variable X through the one to one transformation,

P=x ©)
There are several key differences between the classical firing rate and
instantaneous firing rate, and the most important one is that the mean
instantaneous firing rate is typically higher than the count-based firing
rate (Lansky et al., 2004).

The concept of instantaneous firing rate has been applied in many
situations. For example, Sawczuk et al. (1995) use the reciprocal of the
first interspike interval as the magnitude of initial adaptation while
investigating spike frequency adaptation in hypoglossal motoneurons of
a rat. Martinez-Conde et al. (2000) define firing rate as the reciprocal of
ISIs, in his paper where he studies microsaccadic eye movements and
firing of neurons in striate cortex of macaque monkey. Rospars et al.
(2003) and Lemon and Smith (2006) adopt the definition of in-
stantaneous firing rate (Eq. (6)) in their respective papers. Val-Calvo
et al. (2019) use the firing rate estimated from inverse ISIs in frequency
variation analysis in neuronal cultures for stimulus-response char-
acterization. Theoretical applications of instantaneous firing rate can
for example be found in Pauluis and Baker (2000) in their presentation
of the detailed study of the treatment of rapid change in frequency-
grams, in Harris and Waddington (2012) in the investigation of the
inverse distribution of common models of ISIs, in Kostal et al. (2018)
where the authors revisit the main concepts involved in the method of
estimating instantaneous firing rate and the impact of the inspection
time on instantaneous firing rate statistics.

4.2. Time histograms

In order to obtain an approximate estimate of the firing rate from a
few spike trains, time averaging over short time intervals is performed.
This process is called binning, and it is used in various firing rate esti-
mation methods. The most basic and frequently used tool for rate es-
timation is the time histogram method (Gerstein and Kiang, 1960), also
referred to as the post-stimulus time histogram method (PSTH)
(Johnson, 1978).

For this method, n spike trains observed under independent and
identical statistical trials are taken and superimposed. Observation
period T is divided into bins of duration A and the number of spikes in
the ith bin, across all trials, is denoted by k;. The firing rate A(t) for the
ith bin is estimated as (Shinomoto, 2010)

N ki

AO=SN @
for te [(i — 1)A, iA). This process is repeated for each of the N, = [T/A]
bins to compute a piece-wise constant function representing the firing
rate value in that particular bin.

This method is very easy to implement; however, it might not re-
present the firing rate fluctuations accurately. In particular, the tem-
poral resolution of the estimation critically depends on the bin size.
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With a bin size too large, the time dependency of the firing rate is lost,
and with a bin size too small, the fluctuations in the estimation might
be too rapid (Hardle and Abbott, 1991).

Shimazaki and Shinomoto (2007) proposed a method to optimize
the bin size of the time histogram method so that the mean integrated
squared error (MISE) between the estimated rate and the unknown
underlying rate is minimized,

_1 T 7 2
MISE = - jo' EA®) — A(6))2dt ®
where [E refers to the expectation over different trials, given the rate
A(t). However, since the underlying firing rate is not known, Shimazaki
and Shinomoto (2007) derive an optimization method to obtain the bin
size. This method is derived rigorously using bias-variance decom-
position to obtain the expected value of MISE in terms of observed spike
count.

This approach was further improved in Omi and Shinomoto (2011)
by the inclusion of non-Poissonian features such as the impact of the
firing history on the occurrence of a spike (Kuffler et al., 1957; Baker
and Lemon, 2000; Pillow et al., 2005; Kostal and Lansky, 2006). The bin
width optimization for these spike trains is done with the aid of a cost
function, which is derived by decomposing the MISE function with the
help of a Fano-factor (ratio of variance of the spike count to the mean)
like quantity F. This quantity £} is defined in terms of local variation Ly,
that measures the ISI variability (Omi and Shinomoto, 2011),

1, if k; <2,
E=1{ 2L .
! V_ otherwise’
3-Ly C)
2
- _ 3 k2 x-xe) .
where the local variation Ly = h-2 Y=t (>q+xj+1) is computed from

the ISIs {x;} that fall into the bin. Using F, average h of {Ek;} and
variance v of {k;} is calculated for each bin i. Then the estimated cost
function is

2h— ¥
N (10)

This procedure is repeated, while changing the value of A, to obtain the
optimal bin size that minimizes the cost function. More details about
this method are given in Omi and Shinomoto (2011) with application to
simulated and biological data along with the discussion of potential
limitations.

Gerstein and Mandelbrot (1964) use time histograms to show the
activity of a cochlear nucleus in response to clicks at various rate in the
description of a random walk model for the spike activity of a single
neuron. Movshon et al. (1978) compile the neural responses to visual
stimuli with time histograms while investigating the spatial summation
in the receptive fields of simple cells in the cat's striate cortex. Berry and
Meister (1998) calculate the firing rate of a salamander ganglion cell in
response to a random flicker situation, employing this method.
Liitkenhoner and Smith (1986)Liitkenhoner and Smith (1986) show the
rapid adaptation properties associated with high or low spontaneous
rate recorded from single auditory nerve fibers of a cat, using histo-
grams. Ruskin et al. (1999) record variations in firing rate in response
to event signals from a ventilator apparatus, with the help of time
histograms. Mukamel et al. (2010) measure the firing rate with time
histogram method, in their study of the single-neuron responses in
humans during execution and observation of actions. Vizuete et al.
(2014) use the MISE technique mentioned in Shimazaki and Shinomoto
(2007) in computing the ISI histograms of data obtained from adult
male Sprague-Dawley rats in their study of graded defragmentation of
cortical neuronal firing during the recovery of consciousness in rats.

C(n) =

4.3. Kernel smoothing

This method is also known as the fixed kernel estimation. To address
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the issue of localized error around the bin edges, the window method
was proposed (Rosenblatt, 1956; Parzen, 1962). Instead of dividing the
time interval into N, separate time windows of a certain duration,
placed at pre-determined time points, a moving average is taken, which
calculates the local average value in a window centered around each
data point s;. Mathematically, this is equivalent to convolving the data
with a window function. Generally, the window function can be re-
written using the kernel function Kj(t) with bandwidth h. For spike time
data s, S, ..., sy the fixed kernel estimator is given by

N

A= Kt —s),

E 11)
where h is called the smoothing parameter or the bandwidth. Estimated
rate /T(t) is also referred to as Spike Density Function (SDF). The
smoothing parameter is held constant for all the data points (Silverman,
1986). The kernel function satisfies the natural conditions (Nawrot
et al., 1999),

Kn(t) >0, (12a)
[: Ky(Hdt =1, (12b)
[ : tKy(6)dt = 0. (120)

Smoothness of the estimated rate depends on the choice of the kernel.
Desirable qualities of a good kernel function are discussed in Paulin
(1992) with a comparison of some pre-established kernels. Nawrot et al.
(1999) use numerical simulations to assess the effects of width and
shape of the kernel functions and conclude that the choice of specific
kernel shape does not have critical effects on the estimation error.
These findings are in agreement with the results given in Silverman
(1986) and Scott (1992). More details about kernel smoothing can be
found in Silverman (1986), Scott (1992), Wand and Jones (1994) and
Bowman and Azzalini (1997).

Sanderson (1980) uses spike density function and filtering techni-
ques to study the relationship between spike firing of a single neuron
and gross evoked potentials. Richmond et al. (1987) represent the firing
rate of inferior temporal (IT) neurons of alert behaving monkeys with
spike density function. Tovee and Rolls (1995) analyze the neural re-
sponse using spike density function, from two alert macaque monkeys,
to a different face stimulus in order to obtain different time series for
principal component extraction. This data is used to conclude that short
periods of firing may be sufficient to provide useful information as
compared to longer periods of neuronal firing. Szucs (1998) uses the
kernel smoothing method in the analysis of the firing patterns of
Lymnaea neurons. Kohler et al. (2002) show the activity of neurons
responding to the sound of different specific actions in the ventral
premotor cortex of awake macaque monkeys, with spike density func-
tion. Yaksi and Friedrich (2006) obtain firing rate of sensory neurons
via kernel smoothing method with Gaussian kernel to demonstrate that
neuronal firing rate changes of many neurons can be reconstructed
efficiently and robustly by temporally deconvolved Ca®* imaging.

For a time-varying rate function, kernel smoothing might not be
effective in capturing the temporal variations. Silverman (1986) dis-
cusses the over-smoothing effect of the fixed bandwidth in certain
probability distributions. The next step is to find an optimum kernel
bandwidth, which gives a smooth estimation irrespective of the dips in
the time-dependent firing rate.

4.4. Optimized kernel smoothing

The choice of the free parameter h is a crucial problem with kernel
smoothing method since it affects the smoothness of the firing rate
estimate and highlights the temporal structure of the underlying spiking
activity. There are multiple ways to infer the optimized kernel band-
width, a few of which use the discrepancy between the estimate /i(t)
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and A(t) to define some error criterion. The optimized bandwidth will
then be the bandwidth minimizing the error obtained through the de-
fined error criterion. Alternatively, the concept of using a variable
kernel bandwidth is studied in detail as well. We review the main
methods of optimized kernel smoothing in this section.

4.4.1. Globally optimized kernel smoothing

The idea of bandwidth optimization was proposed by Loftsgaarden
and Quesenberry (1965). It has been employed to obtain a smooth es-
timation of a rapidly changing firing rate A(t). Nawrot et al. (1999)
propose a technique of optimizing bandwidth to get optimal results.
The method starts with a wide kernel bandwidth, which is system-
atically reduced. Integrated Squared Error (ISE) is recorded after each
step between the successive rate estimates associated with each band-
width choice. Assuming that the bandwidth choice at certain step is h
and for the succeeding step is h', the ISE for the pair of successive rate
estimate is

ISE = _/0' ! (An = Aw )0y dt. 13)

From observations, it is then concluded that at a particular kernel
width, the ISE curve encounters a clear minimum which is close to the
optimum kernel bandwidth.

Another method for bandwidth optimization is given in Cherif et al.
(2008), which furthermore involves convolving the spike train with an
optimal kernel. An optimally designed Kaiser window (Cherif et al.,
2008) is used to define the Kaiser kernel which works as the kernel of
choice, where the bandwidth selection is done with frequency analysis
of the spike train. The Kaiser window function (Kaiser, 1974) is defined
as,

L(BJ1 = (2t/M) — 1)*)
we(t) = Io(ﬁ)
0, otherwise 14)

, 0<t<M

where I is the zero order modified Bessel function and M is the length
of the window and f is the shape parameter. Kaiser filter design is based
on the optimization of these parameters. The advantage of the Kaiser
window is its flexibility due to the two independent variables M and .
The optimal values of M and f3 are given in Cherif et al. (2008). The
authors have compared the performance of the Kaiser window method
with other well-established methods.

Building up on the technique used to find an optimal bin width for
time histograms (Eq. (10)), a similar optimization method is applied to
find a fixed kernel bandwidth that fits the varying firing rate
(Shinomoto, 2010). The modified cost function for n spike trains, with
the kernel function Kx(t) of bandwidth h, is

2

Z lﬁh (Su sj) l’lz E Kh (sl sj)’ (15)
where yi(s;, 5;) = [ Ku(t — s)Kp(t — s7), and similar to the method pre-
sented in Shimazaki and Shinomoto (2007), minimizing the cost func-
tion with respect to h yields the optimal kernel bandwidth.

Cunningham et al. (2009) use the method mentioned in Nawrot
et al. (1999) for their study regarding the brain machine interface ap-
plication of neural prosthetic decoding in arm-reaching setting and
report that this method produces a wide range of different kernel
bandwidth depending on the experimental data. Jamali et al. (2009)
represent the neural discharge data obtained from analyzing the head
movements of macaque monkeys with the Kaiser window method,
which was further used in the analysis of response dynamics of utricular
and saccular afferents. Kaiser window method is used in Van Horn et al.
(2013) to determine the firing rate of neurons in the rostral superior
colliculus (rSC), while investigating whether the rSC contributes to the
development of neural signals that are suitable for controlling vergence
eye movements. Tilunaite et al. (2017) apply the kernel bandwidth

Cu(h) =
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optimization method mentioned in Shinomoto (2010), to obtain opti-
mized kernel smoothing estimate of the firing rate function describing
the Ca®" spike sequences. The paper focuses on proposing a modeling
framework that allows a quantitative description of the timing of cal-
cium spikes.

4.4.2. Locally adaptive kernel smoothing

Another way of improving kernel smoothing is to allow for a vari-
able bandwidth, which can adapt to the local rate, instead of a fixed
bandwidth throughout the whole duration of the trial. Typically, this
method proceeds in two steps. The first step includes an initial esti-
mation to get a rough idea of the density, which provides a pattern of
the bandwidths based on the data and these bandwidths are used to
develop the adaptive estimator (Silverman, 1986). The first estimate,
called the pilot estimate can be done with the fixed-width kernel
(Richmond et al., 1987), as there are no specific smoothness require-
ments for the first step estimation; however, choice of the fixed width of
the pilot estimate does affect the adaptive estimate. Let ip(s,-) be the
pilot estimate at the ith data point as described in Eq. (11), and let u be
the geometric mean of all pilot estimates at the N given data points,

u= exp[ Ind (sl)]

(16)

Ny

Local bandwidth of the adaptive estimate is given by

K a7)

where «a is called the sensitivity parameter, the value of which lies be-
tween 0 and 1. Adaptive kernel estimate is then given as a modification
of Eq. (11) (Breiman et al., 1977; Sain and Scott, 1996),

R N

A0 = Kt — 50,

E (18)
where h; is a product of smoothing parameter from fixed-width method
h and local bandwidth h; obtained with the pilot estimate. This new
estimate makes the kernel narrow when spikes are closer together
(which implicates high firing rate, or spikes occurring at the same time
across trials), and spreads the kernel whenspikes are isolated.
Abramson (1982) proposes a = 1/2 as a reasonable choice for the
smoothing parameter under mild assumptions.

Another approach is to extend the fixed width optimization tech-
nique (Eq. (15)) by dividing the trial duration into local sub-intervals
where the variable bandwidth is used. A local MISE function at time ¢ is
used to derive a local cost function at that instant. Through the local
cost function, a locally optimal bandwidth h, and suitable time window
length are established. A new parameter y is obtained to overlook the
smoothness factor between the choice of window length and optimal
bandwidth. The cost function derived using a kernel function K,, ac-
counting for variable bandwidth t with smoothing parameter vy
(Shimazaki and Shinomoto, 2010), is

Gn=[f4 Ki(si — ),

E 19

where 4, = . K,(t — ;) is the estimated rate. Using the above equa-
tion, the costunctlon is m1n1m1zed to obtain an optimal y". The ideal
bandwidth h/ is calculated using y* and the cost function.

Shimazaki and Shinomoto (2010) compare the fixed and variable
kernel methods to the other established methods with sample spike data
from 10 superimposed spike trains on the basis of integrated squared
error (ISE) and notice that variable kernel estimation is more efficient
in capturing the abrupt changes in the rate. The authors also include the
performance analysis of variable and fixed kernel bandwidth, with
application to real biological spike data of an MT (visual area) neuron
responding to a random dot stimulus (Britten et al., 2004).

Richmond et al. (1987) use both fixed and adaptive kernel methods
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o study striate cortical neurons. Jones (1990) presents a thorough
description of the differences between the two estimation methods.
Waitzman et al. (1991) obtain the firing rate for single cell analysis,
using the adaptive kernel method with neural data from two female
thesus monkeys. Additionally, a collicular feedback model of the sac-
cadic system is proposed which accounts for the dynamic relationships
of collicular firing to both saccadic amplitude and velocity. Terrell and
Scott (1992) analyze all different variations of variable kernel estima-
ton Lee and Malpeli (1998) investigate the effects of saccades on the
activity of neurons in the cat lateral geniculate nucleus (LGN) and use
adaptive kernel smoothing on data obtained from seven LGN in four
cats, Missal et al. (2000) conducted an experiment to investigate the
activity of medium-lead burst neurons during saccade and smooth
pursuit and to assess their possible roles in the control of the two types
of movements. Here adaptive kernel smoothing is used to estimate the
firing rate of spike trains obtained from two adult cats trained to per-
form a saccade and smooth pursuit task. Sheinberg and Logothets
(2001} estimate the firing rate of individual temporal cortical neurons
with the aid of adaptive kernel smoothing, while monkeys looked for
and identified familiar targets placed in isolation and embedded setting.

Bayesian methods

The problem of firing rate estimation is widely studied using the
methods of Bayesian statistics as well. Bayesian methods typically start
with assuming prior probability distribution pA(f)) on the firing rate
function A(f) and a probability model describing how the spike train
& = [8n, 51, ..., 5n] is generated, given the underlying firing rate, de-
noted by p(s[A(d). Bayes' rule (Papoulis and Pillal, 2002) is used to
infer the most likely firing rate function from the given spike trains
(Mochizuki and Shinomoto, 2014)

i = ()
19] wm}:u [A(t)Is], (20

where
pIsiA()]pla)]
plsl (21}

is the posterior distribution for A(f). These equations are easily modified
accordingly for multiple spike trains. Variatons of this general ap-
proach are seen in the methods in the following sections.

plait)s] =

Method Main ¢haracterstics Nuotable referen ces
Frodquee nCygram Uses the reciprocal vahes of 151 o Besow ef al. (1968)
determine the firing e
Time Histogram  Trial duration i divided into bins Gemtein and Kiang
(PSTH) andl firing rate of a particular time (1960, Shimazaki and
bin i ratio of the number of spikes in - Shinomoto [ 2007)
the time bin and its dumtion.
Kemel Smoothing  Spike train isconvolved with akernel Rosenblan (1956),
(EZ) fusne tion 1o produce the fring mie a2 Parmen (1962), Mawrol
a weighted avermge of the spikes et al (1990], Shingmoto

(2010)
Mawmt e al. (1999],
Cherif et al. (2008),

nearby at any given instant.
Globally Optimiz-  Bandwidth pammeter of the kernel
ed Hemel Sm- finetion is optimized using a pre-

odthing defined ernor criterion to yield afixed  Shinomoto (2010)
bandwidth.
Adsptive Kemel Moo stationary kemel or local opti-  Silverman (1986],
Smoothing mized bandwidth is incorporated to  Shimazaki and

allow for a smoother firing rate esti-  Shinomoto (2010)
T L.

Gausian Proes  Fring mie is asumed 1o be dawn
Firing Rate (- from Gawsian proces, spike trains
GFFE) are generated acconding 1o KGIP.

Bayes' rule i wsed to infer the momst
likely firing rate function.

Bayesian Adaptive Spline basis with prior distribution & DiMatteo et al. (2001)
Regresmion 5-  used to model the firing rate, spike
plines (BARS) trains are stsumed 1o genermted ac-

cording 1o Poison process.
Peversible jump MOME i wsed o
estimate the underhying firing e

Cunningham & al.

[2008]
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Bayesian Binning Firing rate & modeled a priod by
(BEE) pieoe wise congtant regions of varying
wridth, the spike trains are st med o
e genemted from inhomogensous
Bemoulli process. Firing rate & in-
ferred wsing Bayes' rule
Bayesian Adaptive BAKS incorporates the Adaptive
Kemel Smon-  Fernel Smoothing techndque and
thing (RAKS)  trests the adaptive bandwidth as a
random variable which is constantly
upsikated under a Bayesan framework
1o yield an adaptive bandwidth.

Emddres ot al. (200E)

Ahmadi et al. (2018a)

4.5. Gaussian process firing rate (GPFR)

In this method, the firing rate A(t): ¢ € [0, T] is assumed o be drawn
from a Gaussian prooess (GF) prior, and spike trains are modeled by
inhomogeneous gamma interval process (IGIP) (Barbieri et al., 2001).
Given the firing rate function A(f), the conditional probability p(s|A0),
Is given by

N
p(slA)) = _ psisi_q, A(0)0, (sl ()0 (Tsw, A1), o
where pg is the density of the first spike occurring at ime so and pr is
the density of no spike occurring in the interval (s, T]; pls]s—., A0) &
the density of the IGIP intervals which can be written as (Barbieri et al,,
2001},

PisISip, A(1)) = %(v L i{u}du)v_lﬂm[—v L i(u}]du,

(23)

where v is the shape parameter and T(v) is the gamma function
(Johnson and Kotz, 1971). The true pp and pr are not closed form in
IGIF model, hence for tractability these distributions are simplified as
the intervals of an inhomogeneous Polsson process. Furthermore, Af),
te[0, T] is discretized by the time resolution of the experiment (say A)
to yield a series of Ny = T/A evenly spaced samples 1 = [&, Az, dn, ]
Modifying Eq. (22) according to the discretization produces an updated
formula for p(s|A) (Daley and Vere-Jones, 2002). The details of this
derivation are given in Cunningham et al. (2008).

Another important factor is the chodee of the covariance function
used in the firing rate prior. Cunningham et al. (2008) use the standard
squared exponential covarance function defined below and note that
the other standard covarance functions behave similardy. Thus,
A ~ Niu, E), where the covariance matrix X is defined by,

E=K(L Ij)ijzl,_.l: (24)

where K(ti tj) = ojexp{—>(t — ;"] + 0,8y signal variance of and
noise varance ¢f are the parameters of Gaussian prior. For more in-
formation about the GP and covariance functions, see Williams and
Rasmussen (2006,

For notatonal convenience, let the hyperparameter set for this
model be denoted by & = [i; ¥; x;a}; ov?]. The problem of calculating
the posterior on firing rate p(A|s) = [ p(A|s, O)p(@)Md0 is inractable,
and it's approximated by either replacing the integral by evaluation at
the modal &

= a.rgg:laxp{ﬂls} = a_rg-le:l:mxp{&}p{sle_} = arg:g:mx J: pisld, Sipldl&)da,

(25)
or replacing the integral with a sum over a discrete grid of 8 values. To
proceed with either of these methods, the modal firing rate estimate is
needed, which is obtained using the maximum a posterior (MAF) es-
timator (see Eq. (20]). Modal firing rate 1% is used for the Laplace ap-
proxdmation to determine the modal hyperparameter §°. The basic idea
of Laplace approximation is to approximate the logarithm of the in-
tegrand in question by its second degree Taylor expansion about its
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mode. The same Laplace approximation is used in approximating the
integral over 6 using a simple grid of 6 values, to arrive at an approx-
imate integrated posterior. For an in-depth description of this method,
see Cunningham et al. (2009).

Since this method works in multiple iterative layers, Cunningham
et al. (2008) give a brief outline of efficient algorithms to potentially
alleviate the challenges associated with the computational cost of this
method. Rad and Paninski (2010) use a similar technique to derive
efficient estimates of two dimensional firing rate surfaces.

4.6. Bayesian Adaptive Regression Splines (BARS)

This technique uses the smoothing spline method of curve estima-
tion to estimate the firing rate function. Splines are functions defined
piece-wise by polynomials, connecting at time points called “knots”.
Similar to GPFR, BARS models the firing rate by assuming a prior dis-
tribution on the number and position of knots and other parameters of
the spline function representing the firing rate. BARS uses standard
cubic splines. Spline basis allows the estimator to capture the high
frequency changes in the firing rate while removing the high frequency
noise, which is an added advantage.

To make inference about the firing rate function A(t), BARS fits the
generalized non-parametric regression model for the spike counts Y;
observed at the time points Xj's,

where A(t) is a spline with an unknown number of knots at unknown
locations & = (&, ..., &), ¢ is an optional nuisance parameter and p is a
specified distribution. With these assumptions, A(t) may be written in
terms of the basis functions b, j=1, ...,k + 2as 1 = E};Zf ,6’jbj(x) for
some vector 8 = (B, ..., Br+2)-

For a known knot set, Eq. (26) reduces to an easy estimation pro-
blem; however, determining ¢ is the challenging part. BARS uses prior
distribution on the number and location of the knots and then a re-
versible-jump MCMC algorithm, to generate draws from the posterior
distribution and provide an optimally fitted curve based on drawn
samples of the possible number of knots and their location. The original
idea of using reversible-jump MCMC to select knots is given in Denison
et al. (1998).

DiMatteo et al. (2001) show that BARS could reduce the MSE below
other existing methods and use BARS to estimate the time-intensity
function of neuronal firing in a monkey's brain. Kass et al. (2003) de-
monstrate the smoothing properties of BARS method when it comes to
highly varying firing rate. Kaufman et al. (2005) use BARS as a basis to
propose a new non-parametric regression method to fit neuronal data.
BARS is used to calculate the firing rate function of simulated neurons
in Ventura et al. (2005) when no trial-to-trial variation is assumed. This
data is used to propose a statistical method to describe trial-to-trial
variation or “excitability” effects. Wen et al. (2009) apply BARS to fit
the firing rate function, of the inferior culliculus neuron and auditory
nerve fiber of anesthetized cats in response to continuous, dynamic
sound stimuli. In this paper, the authors investigate whether dynamic
range adaptation to the sound level distribution first observed in the
auditory midbrain also occurs in primary auditory neurons.

4.7. Bayesian binning

Endres et al. (2008) developed this Bayesian method of estimating
the neural firing rate. It is a compromise between binning and
smoothing in a way that the bins are kept to enable rapid changes in
firing rate, but the bin duration is variable. Neural firing rate is modeled
a priori by piecewise constant regions of varying width (Endres et al.,
2008).

Given the underlying firing rate, let the ith spike train recorded
between time 0 and T be represented by a binary vector s. The trial
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duration T is discretized into A time bins, and thus the vector s has
dimension Ny =| T/A J. The time interval is divided into M + 1 con-
tiguous, non overlapping bins having inclusive upper boundaries k;,,
within which the firing probability f,, = P(spike|t € (tmin + At
(km—1+ 1), tnin + Atk,, + 1)]) is constant. The number of bin
boundaries for the trial duration is M. Spike train s of independent
spikes is modeled by an inhomogeneous Bernoulli process with piece-
wise constant probabilities, given the firing rate

M

PsI{f, ), tknd, M) = f2O™ (1 — £ )80em),

(27)

where z(s, m) is the number of spikes and g(s, m) is the number of non
spikes (gaps) in the spike train s in the bin m. The equation above is
easily modified for multiple spike trains, denoted by {s}.

The chosen prior on f,, € [0, 1] is a density since f,, is a continuous
model parameter,

M

p(f,} M) = B(f,\5 Gns V)s

H (28)

where the Beta density B(fy,,; O, Ym) is defined in the usual way with
shape parameters o0, and vy, For k,, there can only be finitely many
configurations, and assuming that none of those configurations have
any special preference, the prior for the bin boundary is

_r

Ny — 1)
( M ) (29)
where the denominator is the number of possibilities to choose M bin
boundaries from N, — 1 places. Prior for M is assumed to be uniform.
This model is wused to infer the predictive firing rate
@) = p(spikeIIE, {s}) using the posterior p({f;n}, {kn}|M, {s}) and p
M|{s}).

The authors obtained spike trains from superior temporal sulcus and
the inferior temporal cortex of two monkeys performing a visual fixa-
tion task. This data was used in firing rate estimation and the com-
parison of the PSTH, obtained from Bayesian binning method, to the
bar PSTH, line PSTH and SDF obtained with fixed kernel smoothing
method using a Gaussian kernel. Endres and Oram (2010) adapt
Bayesian binning method to extract other characteristic features of

neural responses other than firing rate distribution, such as neural la-
tencies.

p(tkm}IM) =

4.8. Bayesian Adaptive Kernel Smoothing (BAKS)

BAKS addresses the particular problem of estimating the firing rate
from a single trial. Single trial spike trains have been shown to reflect
non Poissonian properties like refractory period and bursting (Barbieri
et al.,, 2001; Kass et al., 2005), hence this method avoids using the
Poisson process to describe the spike train. The authors (Ahmadi et al.,
2018a) use spike trains described by inhomogeneous Gamma and in-
homogeneous inverse Gaussian processes to represent non-stationary
processes. BAKS uses the kernel smoothing technique with adaptive
bandwidth at the estimation points. The adaptive bandwidth is con-
sidered as a random variable with prior distribution, which is updated
under a Bayesian framework given the spiking data.

Among the several choices for the kernel function, the Gaussian is
used quite frequently. Another reason for choosing Gaussian kernel is
mathematical convenience since it enables the availability of several
conjugate prior distributions which leads to a closed-form expression
for the posterior distribution. A closed form expression simplifies the
computational complexities by avoiding numerical approximation
techniques (MCMC). A Gaussian kernel with adaptive bandwidth is
defined as,



R. Tomar

Ky (1) = ! EXP{— e }

V2rmh(t) 2h(t)? (30)
The parameter bandwidth h(t) represents how the data is spread around
the mean, and it can be parameterized in terms of precision ¢ = 1/h(t)?,
which represents the concentration of the data around the mean. For
firing rate estimation, the ISIs are conveniently modeled by Gamma
distribution (Kuffler et al., 1957; Stein, 1965; Sanderson et al., 1973;
Seal et al., 1983; Levine, 1991; Mandl, 1992; Barbieri et al., 2001;
Brown et al., 2002; Cunningham et al.,, 2008; Shimokawa and
Shinomoto, 2009; Shimokawa et al., 2010). Therefore, the authors
propose Gamma prior distribution on the precision parameter o. Since
Gamma distribution is the conjugate prior for the Gaussian distribution
with precision parameter o, the choice of Gamma prior will result in an
analytical expression for the posterior. The Gamma prior distribution
7t(0) in terms of the precision parameter, can be transformed into a
function of adaptive bandwidth h(t) by the change of variable formula:

7(h(t)) = 7 (o)

do
dh(r) (31)

The likelihood function is the probability density of the spike train
conditional on the bandwidth parameter f (slh(t)) which is approxi-
mated by

1 N

FIR®) = =  Knt — s).

Ny (32)
Using Bayes’ theorem with Eq. (31) and (32), the posterior distribution
of kernel bandwidth, st(h(t)|s) is calculated and the adaptive bandwidth
is then estimated under the squared error loss function with

h() = [ h©7 (r(@)Is)dh (D). (33)

A closed form expression for adaptive bandwidth is given in Ahmadi
et al. (2018a) along with the derivation in the appendix. The derived
Bayesian optimal bandwidth is used in Eq. (11) to estimate the firing
rate

2 N (¢t —s)?
Y= & o exp{ 2ty } 34)
In Ahmadi et al. (2018a), the authors compare BAKS to optimized
kernel smoothing, variable kernel smoothing, BARS and other estab-
lished rate estimation approaches, through the measure of MISE and
suggest that BAKS yields significantly lower MISE compared to the
other methods while tested on 100 repetitions of a single trial. The
comparison has been with a different number of trials and different
underlying rate functions. The authors test the effectiveness of BAKS
methods on real neural data recorded from the motor and visual cortex
of non human primate and observe the performance. An added ad-
vantage of BAKS, as opposed to the other Bayesian methods, is its low
computational complexity.

Ahmadi et al. (2018b) use BAKS for offline brain machine interface
decoding and demonstrate the improvement against decoding with
binning method due to the smoother estimate of the firing rate.

5. Conclusion

The development of the optimal firing rate estimation methods is an
essential problem in theoretical neuroscience, which has received a lot
of attention over the past decades. In this paper, we reviewed some of
the existing firing rate estimation methods and briefly summarized the
technical details concerning each of the methods. For an in-depth de-
scription of a particular technique, original papers are referred to. The
list of the reviewed method is not exhaustive. It is important to note
that, this paper does not offer a comparison of the mentioned methods
since each method may have crucial applications in neuroscientific
studies including, but not limited to, the ones mentioned here.
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Instantaneous Firing Rate

Rimjhim Tomar"?* and Lubomir Kostal'
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The apparent stochastic nature of neuronal activity significantly affects the reliability
of neuronal coding. To quantify the encountered fluctuations, both in neural data and
simulations, the notions of variability and randomness of inter-spike intervals have been
proposed and studied. In this article we focus on the concept of the instantaneous
firing rate, which is also based on the spike timing. We use several classical statistical
models of neuronal activity and we study the corresponding probability distributions of the
instantaneous firing rate. To characterize the firing rate variability and randomness under
different spiking regimes, we use different indices of statistical dispersion. We find that
the relationship between the variability of interspike intervals and the instantaneous firing
rate is not straightforward in general. Counter-intuitively, an increase in the randomness
(based on entropy) of spike times may either decrease or increase the randomness of
instantaneous firing rate, in dependence on the neuronal firing model. Finally, we apply our
methods to experimental data, establishing that instantaneous rate analysis can indeed
provide additional information about the spiking activity.

Keywords: variability, randomness, firing rate, entropy, rate coding, neural coding, temporal coding, instantaneous
firing rate

1. INTRODUCTION

One of the primary research areas of computational neuroscience is dedicated to understanding
the principles of neuronal coding, i.e., the way information is embedded into neuronal signals. It is
generally understood that neurons use brief electrical impulses (called action potentials or spikes)
to convey information. The way information is presented in the time sequence of spikes, however,
is still a matter of debate (Shadlen and Newsome, 1994; Stein et al., 2005).

A widely accepted answer to the problem is the rate coding hypothesis, which says that the
neurons transmit information through the average number of spikes sent along the axon per a
certain time window (this is called the mean firing rate). The origin of this theory is credited to
Edgar Adrian who found out that the firing rate of the stretch receptor of a frog’s muscle changes as
a function of stimuli (Adrian, 1926). However, since then, many studies have shown that neurons
can encode information without necessarily changing the mean firing rate in response to a stimulus
(Perkel and Bullock, 1968; Gerstner and Kistler, 2002; Rigotti et al., 2013; Dettner et al., 2016)
prompting the temporal coding hypothesis, which states that the temporal structure of the ISIs
is also employed in the embedding of neural information in the spike train (Theunissen and Miller,
1995). Theoretically, information can be encoded in the temporal pattern of the ISIs in an infinite
number of ways (Thorpe and Gautrais, 1997; Jacobs et al., 2009; Ainsworth et al., 2012), therefore
measures are needed to quantify the features of spiking neuronal signals from different perspectives
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(Perkel and Bullock, 1968; Victor and Purpura, 1997; Buracas
and Albright, 1999; Rieke et al., 1999; Nemenman et al., 2004). A
possible way of looking at the role of temporal structures can be
through variability coding hypothesis (Perkel and Bullock, 1968)
which states that neuronal variability may not be entirely noise,
and part of it might reflect the aspects of neural code that is not
yet understood; whether it is the variability of the ISIs or of the
firing rate. A standard measure for comparing variability in spike
trains is through the coefficient of variation (Cy) which is defined
as the ratio of standard deviation to the mean of ISIs (Barbieri
and Brunel, 2007). Variability of the firing rate is measured by the
Fano factor (Ditlevsen and Lansky, 2011; Rajdl and Lansky, 2013;
Stevenson, 2016) which is defined as the ratio of variance to the
mean number of spikes in a fixed time window.

Another concept that is similar to variability but not
equivalent, is the notion of randomness (Kostal et al., 2007b).
Variability and randomness both are used as a differentiating
measure in the cases where spike trains might seem similar
from the rate coding perspective. It is important to distinguish
between the two quantities because highly variable data might
not be random at all if it consists of relatively predictable values.
For example multi-modal data with well separated peaks may
have higher variability than uniformly distributed data where the
outcomes are the least predictable. Shannon’s entropy (Shannon
and Weaver, 1949) is widely used to measure randomness (Steuer
et al., 2001; McDonnell et al., 2011; Watters and Reeke, 2014),
however it is not suitable for continuous distributions. Few other
randomness measures based on entropy have been used in neural
context recently. In Kostal et al. (2007a) and Kostal et al. (2013)
the authors propose a randomness measure for ISIs, creating an
alternative to Cy; whereas an entropy based randomness measure
of spike counts is introduced in Rajdl et al. (2017), analogous to
the Fano factor.

The instantaneous rate is often ambiguously defined as
the inverse of a certain inter-spike interval, e.g., of the first
complete ISI after stimulus onset, or of a combination of first
n intervals, etc. (Bessou et al., 1968; Awiszus, 1988; Lansky
et al.,, 2004). However, statistically consistent definition of the
instantaneous rate (Kostal et al., 2018) cannot depend on the
“intrinsic” timing given by the particular spike train realization
(e.g., the first evoked spike). Instead, it must be evaluated
with respect to the “external” time frame, consistently across
trials, i.e., asynchronously with respect to individual spike train
realizations. In this paper we consider models of spike trains
described by renewal processes, and investigate the dependence
between the ISI dispersion coefficients and instantaneous rate
dispersion coefficients and emphasize that instantaneous rate
provides another perspective in the evaluation of neuronal data.

The paper is divided as follows: first, the concept of
instantaneous rate is introduced. Next, the concepts of variability
and randomness are defined formally. In section 2, we derive
the instantaneous rate distribution and the related dispersion
measures for a few of the most commonly used models of steady-
state neuronal activity. Included models are restricted to the
framework of renewal spiking activity for the purpose of this
paper. In section 3, we compare the dispersion characteristics
of the neuronal models from rate coding and temporal coding

perspectives. Upon comparison we find that for some neuronal
models, the firing patterns have a different level of randomness
in different settings whereas for others, the changed perspective
of observation (from rate to temporal) does not affect the
randomness of the data. More details on this is available in
section 4.

2. MATERIALS AND METHODS

2.1. Instantaneous Rate

The class of stochastic processes whose realization consists
of a sequence of point events in time is called stochastic
point processes (Cox and Miller, 1965). Neuronal spike trains
are often described as stochastic point processes, with spikes
corresponding to events. There are essentially two ways of
describing point processes, either in terms of the number
of events occurring in a time window, or in terms of the
intervals between these events. Consequently, a spike train can
be described either by using a sequence of the occurrence
times of its individual spikes, Xi,X>,... (see Figure1lA) or
through the ISIs defined as T; = Xj;y; — X;. Generally, the
point process is stationary if the underlying joint probability
distribution of the numbers of the spikes in k time intervals
(t, + ht! + h), (& + bty + h),.(t;, + ht] + h) does not
depend on displacement variable h (Cox and Lewis, 1966,
p- 59). In this paper, we consider an important class of
stationary point processes, the renewal point processes, in
which the length T of consequent ISIs is an independently
and identically distributed random variable with the probability
distribution function (pdf) fr, T ~ fr(t). Renewal processes
are often used to model the activity of spontaneously active cells
(Tuckwell, 1988).

Let the number of spikes that occur in the time interval [0, w]
be denoted by N(w). A natural way of calculating the firing rate
is to divide the number of spikes N(w) by the time window w.
The mean of ISIs, E(T), satisfies the following relationship with
the mean of the counting process E[N(w)] (Cox and Lewis, 1966;
Rudd and Brown, 1997),

EN(w) 1

w— 00 w

1)

where A is the point process intensity (Cox and Lewis, 1966).

For finite w, Equation (1) holds true for renewal processes
only if time origin f, is arbitrary, i.e., it is not related
to the renewal point process realization (Figure 1B). In this
case, ty falls into some ISI, say Tj. Then the sequence of
random variables (W, Ty41, Tky2,...), where W is the time to
the first spike from the origin, is not stationary. Moreover,
the point process intensity A is equal to the mean firing
rate. The corresponding renewal process is referred to as
equilibrium renewal process, as opposed to the ordinary renewal
process which starts from an arbitrary spiking event and
all the ISIs follow the same renewal pdf (Cox and Miller,
1965).

The instantaneous firing rate is typically defined as the inverse
of the ISIs (1/T) (Pauluis and Baker, 2000). However, as proven in
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A
X1 Xi T~ fr(f) Xip1 Xieo Xiua time
interspike interval
B length-biased intervals T~ b
instantaneous rate A=1/T
trial 1
trial 2
trial 3
0 nbser'u'atmn time, reference time
(unrelated o spikes)
T
1 || E 5
II
e T &
a 1 - 2
Distributions = Exponential — Gamma = e Gaussian
D
(Inter-spike interval, T) (Instantaneous rate, A
Wariahility Randomness Variability Randomness
CwiT) CrlT CviR) CrlA)
FIGURE 1 | Length-bissed 15ls and instantaneous rate. (A) An ovendew of the ESls when the apikes ocour at times X_y, %, X, 4, ... We assume that the I5ls are
independent and identicaly distibuted with pdf f(f), under steady state conditions. (B) When the obsarvation time f; is fixed with respect to some reference time,
urrelated to the spike times, the probability of obeenving & particular 151 i proportional to its length. These Jlength-bissed” intervals [T) are used to define the
instantaneous rate [ with the property E(F) = 1/E{T). (C) A graphical representation of how the 151 distibutions can visuslly difier from the instantaneous rate
distributions, for some well-known 151 modele with egual mean fiing rate. (D) A summary of the concepts of variabiity and randomness for the two ways of spike train
description that we have considensd in this article.

Lansky et al. (2004), the mean instantaneous firing rate is higher
than or equal to the mean firing rate,

1 1
5(7)= & @
with equality if all the ISIs are of the same length.

The undesirable inequality in Equation (2) becomes equality
once we realize that the “time instant” (at which the

instantaneous rate is measured) does not generally coincide
with a spike. As shown in Kostal et al. (2018), the instant
is chosen with respect to the “external” time frame, across
trials, i.e., asynchronously with respect to individual spike train
realizations. Consequently, the probabilities of observed 15Is (T)
are proportional to their length, T ~ A#fr(7) (Figure 1B). The
mean inverse of these length-biased 15Is equals to the mean firing
rate A.
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The instantaneous rate B = 1/T observed, in this case, is a

random variable described by the pdf,
_ 1 fr(i)n)
.ﬁi':f}— %Ta (3)

For a detailed overview of the derivations, refer to Kostal et al.
(2018).
An immediate consequence of Equation (3) is,

1 1
IE‘.(T) =E® = g5 =4 @
Hence, for the purpose of the derivation of instantaneous
rate distributions for different models of steady-state firing
{Figure 1C), we will restrict ourselves to the case of equilibrium
renewal process. The variability of instantaneous rate is explored
in the next section.

2.2. Quantification of Variability and

Randomness

The most common method to measure statistical dispersion of
151, described by a continuous positive random variable T, is the
standard deviation o (T), defined as

a(T) = VE(T — E(T)]2). (5)

The relative dispersion measure quantity is known as coefficient
of variation Cy(T),

Cyl(T) = ao(T) (6)

where L = 1/E(T). The coefficient of variation Cy(T) is a
dimensionless quantity and its value does not depend on the
choice of the units of ISIs or on linear scaling; hence it can be
used to meaningfully compare the ISI distributions with different
means, unlike o (T) (Softky and Koch, 1993; Doron et al., 2014).

From Equation (3), we can write the standard deviation for the
instantaneous rate as

a(R)= vAE(1/T) - A%, (7

which leads to the relative dispersion measure,

CviR) =/ EEET} -1 (8)

From Equation (5), it follows that o or Cy measure how much
the probability distribution is “spread” with respect to the mean
value but these quantities do not describe all possible differences
between spike trains with equal rate coding characteristics. Spike
trains of equal variability may still differ in higher than second
statistical moments. Moreover, neither & nor Cy quantifies how
random or unpredictable the outcomes are Kostal et al. (2007a).

To quantify randomness as a further describing characteristic
of a spike train, entropy based measures like differential entropy
(Shannon and Weaver, 1949), h, have been proposed

W) = — f il Infx(x)dx. )

where X is a continuous random variable with pdf fy. However,
hify) by itself can not be used as a measure of randomness since
it can take both positive and negative values and depends on the
scaling of the random wvariable X. Kostal and Marsalek (2010}
proposed the entropy-based dispersion coefficient ay,,

oy = explhify) — 1).

Entropy-based dispersion o}, can be interpreted with the help
of asymptotic equipartition property (Principe, 2010; Cover and
Thomas, 2012), the details of which can be found in Kostal et al.
(2013). Analogous to Equation (6), the relative entropy-based
measure of dispersion, Cy, is defined as

(10)

Cy = Aop. (11)
An immediate consequence of the above equation is that the
maximum value of Cp, is Cy = 1, which occurs only in the case of

exponential fr.
3. RESULTS

Among the different point process models of stationary neuronal
activity, we have chosen the classically used Gamma, lognormal,
inverse Gaussian, shifted exponential, and the mixture of
exponential distributions (Tuckwell, 1988).

First three distributions are part of the scale family {Casella
and Berger, 2002), ie., their ISI pdfs fr(t; 1), explicitly
parameterized by the intensity A, satisfy the relationship

frit. ) = Afr(ta, 1) (12)

We explore these neuronal models in the following subsections
(Figure 1D). Detailed derivations of the following results are
provided in the Supplementary Material for better legibility.

3.1. Gamma Distribution

Gamma distribution is frequently used as a descriptor of I5ls in
experimental data analysis (Levine, 1991; McKeegan, 2002; Reeke
and Coop, 2004; Pouzat and Chaffiol, 2009), its pdf is

[

" Tla) (13)

frit)=
where I'(z) = fum x*~1g~*dx is the gamma function and a > 0,
b = 0 are the parameters. The mean firing rate and the coefficient
of variation are,

Cy(T) = L

Ja

Using Equation (9), the expression for the entropy of the ISI
distribution is derived as

=l (14)
a

r(

h(fz) = log (T“’eﬂﬂl-ﬂiﬂﬂ}), (15)

where ¥r(x) = I"ix)/ ['(x) is the digamma function.
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Substituting the values from Equations (14) and (15) into
Equation (11}, gives the dispersion coefficient of randomness,

Cp(T) = @gﬂﬂl—a}ﬂa}q ) (16)

The instantaneous rate distribution fp(r) is obtained through
Equation (3) and it follows the inverted gamma distribution,

patlp—a-2—bir
falr) = —Tary

Coefficient of variation Cy(R) is evaluated through Equation (8),

(17)

Cy(R) = \/g a=1 (18)
The differential entropy for fg(r) is,
hifg) = log(T(a + 1)bela -+ latl)), (19)
and the dispersion coefficient of randomness is,
Cu(R) = al'(a + 1)g* @HD¥(a+), (20)

The dispersion measures Cy(T) and Cy(R) are related through
the following equation,

Cy(T)
VI— (T2
This relationship is illustrated in Figore2 and we see that

Cy(R) — ooas Cy(T) — 1.For Cy({T) = 1, gamma distribution
becomes exponential distribution with pdf,

CyiR)= (21)

fr() = ae ™. (22)

Note that the firing intensity A completely characterizes the
exponential distribution and that Cy(T) = 1, regardless of the
value of &. The entropy hifr) of the exponential distribution is
hiff)=1—1Ina. (23)
One of the key features of the exponential distribution is that, for
a fixed mean firing rate A, it maximizes the differential entropy
among all probability distributions on the real positive half line
{Cover and Thomas, 2012). Deriving from Equation (11),

CulT) = 1.

The corresponding instantaneous rate distribution, follows from
Equation (3),

(24)

A2e— T

falr) = 3 (25)

which is the inverse gamma distribution mentioned in Equation
(17) with @ = 1 and b = A. For the inverse gamma distribution,
the second moment exists only when a = 1. In Figuare 3, we
can see where gamma distribution becomes exponential and has

CT) = 1.

Distributions
= 1.24 —_— G
:‘); = Lognonmal
= |marse Gaussian
06 = Shifted expanential

0.0

aa 05 10 15 20

CyiT}

FIGURE 2 | Comparison of Cy(T) and Cy (R} for several standard statistical
15l models. For the gemma distribution, G(R) — oo &s Gy(T) — 1, sinca
gamma dstribution becomes exponential for G,{T) = 1. For lognomnal and
imverse Gaussian distribution, the relationship between the dispersion
coaficients iz an identity. For shifted exponential distribution, Ci(T) and Cu(R)
depend on tha mean fiing rate A and the refractory pericd 1. Hence, we vary
the value of Cy(T) and C\{R} ([consequently of A and 1) and we sea that
Gy = GyT) until Gy(T) = 0.7715 but then instantaneous rate distribufion
maintains a higher vanability than [Ss. As Gy(T) — 1, the shifted exponential
becomes axactly exponential and thersfors Ty () — oo.

0.81
Distributions
2 —_— Gamma
—_ = |werse Gaussian
o
0.4 === Lognormal
= Shifted expanential
0.04 '
a0 a3 aa ag

Cil(T)

FIGURE 3 | Relationship between the dispersion cosfiicients of randomness
for the gamma, lognormal, inverse Gaussian, and shifted exponantial
distribution of 15ls. Starting from the origin, the amow indicated to the end
comasponds to Cy{T) values ranging from O o oo. For the first three
distributions, which ame part of the scale family and for which we consider

A = 1 for a meaningful comparison, it holds that for S (T) — 0, we sea that
C(T) — O for Chi) — 0. As Cy(T) growa, the randomnesa grows for 15ls and
instantaneous rate in the beginning. After a certain point, the randomness
starts to decline and a8 Cy{T) — oo, we have Cq(T) — 0 and Cr{R) — 0. For
the shifted exponential distribution where we have to conaider a vanying Gy (T)
and for that a varying mean firing rate A and refractony period T, Gh(T)
increassa monotonously as a funclion of Cy(T), wheneas G, [F) obtains its

meaximum fior Cy(T) = 0.85 and then declines.

3.2. Lognormal Distribution

The lognormal distribution represents a common ISI descriptor
in experimental data analysis (Levine, 1991; Pouzat and Chaffiol,
2009), even though it is rarely presented as a result of any of the
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neuronal models (Bershadskii et al., 2001). The pdf is,

iln:—lnm]lzl

frin= (26)

|-
where m is the scale parameter and o > 0 is the shape parameter.

The mean firing rate and coefficient of variation are as follows,

lz#, CriTi= Vet — 1.

me®* /2 (27)
‘We compute the differential entropy
hify) = %]og(l:rm’lml) (28)
and the dispersion coefficient of randomness,
Cy(T) = oo/Zme @ +1/2, (29)
The instantaneous rate distribution follows the pdf,
1 (Inr+ Inm)?
o s
with
Cy(R)= ver* — 1. (31)

The expression for the differential entropy is derived from
Equation (11},

h(fy) = %]ug (3’1—;';‘1) (32)
The dispersion coefficient is evaluated as,
Cu(R) = ov/2me 1+, (33)
For the lognormal distribution, there is a “symmetric”
relationship between fr{f) and fa(r) (Kostal et al., 2018),
Jalr; 1) = fr(r; 1/0), (34)

ie, the shape of the probability distributions of ISI and
instantaneous rates are exactly the same for & = 1. Furthermore,
the relationship between Cy(T) and Cy(R) is that of an identity

(Figure 2),

Cv{(R) = Cy(T) (35)
and from Equations (29) and (33), we have
Cpl(T) = Cyl(R). (36)

For lognormal distribution, the randomness and variability of
instantaneous rate and ISI are the same, regardless of the
perspective, as seen in Figures 2, 3.

3.3. Inverse Gaussian Distribution

Inverse Gaussian distribution is often fitted to experimentally
observed ISIs (Gerstein and Mandelbrot, 1964; Berger et al., 1990;
Levine, 1991; Pouzat and Chaffiol, 2009). The time that a Weiner
process with positive drift takes to reach the first passage time
is distributed according to the inverse Gaussian distribution.
The probability density of inverse Gaussian distribution can be
expressed as a function of its mean a > 0 and scale parameter

b=0
a 1(t—a)
B el S
with
A= % Cy(T) =vb. (38)

From Equation (9), the expression for differential entropy is,

11
5)
where K(2) is the derivative of the modified Bessel function of
the second kind {Abramowitz and Stegun, 1972).

hifr) = %Iug{hazbe]l y 2 Kﬂm( (39)

Ki0(z) = —K (2). (40)
Equation (11) gives,
[Zx 3/ (11
CulT) = EIP I ( 7 b)} (41)
The instantaneous firing rate follows the distribution
a2
Rl =\ [ 14a ”:' } (42)
From Equation (8),
cv(R) = Vb, (43)
and from Equation (9), differential entropy is,
1 fambe\ | 3" 0 11
hifa) = 5 log (—a2 ) + —_haxf ( 7 b) (44)

The expression for the dispersion coefficient of randomness is as

follows,
1
Cu(R) = 1! {33 '”J( ;;)l (45)

Analogous to the lognormal distribution, we observe that the
inverse Gaussian distribution also satisfies the “symmetrical”
property (Equation 34) and,

Cy(T) = Cy(R), Cu(T)= Cy(R). (48)
Results from Figares 2, 3 illustrate this curious property that the
randomness and variability of this distribution is equal for ISIs

and instantaneous rate perspective.

Frontiera in Computational Meurcacience | www. fronfiersin.org

June 2021 | Violuma 15 | Arficle B20410



Tomar and Kostal

Variabiity and Randomness

3.4. Distribution Involving a Refractory

Period

The refractory period is a state of the neuron, occurring right after
a spike, where it is impossible for another spike to be emitted.
A shifted exponential distribution function is used as an ISI
descriptor for neurons with refractory period r (Reeke and Coop,
2004). The probability density function of the shifted exponential
function with parameter a = 0 and refractory period t = 0 is

0, t=rt
th= - 47
() Le_w_ﬂ, f>1 (47)
with
a 1
A= I = . 43
1+ar v(D) 1+ar (48)

We observe that Cy(T) < 1 fora = 0and t = 0. The differential
entropy for the shifted exponential distribution is evaluated as

h(fr) = log (E) . (49)
and substituting these values into Equation (11), we arrive at
1
The pdf of the instantaneous rate is,
n=1" 1/ 51
falr) = F—tﬁm}e‘ﬂif—ﬂ', r=1/t (51)
with
Cv(R) = /(1 +a1)e™ T'(0,ar) — 1 (52)

where ['(s,x) = ;= t~'e"!dt is the upper incomplete gamma
function (Abramowitz and Stegun, 1972).
Evaluation of the differential entropy from Equation (9) yields,

a? 31+ &0, at) + (1 +ar)logt)
hmt}__]ug(l+ar)_ 1+ar
24+ar
53
1+ar 3

Expression for the dispersion coefficient is derived through
Equation (11},

2
caiR}=1+“IEIP["“E( ; )

a 1+ar
31+ &"(0.at) + (1 +ar)logt)
1+ar

2+ar 1
1+ar ’

(54)

For the shifted exponential distribution, we observe that from
Equation (48),

A

=1 (55)

a

which leads to,

CylT)=1—Aar, (586)

ie., Cy(T) depends on A and t. Hence, in order to analyze the
relationship between Cy( T) and Cy(R) we have to vary the values

of & and r (Figure 2).
Substituting the values from Equations (55) and (56) into
Equation (54), we get

I_Cr(D)\__{1—Cy(D)
o )"‘P( o )r(”‘

Cv(R)

=J(1+

The dispersion coefficient of randomness Cy{R) increases until
it attains its maximum value 0.8137 for C(T) = 0.85, whereas
C(T) keeps increasing monotonously. This behavior can be
better understood by looking at the behavior of Cy(R) while
Cy(T) increases in Figure 6C. It is observed that Cy(R) attains
its maximum value and then declines as Cy{T) — 1, whereas
Cy(T) monotonously increases.

l—Cv(T})_
Cy(T)

(57)

3.5. Mixture of Two Exponential
Distributions With Refractory Period and

Application to Experimental Data

Throughout the years, empirical studies have produced evidence
of bimodal or multimodal trends in ISI data (Rodieck et al.,
1962; Nakahama et al., 1968; Obeso et al., 2000; Dorval et al.,
2008). The underlying assumption is that a neuron might be in
one of the several “states,” with each state being characterized by
a different ISI distribution (Tuckwell, 1988). A mixture of two
distributions is commonly used to modal such data, for example,
Bhumbra and Dyball (2004) used a mixture of two lognormal
distributions as an IS descriptor of supraoptic nucleus neurons,
and recently gamma-exponential mixture distribution has been
used to characterize the ISI distribution in the auditory system
(Heil et al., 2007; Neubauer et al., 2009).

In this section, we consider the mixture of two exponential
distributions (Tuckwell, 1939), which is often used to describe
the bursting activity in neurons, where a sequence of short I8Is is
dispersed among comparatively longer ISIs. In 1965, Smith and
Smith (1965) used the mixture of two exponential distributions
to explain the bursting activity in the isolated cortical neurons
of an unanesthetized cat. Thomas (1966) used mixed exponential
distributions to describe the ISIs in their study of the clustered
firing of cortical neurons. Trapani and Nicolson (2011) found
that in the lateral line organs of a zebrafish, when the depolarizing
currents were blocked, the ISI data of afferent neurons was best
described by a mixture of exponential distributions.

The pdf of the mixed exponential distribution with refractory
period T = 0 and mixture components with parameter a >
0.k = 0,a # bis given by

0,
Ji= Lae“"{f—ﬂ + (1 — p)be =), 9
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FIGURE 4 | Dispersion measures of the mixed exponential distribution with refractory period randomly set to © = 0.2 and variable weight of components as p € [0, 1]
in the direction of the arrows. The rate parameter of one component is fixed at a = 1 whereas the rate parameter b of the second component varies. When p = 0 or
p =1, the distribution is shifted exponential with refractory period . The dispersion measure of randomness Cy(T) describes Cy(T) uniquely whenthea = 1,b = 1/2,
whereas the reverse is not true (A). This relationship gets complicated with the increasing separation between the rate parameters of the components. As seen in
(B-D), the relationship between the other dispersion measures is relatively complicated and non-unique for the given set of parameters.

where p € (0, 1). In this case,

ab

M b F a0+ (= pa( 1 bo) (59)

The analytical expressions for the Cys and Cps are difficult
to obtain, however, they can be calculated numerically for a
given set of parameters (Figure 4). The parameter range for this
distribution can be vast, we analyze the dispersion coeflicients for
a few different sets of component rate parameters a and b, given
avalue of t and p € [0, 1]. We study the change in randomness
and variability as probability variable p increases in the direction

of the arrows. The behavior of this model is relatively complicated
but for selected cases, suchaswhena =1,b=1/2,ora=1,b =
1/4, different firing regimes are uniquely described by C;,(T) but
not by Cy/(T).

Song et al. (2018) model the spike generation in the
spontaneously active afferent neurons of the Zebrafish lateral
line, as a renewal process. The authors propose that a spike is
generated if the neuron is recovered from the refractory period
and a synaptic release (excitatory input) from hair cells has
arrived and thus ISI T = 1 + Tg where 7 is the absolute
refractory period and T is the time to excitation (we omit
the small relative refractory period used in the original paper,
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FIGURE 5 | Comparison between the dispersion coefficients of variability and randomness of the experimental data for the data sets used in Song et al. (2018). The
ISI data has two components: the refractory period and the hair-cell synaptic release time (the time to excitation input). Latter is modeled by a mixture distribution of
two exponentials. The color gradient indicates the mean firing rate of the particular data set. The comparison of various dispersion quantities reveal various aspect to
differentiate the data sets. As seen in (A), Cy(T) classifies the data sets in a similar category from the randomness perspective even if their ISI variability are on a wider
scale. The dispersion measure of variability Cy(R) also does a better job of differentiating among the data sets in (B) when their randomness dispersion measure would
put them in a similar category. In (C), Cy(T) and Cy/(R) reveal separate aspects of the data sets. Overall Cy/(R) helps differentiate among the data sets with similar Cy/(T)
values. Finally in (D) we can see that Cy,(R) further differentiates the data sets with equal Cy(T). The data sets which might have similar randomness on the ISI scale,
can be differentiated on the basis of their instantaneous rate randomness. All of these figures support our assertion that dispersion measures of instantaneous rate
provide additional information that can be helpful in distinguishing the data sets.

for computational simplicity). It is demonstrated in the paper
that the mixture of exponential distributions used to model the
hair cell synaptic release time T, yields the best fit for the
ISI data. The pdf of the ISI, in this case is given by Equation
(58). We calculated Cj, and Cy for ISIs and the instantaneous
rate of each data set fitted with a combination of absolute
refractory period and mixture of exponential distributions. For
the given data sets, Cy(T) and Cy(R) offer more information
than their randomness counterparts Cp,(T) (Figure5A) and

Cn(R) (Figure 5B) respectively. When it comes to the dispersion
measures of variability, as seen in Figure 5C, in some situations
Cv(R) offers additional information to distinguish further
nuances in the data. The data sets which might seem of similar
ISI variability, differ when it comes to the variability of their
instantaneous rate. Similar results follow for the randomness
(Figure 5D). This example supports our assertion that the
dispersion measures based on the instantaneous rate can provide
additional information to help differentiate among the data sets.
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For the gamma distribution, Cp(T) declines as a function of Cy(T) (A) but increases as a function of Cy/(R) (B). For lognormal and inverse Gaussian distribution
Ch(T) = Ch(R), regardless of the perspective change (A-D). The shifted exponential distribution has a monotonously increasing Cy(T), when it is a function of Cy/(T) or
Cv(R) (A,B); whereas Cx(R) attains its maximum for Cy/(T) = 0.85 and Cy(R) = 0.9282 respectively, and then declines (C,D).

4. DISCUSSION distribution is obtained from length-biased sampling of ISIs

(Equation 3). Spike trains described by non-renewal processes
We studied the spiking activity described by the renewal  have been studied widely (Eden and Kass, 2016) but are beyond
processes from two perspectives, the ter.nporal P Omt_ of view the scope of this paper. For the special case of serially correlated
(in terms of ISIs) and the frequency point of view (in terms ISIs, the results of our analysis apply to marginal distributions

of.mstantaneous rate). We. ff)und that f.or a given spike .4 therefore remain unchanged (Kostal and Lansky, 2006).
train the temporal characteristics and the instantaneous rate

characteristics, can either follow the same trend or opposite 1. We observe several different relationships between the
trends. This is due to the fact that the instantaneous rate variability from temporal and instantaneous rate perspectives
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(Figure 2). For gamma distribution, the variability of
instantaneous rate is higher than the variability in ISIs whereas
for lognormal and inverse Gaussian distribution it stays the
same, Cy(T) Cy(R). On the other hand, for shifted
exponential distribution Cy(R) < Cy(T) until Cy(T) =
0.7715 but after that Cy(R) increases rapidly compared to
Cy(T).

. In the case of gamma distribution, both the randomness
measures Cp(T) and Cy(R) decline eventually as a
function of Cy(T) but they become constant as a
function of Cy(R) (Figures 6A-D). The randomness
for gamma distribution differs in each particular case,
and for small values of Cy(T), C,(R) <  Cu(T).
Lognormal and inverse Gaussian distributions attain
their maximum for Cy(T) values close to 1 and then
their ~randomness keeps declining (Figures 6A,C).
For these two distributions, Cj(T) C,(R) whether
it is mapped against Cy(T) or Cy(R). For shifted
exponential distribution, Cp(T) increases as a function
of Cy(T) (Figure6A) whereas Cy(R) attains its
maximum for Cy(T) 0.85 and then declines fast
as Cy — 1 (Figure 6C).

3. We studied the case of mixed exponential distribution
with a refractory period. Although the theoretical analysis
is complicated, we use the experimental data obtained
from Song et al. (2018) to inspect the temporal and
instantaneous rate perspectives. The dispersion measures for
instantaneous rate provide a novel outlook on the data,
different from the one provided by the dispersion measures
for the ISIs (Figure 6). In cases like these, the instantaneous
rate may be helpful in distinguishing further nuances in
the data.
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ARTICLE INFO ABSTRACT

Keywords: We present a comparison of the intrinsic saturation of firing frequency in four simple neural models: leaky
Rate coding integrate-and-fire model, leaky integrate-and-fire model with reversal potentials, two-point leaky integrate-and-
Temporal coding fire model, and a two-point leaky integrate-and-fire model with reversal potentials. “Two-point” means that

Neuronal models

Leaky integrate-and-fire
Firing rate

Reversal potential

the equivalent circuit has two nodes (dendritic and somatic) instead of one (somatic only). The results suggest
that the reversal potential increases the slope of the “firing rate vs input” curve due to a smaller effective
membrane time constant, but does not necessarily induce saturation of the firing rate. The two-point model
without the reversal potential does not limit the voltage or the firing rate. In contrast to the previous models,
the two-point model with the reversal potential limits the asymptotic voltage and the firing rate, which is the
main result of this paper. The case of excitatory inputs is considered first and followed by the case of both
excitatory and inhibitory inputs.

1. Introduction transfer functions of these three models and the two-point LIF model
with reversal potentials for typical values of the parameters.

Frequency coding is one of the basic forms of information transfer

within the nervous system. It assumes that the frequency of uniformly

sized action potentials varies with stimulation intensity (Adrian, 1928).

As the stimulus intensity is increased, an increase in neuronal activity

2. Methods and results

follows. A survey of the role of the mean firing rate of neuronal models 2.1. Neuronal models
was presented by Gerstner and van Hemmen (1992).
No saturation frequency exists as an intrinsic part of common simple 2.1.1. Leaky integrate-and-fire (LIF) model

neuronal models, which means that with increasing stimulation the
firing frequency increases without any limit. Of course, this feature
of the models is in contrast with observed neuronal behavior. The
common way to solve this problem is by adding a dead time (absolute

The LIF model is the simplest realistic neuronal model (Lapicque,
1907). In this model the behavior of the depolarization V(¢) of the
neuronal membrane is described by the differential equation

refractory period) to each interspike interval (ISI) calculated from the _( Yo _

model (e}.’g? Tuckwell, 1988; Bugmann et al., 1997; Tal and Schwartz, o= (_ T * ”)dt’ Vi) =vo W
1997; Fusi and Mattia, 1999). Some other methods are: by considering where r > 0 is the membrane time constant (z = RC, where R is the
a negative feedback (Barbi et al., 1975), by adaptation (Ermentrout, membrane resistance and C is its capacitance); u € R is measured
1998), or both (Pakdaman et al., 1999). Relative refractory periods, in mV per unit time, which reflects the input signal resulting from
either due to a time varying threshold or a time varying conductance, the dendritic currents generated by the sensory stimulation or action

can also produce a saturation in firing rate (Jack et al., 1983; Schaette
et al., 2005). Here we present a simple two-point, reversal potential
model that inherently has a saturation frequency. The transfer function
of this model is compared with the simple leaky integrate-and-fire
(LIF) model, the LIF model with reversal potentials, and the two-point
LIF model. Numerical simulations illustrate the differences among the

of other neurons; f; is the moment of the last firing of an action
potential and ¢ > 7,. The relaxation time constant z includes several
recovery processes — the decay of the transmitter substance generating
postsynaptic potentials, the filtering action of the membrane impedance

and also the passive propagation of the somato-dendritic depolarization

Abbreviations: ISI, Interspike interval; LIF, Leaky integrate-and-fire
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to the trigger zone. The solution for Eq. (1) is given by,

V(t) = exp (—%(l — 1))y + pr|l —exp (—%(t -1))]- @
The asymptotic voltage is,

V(o) := tlgglo V(@) = pur. 3

The firing of an action potential in this kind of model is identified with
the first crossing of V' through a firing threshold S, where .S > v,. At
these instants, the membrane potential is reset to its initial value vy,
which is typically taken to be the resting potential 0 mV. If s =1, —¢;
is the ISI length, then the voltage at firing threshold S is

1 —exp <—£>], @

Due to the constancy of the input signal, the ISIs are constant. The firing
frequency f(u), expressed as a function of the input signal x such that
u > S/z, is the inverse of the ISI length s. From Eq. (4), it follows that

1
=1/s= ——, 5
fwy=1/s Tln(,,ffs) ()

V(t;41) = exp <—§>uo +ut

note that we have set v, = 0. This relationship is also known as the
gain function (Gerstner and van Hemmen, 1992) or transfer function
(Tal and Schwartz, 1997). With increasing u, f(#) — oo. The (oblique)
asymptote of f(u) is

fa=-5-+4. ©
As expected, the slope decreases with increasing threshold S and does
not depend on 7. It starts abruptly at the rheobase u, = S/ (rheobase is
the minimal injected current required to elicit an action potential) and
grows monotonically towards a linear asymptote. If we rescale Eq. (6)
by dividing it by the rheobase level, i.e. the excitation that just produces
firing, then Egs. (5) and (6) become

1

Fufpg) = ———, (5a)
Tm(ﬁg])

fo=—t LK (6)
2t Ty

which now has a slope of 1/7 (Tal and Schwartz, 1997). The shapes of
the input-output frequency curves for model (1) and its modifications
have been studied for a long time (e.g., Knight, 1972; Fohlmeister,
1979; Scharstein, 1979). Fig. 1 shows the shape of the transfer function
and its asymptote for a particular set of parameters (specified in
Section 2.2).

2.1.2. Leaky integrate-and-fire model with reversal potentials

Stein’s stochastic neuronal model (Stein, 1970) that takes into ac-
count reversal potentials (e.g. Hanson and Tuckwell, 1983; Smith and
Smith, 1994; Lanska and Lansky, 1987) is

dv() = —@dt+a(VE(t)—V(t))dN(t)+i(V(t)—V,(l))dM(t), V) = v,

)

where 7 > 0 plays the same role as in (1), -1 < i < 0 < a < 1
are constants, V; < v, = 0 < S < Vg are the excitatory and
inhibitory reversal potentials, N (1), M(¢) are two independent homo-
geneous Poisson processes with intensities At and A~, respectively.
The assumed Poissonian character of the input follows from pooling
of many relatively independent inputs. Intensities At and A~ reflect
the input signal in model (7), the values a and i reflect the fractional
change of the membrane potential in response to the input pulse as
they contribute to the membrane potential at the trigger zone. The
depolarization of the membrane caused by an excitatory postsynaptic
potential decreases with decreasing distance of the membrane potential
from the excitatory reversal potential, V. In the same manner, the
hyperpolarization caused by an inhibitory postsynaptic potential is

smaller if the membrane potential is closer to the inhibitory reversal
potential, V;. Hence the process remains confined within these bound-
aries. To derive a deterministic counterpart of model (7), a sequence of
models given by (7) and characterized by the quadruplet { /1:, A ay, iy}
is needed such that 4} — 40, A, - +0, a, = 0,, i, — 0_ fulfilling the
condition A*a, — up >0 and A7i, - u; <0. Then (7) can be replaced
by

4V = (=(3 + g = )V O+ HpVi®) — Vo)) dr. ®)

The main difference between models (1) and (8) is that in (8) the
leakage time constant of the model also depends on the inhibitory and
excitatory inputs. For model (8) the asymptotic voltage is

V(c0) = ugVe - ﬂIVl,

€)]
ctHE Ky

which in contrast to the LIF model is finite even when the excitation,
HE, increases to infinity. Denoting by z,, = 7/(1 + tug — 7u,) the
effective time constant and u,, = ugVp — u;V; the effective input of
model (8), the firing frequency is given by Eq. (5) where y and 7 are
replaced by u,, and 7,,. The asymptote as a function of the excitatory
input up is

_ S(VE—Tﬂ[(VE—VI)) (I/T_ﬂl) HE
ViV = IV / (Vi = S)) IV /(Vip = 8) * In(Vie/ (Vi = )
(10)

fa

from which we can see that again the frequency grows without limit
with increasing excitation. We would like to compare the slope in
Eq. (10) with that in Eq. (6), however, u and yj are in different units,
mV/ms and 1/ms respectively. Normalizing by the rheobase level of
ug calculated from Eq. (9), namely upq = (S/t—pup S+ u;Vy)/ (Ve —.S),
allows for a meaningful comparison. Eq. (10) becomes
_ SWg—tu (Ve = V1) (/7= pp)
VeV — I’V /(Vp —S) In(Vg/(VE—9))
Stur =1/0)— Vi up
(S =VpIn(Vg/(Vg = 5)) HEo ’
and after some calculation, we can see that the asymptotic slope of the
reversal potential model is higher than that of the LIF model. Fig. 2

shows the profile of the firing frequency and its asymptote for this
model.

fa

(10a)

2.1.3. Two-point integrate-and-fire model

In Lansky and Rodriguez (1999) the coding properties of a two-point
neuronal model based on two LIF models were studied. The model is
formally defined in the following way:

av,(n = (—Vle+M+M) dr 1D
and
A = (—@ + w> ds, a2

where 7 > 0 is the same time constant as in Eq. (1) and 7z, > 0
is a junctional time constant derived from the conductance between
the compartments. The first terms on the right-hand sides represent
the transmembrane leakage, the second terms the electrical coupling
between the compartments, and the last term in Eq. (11) represents
the input. For simplicity, in Egs. (11) and (12), we assume that the
parameters of the membrane are the same in both compartments. The
initial conditions for Egs. (11) and (12) follow from the firing of the
model. In accordance with the integrate-to-threshold scenario, when
the membrane potential V,(r) at the trigger zone reaches the firing
threshold S, the value of the function V,(7) is reset to zero while the
function V;(¢) continues its evolution, that is we assume no antidromic
spike propagation into the dendrite. Therefore, we need to solve the
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Fig. 1. Transfer function of the leaky integrate-and-fire (LIF) model and LIF model with
reversal potential, and the effect of reversal potentials on the firing frequency and asymptotic
voltage of the latter. A Transfer function of the LIF model with input normalized
to rheobase. B Transfer function of the LIF model with reversal potentials. Input
is normalized to rheobase and yu; is set to 0. C Firing frequency of the LIF model
with reversal potentials with different inhibitory inputs. The excitatory input increases
from left to right. All the other parameters are the same as in the previous figures.
Reversal potentials do not limit the firing rate. D Asymptotic voltage of the LIF model
with reversal potentials with different inhibitory input. Reversal potentials limit the
asymptotic voltage to the value of V; = 60 mV.

first-passage-time problem for V;(#) under the initial conditions V;(t;) =
vyp and V;,(t;) = 0, where vy, is the value of the dendritic potential at
the time of the last spike.

The asymptotic solutions V(o) and V(o) are

T(t+ 1)U
Vi(e0) = it 13)
and
2y
V5(c0) = e a4

The firing is achieved under the condition that the stimulation is suffi-
ciently strong, in other words, that the firing threshold is lower than the
asymptotic depolarization at the trigger zone compartment, ¥,(c0) > S.
Thus from Eq. (14), the condition for the rheobase stimulation, which
determines the model sensitivity, is

ST.+2t
Ho=——"—": (15)
The general solutions of Egs. (11) and (12) are
1 1
Vi(t) = Vy(o0) + Eexp(—;(z — 1) (—ur + V(1))
1 T, + 27 T.TU
- Eexp(— e = tj))(Tr o Vi(t)) (16)
and
1 1
Valt) = Va(00) + Sexp(==(t = 1)) (—u7 + V1(1))
1 T, + 21 T TU
+ Eexp(— e = tj))(rr o Vi), a7)
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Fig. 2. Transfer function of the two-point leaky integrate-and-fire (LIF) model and a
comparison of the asymptotic slopes of the first three discussed models. A Transfer function
of the two-point LIF model, with parameter values set at = 5 ms, 7, = 2.5 ms and
S =15 mV. B Asymptotic slopes of the LIF model [1], LIF model with reversal potentials
as u; =0 [2], two-point model with 7, = 10 ms [3] and 7, =5 ms [4]. Parameters are
setas r=5ms, S=15mV, V; =60 mV and V; = -10 mV.

where ¢; is the time instant of the last spike emission, ¢ > ¢;. Solving
Egs. (16) and (17) for long-lasting suprathreshold stimulation, the
system achieves its steady-state characterized by a constant V;(t;) for
each j and consequently constant ISIs. Therefore, under the conditions
Vi(ty) = Vitj), Valt; +0) =0 and Wt —0) =S, where 1 and tir1
are two consecutive instants of neuronal firing ans s = 7, —¢; is the
ISI length, we obtain an equation for the firing frequency f = 1/s =
/(1 = 1)),

7p+27 2zp+t.
LR s = SRR A N as)
Ho 2wy’ Mo
where the dependence on S is through the value of y, given by Eq. (15).
Solving this equation for f, we achieve the input-output transfer
function. The firing frequency tends again to infinity with increasing
u with the asymptote

1 7.+27 T
S+

fa= 19)

2t 7.+ 71

This can be seen in Fig. 2A, through the profile of the transfer
function. The asymptotic slope of the two-point model is higher than
that of the LIF model with reversal potentials and the LIF model, as
shown in Fig. 2B.

2.1.4. Two-point leaky integrate-and-fire model with reversal potentials

To avoid this infinite firing rate feature of the previous three neu-
ronal models, let us incorporate model (8) into the two-point model
(11) and (12). The resulting model is given by equations

av, () = (—(% g — Vi) + M T upVe() - ﬂ[V1(1)> dr
20)

and

dv, (1 = (—@ + M) dr. 21)

Using the notation z,, = v /(1 +tug —7py) and p,; = pgVi — u,Vy, the
asymptotic solutions V;(c0) and V,(o0) are

B Hep (T, + 1)
Vi(eo) = ms (22)
Va(oo) = ——L 23)

1+Tef(1',+'r)'

The analytical expression for firing rate is difficult to obtain for this
model, but the firing rate can be calculated numerically for a given set
of parameters. For Fig. 3, Egs. (20) and (21) were used to determine
the firing frequency for a fixed set of u values. Linear regression was
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Fig. 3. Effect of reversal potentials on the firing frequency and asymptotic voltage of the two-
point leaky integrate-and-fire (LIF) model with reversal potentials. A Transfer function of the
two-point LIF model with reversal potentials, with parameter values set at r = 5 ms,
S =15mV, Vy =60 mV, V, = —10 mV and 7, is 2.5 ms, 5 ms and 10 ms for the
different cases. B Asymptotic voltage of the two-point model with reversal potentials
with different inhibitory inputs. Reversal potential limits asymptotic voltage as well as
the firing rate.

used to fit a logarithmic curve to the frequency points and the predicted
values from the model fit were used to generate the lines that represent
the frequency curve in Fig. 3.

For increasing uj the depolarization V, at the dendritic compart-
ment is limited by Vg, using this with Eq. (21) yields the maximum
firing frequency,

T+7,
fmax=

77T, ln(

- 24)
Vipt=S(t+1,)

which is represented by the dashed lines in Fig. 3.
2.2. Numerical example

For numerical illustration of the derived results, the parameters of
the models must be specified. We assume the value .§ = 15 mV of the
firing threshold and r = 5 ms for all the models. These parameters
completely define the LIF model and the input—output transfer function
is illustrated in Fig. 1A.

Several other parameters appear in (8). First of all, we can specify
the reversal potentials with respect to the resting depolarization as
Vg = 60 mV and V; = —10 mV. To specify the input parameters of
model (8) we have to realize that in contrast to (1), in (8) the influence
of inhibition and excitation is separated. Let y; = 0 (no inhibition),
and the input-out transfer function is presented in Fig. 1B. Increasing
inhibition has a divisive (rather than subtractive) effect on the transfer
function. Figs. 1D and 1C illustrate that for the LIF model, reversal
potentials limit the asymptotic voltage but not the firing frequency.

To estimate the junctional time constant 7, for the two-point models
is not a simple task, as it reflects not only electrical but also spatial
properties of that particular neuron. We select the values 7z, = 2.5 ms,
7, = 5 ms and 7, = 10 ms, namely 7/2, = and 2z. The input-output
transfer function for the two-point LIF model is presented in Fig. 2A
and for the two-point LIF model with reversal potentials in Fig. 3A.
Only in Fig. 3A the limiting firing frequency is finite.

3. Discussion

The saturation of firing frequency can be induced by including a
dead time or absolute refractory period (Indiveri, 2003; Hampel and
Lansky, 2008). In the absence of dead time, the simplest neuronal
model to allow the intrinsic saturation of the firing frequency is the
two-point model with reversal potentials.

We have concentrated on the role of excitatory input on high firing
frequency with the value of u; fixed. The role of inhibition could be
examined more closely as it may have either a subtractive or divisive

effect (Holt and Koch, 1997), and may be critical to increasing the
regularity of spiking in high conductance states (e.g. Barta and Kostal,
2021; Destexhe, 2010; Denéve and Machens, 2016). Additionally, this
analysis can be extended to integrate-and-fire models with stochastic
synaptic input (Burkitt, 2006). As stochasticity in the input increases,
the firing frequency transfer function becomes more linear around the
rheobase input level, providing a noisy, but single neuron temporal
alternative to population averaging of neurons. For nonlinear models,
the effect of noise can also be to switch between domains of attrac-
tion for appropriate types of noise input, such as Poisson vs white
noise (e.g. Smith, 1992). Noise can also increase the bandwidth for
transmission and minimize distortion as noted by Stein (1970).

The transition from a one to two-point model aims to include some
aspects of the spatial structure of the dendritic tree. This could be
further extended by multiple compartments and partial-differential-
equation membrane models, (e.g. Dayan and Abbott, 2001; Tuckwell,
1988’s chapter on spatial models) however, the firing rate saturation al-
ready occurs with two compartments provided reversal potentials were
added. The reversal potentials characterize different types of synapses,
typically negative for the potassium ions in inhibitory synapses and
positive for sodium ions in excitatory synapses. If the neuron has a short
electrotonic length, then the synaptic input and trigger site are close
together and can be regarded as one compartment. However, if the
synaptic input is further away with respect to the length constant of the
neuron then a second (or higher) compartment is needed to accurately
represent the electrical properties of the synapse (Jack et al., 1983;
Gerstner and Kistler, 2002). The analysis presented in this article serves
as a benchmark to compare other models and experimental results
using current injection. The asymptotic forms of the transfer function
for firing frequency, presented in this article allow comparison with the
mean firing frequencies obtained after stochastic modifications, as well
as point process estimation approaches (Cox and Lewis, 1966; Johnson,
1996; Kass et al., 2005).
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Abstract

Insects detect odorants with olfactory receptor neurons (ORNs) located on their
antennae. Male moths specifically depend on pheromone-responding neurons
(Phe-ORNS) to find females for reproduction purposes, using sex pheromones emitted by
their conspecific females. These sex pheromones are a small part of a complex chemical
world and some of the volatile plant compounds (VPCs) found in the environment
interfere with the Phe-ORNs. Male moths use VPCs to locate food sources, potential
habitats of female moths, and oviposition sites. Insect olfactory tracking behavior
generally results from the integration of multiple information sources, however, the
effects of VPCs as they naturally appear in the environment have not been studied
extensively yet. To this end, we stimulated the ORNs of male Agrotis ipsilon with
intermittent puffs of pheromone against VPC backgrounds of different concentrations,
to mimic the natural environment. We found that the response of ORNs to pheromones
is affected by the presence of VPC. In particular, we found that higher VPC
concentration facilitates the encoding efficiency of the pheromone signal by ORNs in
terms of information per evoked spike. Using regression analysis and other statistical
methods, we confirmed that the accuracy of the stimulus prediction is consistently
higher with a VPC background. While it has been often reported that VPCs alter the
detection of pheromones in moths, we show here that some VPCs at high concentration
increase the information efficiency in Phe-ORNSs.

Keypoints

1. We measured the response of olfactory receptor neurons (ORNSs) of the male moth
of the Agrotis ipsilon species to pheromone while being exposed to volatile plant
compound (VPC) backgrounds. Linalool and (Z)-3-hexenyl acetate were used as
VPC background.

2. Logistic regression analysis and mutual information per spike analysis show that
the efficiency of encoding performance improves under certain high concentrations
of VPCs.

3. High concentrations of VPC improve the information transmitted per spike about
the pheromone despite suppressing the firing rate in ORNs.
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1 Introduction

Moths rely on olfaction to find food sources, mates, or enemies. The male moth’s
olfactory system contains specific olfactory receptor neurons (ORNs) to detect the sex
pheromones emitted by the female moths. The detection of these pheromones by ORNs
triggers an oriented flight along the pheromone plume toward the source of the
pheromone. Volatile plant compounds (VPCs) also play a huge role in this olfactory
world since insects depend on plants for food (Knudsen et al., 1993, 2006). The male
moth olfactory system has evolved to detect pheromones and process relevant neural
information efficiently, yet VPCs have been shown to interfere with pheromone
detection (Chang et al., 2016). Insect olfaction is a complex sensory process that runs
from the specific detection of odorants by binding onto olfactory receptors expressed in
ORNS s to neural encoding, blend perception (integration in higher centers), and
behavior. Herbivore species can discriminate potential host-plant species based on their
volatile emissions (Conchou et al., 2017). Since they live in a complex olfactory world
(Conchou et al., 2019), the moth olfactory system is well developed (Hansson and
Stensmyr, 2011). Considering the hundreds of different VPCs released by plants
(Knudsen et al., 1993, 2006), the ability of the insect olfactory system to extract
ecologically relevant information from that very complex chemical environment is
remarkable (Riffell et al., 2013, 2014). Male moths can detect the sex pheromone
emitted by a female located hundreds of meters away and navigate upwind towards the
odor plume (Horst et al., 2001). Male moths rely on their ORNs capability to process
information rapidly about the chemical nature and proportion of the pheromone
constituents, and despite having an evolved system for that, general odorants have been
shown to interfere with pheromone detection in a dose-dependent manner (Conchou

et al., 2021). VPCs in the background have been shown to alter the quality and
intensity of the coding of the pheromone signal. Plant and insect species live in close
intimacy with each other. The standing biodiversity of both taxa is to a large extent the
result of their ancient co-evolution. Insects depend on plants as food sources either
directly for phytophagous and pollinator species or indirectly for parasitoids and
predators. This explains the importance of the VPCs for insect ecology. Almost all of
the plant tissues (leaves, flowers, fruits, roots, etc.) and types of vegetation (trees,
grasses, shrubs, etc.) release VPC albeit with different profiles and in different amounts.

There is no clear relationship between the chemical structure of the VPC and the
effect of the VPCs on pheromone detection. In fact, the effects of a single VPC can
vary, depending on the moth species. Linalool is an antagonist of pheromone reception
in Spodoptera littoralis (Party et al., 2009), but a weak agonist in A. ipsilon. The
dispersion of the pheromone response intensity was generally greater in the presence of
a plant volatile background compared to a non-odorized air (Renou et al., 2015). Thus,
plant volatiles can either synergize or antagonize the response of ORNs to pheromone
(Dickens et al., 1990; Hatano et al., 2015; Light et al., 1993; Schmidt-Biisser et al., 2009;
Trona et al., 2013; Yang et al., 2004).

It’s been concluded that the pheromone-VPC interactions only occur at
supra-natural concentrations of VPCs (Badeke et al., 2016). Our findings, however,
suggest that certain high VPC concentrations might improve encoding efficiency in A.
ipsilon, while suppressing the neuronal response to pheromones. The next step in this
direction might be to use a temporally dynamic odor background as well as a mixture of
plant odors to better mimic the odor landscape (Conchou et al., 2020) to better
understand the adaptation of the olfactory system of moths to the detection of specific
stimuli in a complex and changing chemical environment.
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2 Materials and Methods

2.1 Animal care

Larvae were reared on an artificial diet. Males were separated from females at the pupal
stage to prevent them from being exposed to the pheromone before the stimulation
started. New adults were collected every day, kept under an inverted light-dark cycle
(16 : 8 photoperiod light: dark photoperiod), and fed ad libitum with a sucrose solution.
After 4 to 5 days, males of Agrotis ipsilon were tested for the experiments. All
experiments were performed during the scotophase.

2.2 Chemicals

One of the main constituents of the sex pheromone blend of Agrotis ipsilon is the
(Z)-7-dodecenyl acetate, and was bought from Pherobank (purity > 99%). For the
VPCs, we bought (Z)-3-hexenyl acetate (CAS 3681-71-8) and linalool (CAS 78-70-6)
from Sigma-Aldrich. These VPCs with different physicochemical properties are
ecologically relevant for a male moth seeking a female in a French agroecosystem. All
delivered VPC concentrations were defined relatively to an arbitrary unit (AU) where
one AU is the molar concentration delivered on the antenna from a source containing
1% (Z)-3-HAC in mineral oil (CAS 8012-95-1). Mineral oil was used as a control
background odor.

2.3 Odor stimulus delivery

The device is similar to the one used by (Clémencon, Tomar et al., in prep.). Briefly, a
system of PFTE tubing (internal diameter 1.32 mm) and 3-way electro valves (Lee
Company LHDA1233215H) allowed a low dead-volume 4-way-manifold (MPP-8, Warner
Instruments, Holliston, MA, USA) whose distal end was located close to the antenna to
deliver a computer-controlled specific pattern of VPC and pheromone with a 50 ms
precision. Pheromone delivery consisted in a 3cm long capillary containing a piece of
filter paper with 0.1ng of Z7-12Ac diluted in 1ul of hexane connected to the tubing
system. This dose has been already described as an electrophysiologically active
concentration. VPC delivery consisted in 4mL glass vials containing a background odor.
Vials were connected to the tubing with hypodermic needles inserted into the Teflon
septum vial lids in order to avoid the adsorption of odors. The vials were kept at 23°C
using a Thermo Mixer ( ThermoMixer TM C Eppendorf, fisher scientific) to avoid
temporal variations in headspace concentrations. Airflow compensation systems ensured
that the flow delivered to the antenna was constant and that the delivered pheromone
concentration was not affected by the opening of the microvalves delivering the odor. A
permanent humidified airflow was continuously delivered to prevent the antenna from
drying. Contaminated air was removed thanks to an exhaust fan. We have wrapped the
manifold with an aluminum shield connected to the ground to minimize electrical
artifacts during the opening and closing of the valves.

2.4 Calibration and maintenance

Pheromone and odor sources were changed between each recording. We ensured every
day that the airflow at the distal end of the manifold in different valve configurations
was equal to 200mL/min (+- 10mL/min) with an electronic flowmeter. We
decontaminate the tubing and the valves connected to the manifold at 80°C during 4
hours.
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Fig 1. Pheromone plume profile and the muting effect of a high VPC concentration A
The profile of the pheromone plume delivered to the olfactory receptor neurons. The 2s
plume was delivered repeatedly during the 40s stimulation. B During high
concentrations of the VPC background (e.g., in 1072 of (Z)-3-hexenyl acetate) some
neurons stopped responding to the odor stimuli. The spikes elicited during the VPC
background are shown on the x-axis.

2.5 Single Sensillum Recordings

For electrophysiological recordings, we used tungsten electrodes shaped electrolytically
(TW5-6, Science Products, Hofheim, Germany). Male moths were quickly anesthetized
with CO5 and restrained in a Styrofoam folder with their head protruding. Once one
antenna was immobilized with adhesive tape, a reference electrode was inserted in the
main branch of the antenna and the recording electrode was inserted at the base of a
trichoid sensillum. The antennae of Agrotis ipsilon present a strong odotopy, the ORNs
located on the branches are mostly Phe-ORNs. The signal was amplified (x1000),
band-pass filtered and sampled at 10kHz with a Digidata 1440A acquisition board
(Molecular Devices). The recordings were acquired thanks to the pCLAMP10 software
(Molecular Devices, San Jose, CA, USA). We have recorded one sensillum per insect.

2.6 Stimulation sequences

We recorded each Phe-ORN during a 8 minute recording sequence consisting of the
presentation of two distinct 40-second stimulations separated by a 2 minute gap. Each
stimulation lasted 40 seconds. For the pheromone, it consisted of the repetition (20
times) of the same 2-seconds-trial, a sequence of short pheromone puffs/blanks of
random durations generated randomly (white noise pattern: durations of puffs and
blanks have an exponential distribution). In the meanwhile, the background was either
(1) absent (control stimuli), or (2) delivered continuously. The background onset started
2 ms before the pheromone stimulation to assess the response of Phe-ORNs to
individual VPCs. The order of presentation of the 2 distinct stimulations: Pheromone +
No Background, Pheromone+ Continuous Background was randomized. In addition, we
also designed a protocol to assess spike-frequency adaptation (called the “adaptation
protocol” ). Tt consisted of the same random presentation of the 40-s of the background,
either constant or absent, but we have only kept the first and the last (20th)
2-seconds-pheromone-trial.
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2.7 Statistical Analyses

The analysis includes 186 ORNs recorded over two distinct 40-second stimulations per
ORN, one with pheromone and no background and another with pheromone and the
background of (Z)-3-hexenyl acetate or linalool. The minimum and maximum number
of neurons per VPC concentration were 11 and 21 respectively. During the high
concentration of the VPC background, some neurons stopped responding altogether
(Fig. 1B), and those have been excluded from the analysis.

Neural response The firing rate of ORN was estimated with kernel density
estimation using a Gaussian kernel (Shimazaki and Shinomoto, 2010; Tomar, 2019)

A= Ky(t—t;) (1)

where ¢; is the spike time and K, (s) is the normal distribution bandwidth w = 20ms,

defined as
1

Ko(s) = mexp(jl;). 2)

The firing rate shown in figure 2 was sampled at every 10ms.

For individual concentrations of VPC, the average firing rate of neurons was
calculated for the duration of the trial (figure 2A and 2F). To look at the neural
response adaptions (figures 2C and 2H), we averaged the population firing rate for each
trial.

For the relative change in the firing rate (figures 2D and 2E), we took the mean firing
rate during 20 trials of each neuron (with and without VPC background) and calculated
the population mean firing rate. The relative change in the mean firing rate is

()\vpc - Aair)/)\air

where A, is the mean firing rate of the neuron population with a VPC background
and Ay is without the VPC background (the box-plots of the mean relative change are
shown in the figures). Inactive neurons were excluded from the analysis.

Response model fitting and AUC-ROC performance evaluation In order to
understand to which extent the presence of a VPC background modulates or influences
the ORNs’ encoding of pheromones we have trained two separate models: one capturing
the neural response to the pheromone alone, and another reflecting the combined
impact of the pheromone and a VPC background. Through model fitting, we aim to
understand which of these models best describes the experimental binary data (the
absence/presence of pheromone).

The first model was constructed to capture the neuronal response when exposed
solely to the pheromone. As independent variables, we used the firing rate estimated by
a Gaussian kernel specified in the previous section and a weighted history function
which accounts for the firing rate in the past 200ms. Specifically, the weighting function
considers an exponentially decreasing influence of past firing rates up to four-time
points (or bins) in the past. For a given firing rate of a neuron in the time bin j, we
modeled the probability of the stimulus being present as:

eBotBrX;+Baxw;
1 4 eBot+BixAj+Baxw; (3)

prob; =

where A; is the firing rate in the respective time bin, w; is the calculated weighted
history for that time bin, Sy, 81 and 2 are the regression beta coefficients which are
estimated on the available training data with maximum likelihood estimation. Using the
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Fig 2. High concentrations of VPCs activate the neural response in ORNs and suppress
the subsequent neural response to pheromones. A Average firing rate of Phe-ORNs when
exposed to VPCs introduced at -2s and pheromone introduced at Os (indicated by the
grey shaded area). The control is represented by a dashed line. We tested different
concentrations of (Z)-3-hexenyl acetate. B Here, the 40s pheromone stimulation period
is composed of the repetition of 20 trials, each lasting 2s. This segmentation helps us
examine the adaptation of the ORNs’ response over time. As the trials progress, the
average firing rate of the neuron population decreases, indicating a diminished response.
C This panel shows the relative change in the mean firing rate of ORNs when VPCs are
present, presented as box plots. For these measurements, we use (Z)-3-hexenyl acetate
as the VPC background. The relative change is calculated using the formula: (Aype -
Aair)/ Aair Where A,p. is the mean firing rate during VPC background and A, is the
mean firing rate without the VPC background. D, E, & F Linalool was used as the
VPC background and analyses were the same as in the panels A, B, and C.
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independent variables, we predicted the presence or absence of the pheromone. This
model serves as a baseline, providing insights into the natural encoding of the
pheromone without any external influences.

The second model aimed to take into account the potential modulatory effects of a
VPC background. Again, using the firing rate and weighted history as independent
variables, this model predicts the absence or presence of pheromone, but now in the
context of a VPC background. This model helps us grasp the potential interactions
between the pheromone and VPCs in shaping neuronal responses.

After fitting both models to the observed data, we used the Area Under the Receiver
Operating Characteristic Curve (AUC) as a performance metric to assess the models’
performances (Bradley, 1997). The AUC provides a robust measure of a model’s ability
to discriminate between classes—in this case, the presence or absence of the pheromone.
An AUC score close to 1.0 indicates a near-perfect ability to differentiate, while a score
near 0.5 suggests no better performance than random guessing.

By comparing the AUC scores of both models, we could ascertain which model
represents the observed neuronal responses with the best accuracy. An appreciable
difference in the AUC values between the two models would underscore the significance
of VPCs in influencing the encoding process. Conversely, comparable AUC values would
hint at the resilience of the encoding process against the background of VPCs.

If the AUC value in the trial £ for a neuron n is denoted as ay , then the mean
AUC value for the kth trial is obtained by averaging ay,, across all the neurons in the
group (categorized according to the VPC type and its concentration),

1 m
—— i 4
ap = — ;:1 a, (4)

The results of our model fitting and the corresponding AUC evaluations for both
(Z)-3-hexenyl acetate and linalool are depicted in figures 3 and 4, respectively.

Logistic regression analysis on ORN response To quantify to which extent the
background of VPCs impacted the neuronal ability to encode the pheromone efficiently,
we used logistical regression to predict the absence or presence of pheromone. Using the
same predictor variables as in the previous section, the logistic model for each
background was trained on the first three trials and then used to predict the stimulus in
the remaining 16 trials. To train the predictive model for each background, we divided
the 2 second trials into 200 bins of 10ms and calculated the firing rate g o1 Aype
according to the background condition. To quantify the performance of the predictors,
we compared the model’s predicted stimulus condition (absent/present) to the neuron’s
measured stimulus condition. The proportion of predictions that are correctly classified
is called the “prediction accuracy” (Sohil et al., 2022). If the model prediction accuracy
in the trial k for a neuron n is denoted as py , then the average prediction accuracy for
the kth trial is obtained by averaging py , across all the neurons in the group (defined
by the VPC type and its concentration),

1 m
— E i 5
Pk m 2 Pk, ( )

and if the number of spikes fired by the neuron n in the trial & is ay y, then the average
prediction accuracy per spike r is calculated as,

m

Zpk,i
ar ;

i—1 k,i

(6)

Pr =
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The ratio of average prediction accuracies for ORNs exposed to pheromone with
VPC background vs. pheromone alone is plotted on the log,, scale in figure 5.

Mutual information between the stimulus and the response Information
theory has been historically used to quantify the information transfer among neurons
and answer questions like how much information can a spike train of a neuron provide
about the external stimulus (Dimitrov et al., 2011; Fuller and Williams, 1983; Jacobson,
1950; Kostal et al., 2013; Quian Quiroga and Panzeri, 2009; Timme et al., 2014; Wibral
et al., 2015). The fundamental information-theoretic quantity is called entropy
(Shannon, 1948), which measures the uncertainty of a discrete random variable X as

Z P 10g2 ) (7)

where X is distributed according to P(X). The corresponding unit for entropy is bits
when logarithm is taken on base 2 and nats when natural logarithm is used.

In the case of two discrete random variables X and Y, conditional entropy is defined
as the entropy of a random variable conditional on the knowledge of another random
variable (Cover and Thomas, 2006),

H(X|Y) = }E:I’ H(X[Y =y) (8)

where H(X|Y = y) can be obtained from equation 7 with replacing P(x) with P(x|y).

Let’s consider two variables, S representing a set of stimuli and R representing a set
of responses. The mutual information I(R,S) is the reduction in uncertainty about a
random variable (in this case, about the stimulus) due to another random variable being
known (in this case, due to the response being known). It can be defined in terms of
entropies as (Cover and Thomas, 2006)

I(R,S) = H(S) — H(S|R) 9)

Mutual information can be interpreted as an average reduction in uncertainty about the
absence/presence of stimulus, based on the response.

For the given analysis, we pooled the spiking data of the neuron population during
the delivery of a given VPC concentration (and its control category). We divided the 2s
trials into 50ms bins. Using this binned data, we computed the mutual information
between the stimulus and the response for a particular trial k& of a given concentration d,
denoted as Iy 4(Rk,d, Sk,q)- This computation was performed using the entropy package
in the statistical software R. Additionally, the mutual information per spike was
obtained by dividing the Iy 4(Rk, 4, Sk,q) with the number of spikes a4 in that trial.
Given the VPC type and concentration, the average mutual information per spike
during a trial k is calculated as

I.a(Rg,d, Sk.,d)

I.(Ry, Sk) = o

(10)

To demonstrate the change in the mutual information per spike as the background
changes to VPC, we plotted the ratio of the mutual information per spike on the log;,
scale as the neurons were exposed to pheromone with VPC background vs. pheromone
alone for figure 6.
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Fig 3. Mean AUC wvalues for the logistic models fit for (Z)-3-hexenyl acetate
background A Represents the mean AUC values across 20 trials for the model trained on
neuronal responses to pheromone alone. The values consistently fluctuate between 0.80
and 0.85, indicating a stable performance of the model across the trials. B Mean AUC
values for the model trained on neuronal responses to pheromone in the presence of a
(Z)-3-hexenyl acetate background. While the AUC values largely remain comparable to
those in A, falling within the 0.8 to 0.85 range for most trials, there’s a discernible dip
in the performance at the concentration 10~2, where the AUC values consistently range

from 0.55 to 0.65. This suggests an improvement in the ORNSs’ encoding capability at
this specific concentration of (Z)-3-hexenyl acetate.
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Fig 4. Mean AUC values for the logistic models for linalool background A Represents
the mean AUC values across 20 trials for the model trained on neuronal responses to
pheromone alone. The values reflect a consistent performance of the model and vary
between 0.70 and 0.85. B Mean AUC values for the model trained on neuronal
responses to pheromone in the presence of a linalool background.

3 Results

3.1 High VPC concentrations activate the neuronal firing and
suppress the response to the pheromone

(Z)-3-hexenyl acetate activated the neuronal firing at the threshold of 1073 (Fig. 2A)
whereas linalool activated it at 10~* (Fig. 2F). Both of the VPC backgrounds evoked
the strongest response at 1072, As the pheromone plume was released, the neuronal
response was observed to be suppressed by these high concentrations. Pooling the
response of neurons for the 20 trials of 2s shows that for the concentrations above the
threshold, the firing rate does not recover to the control level (Fig. 2B, Fig. 2E).

To highlight the “adaptation effect”, we averaged the neuronal response per trial, for
each background concentration. The response to pheromone is comparably high in the
first trial, then the firing activity decreases slowly (Fig. 2A and 2C). The effect of the
high VPC concentrations is visible in (Z)-3-hexenyl acetate background (Fig. 2C) as
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well as linalool background (Fig. 2F). The relative change in the mean firing rate is
shown in figure 2D and E, and as the VPC concentration increases we see a downward
trend in the change, demonstrating that on average the high concentrations of the
VPCs suppress the neuronal response.

3.2 Logistic regression model performance declines during high
concentration of odor background

In this section, we introduce logistic regression models to decipher the presence or
absence of pheromone stimuli from the firing rate. In terms of the mean AUC values,
which measure the model’s discriminatory power between the presence and absence of
the pheromone, both models demonstrate consistent performances across trials.
However, notable variations emerge with the introduction of VPC backgrounds.

(Z)-3-hexenyl acetate

QO-Q 00— —°

Prediction acc.

Prediction acc.

Trials Trials

VPC concentration ¢ Mineral Oil ¢ 1077 e 107% © 107® ¢ 10™* ° 102 o 1072

Fig 5. High VPC background concentrations improve per spike pheromone encoding
efficiency in ORNs. The y-axis is represented on a base 10 logarithmic scale. A Ratio
of the prediction accuracies of the models when exposed to a (Z)-3-hexenyl acetate
background relative to the accuracy without a VPC background. Regardless of the
concentration variations of the VPC, the ratio remains approximately equal to 1
throughout all trials, indicating that the presence of (Z)-3-hexenyl acetate does not
significantly alter the model’s performance. B Contrary to panel A, this panel shows
that the prediction accuracy per spike ratio consistently exceeds the baseline for VPC
concentrations of 1072 and 1072. C Similarly to panel A, when the model is subjected
to a linalool background, the prediction accuracy ratio is close to 1 across various trials,
implying a minimal effect of linalool on the model’s predictive capabilities. D Similar to
B, the model displays an augmented prediction accuracy per spike, especially for high
concentrations around 10~2 and 1072,

For (Z)-3-hexenyl acetate, as shown in Figure 3, the performance remains largely
uniform across most trials for both the pheromone-only and the VPC background
models. However, a pronounced dip in AUC values is observable specifically at the 1072
concentration for the latter model. This decrease in AUC values at this specific
concentration suggests an alteration in the neuronal encoding process. In contrast, for
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linalool, as visualized in Figure 4, while the performance for the pheromone-only model
remains stable across trials, the model trained with the linalool background starts
showing variations at specific concentrations. For the low VPC concentrations, the AUC
values remain in a range similar to subfigure A, around 0.75. However, as the
concentration of linalool in mineral oil increases, at the concentration 102, there’s a
pronounced dip in performance, with AUC values ranging between 0.6 and 0.65,
suggesting a significant modulation in the ORNs’ encoding capability at this specific
concentration of linalool. The model’s discriminative capability slightly decreases as the
linalool concentration increases, especially around concentrations of 1072,

In essence, the AUC values derived from our logistic regression models not only
validate the encoding capability of ORNs towards pheromone stimuli but also emphasize
the modulatory influence of VPCs at particular concentrations. These findings, along
with the previously observed suppression in firing rates (refer to Figure 2), highlight the
nuanced interactions between pheromone stimuli and VPC backgrounds.

3.3 Stimulus prediction per spike increases with high
concentration of odor background

In this section, we introduce the logistic prediction models designed for discerning the
presence or absence of pheromone stimuli based on firing rate measurements. The ratios
of prediction accuracies under different background conditions of VPCs compared to
control are depicted on a logarithmic scale in figure 5 for the VPCs (Z)-3-hexenyl
acetate and linalool, respectively. Model performances are comparable for both control
and VPC backgrounds. Upon calculating the prediction accuracy per spike, obtained by
dividing the prediction accuracy for a given trial by the count of spikes occurring within
that trial, we observe a trend in the coding efficiency. Notably, under high VPC
concentrations, the ratio is consistently higher. For (Z)-3-hexenyl acetate this change is
visible in the VPC concentration 102 and strongly present for 1072,

Parallel findings are observed for linalool, with the ratio of prediction accuracy per
spike consistently and substantially higher at both 10™% and 10~2 concentrations. It is
worth highlighting that the concentrations of VPCs with heightened ratios of prediction
accuracies per spike align with those concentrations demonstrated to suppress firing
rates, as illustrated in Figure 2.

3.4 Mutual information per spike is higher for the high
concentrations of the VPC

The ratio of the average mutual information per spike in different background
conditions (VPC vs. control) confirms that for the higher concentrations of the VPC,
the mutual information per spike between the stimulus and the response increases. The
impact of the background VPC concentrations can be seen in Fig. 6, where each tile
represents the difference between the logarithm of mutual information per spike under
the VPC background and the logarithm of the mutual information per spike without
VPC background. For both (Z)-3-hexenyl acetate and linalool, it is the highest for 1%.
For linalool, the contrast is stronger at 0.1% than (Z)-3-hexenyl acetate. This
corresponds with the behavior observed in Fig. 2 and 5.

3.5 The VPCs facilitate the ORN coding efficiency
independently of spike-frequency adaptation

Our results suggest that ORNs have an increased efficiency in terms of information
encoded per spike in the presence of high VPC concentrations even though their firing
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rate decreases. In this section, we also consider the potential impact of neural
adaptation of consecutive trials. We compare neurons exposed to varying concentrations
of VPC with near identical average firing rates during the 40s stimulation period. This
approach allows us to isolate the impact of VPC from the effect of neural adaptation
over time.

Fig. 7A shows the comparative analysis of ORNSs’ response to varying VPC levels,
highlighting a reduction in overall firing rate as the VPC concentration level increases.
The increased efficiency gain during the background of high concentrations of VPC is
not a result of neural adaptation to repeated stimuli, but the levels of VPC
concentrations also play a role. We compare the prediction accuracy per spike of
neurons that maintain the same average firing rate during the stimulus period. The
analysis shown in Fig. 7B reveals that among the neurons with the same average firing
rate, the majority (about 70%) exhibited higher prediction accuracy per spike at the
high VPC concentration backgrounds of 1072 and 1073. This highlights that the high
VPC concentrations enhance neural processing capabilities and that the benefits derived
from VPCs are not just a consequence of neural adaptation to repeated stimuli but
rather an independent factor contributing to the increased efficiency in ORNs.

4 Discussion

4.1 High concentrations of plant volatiles alter the firing
response of Phe-ORNs

In this study, we investigated the impact of volatile plant compounds (VPCs) on the
encoding of pheromone signals by the olfactory receptor neurons (Phe-ORNs) of male
Agrotis ipsilon.

Our experimental approach consisted of stimulating ORNs with a dynamic
pheromone pattern that emulated natural plume conditions while varying the
concentrations of VPC backgrounds. Various studies have concluded that the presence
of a VPC background can modify the response of Phe-ORNs to pheromones. For
instance, Deisig et al. (2012) examined how different concentrations of heptanal and its
combination with a sex pheromone affect the mean spike frequency of Phe-ORNs.
Rouyar et al. (2011) compared the informational content of the firing activity in
Phe-ORNs when exposed to pheromone pulses with or without a VPC background.
Further studies by Renou et al. (2015) and Dupuy et al. (2017) investigated the
maximum firing rates of Phe-ORNs under various background conditions, Conchou et al.
(2021) used the pheromone salience in addition to the firing frequency comparisons. The
metric used in our study for performance assessment covers all these aspects. Our
results show that the impact of the VPC background on the response of Phe-ORNs is
dose-dependent with the most significant decrease in neural response to pheromones
observed at the highest VPC concentration.

4.2 Information per spike increases with increasing VPC
concentration

While most ORNs exhibited similar responses when solely exposed to pheromones
(control group), a notable shift in coding efficiency was observed under elevated
concentrations of VPCs. ORNs exhibited improved coding efficiency when exposed to
high VPC concentrations. Specifically, ORNs demonstrated enhanced coding efficiency
in the presence of high VPC concentrations, a phenomenon that was apparent with
both (Z)-3-hexenyl acetate and linalool, albeit at different concentration thresholds.
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Fig 7. A Differential impact of VPC on the average firing rate (Hz) of neuron
populations when exposed to (Z)-3-hexenyl acetate and linalool over varying
concentrations. The boxplots represent the distribution of neurons’ responses, with
individual data points indicating unique neuron activity. The firing rate demonstrates a
compound- and concentration-dependent response, with notable variation between the
control and VPC-exposed groups. B Comparative analysis of VPC effects on neuron
firing rates across varied concentrations. Neurons with identical baseline firing rates are
shown side by side to underscore the differential impact of VPC. The first row (blue)
represents neurons under (Z)-3-hexenyl acetate, while the second row (red) corresponds
to those under linalool. This selection of neurons, despite having equal firing rates at
different VPC concentrations, reveals a notable enhancement in prediction accuracy per
spike at higher VPC concentrations.
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Despite the reduction in firing response triggered by VPC backgrounds, an increase in
the amount of information conveyed per spike was recorded.

The dynamics of sensory noise-altering information processing across different
modalities further contextualizes our findings. For instance, intrinsic noise can alter the
way speech sounds are processed by the auditory system (Schilling et al., 2022). In the
locusts’ brain neuron DNI, the added noise increased both the firing rate and the
information content carried by the spike train, however, the information content carried
per spike was reduced by half (Simmons and van Steveninck, 2010). Even though the
information content per spike was reduced, the neurons were able to fire spikes with
precise timing in response to the changes in the light intensity, suggesting that the
neurons can reliably respond to important sensory cues even in the cases of increased
spiking activity due to noise. This study highlights the importance of precise spike
timing for efficient information transfer in sparse spiking regimes. Another example of
this is observed in the olfactory system of locusts where precise spike timing is found to
carry information about odor identity Gupta and Stopfer (2014).

These observations are in agreement with the efficient neural coding principle which
suggests that the sensory neural system has evolved to encode stimuli in the most
energy-efficient way possible, encoding the most amount of information at the lowest
cost (Attneave, 1954; Yu and Yu, 2017). Several studies estimate that the brain spends
a significant amount of energy on spike generation and spiking activity (Attwell and
Laughlin, 2001; Lennie, 2003). Since each spike is expensive, encoding more information
in fewer spikes can be an optimization strategy (Sengupta et al., 2013). Examples of
this can be seen in the visual cortex (Olshausen and Field, 1996; Vinje and Gallant,
2000; Yu and Ferster, 2013), auditory cortex (Willmore and Tolhurst, 2001; Zhang et al.,
2019), and the olfactory system (Stopfer, 2007; Theunissen, 2003).

4.3 Ecological implications

It has been suggested that the pheromone-VPC interactions only occur at supra-natural
concentrations of VPCs (Badeke et al., 2016). However, the release of VPCs into the
atmosphere is susceptible to modification due to climate change and other
environmental factors that affect plant metabolism (Holopainen et al., 2018). For
instance, Chan et al. (2024) discusses how anthropogenic pollutants degrade floral
scents and reduce flower visitation by moths, and Nataraj et al. (2022) investigates how
the plant species Artemisia brevifolia produces increasing amounts of VPC with
increasing elevation, potentially as a response to increased stress or as part of its
adaptive optimization strategies to harsh environmental conditions

In our study, the observed dual effect of certain high VPC
concentrations—simultaneously enhancing pheromone encoding efficiency while
suppressing pheromone responses—suggests a nuanced strategy employed by ORNs to
optimize information transmission under challenging sensory conditions. This
adaptability implies the existence of coding mechanisms that adjust in the presence of
heightened VPC levels. The next step in this direction might be to use a temporally
dynamic odor background as well as a mixture of plant odors to further investigate how
the “odorant” background influences the encoding of the signal cues.
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Abstract

Neural variability quenching is a decrease in the trial-to-trial variability of neural
activity evoked by a stimulus. This phenomenon has been observed across different
levels of neural activity in the brain including the membrane potential of individual cells
(Monier et al., 2003) and firing activity (Churchland et al., 2010). Monier et al. (2003)
suggested that the decrease of membrane potential variability is due to an increase in
inhibitory activity associated with the stimulus onset. However, the origins of the
decrease of firing activity variability (measured by Fano factor) as well as its utility are
still unclear. Cortical models consisting of balanced excitatory and inhibitory neuron
subpopulations with recurrent architecture reproduce the stimulus induced trial-to-trial
variability quenching observed in cortical neurons (Litwin-Kumar and Doiron, 2012).

We explore the effect of spike frequency adaptation (SFA) on the trial-to-trial
variability quenching evoked by stimulus onset. We use a cortical model with excitatory
and inhibitory subpopulations, where the feedforward input is purely excitatory and the
inhibitory input is determined by the network properties. We employ exponential
integrate-and-fire neurons with SFA (Zerlaut et al., 2018). Each neuron responded to a
stimulus with a different intensity, mitigating the effect of preferred and non-preferred
stimuli. When the SFA was implemented by after-hyperpolarization current, the Fano
factor increased after the stimulus onset, while in networks with SFA implemented by
voltage-gated sodium channel inactivation (dynamic firing threshold), the Fano factor
decreased, even for neurons whose firing rate did not change upon stimulus onset. Next,
we analyze to which extent the differences between the SFA mechanisms affect
information transmission properties.

Our work provides a potential mechanism that can lead to neural variability
quenching and analyzes its possible utility by evaluating information transmission
capabilities.

1 Introduction

Neural variability refers to the fluctuations in neural responses observed across time and
trials (Faisal et al., 2008; Shadlen and Newsome, 1998; Tomko and Crapper, 1974). It is
a fundamental characteristic of cortical neural activity, influenced by both intrinsic
neural noise (Carandini, 2004; Moreno-Bote et al., 2014) and the dynamic nature of
neural circuits (van Vreeswijk and Sompolinsky, 1996; Vogels and Abbott, 2005).
Studies have shown that the trial-to-trial variability of neural response to identical
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stimuli is significantly quenched at the onset of the stimulus. Monier et al. (2003)
explored the variability of membrane potentials in cat visual cortex neurons and
observed a quenching effect. Their study demonstrated that membrane potential
variability also decreases upon visual stimulus presentation, suggesting that the
reduction in variability extends to subthreshold membrane potential dynamics.
Churchland et al. (2010) investigated firing rate variability in macaque monkeys and
found that the variability of neural responses decreases at the onset of a stimulus. This
reduction in variability was shown to be a general feature across different cortical areas
and sensory modalities, indicating its fundamental role in sensory processing. Goris

et al. (2014) further showed that variability quenching is associated with a reduction in
noise correlations between neurons, highlighting its role in enhancing the signal-to-noise
ratio during sensory processing.. This phenomenon is observed in the membrane
potential recordings (Finn et al., 2007; Orban et al., 2016), in spiking activity (Chang
et al., 2012; Churchland et al., 2006), in human electroencephalography

(EEG) /electrocorticography (ECOG) (Arazi et al., 2017, 2019; He and Zempel, 2013;
Schurger et al., 2015), and in functional magnetic resonance imaging (fMRI) recordings
(Ferri et al., 2015; He, 2013; Huang et al., 2017).

Cortical neurons are known to exhibit significant variability in their spike emission
patterns (Azouz and Gray, 2000; Shadlen and Newsome, 1998), as well as firing rate
fluctuations over long timescales (KKohn and Smith, 2005), both of which contribute to
trial-to-trial variability (Arieli et al., 1996; Churchland et al., 2006; Luczak et al., 2009;
Tsodyks et al., 1999). Cortical models with balanced excitatory and inhibitory
populations capture high spike time variability and asynchronous firing due to balanced
inputs. Still, these models fail to fully capture long-timescale fluctuations and the
complete spectrum of trial-to-trial variability observed in cortical neuron (Brunel, 2000;
Renart et al., 2010; van Vreeswijk and Sompolinsky, 1998). In contrast, models with
recurrent architecture and clustered connections accurately capture both fast spiking
variability and slow firing rate fluctuations, producing richer dynamics and higher
trial-to-trial variability, closely aligning with experimental observations of cortical
activity (Deco and Hugues, 2012; Litwin-Kumar and Doiron, 2012).

Doiron and Litwin-Kumar (2014) concluded that to reproduce the quenching of
trial-to-trial variability upon stimulus onset, it is necessary for the feedforward inputs to
be coherent with the recurrent network architecture. Experimental data (noa) indicate
that a significant portion of excitatory neurons display spike frequency adaptation
(SFA), which is a phenomenon in which a neuron’s firing rate decreases over time in
response to a sustained or constant input. SFA mechanisms have already been utilized
to create more realistic neural network models, as they account for activity-dependent
changes in neuronal firing rates and enhance the biological plausibility of these models
(Ganguly et al., 2024; Salaj et al., 2021). The biophysical mechanisms of SFA involve
the inactivation of depolarizing currents and the activation of hyperpolarizing currents
(Benda and Herz, 2003). In our article, we present a cortical model with recurrent
architecture with excitatory feedforward input and examine the effect of different SFA
mechanisms on neural variability after the onset of stimulus. We compare two different
SFA mechanisms: adaptation through after-hyperpolarizing currents and adaptation
through the inactivation of sodium channels. We demonstrate that although SFA
mechanisms similarly influence neural activity, their impact on trial-to-trial variability
differs.
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2 Methods

2.1 Spike frequency adaptation

Spike frequency adaptation (SFA) is a phenomenon observed in many neurons where
the firing rate decreases progressively during sustained input to the neuron, and it plays
a crucial role in stabilizing neuronal network dynamics (Barranca et al., 2019). The
mechanisms behind SFA can be either spike-dependent or voltage-dependent and can be
categorized into two types:

1. Inactivation of depolarizing currents,
2. Activation of hyperpolarizing currents.

In this article, we explore both mechanisms of adaptation. The inactivation of
depolarizing currents is modeled through the inactivation of voltage-gated sodium
channels. For the adaptation via activation of hyperpolarizing currents, we incorporate
after-hyperpolarizing (AHP) currents.

To capture these adaptation mechanisms in our model, we use the adaptive
exponential integrate-and-fire (AdEx) model, which we modify to include the
adaptation mechanisms.

2.2 Single neuron dynamics

To model the single neuron dynamics, we used the AdEx model (Brette and Gerstner,
2005), which we modified to incorporate dynamic threshold by adding slow gating
variable s to the term with the exponential function:

av’ i i i i Vi Vi, i i i
mﬁ :gL(EL_V )+Isyn<v ,t)+(1—8 )kae Fa _Iw+lbcg+lstim7 (1)
dr: , ,
Ty = Lyt a- (V= By + > ba(t—t), (2)
tsE€E{tspike }*
ds? i ;
Tsqp = 8 + Z e(1—8%)0(t —ts), (3)

ts € {tspike}i

with an action potential recorded when membrance potential of the ith neuron V?*
crosses the threshold 0mV and reset at the leak reversal potential . {tspike}® is the
set of all action potentials fired by the i-th neuron. C,, is the membrane capacitance,
g1, represents the leak conductance. I;yn represents the synaptic current for the ith
neuron, k, is the scaling factor for the exponential term. I, is the adaptation current,
which is parametrized by a in the case of voltage-dependent adaptation and b in the
case of spike-dependent adaptation. Igcg and I’ represent the background and
stimulus current respectively. 7, is the time constant for the adaptation current, 7 is
the time constant for the slow gating variable s¢, and c is the scaling factor for s°.

The exponential term represents the conductance of the voltage-gated Na™ channels
and the gating variable s represents the ratio of inactivated Na™ channels. We used the
model parameters as in (Zenke and Ganguli, 2018), with the exception of the
adaptation parameters, in order to compare different adaptation mechanisms. The
parameters are provided in the Table 1.

As in (Zerlaut et al., 2018), adaptation was only applied to excitatory neurons. In
the case of dynamic threshold adaptation b = 0 and ¢ = 0.15, meaning that 15% of all
open channels become blocked with every fired action potential. In the case of
after-hyperpolarization currents (AHP), we set ¢ = 0 and b = 20 pA.
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Table 1. Parameters of the LIF model

Membrane capacitance C, 150 pF
Leak conductance qgr, 10nS
Resting potential Er —80mV
Vthr —-50mV

ke 2mV for exc.

0.5mV for inh.

Exc. reversal potential F, 0mV
Inh. reversal potential  FEj; —80mV
Exc. synapse decay Texc 5ms
Inh. synapse decay Tinh 5ms
Exc. synapse strength — w?, 1nS
Inh. synapse strength — w 5nS

2.3 Network properties

The network consists of 10000 neurons, out of which 7500 are excitatory and 2500 are
inhibitory. We consider two different variants of the connection matrix. In the first case,
regardless of the neuron type, the connection probability is 5% (Zerlaut et al., 2018). In
the second case, we consider more realistic, proximity-based probabilities of synaptic
connections between neurons. Neurons in the visual cortex often have a preferred
orientation, which is the specific angle of a visual stimulus to which a neuron responds
most strongly. Studies have shown that the synaptic connections among cortical
neurons are not random but exhibit functional specificity, with functionally similar
neurons forming synaptically coupled subnetworks (Ko et al., 2011). This concept is
used to model the probability of synaptic connections between neurons based on their
preferred orientations.

If o;; and «; are the preferred orientation of neurons ¢ and j respectively, then the
similarity factor is calculated using the absolute difference between the preferred
orientations (Dalva et al., 1997),

dij = |oy — g, (4)

Stepanyants et al. (2008) showed that the probability of potential connectivity and the
expected number of potential synapses can be modeled based on the spatial separation
and geometric properties of neurons. Following that, the probability of a synaptic
connection is modeled using a Gaussian distribution:

2
dij

p” =€ 202 s (5)

where o represents the standard deviation, or spread, of the Gaussian distribution. This
approach ensures that neurons with similar preferred orientations are more likely to
connect, reflecting realistic patterns observed in cortical networks where functionally
similar neurons are more densely interconnected (Harris et al., 2015; Ko et al., 2011).
The synaptic current I?  is the current from conductance-based recurrent synapses:

syn
Izyn = _géxc(vi - EexC) - glznh(‘/Z - Einh)’ (6)
dg! ge -
—pe=—tee gy Y wld(t—t), (™
dt Texc 1 Ry
J=1t,€{tspike }’
dg? g} >
inh __ inh Ji
BTk D DD DR ML) (®)

J=1ts€{tspike }
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where gl . and ¢!, are the excitatory and inhibitory conductances for the ith neurons
and Fex. and Ei,), are the reversal potentials for the excitatory and inhibitory synapses
respectively. Texc = Tinn = 5ms are synaptic decay time constants, wl%, and w!, the
synaptic weights. wi’. = 0 if the j-th neuron is inhibitory, w?’, = 0 if the j-th neuron is
excitatory and otherwise for any connection the probability of the weight being non-zero
is 5% in the case of the fixed connectivity matrix and then wif, = wl, . = 1nS and
Wiy = Wiy, = 518,

2.4 External input

The external excitatory input is modeled as an Ornstein-Uhlenbeck process (Destexhe
et al., 2001; Uhlenbeck and Ornstein, 1930):

Iéxt = _géxt(vi - Eext) (9)
da? it (¢ . .
-Zetxt — _gext :U’ext( ) + maéxt(t)nl(t)a (10)
Texc

where n'(t) is white noise, ¢ and o’ , are set so that the stationary mean and
standard deviation of g, match those of a Poisson shot noise with an exponential
kernel with a time constant 7exc, amplitude w?,, and intensity A’

exc ext*
ILLéXt (t) = ngcAéxt (t)TeXCv (11)
; ey (6
oha(t) = | Tl g (12)

During the 12s simulation, we modelled A%, as

N — Abeg for t < 65,
oxt >\bcg + )\stim Sin<ai - Oéstim) for ¢ > 68;

where «; is the preferred orientation of the i-th neuron and oy, is the stimulus
orientation, Apcg = 1kHz and Agim = 6 kHz.

We assume that neurons 1,..., Nexc, where Ny = 7500 are excitatory and neurons
Nexc, -+ -, N, where N = 10000 are inhibitory. We then set the preferred orientations as

T4 ;
e for i < Nexe,
X = 7 _i—Nexc fi , > IV, (14)
2 N—Nore or 1 exce

2.5 Variability quantification

To compare the trial-to-trial variability of two neurons with the same mean spike count,

E[N(w)], where N(w) is the number of spikes in the time window (0, w), we can use the

variance of the observed spikes, Var[N(w)]. A relative dispersion measure, known as the

Fano Factor, quantifies this trial-to-trial variability by scaling the variance with the

mean spike count:

PP — Var[N(w)].
E[N (w)]

A Fano Factor of one indicates that the spike counts follow a Poisson distribution,
where the variance equals the mean, which is typical of random processes. Additionally,
trial-to-trial variability can be estimated using the coefficient of variation of the
interspike intervals (ISIs), Cy (T') = o(T)/E(T) or a steady-state spike train where ISIs
are described by a continuous random variable 7T'. In this context,

(15)

FFy=C}% (16)
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where F'Fj is the Fano factor calculated from infinite length time window (w — +00)
and o(T) is the standard deviation of the ISIs.

A B AHP current C  dynamic threshold

exc. input 3 3
at 6s
T > T T T T T T
0 Os 6s 12s Os 6s 12s
D E
s s
(V] / /
e QS 7 s
© 0’0 / /
B , /
© / /
> Va4 4
€ Sl e
S <%, ’
S ’ s
9] 7 /
0] /2 ] /,
X Z —— before stimulus 7
o . .
0 —— during stimulus
mean spike count mean spike count

Fig 1. Trial-to-trial variability after stimulus onset depends on spike frequency
adaptation mechanism: fixed connection probability A: The curve illustrates the
strength of the external input on top of the background input that each neuron starts
receiving after 6s. Each neuron receives a different input due to a different preferred
stimulus. B-C: Raster plots of the 8000 excitatory neurons from one trial of the simulation
with AHP (B) and dynamic threshold (C). D-E: With each spike frequency adaptation
(SFA) mechanism we ran the simulation 3600 times. For each neuron, we calculated the
mean number of spikes and their variance before the stimulus onset (in the interval between
1s and 5s after the simulation start) and after the stimulus onset (interval between 7s and
12s after the simulation start). With the AHP SFA| the trial-to-trial variability of the
neurons increased after the stimulus onset, while with the dynamic threshold SFA the
trial-to-trial variability decreased after the stimulus onset.

3 Results and discussion

We ran the simulation 3600 times for each SFA mechanism - AHP and dynamic
threshold. Raster plots from a sample simulation are shown in Fig. 1A-C. In the case of
a fixed connectivity matrix, the neurons show transient activity at the beginning of the
simulation and after the stimulus onset. After the stimulus onset, the activity of
neurons receiving strong input increases, while the activity of neurons receiving only
weak external input is attenuated. For some neurons, the steady state activity remains
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approximately the same as before the stimulus onset. We calculated the spiking

A AHP current B dynamic threshold

T T T T T T
65 125 0s 65 125
C D
v —— before stimulus
% ”, —— during stimulus ”..
5 . o
= \he:b - -
E P ’/ ’i
5 n&'é‘f" o
[=] - -
W) ’,4"' ,-F
w rd 4
v - -
= # #,
=3 -
mean spike count mean spike count

Fig 2. Trial-to-trial variability after stimulus onset depends on spike frequency
adaptation mechanism (proximity based connection probability) A-B: Raster plots
of the 8000 excitatory neurons from one trial of the simulation with connection probability
based on proximity, with AHP (A) and dynamic threshold (B) spike frequency adaptation
(SFA). C-D: The simulation was run 3600 times to calculate and the graph illustrates the
mean number of spikes and their variance before and after the stimulus onset for each
neuron. Like in the case of constant connection probability, the trial-to-trial variability of the
neurons increased after the stimulus onset in the case of AHP SFA whereas the trial-to-trial
variability decreased after the stimulus onset in the case of dynamic threshold SFA.

statistics—the mean number of spikes and the variance of the number of spikes before
and after the stimulus onset. We left out the transient periods 1s after the simulation
start and 1s after the stimulus onset. We plotted the spike count variance against the
mean spike count (Fig. 1D-E). In each situation (AHP / dynamic threshold +
before/after stimulus onset) the mean count - count variance formed a continuous curve
with very little variance and the trial-to-trial variability of a neuron is essentially
determined by its firing rate. Comparing this curve before and after stimulus onset
shows us whether trial-to-trial variability increased or decreased after the stimulus onset.
For AHP SFA, the trial-to-trial variability increased after the stimulus onset, while with
dynamic threshold the trial-to-trial variability decreased after the stimulus onset.
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In the second case where synaptic connections are probability-based, influenced by
the similarity in preferred stimuli between neurons, the raster plots (Fig. 2A-B) show a
pronounced increase in activity within certain clusters of neurons immediately following
the stimulus onset at 6s. These clusters are likely composed of neurons with similar
preferred orientations, which are interconnected with a higher probability. This
structural connectivity results in localized areas of intense activity, as these neurons are
more likely to receive and propagate excitatory inputs amongst each other. Neurons at
the beginning and the end of the network exhibit less pronounced changes in activity in
response to the stimulus onset. This phenomenon can be attributed to the edge effects
within the network’s structural framework. Given the connectivity matrix is based on
proximity-based probabilities where synaptic connections are more likely between
neurons with similar stimulus preferences, neurons at the extremes edges of the network
(beginning and end) might be less active due to fewer connections with other active
neurons in the network.

The spiking statistics (Fig. 2C-D) shows an increase in the trial-to-trial variability
after the stimulus onset in the case of AHP SFA, whereas dynamic threshold quenches
the trial-to-trial variability after the stimulus onset.

4 Conclusion

Cortical neurons exhibit a high degree of variability in neural responses in spontaneous
and evoked states (Churchland et al., 2006; Litwin-Kumar and Doiron, 2012). This
variability decreases when a stimulus is presented. To understand how neural
populations encode information, it is important to study the mechanisms underlying
stimulus-induced trial-to-trial variability (Averbeck et al., 2006; Josi¢ et al., 2009;
Ponce-Alvarez et al., 2013). In this study, we explored the potential underlying
mechanisms of these phenomena within a realistic neural network. Doiron and
Litwin-Kumar (2014) concluded that feedforward input that’s coherent with the
recurrent network architecture is necessary to produce the trial-to-trial variability
quenching. We showed that variability quenching further depends on the SFA
mechanisms employed by the network. Adaptation by inactivation of sodium channels
leads to a reduced trial-to-trial variability whereas adaptation by after-hyperpolarizing
currents yields an increased trial-to-trial response variability. The reduction in
trial-by-trial variability under the dynamic threshold adaptation regime confirms
previous results obtained across different brain areas (Arazi et al., 2017; Broday-Dvir
et al., 2018; Churchland et al., 2010; Goris et al., 2014; He, 2013), which were
reproduced by several spiking neuron models (Doiron and Litwin-Kumar, 2014;
Litwin-Kumar and Doiron, 2012). Our study reveals that the specific SFA mechanism
employed can significantly influence trial-to-trial variability upon stimulus onset,
leading to either an increase or decrease in variability. This finding emphasizes the
critical role of SFA mechanisms in shaping neural response dynamics and underscores
their importance in accurately modeling and understanding neural variability in cortical
networks.
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