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Abstract

Understanding the mechanisms by which the brain processes
and transmits information is a major goal of computational
neuroscience. Neurons transform stimuli into sequences of
action potentials, but the efficiency of this “neuronal code” is
not fully understood. While spike count or temporal patterns
alone may partially explain stimuli encoding, combining both
features provides a more comprehensive representation.

In my thesis, I investigated information transmission in
neuronal systems from the rate coding perspective by focusing
on the instantaneous firing rate, which integrates rate coding
and temporal coding features. Using classical statistical mo-
dels of neural activity, I found that dispersion measures of the
inter-spike intervals can differ significantly from the instanta-
neous rate dispersion measures in a model-dependent manner.
Applying our findings to experimental data revealed that this
approach offers deeper insights into the information-encoding
mechanisms of neurons. Building on this foundation, I inves-
tigated the influence of biophysical properties on rate coding.
Basic integrate-and-fire models lack firing rate and membrane
voltage saturation, which is inconsistent with observed neural
activity. Incorporating reversal potentials increased the slope
of the “firing rate vs. input” curve, but did not achieve satu-
ration. Extending the model to include two nodes (dendritic
and somatic) effectively limited both voltage and firing rate,
aligning the model more closely with biological observations.

In order to understand the rate coding principles that
govern information transmission in neuronal systems, I
studied how the olfactory receptor neurons (ORNs) of the
male moth Agrotis ipsilon optimize information transmission
under challenging sensory conditions. Analyzing responses
to pheromones amid varying concentrations of volatile plant
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compounds (VPCs) showed that these backgrounds can
suppress neural responses in pheromone-responsive ORNs but
also increase the information transmitted per spike. This study
highlights ORNs’ optimization mechanisms for navigating
complex olfactory landscapes, enabling insects to detect
crucial pheromonal cues despite environmental interference.
Extending my research from neuron populations to neural ne-
tworks, I investigated the effect of spike frequency adaptation
(SFA) on neural variability quenching in cortical networks.
Using a model with excitatory and inhibitory subpopulations,
I demonstrated that SFA mechanisms significantly influence
trial-to-trial variability, crucial for efficient information
transmission.

Overall, my work provides a comprehensive analysis of
information transmission from the perspective of rate coding,
progressing from single neuron to complex neural networks.
These findings enhance our understanding of the underlying
mechanisms of neural coding, offering refined models that
better reflect biological realities.
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1 Background and objectives

Neurons, the fundamental units of the nervous system, are
specialized for transmitting information throughout the body.
Each neuron comprises a cell body (soma), dendrites, and
an axon. The soma houses the nucleus and the metabolic
machinery essential for the neuron’s function and survival.
Dendrites extend from the soma, receiving signals from other
neurons and directing them toward the cell body. The axon, a
long projection, carries electrical impulses away from the soma
to other neurons, muscles, or glands. At the axon terminals,
neurotransmitters are released to communicate with target cells
across synapses. Action potentials, or spikes, are the primary
method neurons use to send signals. These are sudden changes
in the electrical charge of the neuron’s membrane, triggered
by the influx of sodium ions when the membrane potential
reaches a threshold. This rapid depolarization is followed by
repolarization as potassium ions exit the cell, restoring the
resting membrane potential. This process propagates along
the axon, enabling neurons to transmit information quickly
and efficiently over long distances. Action potentials are all-or-
none events, ensuring consistent signal transmission once the
threshold is crossed.

Action potentials generally have a consistent shape and
short duration [Dayan and Abbott, 2005]. Thus, to analyze
the information being sent, it is often sufficient to consider
the timing of action potentials, known as a spike train. Spike
trains can be recorded by placing an electrode near the soma
[Safronov et al., 2000]. Research continues into how specific
and varied information is encoded within these sequences of
spikes. Neural encoding schemes are usually categorized into
two types: temporal codes, which rely on the precise timing
of spikes, and rate codes, which depend on the frequency of
spikes [Perkel, 1968, Victor and Purpura, 1997, Buracas and
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Albright, 1999, Nemenman et al., 2004].

The classic rate coding paradigm suggests that neurons
encode information by the number of spikes in a given time
window [Dayan and Abbott, 2005]. This method is relatively
straightforward and has shown that neurons can vary their
firing rate in response to sensory inputs. Studies have demon-
strated that the firing rate of sensory neurons increases with
stimulus intensity, although this relationship is often non-linear
[Adrian and Zotterman, 1926, Kandel et al., 1991]. In the vi-
sual cortex, neurons encode various stimulus features, such as
orientation and direction, through firing rate change [Hubel
and Wiesel, 1962]. Additionally, motor cortex neuron firing
rates have been shown to vary with arm movement direction
[Georgopoulos et al., 1986]. These findings support the rate
coding hypothesis, suggesting neurons encode different stimuli
aspects through firing rate variations.

Other studies show that neurons can encode information
without changing the mean firing rate in response to a stimu-
lus, prompting exploration of temporal coding schemes [Perkel,
1968, Gerstner and Kistler, 2002, Rigotti et al., 2013, Dett-
ner et al., 2016]. The temporal coding hypothesis posits that
the precise timing of spikes relative to each other and exter-
nal events encodes information [Theunissen and Miller, 1995].
Examples include phase locking in the auditory system, where
neurons fire at a specific phase of a sound wave to encode its
frequency [Köppl, 1997], and spike timing-dependent plasticity
(STDP), where the exact timing of spikes between neurons
strengthens or weakens synapses, encoding information through
synaptic strength changes rather than firing rate [Dan and
Poo, 2006]. Temporal pairwise spike correlation has also been
shown to capture information transmission in single neurons
[Dettner et al., 2016].

Significant advances have been made in understanding and
estimating firing rates in non-stationary processes, where neural
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firing patterns change over time. However, stationary proces-
ses, where firing rate properties are assumed constant over
time, also present challenges. Despite their apparent simplicity,
accurately estimating the firing rate in stationary processes
requires careful consideration of factors such as time window
selection for spike counting and temporal binning resolution,
which can influence perceived firing rates [Shimazaki and Shi-
nomoto, 2007]. Additionally, inherent variability in neuronal
firing—even within stationary activity—necessitates robust
statistical methods for distinguishing signals from noise [Stein,
1965, Kostal et al., 2007, Nawrot, 2010]. The concept of in-
stantaneous firing rate has gained popularity as an alternative
to the classical firing rate. Defined as the reciprocal of the
interval between two spikes, it offers a more dynamic account
of neural activity [Kostal et al., 2018]. Although the mean
instantaneous firing rate is typically higher than the mean
firing rate, under specific conditions, they can be equivalent.
Our research explores the stochastic characteristics of the in-
stantaneous firing rate, revealing insights that may not be
evident from inter-spike interval (ISI) analysis alone. It also
helps bridge the gap between rate coding and temporal coding
paradigms, providing a more comprehensive understanding of
neural information processing.

While rate coding has significantly advanced our under-
standing of neural communication, it’s crucial to address the
complexity and limitations of current models. Early models
like the Hodgkin-Huxley model did not account for the sto-
chastic nature of ion channels or the anatomical structure of
neurons [Hodgkin and Huxley, 1952]. Subsequent models, such
as the FitzHugh-Nagumo model and the Rall model, have
focused on different aspects of neuronal dynamics [Fitzhugh,
1961, Rall, 1962]. The integrate-and-fire model and its vari-
ants include considerations for synaptic inputs and stochastic
activity[Lapicque, 2007, Gerstein and Mandelbrot, 1964, Stein,

6



1965, 1967, Tuckwell, 1978]. However, many models assume
infinitely high firing rates in response to increasing stimulus
intensity, which does not align with biological constraints like
the absolute refractory period. Our research addresses these
limitations by introducing an analysis of models that incor-
porate mechanisms for firing frequency saturation, reflecting
more accurately the physiological constraints observed in real
neuronal systems.

Neuronal coding principles also apply to specialized con-
texts, such as olfactory receptor neurons (ORNs) in insects.
ORNs process odor signals, with their diverse sensitivities and
response properties forming the basis of odor coding [Yao et al.,
2005]. Insects rely on these cues for locating food, mates, and
habitats, making ORNs crucial for understanding insect be-
havior and ecology. Volatile plant compounds (VPCs) in the
environment can significantly influence ORN firing patterns,
affecting the detection and response to olfactory signals. Stu-
dies show that VPC backgrounds can alter ORN responses
to pheromones, increasing response variability and affecting
coding efficiency [Dupuy et al., 2017]. Our work investigates
how different VPC concentrations affect the coding efficiency
of pheromone-responsive ORNs in male moths of the Agrotis
ipsilon species, demonstrating that higher VPC concentrations
can enhance the encoding efficiency of pheromone signals.

Variability is a key aspect of rate coding, categorized
into stimulus-evoked variability and ongoing variability. Pre-
stimulus neural variability is higher compared to post-stimulus
variability, suggesting sensory input reduces ongoing varia-
bility, known as variability quenching [Monier et al., 2003,
Churchland et al., 2006, 2010]. Our research investigates the
mechanisms underlying neural variability quenching, focusing
on spike frequency adaptation (SFA). Using a cortical model,
we show that SFA implemented through dynamic firing thre-
sholds decreases trial-to-trial variability, while SFA through
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after-hyperpolarization currents increases variability.

These studies collectively advance our understanding of
information processing in neural systems, particularly through
rate coding. The thesis is based on five manuscripts, three
published and two unpublished. In the following sections, the
methodologies used for our work and then the results are
summarized.

2 Material and methodology

2.1 Neural coding and firing rate estimation

Neurons transmit information through action potentials or
spikes, primarily via their timing. Neural encoding schemes
are broadly classified into rate coding and temporal coding.
Rate coding suggests neurons encode information through the
average number of spikes in a given time window. Temporal
coding, in contrast, emphasizes the precise timing of spikes
relative to each other and external events.

Determining firing rates from spike data poses challenges,
especially in dynamic environments. The instantaneous firing
rate (IFR) R, calculated as the inverse of the inter-spike interval
(ISI) T , offers a detailed view of neural activity:

R =
1

T
. (1)

Traditional methods like frequencygrams, time histograms,
and kernel smoothing estimate the classical firing rate for non-
stationary processes. For stationary processes, the mean firing
rate λ is

λ =
1

E(T )
= lim

w→∞

E(N(w))

w
, (2)

where N(w) is the number of spikes in the time window [0, w].
In general, the mean instantaneous rate is always higher than
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or equal to the mean classical firing rate [Lánský et al., 2004],
however in the specialized case of equilibrium renewal processes,
this inequality disappears.

2.2 Variability and randomness in neural activity

Variability in neural activity is crucial for understanding neural
coding and brain function. Measures such as the standard
deviation (σ) and coefficient of variation (CV ) quantify the
variability of ISIs and firing rate:

σ(T ) =
√︁

E([T − E(T )]2), (3)

CV (T ) =
σ(T )

E(T )
= λσ(T ), (4)

σ(R) =
√︁

λE(1/T )− λ2, (5)

CV (R) =

√︃
E(1/T )

λ
− 1. (6)

The Fano factor measures trial-to-trial variability, indicating
the consistency of spike counts:

FF =
Var[N(w)]

E[N(w)]
. (7)

Entropy-based measures, including differential entropy and
relative entropy-based dispersion coefficients, quantify the ran-
domness in spike trains, providing a normalized perspective
on neural variability:

h(fX) = −
∫︂

fX(x) ln fX(x)dx, (8)

σh = exp(h(fX)− 1), (9)

Ch = λσh. (10)
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2.3 Modeling Neural Activity

Renewal point processes model the stochastic nature of spike
trains, describing them through either spike times or ISIs. Com-
mon models include the gamma, lognormal, inverse Gaussian,
and shifted exponential distributions. These models capture
different aspects of neural variability and firing dynamics.

For instance, the gamma distribution has the firing rate
(λ) and coefficient of variation of ISIs (CV ):

λ =
b

a
, CV (T ) =

1√
a
, (11)

where a > 0, b > 0 are the shape and rate parameters. The
lognormal distribution provides:

λ =
1

meσ2/2
, CV (T ) =

√︁
eσ2 − 1, (12)

wherem,σ > 0 are the scale and shape parameters. The inverse
Gaussian distribution is characterized by:

λ =
1

a
, CV (T ) =

√
b, (13)

where a > 0, b > 0 are the mean and scale parameters. The
shifted exponential distribution accounts for a refractory period
τ ≥ 0:

λ =
a

1 + aτ
, CV (T ) =

1

1 + aτ
, (14)

where a > 0 is the rate parameter.
Biophysical models integrate factors like ion channels and

membrane properties to simulate neuronal activity. The leaky
integrate-and-fire (LIF) model, with its variants incorporating
reversal potentials and dual-compartment structures, repre-
sents fundamental neuronal behaviors. These models describe
how neurons integrate inputs, generate spikes, and adapt to
different stimulation patterns.
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The LIF model is described by:

dV(t) =
(︁
− V (t)

τ
+ µ

)︁
dt, (15)

where V (t) is the membrane potential, τ is the membrane time
constant, and µ is the input current. The two-point LIF model
includes dendritic and somatic compartments:

dV1(t) =

(︃
−V1(t)

τ
+

V2(t)− V1(t)

τr
+ µ

)︃
, dt (16)

dV2(t) =

(︃
−V2(t)

τ
+

V1(t)− V2(t)

τr

)︃
dt, (17)

where V1(t) and V2(t) are the membrane potentials of the
dendritic and somatic compartments, respectively, and τr is
the junctional time constant. The LIF model and the two-
point LIF model can be extended to include reversal potentials,
adding more biologically realistic features. These extensions
incorporate the effects of excitatory and inhibitory inputs more
accurately. For example, incorporating reversal potentials into
the LIF model involves modifying the input current term to
account for these potentials. Similarly, the two-point LIF model
can be adjusted to include reversal potentials, providing a more
comprehensive view of the neuron’s response to synaptic inputs.

Spiking neuron models, including the exponential integrate-
and-fire model and those incorporating spike frequency adap-
tation (SFA), offer more detailed representations of neuronal
dynamics. These models account for mechanisms like adap-
tation currents and dynamic thresholds, providing a closer
approximation to biological neurons.

The exponential integrate-and-fire model is formulated as:

C
dV

dt
= −gL(V − EL) + gLka exp

(︃
V − S

ka

)︃
+ w + I, (18)

where C is the membrane capacitance, gL is the leak con-
ductance, EL is the resting potential, ka is the slope factor, S
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is the threshold potential, w is the adaptation current, and I
is the input current. The adaptation current follows:

τw
dw

dt
= a(V − EL)− w, (19)

where τw is the time constant of adaptation and a is the
sub-threshold adaptation. Spiking neural networks (SNNs)
extend these models to network-level simulations, capturing
the connectivity and interactions among neurons.

2.4 Information transmission in insect olfactory
system

The study focuses on the olfactory receptor neurons (ORNs)
in male moths, particularly their response to pheromones and
volatile plant compounds (VPCs). The aim was to investigate
how VPCs affect the ORNs’ ability to detect and process
pheromone signals.

Experimental design

To mimic natural conditions, the ORNs were subjected to inter-
mittent puffs of pheromones against different concentrations of
VPC backgrounds. The experiment consisted of recording the
ORNs’ responses during an 8-minute sequence, which included
two distinct 40-second stimulations separated by a 2-minute
gap.

1. Control Stimuli: The first 40-second stimulation invol-
ved only pheromones.

2. VPC Background: The second 40-second stimulation
included a continuous VPC background, either (Z)-3-
hexenyl acetate or linalool.

The VPC background was designed to start 2 milliseconds
before the pheromone stimulation to assess its impact on phe-
romone detection.
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Data collection

• Neurons: The analysis included 186 ORNs recorded
across the different experimental conditions.

• Stimulations: Each ORN was exposed to both the cont-
rol (pheromone only) and the VPC background condition.

Firing rate estimation

The firing rate was estimated using kernel density estimation
[Tomar, 2019]:

λt =
N∑︂
i=1

Kw(t− ti), (20)

where ti is the spike time and Kw(s) is the Gaussian kernel
with bandwidth w = 20ms.

2.4.1 Neural response modelling

Two logistic regression models were formulated to assess the
impact of VPCs on pheromone detection:

1. Pheromone Only Model: This model quantified the
neuronal response to pheromones without VPC bac-
kground.

2. Pheromone + VPC Model: This model incorporated
the VPC background to evaluate its modulatory effects.

The probability of detecting a pheromone at a specific time
bin j was modeled using the logistic function:

probj =
eβ0+β1∗λj+β2∗wj

1 + eβ0+β1∗λj+β2∗wj
, (21)

where λj represents the firing rate at time bin j, wj denotes
the weighted history at time bin j, and β0, β1 and β2 are
regression coefficients derived from the model.
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Prediction accuracy

The model was trained on three trials and then used to predict
pheromone presence across 16 subsequent trials under each
background condition. Prediction accuracy was measured as
the proportion of correct predictions:

pk =
1

m

m∑︂
i=1

pk,i, (22)

where pk,i represents the accuracy for neuron i in trial k, and
m is the number of neurons. To determine the efficiency of
prediction relative to the neuron’s spiking activity, the average
prediction accuracy per spike p∗k was calculated:

p∗k =
1

m

m∑︂
i=1

pk,i
,
ak,i, (23)

where ak,i is the number of spikes fired by neuron i in trial k.

Information-theoretic analysis

Mutual information was used to quantify the efficiency of
information transfer under different sensory conditions:

I(R,S) = H(S)−H(S|R), (24)

where I(R,S) is the mutual information between the response
R and stimulus S, H(S) is the entropy of the stimulus, and
H(S|R) is the conditional entropy given the response. The
mutual information per spike for each trial was calculated to
assess the efficiency of information transfer:

Ik(Rk, Sk) =
Ik,d(Rk,d, Sk,d)

ak,d
, (25)

where Ik,d(Rk,d, Sk,d) is the mutual information for trial k
under VPC condition d, and ak,d is the number of spikes in
trial k.
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3 Results

3.1 Comprehensive overview of firing rate esti-
mation methods

Attachment I
Neuronal firing rate estimation is crucial for interpreting

neural activity and understanding the mechanisms of infor-
mation processing in the brain. The firing rate, generally de-
fined as the number of action potentials per unit of time, is
a fundamental metric for quantifying neuronal output. This
study provides a comprehensive review of various firing rate
estimation methods, examining their theoretical foundations,
application contexts, and implications for neural data analysis.

• Simple Time Window Averaging: Early methods
relied on counting spikes within predefined intervals and
normalizing by the duration of those intervals. While
straightforward, this approach introduced variability re-
lated to the choice of window size, often requiring a
balance between temporal resolution and statistical reli-
ability.

• Kernel-Based Methods: Advances in computational
techniques led to kernel-based methods, which offered a
more sophisticated approach to firing rate estimation. By
convolving spike trains with a predefined kernel function
(e.g., Gaussian, exponential), these methods produced
continuous estimates of the firing rate over time. The
choice of kernel influenced the smoothness and responsi-
veness of the rate estimate. Kernel width played a critical
role in capturing the dynamics of neuronal firing patterns.

• Bayesian Frameworks: Further refinement introdu-
ced Bayesian frameworks, which incorporated prior
knowledge and probabilistic models to infer firing ra-
tes. These approaches allowed for the estimation of firing
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rates as probabilistic distributions, providing a means
to quantify uncertainty in the rate estimates. Adaptive
methods emerged, capable of adjusting estimation para-
meters in real-time based on spike train characteristics,
thus enhancing the accuracy of firing rate reconstructions
in varying neural activity regimes.

Overall, the evolution from simple averages to complex com-
putational models reflects a deeper understanding of neural
coding, with each method offering unique insights into neuronal
activity across different temporal and spatial scales. These me-
thods not only advanced our fundamental knowledge but were
also useful for many of the subsequent analyses and models
presented in this thesis. For instance, some of the firing rate
estimation methods were applied in our studies on neuronal
variability and the coding efficiency of olfactory receptor neu-
rons, showcasing their broad applicability and critical role in
neural data analysis. This review was published in the journal
Biosystems [Tomar, 2019].

3.2 Variability and Randomness in Instantaneous
Rate Analysis

Attachment II

This section focuses on analyzing the instantaneous firing
rate within stationary renewal point processes and comparing
dispersion coefficients for interspike intervals (ISIs) and instan-
taneous rates. Renewal processes are often used to model the
activity of spontaneously active cells.

1. Gamma distribution The gamma distribution’s disper-
sion measures for CV (T ) and CV (R) are linked by

CV (R) =
CV (T )√︁

1− CV (T )2
. (26)
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This relationship shows that the variability of the in-
stantaneous firing rate can significantly diverge from ISI
variability, revealing different neuronal dynamics (Fig.
1A).

2. Lognormal and inverse Gaussian distribution For
the lognormal distribution, a symmetric relationship
exists between fT (t) and fR(r):

fR(r;λ) = fT (r; 1/λ). (27)

Both CV (T ) and CV (R) follow an identity relationship,
indicating statistical properties of neuronal firing are
invariant to temporal or rate-based perspectives. This
consistency is also seen in the inverse Gaussian distribu-
tion (Fig. 1A).

3. Shifted exponential distribution In this distribution,
CV (T ) depends on the firing rate and refractory period:

CV (T ) = 1− λτ. (28)

We analyzed the relationship between CV (T ) and CV (R)
by varying these parameters (Fig. 1A).

4. Mixed exponential distribution For the mixed ex-
ponential distribution, we used various parameter sets
to analyze dispersion coefficients. Applying our analysis
to experimental data from zebrafish afferent neurons, we
showed that instantaneous rate dispersion measures offer
a distinct perspective from ISI measures (Fig. 1C, D).

Our findings illustrate that the variability and randomness
of the instantaneous firing rate provide additional insights
beyond traditional ISI analysis (Fig. 1). These insights enhance
our understanding of how information is encoded and processed
in neural circuits, contributing to the broader theme of rate
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A B

C D

Figure 1: Exploring the relationship between
statistical dispersion in interspike intervals (ISIs) and
instantaneous rate across distributions and
experimental data. A and B: Relationship between CV and
Ch of ISI and instantaneous rate. C: CV (T ) and CV (R) reveal
separate aspects of datasets. D: Ch(R) differentiates datasets
with equal Ch(T ).

coding in neural data analysis. This study was published in
Frontiers in Computational Neuroscience [Tomar and Kostal,
2021].

3.3 Intrinsic Firing Rate Saturation in Neuronal
Models

Attachment III
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In our exploration of intrinsic firing rate saturation, we
investigated four neural models: the basic leaky integrate-and-
fire (LIF) model, the LIF model with reversal potentials, a
two-point LIF model, and a two-point LIF model incorpora-
ting reversal potentials. These models were selected to assess
how different structural complexities and biophysical proper-
ties influence neuronal firing rate responses to input currents.
Understanding these mechanisms is crucial for accurately mo-
deling neuronal behavior and information processing in neural
circuits.

Basic LIF Model The basic LIF model demonstrated a
linear relationship between input current and firing rate, wi-
thout any intrinsic saturation. This model’s simplicity fails to
capture the realistic limitations observed in biological neurons,
where firing rates typically saturate at high input levels due
to biophysical constraints.

LIF Model with Reversal Potentials Introducing rever-
sal potentials to the LIF model significantly altered its beha-
vior. Reversal potentials, which account for the equilibrium
potentials of ions, increased the slope of the firing rate versus
input current curve by reducing the effective membrane time
constant. However, this adjustment did not lead to intrinsic
firing rate saturation, indicating that additional mechanisms
are required to replicate the natural limitations of neuronal
firing.

Two-Point LIF Model The two-point LIF model, which
considers two nodes representing dendritic and somatic com-
partments, provided a more detailed simulation of neuronal
behavior. Despite this added complexity, the model without
reversal potentials still did not exhibit intrinsic firing rate
saturation. This finding suggests that the model’s structural
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A B

C D

Figure 2: Transfer function plots for different leaky
integrate-and-fire (LIF) neuron models with input
normalized to rheobase. A Transfer function of a standard
LIF neuron model. B LIF model with incorporation of a
reversal potential with µI set to 0. C Two-point LIF model
with parameter values set at τ = 5 ms, τr = 2.5 ms, and
S = 15 mV. D Two-point LIF model with reversal potential,
with parameter values set at τ = 5 ms, S = 15 mV, VE = 60
mV, VI = −10 mV, and τr is 2.5 ms, 5 ms, and 10 ms for the
different cases.
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complexity alone is insufficient to impose realistic firing rate
limits.

Two-Point LIF Model with Reversal Potentials The
two-point LIF model with reversal potentials revealed a signi-
ficant departure from the previous models. This configuration
not only limited the maximum attainable voltage but also exhi-
bited a clear saturation in firing rate. The presence of reversal
potentials in this model imposed a ceiling on the firing rate,
reflecting a built-in saturation frequency. The maximum firing
frequency fmax can be described by the following equation:

fmax =
τ + τr

ττr ln
(︁

VEτ
VEτ−S(τ+τr)

)︁ , (29)

where τ is the membrane time constant, τr is the junctional
time constant and S is the firing threshold and VE is the rever-
sal potential for excitatory inputs. We compared the transfer
functions across these models, as shown in Fig. 2, highlighting
distinct behaviors in how each model approaches its firing rate
limit. The two-point model with reversal potentials demonstra-
ted the most realistic saturation effect, aligning more closely
with observed neuronal behavior compared to the simpler mo-
dels. These findings were published in the journal Biosystems
[Tomar et al., 2022].

3.4 Efficient Information Transmission in Moth
Olfactory Receptor Neurons

In our study of moth pheromone receptor neurons (Phe-ORNs),
we investigated how volatile plant compounds (VPCs) influence
the coding efficiency of these neurons. The olfactory system of
male Agrotis ipsilon moths was used as a model to simulate
naturalistic olfactory environments. We exposed the ORNs to
intermittent puffs of pheromone amidst varying concentrations
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Figure 3: The inhibiting effect of various
concentrations of (Z)-3-hexenyl acetate on the neural
response in moth ORNs. Average firing rate of ORNs
when exposed to (Z)-3-hexenyl acetate at -2s and pheromone
introduced at 0s (indicated by the grey shaded area). The
control is represented by the black dashed line.

of VPCs, specifically linalool and (Z)-3-hexenyl acetate, to
understand how environmental odors affect sensory processing.

The results showed that high concentrations of VPCs, such
as (Z)-3-hexenyl acetate and linalool, activated neuronal firing
and suppressed the response to pheromones (Fig. 3). This
suppression was most pronounced at the highest tested con-
centrations, suggesting that beyond a certain threshold, VPCs
significantly interfere with pheromone detection.

To quantify the coding efficiency of ORNs, we used logistic
regression models to predict the presence of pheromones under
different VPC backgrounds. Despite the overall suppression of
neuronal firing rates at high VPC concentrations, the coding
efficiency of ORNs, measured by prediction accuracy per spike,
increased. This was further supported by the increase in mutual
information per spike, indicating that each spike conveyed more
information about the pheromone presence under high VPC
conditions (Fig. 4).

To ensure that the improvement in coding efficiency was not
due to neural adaptation to repetitive stimuli, we compared
neurons with similar firing rates exposed to different VPC
concentrations. Neurons exposed to higher concentrations of
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Figure 4: Stimulus prediction model has a high
efficiency per spike under high concentrations of
(Z)-3-hexenyl acetate. Predictive accuracies as well as
predictive accuracies per spike in Phe-ORNs exposed to
intermittent pheromones amidst variable (Z)-3-hexenyl
acetate concentrations. The x-axis represents the trial number,
indicating repeated exposure, while the y-axis measures
predictive accuracy in A and B, displaying a decrease in
accuracy at higher concentrations. In contrast, the y-axis
measures predictive accuracies per spike in C and D,
displaying an increase in efficiency per spike at higher
concentrations of (Z)-3-hexenyl acetate. Each line corresponds
to a different concentration of VPC, with the control group
depicted as black dots.

VPCs showed better prediction accuracy per spike, even when
their firing rates were comparable to those exposed to lower
VPC concentrations. This suggests that the enhancement in
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coding efficiency is an effect of the VPC concentration itself
rather than an adaptation to repeated stimuli.

Our study highlights a fascinating ecological interaction
where environmental odors can enhance the coding efficiency
of Phe-ORNs. This adaptive response suggests an evolutionary
advantage in complex olfactory environments, allowing moths
to discern mating signals amidst various plant odors. These
findings provide significant insights into the mechanisms of
olfactory perception in moths and contribute to our understan-
ding of sensory processing in dynamic chemical landscapes.
The manuscript for this study is attached (Attachment IV).

3.5 Neural Variability Quenching in Networks

Our investigation into the phenomenon of stimulus-evoked
quenching of trial-to-trial variability in neural activity revealed
significant insights into how different spike frequency adap-
tation (SFA) mechanisms contribute to variability reduction in
neural networks. Using a recurrent neural network model, we
aimed to replicate and analyze the observed decrease in neural
variability upon stimulus presentation, a widely documented
effect across various brain areas.

We constructed a recurrent neural network consisting of
10,000 neurons, with 7,500 excitatory and 2,500 inhibitory
neurons. Each neuron was modeled as an exponential leaky
integrate-and-fire (LIF) neuron. The probability of connection
between neurons was set to 5%, and we also explored proximity-
based connection matrices where neurons with similar stimulus
preferences had a higher probability of connection. This setup
mimicked the organization observed in cortical neurons.

We compared two types of networks characterized by diffe-
rent SFA mechanisms:

• SFA through after-hyperpolarization (AHP) currents

• SFA through dynamic firing thresholds
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Each neuron received a background input until the stimulus
was presented. In networks with a fixed connection matrix, neu-
rons receiving strong input exhibited increased firing activity,
while those with weak input showed decreased activity due to
enhanced inhibitory input from the network. This behavior
was observed regardless of the SFA mechanism.

In contrast, networks with proximity-based connectivity
showed that neurons at the periphery of the network exhibited
lower activity due to fewer connections, whereas clusters of
neurons with strong stimuli and high connectivity displayed
increased activity. This difference in network behavior high-
lights the impact of connectivity patterns on neural activity
and variability.

To quantify the trial-to-trial variability, we ran 3, 600
simulation repetitions for each network configuration. We
plotted the variance of each neuron’s response against its
mean response before and after the stimulus. Neurons with
AHP-mediated SFA showed increased trial-to-trial variability
following stimulus onset, while those with dynamic threshold-
mediated SFA demonstrated a reduction in variability (see Fig.
5). This model proposes a mechanism for the reduction in trial-
to-trial variability upon stimulus presentation, emphasizing the
role of SFA mechanisms. Future work will explore the impact
of varying connection probabilities for excitatory-excitatory
(EE), excitatory-inhibitory (EI), inhibitory-excitatory (IE),
and inhibitory-inhibitory (II) connections on neural variabi-
lity. Additionally, we aim to investigate the functional role of
excitatory and inhibitory neuron clusters within these diverse
connectivity frameworks.

This study explores how different SFA mechanisms influ-
ence neural variability and highlights the importance of network
connectivity in shaping neural responses. Our findings contri-
bute to a deeper understanding of how neural networks process
information and adapt to stimuli, offering insights into the
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Figure 5: Neural variability quenching in recurrent
neural networks with proximity-based connectivity.
A-B: Simulation of excitatory neurons with consistent
background input and additional input at 6s, varying by
stimulus preference. Raster plots show activity under different
spike frequency adaptation (SFA) mechanisms:
after-hyperpolarization (AHP) current (A) and dynamic
threshold (B). C-D: Variance vs. mean response for 3,600
trials. Neurons with AHP SFA (C) show increased variability
post-stimulus, while those with dynamic threshold SFA (D)
show reduced variability.
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underlying mechanisms of variability quenching in the brain.

Conclusion

In this thesis, I examined the information transmission mecha-
nisms in neuronal systems from the rate coding perspective. By
incorporating measures such as the instantaneous firing rate, I
provided a more nuanced understanding of neural encoding.
Through detailed analysis and comparison of existing models,
I evaluated how biophysical properties influence the dynamics
of firing rate. My research demonstrated the significant impact
of environmental stimuli on information transmission and
highlighted the crucial role of adaptation mechanisms in
maintaining efficient neural communication.

The neural coding problem is a key research area in
neuroscience. To make further advances in this area, it is
important to understand how neurons encode information
and what principles they use to optimize this information
transmission. Several studies have been done to determine
which features of the spike train contain relevant information
about the stimuli. Some of the candidates for these features
over the year have been the average number of spikes per
observation time window [Gerstner et al., 1997] or the
occurrence frequency of a pair or trio of spikes [Oram et al.,
1999] or the pairwise autocorrelation function along with
the pairwise cross-correlation across noisy trials [Dettner
et al., 2016]. Fukushima et al. [2015] found that temporal
coding carries more information than spike counts when
discriminating between different versions of the bird’s own song
in the zebra finch auditory system. Foffani et al. [2009] showed
that spike timing is more critical for discriminating between
tactile stimuli when stimulus discriminability is low, while
spike count becomes increasingly important as discriminability
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improves. These findings underscore that rate coding alone
cannot capture the complexity of neuronal coding, highlighting
the need to integrate metrics like the instantaneous firing rate
that encapsulate both spike count and temporal properties
of neural data. This approach allows for a more accurate
representation of neural activity compared to averaging over
longer time windows [Ostojic and Brunel, 2011]. Furthermore,
the instantaneous firing rate is directly proportional to
input variance, highlighting its sensitivity to changes in
stimulus statistics which makes it a valuable metric for
understanding how neural populations encode information and
respond to varying inputs [Fourcaud-Trocmé and Brunel, 2005].

Despite the advancements provided by metrics like the
instantaneous firing rate, another significant obstacle in under-
standing information transmission mechanisms lies in the limi-
tations of biophysical models. Brette [2015] argued that single-
compartment integrate-and-fire (IF) models are more realistic
than single-compartment Hodgkin-Huxley models. However,
single-compartment IF models fail to capture several crucial
features of neuronal behavior, like the effects of dendritic spikes
[Górski et al., 2018] or the impact of multiplicative dendritic in-
tegration [An et al., 2019] and neither do they have an intrinsic
saturation of the firing rate. More detailed models can address
these limitations, sometimes at the cost of computational effici-
ency. The two-compartment IF models with reversal potentials
have an intrinsic saturation of the firing rate. Additionally,
a two-dimensional integrate-and-fire model incorporating an
exponential spike mechanism with an adaptation equation has
been proposed to effectively describe neuronal activity [Brette
and Gerstner, 2005]. This model called the adaptive exponen-
tial IF (AdEx) model, can replicate various firing patterns
observed in neurons [Naud et al., 2008, Górski et al., 2021]. A
spiking neural network, where single neuron dynamics is based
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on the AdEx model and the network dynamics consist of excita-
tory and inhibitory subpopulation with recurrent architecture
and excitatory feedforward input captures the trial-to-trial
variability typically observed in cortical neurons. This trial-
to-trial variability of spiking activity in cortical neurons has
been recognized as a source of information about the state
of neurons and their involvement in behavioral tasks [Hussar
and Pasternak, 2010]. Using the SNN model, our research
demonstrated that stimulus onset can lead to a quenching of
neural variability, dependent on the spike frequency adaptation
(SFA) mechanisms employed. These findings emphasize the
importance of SFA mechanisms in shaping neural response
dynamics and their critical role in accurately modeling neural
variability in cortical networks.
Empirical research into the influence of environmental stimuli
on olfactory receptor neurons (ORNs) provides new insights
into how external factors modulate neural coding strategies.
The study on volatile plant compounds (VPCs) and their ef-
fect on ORNs demonstrated that high concentrations of VPCs
enhance information per spike despite reducing overall firing
rates, suggesting an adaptive mechanism that optimizes infor-
mation transmission in complex sensory environments.

The research presented offers a detailed exploration of infor-
mation transmission in neuronal systems from the rate coding
perspective. By integrating advanced models and empirical
studies, and focusing on biophysical properties and adaptation
mechanisms, new insights are provided into how neurons en-
code and adapt to varying inputs, enhancing our understanding
of neural dynamics and information processing.

Summary

This dissertation focuses on understanding information pro-
cessing in neuronal systems from a rate coding perspective. It
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aims to uncover how neurons encode and transmit information,
integrating both statistical and biophysical models.

The study begins by examining traditional rate coding
theories, emphasizing the need to combine spike count and
temporal coding to fully capture neuronal information pro-
cessing. Through classical statistical models, we demonstrate
that dispersion measures of the inter-spike intervals can differ
significantly from the instantaneous rate dispersion measures
in a model-dependent manner, thus providing a more nuanced
understanding of the neuronal code’s efficiency. The research
extends traditional integrate-and-fire models to include bio-
physical properties such as reversal potentials and dual-node
structures, representing dendritic and somatic compartments.
These extensions align model predictions more closely with
observed neural activities, addressing limitations like firing rate
and membrane voltage saturation. A significant part of the
dissertation explores the olfactory receptor neurons (ORNs) in
male moths of the species Agrotis ipsilon. It investigates how
these neurons optimize information transmission in the pre-
sence of volatile plant compounds (VPCs), which can suppress
neural responses to pheromones but increase the information
transmitted per spike. This finding highlights the ORNs’ ability
to navigate complex olfactory landscapes, crucial for detecting
pheromonal cues despite environmental noise. Additionally,
the dissertation delves into the effects of spike frequency adap-
tation (SFA) on neural variability within cortical networks.
It reveals that SFA mechanisms play a vital role in modu-
lating trial-to-trial variability, which is essential for effective
information transmission in neural circuits.

Overall, this work provides a detailed analysis of infor-
mation processing from single neuron to complex neural ne-
tworks, enhancing our understanding of neural coding mecha-
nisms. It offers refined models that better reflect biological
realities, significantly contributing to the field of computational
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neuroscience by advancing theoretical frameworks and practical
methodologies for studying neuronal information processing.
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P Lánský, R Rodriguez, and L Sacerdote. Mean instantaneous
firing frequency is always higher than the firing rate. Neural
Comput., 16(3):477–489, March 2004. ISSN 0899-7667. doi:
10.1162/089976604772744875.

L Lapicque. Quantitative investigations of electrical nerve
excitation treated as polarization. 1907. Biol. Cybern., 97
(5-6):341–349, December 2007. ISSN 0340-1200. doi: 10.
1007/s00422-007-0189-6.

P E Latham, B J Richmond, P G Nelson, and S Nirenberg.
Intrinsic dynamics in neuronal networks. i. theory. J. Neu-
rophysiol., 83(2):808–827, February 2000. ISSN 0022-3077.
doi: 10.1152/jn.2000.83.2.808.

C H Lemon and D V Smith. Influence of response variability
on the coding performance of central gustatory neurons. J.
Neurosci., 26(28):7433–7443, July 2006. ISSN 0270-6474,
1529-2401. doi: 10.1523/JNEUROSCI.0106-06.2006.

M Li, F Zhao, J Lee, D Wang, H Kuang, and J Z Tsien. Com-
putational classification approach to profile neuron subtypes
from brain activity mapping data. Sci. Rep., 5:12474, July
2015. ISSN 2045-2322. doi: 10.1038/srep12474.

43



Y Li, G Schmid, P Hänggi, and L Schimansky-Geier. Spon-
taneous spiking in an autaptic Hodgkin-Huxley setup.
Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 82(6 Pt 1):
061907, December 2010. ISSN 1539-3755, 1550-2376. doi:
10.1103/PhysRevE.82.061907.
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Attachment V Manuscript on trial-to-trial variability quen-
ching in neural networks
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Conferences and talks

Invited Talks

Association for Women in Mathematics Student Se-
minar Series, 2022 Department of Mathematics, University
of Pittsburgh, “The Neural Coding Problem and the Role of
Instantaneous Firing Rate”
International Conference on Mathematical Neuros-
cience (ICMNS), 2022 Invited as a young speaker in the
mini-symposium “Stochastic Models for neuronal activity”

International conferences

2023 Society for Neuroscience (SfN2023), Washington, D.C.,
USA
2023 32nd Annual Computational Neuroscience Meeting
(CNS23), Leipzig, Germany
2022 31st Annual Computational Neuroscience Meeting
(CNS22), Melbourne, Australia
2022 Federation of European Neuroscience Society (FENS22),
Paris, France
2022 International Conference on Mathematical Neuroscience
(ICMNS), Online
2021 Neural Coding Conference, Online
2021 Biannual PhD Conference of the Institute of Physiology,
CAS
2021 European Neuroscience Conference for Doctoral Students
(ENCODS), Online
2020 Neuromatch 2.0, Online
2020 Federation of European Neuroscience Society (FENS),
Online
2019 Biannual PhD Conference of the Institute of Physiology,
CAS, Prague, CZ
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