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ABSTRACT
The exclusive processes, such as Hard Exclusive Meson Production (HEMP) and Deeply
Virtual Compton Scattering (DVCS) are an excellent tool for studying Generalised
Parton Distributions (GPD). GPDs provide a novel and relatively unexplored view
into the structure of nucleon and expand the knowledge given from parameterising
Parton Distribution Functions (PDF) and parton densities to a more complex, three-
dimensional picture. While the golden channel of GPD parametrisation is DVCS, the
exclusive meson production gives access to complementary GPDs, provides information
of flavour dependence of GPDs, and in case of exclusive π0 production in particular,
also represents the main background process of DVCS, hence it is essential to constrain
it. The theoretical formalism of GPD and HEMP description is outlined in the first
part of the thesis. The measurement of exclusive processes represents an important
part of COMPASS-II programme. The dedicated GPD programme commenced with a
4-weeks-long pilot run in 2012, followed by the main data taking in 2016–2017, using
160 GeV/c muon beams and a liquid hydrogen target, equipped with a recoil proton
detector. The COMPASS spectrometre and its configuration for the GPD programme is
described in the second section. The exclusive processes require a perfect performance
of the electromagnetic calorimeters. The third part explains in detail the principle
of operation of the two COMPASS electromagnetic calorimetres used in this analysis
and describes their calibration. In the fourth section, we present the procedure of
inspecting the data quality, the steps of the analysis, and the selection of the events.
The fifth part describes the procedure of extraction of the differential cross-section of
the exclusive π0 production as a function of the four-momentum transfer |t| and the
azimuthal angle ϕ. The results and systematic effects are discussed.
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ABSTRAKT
Exkluzivní procesy, jako je hluboký virtuální Comptonův rozptyl (DVCS) nebo tvrdá
exkluzívní produkce mesonů (HEMP), jsou jedinečným nástrojem ke studiu 3D struk-
tury nukleonu pomocí zobecněných partonových distribucí (GPD). GPD představují
perspektivní a málo prozkoumaný směr studia struktury a vnitřní dynamiky nukleonu,
který může značně rozšířit úroveň znalostí získanou prostřednictvím partonových dis-
tribučních funkcí (PDF). Přestože nejčistším experimentálním kanálem pro studium
GPD je DVCS, exkluzivní produkce mesonů jednak poskytuje přístup ke komplemen-
tárním GPD, na které DVCS citlivé není, jednak pomůže rozlišit GPD specifické pro
kvarky různých vůní podle kvarkového složení daného mesonu. Exkluzívní produkce π0

navíc představuje hlavní zdroj pozadí pro DVCS proces, což z něj činí proces hodný
zájmu. Formalismus GPD je shrnutý v první, teoretické části této práce. Experiment
COMPASS se věnoval studiu exkluzívních procesů v druhé fázi svého experimentálního
programu, COMPASS-II. GPD program započal 4-týdenním pilotním během v roce
2012, a pokračoval hlavní částí měření v letech 2016 a 2017. Byl použit mionový sva-
zek obou polarit s energií 160 GeV/c a terč z kapalného vodíku uložený v detektoru
odraženého protonu. Popis měřícího aparátu experimentu COMPASS a jeho specifika
pro GPD program jsou popsány v druhé části práce. Jelikož meson π0 se rozpadá na dva
fotony, je k jeho detekci potřeba dobře vyladěných kalorimetrů s dobrým rozlišením. Ve
třetí sekci je popsán princip fungování použitých kalorimetrů a jejich kalibrace. Čtvrtá
část popisuje vzorek dat, proceduru jejich sběru a selekce a kontroly jejich kvality. Ko-
nečně pátá část obsahuje postup extrakce diferenciálního účinného průřezu exkluzívní
produkce mesonu π0 a diskuzi výsledků a výpočet systematické chyby.
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Introduction
Nucleons represent the building blocks of all matter. The pioneering scattering
experiments conducted at the Stanford Linear Accelerator Center (SLAC) labora-
tories in the late 1960s conclusively demonstrated that nucleons, despite not being
elementary particles, possess an intricate internal structure. Using both elastic and
inelastic electron-proton scattering, the presence of point-like constituents within
nucleons was established. The Parton Model, introduced shortly after by Richard
Feynman, described these point-like constituents as partons, fermions with spin
1/2, later identified with the quarks in Gell-Mann’s Quark Model. Further ex-
perimental investigations brought an evidence for an additional constituent of the
nucleon – a boson with spin 1, named the gluon. This discovery prompted the
formulation of a novel non-abelian gauge theory of strong interaction, known as
Quantum Chromodynamics (QCD), which elucidates the dynamics within com-
posite particles. Gluons serve as gauge bosons that mediate the strong interaction
that binds the quarks together. The QCD has stood the test of time and remains
the preeminent framework for understanding strong interactions. It not only pro-
vides a comprehensive description of high-energy particle collisions with significant
momentum transfer, calculable within perturbative QCD, but also offers insights
into the structure and dynamics of nucleons and hadrons at lower energies.

In the high-energy regime, the QCD formalism allows to calculate interactions
by means of perturbative expansion due to the asymptotic freedom given from the
running coupling constant αS. In the soft regime the confinement of the strongly
coupled particles does not allow a perturbative solution. Thus, the intrinsic struc-
ture of composite particles can only be parametrised by phenomenological models
utilising experimental data, or recently calculated by Lattice QCD simulations.
Nevertheless, until the 1980s, it was commonly believed that the structure and
functioning of nucleons were well understood.

Contrary to this assumption, fundamental properties such as the origin of nu-
cleon mass and spin turned out to be more elusive than previously thought. In
1974, Ellis and Jaffe described the measured spin of a proton 1/2ℏ as a sum of spins
of valence quarks [1]. However, a surprising revelation emerged in 1988 from the
EMC experiment at CERN, contradicting this belief. The EMC measured that the
quark contribution to the proton spin is only one third [2]. Subsequently, extensive
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efforts were undertaken to address this discrepancy, known as the ‘proton spin cri-
sis’. Successive polarised Deep Inelastic Scattering (DIS) experiments conducted
at various facilities including SMC and COMPASS at CERN, HERMES at DESY,
experiments at the SLAC laboratory and at JLab, and the polarised proton-proton
experiment RHIC at BNL, have confirmed the findings from the EMC. The hope
of the community that the remaining part of proton spin could be attributed to
the gluon contribution, was subsequently thwarted [3]. This leaves only one last
possible candidate to cover the remaining fraction of the proton spin, the orbital
angular momenta of partons. However, this contributions remains unknown to
this day, which leaves the ‘proton spin crisis’ unresolved.

New approaches have been explored; one of the possible concepts that drew
interest in the late 1990s were the GPD. They represent a three-dimensional view
of the nucleon structure by correlating the longitudinal momentum fraction of a
parton with its position in the transverse plane. This renders GPDs sensitive to the
total angular momentum of partons within the nucleon, making them a promising
avenue for resolving the ‘proton spin crisis’ [4]. Additionally, the study of GPDs is
motivated by their interpretation in the impact parameter space [5], which allows
to study the nucleon transverse extension depending on the momentum. This is
sometimes referred to as nucleon tomography.

GPDs are not directly experimentally accessible. Two most important reac-
tions used to study GPDs are DVCS, γ∗p→ γp′, and HEMP, γ∗p→ Mp′, where
M = π, ρ,ω, etc. GPDs enter into the cross sections of these processes through
Compton Form Factors. To this day, only the unpolarised GPD H is constrained
relatively well by the unpolarised PDFs and data from unpolarised cross sections
of DVCS and HEMP. Nevertheless, additional precise data spanning a broader
range of kinematics is required. The most recent measurements of the exclusive
processes from COMPASS and JLab are promising to bring new input for phe-
nomenologists [6, 7, 8, 9]. The parametrisation of GPD E, which associates the
longitudinally polarised nucleon with an unpolarised parton, poses a considerably
greater challenge. The first attempts to constrain GPD E have been made by JLab,
HERMES, and COMPASS [10, 11, 12, 13]. The reason behind the difficulties in
accessing the GPD E is that only a limited number of observables is sensitive to
it, such as Pauli form factors of proton and neutron, and azimuthal asymmetries
from the DVCS and HEMP processes measured on transversely polarised targets
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or the DVCS cross section measured on an unpolarised target.
The benefit of studying the meson production stems in the possibility to sepa-

rate flavour-dependent GPDs due to different quarkonic content of mesons. Both
vector and pseudoscalar mesons provide access to different GPDs, and it is es-
sential to parametrise as many experimentally measurable GPDs as possible in
order to constrain less explored or inaccessible GPDs. Another asset of exclusive
meson production are the different sensitivities to GPDs. While DVCS process is
sensitive to the chiral-even GPDs, the meson production gives access to chiral-odd
GPDs. The primary subject of this thesis is the measurement of the differential
cross section of exclusive γ∗p→ π0p′ production as a function of four-momentum
transfer between the target and recoil proton, t, and the azimuthal angle between
the scattering plane and hadron production plane, ϕ. The exclusive π0 production
is in particular sensitive to the GPD ĒT , known as Boer-Mulders GPD.

In the following Section [[↪→1.]], we will briefly describe the theoretical back-
ground of the GPD model and the framework applied for the exclusive π0 pro-
duction. The layout of the COMPASS spectrometer and the principle of event
reconstruction will be given in Section [[↪→2.]]. In Section [[↪→3.]] we will discuss
the calibrations performed on the electromagnetic calorimeters and the issues that
arose during the process. The luminosity determination, selection criteria for the
π

0 candidates in the experimental data, and simulations used to estimate the back-
ground will be described in Section [[↪→4.]]. Section [[↪→5.]] will be dedicated to the
exclusive π0 cross section extraction and the evaluation of the systematics. In the
conclusion we will present a summary and a discussion of the results.1

1In the whole text we use an assumption of c = 1 for brevity.

3



1 Theoretical Formalism
In the following section, we will give an introduction to the theoretical background
of this work. We will briefly describe the formalism of a scattering experiment, the
elastic and the deep inelastic scattering, and the parton model arising from these
measurements. Then, we will discuss the generalisation of the parton distribu-
tion functions from Wigner’s distributions to generalised parton distributions and
their comparison with other types of parton distribution functions. Subsequently,
we will present the experimental accessibility of generalised parton distributions.
Next, we will introduce the theoretical framework for the description of HEMP and
the primary topic of this thesis, the exclusive π0 production. Finally, we will give a
short overview of the experimental efforts to measure the exclusive π0 production.
The theoretical summary of this complex topic follows mostly the comprehensive
description given by Markus Diehl [14, 15, 16, 17] and Cédric Mezrag [18]. I also
draw inspiration from the PhD theses of my colleagues Matthias Gorzellik [19],
Brian Ventura [20], and Antoine Vidon [21].

1.1 Formalism of Scattering Experiments
Scattering experiments have played a crucial role in probing the structure of matter
since the famous Rutherford’s experiment, who discovered the atomic nucleus and
put an upper limit on its size more than a hundred years ago. Elastic scattering
experiments continued to provide new findings on the size and shape of the nucleus
and brought evidence of its structure consisting of protons and neutrons. While
this method provided a wealth of information on the radius or shape of nucleons,
it took another fifty years to discover the existence and character of the inner
structure of nucleons, which has been suspected since the first measurement of the
magnetic moment of the proton by O. Stern [22]. Given the substantial discrepancy
between the experimental findings and the theoretical prediction for the magnetic
moment of a spin-1/2 Dirac particle, the idea of the proton as a point-like particle
became indefensible.
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1.1.1 Elastic Scattering
M. N. Rosenbluth was the first to bring the idea that an electron elastically scat-
tered off a proton is influenced by reduced charges and reduced magnetic moments.
Even though he attributed it to a hypothesis of the proton being composed from
a neutron core and a positively charged meson cloud [23], which was proven not to
be the case, R. Hofstadter carried on with the concept. He explained the experi-
mental results [24] of elastic scattering of electrons off protons and α particles with
the Mott cross section modified with a phenomenological form factor F (q). He
related the form factor to the charge distribution ρ (r) of the proton by a Fourier
transformation [25]

dσ
dΩ =

⎛⎝ α2(ℏc)2

4E2 sin4
(︂

θ
2

)︂
⎞⎠(︄1− β2 sin2

(︄
θ

2

)︄)︄
|F (q)|2

:=
(︄

dσ
dΩ

)︄
Rutherford

(︄
1− β2 sin2

(︄
θ

2

)︄)︄
|F (q)|2

:=
(︄

dσ
dΩ

)︄∗
Mott
|F (q)|2 =

(︄
dσ
dΩ

)︄∗
Mott

⃓⃓⃓⃓∫︂
V
ρ(r⃗)eiq⃗r⃗ d3r⃗

⃓⃓⃓⃓
,

(1.1)

where V denotes a volume, the energy of the beam electron is represented by E, α
is the electromagnetic coupling constant, β represents the velocity of the electron
in units of c, ℏ is the Planck constant, the momentum transfer between the incident
and outgoing electron is denoted by q = |q⃗|, and θ is the polar scattering angle of
the electron. The asterisk represents the fact, that the recoil of the target particle
is not considered. The lowest-order diagram of the elastic scattering is shown in
the left part of Fig 2.1. Hofstadter assumed an exponential distribution of the
charge ρ, which was quite well reproduced by the data. However, it was shown
that a single form factor cannot encompass the full complexity of the charge and
magnetic distribution within a proton.

It can be shown from the first principles, that the elastic ep cross section
can be separated into a leptonic and hadronic part. A complete description of the
hadronic part, satisfying the Lorentz invariance, is given by two real functions [26].
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Hence, the elastic ep cross section in modern notation [27] reads

dσ
dΩ =

(︄
dσ
dΩ

)︄∗
Mott

E ′

E

(︃
G2

E

(︂
Q2
)︂

+ τ

ϵ
G2

M

(︂
Q2
)︂)︃

/(1 + τ)

:=
(︄

dσ
dΩ

)︄
Mott

(︃
G2

E

(︂
Q2
)︂

+ τ

ϵ
G2

M

(︂
Q2
)︂)︃

/(1 + τ),
(1.2)

where Q2 = −q2 is the four-momentum transfer to the proton from the electron,
and τ = Q2

4M2 , where M is the proton mass. The GE and GM , given in units of
elementary charge e and µN = eℏ/2M , are the electric and magnetic Sachs form
factors, respectively. The values of the two form factors can be extracted from
the cross section by keeping the Q2 constant and varying the beam energy E,
a method called Rosenbluth separation [23]. Another representation is possible in
terms of the Dirac and Pauli form factors, F1 and F2. Their relation to the Sachs
form factors is given by

F1
(︂
Q2
)︂

= GE (Q2) + τGM (Q2)
1 + τ

,

F2
(︂
Q2
)︂

= GM (Q2)−GE (Q2)
1 + τ

.

(1.3)

Fig. 1.1: Leading-order diagrams of elastic scattering (left) and deep inelastic scat-
tering (right) with an exchange of a virtual photon.

1.1.2 Deep Inelastic Scattering
The DIS has become a standard tool for the investigation of the structure and inner
dynamics of hadrons. The lowest-order diagram of the DIS process is illustrated
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in the right part of the Fig 2.1. The left part of the figure describes the interaction
of a lepton with a target nucleon, elastically scattering and leaving it intact. In
the case of DIS, a constituent quark is struck with an exchanged virtual photon
γ∗, which forces the active quark out from the nucleon and one or more hadrons
X are created in the final state:

l(k) + N(p)→ l(k′) + X (1.4)

Here we denote k and k′ as the momenta of the incident and scattered lepton, and
p as the momentum of the target nucleon. In the following, we will neglect the
lepton mass m≪M , where M denotes the nucleon mass, unless stated otherwise.
In DIS, the following set of relativistic invariant variables is commonly used:

Q2 = −q2 = −(k − k′)2 = 2EE ′(1− cos θ), (1.5)

xB = Q2

2p · q , (1.6)

y = q · p
p · k

= E − E ′

E
, (1.7)

ν = E − E ′, (1.8)
W 2 = (p+ q)2, (1.9)

where Q2 = −q2 denotes the virtual photon mass squared, as previously mentioned
in the [[←↩1.1.1.]], E,E ′ stand for the energy of the incident and scattered lepton,
respectively, in the laboratory frame, and θ denotes the scattering polar angle
of the lepton. xB is the Bjorken variable describing the longitudinal momentum
fraction of a nucleon carried by the active quark, y represents the relative lepton
energy loss, and finally, W denotes the invariant mass of the hadronic final state.
The DIS processes are characterized by W 2 ≫M2.

In DIS, a high virtuality is assumed, M2 ≪ Q2 → ∞ and M ≪ ν → ∞,
approaching infinity in the so-called Bjorken limit. There are three types of DIS
processes. If none of the outgoing hadrons X are detected, it is called an inclusive
DIS process. If a single outgoing hadron is selected from the hadronic system, it
denotes a semi-inclusive DIS process. Finally, the case of an exclusive DIS process
concerns the measurement with all final state particles detected.
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At the leading order of perturbation theory, the DIS cross section reads [28]:

dσ = 1
4k · p

e4
em

Q4 LµνW
µν2π d3k′

(2π)32E ′ , (1.10)

where Lµν is the leptonic tensor Lµν = L(S)
µν (k, k′) + iL(A)

µν (k, sL; k′), and Wµν is
the hadronic tensor Wµν = W (S)

µν (q, p) + iW (A)
µν (q, p;S; ).

Introducing dimensionless structure functions F1, F2 and g1, g2

F1
(︂
x,Q2

)︂
≡MW1

(︂
ν,Q2

)︂
,

F2
(︂
x,Q2

)︂
≡ νW2

(︂
ν,Q2

)︂
,

g1
(︂
x,Q2

)︂
≡M2νG1

(︂
ν,Q2

)︂
,

g2
(︂
x,Q2

)︂
≡Mν2G2

(︂
ν,Q2

)︂
,

(1.11)

the DIS cross section reads
d3σ

dxB dy dϕ = 4α2
em

Q2

[︄
y

2F1
(︂
xB, Q

2
)︂

+ 1
2xBy

(︄
1− y − y2γ2

4

)︄
F2
(︂
xB, Q

2
)︂]︄
, (1.12)

where γ = (2xBM)/Q → 0 in the Bjorken limit (v, Q2 → ∞). The structure
functions F1 and F2 were constrained by numerous experiments, covering a wide
range in xB and Q2 for both proton and neutron targets. The results from different
experiments on the proton structure function F p

2 as a function of Q2 and varying
values of xB are shown on the left side of Fig. 1.2.

The polarised part of the DIS cross section is parametrised by the functions g1

and g2. For the longitudinally polarised lepton beam (←) and the nucleon spin
polarised longitudinally with respect to the beam axis (⇒), the cross section reads
as follows [28]

d3σ
←−⇒

dxBj dy dϕ−
d3σ

←−⇐

dxBj dy dϕ = 4α2

Q2

[︄(︄
2− y − y2γ2

2

)︄
g1
(︂
xBj, Q

2
)︂
− yγ2g2

(︂
xBj, Q

2
)︂]︄

(1.13)
And for the nucleon target polarised transversely with respect to the beam

direction, the cross section reads

d3σ
←−
⇑

dxBj dy dϕ −
d3σ

←−
⇓

dxBj dy dϕ = 4α2

Q2

⎡⎣γ
√︄

1− y − y2γ2

4

(︃
y

2g1
(︂
x,Q2

)︂
+ 2g2

(︂
x,Q2

)︂)︃⎤⎦
(1.14)
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1.1.3 Parton Distribution Functions
The Parton Model was developed by Richard Feynman in 1960s [30] as an inter-
pretation of the results from the SLAC experiment of electron-proton scattering at
the energy of 20 GeV. While the results of elastic scattering cross section showed
a strong Q2 dependence of the F2 structure function, in DIS the results exhibited
only a very weak dependence. This was the first hint of existence of point-like par-
ticles present inside a proton, as the Fourier transformation of a constant function
is a δ-function. The point-like partons were soon after identified with quarks (and
anti-quarks) from the quark model [31, 32] and with gluons.

The scattering in the quark-parton model is assumed as being off point-like
partons that appear free in the frame of high momentum proton. The cross section
is then given as an incoherent sum of the individual cross sections of point-like
quarks

Fig. 1.2: Evolution of F2 (left) and g1 (right) as a function of xB and Q2. Figures
are taken from [29].
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F1
(︂
xB, Q

2
)︂

= 1
2
∑︂

f

e2
f

(︂
qf (xB) + q̄f (xB)

)︂
,

F2
(︂
xB, Q

2
)︂

= xB

∑︂
f

e2
f

(︂
qf (xB) + q̄f (xB)

)︂
,

(1.15)

where ef is the electrical charge of quark f in units of elementary charge and the
qf (xB) are the number density PDFs for quark f . The second moment of the
number densities in xB variable for flavours u, d, s, and c (and their respective
anti-quarks) is shown in the top band of Fig. 1.3. From the 1.15 one can directly
derive the Callan-Gross relation, valid for parton with spin 1/2 [33]:

2xBF
DIS
1 (xB) = FDIS

2 (xB), (1.16)

For longitudinally polarised nucleon, the helicity distribution ∆qf (xB), repre-
sents the difference of the probabilities that the helicity → of the struck quark f
with a longitudinal momentum fraction xB is parallel or anti-parallel to the spin
of the nucleon ⇒

∆qf (xB) = q
−→⇒
f (xB)− q←−⇒f (xB) (1.17)

The second moment of the helicity in xB for flavours u, d, s, and c (and their
respective anti-quarks) is shown in the bottom band of Fig. 1.3. Thus, in the
analogy to the Eq. 1.17, the number density distribution qf (xB) in a longitudinally
polarised nucleon reads

qf (xB) = q
−→⇒
f (xB) + q

←−⇒
f (xB) (1.18)

And similarly to Eq. 1.15, the polarised structure function is given [33]

g1 (xB) = 1
2
∑︂

f

e2
f

(︂
∆qf (xB) + ∆q̄f (xB)

)︂
, (1.19)

In spin physics, a significant quantity of interest is the first moment of g1 in
xB. In the leading order, it is expressed as [34]∫︂ 1

0
g1
(︂
xB, Q

2
)︂

= 1
12

(︃
a3 + 1

3a8

)︃
+ 1

9a0 (1.20)

where the quantity a3 denotes the isovector charge, a8 is the octet charge, and the
flavour singlet charge is represented by a0. In terms of flavour composition, these
quantities read as follows
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a3 = ∆u−∆d+ ∆ū−∆d̄,
a8 = ∆u+ ∆d− 2∆s+ ∆ū+ ∆d̄− 2∆s̄,
a0 = ∆Σ =

∑︂
f

∆qf + ∆q̄f ,

(1.21)

where the following notation is used

∆qf =
∫︂ 1

0
∆qf (xB) dxB (1.22)

The isovector charge a3 equals to the weak coupling constant | gA

gV
|. The octet

a8 is known from hyperon decay and assumptions of SU(3)f symmetry [34]. The
quantity a0 denotes the total contribution of quarks and anti-quarks to the spin
of the nucleon. For higher orders in QCD-modified quark-parton model, the ∆Σ
becomes Q2-dependent and the Eq. 1.20 is modified by corrections in a higher
order of the coupling constant αs. In the MS renormalisation scheme the singlet
axial charge a0 (Q2) remains identical to the ∆Σ [35], while in the off-shell scheme
the gluon polarisation can also contribute to the a0 [36]

a0
(︂
Q2
)︂

= ∆Σoff − 3αs (Q2)
2π ∆g

(︂
Q2
)︂

(1.23)

The EMC experiment was the first to measure the g1 of proton in 1988 [2].
Using Eqs. 1.20, 1.21 together with the known values of a3 and a8, they constrained
the a0 to be compatible with zero, pointing it to a sizeable negative contribution
of strange quarks ∆s + ∆s̄. That finding lead to the conclusion that in fact only
a small part of the proton spin originates from the quark contribution. While later
experimental efforts brought a slightly larger value of a0 at the order of 0.3 [38],
the principal conclusion of the pioneering EMC measurement remains unchanged.

The findings of EMC experiment set off the proton spin crisis. The naive model
of nucleon spin consisting from the contributions of valence quarks, introduced
by Ellis and Jaffe [1] had to be revised. Jaffe-Manohar sum rule describes the
decomposition of the nucleon spin as [39]

1
2 = 1

2∆Σ + ∆G+ Lq + Lg, (1.24)

where the quantity ∆G denotes the total contribution of gluon spins to the nu-
cleon spin, and Jq and Jg are the total angular momenta of quarks and gluons,
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respectively. It has been shown by various experiments that neither the combi-
nation of ∆Σ + ∆G would be sufficient to complete the nucleon spin. The RHIC
experiment measured the ∆G = 0.2+0.06

−0.07 [3], pointing then to a non-zero proton
spin component created by the angular orbital momenta of partons.

The third distribution ∆Tqf (xB), transversity distribution, is defined for trans-
versely polarised parton and nucleon and represents the difference of the number
density of quarks with spin parallel to the spin of the nucleon from the number
density of quarks with spin anti-parallel

∆Tqf = q↑⇑f (xB)− q↓⇑f (xB) . (1.25)

Transversity distribution is a leading-twist quantity, such as helicity and num-
ber density PDF, thus it might be expected to be of the same order as the he-
licity. However, within the framework of QCD-improved quark-parton model, it
is suppressed in low xB range in the Q2 evolution with respect to helicity. The
transversity is connected with the helicity and the number density by the Soffer’s
inequality [28]

|∆Tqf (xB)| ≤ 1
2 |qf (xB) + ∆qf (xB)|. (1.26)

The transversity distribution was introduced by Ralston and Soper in 1979 [40],
however, it attracted more interest of theorists in 1990s, leading to the emergence
of initial proposals for its measurement. Nonetheless, very little data remains
available to date (e.g. [41]). The main reason is that the transversity is a chiral-
odd quantity (the active quark undergoes a spin-flip in the measured process),
which makes it inaccessible in fully inclusive DIS due to the conservation of helicity
(i.e. chirality) in QCD. To access transversity, two main processes are commonly
used: the Semi-Inclusive DIS (SIDIS), with one hadron in initial and one in final
state, and the Drell-Yan process, with two hadrons in the initial state. Recent
measurements were conducted at COMPASS experiment, JLab or RHIC. The
extraction of the xB∆Tqf for f = uv, dv is shown in Fig. 1.4.

12



Fig. 1.3: The bands represent x times the unpolarised parton distributions f(x)
(where f = uv, dv, ū, d̄, s ≃ s̄, c = c̄, b = b̄, g) obtained from the global NNLO
MSHT20 analysis (top) at scales µ2 = 10 GeV2 (left) and µ2 = 104 GeV2 (right)
with αs(M2

Z) = 0.118. The polarised PDFs are obtained from NLO NNPDFpol1.1
(bottom). Figures are taken from [29].
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Fig. 1.4: The transversity distribution function xB∆Tqf (xB) for f = u, d extrac-
tion in red lines, with uncertainty bands in shaded areas [41] from the combined
SIDIS and e+e− data from COMPASS, HERMES, and Belle at Q2 = 2.41 GeV2.

1.2 Generalised Approaches
Parton distribution functions and form factors, introduced in the previous section,
provided a wealth of information on the one-dimensional image of hadrons in
terms of longitudinal momentum and polarisation carried by the quarks, anti-
quarks and gluons, and their spatial distribution, respectively. However, in order
to have a more comprehensive understanding of hadron structure, a combination
of both approaches is necessary. Separately, PDFs and form factors fail to capture
the hadron structure in the full complexity. One example is the impact of total
angular momenta of partons and their contribution to the total spin of a hadron.
Resolving the spin puzzle mentioned in the previous section requires a solution
that encompasses these aspects. In recent years, it has been demonstrated that
the approach of GPDs may provide the right answer [14].

Due to the uncertainty principle, it’s impossible to simultaneously determine
the spatial position and momentum along the same direction. Nonetheless, there is
a method to describe both information encompassed in one distribution. The most
general description is represented by the parton correlation function. It will be
demonstrated that specific projections can link various other distributions, offering
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different perspectives on the study of hadron properties. We will examine different
types of parton distributions and their interrelationships, starting from the most
general and descending back to PDFs and form factors.

1.2.1 Parton Correlation Function
Although all parton distributions discussed below are defined in a covariant way,
it is convenient to use an infinite momentum frame in the positive z direction.
In this frame, the light-cone coordinates are commonly used to represent a given
four-vector v as

v± = 1√
2
(︂
v0 ± v3

)︂
v =

(︂
v1, v2

)︂
, (1.27)

for a longitudinal part of the vector v±, and the transverse component v.

Fig. 1.5: A scheme of a general quark field operator in a form of a handbag dia-
gram, with proton momenta assigned to the bold lines and active quark momenta
to the upwards and downwards pointing lines. The blue blob marks the inner
structure of the proton.

A two-parton correlation function for quarks in momentum space is defined as
the matrix element of a bi-linear quark field operator between proton states

H(k, P,∆) = (2π)−4
∫︂

d4zeizk

×
⟨︃
p
(︃
P + 1

2∆
)︃⃓⃓⃓⃓

q̄
(︃
−1

2z
)︃
LΓq

(︃1
2z
)︃ ⃓⃓⃓⃓
p
(︃
P − 1

2∆
)︃⟩︃

.
(1.28)

where ⟨p| is the proton state with momentum P = (p− p′) /2 , ∆ = p − p′ is
the momentum transfer to the proton, q (q̄) represents the active quark (anti-
quark) with momentum k and position z, and Γ denotes a Dirac matrix with a
particular spin state and L marks a Wilson line to preserve the gauge-invariance
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of the operator. The schematics of the bilinear quark field operator in a form of
a handbag diagram is shown in Fig. 1.5.

Fig. 1.6: Diagram illustrates relations between different projections of the gen-
eral quark correlation function H (k, P,∆). The double arrows marked with
"FT" denote the Fourier transformation between ∆ and b or between k and
z. Fractions of plus-momentum, commonly called longitudinal momentum frac-
tion, are defined as x = k+/P+ and 2ξ = −∆+/P+. The invariant momen-
tum transfer can be expressed in terms of longitudinal and transverse variables as
∆2 = − (aξ2m2 + ∆2) / (1− ξ2). Figure taken from Ref. [15].

The parton correlation function is not an physical pbservable by itself. As
illustrated in Fig. 1.6, one can perform three different operations, which reduce
the general parton correlation function defined in Eq. 1.28 into measurable observ-
ables. The first represents the forward limit of ∆ = 0, where is no momentum
transfer to the hadron. Such reduction of the function H (k, P,∆) appears in the
inclusive processes evaluated via the optical theorem, such as PDFs or transverse
momentum dependent PDFs (TMD) (as can be seen in Fig. 1.6), where a proba-
bilistic interpretation is possible. It is a convention to choose a frame where P = 0.
Conversely, in the case of non-forward kinematics ∆ ̸= 0 the function appears in
the amplitude of the exclusive processes with target proton momentum P −∆/2
and final state proton momentum P + ∆/2.
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The second operation is the integration of the general correlation function over
k, k−, or k+. It typically leads to physical observables. After integrating over k−

the quark and anti-quark fields are evaluated in a positive momentum direction
at z+ = 0. This allows for a convenient interpretation where the partons are
regarded as quasi-free just before the interaction with the physical probe [15]. The
matrix element in Fig. 1.5 with parton states of positive momenta k+ + ∆+/2 and
k+−∆+/2 is described as an emission and reabsorption of a quark, anti-quark, or
(for ∆+ ̸= 0 only) emission or absorption of a quark-antiquark pair (see Fig. 1.11).
Another feature of the integration over k− is that the partons in this framework
have no longer a definite virtuality, i.e. they are not on their mass shell. It is in
fact convenient for studying the proton structure as on-shell partons are at odds
with the phenomenon of confinement, i.e. unphysical. Distributions originating
after integration over k are called "collinear", as they become insensitive to the
transverse momentum of partons. It is the case for PDFs or GPDs. When one
also integrates over the k+, the resulting distributions become fully independent
from the parton momentum and the product of fields in the matrix element 1.28
becomes a local current. The matrix element is then described by one or several
form factors, dependent on the invariant momentum transfer ∆2 = t.

The third operation is given by Fourier transformation of the transverse com-
ponent. The transverse momentum transfer ∆ can be transformed to the aver-
age transverse spatial position of partons b = ∑︁

i k
+
i bi/

∑︁
i k

+
i , which represents

the radial distance from the centre of plus-momentum of the spectator partons.
Similarly, the average transverse momentum k is the Fourier conjugate of z, the
position difference, where "average" and "difference" refer to the initial and final
state 1.5.

1.2.2 Wigner Distributions
The most general and comprehensive physical observable describing the partonic
structure of hadrons are the Generalised Transverse Momentum Dependent parton
distributions (GTMD), introduced by Lorcé and Pasquini [42]. GTMD is a 5-
dimensional object (2 position and 3 momentum coordinates) defined in the infinite
plus-momentum frame of the hadron, illustrated in Fig. 1.7.

It is convenient to redefine the parameters of the GTMD distribution as
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Fig. 1.7: A handbag diagram of a generalised transverse momentum dependent
parton distribution, with proton plus-momenta assigned to the bold lines and
active quark plus-momenta to the upwards and downwards pointing lines. The
blue blob denotes the GTMD distribution.

x = k+

P+ , ξ = −∆+

2p+ = xB

1 + ∆2

2Q2

2− xB + xB
∆2

Q2

≈ xB

2− xB

, (1.29)

Fig. 1.8: An illustration of
a transverse plane representa-
tion of a Wigner distribution
variables, the transverse spatial
position b, the transverse mo-
mentum k, and the longitudi-
nal momentum xP+.

where ξ is the skewness parameter, correspond-
ing to the longitudinal momentum transfer to
the active quark. It is related to the Bjorken
variable xB for large Q2. Also, an on-shell con-
dition applies to the hadron requiring P∆ = 0
and 4P 2 + ∆2 = 4M2, where M denotes the
hadron mass. These conditions allow to de-
fine GTMDs as a function of (x,k, ξ,∆), or
(x,k, ξ, b) via Fourier transformation. GTMDs
have been studied in theoretical context and it
is unclear, whether they can be accessed in any
physical process. There are 16 independent com-
plex GTMD distributions that encode partonic
structure of hadrons correlating transverse spa-
tial positions, and both longitudinal and trans-
verse momenta of partons. They relate to two
sets of 8 real-valued distributions that decouple
the transverse spatial position of partons b (or ∆
in Fourier transformation) from the transverse
parton momentum k.

GTMDs have a direct connection to the Wigner distributions (in the limit of
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ξ → 0) of the parton-hadron system, which represent a quantum-mechanical ana-
logue of classical phase-space distributions [43]. The Wigner distribution W (p, q),
describing the dependency on the transverse position, the transverse and the lon-
gitudinal momentum of a parton as illustrated in Fig. 1.8, distribution is defined
as

W (q, p) =
∫︂ +∞

−∞
dzeipzψ∗(q − z)ψ(q + z) (1.30)

where p denotes the generalised momentum, q stands for the generalised position,
and ψ (q) is the wave function in the position space. Wigner distribution in the
quantum-mechanical case does not have a probabilistic interpretation as it is off-
diagonal, i.e. encompasses information on the interference, and is therefore not
positive-definite on the quantum scale [42], while in the classical case it becomes
positive-definite and reduces to the phase-space probability density. Neverthe-
less, it is still possible to calculate the expectation value of an operator O (q, p)
formulated by the following convolution with the Wigner distribution

⟨O⟩ =
∫︂

d3q d3p O W (q, p) (1.31)

Moreover, after an integration over one of the variable one can obtain a prob-
ability density of the other variable∫︂

d3p W (q, p) = ρ (q) ,
∫︂

d3q W (q, p) = ρ (p) , (1.32)

which comes from the property of Wigner distribution of being equivalently defined
in the momentum space as in the position space through the Fourier transforma-
tion.

The formalism can be extended within the relativistic framework using quan-
tum field theory. For the following gauge invariant quark field Ψ (x)

Ψ (x) = exp
(︃
−ig

∫︂ ∞
0

dλn · A(λn+ x)
)︃
ψ(x), (1.33)

where n is a constant four-vector, g is the coupling constant, and ψ (x) is a free
quark field, the Wigner operator for a quark field of flavour f is defined

Wf
Γ(q, p) =

∫︂
d4zeipzΨ̄f (q − z)ΓLΨf (q + z), (1.34)

where q is the space-time position of the quark and p denotes its momentum, Γ
and L were defined in Eq. 1.28. The Wigner distribution of quarks within a hadron
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(from here on only a proton is considered) is obtained from the Wigner operator
as follows

Wf
Γ(q, p) =

∫︂ d4∆
(2π)4 .⟨P

′|Wf
Γ(q, z)|P ⟩ (1.35)

The Wigner distribution can be understood as an autocorrelation function of
the wave function Ψ (x) and contain a full correlations between the quark trans-
verse spatial position and three-momentum. Wigner distributions have been in-
tensively studied by theorists in the past decade due to their property that it is
possible to calculate the expectation value of any single-particle physical observ-
able from its phase-space average with the Wigner distribution as a weighting
factor [43]. Among such observables is the quark orbital angular momentum Lq,
which makes the Wigner distributions particularly attractive. The Lq can be cal-
culated from the Wigner distribution of unpolarised quarks within a longitudinally
polarised proton.

1.2.3 Generalised Parton Distributions
The concept of GPDs was introduced by Müller et al. [45], Ji [46], and Radyush-
kin [47] in 1990s. As illustrated in Fig. 1.6 and elaborated in the previous [[←↩1.2.1.]],
GPDs represent three-dimensional projections of GTMDs. Particularly, there give
access to the longitudinal momentum of a parton and its transverse spatial posi-
tion. It implicates that after integration they can be reduced either to form factors
or PDFs (indicated in the Fig. 1.6). They depend on the parton longitudinal mo-
mentum fraction x and longitudinal momentum transfer ξ as defined in Eq. 1.29,
and the Mandelstahm invariant t = (p− p′) = ∆2, the momentum transfer to the
proton. While t is directly experimentally accessible, the longitudinal momentum
fraction x appears convoluted with the function representing the hard scattering
amplitude [15]. A weak Q2 dependence appears through the evolution equations,
either DGLAP or ERBL, depending on the kinematic domain described by the
relation of x and ξ, more details will be given in the following.

The physics sensitive to GPDs is encompassed within exclusive processes, in
which invariant momentum transfer t is much smaller than the hard scale, often
given by the photon virtuality Q2. The most common processes used to access
GPD parametrisation are DVCS, γ∗p → γp and the HEMP, γ∗p → Mp. Using
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the concept of QCD factorisation, the inner structure of the probed proton can be
separated from the hard scattering kernel describing the probe.

1.2.3.1 Factorisation

The factorisation is the key component of studying the proton structure as it en-
ables to disentangle the information on the physical probe, i.e. the hard scattering
amplitude of the probe off an active parton, from the soft part, which describes
the spectator partons distribution within the proton. The hard part is calculable
within perturbative QCD, while the soft part is nonperturbative and is described
by means of parton distributions. The separation of the perturbative and non-
perturbative part happens at the level of scattering amplitudes. The factorisation
formula is defined as the following convolution [15]

A
(︂
ξ,∆2, Q2

)︂
=
∑︂

f

∫︂ 1

−1
dxCf (x, ξ; log(Q/µ))Af

(︂
x, ξ,∆2;µ

)︂
, (1.36)

where Cf represents the hard scattering part, Af denotes the soft part of the he-
licity amplitude, which contains the GPDs, and µ corresponds to the factorisation
scale. The sum runs over all parton flavours f . An example graph of an exclusive
process and its schematic factorisation is shown in Fig. 1.15. Separation is per-
formed in form of a cut-off in terms of the factorisation scale µ. The hard scattering
kernel is characterised by a condition k > µ, and the soft part is described by mo-
menta k < µ. At the leading order in αS the hard-scattering kernels for exclusive
processes are a linear combination of 1/ (ξ − x− iϵ) and 1/ (ξ + x− iϵ) terms. It
leads to a non-trivial convolution for ReA, while the ImA involves A (x, ξ,∆2)
at the points of poles, where x = ±ξ [15]. In higher order of αS logarithms of
Q/µ appear in the hard-scattering kernel Cf . The dependence on the factorisation
scale µ cancels between Cf and Af up to the chosen order in αS, such as in case
of PDFs. The separate dependence of GPDs on x and ξ cannot be directly deter-
mined from the scattering amplitude. It can only be extracted from the evolution
of Af , combined with the dependence of Cf on Q/µ, through the relation of x and
ξ, see Fig. 1.10 for illustration. More details on the relation of x and ξ in the next
[[↪→1.2.3.2.]].

Both hard and the soft parts are expanded by means of operator product ex-
pansion to distinguish dominant and sub-dominant contributions. The amplitude
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of a process is then expanded in a series of non-singular local operators (for more
details, see [48]). While the hard scattering amplitude is perturbatively expanded
in orders of αS, the soft part is decomposed in orders of a so-called "twist". Twist
refers to a classification scheme for operators based on their scaling behaviour
with respect to Q2. Simply put, the twist of an operator determines how fast it
decreases with increasing momentum transfer to the hadron system. A leading
twist (twist-2) corresponds to the dominant term with a high momentum transfer,
while higher twists represent more complicated operators of O (1/Q2)n, with n as
the increasing order. Mathematically, the twist is defined as the dimension of the
local operator minus spin (the spin being the dimension of their representation in
the Lorentz group). The diagram of the HEMP process in Fig. 1.15 shows the
leading twist term.

Fig. 1.9: A schematic diagram illustrating the kinematics of an exclusive process
described by the GPDs in the handbag model.

The most important consequence of the factorisation of a scattering amplitude
is the universality of the parton distributions, i.e. independence on the experimen-
tal process. It implies that it is possible to measure a certain quantity through
one experimental channel and utilise its knowledge to parameterise a another one,
not yet known or not easily accessible, by a different channel. The factorisation
theorem is proven in case of DVCS for both longitudinally and transverse polari-
sation of the virtual photon. However, same does not apply for HEMP, where the
factorisation is proven only for the longitudinal part of the cross section [51][52].
In the case of the transversely polarised γ∗, the collinear factorisation leads to
infrared singularities [53]. Currently there is no QCD framework available to deal
with the infrared sensitive contributions, which means that the theoretical predic-
tions for the transverse part of the HEMP cross section can only be parameterised
from phenomenological approaches. This makes the predictions model dependent.
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One of the models was proposed by Goloskokov and Kroll GK [54] (see Subsec-
tion 1.3.1), where the regularisation of the infrared singularities was performed by
means of using the parton transverse momenta k and the so-called Sudakov term.

Fig. 1.10: The model calculation of the scale evolution of the GPD
Hu (x, ξ, t = 0) [49]. The red line at ξ = 0 corresponds to the unpolarised number
density PDF qu for x > 0 and q̄u for x < 0. Figure taken from Ref. [50].

1.2.3.2 Definition and properties of GPDs

The GPD diagram 1.9 describes the soft part of the scattering amplitude, where the
active quark of longitudinal momentum fraction x+ ξ is selected from the proton
of momentum p, and after the interaction with the virtual photon, described by
the hard scattering kernel, it is reabsorbed with a different momentum fraction
x−ξ into a different transverse position within the proton with altered momentum
p′. Within the light-cone gauge the Wilson line reduces to unity and the parton
correlator 1.28 can be rewritten to the GPD form factor A (x, ξ, t) from the Eq. 1.36
as

Af
Γ(x, ξ, t = −∆2) = 1

2

∫︂ dz−
2π eixP +z−⟨p′,Λ′|ψ̄i

(︃
−z2

)︃
Γψ

(︃
z

2

)︃
|p,Λ⟩|z+=z=0 (1.37)

Different helicity contributions from Γ lead to eight GPDs at twist-2, four
parton helicity-conserving (chiral even) GPDs, Hf , H̃f , Ef , and Ẽ

f , and four
corresponding parton helicity-flip (chiral-odd or “transversity") GPDs: Hf

T , H̃f

T ,
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Ef
T , and Ẽ

f

T . The Figs. 1.12, 1.13 illustrate the definition of all the chiral even
and chiral odd GPDs in terms of parton and proton helicities. The chiral even
GPDs correlate the unpolarised or longitudinally polarised parton with the trans-
verse momentum transfer t to the nucleon. H and E is sometimes referred to as
“unpolarised" (with respect to the spin of the partons, not the target proton), and
H̃ and Ẽ as “polarised" GPDs, as the first group involves the sum over the parton
helicities, and the latter involves a difference between the helicities. The chiral odd
GPDs on the other hand correlate the transversely polarised partons with t. The
DVCS process does not allow the parton helicity flip, and hence is only sensitive
to chiral even GPDs. Conversely, the HEMP process does allow the helicity flip,
which gives access to transversity GPDs.

Fig. 1.11: Three different regions of x± ξ momentum of a parton.

The variable x and ξ both acquire values in the interval [−1, 1], where positive x
describes the distribution of quarks and the negative x corresponds to antiquarks.
By comparing the relation between x and ξ, one gets three different domains
describing different processes, as is illustrated in Fig. 1.11

• −1 ≤ x ≤ ξ ≤ 0: Both momentum fractions x− ξ and x+ ξ are negative. In
this case GPDs describe the emission and re-absorption of an anti-quark. In
this region, the evolution acts in a similar way as the DGLAP evolution of
PDFs (the acronym stands for Dokshitzer, Gribov, Lipatov, Altarelli, Parisi).
For more details on the GPD evolution, see e.g. [14, 18].

• x ∈ [−ξ, ξ]: This domain corresponds to a situation, where a qq̄ pair is
emitted from the proton. In this region, the GPDs evolve under a different
set of equations, named ERBL (Efremov-Radyushkin-Brodsky-Lepage) for
meson production, and the domain is called accordingly, the ERBL domain.
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This region is of particular interest, as it does not have an equivalent in PDF
evolution and it allows to study the mesonic structure of a proton.

• 0 ≤ ξ ≤ x ≤ 1: Both momentum fractions x + ξ and x − ξ are positive,
which corresponds to emission and reabsorbing of a quark. Such as the first
domain, this region is also governed by the DGLAP evolution equations.

Fig. 1.12: Schematic description of chiral even GPDs with respect to the helicity
states of the target and the parton. The arrows indicate the helicity states, and
red arrows mark conserved helicity, while the blue ones indicate the helicity flip.
The chiral even GPDs H and E describe an unpolarised parton, while H̃ and Ẽ

a longitudinally polarised one.

Helicity representation and symmetry properties

To investigate the spin structure of the GPDs it is convenient to represent them
in a form of helicity amplitudes. The Eq. 1.37 can be rewritten in terms of the
helicities of the proton and the partons as [16]

Aq
Λ′λ′,Λλ =

∫︂ dz−
2π eixP +z− ⟨p′,Λ′ |Oq

λ′λ(z)| p,Λ⟩
⃓⃓⃓⃓
⃓
z+=z⊥=0

,

Ag
Λ′λ′,Λλ = 1

P+

∫︂ dz−
2π eixP +z− ⟨p′,Λ′ |Og

λ′λ(z)| p,Λ⟩
⃓⃓⃓⃓
⃓
z+=z⊥=0

.

(1.38)

where the operator Of
λ′λ represents the abbreviation of the quark (gluon) fields and

the corresponding Dirac matrix for a particular helicity state (for precise definition,
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Fig. 1.13: Schematic description of chiral odd GPDs with respect to the helicity
states of the target and the parton. The arrows indicate the helicity states, and
red arrows mark conserved helicity, while the blue ones indicate the helicity flip.
Note that in contrast to the chiral even GPDs, there is a helicity flip of the parton
present as well. The chiral odd GPDs concern only transversely polarised parton,
while polarisation states of the proton can differ.

see [16]). Λ (Λ′) denote the helicity state of the target (recoiled) proton, and λ

(λ′) the helicity of the emitted (reabsorbed) parton. Explicitly, the amplitudes for
the chiral even GPDs can be expressed as a linear combination of GPDs

Af
++,++ =

√︂
1− ξ2

⎛⎝Hf + H̃
f

2 − ξ2

1− ξ2
Ef + Ẽ

f

2

⎞⎠
Af
−+,−+ =

√︂
1− ξ2

⎛⎝Hf − H̃f

2 − ξ2

1− ξ2
Ef − Ẽf

2

⎞⎠
Af

++,−+ = −ϵ
√
t0 − t
2M

Ef − ξẼf

2

Af
−+,++ = ϵ

√
t0 − t
2M

Ef + ξE f̃

2 ,

(1.39)

where the helicities +1
2 and −1

2 are abbreviated by + and − signs. The quantity
−t0 = 4ξ2M2

1−ξ2 represents the minimal value of the momentum transfer to the proton,
and ϵ = sgn (D1), where D1 is the x-component of Dα = P+∆α − ∆+Pα. The
Eqs. 1.39 read exactly the same for f = q, g.
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The amplitudes for chiral odd GPDs for quarks are formulated as follows

Aq
++,+− = ϵ

√
t0 − t
2M

(︄
H̃

q

T + (1− ξ)E
q
T + Ẽ

q

T
2

)︄
,

Aq
−+,−− = ϵ

√
t0 − t
2M

(︄
H̃

q

T + (1 + ξ)E
q
T − Ẽ

q

T
2

)︄
,

Aq
++,−− =

√︂
1− ξ2

(︄
Hq

T + t0 − t
4M2 H̃

q

T −
ξ2

1− ξ2E
q
T + ξ2

1− ξ2 Ẽ
q

T

)︄
,

Aq
−+,+− = −

√︂
1− ξ2 t0 − t

4M2 H̃
q

T.

(1.40)

For gluons, the Eqs. 1.40 receive a multiplying factor ϵ
√

1− ξ2√t0 − t/2M .
The inversion of the Eqs. 1.39 and 1.40 allows to extract the particular GPDs.
The essential asset of GPDs, giving the possibility to access the orbital angular
momenta of partons, is that the mismatch between the initial and final state
helicity has to be compensated by the orbital angular momentum to ensure its
conservation, in cases when t > t0. In the collinear limit t = t0, the matrix
elements where the helicity is not conserved vanish as(︄√

t0 − t
2M

)︄|Λ′−λ′−Λ+λ|

The helicity amplitudes satisfy the following relation

A−Λ′−λ′,−Λ−λ = (−1)Λ′−λ′−Λ+λ (AΛ′λ′,Λλ)∗ , (1.41)

as a consequence of parity invariance.
GPDs themselves satisfy also the time reversal invariance. For F ∈ {H,E, H̃,

Ẽ,HT, ET, H̃T} the following relation holds

F f (x, ξ, t) = F f (x,−ξ, t) , (1.42)

and for Ẽf

T the following applies

Ẽ
f

T (x, ξ, t) = −Ẽf

T (x,−ξ, t) . (1.43)

This implies, that all GPDs except the ẼT are even in ξ. The time reversal
change of sign in ξ reflects the fact that under the time reversal, the initial and
final states are interchanged. The same behaviour applies in the case of complex
conjugates of F and ẼT. Taking both of these constrains leads to the requirement
of all 8 GPDs to be real valued [16].
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Forward limit

In the forward limit the momentum transfer vanishes ξ = t = 0 and x→ xB. The
forward limit in general case was already discussed in [[←↩1.2.1.]]. In case of GPDs,
some of them reduce in the forward limit to PDFs

Hq (xB, 0, 0) = q (xB) , Hg (xB, 0, 0) = xBg (xB) ,
H̃

q (xB, 0, 0) = ∆q (xB) , H̃
g (xB, 0, 0) = xB∆g (xB) ,

Hq
T (xB, 0, 0) = ∆Tq (xB) , Hg

T (xB, 0, 0) = xB∆Tg (xB) .
(1.44)

There are no such counterparts for GPDs E, Ẽ, ET, or ẼT as in DIS the
nucleon spin flip (illustrated in Figs. 1.12 and 1.13) is not allowed.

Sum rules and polynomiality

The polynomiality is a non-trivial property of GPDs and concerns Mellin moments
of GPDs as a polynomial functions of ξ. For GPD Hq the Mellin moment reads∫︂ 1

−1
dxxn−1Hq(x, ξ, t) = h

(n)
0 (t)ξ0 + h

(n)
2 (t)ξ2 + . . .+ h(n)

n (t)ξn. (1.45)

The polynomiality of GPDs is a consequence of the Lorentz invariance of GPDs.
It allows to decompose a given Mellin moment of a particular GPD into a set of
form factors. In particular, the first moments of GPDs H,E, H̃ and Ẽ give the
Dirac form factor F1, the Pauli form factor F2, axial gA, and pseudo-scalar form
factor hA, respectively

∑︂
q

eq

∫︂ 1

−1
dxHq(x, ξ, t) = F1(t),

∑︂
q

eq

∫︂ 1

−1
dxEq(x, ξ, t) = F2(t),

∑︂
q

eq

∫︂ 1

−1
dxH̃

q(x, ξ, t) = gA(t),

∑︂
q

eq

∫︂ 1

−1
dxẼ

q(x, ξ, t) = hA(t).

(1.46)

The second Mellin moment of the sum of GPD H and E is interesting in
particular, as it gives access to the total angular momentum of a quark and gluon
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as [56]
Jq = 1

2 lim
t→0

∫︂ 1

−1
dx x [Hq(x, ξ, t) + Eq(x, ξ, t)] ,

Jg = 1
2 lim

t→0

∫︂ 1

−1
dx [Hg(x, ξ, t) + Eg(x, ξ, t)]

(1.47)

These relations are also known as the "Ji’s sum rule".

Positivity bounds

The positivity bounds are a set of boundary conditions to restrict the values of
GPDs to obey the unitarity of the S-matrix. Positivity bounds emerge from the
positivity of the norm on a Hilbert space of states [57]. There is a hierarchy of
inequalities relating GPDs to PDFs, and it can be extended beyond the forward
limit t = 0 into the DGLAP region, in particular a region, where |ξ| < |x|. The
positivity of the norm emerges from the Cauchy-Schwartz inequality. For a GPD
formally written as a following scalar product

H(x, ξ)|x≥ξ = ⟨Φ1 | Φ2⟩ , (1.48)

then the Cauchy-Schwartz inequality reads

|H(x, ξ)|x≥ξ ≤ ∥ |Φ1⟩ ∥ × ∥ |Φ2⟩ ∥. (1.49)

And the positivity bound for quarks is then defined as

|Hq (x, ξ, t)| ≤
√︂
q (x1) q (x2), (1.50)

where the x1 = x+ξ
1+ξ

and x2 = x−ξ
1−ξ

, and for gluons as

|Hg (x, ξ, t)| ≤
√︂

(1− ξ2)x1x2 g (x1) g (x2). (1.51)

Other inequality binding the GPD Hq and Eq is defined as [59][︄
Hq(x, ξ, t)− ξ2

1− ξ2E
q(x, ξ, t)

]︄2

+
[︄ √

t0 − t
2MN

√
1− ξ2E

q(x, ξ, t)
]︄2

≤ q (x1) q (x2)
1− ξ2 .

(1.52)
Or a weaker but simpler inequality expressed as⃓⃓⃓⃓

⃓Hq(x, ξ, t)− ξ2

1− ξ2E
q(x, ξ, t)

⃓⃓⃓⃓
⃓ ≤

√︄
q (x1) q (x2)

1− ξ2 . (1.53)
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From the Eq. 1.52 following relation can be derived

|Eq(x, ξ, t)| ≤ 2M√
t0 − t

√︂
q (x1) q (x2). (1.54)

And similarly for H̃q and Ẽ
q one has

⃓⃓⃓
H̃

q(x, ξ, t)
⃓⃓⃓
≤
√︄
−t
t0 − t

q (x1) q (x2)
1− ξ2 ,

⃓⃓⃓
Ẽ

q(x, ξ, t)
⃓⃓⃓
≤ 2M
ξ
√
t0 − t

√︂
q (x1) q (x2).

(1.55)

Impact parameter dependent parton distributions

In the forward limit of ξ = 0, using the Fourier transformation a very intuitive
picture of a proton arises. The GPD Hf in this special case represents densities
of partons with a given fraction of the proton longitudinal momentum, x, corre-
lated with their position in the transverse plane with respect to the longitudinal
momentum, b2

q
(︂
x, b2

)︂
=
∫︂ d2∆

4π2 e
−ib·∆Hf

(︂
x, 0, t = −∆2

)︂
, (1.56)

with respect to the centre of the momentum of the nucleon in the transverse
plane R = ∑︁

i xir [60]. The transverse parton position b is often referred to
as the impact parameter. The relation 1.56 is commonly known as the nucleon
tomography [5][60]. It allows to perform a two-dimensional scan of the inner
structure of the nucleon as a function of x for a particular parton flavour, as is
illustrated in Fig. 1.14.
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Fig. 1.14: The nucleon tomography: (a) The Fourier transformation of the GPD
Hf (x, 0, t) to the impact parameter parton distribution qf (x, b) for a fixed longi-
tudinal momentum x describes the distribution of the transverse spatial distance
of partons with the particular x from the centre of momentum R in the transverse
plane with respect to the longitudinal momentum of the nucleon P . (b) The spa-
tial distribution of partons in the transverse plane for different fixed longitudinal
momentum fractions x. Taken from Ref. [61].

1.3 Hard Exclusive Meson Production
The most commonly used process to parameterise GPDs is the DVCS, where
a virtual photon is scattered and a real photon is irradiated γ∗p → γp′. For
more details and results from DVCS measurement from COMPASS experiment,
see Ref. [6]. The scattering amplitude of HEMP process contains an additional
distribution amplitude to describe the final state meson. These are not present in
the DVCS, which makes the HEMP process more difficult to extract the GPDs from
the scattering amplitude. The asset of using the HEMP process to parameterise the
GPDs complementary to the DVCS is the sensitivity to different GPDs. While
DVCS involves the chiral even GPDs H,E, H̃ and Ẽ, the meson production is
most sensitive to the chiral odd GPDs, in particular to a special combination
ĒT = 2H̃T + ET, which is sometimes referred to as an GPD equivalent of the
TMD Boer-Mulders function, and to the GPD HT. Parameterising the chiral odd
GPDs can give access to proton properties, which cannot be gained through the
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Fig. 1.15: A schematic diagram of a hard exclusive meson production lN→ l′N′M
in a handbag model. The incoming (scattered) lepton is denoted l (l’), the target
(recoil) nucleon N (N’), and the final-state meson M. The red dash-dotted line
illustrates the factorisation between the hard scattering kernel and the soft part
described by GPDs.

chiral even GPDs. For example, the first moment of the ĒT can be interpreted as
the proton’s transverse anomalous magnetic moment [62]. And as has been already
outlined above, the HT in the forward limit is reduced to the ∆Tq PDF, which
is related to the tensor charge of the proton [63]. In addition, the vector meson
production also involves chiral even GPDs H and E, and the pseudo-scalar meson
production contains GPDs H̃ and Ẽ in their scattering amplitude. Another asset
of using HEMP process with respect to DVCS is a possibility to separate GPDs
of different flavours due to the various quark contents of the probed mesons. The
exclusive π0 production also represents the main source of background for the
DVCS process, which highlights the importance of this channel in the process of
parameterising the full set of GPDs.
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Fig. 1.16: The laboratory frame of the exclusive meson production and the defini-
tion of the angles: ϕ denoting the angle between the leptonic scattering plane and
hadron production plane, and ϕS representing the angle of the target polarisation.
Adapted from Ref. [61].

The HEMP process can be described in terms of a handbag model as illustrated
in Fig. 1.15. As has been discussed in the [[←↩1.2.3.1.]], the factorisation between the
hard scattering process of a virtual photon off the active parton and the soft part of
the amplitude described by the GPDs has been proven for the case of longitudinally
polarised virtual photons γ∗L, which is not the case of the transversely polarised
virtual photons γ∗T.

The amplitudes for the exclusive meson production can be written in terms of
helicity amplitudes Aλ′Λ′,λΛ as has been already described in [[←↩1.2.3.2.]]

Aλ′Λ′,λγ∗ Λ (x, ξ, t) =
∑︂

λqλq′

∫︂ 1

−1
dxCλ′λq′ ,λγ∗ λq (x, ξ, log(Q/µ))

× AΛ′λq′ ,Λλq(x, ξ, t, µ),
(1.57)

where the sum runs over the unknown spins of the spectacle partons λq (λ′q) before
(or after) the reaction. The quantity C0λq′ ,λγ∗ λq describes the hard reaction γ∗q,
and the AΛ′λq′ ,Λλq represents soft part of the amplitude containing the GPDs as
defined in Eq. 1.39 and 1.40. The dependence of the factorisation scale µ cancels
out between the C and A up to a desired order. When the helicity amplitude is
expanded in the corresponding combination of GPDs, the Eq. 1.57 can be broken
down to a set of equations with similar form but containing GPDs instead the he-
licity amplitude. Thus, a new quantity, a Meson Production Form Factor (MPFF),
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can be defined as

F =
∑︂

λqλq′

∫︂ 1

−1
dxC0λq′ ,λγ∗ λq (x, ξ, log(Q/µ))F (x, ξ, t, µ), (1.58)

where F represents a particular GPD. The MPFFs are analogous to the Compton
form factors, that appear in the DVCS amplitude, and involve a combination of rel-
evant Feynman diagrams of the particular order with a covariant meson spin wave
function [64]. The cross section for the exclusive meson production in general can
be expressed in terms of polarised photo-absoption cross sections or interference
terms σΛΛ

λγ∗ λγ∗ , also called structure functions, which are proportional to a bi-linear
combination of helicity amplitudes [17]

σΛΛ
λγ∗ λγ∗ ∝

∑︂
Λ′

(︂
Aλ′Λ′,λγ∗ Λ

)︂∗
Aλ′Λ′,λγ∗ Λ. (1.59)

Using the relation 1.41 and σji
nm = (σji

mn)∗, and following the derivation used
in [65], one gets the master formula for the exclusive meson production[︄
αem

8π3
y2

1− ε
1− xB

xB

1
Q2

]︄−1 d4σ

dxBdQ2dϕdϕS

= 1
2
(︂
σ++

++ + σ−−++

)︂
+ εσ++

00 − ε cos(2ϕ) Reσ++
+− −

√︂
ε(1 + ε) cosϕRe

(︂
σ++

+0 + σ−−+0

)︂
− Pℓ

√︂
ε(1− ε) sinϕ Im

(︂
σ++

+0 + σ−−+0

)︂
− SL

[︃
ε sin(2ϕ) Im σ++

+− +
√︂
ε(1 + ε) sinϕ Im

(︂
σ++

+0 − σ−−+0

)︂]︃
+ SLPℓ

[︃√
1− ε2 1

2
(︂
σ++

++ − σ−−++

)︂
−
√︂
ε(1− ε) cosϕRe

(︂
σ++

+0 − σ−−+0

)︂]︃
− ST

[︃
sin (ϕ− ϕS) Im

(︂
σ+−

++ + εσ+−
00

)︂
+ ε

2 sin (ϕ+ ϕS) Im σ+−
+−

+ ε

2 sin (3ϕ− ϕS) Im σ−+
+− +

√︂
ε(1 + ε) sinϕS Im σ+−

+0

+
√︂
ε(1 + ε) sin (2ϕ− ϕS) Im σ−+

+0

]︃
+ STPℓ

[︂√
1− ε2 cos (ϕ− ϕS) Reσ+−

++

−
√︂
ε(1− ε) cosϕS Reσ+−

+0 −
√︂
ε(1− ε) cos (2ϕ− ϕS) Reσ−+

+0

]︃
,

(1.60)
where the ε denotes the virtual photon polarisation parameter, which can be in
the Bjorken limit approximated as

ε =
1− y − 1

4y
2γ2

1− y + 1
2y

2 + 1
4y

2γ2 . (1.61)
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1.3.1 Exclusive π0 Cross Section
In the case of the exclusive π0 production, when considering the valence quarks
only, the MPFFs appearing when applying the helicity amplitudes expansion from
Eqs. 1.39 and 1.40 [55] with Eq. 1.57 with only the following flavours contribute

Fπ0 = 1√
2
(︂
euFu − edFd

)︂
= 1√

2

(︃2
3F

u + 1
3F

d
)︃
. (1.62)

The cross section of the exclusive π0 induced by a polarised muon beam in
a reaction µp → µ′p′π0 has been studied at COMPASS experiment in 2012 pilot
run [66] and in the main data taking in 2016/17. The reduced cross section γ∗p→
π

0p′ for an unpolarised target, used in the COMPASS measurement (more details
in the [[↪→2.]]) can be obtained from Eq. 1.60 by isolating the virtual photon flux
Γ (Q2, ν, Eµ) using Hand’s convention [67]

Γ
(︂
Q2, ν, Eµ

)︂
= αem (1− xB)

2πQ2yEµ

[︄
y2
(︄

1−
2m2

µ

Q2

)︄
+ 2

1 +Q2/ν2

(︄
1− y − Q2

4E2
µ

)︄]︄
,

(1.63)
and omitting the terms of Eq. 1.60 depending on the target polarisation as

1
Γ

d4σ

dQ2 dνdt dϕ = 1
2π

[︃1
2
(︂
σ++

++ + σ−−++

)︂
+ εσ++

00 − ε cos(2ϕ) Reσ++
+−

−
√︂
ε(1 + ε) cosϕRe

(︂
σ++

+0 + σ−−+0

)︂
−Pl

√︂
ε(1− ε) sinϕ Im

(︂
σ++

+0 + σ−−+0

)︂]︃
.

(1.64)

The last term of the Eq. 1.64, representing the interference term of amplitudes
of longitudinally and transversely polarised virtual photons, is strongly suppressed
by the factor ε (1− ε), as the virtual photon polarisation parameter ε is close to one
in COMPASS kinematics (for more details, [[↪→4.]]). As the Eq. 1.64 is dependent
on the lepton helicity, when the cross section is averaged over the µ+ and µ−

contributions, the last term cancels out and the averaged γ∗p→ π0p′ cross section
reads

dσγ∗p

dtdϕ = 1
2π

[︄
dσT

dt + ϵ
dσL

dt + ϵ cos(2ϕ)dσTT

dt +
√︂

2ϵ(1 + ϵ) cos(ϕ)dσLT

dt

]︄
, (1.65)

where we relabeled the amplitudes to an abbreviated a common notation σT , σL, σT T ,

and σLT , used in e.g. [17, 68]
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σT = 1
2
(︂
σ++

++ + σ−−++

)︂
,

σL = σ++
00 ,

σTT = −Reσ++
+−,

σLT = − 1√
2

Re
(︂
σ++

+0 + σ−−+0

)︂
,

and integrated over Q2 and ν. The subscript T(L) marks the contribution from
transversely (longitudinally) polarised γ∗, the subscripts TT and LT signify the in-
terference terms between transversely-transversely and longitudinally-transversely
polarised photons.

There are six independent helicity amplitudes Aλ′Λ′,λΛ, which constitute the
structure functions from the exclusive π0 cross section [69], A0+0+ and A0−0+ for
longitudinally polarised virtual photon, and A0−++,A0−−+,A0+++ and A0+−+ for
the transversely polarised γ∗. Here, the helicity of the virtual photon can achieve
values λ = −1, 0, 1, the π0 helicity is λ′ = 0, and Λ (Λ′) mark the target (recoil)
proton helicities, which are naturally denoted “+" for 1/2 and “−" for −1/2. The
structure functions can be written in terms of the aforementioned amplitudes,
neglecting the smallest amplitudes, as follows [69]

dσL

dt = 1
k

[︂
|A0+0+|2 + |A0−0+|2

]︂
,

dσT

dt = 1
2k
[︂
|A0−++|2 + |A0−−+|2 + |A0+++|2 + |A0+−+|2

]︂
≃ 1

2k

[︃
|A0−++|2 + 2

⃓⃓⃓
AN

0+++

⃓⃓⃓2]︃
,

dσTT

dt = −1
k

Re
[︂
A∗0−++A0−−+ +A∗0+++A0+−+

]︂
≃ −1

k

⃓⃓⃓
AN

0+++

⃓⃓⃓2
,

dσLT

dt = − 1√
2k

Re
[︂
A∗0−0+ (A0−++ −A0−−+) + 2A∗0+0+A0+−+

]︂
≃ − 1√

2k
Re

(︂
A∗0−++A0−0+

)︂
,

(1.66)
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where the quantity k is the phase space factor

k =16π
(︂
W 2 −M2

)︂√︂
Λ (W 2,−Q2,M2)

=16πQ2
(︃ 1
xB

− 1
)︃

×
√︂

(W 2 −M2)2 +Q4 + 2W 2Q2 + 2Q2M2

= Q4k′,

(1.67)

and the AN
0Λ′λΛ denotes the so-called natural amplitude [69] AN

0Λ′λΛ = 1
2 [A0Λ′λΛ+

A0Λ′−λΛ] (with respect to the unnatural amplitude, which is a difference of these
amplitudes), which does not change sign upon the change of helicity of the virtual
photon.

In the notation of [54], the helicity amplitudes for the π0 production in terms
of MPFFs, as defined in Eq. 1.58, can be written as

A0+0+ =
√︂

1− ξ2 e0

Q

[︄
H̃ − ξ2

1− ξ2 Ẽ
]︄
,

A0−0+ = −e0

Q

√
−t′

2M ξẼ ,

A0−++ = e0
µπ
Q2

√︂
1− ξ2HT,

AN
0+++ = −e0

µπ
Q2

√
−t′

4M ĒT,

(1.68)

where t′ = t − t0, and µπ = m2
uppi/ (mu +md). Finally, combining the Eqs 1.66

and 1.68 leads to the dependence of the structure function on the MPFFs
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(1.69)
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1.4 Available Experimental Data
The availability of the experimental data on the exclusive π0 production is rather
scarce. This channel was studied in several experiment at Jefferson Laboratory
(JLab) and COMPASS. The complementary channel of exclusive π+ production
was probed at HERMES experiment at DESY in 1997 and 2002-2005, as well as
at JLab.

The HERMES collaboration measured the production of exclusive π+ first in
1997 using a longitudinally polarised hydrogen gaseous target with a positron
beam of E = 27.6 GeV [70]. The target was not equipped with any recoil proton
detector, thus a missing mass method was used to reconstruct the exclusive event.
This measurement brought the first results of an azimuthal single-spin asymmetry
in exclusive π+ electroproduction. Between 2002 and 2005 HERMES conducted
a similar measurement with a transversely polarised target [71]. The result of this
measurement lead to the first estimation of some of the GPDs. Another focus of
the measurement was the extraction of the exclusive π+ electroproduction cross
section using the combined statistics from 1996 to 2005 [72]. The differential γ∗p
cross section as a function of Q2, xB, and −t′ = t0− t from the HERMES exclusive
measurements is shown in Fig. 1.17.

Fig. 1.17: The results of the differential γ∗p cross section of exclusive π+ electro-
production as a function of Q2, xB, and −t′. The black dots represent the data
from the period 1996 to 2005, and the lines denote different theoretical models [72].

The HERMES results helped to constrain the theoretical models. The first at-
tempt to describe the π+ production was performed by Goloskokov and Kroll [68].
They concluded that the dominant part of the cross section in small −t′, coming
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from the γ∗L, originates from the pion pole. This channel consists of an exchange
of a virtual π+ between the virtual photon and the nucleon. The associated am-
plitude, having a (t−mπ) term in the denominator of the propagator, enhances
the longitudinal response.

From the experimental point of view, the exclusive π0 production has the ad-
vantage with respect to the charged pions in the absence of the pion pole in the
amplitude. On the other hand, the detection is more complicated due to the decay
of the neutral pion into two photons. Also the total cross section of this channel
is expected to be much smaller than its charged counterparts. The first mea-
surement of the exclusive π0 production beam-spin asymmetries was performed at
CLAS experiment at JLab Hall B [7]. They used a polarised electron beam of
E = 5.77 GeV and a liquid hydrogen target in the kinematic domain of valence
quarks sector. The experimental setup contained a detection system for the scat-
tered electron, identification of photons from the π0 decay, and a time-of-flight
detector for capturing the recoil proton. Apart from the beam-spin asymmetries,
the exclusive π0 electroproduction cross section was extracted [8, 69]. The main
asset of the CLAS measurement was a very high luminosity, which allowed for
examining the cross section as a function of ϕ in bins of t′, Q2 and xB, and also
performing comprehensive studies in variety of kinematic bins. The structure func-
tions from the exclusive π0 cross section dσU/dt = dσT/dt + εdσL/dt, dσTT/dt,
and dσLT/dt are shown in Fig. 1.18. The results were found to be compatible with
the GK model [54], which incorporated the modifications coming from the investi-
gation of the π+ channel [68]. A different approach was brought by Goldstein and
Liuti (GL) [73, 74]. Their model predicts a different behaviour at small −t. The
data however do not exclude either of the models.

The most recent experimental effort of the CLAS collaboration was measur-
ing the beam spin asymmetry related to the structure function σLT′/σ0, where
σ0 = σT + εσL, on the CLAS12 spectrometer with longitudinally polarised elec-
tron beam of E = 10.6 GeV and unpolarised liquid hydrogen target with complete
simultaneous detection of the final state particles. Their results of the dσLT′/dt
extraction fitted with GK model and Regge-based JML model is shown in Fig. 1.19.

A similar experimental programme to CLAS with a different kinematic coverage
was conducted at JLab Hall A [75]. They measured exclusive processes at small
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Fig. 1.18: A selection from the results of the exclusive π0 production, the ex-
tracted structure functions from the differential cross section as a function of t at
CLAS [69]. Black circles mark dσU/dt = dσT/dt + εdσL/dt, the blue triangles
dσTT/dt, and the red squares represent dσLT/dt. The curves represent the the-
oretical predictions from the GK model [54] (solid), and the GL model [73][74]
(dashed). Note that the unpolarised structure function is strongly positive, the
dσTT/dt is negative, and the dσLT/dt is compatible with zero.

−t′ ranging from 0.01 to 0.206 GeV2 using 5.75 GeV electron beam impinging on
a liquid hydrogen target. The kinematics was selected to xB = 0.37 and two values
of Q2 = 1.9 and Q2 = 2.3 GeV2. The detection of the final state was not complete,
thus the missing mass technique was used.

However the main contribution of the Hall A GPD programme was a later
measurement with varying beam energies, which allowed for the separation of the
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Fig. 1.19: Structure function dσLT′/dt, extracted from the beam spin asymmetries,
as a function of −t. The grey bands represent the systematic error, the black lines
mark the GK model: the solid lines show the default parametrisation, the dashed
lines show the effect of ĒT multiplied by a factor of 0.5, and the dotted lines
show the effect of HT multiplied by the same factor. The red curves represent the
Regge-based JML model [9].
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Fig. 1.20: The results of the exclusive π0 production cross section as a function of
|t| (left) and ϕ (right), averaged over the beam polarities [66]. The inner error
bars represent the statistical errors and the outer error bars denote the quadratic
sum of statistical and systematic uncertainties. The data are compared to two
versions of the GK model predictions [54, 84].
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σL and σT structure functions using the Rosenbluth separation [76]. The results
from this measurement are shown in Fig. 1.21.

The JLab Hall C measured the electroproduction of the exclusive π0 [78] and ex-
clusive π+ [79] as well. Their measurement was however taken close to the ∆ (1232)
resonance, hence the physics of these measurements does not target GPDs.

Another facility, which investigated the exclusive meson production, is the
COMPASS experiment. Studies with longitudinally and transversely polarised
targets were performed on the beam spin asymmetries for channels of exclusive
ρ0 [80, 83] and the exclusive ω [81, 82]. The dedicated GPD programme to measure
the DVCS and HEMP processes on an unpolarised hydrogen target took place in
2012 and in years 2016 and 2017. The 2012 measurement was a 4-weeks-long
pilot run using longitudinally polarised muon beam of both polarities and E =
160 GeV. Among other channels of meson production, the exclusive π0 production
cross section was studied in bins of Q2, ν, |t|, and ϕ in the kinematic domain of
intermediate ⟨xB⟩ = 0.093 [66], which is the first investigation of this exclusive
channel in this kinematic domain. The results of the differential exclusive π0 cross
section as a function of |t| (on the left) and ϕ (on the right), averaged over the
beam polarities, are shown in Fig. 1.20. The results from the 2016 data is presented
in this work. The description of the experimental setup used for the COMPASS
GPD programme is outlined in the following [[↪→2.]], and the extraction of the
differential cross section of the exclusive π0 production as a function of |t| and ϕ

from the 2016 data, together with a detailed comparison with the 2012 results is
elaborated in [[↪→5.]].
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Fig. 1.21: The results of the structure functions from the exclusive π0 production
cross section using the Rosenbluth separation [76] as a function of −t′ from JLab
Hall A for Q2 = 1.5 GeV2 (left column), Q2 = 1.75 GeV2 (centre), and Q2 = 2
GeV2 (right column). The full circles mark the dσT/dt, the open circles represent
the dσL/dt, the triangles show the dσLT/dt, and the squares are dσTT/dt. The full
lines represent the predictions from the GK model [54], and the long-dashed lines
are predictions from the GL model [73, 74], and the short-dashed lines show the
VGG model [77].
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2 COMPASS Experimental Setup
Common Muon and Proton Apparatus for Structure and Spectroscopy (COMPASS)
is a fixed target experiment located at the M2 beamline of the CERN Super Proton
Synchrotron (SPS) accelerator utilising a secondary or tertiary beams from the
T6 production target [85][61]. It accommodates both hadron and lepton beams,
specifically longitudinally polarised muons with natural polarisation of cca 80%.
The apparatus allows for measuring with beam energies ranging from about 60 to
280 GeV for muons and 20 to 350 GeV for hadrons [86]. The intensities reach up
to 108/s hadrons and 4 × 107/s muons. The setup supports measurements with
unpolarised and longitudinally or transversely polarised targets.

The main focus of the experiment is the spin structure of the nucleon, hadron
spectroscopy, and studies of chiral dynamics. COMPASS commenced in 1996 by
joining two competing collaborations, CHEOPS and HMC, which shared simi-
lar requirements for the experimental setup although had a different focus. The
second phase of the experimental programme, COMPASS-II, commenced in 2010
focusing on studying the spin structure of the nucleon using of SIDIS and Drell-
Yan processes, in order to extract TMDs and fragmentation functions, and DVCS
and HEMP for parameterising GPDs.

In the following section we will give a brief description of the apparatus and the
specific setup used for the GPD programme, which took place in a four-weeks-long
pilot run in 2012 and the main two-year measurement in 2016/17.

2.1 Beamline
The muon beam used in the GPD programme is produced as a tertiary beam
from the primary 450 GeV protons extracted from SPS impinging on a beryllium
production target T6, located about 1 km upstream from the COMPASS exper-
imental hall. The muon beam of a chosen polarity is obtained from the decay of
the secondary beam produced on T6. The secondary beam from the T6 consists
mainly of pions and an 3.6% admixture of kaons, which also decay into muons
with branching ratio of 0.6355. The parity violation and the helicity conservation
of the weak decay allow for the muon beam to be naturally polarised.
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Fig. 2.1: A schematic view of the COMPASS spectrometer setup for the 2016/17
measurement [87].

In the laboratory frame the polarisation of the can be determined as [85]

Pµ∓ = ±
m2
π,K +

(︂
1− 2Eπ,K

Eµ

)︂
m2

µ

m2
π,K −m2

µ

.

The factor of merit has been optimised for a polarisation Pµ∓ = (80± 5) %. While
this value could be improved, it would be at the expense of smaller muon fluxes.
The muon beam momentum of 160 GeV has been selected to have the best figure
of merit of polarisation, muon flux and high enough Q2. After passing through
the decay tunnel, the muon beam is injected into a 800 m long tunnel for focusing
and shaping before it arrives in the COMPASS experimental hall.
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The SPS delivers the beam in bunches called spills over a time period of 4.8 s.
The cycle of spills, called supercycle, is distributed between several experiments.
As the yield of the µ+ beam from the T6 target is 2.7× larger than of µ−, different
target thickness is used to produce the respective beams, in order to produce the
yields of muon fluxes as close as possible to minimise pile-up and over-occupancy of
detectors. A 100 mm long Be target is used for the µ+ production with resulting
flux of about 7.6 · 107 muons per spill, and a 500 mm target for the µ− with
the corresponding flux of 6.3 · 107 per spill. This corresponds to approximately
1.4 · 107/s in average.

Fig. 2.2: The Beam Momentum Station [85].

In order to distinguish the exclusive π0 production from the greatly prevalent
DIS processes, a precise measurement of the beam momentum is required. The
beam optics in the M2 beamline allows for a momentum spread of 5% from the
nominal 160 GeV. The measurement of the momentum of each individual muon is
performed by Beam Momentum Station (BMS) 100 m upstream of the target. The
schematic sketch of the BMS is shown in Fig. 2.2. BMS consists of three dipole
magnets (denoted B6) surrounded by six tracking detectors.

Four of those (BM01–BM04) are hodoscope planes performing the momentum
measurement by determining the track curvature in the magnetic field, and the
two remaining are scintillating fiber hodoscopes (BM05–BM06) inserted in between
each hodoscope pair to provide an additional redundancy. The BMS reconstructs
the beam momentum with an uncertainty of 1%, with an efficiency of ≈ 93%.
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2.2 Unpolarised Liquid Hydrogen Target
For the GPD an unpolarised liquid hydrogen (lH) was used. The scheme of the
target is shown in Fig. 2.3. The 2.5 m long and 40 mm wide target was inserted into
the time-of-flight system for detecting the recoiled proton, described in [[↪→2.3.]].
This target configuration was installed for the first time in 2012 for the pilot run.
The target consists of kapton layers, surrounded by super-insulation aluminum
foils. It is inserted into a vacuum cryostat made from carbon fiber, cooling the
liquid hydrogen to the temperature of 18 K at a pressure of 1020 mbar.

There are two main features of the lH target:

• Low material budget: Since in exclusive reactions a particular interest focuses
in small momentum transfers to the proton target, the absorption of the
recoiled proton in the target material has to be reduced to minimum. By
lightening the target material it was possible to measure a recoiled proton
with momentum down to 270 MeV, corresponding to a minimum momentum
transfer |t| = 0.07 GeV2.

• Homogeneous lH density: In order to measure cross sections of exclusive
processes a precise luminosity determination is required. For that purpose
the target density has to be homogeneous with minimal gas phase. This
allows for a precision of the luminosity determination within a few percent.

2.2.1 Target Position
In order to correctly evaluate the luminosity, the precise target position and ef-
fective volume has to determined. In the following, we will briefly describe the
principle of the target position measurement, details can be found in Ref. [21] for
real data (RD) and in Ref. [90] for the MC.

The first step is dividing the target to 27 transverse slices with centres es-
timated by the peak of number of vertices. The vertex resolution is improved
by a requirement of at least 3 charged tracks associated with the vertex (one in-
coming muon and two outgoing charged particles). The kinematics of the data
sample is set to select events with Q2 > 0.1 GeV2 to provide a large statistics.
The method used for the tomography of the target is similar to a Hough Circle
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Fig. 2.3: A schematic view of the lH target used for the GPD programme [88, 89].

Transform1, determining the circle parameters (x, y, R) from the gradient of the
vertex distribution in the target.

The density of the vertices is of course the highest along the beam trajectory
and also in the kapton cell material, which is more dense than the liquid hydrogen.
The position of the kapton cell with the diameter of 4 cm is determined from each
of the vertical slices. The target has a slight tilt along the z-axis (to contain
the gas bubble on upstream part of the target and prevent its spreading), which
in combination with a slight bending of the kapton tube creates an approximate
banana-shape of the target [21]. The illustration of the target tomography in
the transversal and longitudinal direction is given in Fig. 2.4. The upper band
shows the vertex distribution in the transverse plane in the upstream (left side)
and downstream (right side) of the target and the bottom part demonstrates the
longitudinal profile. The target radius cut R = 1.9 cm has been introduced (in
pink circle) to exclude the vertices originating in the kapton cell material. Also, it
is apparent that due to the impossibility to fill the target cell fully with the liquid
hydrogen, a gaseous bubble appeared in the upper-upstream part of the target.
Vertices from this part had to removed from the analysis (y < 1.2 cm).

1The Hough Transform detects straight lines, circles, or ellipses based on the polar transfor-
mation of the coordinates. It is used for the purpose of tomography or shape recognition.
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Fig. 2.4: The upper band shows the two transversal slices (upstream (left) and
downstream (right) part) of the target with 2D distributions of interaction vertices.
The pink circle marks the boundary of the kapton cell of the target, and the crosses
represent the target (pink) and the beam (blue) centre. The bottom row illustrates
the longitudinal distribution of the vertices. The pink lines mark the kapton cell.
One can notice the apparent lack of interaction vertices in the upper-upstream
part of the target cell, due to the presence of gaseous hydrogen. From Ref. [21].

The banana-shape of the target was not implemented in the MC simulation
for 2016. The target has been simulated as a tilted cylinder. The overlap with
the real target amounts to 99.5%. The remaining 0.5% difference is treated with
a simultaneous cut applied to real data and MC, −318.5 < zvtx < −78.5 cm, to
only leave the overlapping part. More details on the investigation of the matter
can be found in Ref. [90].
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2.3 CAMERA Detector
The recoiled proton time-of-flight detector, called COMPASS Apparatus for Mea-
surement of Exclusive ReActions (CAMERA), is placed around the hydrogen tar-
get, as illustrated in Fig. 2.5. It consists of two concentric barrels (ring A and
ring B) of radii 24 cm and 110 cm, respectively. Both rings are composed of 24
scintillators, covering 15◦ in the radial direction around the target. In order to
improve the azimuthal resolution, the ring B is rotated by 7.5◦ with respect to
ring A.

Fig. 2.5: A scheme illustrating dimensions of CAMERA detector and the hydrogen
target, with the arrows indicating the outgoing particles: protons originating from
different parts of the target, and photon arriving in ECAL0, located behind the
target area [103].

The longitudinal (z) position of the hit is determined from the time difference of
the signals in the two Photo-Multiplier Tube (PMT), connected to each scintillator
slab by a long light-guide to minimise the budget material in proximity of the
target.
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Fig. 2.6: The energy loss of the recoiled proton in the ring B of CAMERA as
a function of the proton velocity.

The Time Of Flight (TOF) and Distance Of Flight (DOF) of the recoiled proton
are reconstructed from the coincident hits in both rings. The proton velocity is
then derived from TOF and DOF. The minimal velocity of the recoiled proton is
β ≈ 0.2 (corresponding to proton momentum of 270 MeV). The recoiled proton
is stopped in ring B, up to β ≈ 0.4. The Fig. 2.6 illustrates the characteristic
signal of the proton’s energy loss obtained from ring B as a function of its velocity.
Protons faster then β ≈ 0.4 (corresponding to momentum 460 MeV) cross both
rings and leave the CAMERA volume.

The thickness of both slabs is optimised to introduce a minimal material budget
and provide high enough light yield in the scintillators. The length of scintillator
slabs in ring A is 275 cm and their thickness is 0.4 cm. In case of ring B the
length is 360 cm and the thickness is 5 cm. The scintillating material emits light
at 430 nm. The time resolution of the detector is approximately 350 ps.

The detection of a charged particle in CAMERA relies on four time stamps,
tup
Ai

, tdown
Ai

, tup
Bj

, and tdown
Bj

, two for each scintillator slab Ai, Bj, (i, j) ∈ [0, 23]2,
corresponding to each upstream and downstream PMTs. From these measured
values, the TOF and DOF can be reconstructed. First, the z-position of the hit
in ring A and B has to be calculated using the effective light speed through the
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Fig. 2.7: A schematic 3D view of the CAMERA detector. Taken from [21]. Up-
stream view shown in the left figure, the downstream view on the right.

scintillator material vAi
, vBj

and the CAMERA calibration constants CAi
, CBj

zAi
= 1

2vAi

(︂
tup
Ai
− tdown

Ai

)︂
+ CAi

, zBj
= 1

2vBj

(︂
tup
Bj
− tdown

Bj

)︂
+ CBj

. (2.1)

The DOF D of the particle between the rings is then given as

Di,j =
√︃(︂

RBj
−RAi

)︂2
+
(︂
zBj
− zAi

)︂2
, (2.2)

where the RAi
and RBj

denote the radii of the inner and outer scintillator slab,
respectively, from the target centre. The TOF T of the particle between the rings
can be derived as

T =

(︂
tup
Bj

+ tdown
Bj

)︂
2 −

(︂
tup
Ai

+ tdown
Ai

)︂
2 + Ci,j, (2.3)

adjusted to an additional calibration constant Ci,j, which will be elaborated in the
following Section [[↪→2.3.1.]]. From these quantities, the particle velocity β and its
momentum p can be determined (still assuming c = 1)

β = D

T
(2.4)

p = Mβγ = M
β√

1− β2 . (2.5)
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It should be noted, that the raw momentum reconstructed from CAMERA does
not take into account the energy losses within the target and the material of the
CAMERA scintillators. An additional correction was introduced using the Bethe-
Bloch formula. The details on the energy loss correction are given in Ref. [92].

2.3.1 CAMERA Calibration
In the following subsection, the calibration methods used for the 2016 measure-
ments are briefly outlined. For more detailed information, see Ref. [21, 20].

The CAMERA calibration is performed in four steps: the calibration of the
azimuthal position of each scintillator slab; the calibration of the radial distance
from the target; the calibration of the longitudinal z-position of a hit; and the
calibration of the TOF. For these calibration procedures, four different types of
particles are used:

• Recoiled protons from the exclusive ρ0 muoproduction.

• Recoiled protons from the elastic pion-proton scattering: The advantage of
the pions is a very high rate of elastically scattered protons from the target.
The elastic process allows for an easy prediction of the proton trajectory
from measurement of the incident and scattered pion only. The predicted
trajectory is then compared with the measured hits from the CAMERA.

• Cosmic muons without the presence of the beam or magnetic field.

• δ-rays from the target.

Azimuthal φ Calibration

Each of the 24 scintillator slabs has a nominal central azimuthal position, corrected
by a calibration coefficient,

∀i ∈ [0, 23]

⎧⎨⎩ φnom
Ai

= 120− 360
24 i+ φcalib

Ai

φnom
Bi

= 120− 360
24 i+ 7.5φcalib

Bi

The calibrated azimuthal positions are obtained from the exclusive ρ0 data. They
are computed from the correlation of the signal received from each sector with the
expected position from the spectrometer prediction φspec

[A,B] [20].
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Fig. 2.8: To the left, the radial positions of the ring A slabs are displayed in red,
the effective centre in green. To the right, the radial positions of ring B slabs are
shown in turquoise and the effective centre in light green. The black lines in both
figures denote the nominal positions of the scintillator centres (every 15◦) [20].

Radial Calibration

The nominal radii of the slabs in A and B ring are 25 and 110 cm, respectively.
The data from a geometrical survey suggests that the radii are slightly larger,
rnom

A = 25.7 cm and rnom
B = 111.6 cm, and the axes of both rings are deviated from

the z axis. The azimuthal calibration of CAMERA provides an estimation of the
alignment of the rings based on the deviation from the nominal azimuthal position
of each slab.

From the fit F (φ) = p0 + p1 sin (p2 · φ+ p3) of the azimuthal deviations, the
effective center of a particular ring can be obtained in polar coordinates with
respect to the origin, as shown in Fig. 2.8. The measured deviation of ring A is
δx = −0.373 cm and δy = −2.66 cm, and deviation for ring B δx = −0.405 cm and
δy = 0.279 cm. Given the default size of the ring B, it was decided to neglect the
deviation for this ring in the data analysis and ring B was considered as concentric
around the z-axis [20].
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Longitudinal Calibration

The position of a hit in a CAMERA scintillator along the z-axis is reconstructed
from the difference of the two time stamps from the upstream and downstream
PMTs, as defined in Eq. 2.1. In order to obtain the calibration parameters vA/Bi

and CA/Bi
, the estimation of the longitudinal position of a hit in ring B zBi

is
required. This quantity is extracted from the information from the spectrometer
combined with the kinematic fit (the method of kinematic fit is described in [[↪→4.]])
as follows:

zspec
Bi

= RBi
− rvtx

tan
(︂
θspec

p′

)︂ + zvtx, (2.6)

where rvtx =
√︂
x2

vtx + y2
vtx ·cos (φspec − φvtx) (in which the φvtx = arctan yvtx/xvtx),

and θspec
p′ is the polar angle of recoiled proton obtained from the spectrometer

information. From the Eq. 2.1 and 2.6 one can extract the calibration parameters
vBi

and CBi
. For the prediction of the longitudinal position in ring A zpred

Ai
, an

interpolation between the vertex position and the calibrated ring B position is
performed using:

zpred
Ai

= RAi
− rvtx

RBi
− rvtx

· (zBi
− zvtx) + zvtx. (2.7)

Time-of-flight and Momentum Calibration

To obtain the real TOF and DOF, the calibration constants Ci,j have to be deter-
mined to correlate the time response of the two rings. If we rewrite the Eq. 2.3 to
a more condensed form:

T = T raw
i,j + Ci,j, (2.8)

we can express the calibration constants as

Ci,j = Di,j

βc
−
tup
Bj

+ tdn
Bj

2 +
tup
Ai

+ tdn
Ai

2 = Di,j

β
− T raw

i,j (2.9)

The recoiled proton velocity β, however, depends not only on the initial proton
momentum that for an exclusive process can be obtained from conservation laws,
but also on the unknown energy loss of the low-momentum particle in the target.
In order to determine the proton velocity, two possible tests can be performed.
One uses the cosmic muons and its advantage lies in being independent on any
other measured physics process using the standard muon beam [21].
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The second method utilises the strong correlation between the uncalibrated
TOF T raw

i,j and the DOF Di,j [20], illustrated in Fig. 2.9. It is assumed that the
correlation is caused by the δ-rays from the target traversing through the inner
to the outer CAMERA ring. The proton velocity in Eq. 2.9 is replaced by the
velocity of the δ-electrons βδ. And with the known velocity, one can obtain the
calibration constants Ci,j from the Eq. 2.9 [20].

Fig. 2.9: The uncalibrated time-of-flight distribution T raw as a function of distance-
of-flight D for the scintillator pair (A0, B0). The linear fit is applied to extract
the mean velocity of δ particles [20].

CAMERA in Monte Carlo Simulations

Simulation of the response of all detectors to the passing particles was done using
the TGEANT framework [89], which is based on GEANT4 [112]. The interaction
of each particle with the CAMERA scintillator material is defined by the position,
time and the deposited energy (xMC, yMC, zMC, TMC, dEMC). Light from these ‘hits’
is propagated to the upstream and downstream PMTs. The time stamps are then
obtained from Eq. 2.1 as

tup
[A,B]i = TMC

[A,B]i + zMC − C[A,B]i
v[A,B]i

tdown
[A,B]i = TMC

[A,B]i −
zMC − C[A,B]i

v[A,B]i
,

(2.10)

where the constants C[A,B]i and v[A,B]i are obtained from the calibration of the real
data (RD). Hits within 10 ns range in each PMT are merged together and saved
as one hit, to emulate the PMT dead time. Using the MC time stamps, MC tracks
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in CAMERA are reconstructed in the same fashion as in RD, with the exception
of the TOF calibration, which is set to 0 for MC.

In order to reproduce the experimental resolution, a Gaussian smearing of the
longitudinal position has been included, in a form of a standard deviation of the
longitudinal hit position Eq. 2.1

σ
(︂
z[A,B]

)︂
=

√︃
σ2
(︂
tup
[A,B]i

)︂
+ σ2

(︂
tdown
[A,B]i

)︂
2 · v[A,B]i (2.11)

The longitudinal resolution σ(z[A,B]i) is extracted from the distribution ∆zdata
[A,B] =

z[A,B] − zspec
[A,B] from the RD. Assuming that the upstream and downstream PMTs

have the same resolution, the Eq. 2.12 leads to

σ
(︂
t[A,B]i

)︂
=
√

2
v[A,B]i

· σ
(︂
z[A,B]

)︂
(2.12)

The distributions ∆zdata
[A,B] = z[A,B] are a convolution of the resolutions of the

spectrometer and of the CAMERA. The spectrometer resolution is well reproduced
by the TGEANT MC simulation. The pure CAMERA resolution is then extracted
from

σ2
(︂
z[A,B]

)︂
= σ2

(︂
z[A,B]

)︂data
− σ2

(︂
z[A,B]

)︂MC
, (2.13)

with the assumption that the convolution of CAMERA and spectrometer resolu-
tions is a simple convolution with a Gaussian distribution. The obtained smearing
values are following

σ (zA) = 3.54 cm
σ (zB) = 2.47 cm

(2.14)

2.4 The Spectrometer
The COMPASS spectrometer consists of two stages, the Large Angle Spectrome-
tre (LAS) and the Small Angle Spectrometre (SAS) equipped with bending dipole
magnets, SM1, and SM2, respectively. It has a variety of tracking detectors, elec-
tromagnetic and hadronic calorimeters, and a muon identification. For particle
identification. For particle identification, there are two muon detectors and a Ring
Imaging Cherenkov detector (RICH) detector. The angular acceptance of the spec-
trometer reaches up to 180 mrad.
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2.4.1 Tracking Detectors
The 60 m long spectrometer is equipped with various tracking detectors of various
types, depending on the transverse size of the detector active area and the dis-
tance with respect to the target area. The trackers are divided into three groups:
Very Small Area Trackers (VSAT), Small Area Trackers (SAT), and Large Area
Trackers (LAT). VSATs are positioned close to the beam axis, and possess a very
high rate stability and a high spatial and time resolution, as they are required
to distinguish secondary particles from the beam halo. Among the VSAT be-
long the Scintilating Fibers (SciFi), silicon microstrip trackers (SILICON), Pixel
Gas Electron Multiplier (Pixel-GEM) detectors, and central regions of the Pixel
Micro-Mesh Gaseous Structures (Pixel-MicroMegas). With the increasing radial
distances from the beam axis, the resolution plays decreasingly important role,
while the requirement on the geometric coverage increases. SAT, which are lo-
cated at distances of about 2,5 cm to 40 cm from the beam axis, compromise
between a good resolution and a large coverage. Among these detectors belong
the Gas Electron Multiplier (GEM) and the outer parts of the Pixel-MicroMegas.
LAT have a large spatial coverage allowing for a large acceptance. Among the LAT
belong Multi-Wire Proportional Chamber (MWPC), Drift Chamber (DC) and one
Straw detector. The active area and the spatial and time resolution of all the
VSAT, SAT, and LAT trackers are summarised in Table 2.1. Large number of the
tracking planes along the spectrometer allows for a high reconstruction efficiency,
not particularly sensitive to the performance (or lack there of) of any individual
detector. Details on the principle of operation of each tracker type can be found
in [85].

2.4.2 Particle Identification
In order to determine a particle species associated with the measured momenta
and charged tracks, the spectrometer is geared with the RICH detector, 2 muon
walls, 3 electromagnetic and 2 hadron calorimeters. Neither hadron calorimeters
nor RICH were not used in the presented measurement of exclusive π0 production,
thus they will not be discussed here.
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Group Type A [ cm2] δx[µm] δt[ns]

VSAT
SciFi 3.92 − 12.32 130− 210 0.4

SILICON 5× 7 8− 11 2.5
Pixel-GEM 10× 10 95 9.9

VSAT
SAT

Pixel-MicroMegas pixels on 5× 5
strips on 40× 40

90 9

SAT GEM 31× 31 70 12

LAT
MWPC 178× 90− 120 1600 N/A

DC 180× 127 190− 500 N/A
Straw 280× 323 190 N/A

Tab. 2.1: An summary of the tracking detector technologies used in COMPASS
spectrometer. A denotes the active area of each detector, δx and δt represent the
spatial and time resolution, respectively [85].

Muon walls

The muon detection takes advantage of its long life-time and small cross section
of its interaction with matter. The muon detectors, called Muon Wall (MW), 1
and 2, utilise heavy absorbers to distinguish scarcely-interacting muons from other
charged particles. The MW1 is placed in LAS and consists of two tracking planes
surrounding a 60 m thick iron absorber, Muon Filter 1. The MW2 is located in
SAS and uses tracking stations behind a 2.4 m concrete absorber, Muon Filter 2.
The tracking systems of MW1 and MW2 work on a principle of gaseous wire
detectors in drift tubes.

Electromagnetic Calorimeters

Each stage of the spectrometer is equipped with three electromagnetic calorimeters
(ECAL0, ECAL1, and ECAL2). The ECAL0, placed 3 m downstream from the
target, was introduced for the first time for the 2012 GPD pilot run. It allows
detection of photons large polar angles, as the Fig. 2.10 illustrates. For the 2016/17
data-taking, the aperture of the detector was enlarged, allowing to improve the
coverage in the high xB region. The photons at medium polar angles are captured
by ECAL1, which is located at a distance of 13 m from the target centre. The

59



photons at small polar angles are detected in ECAL2, located in SAS. The ECAL2
was not used in the exclusive π0 measurement, due to the low occupancy of photons
from high-energetic exclusive π0 mesons at very small polar angles.

The construction of the COMPASS electromagnetic calorimeters is mostly
based on lead glass or shashlik modules of different sizes and radiation lengths,
as is depicted in Fig. 2.11. The lead glass functions as the absorption and the
detection material at the same time. The incoming photon is converted into an
electromagnetic shower. The resulting Cherenkov radiation from electrons and
positrons is detected by photomultiplier tubes. The shashlik modules alternate
lead layers with scintillating material. In the lead occurs the photon conversion
into e+e− pairs, which then produce light in the scintillating layer. The radiation
is collected by 16 wavelength-shifting optical fibers and transferred in photomul-
tipliers or micro-pixel avalanche photodiodes. The amount of light collected in a
given module is proportional to the amount of energy deposited in the module. To
obtain the energy, various module, time and energy-dependent calibrations [[↪→3.]]
need to be taken into account.

Fig. 2.10: The scheme demonstrates the angular acceptance of the two calorimeters
used in the exclusive π0 production, ECAL0 and ECAL1. Taken from Ref. [20].
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ECAL Active area Module size Channels Energy res. ∆E
E

ECAL0 102× 102 cm2 39.6× 39.6 mm2 1746 0, 07
√︂

GeV
E
⊕ 0, 02

ECAL1 4× 2, 9 m2 (38)2 − (140)2 mm2 1476 0, 06
√︂

GeV
E
⊕ 0, 02

ECAL2 2, 4× 1, 8 m2 38× 38 mm2 3072 0, 06
√︂

GeV
E
⊕ 0, 02

Tab. 2.2: Properties of the electromagnetic calorimeters at COMPASS.

Fig. 2.11: 2D X − Y projections of the COMPASS electromagnetic calorimeters:
The ECAL0 (left) is exclusively made of shashlik modules. The ECAL1 (centre)
is composed from shashlik modules around the beam hole, surrounded by lead
glass modules, called GAMS3, and the outer part are covered by larger lead glass
modules called Mainz and Olga. The ECAL2 (right) consists of shashlik modules in
the centre, GAMS, and RHGAMS. Figures are generated by the PHAST software
for COMPASS physics analysis [98].
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2.5 The Trigger System
Due to the high intensity of the beam typically used in the COMPASS experimental
programme, a trigger system [93] is necessary to filter interesting physics events.
The trigger system works on a principle of a first level trigger. The scheme of
the layout of triggers throughout the spectrometer is shown in Fig. 2.12. The
information is transferred to the read-out and front-end electronics via the trigger
control system. The latency between the initial muon interaction and the trigger
decision is in the order of 1 µs. No higher level trigger was employed for the
measurements. In this analysis, two main types of trigger were used: the muon
trigger, registering scattered muons, and the random trigger. The scattered muon
detection is based on coincidences between several pairs of scintillating hodoscopes
segmented in vertical or horizontal direction. The coincidence logic is described
by coincidence matrices.

2.5.1 The Muon Trigger
The muon trigger serves for detection of the scattered muon, while rejecting halo
muons by the veto system. It has been originally implemented for DIS measure-
ments allowing for a wide coverage in Q2 and xB. The muon trigger uses two
different methods of scattered muon detection: based on the energy loss, and the
track origin. Both principles are illustrated in Fig. 2.13.

• The energy loss trigger uses the deflection of the muon track in the dipole
field of the spectrometer magnets SM1 and SM2 to determine the energy
loss. It works on a principle of coincidences of vertically oriented slabs in
two hodoscope stations in the Ladder Trigger (LT) system, H4L and H5L.
Both stations are placed behind the muon filters close to the rear end of the
spectrometer, covering small muon scattering angles (or Q2 < 0.5 GeV2)

• The target pointing triggers use coincidences in hodoscope stations with
horizontally oriented slabs, i.e. sensitive along the non-bending direction
in the dipole magnetic field (Z − Y ). The measured points of a track are
extrapolated to the target area, Z = 0, where the intersection with the target
volume is tested. There are three target-pointing trigger systems: MT with
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stations H4M and H5M, the Outer Trigger (OT), with hodoscopes H3O and
H4O, and the LAS Trigger (LAST), equipped with hodoscopes H1 and H2.
This method is used for large scattering angles (Q2 > 0.5 GeV2).

As was already mentioned above, in order to distinguish between the scattered
muon and the beam halo, a veto is implemented upstream of the target area. It
consists of two stations, which can detect particles distant from the beam axis and
tag them in an anti-coincidence with the rest of the trigger system. The downside
of using a veto is the dead time it introduces for the measurement. The knowledge
of the veto dead time is essential to precisely determine the effective beam flux.

Fig. 2.12: Scheme of the trigger layout within the COMPASS spectrometer [94].

2.5.2 The Random Trigger
The Random Trigger (RT) is generated by β+ decay of a 22

11Na source. The positron
annihilates with an electron, creating two 511 keV photons, which are detected in
coincidence by two scintillators surrounding the source. It is located in a separate
facility far from the spectrometer to avoid any correlation with the beam or any
activity in the target. The random trigger is a key ingredient for the calculation
of the beam flux.
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Fig. 2.13: The principle of target pointing (left) and energy loss (right) coincidence
matrices [94].

2.6 Data Acquisition System and Data Recon-
struction

The Data AcQuisition (DAQ) gathers information contains and process approxi-
mately 300000 channels. The scheme of the DAQ flow is shown in Fig. 2.14. The
first layer of the data acquisition consists of the front-end electronics. Its purpose
is digitising the raw analog signals from the detectors and pre-amplification of
pulses, when necessary. There are three types of front-ends, depending on the de-
tector: Combination of a discriminator with a Time-to-Digital Converter (TDC)
converters for recording time stamps. Analog-to-digital (ADC) converters for sam-
pling and digitising analog pulses. Combination of a discriminator and a scaler to
record hit rates.

The front-ends are synchronised with the DAQ by the Trigger Control System
(TCS). The second stage of the DAQ is the read-out. There are different types
of the read-out boards: COMPASS Accumulate, Transfer and Control Hardware
(CATCH) modules, GEM and Silicon Control and Acquisition (GeSiCA), Hot
GeSiCA (HGeSiCa gathering information from calorimeters) modules, and the
Generic Advanced Numerical Device for Analog and Logic Functions (GANDALF)
modules, which read out signals from the CAMERA PMTs. When a signal is sent
by the TCS, the read-out boards are activated to collect data and append them to
the TCS metadata (spill and event number) to comprise the basic data structure
used by the rest of the DAQ, at a global frequency of 10 kHz. The event-by-
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event data blocks from the read-out modules are then transmitted directly to
the multiplexers, or via optical Slink or Trigger Implementation for GANDALF
Electronic Readout (TIGER) modules. Slink and TIGER modules reduce the
number of inputs and combine them to a larger data unit. The Field Programmable
Gate Array (FPGA) multiplexers further process up to 15 links and reduce them
to one output, which is then transferred to the event-building switch. The TIGER
module, in particular, is used to process data from the GANDALF front-ends.
The TIGER module is capable of processing up to 18 GANDALF front-ends (only
12 were used to gather data from all the 96 channels from CAMERA PMTs).
The output from TIGER is then transmitted to multiplexers through optical Slink
fibre.

The typical event size is 45 kB. The data in chunks of a size of 1 GB are sent to
four read-out computers (PCCORE) via spill-buffer cards, which provide further
processing. The data are temporarily stored in PCCORE machines (capacity of
32 TB), about 1% of the data is used for online monitoring. The final step is the
transfer to the permanent CERN storage repository, CERN Advanced STORage
manager (CASTOR). The current DAQ is in use since 2014. Except of the more
efficient hardware solution to the data acquisition, the new DAQ brought an im-
proved stability and excellent up-time performance, which reached 99% during the
data-taking of 2017.

The collected raw data from the detectors have to be processed by a recon-
struction software in order to extract the topology and kinematics of each physical
event. The reconstruction is performed offline by the COMPASS Reconstruction
AnaLysis software (CORAL). CORAL is a C++ based modular framework, used
for real data and simulations, calibrations, and computation of detector efficien-
cies. The first stage of the real data reconstruction is decoding, using the DAQ
data decoding library, while the Monte Carlo data are subjected to digitisation
of the hits in detectors to mimic ADC/TDC responses. It concerns the fact that
a particle crossing a detector typically fires more than one channel creating a
hit cluster. In MC a clusterisation procedure is employed to merge neighbour-
ing hits or detector channels together, as mentioned MC simulation of CAMERA
[[←↩2.3.]]. After decoding of the data and clusterisation of the simulations, both
can be treated in the same manner, leading to the reconstruction of tracks, and
calorimeter and RICH information. The procedure of charged track reconstruction
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utilises the Kalman algorithm [97]. The tracks are combined into a fit of the vertex
within the target area. The Kalman algorithm determines whether a particular hit
belongs to a certain track and interaction vertex. Reconstructed tracks, vertices,
calorimeter clusters, and information on the particle identification, together with
the respective uncertainties, are then saved into reconstructed data file in mini
Data Summary Trees (mDST) format. From this point the data are ready for
physics analysis using the PHysics Analysis Software (PHAST) [98]. PHAST is a
ROOT [99] based framework containing functions to access and analyse informa-
tion from the mDSTs.

Fig. 2.14: A scheme of the COMPASS DAQ framework [96].

The reconstruction of CAMERA data is not performed by CORAL. Two ver-
sions of a specific code has been developed by the CEA institute in Saclay (A.
Ferrero, A. Vidon, and B. Ventura), and by the Freiburg group (P. Jörg and M.
Gorzellik). The two tools showed differences in the recoil proton candidates re-
construction up to 3%. After internal discussions, the Saclay code was chosen.
Except of the recoiled protons tracks reconstruction, the Saclay code implements
CAMERA calibrations [[↪→4.]] and corrections for energy losses [20].
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3 ECAL Calibrations
This chapter will present the procedure of the calibration of the electromagnetic
calorimeters ECAL0, ECAL1, and ECAL2, and the issues that were encountered
during the 2016/17 data analysis campaign. The author participated in the in-
vestigation of the problem with LED calibration inefficiency, manifesting itself in
ECAL2 in particular, and in the deployment of the solution and storing the data
in the production database.

3.1 Introduction
The purpose of electromagnetic calorimeters in the exclusive reactions programme
was to detect outgoing photons, either a single photon from the DVCS process,
or a pair of photons from the exclusive π0 decay. For the exclusive π0 production
channel, only two of the three COMPASS ECALs were used, ECAL0 and ECAL1.
ECAL2 is located in the SAS region of the spectrometer, and records photons from
events with a large ν, which are very scarce, as is illustrated in [[↪→4.]]. ECAL0
serves to detect low energetic π0 with photons emitted at large angles, and captures
the majority of exclusive π0 events (about 2/3). ECAL1 detects middle-energetic
π

0, however, it encompasses a large part of the experimental acceptance of the
spectrometer [[↪→5.]].

In order to ensure the optimal operation of the electromagnetic calorimeters,
there are two main types of calibration, the time calibration and the energy cali-
bration. Apart from these, any bad cells (i.e. inactive, or ineffective) are identified
and removed during for the reconstruction procedure of the data. The calibrations
are obtained from the data from a time range of the data-taking characterised by
a particular beam charge (µ+ or µ−), called sub-periods, lasting from 3 to 5 days.
They are applied during in the next iterations of reconstruction. The sample of
events is limited by the requirements of the virtual photon momentum Q2 > 0.8
(GeV/c)2 and cluster energy lower threshold Eγ > 1 GeV.
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3.2 Time Calibration
In order to detect a noisy or defective channel in the calorimeters and synchronise
the cell time with the time information from triggers, a time (T0) calibration is
performed, T0 being the difference of the cell time and trigger time. The T0
calibration is performed on the total of 6424 cells of all three calorimeters [20].
The cell time is obtained from analog signals from the PMTs attached to each
ECAL cell. The signals are passed through a shaper module to enhance the signal
amplitude, and digitally converted in Sampling analog-to-digital converters. 32
samples are then extracted from the wave front of the signal and used to obtain
the amplitude and time.

Fig. 3.1: Example of different responses of the ECAL cells during the time cali-
bration of ECALs. On the leftmost, a good cell response is shown, with a single
well-defined peak. In the middle, a case of a noisy cell is demonstrated, which
contains no peak, such a cell is excluded from the data reconstruction. On the
rightmost side, a case of a double peak is presented with the second peak fitted
with a green curve. Taken from Ref. [20].

The example plot of the comparison of the trigger time with the cell time is
shown in Fig. 3.1. This figure illustrates a clean response from a cell, while a bad
behaviour, such as noise (nonexistent peak) or other pathological behaviour (such
as a double peak) is demonstrated in Fig. 3.2. When a cell non-responsive (“dead")
or noisy cell is detected, it is removed from the next iteration of reconstruction
procedure, not to bias the overall signal from other cells, and to improve the
efficiency of the clusterisation procedure.
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Fig. 3.2: An example of a comparison of the cell time with trigger time from a
particular cell. This plot shows a good cell response. The red line indicates a fit
with a model function of a Gaussian with a polynomial of the first order [20].

The cells showing other pathological behaviour, such as double peaks, require
a more granular analysis, typically leading to discovering an instability in the
cell response in a given sub-period. Such a discrepancy is removed in the conse-
quent data reconstruction by introducing a correction factor of the peak position
obtained from the time calibration, as illustrated on the right band in Fig. 3.3,
which represents the peak positions in time obtained from the same problematic
cell as shown in Fig. 3.2.

ECAL Timing Cuts

The output of the time calibrations is used as a basis for the quality cut on a cell
timing. The Fig. 3.4 illustrates the cut that is performed on a dependency of
difference of the relative cell time and the trigger time T0, with respect to the
cluster energy. It can be seen, that the T0 peak width changes with the rising
cluster energy. The cut was performed as a ±3σ around the T0 peak. The figure
also illustrates the feature of multiple peaks visible from several calorimeters and
different module types. This figure was taken for the data-taking period P07 of
an early data production, without any time calibration. In the final production
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these problems were resolved by iterative correction from the time calibration. The
origin of the time shift resulting to the multiplication of the T0 peaks remains to
be unknown, however there was no indication of miscalibration [20].

Fig. 3.3: The result of the time calibration of the ECAL0 for a data period (com-
posed of three to four sub-periods with different beam polarisation). The left figure
shows the layout of the ECAL0 cells with the mean relative time. One can notice
a single dead cell in the right-upper part of the calorimeter, and below the region
of cells, where a shift in the mean time occurred within the period. The right band
shows one of the affected cells (X11-Y32) before the applied calibration (upper)
and after (lower). Taken from Ref. [20].

Bad Cells Removal

Due to the low statistics available for the time calibration over a sub-period of data
the algorithm of the identification of bad cells tends to misinterpret noise fluctua-
tions as false peaks. This behaviour needs to be prevented, thus a quality criteria
on the fit result is applied based on the minimum signal-over-background ratio.
In the case of multiple peaks found, the peak with the best signal-to-background
ratio is selected. In the case of a cell with too low statistics accumulated within the
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sub-period, a recovery procedure is employed, where the cluster energy threshold
is lowered to 300 MeV to gain more statistics. There are cases when this behaviour
manifests only during a part of a period. A stability criterion is invoked in such
cases, where the number of good spills from each sub-period has to reach at least
70% successfully fitted spills in a period. In the case of a cell fails to reach this
criterion, it is marked as bad for a given period.

Fig. 3.4: The plots show the relationship between the relative time of the signal
from a calorimeter (ECAL0, ECAL1, or ECAL2) for individual cell type with
respect to the trigger time (on Y-axis), and the cluster energy (on the X-axis).
The dashed lines indicate the timing cut applied at ±3σ from the signal peak.
Taken from Ref. [100].

3.3 Energy Calibration
The energy calibration of the ECALs has three main steps. As will be shown in the
following section, some additional post-production calibrations were performed to
improve the results further.
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Electron Calibration
First step of the ECAL calibration is electron calibration. It is used in the case of
ECAL1 and ECAL2. The calibration procedure is automated, i.e. the calorimeter
is automatically moved horizontally and vertically between two consecutive spills
to expose an individual cell to a 40 GeV electron beam. The total cluster charge,
i.e. the sum of the charges of the cell being calibrated and the neighbouring ones
collected on the PMTs, is compared to the deposited beam energy. The calibration
is performed in several iterations to fine tune the voltage amplifiers used in the
ECAL read-out, which allows to keep the ECAL response uniform.

The electron calibration is performed at the beginning of the data-taking each
year. ECAL0 cannot be moved with respect to the beam axis, hence the first
calibration of ECAL0 is performed with a muon beam of a known energy. Unlike
the electron beam the muon beam creates a wide halo, and can illuminate the full
calorimeter aperture. The energy deposit in the 25 cm-long shashlik modules then
represents the reference for setting of HV of the PMT to give the same response
for a given energy.

LED and LASER Calibration
The stability of the electron calibration is monitored periodically during the data-
taking by the next step of the energy calibration, the LED and LASER calibrations.
This calibration takes into account the stability of the PMT gains of all the 6426
cells. The principle of this calibration is illuminating the cells by a light of a known
intensity. The light is generated by LASER diodes in case of ECAL1, and by LED
for ECAL0 and ECAL2. The LASER diodes emit a light pulse with a variable
amplitude, while the LED diode uses a light of a stable amplitude. The light is
delivered to the calorimeter cells by light-guides. The LED and LASER monitoring
signals are recorded on a run-to-run basis and applied in the data reconstruction.
The correction of the measured PMT amplitude from a cell i and a run j is derived
as follows

Ai,j
[GeV] = Ai,j

[ADC] × C
i,j0 × Li,j0

Li,j
, (3.1)

where Ai,j
[GeV] denotes the energy deposited in the cell i during a run j, Ai,j

[ADC] is the
ADC amplitude in the cell i for the run j, Ci,j0 represents the conversion coefficient
from ADC amplitude to energy in GeV for the cell i provided from the electron
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beam calibration during the run j0, Li,j is the ADC amplitude of the ith cell for the
run j, and Li,j0 is the ADC amplitude of the cell i taken during the run j0 within
the electron calibration. It was mentioned above, that the LED amplitude should
be stable, ergo the relation Li,j0/Li,j should be 1. In reality the LED generators
have a tendency to fluctuate in time, as will be shown in Section [[↪→3.4.]].

π
0 Calibration

The last step of the standard ECAL calibration procedure is the π0 calibration.
This calibration uses the peak of the π0 in the invariant mass of photon pairs. It
is performed in three phases [101]:

1. The first is a "1D" π0 calibration, where the π0 reconstructed mass is used for
each calorimeter module, assuming that the π0 originated from the primary
vertex. A 1D histogram with the π0 mass shift with respect to the PDG value
is filled for each of the probed module. The energy correction coefficient for
each module (for each data period) is calculated out of the mean of the π0

peak fitted by a Gaussian+1st order polynomial. The resulting corrections
are applied and the procedure is repeated several times. The Fig. 3.5 shows
the effect of the 1D π0 calibration on the π0 mass shift.

2. The second phase is the time-dependent calibration. It uses 2D histograms
with π0 mass shift as a function of event time in spill. The energy correction
factors are calculated from π0 peak position fitted by a Gaussian +1st order
polynomial in bins on time. These corrections are applied only once. The
first row of the Fig. 3.6 shows the effect of the time-dependent π0 calibrations.

3. The last phase of the π0 calibrations is performed in several iterations like
the first one. The E-dependent calibration is done analogically as the time-
dependent calibration, a 2D histogram with π0 mass shift as a function of
cluster energy is filled for each module and fitted with a Gaussian and 1st

order polynomial in each cluster energy bin. The effect of this calibration is
depicted in the lower row of Fig. 3.6.

In addition to the π0 calibration applied during the reconstruction, there is
post-production run-by-run calibration to take into account the full calorimeter,
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instead of individual cells. In total, the full calibration procedure is summarised
by the following relation, extended from the Eq. 3.1

Ai,j
[GeV] = Ai,j

[ADC] × C
i,j0 × Li,j0

Li,j
× Si,p × Sj, (3.2)

where Si,p is the final online π0 calibration per period p and for calorimeter cell i,
and Sj denotes the offline run-by-run correction. To tune the ECAL performance,
it was not sufficient to mechanically apply all described calibration steps, but
thorough investigation and manual interventions were needed [[↪→3.4.]].

Fig. 3.5: The leftmost part of figure shows the initial mass shift depending on the
π

0 energy (in red) the effect of the LED calibrations (in blue, LED calibrations
are described in the previous subsection), and the effect of the LED and of sev-
eral iterations of the 1D calibration on an example of the analysis of COMPASS
data from 2010. The middle and rightmost parts demonstrate the π0 mass shift
depending on the cell position in the ECAL2 [101].
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Fig. 3.6: An example of two central cells from ECAL2 (2010 COMPASS data). The
upper row shows the effect of the time-dependent π0 calibration before (left side)
and after the application of the calibration. The lower row shows the application
of the E-dependent calibration on the same two cells. From [101].

3.4 2016 ECAL Calibrations Challenges
In the 2016 data preparation campaign there were several problems arising during
the ECAL calibration. In addition to the complication with the time calibration
described above, several problems appeared after application of the LED correction
of the energy calibration as described by Eq. 3.1 (in the so-called t2 data produc-
tion). The Fig. 3.7 illustrates the effect seen in the ECAL21. An inefficiency in the
reconstruction of the γγ invariant mass began to show in the ECAL2, a double-
peak structure appeared in the position of π0 peak. This naturally decreased the
signal-to-background ratio. It was discovered that the problem arose in the cen-
tral part of the calorimeter, where the correction factors were consistently higher
than elsewhere, see the left part of Fig. 3.9. The right part of Fig. 3.9 illustrates
the issue. The LED generators began to exhibit instabilities in gain and caused

1ECAL2 was not used for the analysis presented in this thesis, however it was essential
for the other exclusive reaction channels (DVCS, in particular) and the author participated in
investigation of the issue and deployment of the corrections.
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jumps in the HV amplitude of the affected ECAL2 central modules. As the LED
calibration relies on a stable LED gain, a bias was then introduced in the LED
calibration data. There were two possible solutions:

1. Correction factor calculated for each ECAL2 cell and averaged over a group

of affected cells
∑︁N

i=1
Li,j

Li,j0
N

, where the N represents the number of ECAL2
affected cells (in this case shashlik type cells). The purpose of this treatment
was to equalize the response of the affected shashlik region with the rest of
the calorimeter, where the instabilities did not occur. The Fig. 3.8 shows
the ratio of LED amplitudes from two runs, which differ by the HV jump
occurring in the shashlik part of ECAL2. It can be seen that the whole inner
part of ECAL2 gives higher values.

2. Using backup FEM diodes with a stable intensity and gain, which measure
the intensity of the LED pulses, and serve to correct potential instabilities.
The correction factor would take a form of F m,j

F m,j0 , where Fm,j is the amplitude
of the signal of a FEM diode dedicated to a particular group of cells m (there
are 28 FEM groups for ECAL2) and a run j, and Fm,j0 is the FEM amplitude
for the same group of modules from the electron calibration run.

The original plan was to employ the first solution as a temporary fix and
when the extraction of FEM correction coefficients is finished, use the FEMs. The
Fig. 3.10 shows an example of a ECAL2 central cell (X14-Y24) and the ratio of
distribution of cluster energy E over a distribution of momenta of charged tracks
ptrack plotted before (left) and after (right) the application of LED calibration.
The calculated correction coefficients for several parts of ECAL2 are illustrated in
Fig. 3.11.
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Fig. 3.7: The illustration of the problem with ECAL calibrations. The figures
show the invariant γγ mass from ECAL0 (top), ECAL1 (middle), and ECAL2
(bottom). The P09t1 marks the first test production of the data, without any
LED corrections. After the application of the LED calibration, however, a double-
peak structure appeared in the data from ECAL2. From Ref. [102].

The effect of the application of the corrections is illustrated in Fig. 3.12. One
can notice that the situation improved. There was hope that the updated version
with the FEM corrections would lead to even further improvement. The example
of extracted FEM corrections for the same cell as in Fig. 3.10 in ECAL2 is depicted
in left part of Fig. 3.13. The red distribution represents the situation with the LED
calibration without correction, while the green shows the effect of FEM correction,
which was apparently too large.
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Fig. 3.8: The illustration of the problem with ECAL2 LED amplitude instabilities
of the shashlik modules. The left figure shows the ratio of LED amplitudes from
two runs, where the jump in the gain occurred. The inner part of the calorimeter
shows higher values than the rest. The right figure shows the ratio of distribution
of cluster energy E over a distribution of momenta of charged tracks ptrack per
runs. The bands highlighted by the red circles indicate the runs, where the jump
occurred. From Ref. [100, 102].
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Fig. 3.10: An example of a central ECAL2 cell of shashlik type with the problem-
atic response after application of the LED calibration. On the left there is the ratio
of a distribution of cluster energy E over a distribution of momenta of charged
tracks ptrack plotted before the calibration, and on the right the same distribution
after the calibration and the evolution in one data period.

The Fig. 3.14 shows the effect of the FEM corrections on the reconstructed
π

0 mass (left panel) and the combination of the FEMs and the temporary coef-
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Fig. 3.9: The figure shows a study performed on eight different cells of ECAL2 to
investigate the LED response. The choice of cells can be seen on the left of the
figure. The response from the LEDs associated to the probed cells is shown on
the right. One can notice the apparent abrupt change in the amplitude in four
cells, which all belong to the centre part of the ECAL2 (shaslik modules). From
Ref. [103].

ficients (middle). For comparison, also the original situation with the temporary
coefficients is shown in the right panel.

As the temporary solution already brought performance similar to the past
experience, it was decided not to investigate the FEM corrections further and make
the temporary correction permanent. The final form of the full ECAL calibration
procedure then takes the following shape

Ai,j
[GeV] = Ai,j

[ADC] × C
i,j0 × Li,j0

Li,j
×

⎛⎝∑︁N
i=1

Li,j

Li,j0

N

⎞⎠× Si,p × Sj. (3.3)
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Fig. 3.11: The left panel shows the regions of the centre part of ECAL2 used for
various tests of the corrections. The right panel depicts the correction coefficients,
which were obtained on the run-by-run basis for the particular regions indicated
by the same colours. From [100].

Fig. 3.12: The plots show the effect of the correction coefficients used on affected
modules of ECAL2 in distribtution of π0 (on the left) and cluster E/ptrack (on the
right). On the left plot, the blue curve depicts the situation before the correction
and the red one shows the status after the correction. From Ref. [100].
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Fig. 3.13: The extracted FEM corrections for the cell X14-Y24 in ECAL2 (left).
On the right plot, the effect of the FEM corrections is presented. The red distri-
bution shows the situation with the LED calibration only, while the green shows
the effect of FEM re-calibration. One can notice that the FEMs strongly over-
corrected the amplitudes.

Fig. 3.14: The plots show the effect of the FEM correction coefficients on affected
modules of ECAL2 in distribution of π0 (on the left), the combination of the first
correction method and FEMs (middle) and the first correction method alone, for
comparison (right). The blue curve represents the situation before the correction
and the red one shows the status after the correction on each plot. One can notice
that the first, temporary correction method shows the best improvement. From
Ref. [100].
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Problems with the π0 Calibration

The LED calibrations were not the only problematic step during the tuning of
the ECAL performance. First problem that arose during the 2016 analysis cam-
paign was simple to correct, yet took the longest time to discover. The Fig. 3.15
illustrates the issue on one data period, it concerned a discrepancy discovered be-
tween µ+ and µ− data, which manifested itself in one of the exclusivity variables,
∆φ (top row), which denotes the difference of the recoiled proton azimuthal angle
measured from the CAMERA time-of-flight detector with respect to the indirect
determination of the same variable from the spectrometer based on momentum
conservation. The bottom row of the figure shows a different exclusivity variable,
∆pT, which represents the difference between the directly and indirectly measured
values of the recoiled proton transverse momentum. One can notice from the dis-
tributions that there is an excess of background in the ∆φ, not visible in ∆pT,
where only a decrease of signal is indicated.

Fig. 3.15: The distributions of the exclusivity variable ∆φ for the period P05, µ+

data (left), compared to the µ− data (right), which manifested the problem with
much higher background. This problem appeared for the periods P04, P05, and
P06 of the 2016 statistics.
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Fig. 3.16: An example of the result of the Kolmogorov-Smirnoff test performed on
5 data periods (for the list of periods and their details [[↪→4.]]). A comparison of one
period with the best resolution of the signal and lowest level of background (P08)
has been made with the rest of the periods. The figures show one period from
the first part of data-taking (P05), which was affected by the problem with high
background in the µ− data (top band), and a later period (P09), where this issue
did not appear. The Kolmogorov-Smirnoff test was performed on the distribution
of ∆φ. One can see, that the compatibility of the periods P05-P08 is much lower
that the one of P09-P08. This test however did not reveal any indications on the
root of the problem.

Several methods were tested to tackle this issue and find the cause of this
behaviour, which occurred only in µ− data for the first half of the 2016 data sam-
ple. The excess of the background had not been explained for several months. A
Kolmogorov-Smirnoff test was performed to quantify the difference of the "bad"
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data periods to those, where the problem did not manifest, proving that the dif-
ference was statistically significant and could not occur by chance. The Fig. 3.16
demonstrates the results of the Kolmogorov-Smirnoff test when comparing the
"bad" period P05 with the "good" P08 for µ−. This test however did not provide
any indication for the origin of the problem.

The solution of this issue has been discovered a few months later. Due to an
error in database synchronisation, a wrong π0 ECAL calibration had been used
during the data reconstruction, and surprisingly, the ∆φ distribution was the only
indication of the problem. No clear difference between the µ+ and µ− was seen in
the exclusive π0 distribution. The Fig. 3.17 shows the effect of correctly applied
π

0 calibration in the case of P05 period. One can see the apparent improvement
in the background level and equalising of the statistics with respect to Fig. 3.15.

However, despite the correct π0 calibration, the results were still not satisfac-
tory. It was discovered that the π0 mass remained shifted with respect to the PDG
value. A significant shift was observed in case of the period P07, in particular, see
the left column of Fig. 3.18. An additional post-reconstruction correction was then
introduced for the ECAL cluster energy, which modifies the run-by-run calibration
Sj from the Eq. 3.3. This measure improved the situation, as can be seen from
the middle column of Fig. 3.18. However, a slight issue remained with the case,
where one decay photon of π0 in ECAL0 and the other in ECAL1. A shift of the
z-position of the cluster in ECAL0 by 6 cm was found and corrected. The ECAL
post-reconstruction calibration Sj from 3.3 was then further modified to take this
shift into account.

Fig. 3.17: The exclusivity variable ∆φ for the period P05, µ+ data (left), and µ−

data (right), with correctly applied π0 calibration to the µ− data.
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Fig. 3.18: The fitted peak position of the inclusive π0 mass distribution with both
decay photons measured in ECAL0 (top band) and ECAL1 (bottom band) with
σ of the Gaussian fit of the peak, per each 2016 period. From Ref. [104].
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Fig. 3.19: The fitted inclusive π0 mass peak from configuration of both decay
photons in ECAL0-ECAL0 (left column), ECAL0-ECAL1 (middle column), and
ECAL1-ECAL1 (right column) from period P08 before the shift of z-position of
ECAL0 clusters (top) and after the modification (bottom). From Ref. [105].
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3.5 ECAL Calibration in Monte Carlo Data
In COMPASS MC simulations, particles from event generators are propagated
through a model of the experimental setup in a software GEANT4 [89] (the in-
formation on the used generators can be found in [[↪→4.]]). The interaction of the
produced MC photons with electromagnetic calorimeters creates a problem due to
the complexity of the created particle showers. The simulation of the electromag-
netic showers is often the most time consuming part of the simulation. In order
to increase the precision and lower the computational demands, an adaptive tool
GFlash [106] has been developed by a team from Max Planck Institute of Munich
and integrated into the GEANT4 framework. The principle of this method lies
in parameterisations of the longitudinal and radial shower profiles in a calorime-
ter. It replaces the detailed simulation of the incoming particle directly with the
energy depositions of all particles from the shower development. The details on
the implementation of the algorithm on the COMPASS ECALs can be found in
Ref. [89].

The simulated energy deposit is not explicitly determined by the algorithm and
an additional calibration is required to ensure a match of the incident particle en-
ergy with the simulated energy deposit in an ECAL cluster. This calibration took
into account the amount of energy lost in inactive calorimeter materials like space
between the cells or absorbers. The calibration was performed on a cell-type basis
using a linear parametrisation. It evaluated the difference between the generated
cluster energy and the reconstructed one with the fitting parameter b reflecting
the deviation. The values of b resulted slightly above 1 as a consequence of the
energy-dependent leakage between the calorimeter cells. The last correction c was
performed on the relative residual distribution as a function of the reconstructed
cluster energy. All three parameter are fitted on a distribution ∆E

E
= a+ b

E
+ c

E2 .
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4 Data Preparation and Event Selection
During the 2016 data-taking, ten periods were recorded with approximately two-
week duration. Each period had between 4 to 7 sub-periods with alternating
beam polarity. Prior to the analysis, the data has to undergo a thorough process
of preparatory work, such as detector and trigger calibrations, alignment of the
spectrometer, the determination of the precise position of the target, and the
measurement of the beam flux. The calibration of several equipment vital to
the measurement of exclusive processes has been described in Section [[←↩2.]] and
[[←↩3.]]. This Section will first discuss the procedure to determine the beam flux and
luminosity. Then the procedure of the kinematic fit, used to increase the precision
and resolution of the measurement, will be elaborated. In the second part of this
section, the event selection of the exclusive π0 candidates will be presented. In the
last part, the Monte Carlo (MC) simulations used in this analysis will be described
together with the determination of the background.

4.1 Beam Quality and Luminosity
In order to determine a process cross section, one needs a precise knowledge of the
target properties, the beam quality examination, and the total beam flux. The
beam quality is controlled by initial set of selection criteria:

• Hits in Sci-Fi, Silicon and BMS stations:

– At least 2 hits in Sci-Fis.

– At least 3 hits in Silicons.

– At least 3 hits in the BMS.

The first two conditions provide a sufficiently precise measurement of the
muon beam track, while the third gives the measurement of the beam mo-
mentum.

• Beam momentum around 160 GeV:

– 140 < |p⃗µ| < 180 GeV.
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– σ(|p⃗µ|)/|p⃗µ| < 0.025.

• Muon beam track fully crossing the target volume:
Muon track is required to pass through the full length of the target, as
illustrated in the sketch in Fig. 4.1.

• Time-in-spill ∆tspill cut:
The beam is required to have a stable intensity. The comprehensive study
for the beam spill profile of 2016 data has been performed [108], based on
its findings, the cut on the margins of the beam spills have been introduced
spill-be-spill. The beam intensity of each spill is reconstructed based on the
scaler information from the beam telescope FI02. A profile of a good spill
is illustrated in Fig. 4.2 with respect to the time in spill. First, a threshold
for sufficiently high intensity, and the time-in-spill cut is performed for each
spill to use the data only in the time window with rather constant and high
intensity above the threshold.

• Bad spill cut:
As the beam condition may naturally vary a lot, the procedure for the beam
stability evaluation has to account for any of such instabilities, and if the case
may be, exclude some spills as “bad”. The bad spill list is created for each
data period, containing not only spill with unstable or too low beam rates,
but also additional issues from the side of the detectors, such as unstable rates
detected in ECALs, RICH, or in the physics triggers used for the analysis
[[↪→4.3.]]. In general, the amount of rejected spills per period varies from 6
to 12%, and the majority (> 50%) is represented by empty spills.

When the beam quality is ensured, the flux can be evaluated in order to cal-
culate the luminosity. The integrated luminosity L± for the µ± beams is given

L± = Φeff · l ·NA · ρlH2

Mp
[nb−1], (4.1)

where Φeff denotes the effective beam flux, l stands for the length of the target
l = 240 cm, NA is the Avogadro’s constant, ρlH2 ∼ 0.070146 g/cm3 is the density
of the liquid hydrogen, and Mp is the proton mass.

The method used for the evaluation of the effective beam flux is the random
trigger method, based on the random trigger events [108]. The method is based
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on counting the number of good tracks passing the beam quality requirements
raised above in one spill N tracks

RT for the events, where the random trigger was
fired. These tracks were selected within a time window ∆tmean around the random
trigger time. Due to the randomness of the event emission from the random trigger,
a flat distribution of events is expected around the random trigger time. The time
window was selected to be |∆tmean| = 2 ns, as both flatness of the plateau and
a good statistics are guaranteed.

Fig. 4.1: The sketch illustrating the selection criterion for the extrapolated muon
beam tracks, which are required to cross the full length of the target. The accepted
track is depicted in green, while the rejected ones are in red. The blue area indicates
the gaseous region of the target, excluded by the requirement yvtx < 1.2 cm [21].

The effective flux then can be computed as

Φ±no DAQ corr = N tracks
RT /∆tmean

RTaccepted/∆tspill
, (4.2)

where the RTaccepted is the number of reconstructed random triggers fired in the
duration of a spill ∆tspill. When the DAQ dead time is considered, Eq. 4.2 changes

Φ±DAQ corr = N tracks
RT /∆tmean

RTattempted/∆tspill
, (4.3)

where the number of accepted triggers has to be replaced by the number of at-
tempted triggers RTattempted, accessible from the DAQScaler database. Although
the random trigger is an ideal tool for the beam flux determination due to its
independence on the muon beam, it has the drawback of being disconnected from
the veto system, which prevents distinguishing the beam tracks from the muon
halo.

During the dead time of DAQ, good tracks are still counted in the flux, but they
are excluded from the physics data, because the physics triggers were not fired.
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Fig. 4.2: Example of the profile of a good spill with respect to the time in spill.
The stable intensity plateau is indicated by a blue line. The green and the red
line denote the margins of the flat top region, defining the cut on the time-in-spill.
From Ref. [108].

Thus, the veto dead time has to be considered in the effective flux evaluation

Φ±eff = Φ±no DAQ corr (1− cvdt) , (4.4)

here the final effective flux calculation is not corrected on DAQ dead time, as the
data selection is also affected by the DAQ dead time, and as cross section is the
ratio of events to flux (contained in the luminosity), the DAQ correction cancels
out. The integrated muon flux for both polarities in 2016 data is shown in Fig. 4.3.

Fig. 4.3: The integrated muon flux for both µ+ beam (in red) and µ− (in blue) for
the 2016 periods used in this analysis. From Ref. [20].
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4.2 Kinematic Fit
The advantage of the COMPASS GPD setup equipped with the CAMERA is the
over-constraint of the measurement. This property enables to detect the full topol-
ogy of the event. The method of kinematic fit can be employed in this instance to
improve the precision of measured kinematic quantities within their covariances
using conservation of momentum, energy, and mass, and their geometrical con-
straints, such as a common vertex.

The mathematical framework of the kinematic fit has been developed by P.
Jörg [95] for the case of DVCS process, The thorough description of the principles
and application for the DVCS process can be found ibid. The modification of the
procedure for the exclusive π0 production, developed later by M. Gorzellik [19], is
described in the following subsection.

The main purpose of the kinematic fit is to evaluate how close the event topol-
ogy is to being an exclusive event. In addition, it provides kinematic quantities
optimised, within their covariances, in order to find the best fit to the constraints.
It is not necessary to measure all quantities involved in the kinematic fit in or-
der to over-constrain the measurement. Hence, the set of quantities can be di-
vided between the measured quantities k⃗ and unmeasured ones h⃗. For the process
µp → µ′p′π0 → µ′p′γhγl, where γh and γl denote the photon with higher and
lower energy, the measured quantities are

k⃗ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

k1

·
·
·
k27

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
:=

⎛⎜⎜⎜⎜⎜⎝
p⃗p

p⃗µ

b⊥⃗µ−→0 18

⎞⎟⎟⎟⎟⎟⎠+

⎛⎜⎜⎜⎜⎜⎝
−→0 8

p⃗µ′

b⊥⃗µ′
−→0 13

⎞⎟⎟⎟⎟⎟⎠+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−→0 13

rA

φA

zA

rB

φB

zB

pp′

−→0 6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−→0 20

pγh

b⊥⃗γh

pγl

b⊥⃗γl

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.5)
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And the vector of unmeasured quantities reads

h⃗ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

h1

·
·
·
h9

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
:=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

θp′

φp′

θγh

φγh

θγl

φγl

r⃗vtx

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4.6)

in these equations, the 0⃗N denote vector of zeros in RN; the p⃗µ(p⃗µ′) are the three-
momenta of the beam (scattered) muon; the b⊥⃗µ(b⊥⃗µ′) denote their transverse spa-
tial position; pp′ is the magnitude of the recoiled proton momentum; rA(B), φA(B)

and zA(B) represent the radius, azimuthal angle, and the longitudinal position of
a hit in the inner (outer) CAMERA ring. The measured quantities are combined
with the corresponding unmeasured ones, θp′ and φp′ denoting the polar and az-
imuthal angle of the recoiled proton. The measured pγh

(pγl
) and b⊥,γh

(b⊥,γl
),

representing the magnitudes of the momenta of the higher (lower) energetic pho-
ton, and their transverse positions, are also combined with the unmeasured quan-
tities θγh

(θγl
) and φγh

(φγl
) denoting the polar and azimuthal angles of the higher

(lower) energetic photon; and finally, r⃗vtx is the position of the interaction vertex.
The transverse positions of the photons are taken at the longitudinal positions

of the ECAL, where the corresponding clusters were recorded. The optimised kine-
matic variables are constructed by adding a correction factor ∆k⃗ to the measured
quantities k⃗ as

k⃗fit = k⃗ + ∆k⃗, (4.7)

which is computed from the minimisation of the least squares function

χ2(k⃗) = ∆k⃗
T
Ĉ
−1∆k⃗, (4.8)

here, the Ĉ denotes the covariance matrix correlating the measured quantities
k⃗. The minimisation procedure of χ2(k⃗) uses the Lagrange multiplier method,
satisfying the constraints g(k⃗, h⃗)

L(k⃗, λ⃗) = χ2(k⃗) + 2
N∑︂

i=1
λigi(k⃗, h⃗) (4.9)

The N constraints are following:
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1. Momentum and energy conservation:

gi = pfit
µ,i − pfit

µ′,i − pfit
p′,i − pfit

γh,i − pfit
γl,i

= 0
g4 = Efit

µ +mpc
2 − Efit

µ′ − Efit
p′ − Efit

γh
− Efit

γl
= 0,

(4.10)

for i ∈ [1, 2, 3] denoting the components of a three-vector, and the superscript
"fit" representing the quantities modified by the kinematic fit

2. Common vertex for all tracks (except the target and recoiled pro-
ton):

g5+i = pfit
j,3

(︂
xvtx − xfit

j

)︂
− pfit

j,1

(︂
zvtx − zfit

j

)︂
= 0,

g6+i = pfit
j,3

(︂
yvtx − yfit

j

)︂
− pfit

j,2

(︂
zvtx − zfit

j

)︂
= 0,

(4.11)

for ∀(i, j) ∈ {(0,µ), (2,µ′), (4,γh), (6,γl)} representing the tracks of the ini-
tial and scattered muons and the higher and lower energetic photons, con-
strained to the common vertex r⃗vtx = (xvtx, yvtx, zvtx).

The form of the constraints is based on the parametrisation of a particle
track by a line

r⃗(β) = r⃗′ + βp⃗, (4.12)

where the vector r⃗ denotes the initial point of the track, p⃗ the momentum
of the particle, and β represents a free parameter. The components of the
vector can be expressed

z = z′ + βp3 ⇒ βp3 = z − z′

x = x′ + βp1 ⇒ xp3 = x′p3 + βp1p3,

⇒ xp3 = x′p3 + p1 (z − z′) ,
⇒ p3 (x− x′) + p1 (z − z′) = 0

y = y′ + βp2 ⇒ (...)⇒ p3 (y − y′) + p2 (z − z′) = 0.

(4.13)

3. Constraints for the recoiled proton:

g13+i = pfit
p′,3

(︂
xfit

j − xvtx
)︂
− pp′,1

(︂
zfit

j − zvtx
)︂

= 0,

g14+i = pfit
p′,3

(︂
yfit

j − yvtx
)︂
− pp′,2

(︂
zfit

j − zvtx
)︂

= 0,
(4.14)

for ∀(i, j) ∈ {(0, A), (2, B)} representing measured points in the inner and
outer CAMERA rings. The concept of these extrapolation constraints is sim-
ilar to the vertex constraints, with the difference that the proton originates
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from the vertex rvtx using

r⃗(β) = r⃗vtx + βp⃗. (4.15)

With the similar treatment as in Eq. 4.13 one arrives at the Eq. 4.14.

4. Mass constraint:

g17 =
(︂
Efit

γh
+ Efit

γl

)︂2
−
(︂
p⃗fit
γh

+ p⃗fit
γl

)︂2
−m2

π0 = 0 (4.16)

the invariant gamma-gamma system is constrained by the PDG π0 mass.

The kinematic fit is essential to determine the four-momentum transfer between
the target and recoiled proton, t, as it bridges the transition between the low |t|,
where the CAMERA is more sensitive, tcam = (p− p′)2, and the high |t| region,
where the determination of |t| from the spectrometer is more precise.

k := ν −
√︂
ν2 +Q2 · cos θγ∗π0

tspec = −Q
2 − 2νk

1 + k/mp
,

(4.17)

where the θγ∗π0 denotes the polar angle between the virtual photon and the π0.
The illustration of the improvement of the |t| given by the kinematic fit is shown
in Fig. 4.4. The kinematic fit also considerably improves the signal-to-background
ratio [[↪→4.3.]].

94



Fig. 4.4: The relative resolution for the four-momentum transfer |t| between the
target and recoiled proton, evaluated from the exclusive π0 MC. The quantity σ|t| is
evaluated using the data from kinematic fit, σ|t| = tfit− tmc, data from CAMERA,
σ|t| = tcam − tmc, and the spectrometer, σ|t| = tspec − tmc as a function of tmc [95].

4.3 Exclusive π0 Event Selection
In the following section, the selection of the exclusive π0 candidates from the
process µp→ µ′p′π0 will be outlined, with k, k′, q, q′, p, p′ being the four-momenta
of the incident muon, the scattered muon, the virtual photon, the exclusive π0,
the target proton and the recoil proton, respectively. Here, the Eπ0 and Ep will
represent the energy of the real photon and of the outgoing proton in the laboratory
system, t = (q− q′)2 = (p− p′)2 the four-momentum transfer to the target proton,
and in some instances, we will use t′ = t − tmin, where |tmin| is the minimum
four-momentum transfer.

The event selection can be split into four main steps:

1. Selection of a primary vertex within the proton target, with constraints ap-
plied on the incoming and outgoing muons (see subsection 4.3.1).

2. Selection of a pair of neutral ECAL clusters above an energy threshold spe-
cific for each calorimeter (see subsection 4.3.2) to construct the π0 candidate.

3. Selection of a recoiled proton candidate (see subsection 4.3.3) reconstructed

95



in the CAMERA with securing of the exclusivity of an event candidate1,
using the fact that the measurement of kinematic variables in the COMPASS
spectrometer is over-constrained. At the end, the events with more than one
combination are excluded (see subsection 4.3.4).

4. Application of the kinematic fit (see subsection 4.3.5) in order to:

• Improve the resolution of the signal and reduce the background

• Improve the resolution of the kinematic variables Q2, ν, t, and ϕ, which
are essential to study the dependencies of the π0 cross section.

4.3.1 Selection of µ Candidates and General Cuts
• General cuts:

– Physics triggers considered: MT, LT, or OT only

– Only events inside the stable part of the beam spill are accepted (within
the time-in-spill limits, see subsection 4.1)

– Bad spills rejected

• Vertex selections2:

– A primary vertex within the target volume:

– −318.5 < zvtx < −78.5 cm

– rvtx < 1.9 cm

– yvtx < 1.2 cm

• Incoming muon2: The tracks must pass the beam quality requirements
defined in Section [[←↩4.1.]].

• Scattered muon:
1Made of all possible combinations of a good vertex, a π0 candidate and a proton candidate

in one event
2These selection criteria are used for filtering generated MC events for the acceptance calcu-

lation [[↪→4.4.]]
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– A single outgoing charged track with the same charge as the beam muon
and traversing at least 15 radiation lengths of material.

– Track of the scattered muon has to point to the active hodoscope areas

– The first measured point of the scattered muon must be upstream of
SM1 (Zfirst < 350 cm), and the last measured point be downstream of
SM1 (Zlast > 350 cm)

– Kinematic pre-selection of the measured quantities Q2 > 0.8 GeV2 and
y > 0.01

Fig. 4.5: The distribution of longitudinal vertex position zvtx. The data points
are represented in red circles with statistical errors displayed. The spring green
distribution denotes the HEPGEN++ signal simulation, the light blue area shows
the yield of the inclusive background represented by the LEPTO generator, and
the dark green curve represents the mixture of both MC samples fitted to the data.

Fig. 4.6: The left plot shows the distribution of the momentum magnitude of
the scattered muon. The right plot represents the momentum magnitude of the
recoiled proton. Only the µ+ data are shown as example.
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4.3.2 Selection of π0 Candidate
For the reconstruction of the π0 candidates, only the neutral clusters (i.e. clusters
not associated with a charged track) from ECAL0 and ECAL1 are considered.
The kinematic coverage of the ECAL2 is mostly outside the acceptance for the
exclusive π0 events of the COMPASS spectrometer [[↪→5.]], thus the signal from
this calorimeter is very weak and hidden in the noise.

The selection criteria for finding a π0 candidate read:

• Selecting a pair of neutral clusters from ECAL0 and ECAL1

• All photon clusters have to meet the condition of timing |tcluster − tbeam−
µt| < 2.5σt, where the variables µt and σt are determined for every period
and cell type based on the time distribution of the clusters as a function of
their energy [[←↩3.2.]]

• The lower-energetic cluster has to meet the criterion: Ecll > 0.5 GeV in
ECAL0 and Ecll > 0.63 GeV in ECAL1.

• The higher-energetic cluster has to meet the criterion: Eclh > 2.0 GeV in
ECAL0 and Eclh > 2.5 GeV in ECAL1.

• The invariant mass of the double-photon system Mπ0 ∈ (106.1, 160.5) MeV,
which corresponds to a 2.5 σ around the Gaussian fit of the peak.

4.3.3 Selection of Recoiled Proton Candidate
The recoiled proton candidates are constructed out of a combination of hits in the
inner and outer rings of CAMERA if they fulfill following criteria:

1. The hits belong to mutually correlated azimuthal scintillator sectors.

2. The reconstructed proton velocity is 0.1 < β < 0.95.

3. The longitudinal positions of the hits are contained within the A and B ring
aperture −366.19cm < zA < 8.81 cm and −338.94cm < zB < 71.06 cm.

4. Only events with 0.06 < |tCAMERA| < 0.8 GeV2 are kept.
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4.3.4 Exclusivity Conditions
In COMPASS data one can exploit the fact that the measured kinematics of the
exclusive π0 process are over-constrained, and one can compare the observables
related to the proton detected in CAMERA with values predicted by conservation
laws from the muon and the photon pair detected in the spectrometer. All the
good proton candidates are combined with all the vertices available, and a pair of
ECAL clusters that pass the π0 candidate conditions.

The detection of the proton in the CAMERA allows to perform cuts on the
four-momentum balance to remove any background particles:

M2
undet = M2

X=0 = (k + p− k′ − q′ − p′)2, (4.18)

where k and k′ describe the four-momenta of the initial and final muon; p and
p′ stand for the four-momenta of target and recoiling proton; and q′ the π0 four-
momentum.

Fig. 4.7: The figure illustrates the four kinematic variables that define the phase
space of the differential exclusive π0 cross section. The left top plot shows the
Q2 distribution refined from the kinematic fit. The right top plot represents the
refined ν. The left bottom plot displays the refined azimuthal angle ϕ of the π0

production plane. And the right bottom plot illustrates the momentum transfer t
from the kinematic fit. Only the µ+ data are shown as example.
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Additionally, by matching the predicted four-momentum of the recoiled pro-
ton with the one measured in CAMERA, one can also perform a check on the
exclusivity of en event on the quantities derived from the four-momentum by the
following differences:

• Difference of the measured and predicted azimuthal angle φ:

∆φ = φCAMERA − φpred (4.19)

• Difference of the measured and predicted value of transverse momentum pT :

∆pT = |pCAMERA
T | − |ppred

T | (4.20)

• Difference between the longitudinal position of the hit in the inner CAMERA
barrel zA and the interpolated one using the interaction vertex position and
the longitudinal position of the hit in the outer barrel zB:

∆zA = zA − zpred (4.21)

The exclusivity conditions are then defined as follows:

• |∆φ| < 0.4 rad

• |∆pT| < 0.3 GeV

• |∆zA| < 16 cm

• |M2
X | < 0.3 GeV2

The exclusivity variable distributions for ∆φ, ∆pT, ∆zA and M2
X are presented

in Fig. 4.8, where the comparison between µ+ (in red) and µ− (in blue), normalised
to the same muon flux, is shown for the full statistics. Note the good agreement
between the opposite charge distributions. Such an agreement was not achieved
in 2012 due to very different intensities of µ+ and µ− beams.
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4.3.5 Kinematic Fit and the Last Cuts
The method of kinematic fit adapted for the exclusive π0 production was intro-
duced in subsection 4.2. The kinematic fit improves the measured and the derived
observables and assigns to each event a measure of the fit quality χ2

fit defined in
Eq. 4.8. The χ2

fit corresponds to the probability that the event is exclusive. Hence
large χ2

fit indicates that the event belong to the background with higher probability.
The number of degrees of freedom, defined as the difference of number of constrains
and the number of free parameters, for the particular process is 17− 9 = 8, hence
we can define a reduced χ2

red = χ2
fit/8.

Fig. 4.8: Distributions of the exclusivity variables: ∆φ, ∆pT, ∆zA and the four-
momentum balance M2

X . Each distribution is plotted after applying all the selec-
tion criteria except the cut on the plotted variable itself. The data are represented
in red for µ+ and in blue for µ− normalised to a muon flux of 1012. The selected
range in each variable is indicated by the vertical lines.

Aside from selecting the improved observables arising from the kinematic fit,
two cuts have been performed on the data:
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• Requirement for the successful convergence of the kinematic fit

• The goodness of the fit has to fulfill χ2
red < 7

The kinematic fit requirements reduce the data sample to 66%, which implies
the insufficiency of the exclusivity conditions and importance of the kinematic fit
in filtering the exclusive π0 events. The Fig. 4.11 shows the agreement of the χ2

red

from data with the one obtained from MC, which is satisfactory. Note that at
the χ2

red = 7 the signal, described by the MC simulation HEPGEN++, steeply
decreases motivating the choice of this value for the cut. In the 2012 data it was
not possible to utilise the χ2

red cut, because the agreement of the data and MC for
all the measured observables and their uncertainties was not sufficient and a more
conservative method had to be applied.

Fig. 4.9: The left top plot shows the pT distribution of the recoiled proton mea-
sured by the CAMERA detector and the right top plot depicts the pT predicted
from the spectrometer information. The bottom plots illustrate the same for the
momentum transfer to the proton, t. Only the µ+ data are shown.
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Fig. 4.10: The left top plot shows the energy of the higher-energetic cluster Eclh

from ECAL0, and the right top represents the energy of the lower-energetic cluster
Ecll from ECAL0. The bottom pair of plots shows the corresponding distributions
for ECAL1. Only the µ+ data are shown.

Fig. 4.11: χ2
red distribution of the kinematic fit for µ+ (left) and µ− (right) beam.

Here, results from both polarities are displayed, the µ+ data are represented in
red and the µ− data in blue.

The Figs. 4.13, 4.14, and 4.15 show the pull distributions of the difference of
the input observables before the kinematic fit with the ones improved by kine-
matic fit, divided by the difference of their errors (for µ+ only, for brevity). The
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agreement between the data and MC is reasonable, although there are some de-
viations present, such as in the radial and longitudinal position of recoiled proton
hits in the CAMERA rings, or transversal position of the vertex. The quantity
σ present in each pull distribution represents the corresponding elements of the
covariance matrix Ci,j before and after the kinematic fit σ =

√︂
Ci,j − Cfit

i,j. Most
pulls are comparable with the expected normal distribution, which suggests that
the kinematic fit provides a reasonable correction to the data.

Fig. 4.12: The left top plot shows the azimuthal angle of the hit in CAMERA
ring A, ϕA, and the right top plot depicts its longitudinal position zA. The bottom
pair of plots shows the same distributions from CAMERA ring B. Only the µ+

data are shown.
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Fig. 4.13: Pull distributions for the higher energetic γ (on the left), and on the
lower energetic γ (on the right) of the π0 decay. E denotes the energy, x and y

denote the cluster position at the z-position of the calorimeter, where the cluster
has been measured. σ denotes the difference of the error on the quantity before
and after the fit. Plots show pulls for µ+ beam only.
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Fig. 4.14: Pull distributions for the position in ring A in CAMERA (left), and
in ring B (right). ϕ, r, and z are the polar coordinates of the position where the
proton track hits. The bottom plot displays the pull distribution on the momentum
of the recoiled proton. σ denotes the difference of the error on the quantity before
and after the fit. Plots show pulls for µ+ beam only.
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Fig. 4.15: Pull distributions for the incident µ beam (on left) and outgoing µ

(on right). x and y denote the track position coordinates at the z-position, and
px,y,z stand for momentum coordinates. σ denotes the difference of the error on
the quantity before and after the fit. Plots show pulls for µ+ beam only.
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The last set of cuts is performed on the quantities coming from the kinematic
fit, the ambiguity of the event candidates in one event, and the π0 mass:

• |tfit| ∈ (0.08, 0.64) GeV2, where |t| = 0.08 GeV2 is just above the minimum
transfer value for a proton to reach the outer ring of CAMERA and |t| = 0.64
GeV2 is chosen due to the exponential decline of the exclusive π0 production
cross section. Also, for high |t| the separation of proton and other charged
particles is less effective.

• 0.04 < yfit < 0.9

• 6.4 GeV < νfit < 40 GeV

• 1 GeV2 < Q2
fit < 8 GeV2

• Cut on multiplicity of exclusive π0 candidates: only one combination of ver-
tex, π0 candidate, and recoiled proton candidate

Fig. 4.16: Invariant γγ mass for µ+ (in red) and µ− (in blue) beam. The margins
of the mass cut are indicated by the vertical lines.

The total statistics of all the data periods used from the 2016 data (P04–P09)
is listed in Table 4.1. The kinematic coverage has been increased with respect to
the published results from 2012 [66]. In 2012, only the inner part of ECAL0 was
operational, which reduced the acceptance for the larger azimuthal angles. The
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larger acceptance coverage enabled expanding the kinematic domain in ν and Q2

with respect to 2012 data, which was 8.5 < νfit < 28 GeV and 1 < Q2
fit < 5 GeV2.

Tab. 4.1: Number of exclusive events after all selection criteria in 2016 periods.
period 2016 µ+ µ−

2016-P04 133 117
2016-P05 120 98
2016-P06 127 107
2016-P07 120 141
2016-P08 176 131
2016-P09 116 104

total 792 698

4.4 Monte Carlo Simulations and Background
Determination

It is not possible to separate the inclusive inclusive background from the data
sample by cuts alone. After applying the full set of the selection criteria to the data,
the remaining background has to be evaluated. The description of the background
and the determination of its yield in the data sample will be elaborated in this
section.

The majority of the background consists of the mentioned DIS events, where the
target proton was fragmented and the proton measured in CAMERA and the π0

can be both coming from fragmentation. Such events can be well simulated by the
LEPTO Monte Carlo generator [109], which was chosen as it describes well the DIS
at COMPASS. For simulation of the exclusive π0 signal, the HEPGEN++ generator
was selected, which implements the Goloskokov and Kroll model [110, 111].

The simulation of the interaction of the generated particles with the spectrome-
ter is performed by the TGEANT framework [89], which is based on GEANT4 [112].
In TGEANT, all the involved active and inactive materials and detector dimen-
sions are included. It also provides the simulation of a pile-up and beam halo, noise
in the calorimeters, and the clusterisation procedure in calorimeters [[←↩3.5.]]. The
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output of TGEANT is reconstructed in the same fashion as the RD. There are
minor modifications to the selection chain, the following cuts are not applied for
the MC:

• Rejection of bad spills

• Time-in-spill cut

• Meantime of the beam muon track

• Requirement on the minimum number of hits in BMS.

The list of the used MC samples with their respective number of generated
events is given in Table 4.2, where N∆Ω

µ+(−) denote the number of events generated
in the whole used phase-space for positive (negative) beam polarity.

Tab. 4.2: MC samples used in 2016 analysis with their respective number of
events.

MC period N∆Ω
µ+ × 106 N∆Ω

µ− × 106

HEPGEN++ 2016 P04 1.80 1.79
HEPGEN++ 2016 P05 1.84 1.58
HEPGEN++ 2016 P06 1.48 1.51
HEPGEN++ 2016 P07 1.74 1.85
HEPGEN++ 2016 P08 1.80 2.05
HEPGEN++ 2016 P09 1.78 1.84

LEPTO 2016 P04 19.97 19.35
LEPTO 2016 P05 19.70 19.12
LEPTO 2016 P06 15.92 16.28
LEPTO 2016 P07 18.49 19.41
LEPTO 2016 P08 19.20 21.82
LEPTO 2016 P09 18.58 18.99
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4.4.1 HEPGEN++
The HEPGEN++ is a weighted MC generator. Each point in the phase space of
the exclusive cross section ∆Ωnijk = ∆|t|n∆ϕi∆Q2

j∆νk is weighted by the cross
section evaluated at the particular point using the 2016 version of the improved
Goloskokov-Kroll model [84], which describes the previous COMPASS results from
2012 data [66]. In order to speed up the weight calculation, a lookup table was first
generated using the GK model. Then with the given W , Q2, and t′ = t− tmin of an
event, the values of structure functions, σL and σT, are deduced by interpolation
or extrapolation using the grid points in the lookup table. The kinematic phase
space covered by the lookup table is: 5 < W < 15 GeV, 2 < Q2 < 16 GeV2,
0 < |t′| < 0.75 GeV2. The phase space of the generated HEPGEN++ used in this
analysis is: 1 < ν < 40 GeV, 0.8 < Q2 < 10 GeV2, and 0.001 < |t′| < 0.75 GeV2.
The distribution of the events within the phase space is not uniform. The events
are distributed approximately like the expected number of real data events.

As indicated above, the weight calculated in HEPGEN++ does not involve the
ϕ modulation, since it uses only σT and σL. To account for the ϕ dependence of the
exclusive π0 cross section (see Eq. 1.65), an additional weight factor was applied
using structure function values extracted from the data. Initially, the following
set of values for the ϕ-modulation was applied ϵ = 0.996, σT + ϵσL = 8.1 nb,
σTT = −4.7 nb, and σLT = 1.4 nb, which was coming from the results of the
2012 data analysis [66]. The corresponding weight factor for a particular event
is given as the calculated cross section divided by σT + ϵσL. Note that the σTT

is not exactly the value extracted in [66], as the original value deemed the ϕ-
dependent cross section slightly negative in the region where ϕ approaches ±π.
To prevent this behaviour, a higher value was set. However, in order to further
improve the agreement between the data and the simulations, a modification of the
ϕ-modulation based on the updated results of 2016 data analysis was introduced:
σT + ϵσL = 6.49 nb, σTT = −4.53 nb, and σLT = 0.05 nb, and ϵ = 0.997.

4.4.2 LEPTO
It was observed in the missing energy distribution Emiss that LEPTO contains also
events with exclusive π0 topology (i.e. with a scattered muon, scattered proton
and two photons in the final state). Such events, with proton either recoiling
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from the target, or coming from hadronisation, were rejected. More details on the
different event topologies that can be obtained from LEPTO and their features
can be found in M. Gorzellik’s thesis [19].

After the removal of the mentioned exclusive-like events, LEPTO appears to
describe the data background very well, which can be seen in Fig. 4.18, where
the exclusive variables are displayed for the data and the respective yields of the
signal and background contributions described by HEPGEN++ (in bright green)
and LEPTO (in light blue), respectively.

4.4.3 Separation of the SIDIS Background
In order to determine the fraction of HEPGEN++ and LEPTO needed to describe
the data, we used the method first established to estimate the visible π0 leaking
into DVCS process [113], and then it was modified for selection of exclusive π0,
see Ref. [19]. The procedure is applied for µ+ and µ− separately. The first step
is a normalisation of both MC samples to the data using the integral over a 2.5 σ
region around the peak of π0 mass in the Mγγ spectrum, as is shown in Fig. 4.17,
for µ+ data as an example.

The second step is to scale and sum both MC samples using specific kinematic
distributions so that the best possible description of the data is achieved. For
this purpose, two exclusivity variables were used: ∆φ (in range from −0.4 up
to 0.4 rad) and ∆pT (in range from −0.2 up to 0.2 GeV). Two separate fitting
methods were tried in order to estimate the systematic error of the background
calculation (see the systematics calculation in Section [[↪→5.8.]]).

Both methods use the adapted procedure from the 2012 data analysis [66, 19]
to gain the yield of SIDIS background from LEPTO, denoted rLEPTO, from fitting
the following relation to a binned distribution from data:

f(rLEPTO; yi,L, yi,H) = rLEPTO · yi,L + (1− rLEPTO) · yi,H , (4.22)

where yi,L and yi,H denote the content of ith bin in LEPTO and HEPGEN++
histogram, respectively. The yields of each MC contribution are obtained by per-
forming a fitting procedure, where the combined MC distributions are matched
to the corresponding data distribution. Fitting method used in this thesis is the
TFractionFitter toolbox [114], which is integrated in the ROOT software. It is
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a tool adapted for using more than one MC sample to fit onto the data, using
both data and MC statistical uncertainties. It utilises a standard likelihood fit
featuring Poisson statistics. In this approach, the statistics of each sample is con-
sidered bin-by-bin.

Fig. 4.17: Mγγ spectrum for data, HEPGEN++ and LEPTO, normalised to the
integral of data events inside the Mγγ cut range (106.1, 160.5) MeV, µ+ only.

The two histograms used in this procedure are fitted separately and the value
of rLEPTO is calculated from their arithmetic average. The fit of MC mixture
to the data using TFractionFitter is shown in Fig. 4.19. One can see that the
LEPTO events (in blue) are distributed rather flat, while the HEPGEN++ events
are concentrated in a narrow peak centred around zero.

The second method [116] uses least squares fit to minimise the sum S running
over the bins i of both the chosen histograms j ∈ (1, 2):

S(r⃗) =
2∑︂

j=1

N∑︂
i=1

(wj
i r

j
i )2, (4.23)

where ri are investigated residuals and wi = 1/σi are weights of the residuals, σi

is the statistical error of the respective ith bin. The residual is defined as follows:

ri = yi − f(rLEPTO; yi,L, yi,H). (4.24)

which is then inserted into the Eq. 4.22 as the fitting parameter rLEPTO for minimi-
sation. The results of the background fitting from both methods are summarised
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in Table 4.3 after all the described selection criteria and additional reweighting
of HEPGEN++ in ϕ and 2D reweighting procedure as described in the next sub-
section 4.4.4. One can notice that both methods give very similar results (after
averaging the contribution from both histograms in case of the TFractionFitter
method). The final value of the background contamination rLEPTO was taken as
the arithmetic average of both methods: rLEPTO = 8 ± 5% (considering a larger
error as a safe margin).

Another source of background considered in this analysis is exclusive ω con-
tamination. The detailed description of the determination of the level of the con-
tamination is described in the Section of systematics determination [[↪→5.8.6.]].
The contamination of exclusive omega misidentified as π0 was found to be 2.4%,
which lead to subtracting 41 events from the final sample of events.

Tab. 4.3: The results of the two background fitting methods: the TFractionFitter
method is performed for the two exclusive variables ∆φ and ∆pT separately, and
resulting rLEPTO is obtained as arithmetic average. the least squares method is
done as a simultaneous fit of the two histograms.

Muon beam Variable TFractionFitter Least squares method

µ+
∆φ rLEPTO = 6±7%
∆pT rLEPTO = 10±5%

average rLEPTO = 8±4% rLEPTO = 8±3%

µ−
∆φ rLEPTO = 4±9%
∆pT rLEPTO = 9±4%

average rLEPTO = 7±4% rLEPTO = 8±3%
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Fig. 4.18: Distributions of the exclusivity variables for µ+ beam (left) and for µ+

beam (right): ∆φ is displayed in the top band, followed by the ∆pT in the second
band, ∆zA in the third band, and the four-momentum balance in the bottom one.
The µ+ data are represented in red and the µ− data in blue.
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Fig. 4.19: Fitting of the background using the TFractionFitter on exclusivity
variables: ∆φ and ∆pT.

4.4.4 2D Reweighting of HEPGEN++
After all the steps of the MC treatment described above, the agreement achieved
between the data and the MC was satisfactory for most distributions. The only
exceptions were the distributions of kinematic variables of ν, Q2 and |t|. The im-
provement was achieved by performing a 2D reweighting of the HEPGEN++. The
illustration of the problem can be seen in Fig. 4.20 in the left-most column, where
the three kinematic distributions are shown for the data (in yellow) and the nor-
malised MC mixture (marked by a red line). The HEPGEN++ reweighting method
lies in modifying the HEPGEN++ weights by correction coefficients obtained from
distribution of ν and |t| from data and both MC simulations as a following combi-
nation: “data minus LEPTO divided by HEPGEN++”. The obtained coefficients
are used to rescale the HEPGEN++ weights of events in the corresponding kine-
matic domain of ν and |t|, and the process of MC normalisation described in the
previous Section [[←↩4.4.3.]] is performed.
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Fig. 4.20: Distributions of νfit (1st row), |tfit| (2nd row), and Q2
fit (3rd row), before

reweighting HEPGEN++ (1st column), after the first attempt of the 2D reweighting
of HEPGEN++ in (ν, |t|) (2nd column) with χ2

red < 10, and after the 2D reweighting
procedure with included prerequisite reweighting in ϕ in with χ2

red < 7 (the 3rd

column). The background fractions are rLEPTO = 17% in the middle column and
rLEPTO = 8% in right column [116].

Then the reweighting procedure is repeated iteratively until a good agreement
of the data and MC mixture in the problematic distributions of ν, Q2, and |t| is
obtained. The reweighting procedure was attempted in two types of tests, using
two 1D histograms ν and |t|, and 2D histogram ν-|t|. The 1D method was un-
binned. A smooth function was used to rescale the HEPGEN++ weights, with an
exponential function in the case of ν and a polynomial of second order in the case
of |t|. While the 2D method used coefficients obtained from the histogram bins.

The 1D approach provided similar results as the 2D method in the result-
ing rLEPTO, however, the agreement of the problematic kinematic distributions
was not satisfactorily improved. Thus, the 2D method was chosen at the end.
The Fig. 4.21 illustrates the 2D distributions of ν-|t| for the data (left-upper),
HEPGEN++ (right-upper), the LEPTO (left bottom), and the “DATA minus
LEPTO divided by HEPGEN++” (right bottom), in the binning used the cross
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section calculation [[↪→5.1.]].
The first attempt for the 2D reweighting for the 2016 analysis was performed

before the application of the improved ϕ-modulation of HEPGEN++, and using
a looser cut on the reduced χ2

red of the kinematic fit, on a limit of 10. The
status of the improvements in this stage is visible in the second column of the
Fig. 4.20. At this stage the level of background was not that efficiently suppressed,
rLEPTO = 17 ± 5%. The second and final 2D reweighting, using an equidistant
the cross section binning, included the improved ϕ-modulation of HEPGEN++
and a stricter cut for χ2

red < 7 and the resulting rLEPTO stabilised at the value
rLEPTO = 8 ± 5%. Several different types of binning were used for the testing,
however, the 2D reweighting method proved to be binning-independent, hence,
the cross section binning was kept. The final shape of the MC description of the
problematic kinematic distributions is displayed in the right column of Fig. 4.20.
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Fig. 4.21: The 2D method of HEPGEN++ reweighting in ν-|t| 2D distributions
(ν is displayed on x-axis and |t| on y-axis) with the binning used for the cross
section calculation. The last plot shows the multiplicative factors used to modify
HEPGEN++ weights in respective bins [116].

118



5 Exclusive π0 Production Cross Section
To determine the process of the differential cross section for the hard exclusive
muoproduction π0, µp→ µ′p′π0, several steps precede. The luminosity correction
[[←↩4.1.]], spectrometer acceptance [[↪→5.1.]], and bin-by-bin background subtraction
([[←↩4.4.3.]] estimating the DIS background, and [[↪→5.2.]] for the background
subtraction) are needed. The differential exclusive π0 cross section is evaluated in
four-dimensional space ∆Ω = ∆|t|∆ϕ∆Q2∆ν. The dependency of the differential
cross section of the exclusive π0 muoproduction on the four-momentum transfer to
the proton, |t|, and the azimuthal angle of the produced π0, ϕ, including the first
results on how they evolve with Q2 and ν, is presented. The systematic studies
that have been conducted are detailed in the conclusion part.

5.1 Acceptance Determination
The differential cross section for the hard exclusive muoproduction of π0 in this
analysis is determined in the following kinematic domain

• 6.4 < ν < 40 GeV

• 1 < Q2 < 8 GeV2

• 0.08 < |t| < 0.64 GeV2

In order to compare the results with the published ones using the 2012 data set [66],
the 2016 data were also analysed in the kinematic domain used in the publication

• 8.5 < ν < 28 GeV

• 1 < Q2 < 5 GeV2

• 0.08 < |t| < 0.64 GeV2

The kinematic domain for this analysis is larger with respect to the 2012 data due
to the fully operational ECAL0 in 2016. The element of the phase-space is denoted
as ∆Ωnijk = ∆|t|n∆ϕi∆Q2

j∆νk.
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Tab. 5.1: Four-dimensional grid to evaluate the acceptance in the phase space
∆Ωnijk = ∆|t|n∆ϕi∆Q2

j∆νk. The ϕ binning is divided in 8 equidistant bins. The
bottom row of the table showcases the full width of the respective dimension.

ϕ /rad |t| /(GeV2) Q2 /(GeV2) ν /(GeV)
−π – −3π

4 0.08 – 0.15 1.0 – 1.5 6.4 – 8.5
−3π

4 – −π
2 0.15 – 0.22 1.5 – 2.1 8.5 – 10.5

. 0.22 – 0.36 2.1 – 3.2 10.5 – 13.9

. 0.36 – 0.50 3.2 – 5.0 13.9 – 19.5

. 0.50 – 0.64 5.0 – 8.0 19.5 – 26.0
3π
4 – −π 26.0 – 40.0
∆ϕ/rad ∆|t| /(GeV2) ∆Q2 /(GeV2) ∆ν /(GeV)

2π 0.56 7 33.6

The acceptance anijk is calculated on a four-dimensional grid as the number of
reconstructed events divided by the number of generated events, i.e. events after
reconstruction and kinematic fit as

a∆Ω =
N∆Ω

rec∑︂
i=1

wi

/︄N∆Ω
gen∑︂

i=1
wi, (5.1)

where N∆Ω
gen denotes the number of generated events in a phase space element

∆Ω and N∆Ω
rec represents the number of HEPGEN++ events reconstructed in the

same phase space element. To determine the acceptance, the HEPGEN++ π0 MC
simulation is used [110, 111].

The Tab. 5.1 shows the binning. The range limits of Q2 and ν were adjusted to
take into account the vanishing acceptance in the regions of high Q2 and high ν.
The lower ϕ acceptance in the bin ∆Q2

5 – ∆ν1 corresponds to the finite dimensions
of the ECAL0 aperture, while the decrease around ϕ = 0 in the bin ∆Q2

1 – ∆ν6 is
present due to the beam-hole in ECAL2.

The Fig. 5.1 presents the average acceptance computed out of all the six pe-
riods. The number of events from data of each beam polarity falling to each
kinematic bin is shown in every subplot. To calculate cross-section, the accep-
tance is determined for each data taking period and beam polarity separately.
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The acceptance of the spectrometer has not change notably over time.
In order to compare of the 2016 results with the 2012 ones, the binning used

for 2012 analysis was used. The grid of 2012 is defined in Tab. 5.2.

Tab. 5.2: Four-dimensional grid used for the calculation of the acceptance in the
phase space ∆Ωnijk = ∆|t|n∆ϕi∆Q2

j∆νk from the 2016 data with the binning used
in 2012 analysis in order to compare results from both years.

ϕ /rad |t| /(GeV2) Q2 /(GeV2) ν /(GeV)
−π – −3π

4 0.08 – 0.15 1.00 – 1.50 8.50 – 11.45
−3π

4 – −π
2 0.15 – 0.22 1.50 – 2.24 11.45 – 15.43

. 0.22 – 0.36 2.24 – 3.34 15.43 – 20.78

. 0.36 – 0.50 3.34 – 5.00 20.78 –28.00

. 0.50 – 0.64
3π
4 – −π

∆ϕ/rad ∆|t| /(GeV2) ∆Q2 /(GeV2) ∆ν /(GeV)
2π 0.56 4 19.5
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Fig. 5.1: Acceptance for the exclusive π0 muoproduction. Top panel: The accep-
tance as a function of Q2, ν and ϕ for |t| ∈ (0.08, 0.64) GeV2 integrated. Each plot
in a bin of Q2 and ν shows the acceptance in 8 equidistant bins of ϕ for µ+ (in
red) and µ− (in blue) beams. Bottom panel: The acceptance as a function of Q2,
ν and |t| for ϕ ∈ (−π, π) integrated. Each plot in a bin of Q2 and ν shows the
acceptance in 5 bins of |t| for µ+ (in red) and µ− (in blue) beams. The number of
RD events of each beam polarity per kinematic bin is presented in each subplot.
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5.2 Exclusive π0 Cross Section Evaluation
The γ∗p cross section of exclusive π0 production is obtained from the measured
µp cross section by applying

dσγ∗p→π0p′

d|t|dϕ = 1
Γ(Q2, ν, Eµ)

d3σµp→µ′
π

0p′

dQ2dνd|t|dϕ, (5.2)

where the transverse virtual-photon flux Γ(Q2, ν, Eµ) is given by

Γ(Q2, ν, Eµ) = αem(1− xB)
2πQ2yEµ

⎡⎣y2
(︄

1−
2m2

µ

Q2

)︄
+ 2

1 +Q2/ν2

(︄
1− y − Q2

4E2
µ

)︄⎤⎦, (5.3)

for which the Hand convention [67] is used. Here, mµ and Eµ denote the mass and
energy of the incoming muon, respectively, and αem represents the electromagnetic
fine-structure constant.

The cross section can be calculated for each beam charge (noted ± in the
following) in a bin ∆Ωnijk by subtracting the inclusive background from the data

⟨︄
dσµp→µ′

π
0p′

dΩ

⟩︄±
nijk

=
⟨︄

dσµp→µ′
π

0p′

data
dΩ

⟩︄±
nijk

−
⟨︄

dσµp→µ′
π

0p′

bg

dΩ

⟩︄±
nijk

(5.4)

This relation can be transformed considering the yield of each contribution and
taking the acceptance correction into account. Each event is then weighted with
the virtual photon flux to obtain the virtual photon yield from the measured yields
for muon-proton interactions⟨︄

dσγ∗p→π0p′

d|t|dϕ

⟩︄±
nijk

= 1
L±∆tn∆ϕi∆Q2

j∆νk

∑︂
p∈P

(︂
ap,±

nijk

)︂−1

⎛⎜⎝Np,data
nijk

±∑︂
e=1

1
Γ (Q2

e, νe)

− cp,LEPTO±
π0 · (rLEPTO) ·

Np,π0
nijk
±∑︂

e=1

1
Γ (Q2

e, νe)

⎞⎟⎟⎠
(5.5)

where L denotes the luminosity, P the set of data taking periods, and the cp,LEPTO±
π0

represents the normalisation of LEPTO to data [[←↩4.4.3.]].

L± =
∑︂
p∈P
Lp±

cp,LEPTO±
π0 = Np,data±

vis.π0

Np,LEPTO±
vis.π0
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The mean spin-dependent cross section in each bin of (|t|, ϕ) is constructed by
integrating over the dimensions of (Q2, ν) as follows

⟨︄
dσγ∗p→π0p′

d|t|dϕ

⟩︄±
ni

=

∑︁
j,k

⟨︃
dσγ∗p→π0p′

d|t|dϕ

⟩︃±
nijk

∆Q2
j∆νk∑︁

j ∆Q2
j

∑︁
k ∆νk

(5.6)

The spin-independent virtual photon cross section is obtained as the average
of the two muon beam charges⟨︄

dσγ∗p→π0p′

d|t|dϕ

⟩︄
ni

= 1
2

⎛⎝⟨︄dσγ∗p→π0p′

d|t|dϕ

⟩︄+

ni

+
⟨︄

dσγ∗p→π0p′

d|t|dϕ

⟩︄−
ni

⎞⎠ (5.7)

The cross section can be integrated over the full 2π-range in ϕ in order to study
its |t|-dependence ⟨︄

dσγ∗p→π0p′

d|t|

⟩︄
n

=
∑︂

i

∆ϕi

⟨︄
dσγ∗p→π0p′

d|t|dϕ

⟩︄
ni

(5.8)

Similarly to study the ϕ-modulations of the cross section we determine the
cross section averaged over |t| as⟨︄

dσγ∗p→π0p′

d|t|dϕ

⟩︄
i

= 1∑︁
n ∆|t|n

∑︂
n

∆|t|n
⟨︄

dσγ∗p→π0p′

d|t|dϕ

⟩︄
ni

(5.9)

Evaluation of the errors
Let the elementary cross section defined in Eq. 5.5 be denoted as

Y ±nijk =
⟨︄

dσγ∗p→π0p′

d|t|dϕ

⟩︄±
nijk

(5.10)

Then the statistical errors of the differential cross section, without considering
the statistical errors on the acceptance (which are negligible [[←↩5.1.]])

∆(Y ±nijk)2 = 1(︂
L±∆tn∆ϕi∆Q2

j∆νk

)︂2
∑︂
p∈P

(︂
ap,±

nijk

)︂−2

⎛⎜⎝Np,data
nijk

±∑︂
e=1

1
Γ2 (Q2

e, νe)

+
(︂
cpLEPTO±
π0 · rLEPTO

)︂2
Np,π0

nijk
±∑︂

e=1

1
Γ2 (Q2

e, νe)

⎞⎟⎟⎠
(5.11)
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The error of the mean cross section per bin (|t|, ϕ) is

∆
⎛⎝⟨︄dσγ∗p→π0p′

d|t|dϕ

⟩︄±
ni

⎞⎠2

=
∑︁

j,k ∆(Y ±nijk)2(∆Q2
j)2(∆νk)2

(∑︁j ∆Q2
j)2(∑︁k ∆νk)2 (5.12)

The error of the spin-independent cross section is

∆
(︄⟨︄

dσγ∗p→π0p′

d|t|dϕ

⟩︄
ni

)︄2

= 1
4

⎛⎜⎝∆
⎛⎝⟨︄dσγ∗p→π0p′

d|t|dϕ

⟩︄+

ni

⎞⎠2

+ ∆
⎛⎝⟨︄dσγ∗p→π0p′

d|t|dϕ

⟩︄−
ni

⎞⎠2
⎞⎟⎠

(5.13)
The error of the |t|-dependence of the cross section is

∆
(︄⟨︄

dσγ∗p→π0p′

d|t|

⟩︄
n

)︄2

=
∑︂

i

(∆ϕi)2∆
(︄⟨︄

dσγ∗p→π0p′

d|t|dϕ

⟩︄
ni

)︄2

(5.14)

The error of the ϕ-dependent cross section is obtained in the same fashion.

5.3 The π0 Cross Section as a Function of ϕ

The results of the differential π0 cross section as a function of ϕ from Eq. 5.9 aver-
aged over the two beam polarities are depicted in Fig. 5.2. The results separated
for µ+ (red) and µ− (blue) are shown in Fig. 5.3. The Tab. 5.3 summarises the
results.

The data points of the spin-independent distribution are fitted as a ϕ-modulation
according to Eq. 1.65, using the mean value ϵ = 0.997. The curve is shown in red in
Fig. 5.2 and the 3 structure functions resulting from the fit are listed in Tab. 5.4.
The structure functions p0 = ⟨dσT

dt
+ ϵdσL

dt
⟩ and p1 = ⟨dσTT

dt
⟩ are large and well

determined while p2 = ⟨dσLT
dt
⟩ is close to zero within statistical uncertainties. The

spin-dependent differential cross section is fitted with the ϕ-modulation from the
following equation derived from Eq. 1.64

dσγ∗p

dtdϕ = 1
2π

[︄
dσT

dt + ϵ
dσL

dt + ϵ cos(2ϕ)dσTT

dt

+
√︂

2ϵ(1 + ϵ) cos(ϕ)dσLT

dt +
√︂

2ϵ(1− ϵ) sin(ϕ)dσ′LT
dt

]︄
.

(5.15)

The values from the fit are summarised in Tab. 5.5.
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2 ]

γ∗p→ π0p′ ⟨︂
dσT
d|t| + ϵ dσL

d|t|

⟩︂
= (6.63± 0.31stat

+0.90
−0.74|sys) nb

(GeV)2⟨︂
dσTT
d|t|

⟩︂
= (−4.61± 0.48stat

+0.35
−0.32|sys) nb

(GeV)2⟨︂
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d|t|

⟩︂
= (0.15± 0.19stat

+0.14
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ν ∈ [6.4, 40] GeV

Q2 ∈ [1, 8] GeV2

|t| ∈ [0.08, 0.64] GeV2

2016 COMPASS data

Fig. 5.2: The differential cross section as a function of ϕ, integrated over the full
|t| range ∆|t| = (0.08, 0.64) GeV2. The red points represent the mean value of
the differential cross section per bin. The bars represent the statistical errors and
the filled band marks the combined statistical and systematic uncertainties. The
average value for µ+ and µ−, using the 2016 data in kinematic domain 6.4 < ν <

40 GeV, 1 < Q2 < 8 GeV2, 0.08 < |t| < 0.64 GeV2, are shown. The data are fitted
with 3 structure functions σT + ϵσL, σTT and σLT.
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Tab. 5.3: Values of the differential π0 cross section as a function of ϕ in units of
nb

(GeV)2 . Only statistical errors are given for the spin-dependent cross section.
ϕ bin [−π,− 3π

4 ] [− 3π
4 ,−π

2 ] [−π
2 ,−π

4 ] [−π
4 , 0] [0, π

4 ] [ π
4 , π

2 ] [ π
2 , 3π

4 ] [ 3π
4 , π]

⟨dσγ∗p→π
0p′

d|t|dϕ
⟩ 0.54 1.39 1.52 0.57 0.67 1.79 1.38 0.70

stat. error 0.10 0.16 0.16 0.09 0.10 0.16 0.16 0.20
syst. error ↑ 0.13 0.17 0.19 0.14 0.17 0.22 0.17 0.16
syst. error ↓ 0.10 0.14 0.15 0.12 0.15 0.17 0.14 0.14

number of events 120 237 264 120 123 297 241 88

⟨dσγ∗p→π
0p′

d|t|dϕ
⟩+ 0.64 1.39 1.62 0.73 0.59 1.52 1.40 0.74

stat. error 0.16 0.22 0.23 0.15 0.12 0.21 0.25 0.23

⟨dσγ∗p→π
0p′

d|t|dϕ
⟩− 0.44 1.38 1.42 0.41 0.75 2.06 1.36 0.66

stat. error 0.12 0.23 0.23 0.10 0.16 0.24 0.21 0.32
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Fig. 5.3: Differential γ∗p exclusive π0 cross section as a function of ϕ for µ+ and
µ− shown in red and blue separately. Only the statistical errors are evaluated.
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Tab. 5.4: The results of the fit of the structure functions in units of nb
(GeV)2 .

p0 = ⟨dσT
dt

+ ϵdσL
dt
⟩ p1 = ⟨dσTT

dt
⟩ p2 = ⟨dσLT

dt
⟩ χ2

red

value 6.63 −4.61 0.15 1.0
stat. error 0.31 0.48 0.19
syst. error ↑ 0.91 0.35 0.14
syst. error ↓ 0.74 0.32 0.14

Tab. 5.5: Values of spin-dependent the structure functions in units of nb
(GeV)2 .

p0 = ⟨dσT
dt

+ ϵdσL
dt
⟩ p1 = ⟨dσTT

dt
⟩ p2 = ⟨dσLT

dt
⟩ p3 = ⟨dσ′

LT
dt
⟩

⟨dσγ∗p→π0p′

d|t|dϕ
⟩+ 6.71 −4.12 0.17 3.9

stat. error 0.43 0.68 0.27 10.9
⟨dσγ∗p→π0p′

d|t|dϕ
⟩− 6.45 −4.97 0.12 20.4

stat. error 0.42 0.67 0.24 11.0
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5.4 The π0 Cross Section as a Function of |t|
The results of the differential π0 cross section as a function of |t| from Eq. 5.8 are
represented in Fig. 5.4 The results separated for µ+ (red) and µ− (blue) are shown
in Fig. 5.5. The numerical values are shown in Tab. 5.6.
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|t| ∈ [0.08, 0.64] GeV2

2016 COMPASS data

Fig. 5.4: The differential cross section as a function of |t|, integrated over the full
2π range of ϕ. The points represent the mean value in a particular bin. The bars
represent the statistical errors and the filled band marks the combined statistical
and systematic uncertainties. The average value for µ+ and µ−, using the 2016 data
in kinematic domain ν ∈ (6.4, 40) GeV, Q2 ∈ (1, 8) GeV2, |t| ∈ (0.08, 0.64) GeV2,
is shown.
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Fig. 5.5: The differential cross section as a function of |t| as in Fig. 5.4 for µ+ and
µ− separately.

Tab. 5.6: Values of the differential π0 cross section as a function of |t| in units of
nb

(GeV)2 . For the spin-dependent results, only statistical uncertainties are shown.
|t| bin [0.08, 0.15] [0.15, 0.22] [0.22, 0.36] [0.36, 0.5] [0.5, 0.64]

⟨dσγ∗p→π
0p′

d|t| ⟩ 10.41 12.01 6.76 4.12 4.80
stat. error 1.08 1.41 0.56 0.45 0.60

syst. error ↑ 1.06 1.36 1.32 0.80 1.00
syst. error ↓ 1.29 1.60 0.85 0.52 0.62

number of events 288 324 419 251 208

⟨dσγ∗p→π
0p′

d|t| ⟩+ 11.26 12.37 7.11 4.07 4.14
stat. error 1.60 1.65 0.82 0.63 0.85

⟨dσγ∗p→π
0p′

d|t| ⟩− 9.56 11.66 6.42 4.18 5.45
stat. error 1.45 2.29 0.76 0.65 0.84
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5.5 Extraction of the Total Cross Section
The mean value of the total cross section is derived from integrating over ϕ and t,

⟨︂
σγ∗p→π0p′⟩︂ = 1∑︁

n ∆|t|n
∑︂

n

∆|t|n
∑︂

i

∆ϕi

⟨︄
dσγ∗p→π0p′

d|t|dϕ

⟩︄
ni

. (5.16)

The error is determined in analogy to Eq. 5.14.
The result of the total cross section in the range measured in the 2016 data is⟨︂

σγ∗p→π0p′⟩︂ = 6.72± 0.32stat
+ 0.99
− 0.79

⃓⃓⃓
sys

nb

with the mean vales of the kinematics:

⟨Q2
fit⟩ = 2.266 GeV2,

⟨νfit⟩ = 10.160 GeV,
⟨|tfit|⟩ = 0.293 GeV2,

⟨xB⟩ = 0.134,
⟨W ⟩ = 4.100 GeV,

⟨|tCAMERA|⟩ = 0.297 GeV2.

5.6 Comparison of the π0 Cross Section with the
2012 results

The results of the differential exclusive π0 cross section averaged over spin-dependent
contributions in the reduced kinematic domain:

8.5 < ν < 28 GeV, 1 < Q2 < 5 GeV2, and 0.08 < |t| < 0.64 GeV2,

are shown in Fig. 5.6 as a function of ϕ and in Fig. 5.7 as a function of |t|, com-
pared to the 2012 results [66] and the phenomenological GK model [84]. Results
from both experimental sets are in reasonable agreement within the statistical un-
certainties, however, the theoretical prediction for |t| deviates slightly both for the
new and old results. Numerical values are given in Tab. 5.7 and 5.8.
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Tab. 5.7: Values of the differential π0 cross section as a function of ϕ in units of
nb

(GeV)2 in the reduced kinematic domain.
ϕ bin [−π,− 3π

4 ] [− 3π
4 ,−π

2 ] [−π
2 ,−π

4 ] [−π
4 , 0] [0, π

4 ] [ π
4 , π

2 ] [ π
2 , 3π

4 ] [ 3π
4 , π]

⟨dσγ∗p→π
0p′

d|t|dϕ
⟩ 0.59 1.91 1.76 0.76 1.13 2.90 1.86 0.59

stat. error 0.13 0.26 0.25 0.15 0.20 0.32 0.27 0.16
syst. error ↑ 0.10 0.16 0.13 0.17 0.13 0.21 0.19 0.10
syst. error ↓ 0.16 0.16 0.13 0.17 0.23 0.18 0.12 0.10

number of events 47 107 101 49 65 145 99 34
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Fig. 5.6: Differential γ∗p exclusive π0 cross section as a function of ϕ averaged
over µ+ and µ−. The results of 2016 are represented by the red points. The bars
represent the statistical errors and the filled bands mark the combined statisti-
cal and systematic uncertainties. They are compared with the results from 2012
data [66] (in blue), with the inner bars representing the statistical errors and the
outer the combined errors, for better readability. The GK model [84] is represented
by the violet dashed line. The reduced kinematic domain is 8.5 < ν < 28 GeV,
1 < Q2 < 5 GeV2, 0.08 < |t| < 0.64 GeV2.
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Tab. 5.8: Values of the differential π0 cross section as a function of |t| in units of
nb

(GeV)2 in the reduced kinematic domain.
|t| bin [0.08, 0.15] [0.15, 0.22] [0.22, 0.36] [0.36, 0.5] [0.5, 0.64]

⟨dσγ∗p→π
0p′

d|t| ⟩ 16.87 16.79 10.32 4.91 4.11
stat. error 1.86 1.98 1.07 0.74 0.74

syst. error ↑ 1.41 1.21 1.56 0.83 0.55
syst. error ↓ 2.03 1.83 1.24 0.70 0.39

number of events 142 148 181 99 77
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Fig. 5.7: Differential γ∗p exclusive π0 cross section as a function of |t| averaged
over µ+ and µ−. The results of 2016 are represented by the red points. The bars
represent the statistical errors and the filled bands mark the combined statisti-
cal and systematic uncertainties. They are compared with the results from 2012
data [66] (in blue), with the inner bars representing the statistical errors and the
outer the combined errors, for better readability. The GK model [84] is represented
by the violet dashed line. The reduced kinematic domain is 8.5 < ν < 28 GeV,
1 < Q2 < 5 GeV2, 0.08 < |t| < 0.64 GeV2.
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5.7 Evolution in Q2 and ν
The gain of the 2016 statistics with respect to the 2012 statistics is about 2.3 times
larger. The improved statistics allows to study the ν evolution as well as the Q2

evolution. After the pilot 2012 run the aperture of the ECAL0 calorimeter had
been enlarged to allow reaching smaller ν or xB, providing additional motivation
to probe different ν and Q2 regions. The evolution of the cross section was studied
in three bins in ν:

(6.4, 8.5) GeV, (8.5, 13.9) GeV, (13.9, 40.0) GeV.

To study the evolution of the cross section with Q2, four bins were chosen:

(1.0, 1.5) GeV2, (1.5, 2.1) GeV2, (2.1, 5.0) GeV2, (5.0, 8.0) GeV2.

The Figs. 5.8, 5.9 show the evolution in the three bins of ν as a function of |t|
and ϕ. The Figs. 5.10, and 5.11 depict the evolution in four Q2 bins as a function
of |t| and Q2. The amplitude of the cross section in both variables is decreasing,
as can be expected from the shape of ν and Q2 distributions [[←↩4.3.3.]].

Tab. 5.9: Differential cross section as a function of |t| in 3 ν bins (units nb
(GeV/c)2 ).

|t| bin [0.08, 0.15] [0.15, 0.22] [0.22, 0.36] [0.36, 0.5] [0.5, 0.64] [0.08, 0.64]

Complete ν domain 6.4 < ν < 40 GeV ⟨ν⟩ = 10.16 GeV

⟨dσγ∗p→π
0p′

d|t| ⟩ 10.41 12.01 6.76 4.12 4.80 6.72
stat. error 1.08 1.41 0.56 0.45 0.60

syst. error ↑ 1.06 1.36 1.32 0.80 1.00
syst. error ↓ 1.29 1.60 0.85 0.52 0.62

1st ν bin 6.4 < ν < 8.5 GeV ⟨ν⟩ = 7.35 GeV

⟨dσγ∗p→π
0p′

d|t| ⟩ 34.53 55.36 40.11 34.67 39.28 39.75
stat. error 4.21 6.83 3.84 4.82 6.73 2.49

2nd ν bin 8.5 < ν < 13.9 GeV ⟨ν⟩ = 10.32 GeV

⟨dσγ∗p→π
0p′

d|t| ⟩ 20.73 31.13 19.62 10.29 12.41 17.10
stat. error 3.00 4.47 2.43 1.62 2.40 1.16

3rd ν bin 13.9 < ν < 40 GeV ⟨ν⟩ = 21.08 GeV

⟨dσγ∗p→π
0p′

d|t| ⟩ 6.46 3.98 1.98 0.80 0.84 2.21
stat. error 1.26 0.93 0.44 0.31 0.29 0.25
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Tab. 5.10: Differential cross section as a function of ϕ in 3 ν bins (units nb
(GeV/c)2 ).

ϕ bin [−π,− 3π
4 ] [− 3π

4 ,−π
2 ] [−π

2 ,−π
4 ] [−π

4 , 0] [0, π
4 ] [ π

4 , π
2 ] [ π

2 , 3π
4 ] [ 3π

4 , π]

Complete ν domain 6.4 < ν < 40 GeV ⟨ν⟩ = 10.24 GeV

⟨dσγ∗p→π
0p′

d|t|dϕ
⟩ 0.54 1.39 1.52 0.57 0.67 1.79 1.38 0.70

stat. error 0.10 0.16 0.16 0.09 0.10 0.16 0.16 0.20
syst. error ↑ 0.13 0.17 0.19 0.14 0.17 0.22 0.17 0.16
syst. error ↓ 0.10 0.14 0.15 0.12 0.15 0.17 0.14 0.14

1st ν domain 6.4 < ν < 8.5 GeV ⟨ν⟩ = 7.35 GeV

⟨dσγ∗p→π
0p′

d|t|dϕ
⟩ 3.84 7.57 9.39 3.98 4.16 9.55 9.40 2.73

stat. error 0.99 1.22 1.14 0.68 0.91 1.18 1.79 0.64
2nd ν domain 8.5 < ν < 13.9 GeV ⟨ν⟩ = 10.32 GeV

⟨dσγ∗p→π
0p′

d|t|dϕ
⟩ 1.76 3.93 3.76 1.49 1.82 3.97 3.12 1.88

stat. error 0.49 0.62 0.60 0.39 0.37 0.51 0.51 0.62
3rd ν domain 13.9 < ν < 40 GeV ⟨ν⟩ = 21.08 GeV

⟨dσγ∗p→π
0p′

d|t|dϕ
⟩ 0.11 0.42 0.53 0.16 0.23 0.73 0.41 0.23

stat. error 0.05 0.12 0.15 0.06 0.08 0.14 0.11 0.13
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Fig. 5.8: The evolution of the differential exclusive π0 cross section in three bins
of ν as a function of |t|. Only the statistical errors are shown.
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Tab. 5.11: Determination of the structure functions in 3 ν bins (units nb
(GeV/c)2 ).

p0 = ⟨dσT
dt

+ ϵdσL
dt
⟩ p1 = ⟨dσTT

dt
⟩ p2 = ⟨dσLT

dt
⟩ χ2

red

Complete ν domain 6.4 < ν < 40 GeV ⟨ν⟩ = 10.16 GeV
value 6.63 −4.61 0.15 1.0
stat. error 0.31 0.48 0.19
syst. error ↑ 0.91 0.35 0.14
syst. error ↓ 0.74 0.32 0.14

1st ν domain 6.4 < ν < 8.5 GeV ⟨ν⟩ = 7.35 GeV
value ± stat. err. 39.10 ± 2.33 −26.40± 3.67 1.93 ± 1.30 0.4

2nd ν domain 8.5 < ν < 13.9 GeV ⟨ν⟩ = 10.32 GeV
value ± stat. err. 16.89 ± 1.13 −9.96 ± 1.79 −0.04± 0.77 0.4

3rd ν domain 13.9 < ν < 40 GeV ⟨ν⟩ = 21.08 GeV
value ± stat. err. 2.06 ± 0.23 −1.74± 0.36 0.14 ± 0.12 0.9
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Fig. 5.9: The evolution of the differential exclusive π0 cross section in three bins
of ν as a function of ϕ. Only the statistical errors are shown.
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Tab. 5.12: Differential cross section as a function of |t| in 4 Q2 bins (units nb
(GeV/c)2 ).

|t| bin [0.08, 0.15] [0.15, 0.22] [0.22, 0.36] [0.36, 0.5] [0.5, 0.64] [0.08, 0.64]

1st Q2 bin 1. < Q2 < 1.5 GeV2 ⟨Q2⟩ = 1.22 GeV2

⟨dσγ∗p→π
0p′

d|t| ⟩ 33.00 29.17 13.40 6.29 4.87 13.91
stat. error 4.36 3.51 1.68 1.04 0.92 0.89

2nd Q2 bin 1.5 < Q2 < 2.1 GeV2 ⟨Q2⟩ = 1.77 GeV2

⟨dσγ∗p→π
0p′

d|t| ⟩ 29.14 20.89 11.35 6.55 3.78 11.67
stat. error 3.98 2.76 1.36 1.17 0.97 0.79

3rd Q2 bin 2.1 < Q2 < 3.2 GeV2 ⟨Q2⟩ = 2.58 GeV2

⟨dσγ∗p→π
0p′

d|t| ⟩ 12.53 16.22 10.09 5.59 6.74 9.20
stat. error 2.21 2.41 1.30 1.05 1.25 0.66

4th Q2 bin 3.2 < Q2 < 8.0 GeV2 ⟨Q2⟩ = 4.33 GeV2

⟨dσγ∗p→π
0p′

d|t| ⟩ 5.48 6.84 4.98 3.42 4.02 4.65
stat. error 1.29 1.31 0.70 0.58 0.64 0.36
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Fig. 5.10: The evolution of the differential exclusive π0 cross section in three bins
of Q2 as a function of |t|. Only the statistical errors are shown.
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Tab. 5.13: Differential cross section as a function of ϕ in 4 Q2 bins (units nb
(GeV/c)2 ).

ϕ bin [−π,− 3π
4 ] [− 3π

4 ,−π
2 ] [−π

2 ,−π
4 ] [−π

4 , 0] [0, π
4 ] [ π

4 , π
2 ] [ π

2 , 3π
4 ] [ 3π

4 , π]

1st Q2 domain 1 < Q2 < 1.5 GeV2 ⟨Q2⟩ = 1.22 GeV2

⟨dσγ∗p→π
0p′

d|t|dϕ
⟩ 1.61 2.53 2.99 1.22 1.12 4.30 3.00 0.96

stat. error 0.35 0.36 0.43 0.29 0.26 0.64 0.45 0.27
2nd Q2 domain 1.5 < Q2 < 2.1 GeV2 ⟨Q2⟩ = 1.77 GeV2

⟨dσγ∗p→π
0p′

d|t|dϕ
⟩ 1.16 2.68 2.78 0.79 0.91 3.23 2.70 0.63

stat. error 0.31 0.43 0.36 0.23 0.23 0.51 0.44 0.21
3rd Q2 domain 2.1 < Q2 < 3.2 GeV2 ⟨Q2⟩ = 2.58 GeV2

⟨dσγ∗p→π
0p′

d|t|dϕ
⟩ 0.75 1.78 1.56 1.02 0.87 2.61 2.29 0.84

stat. error 0.23 0.31 0.26 0.27 0.24 0.40 0.38 0.25
4th Q2 domain 3.2 < Q2 < 8.0 GeV2 ⟨Q2⟩ = 4.33 GeV2

⟨dσγ∗p→π
0p′

d|t|dϕ
⟩ 0.35 1.00 1.21 0.38 0.53 1.20 0.82 0.43

stat. error 0.13 0.19 0.21 0.10 0.12 0.19 0.17 0.16
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Fig. 5.11: The evolution of the differential exclusive π0 cross section in three bins
of Q2 as a function of ϕ. Only the statistical errors are shown.
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Tab. 5.14: The results of the fit of the structure functions in 4 Q2 bins (units
nb

(GeV/c)2 ).

p0 = ⟨dσT

dt
+ ϵdσL

dt
⟩ p1 = ⟨dσT T

dt
⟩ p2 = ⟨dσLT

dt
⟩ χ2

red

1st Q2 domain 1.0 < Q2 < 1.5 GeV2 ⟨Q2⟩ = 1.22 GeV2

value 13.04 −8.96 0.16 1.6
stat. error 0.83 1.31 0.49

2nd Q2 domain 1.5 < Q2 < 2.1 GeV2 ⟨Q2⟩ = 1.77 GeV2

value 11.40 −9.87 0.14 0.6
stat. error 0.77 1.21 0.41

3rd Q2 domain 2.1 < Q2 < 3.2 GeV2 ⟨Q2⟩ = 2.58 GeV2

value 8.74 −5.25 0.19 1.3
stat. error 0.64 1.00 0.41

4th Q2 domain 3.2 < Q2 < 8.0 GeV2 ⟨Q2⟩ = 4.33 GeV2

value 4.53 −3.12 0.19 0.7
stat. error 0.36 0.56 0.21
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5.8 Systematic uncertainty estimation
In this section, different sources of systematic errors are investigated. The effect of
each systematic test is evaluated by comparing modified cross section yields with
respect to the default values. The impact of each variation of yields is studied for
the individual cross section bin in |t| or ϕ and amplitudes of the azimuthal modu-
lations of the cross section dσT

dt
+ϵdσL

dt
, dσTT

dt
and dσLT

dt
. This Section summarises the

process of estimation of systematic uncertainties for the larger kinematic domain.

5.8.1 Variation of the χ2
red of the Kinematic Fit

The choice of the upper limit on the reduced kinematic fit χ2 was justified by the
steep decrease of the distribution of the χ2

red in HEPGEN++ describing the sig-
nal events, where at the χ2

red = 7 the HEPGEN++ vanishes towards zero [[←↩4.2.]].
However, as the cut for the efficiency of the kinematic fit impacts most of the inclu-
sive background (around 2/3), it is crucial to test whether choosing this particular
offset can introduce any systematic effect in the final selected sample.

A test was performed varying the cut value in the following range: χ2
red = 7±3

in steps of 1. The sensitivity of the cross section yields in bins of |t| and ϕ and the
fitting parameters of the ϕ modulation corresponding to the structure functions
introduced in the first section were verified. The fitting parameters are:

p0 =
⟨︄

dσT

dt + ϵ
dσL

dt

⟩︄
, p1 =

⟨︄
dσT T

dt

⟩︄
, p2 =

⟨︄
dσLT

dt

⟩︄
.

The yield of background is extracted from the MC fitting procedure [[←↩4.4.3.]] for
each cut value separately.

The Figs. 5.12, 5.14, 5.15 and 5.13 show the effect on averaged cross section in
bins. The Tabs. 5.15, and 5.16, and 5.17 summarise the extremities of the effect
for each cross section bin. The results for individual points of the cross section
proved to be influenced by statistical fluctuations. To suppress their influence,
that also introduces differences between cross sections obtained with different cut
values, the relative systematic uncertainty from the test has been averaged over
bins containing similar statistics.
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Fig. 5.12: The evolution of the cross section point σi, i ∈ [1, 2, 3, 4, 5] in |t| bins,
when the upper limit on χ2

red varies from 4 to 10. The quantity σ4
i (in the middle of

X-axis) denotes the value of the cross section for χ2
red = 7. The band corresponds

to the relative statistical uncertainty.

Fig. 5.13: The evolution of the total cross section in case the upper limit on χ2
red

varies from 4 to 10. The quantity σ4
i denotes the default value for χ2

red = 7.
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Fig. 5.14: The evolution of the the cross section point σi, i ∈ [1, 2, 3, 4, 5, 6, 7, 8]
in ϕ bins, when the upper limit on χ2

red varies from 4 to 10. The quantity σ4
i (in

the middle of X-axis) denotes the value of the cross section for χ2
red = 7. The band

corresponds to the relative statistical uncertainty.
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Fig. 5.15: The evolution of the fitted parameters pi with i ∈ [1, 2, 3], in case
the upper limit on χ2

red varies from 4 to 10. The quantity p4
i denotes the value

of the cross section for χ2
red = 7. The band corresponds to the relative statistical

uncertainty.

Tab. 5.15: Relative systematic errors from the variation of the χ2
red cut of the cross

section in 5 |t|-bins.
|t| bin [0.08, 0.15] [0.15, 0.22] [0.22, 0.36] [0.36, 0.5] [0.5, 0.64]

sys. error ↑ [%] 1.9 1.9 6.3 6.3 6.3
sys. error ↓ [%] 8.5 8.5 5.2 5.2 5.2

Tab. 5.16: Relative systematic errors from the variation of the χ2
red cut of the cross

section in 8 ϕ-bins.
ϕ bin [−π,− 3π

4 ] [− 3π
4 ,−π

2 ] [−π
2 ,−π

4 ] [−π
4 , 0] [0, π

4 ] [ π
4 , π

2 ] [ π
2 , 3π

4 ] [ 3π
4 , π]

sys. error ↑ [%] 9.0 2.1 2.1 9.0 9.0 2.1 2.1 9.0
sys. error ↓ [%] 12.6 4.5 4.5 12.6 12.6 4.5 4.5 12.6

Tab. 5.17: Relative systematic errors from the variation of the χ2
red cut of the total

exclusive π0 cross section, and 3 fitted parameters of its ϕ modulation.
parameters σtot p0 p1 p2

sys. error ↑ [%] 3.6 3.0 3.0 25.0
sys. error ↓ [%] 6.5 5.0 4.0 25.0
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5.8.2 Variation of the Energy Thresholds of ECALs
The threshold for the neutral cluster energy deposited in ECALs has a high impact
on the extraction of the cross section, as a mismatch of the data and simulations
can affect the results. To study the effect of the threshold variation on the results,
the energy of lower energetic cluster was stepped from the default value (0.5 GeV
for ECAL0, and 0.63 GeV for ECAL1 [[←↩4.3.2.]], up to 1.6 GeV for ECAL0, and
2.2 GeV for ECAL1, in steps of 0.2 GeV. The lowest limit was set on the default
values, because they were set as low as possible, just above the region dominated
by detector noise, as can be seen in Fig. 3.4 for illustration of the regions of low
cluster energy with high occupancy, where the signal is buried in noise and thus
not suitable for this systematic study.

Variation of Energy Threshold for ECAL0

The variation of the lower energetic cluster threshold is performed in values: Eclγ ∈
[0.5, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6] GeV, for the averaged cross section yields in bins of
ϕ and |t| and spin-dependent cross section yields. The Figs. 5.16, 5.17, 5.18, and
5.19 show the effect on cross section yields in bins averaged over beam polarities.
The Tabs. 5.18, and 5.19, and 5.20 summarise the estimated uncertainties for each
cross section bin. Also it this test the results of the systematic study proved to
be influenced by statistical fluctuations, hence the values in ϕ and |t| have been
averaged over the high-statistics bins and low statistics bins.

Fig. 5.19: The evolution of the total cross section varying Eclγ threshold in ECAL0
in values: Eclγ ∈ [0.5, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6]. The quantity σ0

i denotes the value
of the cross section for Eclγ = 0.5 GeV.
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Fig. 5.16: The evolution of the cross section point σi, i ∈ [1, 2, 3, 4, 5] in |t| bins,
varying Eclγ threshold in ECAL0 in values: Eclγ ∈ [0.5, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6].
The quantity σ0

i denotes the value of the cross section for Eclγ = 0.5 GeV.

Tab. 5.18: Relative systematic errors from the variation of the energy threshold in
ECAL0 of the cross section in 5 |t|-bins.

|t| bin [0.08, 0.15] [0.15, 0.22] [0.22, 0.36] [0.36, 0.5] [0.5, 0.64]
sys. error ↑ [%] 3.9 3.9 12.1 12.1 12.1
sys. error ↓ [%] 2.2 2.2 0.0 0.0 0.0
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Fig. 5.17: The evolution of the cross section point σi, i ∈ [1, 2, 3, 4, 5, 6, 7, 8]
in ϕ bins, varying Eclγ threshold in ECAL0 in steps: Eclγ ∈ [0.5, 0.6, 0.8,
1.0, 1.2, 1.4, 1.6]. The quantity σ0

i denotes the value of the cross section for
Eclγ = 0.5 GeV.
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Fig. 5.18: The evolution of the fitted parameters pi with i ∈ [1, 2, 3], varying Eclγ

threshold in ECAL0 in values: Eclγ ∈ [0.5, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6]. The quantity
σ0

i denotes the value of the cross section for Eclγ = 0.5 GeV.

Tab. 5.19: Relative systematic errors from the variation of the energy threshold
in ECAL0 of the cross section in 8 ϕ-bins.

ϕ bin [−π,− 3π
4 ] [− 3π

4 ,−π
2 ] [−π

2 ,−π
4 ] [−π

4 , 0] [0, π
4 ] [ π

4 , π
2 ] [ π

2 , 3π
4 ] [ 3π

4 , π]

sys. error ↑ [%] 13.0 6.7 6.7 13.0 13.0 6.7 6.7 13.0
sys. error ↓ [%] 1.5 0.3 0.3 1.5 1.5 0.3 0.3 1.5

Tab. 5.20: Relative systematic errors from the variation of the energy threshold in
ECAL0 of the total cross section and 3 fitted parameters of its ϕ modulation.

parameters σtot p0 p1 p2

sys. error ↑ [%] 7.3 7.0 5.0 4.0
sys. error ↓ [%] 0.0 0.0 1.0 4.0
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Variation of Energy Threshold for ECAL1

The variation of the lower energetic cluster threshold was performed in values:
Eclγ ∈ [0.63, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2] GeV for the averaged cross section
yields in bins of ϕ and |t| and spin-dependent cross section yields. The Figs. 5.20,
5.22, 5.23, and 5.21 show the effect on cross section yields in bins averaged over
beam polarities The Tabs. 5.21, 5.22, and 5.23 summarise the estimated uncertain-
ties. Also it this test the results of the systematic study proved to be influenced
by statistical fluctuations, hence the values in ϕ and |t| have been averaged over
the high-statistics bins and low statistics bins.

Tab. 5.21: Relative systematic errors from the variation of the energy threshold in
ECAL1 of the cross section in 5 |t|-bins.

|t| bin [0.08, 0.15] [0.15, 0.22] [0.22, 0.36] [0.36, 0.5] [0.5, 0.64]
sys. error ↑ [%] 2.0 2.0 6.0 6.0 6.0
sys. error ↓ [%] 4.0 4.0 1.7 1.7 1.7

Tab. 5.22: Relative systematic errors from the variation of the energy threshold in
ECAL1 of the cross section in 8 ϕ-bins.

ϕ bin [−π,− 3π
4 ] [− 3π

4 ,−π
2 ] [−π

2 ,−π
4 ] [−π

4 , 0] [0, π
4 ] [ π

4 , π
2 ] [ π

2 , 3π
4 ] [ 3π

4 , π]

sys. error ↑ [%] 7.7 2.4 2.4 7.7 7.7 2.4 2.4 7.7
sys. error ↓ [%] 2.9 1.9 1.9 2.9 2.9 1.9 1.9 2.9

Tab. 5.23: Relative systematic errors from the variation of the energy threshold in
ECAL1 of the total cross section and 3 fitted parameters of its ϕ modulation.

parameters σtot p0 p1 p2

sys. error ↑ [%] 3.7 3.0 1.0 30.0
sys. error ↓ [%] 1.5 2.0 2.0 30.0
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Fig. 5.20: The evolution of the cross section point σi, i ∈ [1, 2, 3, 4, 5] in
|t| bins, varying Eclγ threshold in ECAL1 in values: Eclγ ∈ [0.63, 0.8, 1.0,
1.2, 1.4, 1.6, 1.8, 2.0, 2.2]. The quantity σ0

i denotes the default value.

Fig. 5.21: The evolution of the total cross section varying Eclγ threshold in ECAL1
in values: Eclγ ∈ [0.63, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2]. The quantity σ0

i denotes
the default value.
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Fig. 5.22: The evolution of the cross section point σi, i ∈ [1, 2, 3, 4, 5, 6, 7, 8]
in ϕ bins, varying Eclγ threshold in ECAL1 in values: Eclγ ∈ [0.63, 0.8,
1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2]. The quantity σ0

i denotes the value of the cross section
for Eclγ = 0.63 GeV.
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Fig. 5.23: The evolution of the fitted parameters pi, varying Eclγ threshold in
ECAL1 in values: Eclγ ∈ [0.63, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2]. The quantity σ0

i

denotes the cross section for Eclγ = 0.63 GeV.

5.8.3 Variation of the rLEPTO Normalisation
The determination of the background level has been obtained by two different
methods [[←↩4.4.3.]], which may introduce an uncertainty in the background level.
The deviation of the two methods, combined with the different results from both
beam polarities, is on average 5–10%. This implies a systematic effect on the
rLEPTO determination.

The systematic effect on the background level is the variation of the rLEPTO was
studied by varying the default value within the range of statistical uncertainties.
The impact on the cross section points is shown in Figs. 5.24, 5.25, 5.26, and 5.27
footnoteThe systematic studies were performed as a team effort. Half of the tests
were done by the author, the results of tests in Section [[←↩5.8.3.]], [[↪→5.8.5.]],
[[↪→5.8.4.]], [[↪→5.8.7.]] come from the collaboration [104]. averaged over both po-
larities.

Tab. 5.24: Relative systematic errors from the variation of the the LEPTO nor-
malisation of the cross section in 5 |t|-bins.

|t| bin [0.08, 0.15] [0.15, 0.22] [0.22, 0.36] [0.36, 0.5] [0.5, 0.64]
sys. error [%] 6.0 6.0 10.0 10.0 10.0
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Tab. 5.25: Relative systematic errors from the variation of the the LEPTO nor-
malisation of the cross section in 8 ϕ-bins.

ϕ bin [−π,− 3π
4 ] [− 3π

4 ,−π
2 ] [−π

2 ,−π
4 ] [−π

4 , 0] [0, π
4 ] [ π

4 , π
2 ] [ π

2 , 3π
4 ] [ 3π

4 , π]

sys. error [%] 12.0 6.0 6.0 16.0 16.0 6.0 6.0 12.0
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Fig. 5.24: The evolution of the cross-section point σi=1,2,3,4,5 in the 5 t bins, when
rLEPTO (the SIDIS background) varies from 3% to 13%. The quantity σ0

i denotes
the value of the cross section for rLEPTO = 8%. The band corresponds to the
relative statistical uncertainty [104].
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Fig. 5.25: The evolution of the cross-section point σi=1,2,3,4,5,6,7,8 in the 8 ϕ bins,
when rLEPTO (the SIDIS background) varies from 3% to 13%. The quantity σ0

i

denotes the value of the cross section for rLEPTO = 8% [104].
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Tab. 5.26: Relative systematic errors from the variation of the LEPTO normali-
sation of the total cross section and 3 fitted parameters of its ϕ modulation.

parameters σtot p0 p1 p2

sys. error [%] 8.2 8.3 0.7 62.0
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Fig. 5.26: The evolution of the fitted parameters pi with i ∈ [1, 2, 3], when rLEPTO

varies from 3% to 13%. The quantity p0
i denotes the value of the cross section for

rLEPTO = 8% [104].
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Fig. 5.27: Impact of the variation of rLEPTO on the total exclusive π0 production
cross section. The quantity p0

i denotes the cross section point i for rLEPTO =
8% [104].
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5.8.4 Variation of the Scaling of LEPTO cLEPTO±
π0

In the cross section extraction, the inclusive background represented by the LEPTO
data are normalised by the LEPTO yield rLEPTO and the LEPTO normalisa-
tion cpLEPTO±

π0 [[←↩4.4.3.]]. The calculation of the normalisation factor cpLEPTO±
π0

is straightforward, however, a systematic effect can stem from possible loss of real
data due to an inefficiency not contained in other systematic effects. The test is
performed by stepping the cpLEPTO±

π0 by ±20% in steps of ±4. The influence on
the extracted cross section is shown in Figs. 5.29, 5.30, 5.31, and 5.28.
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Fig. 5.28: Impact of the variation of cpLEPTO±
π0 on the total exclusive π0 production

cross section. The quantity σ0
i denotes the value of the cross section for cpLEPTO±

π0

found in our data [104].

Tab. 5.27: Relative systematic errors of the cross section for the 5 |t|-bins.
|t| bin [0.08, 0.15] [0.15, 0.22] [0.22, 0.36] [0.36, 0.5] [0.5, 0.64]

sys. error [%] 2.0 2.0 3.0 3.0 3.0

Tab. 5.28: Relative systematic errors of the cross section for the 8 ϕ-bins.
ϕ bin [−π,− 3π

4 ] [− 3π
4 ,−π

2 ] [−π
2 ,−π

4 ] [−π
4 , 0] [0, π

4 ] [ π
4 , π

2 ] [ π
2 , 3π

4 ] [ 3π
4 , π]

sys. error [%] 4.0 2.0 2.0 5.0 5.0 2.0 2.0 4.0
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Fig. 5.29: The evolution of the cross-section point σi=1,2,3,4,5 in the 5 t bins, when
cpLEPTO±
π0 (the LEPTO normalisation) varies by ±20%. The quantity σ0

i denotes
the value of the cross section for cpLEPTO±

π0 found in our data [104].
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Fig. 5.30: The evolution of the cross-section point σi=1,2,3,4,5,6,7,8 in the 8 ϕ bins
varying the cpLEPTO±

π0 by ±20%. The quantity σ0
i denotes the value of the cross

section for cpLEPTO±
π0 found in our data [104].

157



0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
normalization

0.08−

0.06−

0.04−

0.02−

0

0.02

0.04

0.06

0.08

0 0
)/

p
0 0

-p
0

(p

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
normalization

0.3−

0.2−

0.1−

0

0.1

0.2

0.30 1
)/

p
0 1

-p 1
(p

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
normalization

4−

3−

2−

1−

0

1

2

3

40 2
)/

p
0 2

-p
2

(p

Fig. 5.31: The evolution of the fitted parameters pi with i ∈ (1, 2, 3), when
cpLEPTO±
π0 (the LEPTO normalisation) varies by ± 20%. The quantity σ0

i denotes
the value of the cross section for cpLEPTO±

π0 (the LEPTO normalisation) varies by
± 20%. The quantity p0

i denotes the value of the fitted parameter for cpLEPTO±
π0

found in our data [104].

Tab. 5.29: Relative systematic errors of the total cross section and 3 fitted param-
eters of its ϕ modulation.

parameters σtot p0 p1 p2

sys. error [%] 2.6 2.6 2.0 20.0

5.8.5 Variation of the Acceptance Binning
The selected binning for the cross section calculation is supposed to maximize the
balance of the statistics in bins. The assumption stands that the used binning
in variables Q2 and ν should not have any effect on the final results, as the cross
section is integrated over these two variables. To verify this assumption, a stability
test was performed varying the binning with respect to the reference in one selected
variable, while the other is kept default. The results of the variation in both vari-
ables are shown in Figs. 5.33, 5.34, 5.35, and 5.32 where the points i = (1, 2, 3, 4)
show the values from varying number of Q2 bins to binningQ2 = (3, 4, 5, 6), respec-
tively, while the binning in ν is kept on default, and the points i = (5, 6, 7, 8, 8)
represent the variation of binningν = (3, 4, 5, 6, 7), respectively, and Q2 binning is
fixed. The Tabs. 5.32, 5.30, and 5.31 sum up the values of extremities extracted
from these plots.
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Tab. 5.30: Relative systematic errors of the cross section for the 8 ϕ-bins.
ϕ bin [−π,− 3π

4 ] [− 3π
4 ,−π

2 ] [−π
2 ,−π

4 ] [−π
4 , 0] [0, π

4 ] [ π
4 , π

2 ] [ π
2 , 3π

4 ] [ 3π
4 , π]

sys.error ↑ [%] 10.0 4.0 3.0 3.0 3.0 3.0 4.0 0.0
sys.error ↑ [%] 0.0 4.0 3.0 3.0 3.0 3.0 4.0 6.0

Tab. 5.31: Relative systematic errors of the total cross section and 3 fitted param-
eters of its ϕ modulation.

parameters σtot p0 p1 p2

sys.error ↑ [%] 3.0 2.5 3.0 40.0
sys.error ↓ [%] 1.0 1.0 3.0 40.0

Tab. 5.32: Relative systematic errors of the cross section for the 5 |t|-bins.
|t| bin [0.08, 0.15] [0.15, 0.22] [0.22, 0.36] [0.36, 0.5] [0.5, 0.64]

sys.error ↑ [%] 1.0 5.0 3.0 3.0 8.0
sys.error ↓ [%] 1.0 5.0 0.0 0.0 4.0

1 2 3 4 5 6 7 8 9
bins

0.04−

0.02−

0

0.02

0.04

0.06

0.08

0
σ

)/
0

σ-
σ(

total cross sectiontotal cross section

Fig. 5.32: The impact of the variation of the acceptance binning on the total
exclusive π0 cross section [104].
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Fig. 5.33: The impact of the variation of the acceptance binning on the |t| cross
section σi=1,2,3,4,5. The first four points show the results of the variation of the
binning in Q2 in steps Nbins = (3, 4, 5, 6), with the default 6 ν bins, and the
consecutive five points show the effect of the variation in bins of νin steps Nbins =
(3, 4, 5, 6, 7) with the default 5 Q2 bins [104].

160



1 2 3 4 5 6 7 8 9
bins

0.4−

0.2−

0

0.2

0.4

0.6

0.80 1
σ

)/
0 1

σ- 1
σ(

ϕbin 1 in 

mean= 0.134

weighted av= 0.184

ϕbin 1 in 

1 2 3 4 5 6 7 8 9
bins

0.4−

0.2−

0

0.2

0.4

0.6

0.80 2
σ

)/
0 2

σ-
2

σ(

ϕbin 2 in 

mean= 0.003

weighted av= 0.006

ϕbin 2 in 

1 2 3 4 5 6 7 8 9
bins

0.4−

0.2−

0

0.2

0.4

0.6

0.80 3
σ

)/
0 3

σ-
3

σ(

ϕbin 3 in 

mean= 0.017

weighted av= 0.018

ϕbin 3 in 

1 2 3 4 5 6 7 8 9
bins

0.4−

0.2−

0

0.2

0.4

0.6

0.80 4
σ

)/
0 4

σ-
4

σ(

ϕbin 4 in 

mean= 0.007

weighted av= 0.008

ϕbin 4 in 

1 2 3 4 5 6 7 8 9
bins

0.4−

0.2−

0

0.2

0.4

0.6

0.80 5
σ

)/
0 5

σ-
5

σ(

ϕbin 5 in 

mean= 0.011

weighted av= 0.012

ϕbin 5 in 

1 2 3 4 5 6 7 8 9
bins

0.4−

0.2−

0

0.2

0.4

0.6

0.80 6
σ

)/
0 6

σ-
6

σ(

ϕbin 6 in 

mean= 0.005

weighted av= 0.005

ϕbin 6 in 

1 2 3 4 5 6 7 8 9
bins

0.4−

0.2−

0

0.2

0.4

0.6

0.80 7
σ

)/
0 7

σ-
7

σ(

ϕbin 7 in 

mean= 0.019

weighted av= 0.026

ϕbin 7 in 

1 2 3 4 5 6 7 8 9
bins

0.4−

0.2−

0

0.2

0.4

0.6

0.80 8
σ

)/
0 8

σ-
8

σ(

ϕbin 8 in 

mean= -0.074

weighted av= -0.061

ϕbin 8 in 

Fig. 5.34: The impact of the variation of the acceptance binning on the ϕ cross-
section bins σi=1,2,3,4,5,6,7,8. The first four points show the results of the variation
of the binning in Q2 in steps Nbins = (3, 4, 5, 6), with the default 6 ν bins, and
the consecutive five points show the effect of the variation in bins of ν in steps
Nbins = (3, 4, 5, 6, 7) with the default 5 Q2 bins [104].
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Fig. 5.35: The impact of the variation of the acceptance binning on the fitted
parameters pi with i ∈ (1, 2, 3). The first four points show the results of the
variation of the binning in Q2 in steps Nbins = (3, 4, 5, 6), with the default 6 ν bins,
and the next five points show the variation in bins of ν in steps Nbins = (3, 4, 5, 6, 7),
with 5 Q2 bins [104].

5.8.6 Exclusive ω0 Contamination
While a majority of background originates from inclusive processes, exclusive pro-
cesses other than the π0 production itself contribute as well. The most probable
candidate of such a contamination is the exclusive ω0 meson production, in par-
ticular the decay channel into π0 and γ, which has the branching ratio of 8.28%.
Such events, where the photon carries away only a tiny fraction of the total energy,
could be misidentified as exclusive π0 production.

Exclusive ω0 candidates can be reconstructed in the data combining a π0 with
an additional photon. The Fig. 5.36 shows the invariant mass of π0γ system. One
can indeed notice a small peak at the nominal ω0 mass of 782.66 MeV. Out of
the full exclusive π0 sample of 1531 events, in total, 41 exclusive ω0 candidates
were identified. These events represent an additional background of the exclusive
π

0 production and need to removed from the original sample. The results from
the data were compared with a simulation of the exclusive ω0 muoproduction
(HEPGEN++), applying the exclusive π0 selection procedure. They were found to
be compatible, as can be seen in Fig. 5.36.

Apart from visible ω0 events, the contribution of the cases where the third
photon was not detected (i.e. “invisible” exclusive ω0) should be accounted for.
The same simulation of the exclusive ω0 production was used for this case with the

162



event selection identical to the exclusive π0 one. The number of remaining exclusive
π

0 events scaled with the normalisation gives an estimate for the contamination.
The pure exclusive ω0 events are used for the normalisation of the “visible”

ω0 MC. The normalisation is performed by the integral of the data in range 700–
865 MeV. The events are selected analogously to the exclusive π0 selection. A π0

candidate is identified, and then combined with an additional neutral cluster to
form an ω0 candidate, which is then subjected to the same selection steps, except
of the kinematic fit. The kinematic fit was found to be unstable for constraining
three photons and was failing to converge. The distribution of the invariant mass
of π0 − γ exhibits a high level of background, which has to be removed in order
to estimate the number of exclusive ω0 events. A simple asymmetric constant fit
was utilised to estimate the level of the background, which was then subtracted.
The normalisation between the exclusive ω0 MC and the data was then obtained
as the ratio of the number of exclusive ω0 events in the data and MC.

The systematic effect of exclusive ω0 contamination is summarised in Ta-
bles 5.34, 5.35, and 5.36. The resulting contamination by the invisible exclusive
ω yields is s↓ω = 2.4%.

Fig. 5.36: Left: The invariant mass spectrum for exclusive π0 candidates com-
bined with an additional photon in the event (“visible” ω0 contamination). The
normalisation of the exclusive ω0 muoproduction HEPGEN++ is obtained from
the plot on the right-hand side. Right: The invariant mass spectrum of the π0γ

system obtained selecting exclusive ω0 muoproduction, µp→ µpω0 → µpπ0γ, for
the data and an exclusive ω0 muoproduction HEPGEN++. The MC is normalised
to the integral of the data in the signal region 700–865 MeV.
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Tab. 5.33: Event counts in real data and the exclusive ω MC used for estimating
the exclusive ω0 contamination of the exclusive π0 production: First row contains
the number of events under the π0 peak; the second row represents the integrals
of the area of the ω0 peak (in range 700–865 MeV) from the “visible” ω0 within
the exclusive π0 sample; and the third row contains the integrals of the area of the
ω0 peak in the exclusive ω0 selection (after subtracting the background).

Data peak area MC peak area
Selection [events] [sum of weights]

exclusive π0 1531 5551.11
visible ω0 in π0 sample 41 2244.48

exclusive ω0 73 6658.02

Tab. 5.34: Relative systematic errors due to ω0 contamination of the cross section
for the 5 |t|-bins.
|t| bin [GeV2] [0.08, 0.15] [0.15, 0.22] [0.22, 0.36] [0.36, 0.5] [0.5, 0.64]

sys. error ↓ [%] 2.7 2.5 2.5 2.7 1.5

Tab. 5.35: Relative systematic errors due to ω0 contamination of the cross section
for the 8 ϕ-bins.

ϕ bin [−π,− 3π
4 ] [− 3π

4 ,−π
2 ] [−π

2 ,−π
4 ] [−π

4 , 0] [0, π
4 ] [ π

4 , π
2 ] [ π

2 , 3π
4 ] [ 3π

4 , π]

sys. error ↓ [%] 4.3 2.0 1.9 3.1 3.1 1.4 2.0 5.7

Tab. 5.36: Relative systematic errors due to ω0 contamination of the total cross
section and 3 fitted parameters of its ϕ modulation.

parameters σtot p0 p1 p2

sys. error ↓ [%] 2.6 2.6 2.6 20.0
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5.8.7 Radiation Corrections
The radiative corrections are assumed to be small for exclusive π0 muoproduction,
not exceeding 10% [117]. The processes with complete detection of all final parti-
cles have strongly reduced phase space left for the final radiated photons (compared
to inclusive scattering). The size of the radiation corrections was estimated using
program EXCLURAD [117], originally developed for the JLab experiments. This
program has a limitation, it assumes that only one of the final hadrons is detected
(either recoiling proton or π0), while at COMPASS both hadrons are detected. The
processes entering the estimation are Born process, Bremsstrahlung (radiation of
a photon), and the vertex correction and vacuum polarisation.

The radiative corrections are very sensitive to the exclusivity cuts, which are
represented in EXCLURAD by a cut on inelasticity. The inelasticity considered in
the predictions [117] is either the invariant mass v1, when only the pion is detected,
or the invariant mass v2, when only the recoiling proton is detected:

v1 = (k + p− k′ − pπ0)2 −m2
p or v2 = (k + p− k′ − pp)2 −m2

π0 (5.17)

At COMPASS both proton and π0 are detected and we observe the missing mass
M2

X = (k + p− k′ − p′ − q′)2 (right bottom plot in Fig. 4.8). One can note a very
sharp peak around zero, with the cuts at |M2

X | < 0.3 GeV2. The cut corresponds
to the emission of 4 extra pions at rest, which leads to the inelasticities v1 and
v2 being very broad. The cut for emission of 4 extra pions is at vcut

1 = (0.938 +
4 × 0.135)2 − 0.9382) = 1.3 GeV2 and vcut

2 = (5 × 0.135)2 − 0.1352) = 0.44 GeV2.
Considering these cuts in inelasticities, EXCLURAD results suggest a maximum
possible systematic effect up to 6% [103]. The estimated relative uncertainties in
all the bins are given in Tabs. 5.37, 5.38, 5.39.

Tab. 5.37: Relative systematic errors due to radiative corrections of the cross
section in 5 |t|-bins.
|t| bin [GeV2] [0.08, 0.15] [0.15, 0.22] [0.22, 0.36] [0.36, 0.5] [0.5, 0.64]

sys. error ↑ [%] 6.0 6.0 6.0 6.0 6.0
sys. error ↓ [%] 3.0 3.0 3.0 3.0 3.0
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Tab. 5.38: Relative systematic errors due to radiative corrections of the cross
section in 8 ϕ-bins.

ϕ bin [−π,− 3π
4 ] [− 3π

4 ,−π
2 ] [−π

2 ,−π
4 ] [−π

4 , 0] [0, π
4 ] [ π

4 , π
2 ] [ π

2 , 3π
4 ] [ 3π

4 , π]

sys. error ↑ [%] 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3
sys. error ↓ [%] 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6

Tab. 5.39: Relative systematic errors due to radiative corrections of the total cross
section and 3 fitted parameters of its ϕ modulation.

parameters σtot p0 p1 p2

sys. error ↑ [%] 6.0 6.0 2.0 20.0
sys. error ↓ [%] 3.0 3.0 2.0 20.0

5.8.8 Systematic effect due to µ+ and µ- fluxes
The muon flux is determined with an accuracy better than 2%. On each cross
section and parameter a systematic error of 2% is added.

5.8.9 Period Compatibility
The compatibility of 2016 periods was studied for the cross section as a function
of ϕ and |t|, as shown in Fig. 5.37. Results are compatible within statistical errors.

Fig. 5.37: The comparison of the cross section of exclusive π0 production as a
function of ϕ (on the left) and |t| (on the right) averaged over both polarities, for
individual 2016 periods.
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5.8.10 Summary of Systematic Effects
The summarised results of all the contributions to the systematics are presented in
Tables 5.40 for the bins in |t|, 5.41 for the bins in ϕ, and 5.42 for the fitted param-
eters of the cross section ϕ modulation. The individual systematic uncertainties
are added in quadrature to obtain the final systematic uncertainties.

Tab. 5.40: Summary of the estimated relative systematic uncertainty of the cross
section in the 5 bins of |t|. Arrows indicate an increase or decrease of the measured
value due to the systematic effect.

section effect σ1 σ2 σ3 σ4 σ5

5.8.1 χ2
fit cut-off variation ↑ [%] 1.9 1.9 6.3 6.3 6.3
χ2

fit cut-off variation ↓ [%] 8.5 8.5 5.2 5.2 5.2
5.8.2 Ecll threshold, EC00 ↑ [%] 3.9 3.9 12.1 12.1 12.1

Ecll threshold, EC00 ↓ [%] 2.2 2.2 0.0 0.0 0.0
5.8.2 Ecll threshold, EC01 ↑ [%] 2.0 2.0 6.0 6.0 6.0

Ecll threshold, EC01 ↓ [%] 4.0 4.0 1.7 1.7 1.7
5.8.3 rLEPTO variation [%] 6.0 6.0 10.0 10.0 10.0
5.8.4 cpLEPTO

π0 variation [%] 2.0 2.0 3.0 3.0 3.0
5.8.5 acceptance binning ↑ [%] 1.0 5.0 3.0 3.0 8.0

acceptance binning ↓ [%] 1.0 5.0 0.0 0.0 4.0
5.8.6 exclusive ω contamination ↓ [%] 2.7 2.5 2.5 2.7 1.5
5.8.7 radiation corrections ↑ [%] 6.0 6.0 6.0 6.0 6.0

radiation corrections ↓ [%] 3.0 3.0 3.0 3.0 3.0
5.8.8 µ+ and µ− flux [%] 2.0 2.0 2.0 2.0 2.0

total ↑ [%] 10.2 11.3 19.5 19.5 20.9
total ↓ [%] 12.4 13.3 12.6 12.6 13.0
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Tab. 5.41: Summary of the estimated relative systematic uncertainty of the cross
section in the 8 bins of ϕ.

section effect σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8

5.8.1 χ2
fit cut-off variation ↑ [%] 9.0 2.1 2.1 9.0 9.0 2.1 2.1 9.0

χ2
fit cut-off variation ↓ [%] 12.6 4.5 4.5 12.6 12.6 4.5 4.5 12.6

5.8.2 Ecll threshold, EC00 ↑ [%] 13.0 6.7 6.7 13.0 13.0 6.7 6.7 13.0
Ecll threshold, EC00 ↓ [%] 1.5 0.3 0.3 1.5 1.5 0.3 0.3 1.5

5.8.2 Ecll threshold, EC01 ↑ [%] 7.7 2.4 2.4 7.7 7.7 2.4 2.4 7.7
Ecll threshold, EC01 ↓ [%] 2.9 1.9 1.9 2.9 2.9 1.9 1.9 2.9

5.8.3 rLEPTO variation [%] 12.0 6.0 6.0 16.0 16.0 6.0 6.0 12.0
5.8.4 cpLEPTO

π0 variation [%] 4.0 2.0 2.0 5.0 5.0 2.0 2.0 4.0
5.8.5 acceptance binning ↑ [%] 10.0 4.0 3.0 3.0 3.0 3.0 4.0 0.0

acceptance binning ↓ [%] 0.0 4.0 3.0 3.0 3.0 3.0 4.0 6.0
5.8.6 exclusive ω contamination ↓ [%] 4.3 2.0 1.9 3.1 3.1 1.4 2.0 5.7
5.8.7 radiation corrections ↑ [%] 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3

radiation corrections ↓ [%] 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6
5.8.8 µ+ and µ− flux [%] 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0

total ↑ [%] 24.8 12.4 12.2 25.4 25.4 12.2 12.4 22.6
total ↓ [%] 19.1 10.0 9.7 21.8 21.8 9.6 10.0 20.4

Tab. 5.42: Summary of the estimated relative systematic uncertainty of the total
cross section and 3 fitted parameters of its ϕ modulation.

section effect σtot ⟨dσU
dt
⟩ ⟨dσTT

dt
⟩ ⟨dσLT

dt
⟩

5.8.1 χ2
fit cut-off variation ↑ [%] 3.6 3.0 3.0 25.0

5.8.1 χ2
fit cut-off variation ↓ [%] 6.5 5.0 4.0 25.0

5.8.2 Ecll threshold, EC00 ↑ [%] 7.3 7.0 5.0 4.0
Ecll threshold, EC00 ↓ [%] 0.0 0.0 1.0 4.0

5.8.2 Ecll threshold, EC01 ↑ [%] 3.7 3.0 1.0 30.0
Ecll threshold, EC01 ↓ [%] 1.5 2.0 2.0 30.0

5.8.3 rLEPTO variation [%] 8.2 8.3 0.7 62.0
5.8.4 cpLEPTO

π0 variation [%] 2.6 2.6 2.0 20.0
5.8.5 acceptance binning ↑ [%] 3.0 2.5 3.0 40.0

acceptance binning ↓ [%] 1.0 1.0 3.0 40.0
5.8.6 exclusive ω contamination ↓ [%] 2.6 2.6 2.6 20.0
5.8.7 radiation corrections ↑ [%] 6.0 6.0 2.0 20.0

radiation corrections ↓ [%] 3.0 3.0 2.0 20.0
5.8.8 µ+ and µ− flux [%] 2.0 2.0 2.0 10.0

total ↑ [%] 14.8 13.7 7.5 91.0
total ↓ [%] 11.8 11.2 7.0 91.0
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Conclusion
The GPD represent one of the approaches to describe the nucleon 3D structure.
GPDs can be parametrised through evaluating the differential cross section of ex-
clusive processes, such as HEMP, or DVCS. The differential cross section provides
access to structure functions corresponding to bi-linear combinations of helicity
amplitudes. Assuming factorisation, the helicity amplitude is a convolution of the
hard scattering kernel with a soft term containing the GPDs. The GPDs can be
thus extracted from the scattering amplitudes. While DVCS provides access to the
chiral-even GPDs, HEMP enables to determine complementary GPDs, in partic-
ular, the chiral-odd ones. In addition, examining different meson species provides
information on flavour dependency of GPDs.

The COMPASS experiment dedicated two years for measurement of exclu-
sive processes in 2016–17 using 160 GeV muon beam of both polarities and an
unpolarised hydrogen target. The subject of this thesis is the hard exclusive π0

production process µp → µ′p′π0 in the kinematic domain of average xB ∼ 0.134.
The main feature of the experimental setup was the over-constraintment of the
measurement employing the recoiled proton time-of-flight detector CAMERA com-
bined with the rest of the spectrometer, which detected the scattered muon and
the π0 decaying into two photons. This provided higher precision in the determi-
nation of the exclusivity of events, which together with utilising the kinematic fit
procedure ensured the reduction of the background. The CAMERA allowed to
access the region of low four-momentum transfer t of the recoiled proton, where
the spectrometer resolution is limited.

A high resolution measurement of exclusive processes requires a precise cali-
bration of the apparatus, particularly of the CAMERA, and the electromagnetic
calorimeters. The preparation of the ECALs encompasses several methods of tim-
ing and energy calibration applied in several iterations of the data reconstruction.
During the analysis of the 2016 data, the calibrations were tested and tuned, en-
suring the reliable performance of the calorimeters.

The collected data has been processed to select the exclusive π0 production
events, identifying a scattered muon, a recoiled proton, and a π0 candidate. The
exclusivity of the event was ensured by requirements matching the measured pro-
ton momentum with its prediction based on the measurement of the remaining
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particles and conservation laws. To improve precision and reduce the background,
the kinematically constrained fit has been deployed. The dominant contribution
to the background comes from inclusive π0 production. The estimation of the
background is performed using Monte Carlo simulations based on event genera-
tors HEPGEN++ for modelling the exclusive π0 signal and LEPTO for describing
the inclusive background. Two different methods were employed to fit both sim-
ulation samples to the data, obtaining the background level of 8 ± 5%. Another
source of background is the 2.4% exclusive ω0 production yield. Both background
sources were subtracted from the selected event sample.

The differential cross section of exclusive π0 production as a function of the
four-momentum transfer t and the azimuthal angle of the π0 ϕ was determined in
the kinematic domain:

6.4 < ν < 40 GeV,
1 < Q2 < 8 GeV2,

0.08 < |t| < 0.64 GeV2,

characterised by average values of kinematic variables:

⟨Q2
fit⟩ = 2.266 GeV2,

⟨νfit⟩ = 10.160 GeV,
⟨|tfit|⟩ = 0.293 GeV2,

⟨xB⟩ = 0.134,
⟨W ⟩ = 4.100 GeV,

⟨|tCAMERA|⟩ = 0.297 GeV2.

The ϕ-modulation of the exclusive π0 production cross section was fitted to
determine the contributions of the particular amplitudes with the following results:

⟨︃dσT

d|t| + ϵ
dσL

d|t|

⟩︃
= (6.63± 0.31stat

+ 0.90
− 0.74

⃓⃓⃓
sys

) nb
(GeV)2⟨︃dσTT

d|t|

⟩︃
= (−4.61± 0.48stat

+ 0.35
− 0.32

⃓⃓⃓
sys

) nb
(GeV)2⟨︃dσLT

d|t|

⟩︃
= (0.15± 0.19stat

+ 0.14
− 0.14

⃓⃓⃓
sys

) nb
(GeV)2 .
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The strong contribution of the transverse cross section amplitude σTT, observed
at COMPASS in the 2012 pilot run was confirmed. The total cross section inte-
grated over ϕ and over the accessed range in t obtained from the 2016 COMPASS
data analysis is 6.72± 0.32stat

+ 0.99
− 0.79

⃓⃓⃓
sys

nb. The obtained results will serve as input
for further constraining phenomenological models, such as Goloskokov–Kroll or
Liuti–Goldstein. In addition, the evolution of the differential cross section as a
function of t and ϕ was studied in three bins of ν and four bins of Q2.

The 2016 data sample is 2.3× larger as compared to the 2012 pilot measure-
ment. Moreover, the background suppression has been improved, leading to a re-
duction of the measured uncertainties almost 3×. They could be further improved
by expanding the analysis to the 2017 data, enlarging the complete statistics to
9× the amount of 2012. This would not only reduce statistical uncertainties, but
enable extraction of spin-dependent cross sections for µ+ and µ− as well, allowing
to determine the polarisation-dependent interference term σLT′ .
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List of abbreviations
ADC Analog-to-Digital Converter
BMS Beam Momentum Station
CAMERA COMPASS Apparatus for Measurement of Exclusive

ReActions
CASTOR CERN Advanced STORage manager
CATCH COMPASS Accumulate, Transfer and Control Hardware
CERN Council Européen pour la Recherche Nucléaire
COMPASS Common Muon and Proton Apparatus for Structure and

Spectroscopy
CORAL COMPASS Reconstruction AnaLysis software
DAQ Data AcQuisition
DC Drift Chamber
DIS Deep Inelastic Scattering
DOF Distance Of Flight
DVCS Deeply Virtual Compton Scattering
ECAL Electromagnetic CALorimeter
FPGA Field Programmable Gate Array
GAMS Russian acronym for hodoscopic multi-gamma Cherenkov

spectrometre
GANDALF Generic Advanced Numerical Device for Analog and Logic

Functions
GEM Gas Electron Multiplier
GeSiCA GEM and Silicon Control and Acquisition
GK Goloskokov and Kroll
GL Goldstein and Liuti
GPD Generalised Parton Distributions
GTMD Generalised Transverse Momentum Dependent parton

distributions
HEMP Hard Exclusive Meson Production
LAS Large Angle Spectrometre
LAST LAS Trigger
LAT Large Area Trackers
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LT Ladder Trigger
MPFF Meson Production Form Factor
MW Muon Wall
MWPC Multi-Wire Proportional Chamber
MT Middle Trigger
OT Outer Trigger
PDF Parton Distribution Functions
PHAST PHysics Analysis Software
Pixel-GEM Pixel Gas Electron Multiplier
Pixel-MicroMegas Pixel Micro-Mesh Gaseous Structures
PMT Photo-Multiplier Tube
RT Random Trigger
RHGAMS Radiation Hardened GAMS
RICH Ring Imaging Cherenkov detector
QCD Quantum Chromodynamics
SAS Small Angle Spectrometre
SAT Small Area Trackers
SIDIS Semi-Inclusive DIS
SILICON silicon microstrip trackers
SciFi Scintilating Fibers
SLAC Stanford Linear Accelerator Center
SPS Super Proton Synchrotron
TCS Trigger Control System
TDC Time-to-Digital Converter
TIGER Trigger Implementation for GANDALF Electronic

Readout
TOF Time Of Flight
VSAT Very Small Area Trackers
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