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Supervisor: Mgr. Lukáš Krump, Ph.D., Mathematical Institute of Charles Uni-
versity

Abstract: This doctoral thesis focuses on synthetic geometry in various dimen-
sions. We start with plane geometry to show how synthetic geometry can be
used in proofs. We demonstrate the advantages of synthetic geometry on two
different geometric proofs of the Pappus–Pascal theorem, the construction of the
osculating circles of an ellipse at any point of the ellipse and the graphical solu-
tion of a quadratic equation. Moreover, the thesis describes visualisation of the
n-dimensional space using the ”behind” view method and perpendicular layering.
Furthermore, the thesis focuses on visualisation of 4-dimensional space. It de-
scribes two possible methods: a generalisation of Monge’s projection (orthogonal
projection onto two mutually perpendicular subspaces) and a generalisation of
linear perspective. Finally, the thesis contains applications of the visualisation
of 4-dimensional space. For example, the usage of the generalised Monge’s pro-
jection and 4-dimensional perspective for representation of the complex number
plane. The application for visualisation of shadows in 4-dimensions syntheti-
cally and algebraically, and for representation of 4-dimensional objects using 3D
printing.
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Introduction
Geometry is all around us. Even before humans were here, nature played with
geometric shapes and patterns. We can find the golden spiral in a sunflower,
a mollusc shell or a pineapple. The eggs we eat without noticing are made up
of two different ellipsoids, and the filaments of caterpillars form gossamer webs
close to hyperbolic paraboloids. Geometry surrounds us in beautiful patterns.
Kvasz begins his book on painting (Kvasz [2020]) with the words: ”Painting, like
geometry, is based on the incomprehensible mystery of seeing. Through seeing,
we constantly acquire much information about our surroundings. In addition to
this experiential dimension, visual perception has an aesthetic dimension.”

It is possible to represent almost any geometry with equations. This is useful
with developed computer science, but it is a great pity because we miss out the
visual aspect of geometry. Fortunately, with the advent of modern technology,
synthetic geometry is making a comeback in computer graphics.

The earliest recorded beginnings of geometry come from ancient Babylon,
around 3000 BC. Geometry at that time was a collection of empirical needs to
measure lengths, angles, areas and volumes of simple geometric solids. It was
based on experience in surveying, construction, astronomy, and various trades.
They probably did not deal with proofs and more general generalisations (Kline
[1990]). In ancient Greece in the 7th-5th centuries BC, mathematicians built on
previous knowledge by trying to generalise and prove. They were no longer just
concerned with how to count but why.

Classical geometry focused on constructions using the compass and ruler.
Euclid made a revolution in geometry. He introduced the mathematical rigour
and axiomatic method that is still used today. His book The Elements (Hypsicles
and Mocenigo [1482]) is widely regarded as the most influential textbook of all
time and was known to all educated people in the West until the mid-20th century
(Eves [1964]).

From the 1st century BC, the ground plans of temples, axial sections of
columns and pillars or drawings of statues were drawn on paper. Informa-
tion about ancient drawings is given in the books Kadeřávek [1997], Kadeřávek
[1954]. Vitrius used three methods of representing objects on the plane: ichnog-
raphy, orthography and scenography. Ichnography and orthography correspond
to orthogonal projection, while scenography corresponds to perspectivity (Pollio
et al. [2001]). These ancient constructions mainly represented exceptional cases
and were not unambiguous. As late as the 13th century, orthogonal projections
(ground, front and side views) were placed independently and at different scales,
see Honnecourt [2012]. Albrecht Dürer in 1525 in his publication Underweysung
der Messung, mit dem Zirckel und Richtscheyt, in Linien, Ebenen unnd gantzen
corporen (Dürer [1966]) presented several constructions in orthogonal projection
on two mutually perpendicular planes. Each drawing was still about mapping
space onto the plane, not solving spatial problems in the plane. Dürer concen-
trated, among other things, on plane curves. He constructed conics as cuts of a
cone.

Descartes then explored analytic geometry and the Cartesian coordinate sys-
tem (Descartes [2001]).Brunelleschi introduced the one-point perspective (Janson
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[2023]) which will be generalised to 4D in this thesis. Monge’s projection (Monge
[1847]) will also be generalised to a higher dimension in this thesis. The author
of Monge’s projection is the French mathematician Gaspard Monge.

A large part of the work will focus on 4D geometry. For this purpose, it is
appropriate to start with the essay ”What is the fourth dimension?” by Hinton
[1880]. A good answer can be found in the novel Flatland by Abbott [2015].
Rucker [2014] and Kaku [1995] are another breathtaking science fiction novel
about introduction to four-dimensional space. For a brief history of multidimen-
sional geometry, particularly synthetically constructed four-dimensional geome-
try, see Manning [1914]. Work on the synthetic visualisation of points and lines
of four-dimensional space in planes was written by Lindgren and Slaby [1968],
and an analytical approach and differential geometry in four-dimensional space is
described in Forsyth [1930]. Stachel [1990] proves an analogue of the right angle
theorem in the orthogonal projection of a four-dimensional space onto a plane.
There is no need to stop at four-dimensional geometry; Weiss [1997] visualises
n-dimensional Euclidean space on a plane.

Most of the work consists of published articles, and this thesis will focus on
visual geometry. Of course, analytical geometry is also used in this work, as some
constructions and proofs need to be supported by calculations. This thesis aims
not to create a complete textbook of synthetic geometry bypassing analytical
geometry. This thesis aims to focus on the synthetic approach in some areas of
geometry.

The first part of the thesis focuses on plane geometry, where we show some
graphical proofs. The inspiration for this part of the thesis was the book Geometry
in figure by Akopyan [2017], where a proof is demonstrated using only one figure.
Descartes (translated by: J. Fiala), R. [2010] and Glaeser et al. [2016] are other
authors who use drawings for proofs. The purpose of this chapter is to make
the reader wonder whether it is necessary to use analytic geometry directly for
proofs, or whether there are other ways of doing proofs. This chapter is based
on two articles Řada [2022b] and Řada [2023]. Both articles focus on geometric
proofs rather than using algebraic proofs.

The second chapter is an introduction to 4D geometry. It tries to explain
how the reader can understand and imagine 4D geometry. The beginning of this
chapter is based on a talk ”Walking through a wall using 4D space (Analogies
up to 4D space)” given at Day of Doctoral Students 2021. The presentation is
mainly based on the book Flatland (Abbott [2015]).

The third chapter is a summary of the main principles of double orthogonal
projection on two perpendicular three-dimensional spaces inspired by Bogdan and
Serbanoiu [2021], Zamboj [2018b], Řada and Zamboj [2021], Zamboj [2019].

The fourth chapter explains the 4D perspective in detail. It explains the basic
principles of the 4D perspective, followed by a conference paper 3-sphere in a 4-
perspective Řada and Zamboj [2021] which discusses the representation of the
3-sphere in a 4-perspective, including a cut of the 3-sphere with a 3-space.

Chapter five describes the use of 4D visualisations. This chapter includes the
article on the complex number plane Řada and Zamboj [2023]. The complex
number plane could be a four-dimensional space so that we can visualise it with
a double orthogonal projection onto two mutually perpendicular 3-spaces or with
a 4D perspective. Another part of the fifth chapter focuses on 3D shadows of a
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4D Algebraic hypersurfaces in a 4D perspective. This part is based on the article
It is also essential to be able to imagine and grasp the 4D space. It jumps

over two dimensions from paper to 4D space, but from 3D space to 4D space, it
is only one dimension. This is why 3D printing is suitable for representing 4D
space. This is the subject of the article 3D printed models of a tesseract in double
orthogonal projection, and 4D perspective Řada and Zamboj [2020].

Throughout the text, we use many figures with the same constructions. It
is, therefore, pointless to draw all from zero. Therefore, the appendix B gives
some hints on how to make the work easier when using GeoGebra. The thesis
contains many figures created in GeoGebra Hohenwarter and Hohenwarter [2002]
using shortcuts from the article in the appendix. The rest of the figures are
programmed in the computer program Mathematica Wolfram [1999].

The thesis begins by demonstrating the strength of the geometry. It is nec-
essary to be able not only to visualise objects but also to work with displayed
objects on paper (measuring, cutting, ...). The work then moves on to the main
objective of the thesis, which is to introduce the reader to 4D geometry. This
shows the reader how to perceive the 4D world and draw 4D space on paper.
The work continues with the practical use of virtualising 4D geometry. In my
diploma thesis Řada [2019] it was very difficult to imagine the complex number
plane. This work gives a way how to visualise and work with the complex number
plane. Only a few papers are devoted to visualising the complex number plane.
Most papers skip the complex representation and show only the real x, y plane.
The work also includes algebraic shading. Many computer programs use point
shading. They take a ray of light through each point of the scene and look at
where each point is lighted. In this part, we use an algebraic representation of
solids and look at their shadows algebraically. The shadows are done in 3D and
4D geometry.
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1. Some geometric construction
and proofs

1.1 Introduction
The methods of synthetic geometry are powerful, and their use can simplify some
proofs compared to analytical ones. Historically, but also nowadays, many proofs
of geometric constructions are based on analytical calculations. However, for
many analytical proofs, it is possible to find a synthetic geometric proof that
additionally develops logical thinking (Molnár [2009], Tomić et al. [2019]). There
are even a few authors who sometimes primarily use geometric proofs that are
based only on figures. For example, (Bogomolny and Taleb [2020]) in his book
uses some proofs based on figures, and (Akopyan [2017]) in his book proved
a geometric statement with only one figure. In many countries, geometry in
secondary schools has almost disappeared from the curriculum. It was replaced
by calculus, and the same efforts were made in the Czech Republic (Moravcová
[2016]).

This chapter is divided into three sections. The first part is devoted to the
Pappus–Pascal theorem. We prove this theorem using three different proofs (using
homogeneous coordinates, using perspective view and using projectivity). The
second part describes the construction of the osculating circle of any point of
the ellipse. This part is inspired by the book The Universe of Conics: From the
ancient Greeks to 21st-century developments (Glaeser et al. [2016]). The third
section of this chapter is focused on quadratic equations. In this section, we
describe how to solve a quadratic equation graphically.

At first glance, the three parts of this chapter have nothing in common. How-
ever, all three sections are devoted to planar geometry and allow the reader to
look at classical problems through geometric glasses.

1.2 Pappus–Pascal’s theorem
The Pappus–Pascal’s theorem is one of the fundamental theorems of projective
geometry. The theorem was initially stated by Pappus of Alexandria in the 4th
century in Pappus’s Collection, book VII. (Jones [2013]) as Pappus’s hexagon
theorem. In the 17th century, the French philosopher and mathematician Blaise
Pascal generalized this theorem to the case where points A to F lie on a conic.
Pascal formulated his Pascal’s theorem in 1639 when he was 16 years old and
published it as a broadside titled Essay pour les coniques (Biggs [1981]). Later,
the theorem was generalized into Pappus–Pascal’s theorem.

Theorem 1 (Pappus’s hexagon theorem) Let A, B, C be three points on one line
and D, E, F be three points on another line. If AE intersect BD at X, AF
intersect CD at Y , and BF intersect CE at Z, then the three points X, Y, Z are
collinear.

Theorem 2 (Pascal’s theorem) Let the points A, B, C, D, E, F be given. Morover
suppose that the three intersections X = (AE × BD), Y = (AF × CD), Z =
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D = (0, 0, 1)
E

F

A = (0, 1, 0)

C

B

X = (1, 1, 1)

Y ZO = (1, 0, 0)

Figure 1.1: Proof of the Pappus’s hexagon theorem based on homogeneous coor-
dinates.

(BF × CE) exist.
The three points X, Y, Z are collinear if and only if the point A, B, C, D, E, F lie
on the same conic.

Theorem 1 deals with points on straight lines, theorem 2 deals with points on
a conic. We can generalize both theorems into one theorem below.

Theorem 3 (Pappus–Pascal’s theorem) Let A, B, C, D, E, F be six different
points in a plane. Points A, B, C, D, E, F lie on a conic if and only if the three
points X = (AE × BD), Y = (AF × CD), Z = (BF × CE) are collinear.

Let us start with the most common proof of Pappus’s hexagon theorem, which
is based on homogeneous coordinates (Mathcam [2013]).

Proof of the Theorem 1. Without loss of generality, let us choose homogeneous
coordinates such that:

A = (0, 1, 0), D = (0, 0, 1), X = (1, 1, 1), O = (1, 0, 0),

where O is intersection of lines ABC and DEF . We have

OA ∪ DX = B = (1, 1, 0), AX ∪ OD = E = (1, 0, 1).

Assuming that A ̸= C and D ̸= F we get

C = (1, s, 0), F = (1, 0, t),

where s, t ∈ R. Then the remaining points are

AF ∪ CD = Y = (1, s, t), BF ∪ CE = Z = (1 − st, s − st, t − st).

Points X, Y, Z are collinear because Y = Z + stX. The situation is illustrated in
figure 1.1.

Let us introduce the first geometric proof in this paper which is based on a
perspective view.
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Proof of the Theorem 1. Let the lines between the collinear points ABC and DEF
be parallel. In Euclidean space or a perspective, parallel lines intersect at a line
at infinity. Parallel lines in a ground plane π(x, y) intersect at a point on the
horizon line h. In this case, the parallel lines AE and BF intersect at point X,
the parallel lines AD and CF intersect at point Y , and the parallel lines BD and
EC intersect at point Z. All three intersection points X, Y, Z lie on the horizon
h (fig. 1.2b) or at the line at infinity l∞ (fig. 1.2a).

(a) Parallelism with the line at in-
finity

(b) Perspective point of view

Figure 1.2: Proof of the Pappus’s hexagon theorem based on paral-
lelism/perspective

There are several proofs of the Theorem 2. We will present one that uses
collinearity, projectivity, and Steiner’s definition. For clarity, we recall here this
definition.

Definition 1 (Steiner’s definition) Let two pencils of lines at two points H, H ′

and a projective but not perspective mapping π from H to H ′ be given. For any
line a in pencil H we have π(a) = a′ in pencil H ′. The intersection points of
corresponding lines (a ∩ a′) form a non-degenerate projective conic section.

Theorem 4 In the projective plane, any projectivity between two different ranges
h and h′ of points can be created as the product of at most two perspectivities
between ranges.
A projetivity is a perspectivity if, and only if, the point h ∩ h′ is mapped onto
itself.

Using Definition 1 and Theorem 4, we can prove the Pappus–Pascal’s theorem
on the conic.

Proof of the Theorem 2. We prove the two implication separately.

1. There are 6 points on the conic c = {A, B, C, D, E, F}. According to
Steiner’s definition 1, we put H = A and H ′ = C. The projectivity α
from the pencil H to the pencil H ′ generates conic c. The straight line
h = DE is in a perspectivity from the pencil H, and the straight line
h′ = EF is in a perspectivity from the pencil H ′. According to the Theo-
rem 4, h and h′ are linked with a projectivity β, which is a perspectivity,
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because α(E) = E. The projectivity β sends X = HB ∩ h to Z = BH ′ ∩ h′

because α(HB) = BH ′ [α(AB) = BC]. Since β is pesrpective on X and
Z = β(X) is collinear with Y , which is the center of perspectivity β. Let
D′ = H ′D ∩ h′ and F ′ = HF ∩ h. Using α(HD) = H ′D, we obtain
D = β(D′) and β(D′) = D. Similarly, it follows from α(HF ) = H ′F that
F = β(F ′) and β(F ′) = F . Therefore, the center of perspective is the point
Y , found as Y = DD′ ∩ FF ′ (Figure 1.3).

c

A = H

B

C = H′

D

E
F

h

h′

X
Z

D′

F ′

Y

Figure 1.3: Geometric proof of collinearity of points X, Y, Z based on projectivi-
ties

2. Every conic is uniquely given by 5 points A, B, C, D, E. We need to prove
that the point F lies on the same conic c. The chain β of perspectivities
from pencil H to the line h and further to the line h′ with the center in
Y and then through the line h′ to the pencil H ′ is a projectivity because
it is a finite chain of perspectivities. Then β is well-defined and HB →
BH ′, HD → DH ′ and EB → EH ′ for X, Y, Z are collinear. Therefore, the
chain β is a factorization of the projectivity α and therefore HF → FH ′.
Therefore, points A, B, C, D, E, F lie on the same conic c.

It is also worth mentioning that according to Steiner’s definition 1, it does not
matter which point is labelled as H and H ′.

Another geometric proof of Pappus–Pascal’s theorem exists. For example,
(Richter-Gebert [2011]) shows a proof based on double-ration and a proof via ori-
ented triangle area, (Braun and Narboux [2017]) uses Tarski’s geometry in proofs
and (Roscoe [2021]) nicely reinterprets the proof of Pappus–Pascal’s theorem
using determinants.

Geometry is suitable not only for proofs but also for constructions. In differ-
ential geometry, an osculating circle exists at any point in an ellipse. The center
of that osculating circle can be computed by curvature. In descriptive geometry,
osculating circles are drawn only at the vertices of an ellipse. Usually, no general
construction of an osculating circle is given. The following section describes the
geometric construction of the center of the osculating circle.

1.3 Osculating circle of an ellipse
Description of osculating circles is often based on differential geometry:
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”The osculating circle of a curve c at a given point P is the circle k that has
the same tangent as c at point P as well as the same curvature. Just as the
tangent is the line best approximating a curve at a point P , the osculating circle
is the best circle that approximates the curve at P .” (Gray [1997], pp. 111).

The set of all centers of the osculating circles forms an evolute (figure 1.4),
where the cusps1 are the centers of the osculating circles at the vertices of the
ellipse. There are many constructions of osculating circles at the vertices of the
ellipse. An ellipse is often drawn according to the plotted osculating circles in
descriptive geometry. Let us begin constructing an osculating circle at any point
of the ellipse.

Figure 1.4: Evolute of an ellipse

Let c be a given ellipse, C a center and a, b the axes of this ellipse. Moreover,
let P be an arbitrary point of the ellipse c, which is not equal to any of its vertices.
We construct the tangent t to the conic c at the point P (see figure 1.5). We
continue as follows:

1. We find a point P ′ and a tangent t′ axisymmetric along one of the axes of
the ellipse (WLOG a).

2. We draw a straight line r parallel to the tangent t′ through the point P

3. The straight line r intersects conic c at points P and R. (Point R also lies
on the osculating circle)

4. We find a line nP normal to the tangent t at the point P (line nP is per-
pendicular to the line t at the point P ).

1Cusp is a point of a curve, where the moving point must reverse direction. It is a type of
singular point of a curve.
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Figure 1.5: Construction of an osculating circle

Figure 1.6: The Osculating circle o as collinear image of c

5. We draw a line s perpendicular to the line r at a point of intersection of
lines CP ′ and r.

6. Then the lines s and nP intersect at the center O of osculating circle o of
the ellipse c at the point P .

The correctness of this construction could be verified using differential calcu-
lus. In this paper, we prefer a verification using projective geometry.

Firstly, we need to show that the center O of the osculating circle o lies on
the normal line np. It follows from the basic knowledge of differential geometry.

Secondly, the osculating circle o and the ellipse c osculate each other at the
common point P because perspective collineation exists with the center at P and
the axis t. It follows from the fact that the straight line r of an elation passes
through the point P . Finally, we need to prove that the tangents of the ellipse
c parallel to the straight line r are mapped to parallel tangents of the circle o.
Elation is a particular case of axial affinity, where the direction of the affinity is
parallel to the axis of the elation. Therefore, we can conclude from figure 1.6 that
tangents of the ellipse c parallel to straight line r are mapped to parallel tangents
of the circle o. Therefore, we can say that o is the osculating circle of the ellipse

12



Figure 1.7: Hyperosculating circle

c at point the P .
We will now consider the previously omitted case of the osculating circle in

the vertices. In the figure 1.7, there is the given ellipse c and the searched circle
o. The tangent t through the vertex P is identical to the line r from the previous
construction. Therefore, an invariant point on the tangent line t has to exist. For
this reason, collinearity centred at the invariant point maps the ellipse c to the
circle o.

Geometric constructions can also be used for various calculations. Instead of
the sum of two natural numbers, we can connect two line segments. We can also
compute the difference, ratio, product and more. With all of this, it is possible
to compute the roots of quadratic equations with some limiting factors.

1.4 Solving a quadratic equation graphically
The quadratic equation is usually solved using the discriminant or product de-
composition. In this section, we will show another method of finding the roots
of a quadratic equation using a ruler and a compass (the so-called Euclidean
construction).

Finding the roots of a quadratic equation classically
A general quadratic equation is given by ax2 +bx+c = 0, where a, b, c ∈ R, a ̸= 0.
One way how to solve quadratic equations is via discriminant, where the roots
are

13



x1,2 = −b ±
√

b2 − 4ac

2a
.

Another method used is product decomposition using Viète formulas. In this
case, the equation is decomposed into the product

ax2 + bx + c = a(x − x1)(x − x2),

where x1 and x2 are the roots of the quadratic equation since they satisfy x1+x2 =
− b

a
and x1x2 = c

a
. These two methods are described in detail in the textbook

Equations and Inequalities (Charvát et al. [1999]). Now, we will describe an
unconventional method of finding the roots of a quadratic equation by using
the planimetric construction described by Descartes in his book La Géométrie
(Descartes (translated by: J. Fiala), R. [2010]).

Finding the roots of a quadratic equation graphically
First, let the general quadratic equation be modified to the normalized form and
express x2

x2 = px + q, where p = −b

a
, q = −c

a
.

Construction of the roots for the case q > 0:

Let triangle MNO (figure 1.8a) be a right-angled triangle with right angle at
vertex M with the sides of length |MN | = √

q and |MO| =
⃓⃓⃓

1
2p

⃓⃓⃓
. (The reader will

recall that a right angle can be constructed using a compass and ruler). Then
we construct a circle k centred at O with radius |MO|. Let us denote the points
P and Q as intersections of the circle k with the extended side of the triangle
ON . Then the lengths |PN | and |QN | are the roots of the quadratic equation
except for the sign since the distance is always positive. We will determine the
sign later.

(a) Case q > 0 (b) Case q < 0

Figure 1.8: Roots of a quadratic equation x2 = px + q graphically.

Theorem 5 Lengths |PN | and |QN | from construction above are the roots of
quadratic equation x2 = px + q, where p = −b

a
, q = −c

a
, except for signs.
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Proof. The roots of x1, x2 should be equal to the distances

x1 = |PN | = |ON | − |OP | and x2 = |QN | = |ON | + |OQ|

except for the sign. Since |OP | = |OQ| = |OM |, we can simplify equations into

x1,2 = |ON | ± |OM |.

According to the Pythagorean theorem, the length of the side |ON | is

|ON | =
√︄(︃1

2p
)︃2

+ (√q)2 =
√︄

b2

4a2 + −c

a
=

√
b2 − 4ac

2a
.

Thus, the solutions we are looking for is

x1,2 = |ON | ± |OM | =
√

b2 − 4ac

2a
± b

2a
.

It proves that the distances found are equal to our discriminant formula except
for the sign because the distance cannot be negative.

Construction of the roots for the case q < 0:

In this case, we start the same as the previous construction except that we
put |MN | = √

−q (figure 1.8b). Thus, |OM | =
⃓⃓⃓

1
2p

⃓⃓⃓
and k(O, |OM |) remain the

same. Then, we construct a parallel line with the line OM passing through the
point N . (The reader will recall that we can construct a parallel line through
a given point with a ruler and a compass). Let us denote the points P and Q
as intersections of the circle k with the parallel line. The length of |NP | and
|NQ| determine the sizes of the roots (again, except for the sign, which we will
determine later).

The proof of this construction for the case q < 0 is analogous to proof ot the
theorem 5.

Existence of solutions and constructability
The quadratic equation has no solution in R if the discriminant is negative. Sim-
ilarly, constructions cannot be performed.

• If a = 0, the construction cannot be used. It is not a quadratic equation.

• If b = 0, the side of the triangle |MO| = 1
2p cannot be constructed. Con-

struction is reduced to a line segment (figure 1.9a) of length √
q. In this case,

we get a purely quadratic equation. The equation has the same solution,
again, except for the sign.

• If c = 0, the right triangle MNO is reduced to a line segment because the
points M and N are identical(figure 1.9b). Then the roots are x1 = |ON |−
|OM | = 0 and x2 = |ON | + |OM | = 2|OM | = 2

⃓⃓⃓
1
2p

⃓⃓⃓
=

⃓⃓⃓
−b
a

⃓⃓⃓
. It corresponds

to an equation without the absolute term 0 = ax2 + bx = x(ax + b), again,
except for the sign.
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(a) A purely quadratic equation
ax2 + c = 0.

(b) Quadratic equation without absolute
term ax2 + bx = 0

Figure 1.9: Roots in special cases of quadratic equations

Determination of the sign
We conclude from an interactive version of the first construction in Geogebra
(Řada [2022a]) that one root is always positive and the other negative. We
justify it by using the fact that the product of the roots is equal to c

a
. Since the

sum of the roots is equal to −b
a

we get roots: for p > 0, −|PN |, +|QN | and for
p < 0, +|PN |, −|QN |.

The second construction (again, the interactive version of Řada [2022a]) says
that both roots are positive or negative.
For p > 0, +|PN |, +|QN | are roots,
for p < 0, −|PN |, −|QN | are roots.

Auxiliary constructions
In the previous part, we used some mathematical operations to find the solution
of the quadratic equation graphically; however, we would prefer to find the roots
only with a ruler and a compass. Therefore we need to present a few necessary
constructions (Pomykalová et al. [1993]).

(a) Construction of the ratio of two num-
bers

(b) Constructing of the square root of a
positive number

Figure 1.10: Constructions instead of calculus

First, we need to introduce the construction of the fraction of two numbers a
b

(image 1.10a). This construction is based on the similarity of triangles. Let us
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denote the unknown length by x. We modify x = a
b

to the form

x

1 = a

b
(or x : 1 = a : b).

We choose any angle with vertex O. We construct segments of length a = |OA|
and b = |OB| one arm, and we plot the length of the line segment 1 = |OC| on
the other arm. Then, we draw a line through A parallel to the line joining BC
and determine its intersection with the other arm. The distance between this
intersection and the point O is the distance we are looking for.

Next, we need to know how to construct the square root of a (figure 1.10b).
Therefore, we use Euclid’s theorem. We construct a line segment AB of length
a+1. We divide the line segment by the point P into two parts |AP | = 1∧|BP | =
a. Then, we construct a circular arc over the line segment AB. Next, we draw a
perpendicular line to the line AB through the point P and mark the intersection
point C of the perpendicular line with the circular arc. The distance |CP | equals
the distance

√
a.

1.5 Conclusion
In this chapter, which is composed of two conference papers, we have demon-
strated the power of geometry. We showed two proofs of Pappus–Pascal’s theo-
rem that differed from the proof using homogeneous coordinates. Our proofs were
based on perspectivity and projectivity. In the second part of this chapter, we
showed the construction of an osculating circle of an ellipse, including geometric
clarification, instead of using the standard method of computation via curvature.
In the third part, we showed how it is possible to find the solution of a quadratic
equation using only a compass and a ruler. We also showed the construction for
particular forms of quadratic equations and discussed the cases where the solution
does not exist using the ruler and compass. This method of finding the roots of a
quadratic equation does not have the ambition to replace the standard solution.
Moreover, it is susceptible to the accuracy of the plotting. It aims to broaden the
reader’s horizons and connect different parts of mathematics.
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2. Across dimensions
This chapter describes the basics of multidimensional geometry (especially 4D).
We will use analogies to describe the understanding of multidimensional space.
We will use two approaches to describe multidimensional space (one using looking
behind, the other using a cut). As the next chapter deals with 4D, this chapter
will give a quick insight into 4D space.

2.1 Walking through a wall using 4D space

Introduction to n-D geometry using analogies
There are several basic ways of describing 4D geometry. From a geometric point
of view, it is convenient to use analogies. In the following lines, we will show
how to get n-D from 0D using two approaches. Both methods of describing
multidimensional space are mentioned in (Abbott [2015]).

Look behind

In 0D geometry, there is only one point. We see the point, but something could
be hiding right behind the point. To find out, we look at the point from the side.
The side view shows we were wrong; the point was not a point but a straight line
pointing directly at us (i.e., the line was displayed as a point in the projection).
So we discover 2D geometry and see a straight line instead of a point (figure 2.1
- 0D → 1D).

Figure 2.1: animation of looking behind

In 1D geometry, all geometry takes place in a straight line. In our case we
narrow the straight line to a segment. If we look at the scene from above (in the
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direction perpendicular to the axis x in 1D geometry), we see that we are not
looking at a straight line but at a square from the side. This brings us to 2D
geometry (figure 2.1 - 1D → 2D).

Similarly, we can look at a square in 2D geometry from a direction z perpen-
dicular to the x and y axes. It shows that a cube is hidden behind the square
(figure 2.1 - 2D → 3D). The square was its front face.

By analogy, if we look at a cube in 3D geometry from the direction w perpen-
dicular to the x, y and z axes, a tesseract appears behind the cube. The cube
was the front face of the tesseract. (figure 2.1 - 3D → 4D). Similarly, we can
continue to n-dimensional space.

Using cut

Another way to introduce n-dimensional space is to use a cut.
In 3D space, there is a 3D sphere and a base plane π : z = 0. A 2D being

living in the plane π only sees life in the ground plane π. Therefore, if the 3D
sphere does not intersect the plane π, it is invisible to the 2D entity. If a 3D
sphere decides to show itself to a 2D being, it must cross the plane π. When the
sphere first touches the plane π, it appears as a point. As the sphere continues to
pass through the plane π, it will appear as a set of increasingly larger circles until
it becomes a circle with a radius equal to its diameter. Then, the sphere appears
as a set of decreasing circles in the plane π, respectively. Finally, it appears as a
point again until it disappears completely (figure 2.2a).

In this way, the 2D being gets a complete view of the 3D solid by using the
3D solid cuts. If a 2D creature can imagine a direction perpendicular to its space
(the z-axis), it can imagine a 3D sphere from its cuts, like when you lay down a
deck of cards (figure 2.2b).

(a) sphere cuts (b) deck of cards

Figure 2.2: visualization of 3D-space by using cuts

Similarly, we cannot see the 4D sphere until it intersects our 3D world (axes
x, y and z). If the 4D sphere decides to cross our (x, y, z)-space in the direction of
the w-axes, the 4D sphere intersects our world first at a point, then as expanding
spheres up to the size of its radius, then as shrinking spheres until it reaches a
point again and finally the 4D sphere disappears completely (figure 2.3). Simi-
larly, we get a set of cuts of a 4D sphere through the intersection plane w = k,
k ∈ R. If we can arrange the slices in a direction perpendicular to our world (the
w-axis) like a deck of cards, we can imagine a 4D sphere.
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Physicists use time t instead of the w axis. Instead of arranging the sections
in a direction perpendicular to our world (the w-axis) like a deck of cards, they
often use the unit of time (Bars et al. [2010], Lehrer [2010], Weinberg [2022]).

Figure 2.3: visualization of 4D-sphere by using cuts

This section is called how to walk through walls using 4D space. Let us clarify
how this is possible.

Suppose there is a locked 4D being in a 3D prison (a cube with faces without a
hole). The 4D being could escape from the prison by taking it across the w-axis.
Let us describe this fact in less dimensional space in a plane. Let us start with a
square drawn on a piece of paper (2D prison) and a pin placed inside the square.
we can move the pin along the x and y axes, but we cannot move the pin out of
the square (there are always edges of the square). However, if we lift the pin in
the direction of the z axis (the direction perpendicular to 2D space), the pin will
appear above the paper. Then it is possible to move the pin in any direction and
put it back on the paper outside the square, the pin gets out of the prison without
using any brute force. To the prison guard, the whole situation looks as if the
pin is inside the prison, then the pin disappears for a while before reappearing
outside the prison.

Both methods use a direction perpendicular to a given space. So we call the
new axis w as the new direction perpendicular to x, y, z. This gives us a 4D space
with axes (x, y, z, w). Now that we have a properly defined 4D space, it is time
to introduce some ways to get 4D space on paper.

2.2 Various projections on paper
There are many different projections of 3D space on paper. (3D space to 2D
space). A relatively well-known example is the Monge projection (Monge [1847]).
It is the projection of 3D space onto two mutually perpendicular planes (π, ν).
Then, one of these planes is rotated 90◦ around a common intersection line (the
x-axis) to obtain a planar figure (figure 2.4a). Similarly, a 4D space is projected
onto 2 mutually perpendicular 3-spaces (Ξ, Ω), where Ω (figure 2.4b Ω) is rotated
90◦ around a common ground plane π(x, y) to obtain a 3D space figure. It is
described in much more detail in the chapter 3.

The second most common method of representing 3D space on paper (2D
space) is perspective (displaying space by seeing it with one eye). In principle,
this is a central projection with a center O, where the 3D scene is projected
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(a) 3D: Monge’s projection (b) 4D: Double orthogonal projection

Figure 2.4: Visualization of double orthogonal projection

centrally onto a 2D drawing (Figure 2.5). Similarly, we can project 4D space in
perspective onto 3D space. It is described in much more detail in the chapter 4.

Figure 2.5: (Left) The principle of the 3-perspective construction of a point with
associated Monge’s projection. The 3D-image is projected in orthographic pro-
jection.(Right) The perspective image from the perspective center.

The projections described above have certain basic principles and construc-
tions which are described in the following chapters. It is not necessary to draw
the basic constructions. Drawing by hand is very difficult and clicking everything
in any software (for example, Geogebra) is not much more accessible; fortunately,
in Geogebra it is possible to create tools that can make the work easier. In the
attachment B of this thesis we present how to create tools for creating smarter
GeoGebra applets which are often used in this work. As mentioned above, we
will describe the double orthogonal projection onto two mutually perpendicular
3-spaces in much more detail in the next chapter.
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3. Double orthogonal projection
One way how to visualise 4D space is to project 4D space onto two mutually
perpendicular 3-spaces (similar to the Monge projection used for 4D (section 2.2).
This topic is covered in the publications (Bogdan and Serbanoiu [2021],Zamboj
[2018b]). This section is inspired by the articles by Zamboj.

3.1 Double orthogonal projection of
four-dimensional objects onto two perpen-
dicular three-dimensional spaces

Projection of a point
The point A[xA, yA, zA, wA] in 4D space is given by its two orthogonally projected
points A3[xA, yA, zA, 0] and A4[xA, yA, 0, wA]. The point A3 is the orthogonal pro-
jection of point A onto Ω(x, y, z) and A4 is the point of the orthogonal projection
of point A onto Ξ(x, y, w). A1[xA, yA, 0, 0] is the orthogonal projection of A3 and
A4 onto reference plane π(x, y) (figure 3.1).

Figure 3.1: Projection of point
A = [xA, yA, zA, wA] and line
a = AB.

Figure 3.2: Lines in special posi-
tions.

Projection of a line
A line a = AB is represented by its conjugate images, which are orthogonal pro-
jected, a3 = A3B3 onto Ξ(x, y, z) and a4 = A4B4 onto Ω(x, y, w). The orthogonal
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projection of a3 and a4 onto reference plane π(x, y) is marked with the label a1
(figure 3.1). Let us describe some particular positions of lines.

• A line b parallel to the reference plane π(x, y), represented by b3 in Ω(x, y, w)
and b4 in Ξ(x, y, z) as lines parallel to π(x, y) (figure 3.2 cyan).

• A line perpendicular to the 3-space Ξ(x, y, w) displays its c3 image as line
perpendicular to the reference plane π(x, y) and c4 image as a point (figure
3.2 brown).

• A line perpendicular to the 3-space Ω(x, y, w) displays its d3 image as point
and d4 image as a line perpendicular to the reference plane π(x, y) (figure
3.2 olive).

Figure 3.3: Relative position of
lines a, b, c. Figure 3.4: Plane α, γ, δ.

Relative position of two lines
Two lines are given by their orthogonal projections onto Ω(x, y, z) and Ξ(x, y, w).
Straight lines can be parallel, intersecting or skew (figure 3.3).

• The lines a, b (cyan, brown) are parallel if a3 is parallel to b3 and at the
same time a4 is parallel to b4.

• The lines a, c (cyan, olive) intersect and the point R is an intersection point
if R3/R4/R1 are intersections of a3, c3/a4, c4/a1, c1, respectively and the
points R3, R4 and R1 lie on the ordinal line. (The ordinal line is perpendic-
ular to the plane π(x, y)).

• The lines b, c (brown, olive) are skew if the intersection points R3, R4 and
R1 from the previous case do not lie on the ordinal line.
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Planes

A plane α is represented by its orthogonal projection α3 onto Ω(x, y, z) and α4
onto Ξ(x, y, w). The Ω(x, y, z) and Ξ(x, y, w) images of the planes are

• planes (α figure in 3.4),

• plane and line (γ figure in 3.4),

• lines in special position (δ figure in 3.4).

Two planes λ, ω are given by their orthogonal projections λ3, ω3 onto Ω(x, y, z)
and λ4, ω4 onto Ξ(x, y, w). Planes λ, ω can be parallel in one direction (figure 3.6),
parallel in two directions (figure 3.5), intersecting in a line (figure 3.7), intersecting
in a point (figure 3.8) and skew (figure 3.9).

Figure 3.5: Planes λ, ω
parallel in two direction.

Figure 3.6: Planes λ, ω
parallel in one direction.

Figure 3.7: Planes λ, ω
intersecting in a line.

Figure 3.8: Planes λ, ω
intersecting in a Point.

Figure 3.9: Planes λ, ω
skew

Figure 3.10: 3-Sphere Σ.

25



Shapes
Tesseract

The tesseract is a four-dimensional analogue of the cube. It consists of 16 vertices,
32 edges, 24 faces and 8 cells. Figure 3.11 shows the tesseract in a special position
where all 8 different cells are coloured. The same tesseract was printed as a
3D model and published in the article 3D printed models of tesseract in double
orthogonal projection and 4D perspective (Řada and Zamboj [2020]). The figure
shows all eight different cells in a 4D perspective, which we will discuss later.

Figure 3.11: Cells of tesseract in double orthogonal projection and 4D perspective.

4-Sphere

The set of all points at a constant non-zero distance from a given point is a
circle in a plane, a sphere in a 3-space, or analogically a 3-sphere in a 4-space.
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Therefore orthogonal projections of the 3-sphere onto Ω(x, y, z) and Ξ(x, y, w)
are represented as a 2-sphere with the same radius and the centers S3, S4 on the
ordinal line (figure 3.10). Sections of a 3-sphere are described in much more detail
in the article 1-2-3-Sphere in the 4-Space (Zamboj [2019]) or with visualisation in
4-perspective in the article 3-Shere in a 4-perspective (Řada and Zamboj [2021]).
This article is included in the chapter 4 of this thesis. Here, we have described
the basic geometric shapes of 4D geometry.

Monge’s projection is often used in linear perspective representation. There
is a way to draw an object in Monge’s projection and then visualise it in per-
spective. Therefore, we can similarly use double orthogonal projection onto two
perpendicular three-dimensional spaces to display four-dimensional objects in a
4D perspective. For this reason, we have described the basics of the double or-
thogonal projection onto two perpendicular three-dimensional spaces here, and
we will now look at the 4D perspective in the next chapter.
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4. Perspective
The understanding of perspective space began to be represented in paintings in
the first half of the 15th century (Šarounová [1995]). Over the years, it has
been improved. The following lines describe some selected paintings from the
perspective point of view. This part contains parts of the prepared, unpublished
article on 4D perspective in the journal ”Rozhledy matematicko-fyzikálńı.”

4.1 Perspective in paintings

Introduction
Painting and geometry are based on seeing. That is why painting uses perspective
to imitate human sight. In perspective, objects are projected from a center of
projection (the eye) onto a plane (the retina). Photographs taken with a single-
lens camera are the most familiar perspective paintings. An essential element of
perspective is the size of the objects; the further the object is from the centre
of projection (the eye), the smaller the object appears. Another vital element of
perspective is the convergence of lines.

Main Principles of Perspective
Perspective is concerned with placing objects in space, including their relation-
ships to each other. In the illustration 4.1, the left part of the image shows
an avenue of trees running towards the horizon. The trees appear smaller and
smaller as the trees move away from the point of view, but corresponding pixels
of each tree always lie on a straight line converging on the horizon (illustration
4.1). The right part of the figure shows three views of the same-sized cube. The
cube’s position relative to the horizon indicates whether it is a top view, a front
view or a bottom view of the cube. A more detailed description of the principles
of perspective can be found on the website (ČVUT [2022]).

Reconstruction of the perspective formation
Perspective began to develop in the early 15th century in Florence, where Fi-
lippo Brunelleschi, Donatello and Masaccio began experimenting with the illusory
possibilities of linear perspective.

Reconstructing how it all came about and how a coherent perspective method
was developed is quite complex. The history of perspective development has
mainly been reconstructed based on two different sources. On the one hand,
researchers have analysed some works by Donatello and Masaccio from the be-
ginning of the century and traced the gradual development of the perspective
scheme. On the other hand, they have studied Brunelleschi’s biography, written
around 1480 by Antonio Manetti (Manetti et al. [1970]), which contains some
valuable information about Brunelleschi’s experiments with perspective. Let us
describe some parts of the development of perspective.
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Figure 4.1: Perspective representation of objects.

The beginnings of perspective in paintings
In 1325, Giotto di Bondone recognised the need for converging lines to create
depth in his painting ”The Apparition To Brother Augustin And The Bishop”
(figure 4.2a). In his painting, he uses the converging lines in the coffered ceiling.
His perspective was not perfect yet, as the lines added by Kadeřávek (Kadeřávek
[1922]) show. In his work, Kadeřávek shows how parallel lines converge into two
different points that do not even lie on the horizon line.

(a) The Apparition To Brother
Augustin And The Bishop

Giotto di Bondone

(b) The Last Supper
Leonardo da Vinci

Figure 4.2: Kadeřávek’s analysis of perspective in paintings,
taken from the book (Kadeřávek [1922]).

Many years later, the painting of ”The Last Supper” (figure 4.2b) by Leonardo
da Vinci has its vanishing lines perfectly matched to the painting (Kadeřávek
[1922]). In addition, Leonardo da Vinci skilfully uses and plays with his knowledge
of perspective. It is not apparent in the paintings in the book. It is necessary
to examine the original painting more closely, which is in the refectory of Santa
Maria delle Grazie in Milan, Italy. In order to see the whole painting from one
place with one eye, you need to stand one-third further away from the painting
than the distance from where the painting was painted. To keep the proportions
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correct, the artist enlarged the figures in the painting by a third of their actual
size. (Kvasz [2020]) in his book describes this effect that Florensky found.

Paintings with multiple principal points

Many years later, Paul Cézanne rejected the classical perspective and did not
recognise the classical position of objects in space. As a result, he painted objects
(sometimes parts of objects) in space from different angles. Between 1888 and
1890, he painted The Kitchen Table (figure 4.3). In this painting, the directions
from which the objects are seen are indicated by red arrows. In this painting,
the various objects are painted from different angles. Some selected objects are
painted from several angles at the same time.

Figure 4.3: Kitchen Table - Paul Cézanne

The bottom of the basket is painted from the front, while the handle is painted
from one side. The same is done with the table. To not show that the table breaks
when the angle of view is changed, the artist has hidden the fracture under a white
tablecloth.

Perspective in Cubist paintings

Cubist artists went even further. Not only did they look at objects from different
angles, but they also broke down traditional vision into its elementary parts.
Often, they would break down all sorts of surfaces into the simplest geometric
shapes, most often triangles (image 4.4a), or show an object’s most characteristic
individual parts. For example, in image 4.4b, the violin is represented by its
characteristic elements (the snail-shaped end, the sides and the f-shaped holes).
At the same time, it should still be a matter of perspective. That is, seeing and
understanding objects with one eye.
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(a) Woman in an Armchair
Pablo Picasso

(b) Violin and Grapes
Pablo Picasso

Figure 4.4: Cubist paintings by Pablo Picasso

Perspective in paintings of icons

From a slightly different perspective, the perspective of icons is interesting. It
is interesting to note that some perspective paintings of icons use reverse per-
spective. So, the convergence is not from us to the horizon but vice versa from
the horizon to us. The painting gives us the feeling that we are not part of the
scene (Florenskij [2001]). Luptáková explains that the artist often wants to depict
everything from different perspectives. Since, in reverse perspective, everything
comes towards us, we see, for example, the house painted from the front, including
its side walls (Figure 4.5).

Conclusion

The text has outlined some of the problems of perspective that different painters
have tried to deal with in different ways. This text does not aim to give a
comprehensive view of perspective in paintings. Instead, it is intended to make
the reader think about the paintings. The text would have to be many times
longer to give a comprehensive view. For a deeper understanding of perspective
in painting, the book ”Space between Geometry and Painting” by (Kvasz [2020])
is recommended, which I used as an inspiration for this text or the English book
”The fourth dimension and non-Euclidean geometry in modern art” by (Hender-
son [2013]), which describes literary texts rather than the paintings themselves.
So far, we have seen the development of perspective; how it was imperfect in the
beginning and how it was perfected until cubist works were created. Now, we are
going to take perspective further and introduce a 4D perspective.
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Figure 4.5: Reversed perspective in the under-construction Temple of St. Sava
(Belgrade)

4.2 Four-dimensional perspective

Introduction

The rapid emergence of dynamic 3D geometry software tools has pushed the
boundaries of geometric design accuracy beyond previous limits. Using a virtual
3D modelling environment, we can perform synthetic geometric constructions
like those drafted on paper. As a result, classical descriptive geometry, which
uses planimetric (2D) methods to visualise spatial (3D) objects, can be easily
generalised to visualise 4-D objects in 3-space. The four-dimensional descriptive
geometry method using double orthogonal projection of a 4-space onto two mu-
tually perpendicular 3-spaces (4DDOP) was introduced in (Zamboj [2018b]), and
the construction of shades and shadows in (Zamboj [2018a]).

While two images in orthogonal projections are often suitable for measure-
ments, there are more interpretative ways of visualising in one representative
image; leastwise, in 3-D to 2-D projections. The 4DDOP method is applied to
construct a 3-dimensional perspective image and lighting of a 3-sphere embedded
in a 4-space in this paper, where the 3-sphere is a 4-dimensional analogy of a
classical (2-)sphere, i.e., a 3-sphere is the set of all points in the same distance
from a fixed point in a 4-space. Projections and intersections of a 3-sphere with
3-spaces, planes, and lines in 4DDOP are described in (Zamboj [2019]).

Previously, central projections of four-dimensional hypercubes in computer
graphics were discussed in the pioneering work by (Noll [1967]). Analytically
treated description and visualisation of central and orthogonal images of various
curves and surfaces are, for example, in (Banchoff [1990], Zachariáš and Velichov’a
[2000]). Particularly animations and interactive methods of multidimensional
visualization were used by (Black [2010], Bosch [2020], Chu et al. [2009], Hanson
and Cross [1993], Matsumoto et al. [2019], Miwa et al. [2017], Zhang and Hanson
[2007]).
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4.2.1 Basics of four-dimensional perspective

Figure 4.6: (Top) The principle of the 3-perspective construction of a point with
associated Monge’s projection. The 3D-image is projected in orthographic pro-
jection.(Bottom) The perspective image from the perspective center.

To start with, we describe the generalization of linear perspective in a four-
dimensional setting.1 The 3-perspective is a central projection, in which each
point is projected from a fixed center (viewpoint, entrance pupil of an eye or
camera) into a picture plane. The resulting intersection of the projecting ray
and picture plane is called the perspective image of the point. Classical linear
perspective should satisfy certain conditions appropriate for human vision (degree
limit for vision cone, minimal distance of the viewpoint from picture plane). In
the context of four-dimensional generalization, no human will (hopefully) argue if
we do not take these conditions into account while keeping our figures illustrative.

1To simplify the language, we will refer to linear perspective in three dimensions as 3-
perspective and its four-dimensional analogue as 4-perspective.
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Furthermore, basic elements of 3-perspective are generalized in 4-perspective as
follows (Figures 4.6 and 4.7). In the 4-perspective, a point is projected from a
fixed perspective center into a modeling 3-space instead of a picture plane. In
both cases, we label d the distance between the perspective center and the picture
plane or modeling 3-space, i.e., the focal length. In both cases, the orthogonal
projection of the perspective center into the picture plane or modeling 3-space
is the principal (vanishing) point H. Assuming the surrounding 3-space in 3-
perspective, the picture plane is in the vertical position, and we assume the
ground (or base) plane in the horizontal position. The orthogonal projection
of the principal point H into the ground plane (chosen not through H) is the
ground point G. Let us rather use the Cartesian coordinate system (x, y, z, w) in
the four-dimensional case. Instead of the ground plane assume ground 3-space
Ξ(x, y, z) and the modeling 3-space is Ω(x, y, w). The orthogonal projection of
the principal point H into the ground 3-space is the ground point G. In 3-
perspective, the intersection of the ground plane with the picture plane is the
ground line. In 4-perspective, the intersection of the ground 3-space Ξ(x, y, z)
with modeling 3-space Ω(x, y, w) is the ground plane π(x, y). In 3-perspective,
the horizon plane is parallel to the ground plane through the perspective center,
and its intersection with the picture plane is the horizon line, i.e., the line of
vanishing points in horizontal planes. In the four-dimensional case, we have the
horizon 3-space through the perspective center and totally parallel to the ground
3-space Ξ(x, y, z). Its intersection with the modeling 3-space Ω(x, y, w) is the
horizon plane η.

Figure 4.7: The principle of the 4-perspective construction of a point with asso-
ciated 4DDOP in the modeling 3-space.

One way of constructing perspective images of points in 3-perspective is to use
associated Monge’s projection with the same picture plane, in which the ground
plane (x, y) is rotated onto the picture plane (x, z) about the ground line (x-axis)
(Figure 4.6). We will use similar construction in the 4-perspective associated with
4DDOP.2 Consider the situation in the 4-space (x, y, z, w), the ground 3-space

2In 3-perspective (Figure 4.6), points P1, P2 play the same role as P3, P4 in the 4-perspective
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Ξ(x, y, z) is rotated around the ground plane π(x, y) onto the modeling 3-space
Ω(x, y, w) (Figure 4.7). The perspective image P p of a point P is the intersection
of the projecting line V P of the point P from the perspective center V with the
modeling 3-space. Let P ′

3 and P4 be the orthogonal projections of the point P into
Ξ(x, y, z) and Ω(x, y, w), respectively. Moreover, label P p

3 the perspective image
of the point P ′

3 and P3 the image of the point P ′
3 after the initial rotation of Ξ

onto Ω. The orthogonal projection of P ′
3 into the modeling 3-space is labeled P0.

The lines P0H and P3P0 are, respectively, the perspective image and the Ξ-image
in 4DDOP of the line P ′

3P0 orthogonal to the modeling 3-space. Furthermore, let
Du (upper distance point) be the image of the viewpoint V rotated about the
horizon plane η into Ω(x, y, w).3 Note that the triangles V HP p

3 and P ′
3P0P

p
3 are

homothetic with center P p
3 (from initial construction). Furthermore, the triangles

V HP p
3 and DuHP p

3 are congruent (due to rotation). Also P ′
3P0P

p
3 and P3P0P

p
3

are congruent (due to rotation). Hence DuHP p
3 and P3P0P

p
3 are similar. Since

HP p
3 P0 are collinear, then also DuP p

3 P3 are also collinear. Consequently the
triangles DuHP p

3 and P3P0P
p
3 are homothetic with the center P p

3 and coefficient
|V P |

|P ′
3P0| = |DuP |

P3P0
= d

pz
, where d is the perspective distance and pz is the z-coordinate

of the point P . These are the key relations for synthetic construction between the
perspective image and Ξ-image in 4DDOP images and vice versa. The Ω-image
P4 is the orthogonal projection of P into the modeling 3-space Ω, and so it lies
on the perpendicular through P0 to π and also on the line through P p and the
principal vanishing point H. The distance |P0P

p| = pw is the w-coordinate of
P . The triangles V P pH and PP4P

p are also homothetic with the center P p and
the same coefficient d

pz
. For further constructions note that the Ω-image of the

viewpoint V is equal to the principal point, V4 ≡ H, in the modeling 3-space,
and the Ξ-image V3 lies on the ray GH such that |GV3| = d.

For analytic representation, it is convenient to translate the origin of the 4-
space into the viewpoint V (0, 0, 0, 0) by vector −−→

GV . In such case, the modeling
3-space has the equation z = d, where d is the perspective distance and a point P
has newly acquired coordinates (p′

x, p′
y, p′

z, p′
w). Let P be the orthogonal projection

of the point P into the z-axis (similarly in the 3-perspective in Figure 4.6, where P
is the projection into y-axis), then the triangles V PP and V P pH are homothetic
with the center V . Thus, the coordinates of the perspective image of the point
P are given by the scaling factor d

p′
z
, and so, omitting the z-coordinate in the

modeling 3-space Ω, we have P p( d
p′

z
p′

x, d
p′

z
p′

y, d
p′

z
p′

w).

4.2.2 Projection of tesseract
A tesseract is a four-dimensional hypercube. It is an analogue of the cubic in 4D
geometry. It contains 8 cells, 24 faces, 32 edges and 16 vertices.

A tesseract in a special position has the vertex A at the origin, and the edges
through the point A lie on the axes (x, y, z, w). Therefore, the neighbouring
points B, D, E, I lie on the axis at the same distance from the point A (distance
in more detail in section 4.2.5). To set up all vertices of the tesseract with the
length of the edge n, generating a list of all possible 4-tuples of zero and n is

(Figure 4.7), respectively. Similarly for other points with the same indexes.
3To shorten the construction, the rotation has the same orientation as the initial rotation of

the ground 3-space Ξ onto the modeling 3-space Ω.
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(a) Tesseract with the vertex in the origin.
Edges are identical with the axis.

(b) Shifted tesseract from the origin. v⃗ =
(1, −8, −1, −3)

Figure 4.8: Tesseracts in 4D perspective

convenient. The tesseract with the vertex at the origin is shown in the figure 4.8a
Left. Adding a shift to all points in 4-tuples gives us a tesseract at any position
4.8b Left. In figure 4.9, a tesseract is shifted in the axial direction.

4.2.3 Projection of four-dimensional hyperpyramid
Four-dimensional hyperpyramid is a generalisation of the normal pyramid to 4
dimensions. There are several ways of visualising 4-dimensional hyperpyramids.
One starts with the vertex V and the center of the base C. There is a given line
V C (axis of the hyperpyramid). The base of the hyperpyramid is in the subspace
perpendicular to the given line V C. So, we must find all three orthogonal vectors
to the axis V C. Now, we can construct the base of the hyperpyramid in the
subspace given by the three orthogonal vectors. Adding a constant distance to
all three orthogonal vectors gives us a hyperpyramid with an octahedral base
(Figure 4.10a). We can also construct a hyperpyramid with a cubic base by
constructing a cube in subspace (Figure 4.10b). In a given subspace, we can
construct any 3-dimensional object as a base for the hyperpyramid.

4.2.4 Four-dimensional prism
Four-dimensional prism is a generalisation of the normal prism to 4 dimensions.
We can visualise any four-dimensional prism in the same way as the hyperpyra-
mid. An edge AB of the prism is given. As before, we can construct a subspace
given by the three orthogonal vectors. These three vectors are directions of other
edges. In other words, these three vectors with the given edge AB are four direc-
tions perpendicular to each other. These four directions determine the directions
of the remaining vertices. If the lengths of the edges are different, we get a 4D
prism; if the lengths of the edges are the same, we get a tesseract.

4.2.5 Measuring in 4D perspective
In each dimension, the measurement is the same using the Pythagorean Theorem.
In 4D, to find the distance between two given points, AB is calculated as the
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Figure 4.9: Black tesseract is centred to point H. Green tesseract is shifted
in direction of the axes x. Blue tesseract is shifted in direction of the axes y.
Red tesseract is shifted in direction of the axes z. Purple tesseract is shifted in
direction of the axes w.

(a) 4-dimensional hyperpyramid with a oc-
tahedron base

(b) 4-dimensional hyperpyramid with a
cube base

Figure 4.10: Four-dimensional hyperpyramid in 4D perspective
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(a) 4-dimensional prism with with different
length of edges

(b) 4-dimensional prism with the same
length of edges - tesseract

Figure 4.11: Four-dimensional prism in 4D perspective

square root of the sum of the second power of the coordinates of the points

|AB| =
√︂

(xA − xB)2 + (yA − yB)2 + (zA − zB)2 + (wA − wB)2

.

4.2.6 3-sphere in a 4-perspective

Figure 4.12: A perspective image of a system of 3-spheres inscribed into hyper-
cubes in the modeling 3-space. Assuming the orange 3-sphere to be the center
of an arbitrary reference system, the green, cyan, blue, and red 3-spheres are
translated in x, y, z, and w-direction, respectively.

The apparent contour of the 3-sphere in the 4-perspective is the projection
of its contour generator. The contour generator is the intersection of the 3-
sphere and the polar 3-space of the viewpoint (pole) with respect to the 3-sphere.
Therefore, the contour generator is a 2-sphere and its perspective image is an
unruled regular quadric (assuming the center of the projection is not incident

39



Figure 4.13: Perspective images of shades of a 3-sphere with respect to point light
sources represented by orange points in various positions. Black points are the
orthogonal projections of the light sources into the ground 3-space used to locate
the sources in the 4-space.

with the 3-sphere). Figure 4.12 shows a 4-perspective image of a system of 3-
spheres inscribed into hypercubes for better control. Figures 4.12 — 4.14 are
created in Wolfram Mathematica 11 with the use of analytic representation. In
this case, we use homogeneous coordinates (with the homogenizing coordinate at
the end) in the projective extension of the real space. Hence the viewpoint has
coordinates V (0, 0, 0, 0, 1), the equation of the modeling 3-space becomes

x3 = dx0.

A 3-sphere Σ with a radius r and proper center S(s1, s2, s3, s4, 1) has the equation

(x1 − s1x0)2 + (x2 − s2x0)2 + (x3 − s3x0)2 + (x4 − s4x0)2 − r2x2
0 = 0.
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The matrix of the quadratic form of the 3-sphere is

Σ =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0 −2s1
0 1 0 0 −2s2
0 0 1 0 −2s3
0 0 0 1 −2s4

−2s1 −2s2 −2s3 −2s4 s2
1 + s2

2 + s2
3 + s2

4 − r2

⎞⎟⎟⎟⎟⎟⎟⎠ .

Therefore the polar 3-space Θ of the pole V with respect to Σ is (matrix multi-
plication on the left side)

Θ : V T Σ(x1, x2, x3, x4, x0) = s1x1+s2x2+s3x3+s4x4−(s2
1−s2

2−s2
3−s2

4+r2)x0 = 0

The intersection of the 3-sphere Σ and 3-space Θ is the contour generator —
3-sphere ϕ. Finally, to obtain the perspective image ϕp of the 3-sphere Σ, we
apply the above-mentioned transformation of coordinates.4

Similarly, if we use arbitrary point P instead of the viewpoint, we can create
the edge of the shade of the 3-sphere from either point (Figure 4.13) or directional
(Figure 4.14) light source (proper or improper pole P in the projective extension).
The shade is a 2-sphere — the intersection of the polar 3-space of the light source
with respect to the 3-sphere and the 3-sphere. Its perspective image becomes,
again, an unruled regular quadric.

Construction of a perspective image of a 3-sphere in 4-perspective

By analogy in the 4-space, the contour generator ϕ of the 3-sphere Σ is a 2-
sphere, and its perspective image ϕp is an unruled quadric. Instead of the 5-point
construction of a conic, we can use the 9-point construction of a quadric (see
Korotkiy [2018], Blossier [2019]).

Let us have a 3-sphere Σ with center S in the 4-space given by its Ξ and
Ω-images — 2-balls Σ3 and Σ4 in the associated 4DDOP (Figure 4.16). The 4-
perspective is given with the horizon plane η with principal point H, ground plane
π(x, y) with ground point G and principal distance d with the upper distance
point Du. See also step-by-step construction in (Řada [2021a]).

1. Construct the 4DDOP conjugated images V3, V4 of the viewpoint V such
that V3 ∈

−−→
GH, |V3G| = d = |DuH| and V4 ≡ H.

2. In 4DDOP, construct the trace planes ξΘ
3 and ωΘ

4 (intersections with Ξ and
Ω) of the polar 3-space Θ. The 3-space Θ is perpendicular to V S and
contains the tangent points of the tangent cone to Σ with vertex V .

3. In 4DDOP, find the quadric ϕ of intersection of Σ and Θ. For example, with
the use of the rotated image Σ0 (see Zamboj [2019]). It is also sufficient to
find 9 suitable points.

4. From the conjugated images in the 4DDOP, construct the perspective im-
ages of points on ϕ (Figure 4.7).

4Alternatively, we could construct the intersection of the modeling 3-space and the tangent
hypercone with the base 2-sphere ϕ and vertex V , obtaining the same collinear mapping.
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Figure 4.14: Perspective images of shades of a 3-sphere with respect to directional
light sources represented by orange arrows in various positions. The sources are
in the directions of the reference axes x, y, z, and w.

5. Use the 9-point construction to obtain the perspective image ϕp.

In addition, we have constructed a hypercube circumscribed around σ with its
perspective image (see also Řada [2021a]).

Construction of a section of a 3-sphere with a 3-space in
4-perspective
Let us continue the previous construction with the construction of a section χ
of the 3-sphere Σ with the polar 3-space Γ of an arbitrary point P given by its
conjugated images P3, P4. The construction is similar to the construction of the
perspective image ϕp of Σ. Instead of the polar 3-space Θ of the viewpoint V ,
the polar 3-space Γ of the pole P must be constructed. The intersection of Γ and
Σ is the 2-sphere χ constructed first in the 4DDOP as χ3, χ4 and consecutively
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Figure 4.15: 3-perspective image cp of a 2-sphere σ, with the construction in
associated Monge’s projection.

with the use of the 9-point construction in the 4-perspective as χp (Figure 4.17),
which is again an unruled quadric.

Additionally, the section χ is also the shade of light from the source P . As-
suming the position of the point P in the 4-perspective, we can choose P to
be proper (not in η) or improper (in η), defining central or directional lighting,
respectively.

Conclusion
We have described the synthetic construction of a perspective image of a 3-sphere
in a generalized perspective projection of a 4-space to a three-dimensional model-
ing space. The construction is based on the associated double-orthogonal projec-
tion of the 4-space onto mutually perpendicular 3-spaces. Furthermore, we have
provided a construction of a 2-sphere-section of 3-sphere with a 3-space, using
polar properties of quadrics. The provided construction might also serve as a
construction of a shade of a 3-sphere with respect to a point or directional source
of light. Our interactive synthetic constructions in GeoGebra are available for
readers online.

Throughout the work on this contribution, we have opened some further is-
sues. By creating the models in Wolfram Mathematica based on the analytic
representation, we have obtained a tool to visualize any set of points in the 4-
perspective. Such 4-perspective mapping is opened for interactive elements (e.g.,
motion of the object or viewpoint, or manipulable parts of the object). Moreover,
the problem of lighting of a 3-sphere might be easily generalized for any algebraic
hypersurface.
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Figure 4.16: 4-perspective image ϕp of a 3-sphere Σ, with the construction in
associated 4DDOP projection.
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Figure 4.17: 4-perspective image χp of a section χ of a 3-sphere Σ with the polar
3-space Γ of a pole P with respect to Σ.

45



46



5. Use of 4D visualisation
In previous chapters, we discussed the visualisation of 4D objects. In this chap-
ter, we will describe some practical applications of 4D visualisation. We cannot
visualise and graphically solve any problem in the complex number plane1 (C2)
in the Euclidean plane. It is because an imaginary part is somewhere above and
below the Euclidean plane. For this reason, it is more appropriate to visualise
the complex number plane in a double orthogonal projection onto two mutually
perpendicular three-spaces or in a four-dimensional perspective.

In the first part of this chapter, we will use 4DDOP and 4D perspective to
visualise the complex number plane and show a way to solve some problems in
the complex number plane.

The second part of this chapter is about shadows. We play with shadows
every day. Shadows are all around us. For example, dear reader, we are sure you
are trying not to cast a shadow on this text you are reading now. That is why
it is essential to understand shadows in 4D. Therefore, the second part of this
chapter is about 3D shadows of 4D algebraic hypersurfaces in 4D perspective.

The last part of this chapter contains a better understanding of 4D space. It
is tough to understand 4D space and its visualisation. Therefore, the third part
of this chapter is about 3D printed models of tesseract in double orthogonal pro-
jection and 4D perspective. This part shows how to understand 4D visualisation
better because the printed model can be touched and rotated in the hands.

5.1 Complex number plane

Introduction
Let us consider a circle and a line in a real plane. The line intersects the circle
in two real points, touches the circle in the point of tangency, or has no real but
two complex conjugate points on the circle. This could be an elementary exercise
in analytic geometry. However, the geometric construction or visualization of the
last case is not as obvious. In this paper, our focus lies on the visualization of
complex points.

The property of keeping the number of intersecting points of a line and a
conic (or algebraic curve in general) and their geometric construction based on
the polar properties of conics were described in Poncelet’s early texts on the
principle of continuity in the framework of projective geometry. Fig. 5.1, from
the second edition of his comprehensive work — Traité des propriétés projectives
des figures (Poncelet [1866]) shows a construction of a secant and non-secant line
intersecting an ellipse. These ideas were thoroughly revisited and presented by
Hatton around one hundred years later (see Hatton [1920]). In Chapter 6, Hatton
described the process of “tracing of conics” along their conjugate diameters and
created their planar graphs called Poncelet figures. We aim to lift this idea into
a four-dimensional space to visualize the complex points of all branches at once.

1Not to be confused with the term ”complex plane”, which usually indicates the (Argand,
Wessel, or also Gauss) plane with coordinate axes corresponding to real and imaginary elements
of one complex variable.
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Figure 5.1: Poncelet’s Fig. 6 (Poncelet [1866]). The points M, N are real points
on the ellipse, while M ′, N ′ are complex points on the same ellipse. The points
O and O′ are poles of the polars M ′N ′ and MN with respect to the ellipse.
(Source gallica.bnf.fr / Bibliothèque nationale de France).

In fact, the presently often used and popular visualizations of complex num-
bers founded by Argand and Wessel had appeared only two decades before Pon-
celet’s Traité (see Scriba and Schreiber [2015] pp. 438–439 for historical details).
To visualize two complex numbers as coordinates of the complex number plane C2

in a similar manner, one has to approach a four-dimensional real space. The ad-
vancement of computer graphics brought effective visualization tools in higher di-
mensions. Several authors displayed complex elements in separate 3-dimensional
spaces (see Banchoff [2022], Avitzur [2022a]). A four-dimensional set of points is
plotted in

(Re(x), Re(y), Im(x)), (Re(x), Re(y), Im(y)),

(Re(x), Im(x), Im(y)), or (Re(y), Im(x), Im(y)).

The author of (Avitzur [2022a]) has also created an iOS application (Avitzur
[2022b]) that can display each of these graphs. Butler in (Butler [2022]) placed
a perpendicular plane with axes (Im(x), Im(y)) at each point of the real plane
(Re(x), Re(y)), then the perpendicular plane is rotated to the real plane such
that the axes Re(x) with Im(x) and Re(y) with Im(y) are parallel at each point.
Bozlee in (Bozlee and Amethyst [2022]) used 3D printing to create a 3D printed
model with complex parts of elliptic curves using Amethyst’s bertini real software.

In this paper, we contribute to the topic by the visualization of complex
points on a circle created in a double orthogonal projection into two mutually
perpendicular 3-spaces (4DDOP, see Zamboj [2020]) and in a four-dimensional
perspective (4D perspective, see Řada and Zamboj [2021]). Furthermore, we
elaborate the visualization of a line through two points in C2. All the upcoming
figures are created in Wolfram Mathematica.
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(a) (b)

Figure 5.2: (a) A point P with the coordinates
P [(Re(px), Im(px)); (Re(py), Im(py))] graphically represented in 4DDOP.
P1[Re(px), Re(py), Im(px)] and P2[Re(px), Re(py), −Im(py)] are its Ξ- and
Ω-images in one modeling 3-space.
(b) The intersections of a circle c : x2 + y2 = 1 traced by the lines
n : x cos φ + y sin φ = k for k ∈ R and φ = 0 (red), π

6 (yellow), π
2 (cyan). Points

P and P are complex conjugate intersections on the line for φ = π
6 .

Tracing a circle
Let us return to the circle – line problem. Suppose we have a real plane R2 with
the coordinate system (x, y), the circle

c : x2 + y2 = 1,

and trace it with the line
l : x = k,

for k ∈ R parallel to y-axis. For k ∈ (−∞, −1) ∪ (1, ∞), the roots of the
corresponding quadratic equation in y are ±i

√
k2 − 1. The intersecting points

[k; i
√

k2 − 1] and [k; −i
√

k2 − 1] are on c and l, but not in the plane R2. Let us
extend the real plane with the imaginary components such that the real coordi-
nates x and y will be denoted Re(x) and Re(y) and the imaginary parts Im(x)
and Im(y). A point P in the complex number plane has coordinates P [px, py]
in C2 and P [(Re(px), Im(px)); (Re(py), Im(py))] in R4, for px = (Re(px), Im(px))
and py = (Re(py), Im(py)). Consequently, we identify the complex number plane
C2 with R4 with the orthogonal system of axes (Re(x), Im(x), Re(y), Im(y)). For
example, the above-mentioned complex intersecting points of l and c have coordi-
nates [(k, 0); (0,

√
k2 − 1)] and [(k, 0); (0, −

√
k2 − 1)] in R4 (while the purely real

points for k ∈ ⟨−1, 1⟩ are [(k, 0); (
√

1 − k2, 0)] and [(k, 0); (−
√

1 − k2, 0)]).
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For visualization, we use the 4DDOP method. Each point

P [(Re(px), Im(px)); (Re(py), Im(py))]

is orthogonally projected into the reference 3-spaces Ξ(Re(x), Im(x), Re(y))
and Ω(Re(x), Re(y), Im(y)) with the common plane π(Re(x), Re(y)) (Fig. 5.2a).
Both 3-spaces Ξ and Ω are represented in one modeling 3-space such that a
perpendicular line to the plane π(Re(x), Re(y)) creates axes Im(x) and Im(y)
with the opposite orientations (Im(x) upwards, Im(y) downwards).

Let us have a closer look at the example above. Observe the locus of inter-
secting points of c and l, in 4DDOP (Fig. 5.2b). For k ∈ ⟨−1, 1⟩, Im(x) and
Im(y)-coordinates are zero, the real parts are obviously related by the equation

Re(x)2 + Re(y)2 = 1,

representing the circle in the plane (Re(x), Re(y)). However, for k ∈ (−∞, −1) ∪
(1, ∞), equations

Im(x) = 0; Re(y) = 0; Re(x)2 − Im(y)2 = 1

represent a hyperbola in the plane (Re(x), Im(y)) and hence also in the 3-space
Ω(Re(x), Re(y), Im(y)). Both branches of this hyperbola are projected into two
rays in the 3-space Ξ(Re(x), Re(y), Im(x)).

Tracing the circle c with a line

m : y = k,

for k ∈ R, parallel with the x-axis (back in π(Re(x), Re(y))), we obtain the points
of intersection [(0, ±

√
k2 − 1); (k, 0)] for k ∈ (−∞, −1) ∪ (1, ∞) and

[(±
√

1 − k2, 0); (k, 0)] for k ∈ ⟨−1, 1⟩ in C2. Apart from the same circle in
the plane π(Re(x), Re(y)), the complex points lie on a hyperbola in the plane
(Im(x), Re(y)) and so in Ξ(Re(x), Im(x), Re(y)). The Ω-image of the hyperbola
consists of two rays in (Re(x), Re(y), Im(y)).

For a general case, assume a line n given by the following equation

n : x cos φ + y sin φ = k for φ ∈ ⟨0, 2π), k ∈ R.

Its intersection points with c are

[k cos φ −
√︂

(1 − k2) sin2 φ; k cos φ + cot φ
√︂

(1 − k2) sin2 φ],
[k cos φ +

√︂
(1 − k2) sin2 φ; k cos φ − cot φ

√︂
(1 − k2) sin2 φ].

For k ∈ ⟨−1, 1⟩ the points must lie on the circle in π(Re(x), Re(y)). For k ∈
(−∞, −1) ∪ (1, ∞) the values of coordinates always contain an imaginary ele-
ment, and they represent a hyperbola rotated along the circle and twisted in C2.
Orthogonal images of the surface generated in Fig. 5.3 are created by the extrac-
tion of the real and imaginary parts of the intersection points. At last, the image
in 4D perspective is in Fig 5.4.
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Figure 5.3: The surface of a real circle c generated by its complex points vi-
sualized in 4DDOP. Views in special positions are on the right side. The cir-
cle is shifted in the directions Im(x) and Im(y) so that images in the 3-spaces
(Re(x), Im(x), Re(y)) and (Re(x), Re(y), Im(y)) do not overlap in the figure.

Further issues

The method used in the previous section is theoretically applicable for any al-
gebraic curve over R. At first, the curve is traced by all real lines in the real
plane to obtain complex intersections. Next, we extract the real and imaginary
parts of the complex points of intersection and plot the final image embedded
in R4. The surfaces corresponding to some other conics: a hyperbola, parabola,
imaginary regular conic; and a cubic are depicted in Figs. 5.5a–5.5d. However,
raising the order of the curve, the computational complexity (equation solving,
plotting) increases rapidly.
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Figure 5.4: The surface of a real circle c generated by its complex points visualized
in 4D perspective.

Lines in CP2

We have been constructing complex points of real curves and lines until now. On
top of that, we can construct any point with coordinates in C2. In this section,
we will move a little further and explore the construction of an arbitrary line in
C2. Since our visualizations are created in the four-dimensional real space, we
should be aware that images of lines in C2 will behave differently from the real
lines. For example, one linear equation represents a hyperspace in Rn. While this
holds well for lines in R2, one equation in R4 represents a 3-space. Therefore,
each line in C2 will generate a 3-space in R4. Furthermore, the lines Re(x) = 0
and Im(x) = 0 are equivalent in C2, due to multiplication by a constant i, but
they seem distinct in R4. To avoid such confusion, we approach lines through the
projective extension CP2.

A point P in CP2 has homogeneous coordinates P (p1; p2; p0) ̸= (0; 0; 0)
for p1; p2; p0 ∈ C such that (p1; p2; p0) ∼ (λp1; λp2; λp0) for λ ∈ C\{0}. Expanding
real and imaginary parts of the point P , the coordinates will be in the form
P ((Re(p1), Im(p1)); (Re(p2), Im(p2)); (Re(p0), Im(p0))). For the sake of visual
representation, we always factorize the coordinates by the last nonzero coordinate.
Therefore, proper points in C2 will be represented by points with coordinates
((Re(px), Im(px)); (Re(py), Im(py)); (1, 0)) and directions or improper points as
((Re(px), Im(px)); (1, 0); (0, 0)) or ((1, 0); (0, 0); (0, 0)). Conveniently using the
duality in projective spaces, the same holds for the coordinates of lines. Let
((Re(lx), Im(lx)); (Re(ly), Im(ly)); (1, 0)) be (factorized) coordinates of a line l,
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(a) Hyperbola: x2 − y2 = 1 (b) Parabola: y = x2

(c) Imaginary regular conic: x2+y2 = −1 (d) Cubic: y = x3

Figure 5.5: Surfaces of curves generated by their complex points visualized in
4DDOP. All the surfaces are shifted in Im(x) and Im(y) directions so that they
do not overlap.

then its equation in the expanded form in R4 is

Re(lx)Re(x) + Im(lx)Im(x) + Re(ly)Re(y) + Im(ly)Im(y) + 1 = 0.

Similarly for lines with coordinates ((Re(lx), Im(lx)); (1, 0); (0, 0))

Re(lx)Re(x) + Im(lx)Im(x) + Re(y) = 0
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or for ((1, 0); (0, 0); (0, 0))
Re(x) = 0.

Such equations represent 3-spaces in R4. To visualize 3-space in orthogonal
projection, we construct its traces, i.e., intersecting planes with the 3-spaces
Ξ(Re(x), Im(x), Re(y)) and Ω(Re(x), Re(y), Im(y)). Substituting Im(y) = 0
and Im(x) = 0 into the equation of the line, we obtain the respective Ξ- and Ω-
traces (see also Zamboj [2018b] for synthetic constructions of traces of 3-spaces).
As a consequence, the real part of the line is its intersection with the plane
π(Re(x), Re(y)) obtained by vanishing the terms with Im(x) and Im(y).

(a) l((1, 0); (−1, 0); (1, 0))
Re(x) − Re(y) + 1 = 0

(b) l((1, −1); (0, 0); (1, 0))
Re(x) − Im(x) + 1 = 0

(c) l((1, 0); (0, −1); (1, 0))
Re(x) − Im(y) + 1 = 0

(d) l((1, −1); (1, −1); (1, 0))
Re(x) − Im(x) + Re(y) − Im(y) + 1 = 0

Figure 5.6: Lines in CP2 represented as 3-spaces in R4 in 4DDOP. The 3-spaces
are given by their intersections with reference 3-spaces Ξ(Re(x), Im(x), Re(y))
(red) and Ω(Re(x), Re(y), Im(y)) (blue).

Let us examine the visual representations of lines with several examples in
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Fig. 5.6.

1. A line l with coordinates ((1, 0); (−1, 0); (1, 0)) and the equation

Re(x) − Re(y) + 1 = 0

is depicted in Fig. 5.6a. Observe, that the intersection of l with the plane
π(Re(x), Re(y)) does not change the equation. Furthermore, it is arbitrary
in Im(x) and Im(y). The extension of the line in the directions Im(x) in
the 3-space Ξ(Re(x), Im(x), Re(y)) and in Im(y) in Ω(Re(x), Re(y), Im(y))
generates the trace planes of the 3-space of l. Therefore, the trace planes
are perpendicular to π in the modeling 3-space. Additionally, we should
remind the reader that, due to equivalence, the same representation will
have all lines multiplied by a nonzero complex scalar, e.g.:

Im(x) − Im(y) + i = 0 ∼

Re(x) − Im(x) − Re(y) + Im(y) + 1 − i = 0 . . . .

2. See Fig. 5.6b for l((1, −1); (0, 0); (1, 0)) with the equation

Re(x) − Im(x) + 1 = 0.

Apparently, the line Re(x) + 1 = 0 is the intersection with π. The Ξ-image
could be reconstructed from the image in the plane (Re(x), Im(x)), and the
Ω-image is, again, perpendicular to π in the modeling 3-space.

3. See Fig. 5.6c for l((1, 0); (0, −1); (1, 0)) with the equation

Re(x) − Im(y) + 1 = 0.

The situation is similar to the previous case. Now, the Ξ-image is perpen-
dicular to π.

4. See Fig. 5.6d for l((1, −1); (1, −1); (1, 0)) with the equation

Re(x) − Im(x) + Re(y) − Im(y) + 1 = 0.

In this case, none of the trace planes are perpendicular to π. The traces
could be generated separately by setting the imaginary components to 0 in
the respective 3-spaces.

Joins and intersections

In complex homogeneous coordinates in CP2, a point P (p1; p2; p0) lies on a line
l(l1; l2; l0) if

p1l1 + p2l2 + p0l0 = 0.

Using the dot product
P · l = 0.

Another point Q lies on l if
Q · l = 0.
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Figure 5.7: A line l in CP2 passing through points P, Q represented as a 3-space
in R4. The complex conjugates P̄ , Q̄ of P, Q lie on the 3-space, which is given by
its planar intersections with Ξ(Re(x), Im(x), Re(y)) and Ω(Re(x), Re(y), Im(y))
in R4 using the 4DDOP method.

Hence
l = P × Q.

Dually, a point P is the intersection of distinct lines p and q, only if

P = p × q

(see Richter-Gebert [2011], Chapter 3 for details).
Graphical representation in R4 of lines and points in C2 will work slightly

differently, too. This is because the multiplication of imaginary components
changes sign. For example, the dot product of a point P (p1; p2; p0) and a line
l(l1; l2; l0) ∈ CP2 is

p1l1 + p2l2 + p0l0.

However, after the expansion into real and imaginary components, we have

P ((Re(p1), Im(p1)); (Re(p2), Im(p2)); (Re(p0), Im(p0)))·
l((Re(l1), Im(l1)); (Re(l2), Im(l2)); (Re(l0), Im(l0))) =

Re(p1)Re(l1) − Im(p1)Im(l1) + Re(p2)Re(l2) − Im(p2)Im(l2)+
Re(p0)Re(l0) − Im(p0)Im(l0).

Therefore, in the visualizations in R4 the point P will not lie in the 3-space
representing line l. On the other hand, the complex conjugate

P̄ ((Re(p1), −Im(p1)); (Re(p2), −Im(p2)); (Re(p0), −Im(p0))
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of the point P lies on the 3-space of the line l through P . And oppositely, the
point P lies in the 3-space representing the complex conjugate l̄ of the line l in
R4. In Fig 5.7 the line l has coordinates

l = P × Q,

but the complex conjugate points P̄ of P and Q̄ of Q lie on the 3-space of the
line l. This is also verified in the figure by the construction of the plane in the
3-space of l through P parallel to Ω(Re(x), Re(y), Im(y)).

Conclusion
We have revisited the method of finding complex points on a circle by tracing
the circle with a line. Intersecting points generate a surface in the 4-dimensional
space (Re(x), Im(x), Re(y), Im(y)). The final visualization of the images was
plotted in a double orthogonal projection into 3-spaces (Re(x), Im(x), Re(y))
and (Re(x), Re(y), Im(y)) and in four-dimensional perspective projection. The
method was applied to visualize complex points of other conics and a cubic curve.
Moreover, it can be used for many other real curves; however, it is very limited
by computational complexity. A further possibility of application is, for instance,
in finding graphical solutions of complex intersections of real curves.

Furthermore, through a projective extension, we have described how to visual-
ize a complex straight line as a three-dimensional subspace of a four-dimensional
real space. We have also discussed how to verify the incidence of a point and
a line and how to visualize the join of two points. These concepts are easily
extendable and applicable for further research in visualizing a complex number
plane identified with a four-dimensional real space.

To visualise the complex plane, we need to be able to represent 4D space. We
teach architecture students to visualise shadows to improve clarity and depth. In
the next section, we describe shadows in 4D space. We leave it to the reader to
consider whether shadows improve visual understanding in higher dimensions.

5.2 3D shadows of 4D algebraic hypersurfaces
in a 4D perspective

The part is focused on the four-dimensional visualization of hypersurfaces repre-
sented by implicit equations without their parametrization. We describe a general
method to find shadow boundaries in an arbitrary dimension and apply it in a
three- and four-dimensional space. Furthermore, we design a system of poly-
nomial equations to construct occluding contours of algebraic surfaces in a 4-D
perspective. The method is presented on a composed 3-D scene and three 4-D
cases with gradual complexity. In general, our goal is to improve the understand-
ing of spatial properties in a four-dimensional space.

Introduction

Visualizing shapes embedded in more-dimensional spaces faces several challenges.
In many cases, mere projections into three- or less-dimensional spaces contain
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overlapping parts, making them difficult to understand. One technique that
enhances intuition about the properties of shapes and their mutual relations is
to visualize shadows cast on themselves and on other objects. Apart from the
general case, choosing algebraic hypersurfaces defined by polynomials is often
convenient. These are good candidates for visualization using computational
methods of algebraic geometry and elimination theory. In this sense, instead
of sets of many points and operating with meshes, we can work with implicitly
represented hypersurfaces, their projections, contours, intersections, etc. Since
algebraic methods preserve many properties of the visualized shapes, they are
suitable for precise mathematical visualization. The disadvantage of implicit
representation is the computational speed when processing polynomials of higher
degrees or adding more variables.

This paper aims to improve understanding spatial properties in a four-
dimensional scene containing algebraic hypersurfaces. To do so, we join theo-
retical geometric construction and algebraic computational methods and provide
concrete examples of visualizations of four-dimensional hypersurfaces and their
shadows based on implicit representations.

In particular, we show visualizations of four-dimensional algebraic hypersur-
faces (3-surfaces), their contours (2-surfaces), terminators, and 3-D shadows cast
on other 3-surfaces with respect to a point light source. The process consists
of two main parts – central projection of the scene into a 3-D modeling space
(usually a virtual 3-D environment in some software, AR, VR, or even a real 3-D
model) and construction of shadows from an arbitrary point light source. First,
to construct a 4-D perspective image, a 3-surface given by a polynomial is inter-
sected by its first polar (3-surface) with respect to the center of projection, and its
(2-surface) contour generator is centrally projected into a modeling 3-space. The
second phase is finding the terminator with respect to an arbitrary point light
source and its projection to the 3-surface on which the shadow is cast. While
geometrically, we describe intersections of surfaces„ algebraically, we need to find
a polynomial that solves systems of polynomial equations with several variables
(7 to 9 in the 4-D case). This leads to the use of standard computational meth-
ods such as finding a Gröbner basis or Dixon resultant. Finally, to complete the
shadow, especially for 3-surfaces of degrees higher than 2, we need to find the
regions in their own shade. Such regions are not algebraically omitted in the
elimination procedure; hence, we need to carry out further selection.

Related Work

The algebraic concepts, in particular, the use of Gröbner basis and Dixon resul-
tant for finding solutions of polynomial systems, are described in detail in (Kapur
and Lakshman [1992]). A similar technique to find the implicit representation of
an occluding contour in 3-D through the Dixon resultant was applied in (Khan
[2007], Khan et al. [2014]). In our experiments, we used Wolfram Mathematica 13
implementations of algorithms for finding Gröbner basis — (WM-GB Research
[1991]) and the Dixon resultant — (WM-Dix Lichtblau [2023]), and also Dixon
resultant — Fer-Dix-KSY or improved Fer-Dix-EDF (Lewis [2008a]) implemented
in software Fermat 6.5 (Lewis [2008b]) by Lewis, see (Lewis [2008c, 2018]).

58



In addition to our approach, where we start with surfaces given implicitly, a
considerable part of previous research on computational aspects of surfaces deals
with implicitization from parametric representation (e.g., Sederberg et al. [1984],
Buse et al. [2003], Li et al. [2004], Lewis [2018]). The algebraic derivation of per-
spective images of surfaces and reconstruction with respect to further applications
is shown in (Liu [2002]).

Four-dimensional projections through parameterization or point coordinates
are described in (Noll [1967], Zachariáš and Velichov’a [2000], Miwa et al. [2013]).
A 4-D perspective projection was also used to visualize implicitly given surfaces
that arise in a complex number plane (Řada and Zamboj [2023]). A descrip-
tive geometry approach for constructing 4-D perspective images of a 3-sphere
in 3-D from orthogonal projections is discussed in (Řada and Zamboj [2021]).
Visualizations of the 4-space, including hypersurfaces, are treated comprehen-
sively in (Banchoff [1990]). In (Zhou [1991], Hoffmann and Zhou [1991]), the
authors created projections of several examples of surfaces in 4-space, examined
their properties geometrically and algebraically, and showed various applications.
Four-dimensional lighting was used to study the shades of some mathematically
interesting 3-surfaces in (Hanson and Heng [1991]). Interactive manipulation with
four-dimensional objects based on their projections or shadows in a hyperplane is
elaborated in (Banks [1992], Zhang and Hanson [2007]) and through a tetrahedral
mesh construction in (Chu et al. [2009], Cavallo [2021]).

Contribution

Our approach emphasizes algebraic methods in four-dimensional visualization.
Throughout the paper, we work purely with implicit representations of surfaces
without the necessity of their parametrization. Visualizing shadows between 3-
surfaces, we discuss their mutual relations in the 4-space. In this way, compared
to previous attempts, we offer a more comprehensive perception of complex 4-D
scenes projected into 3-D space. We also provide a direct method for visualization
of 3-surfaces in a 4-D perspective. After all, the designs of polynomial systems for
constructing tangent cones and shadow boundaries as intersections are general
for any dimension.

Paper organization

The rest of the article is organized as follows: we start with a 3-D example to
describe the algorithm to find the terminator of a 2-surface and its shadow cast
on another 2-surface in Section 2. Next, we generalize it into 4D and describe the
4-D perspective from a 4-space into the modeling 3-space. Section 3 is focused
on concrete examples. The 3-D scene from the previous explanation is supple-
mented with technical details. Next, we consecutively examine three 4-D scenes
with respect to their geometric and computational complexity. In Section 4, we
discuss the critical points of our method and propose further research directions.
Section 5 summarizes the results of this paper. Computation times, and videos
are attached in Appendices A.
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5.2.1 Method
Constructing shadow of an algebraic hypersurface

In the first part, we examine the process of computing a shadow in an arbitrary
dimension but visualized in a 3-D case2.

Figure 5.8: Initial setting of hypersurfaces S, P , and a point light source L.

Preliminaries

Let us have a hypersurface S (Figure 5.8), i.e., an (n − 1)-surface embedded in a
real n-space (n ≥ 1) given by a polynomial equation in n variables

S : σ = 0. (5.1)

To find polar hypersurfaces, it will be convenient to work with homogeneous
coordinates in the projectively extended real space.

2The upcoming 3-D visualizations are created in Wolfram Mathematica 13 from outputs
based on implicit equations (or inequalities) formulated in variables x, y, z. Therefore, they are
also usable as 3-D graphics in an interactive environment.
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Let us have (x′
1, x′

2, . . . , x′
n, x′

0), (y′
1, y′

2, . . . , y′
n, y′

0) ∈ Rn+1 \ {(0, 0, . . . , 0)}. We
define the equivalence (x′

1, x′
2, . . . , x′

n, x′
0) ∼ (y′

1, y′
2, . . . , y′

n, y′
0), if there exists

λ ∈ R \ {0} such that (x′
1, x′

2, . . . , x′
n, x′

0) = (λy′
1, λy′

2, . . . , λy′
n, λy′

0). The pro-
jective n-space is defined as equivalance classes of Rn+1 \ {(0, 0, . . . , 0)}. A point
P (p′

1, p′
2, . . . , p′

n, p′
0) of the projective space has homogeneous projective coordi-

nates (p′
1, p′

2, . . . , p′
n, p′

0). Additionally, for p′
0 ̸= 0, we can obtain the Cartesian

coordinates of P (p1, p2, . . . , pn) by substituting p1 = p′
1

p′
0
, p2 = p′

2
p′

0
, . . . , pn = p′

n

p′
0
], or

vice versa. In case p′
0 = 0, the point P represents a point at infinity. Throughout

the text, σ, P , . . . denote representations of σ, P, . . . in homogeneous coordinates.
Let P be a regular point of S and assume a polynomial σP = P

T ∇σ. A polar
hypersurface SP : σP = 0 is called the first polar of the point P with respect to
the hypersurface S.

Terminator

Figure 5.9: The polar hypersurface SL of a hypersurface S with respect to a point
light source L and its terminator c.

Let us have a point light source L[l1, . . . , ln] with homogeneous coordinates
L(l1, . . . , ln, l0) . The terminator c of the hypersurface S with respect to L is the
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Figure 5.10: The tangent hypercone T to a hypersurface S through a light source
L and the shadow cast on P .

intersection of the first polar

SL : σL = L
T ∇σ = 0 (5.2)

of the hypersurface S with the hypersurface S:

c : σ = 0 ∧ σL = 0, (5.3)

where σL is the dehomogenized polynomial σL (Figure 5.9).

Tangent hypercones

The next step is to find an implicit representation of the tangent hypercones3

from the light source L. These are the hypercones through the terminator c.
Thus, let Q(q1, . . . , qn) be a point on c. The tangent cone T is the set of lines LQ
for all points Q. The line LQ can be (parametrically) represented in a general

3For the sake of readability, we use terms cones and hypercones instead of more proper terms
conical surfaces, conical hypersurfaces, . . . , over the paper.
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dimension with the parameter a ∈ IR as the set of points X(x1, . . . , xn) satisfying
the following n equations (one equation for each coordinate):

aL + (1 − a)Q = X. (5.4)

Thus, the implicit equation of T is the solution of the system:

T : σ(Q) = 0 ∧ σL(Q) = 0 ∧ aL + (1 − a)Q − X = 0, (5.5)

where σ(Q) and σL(Q) denote polynomials σ and σL in variables Q. By computing
the Gröbner basis or Dixon resultant of the system

{σ(Q), σL(Q), aL + (1 − a)Q − X}

and eliminating variables a, q1, . . . , qn, we obtain the polynomial θ in variables
x1, . . . , xn representing the tangent hypercone

T : θ = 0 (Figure 5.10). (5.6)

Shadow cast on an algebraic hypersurface

Now, we find the shadow cast by S on itself and on another algebraic hypersurface
P given by a polynomial equation

P : π = 0. (5.7)

The boundary of the shadow cast by S on itself — terminator, is the intersec-
tion of T with S. The selection of illuminated parts is carried out in the following
steps:

1. The n-space is divided by the first polar to two subspaces (σL > 0 or < 0),
and the illuminated part is in the same subspace as the source of light L.
The second part is in the shade.4

Since we cannot always divide the inner and outer parts, the selection fails with
non-orientable or self-crossing surfaces (e.g., see Figure 5.11). Hence, for simplic-
ity, we assume non self-crossing orientable finite hypersurfaces (or at least their
terminators are finite).

For polynomials of degrees higher than 2, some regions of the hypersurface
S can still be in their own shade (the tangent hypercone intersects itself), and
we have to omit them from the final selection of the illuminated parts (Fig-
ures 5.12,5.13).

2. Decompose the tangent hypercone into conical subregions (subcones) di-
vided by the terminator.5 Eliminate empty subcones.

4The method is implemented in 4-D scenes up to this point. The upcoming decomposition
to subcones seems, in most cases, computationally unbearable.

5We use cylindrical algebraic decomposition. The results of the decomposition are distinct
subregions represented by polynomial equations and inequalities (see Strzebonski [2023] for
details and implementation).
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Figure 5.11: (left) Roman surface: −2(x − 2)(y − 1)z + (x − 2)2(y − 1)2 + (x −
2)2z2 +(y−1)2z2 = 0 and (right) Cross-cap: ((x + 1)2 + y2) ((x + 1)2 + z2)+(x+
1)2 + y4

4 + y2z = 0, their parts separated by the first polars, and polar boundaries
projected to a plane z + 2 = 0. Without omission of the self-shaded parts.

3. Select the parts of the hypersurface closest to the light source in non-empty
subcones. This is carried out by constructing rays from the light source
in each subcone and finding the region with the intersection nearest to the
source. The selected nearest parts are illuminated, and the rest is in shade.

The boundary of the shadow cast by S on P is the intersection of its tangent
hypercone T with P . The final shadow contains inner points in the shade, i.e.,
inside the subcones containing previously selected regions.

If a scene contains more hypersurfaces, some of them might intersect, so we
would not be able to distinguish their order with respect to the light source. In
such cases, the selection algorithm can be further generalized for a hypersurface
Z as a composition of hypersurfaces S1, . . . , Sk, k ≥ 1:

Z : σ1 . . . σk = 0. (5.8)

However, this generally works when the light source is outside all composed hy-
persurfaces. Otherwise, the selection of the illuminated subspaces divided by the
first polars must be carried out for some factors separately. For example, in Fig-
ure 5.14, we can define a surface Z as the composition of a sphere, ellipsoid, and
torus. The (infinite) hyperbolic paraboloid would be treated separately.
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Figure 5.12: A 2-D situation of a Cassini oval (degree 4) and its self-shading
from the point light source. The green curve is the first polar, dividing the plane
into two areas. The area that does not contain the light source is excluded. The
subcones in 2-D case are plane angles bounded by the rays from the light source.
The blue arcs represent illuminated parts, and the red arcs are in the self-shade.

Figure 5.13: (left) A shadow of the torus cast on a surface without the self-
shaded parts omitted. (right) Decomposition of a torus. The green curve is the
terminator. The blue region is illuminated. The red regions are in the accepted
subregion divided by the first polar but in the shade of the blue region.

5.2.2 The principle of a 4-D perspective

Figure 5.15 shows a 2-D view of the correspondence between the coordinates of a
real point P (px, py, pz, pw) and its centrally projected image P ν(pν

x, pν
y , pν

w) into the
modeling 3-space ν(x, y, w) (an analogy to a picture plane in a 3-D perspective).
Assume an orthogonal coordinate system (x, y, z, w) placed in the point O in ν,
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Figure 5.14: The final visualization of a scene with a sphere, torus, and ellipsoid
casting shadows on themselves and on a hyperbolic paraboloid.

with the z-axis perpendicular to ν and the center of projection C in the oriented
perspective distance d from ν such that CO ⊥ ν. Observing the homothety, the
coordinates of the 4-D perspective image P ν of P ̸= C are

(pν
x, pν

y , pν
w) = (d px

d − pz

, d
py

d − pz

, d
pw

d − pz

) (5.9)

(in the case of pz = 0 the coordinates do not change; if pz = d the image is
improper).

To find the implicit representation of the 4-D perspective image (3-D occluding
contour) of an algebraic surface

S : σ = 0 (5.10)

(in variables x, y, z, w), we use a similar idea as in constructing shadows. Let

SC : σC = C
T ∇σ = 0, (5.11)

in homogeneous coordinates, be the first polar of S with respect to C, and with

σC = 0 (5.12)
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Figure 5.15: The principle of a 4-D perspective projection from a center C onto a
modeling 3-space ν(x, y, w). 2-D orthogonal projection view on the 4-D perspec-
tive shows the homothety between the pre-image in a 4-space and its perspective
image in the modeling 3-space from the center of projection.

being its dehomogenized equation. Since we are projecting to a 3-space instead
of an arbitrary hypersurface, we can use the derived rules of the 4-D perspective
mapping (Equations 5.9). In the next step, we set up a system of polynomials
prepared for elimination using Gröbner basis or Dixon resultant such that the
final image will be in the coordinates (x, y, w) of the modeling space.

Let Q(qx, qy, qz, qw) be a point on a contour generator

cC : σ = 0 ∧ σC = 0. (5.13)

First, we substitute variables X(x, y, z, w) by Q(qx, qy, qz, qw) in (5.13) such that
σ(X) → σ(Q) and σC(X) → σC(Q). The rules of the mapping (5.9) are repre-
sented by the system of linear equations:

x − d
qx

d − qz

= 0,

y − d
qy

d − qz

= 0,

w − d
qw

d − qz

= 0.

(5.14)

Elimination of qx, qy, qz, and qw from the system of polynomials{︄
σ(Q), σC(Q), x − d

qx

d − qz

, y − d
qy

d − qz

, w − d
qw

d − qz

}︄

leads to a polynomial σν in (x, y, w) such that its zero set represents the 4-D
perspective image Sν of the surface S.

Assuming a point light source L, the terminator cν is, in this case, a 2-surface,
obtained by the intersection of S and SL, given by Equations 5.3 and projected
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into modeling space ν through Equations 5.9. The images of terminator 2-surfaces
are derived from the system of polynomials{︄

σ(Q), σL(Q), x − d
qx

d − qz

, y − d
qy

d − qz

, w − d
qw

d − qz

}︄
,

similarly as above.
For the sake of better understanding, we also visualize the tangent hypercones

T of S from L, when possible (cf. Subsections 5.2.3 and 5.2.3). The tangent
hypercones T are 3-surfaces given by Equation 5.6, and the contours of their
images T ν are created by the same procedure as images Sν of S.

The final shadows are three-dimensional regions bounded by 2-spaces in the
4-space. Conveniently, in a 4-D perspective, we can find implicit equations of the
2-surface boundaries in the modeling 3-space. To do so, we need to find the zero
set of the system of polynomials{︄

σ(Q), θ(Q), x − d
qx

d − qz

, y − d
qy

d − qz

, w − d
qw

d − qz

}︄
,

representing the perspective image of the intersection of the surface S and the
tangent cone T . The last step is to select the regions according to Section 5.2.1.
In a 4-D perspective, we only highlight shadow boundaries so that we can see
through 3-D images.

5.2.3 Experimental results and technical details
In this section, we review several examples and comment on technical details.

3-D scene

“Implicit Bakery”, Figure 5.14

See the video in Appendix B.2.
The 3-D scenario from Section 5.2.1 shows a surface Z composed of three

implicitly given factor surfaces: sphere S1, torus S2, and ellipsoid S3

S1 : (x − 1)2 + (y + 4)2 + (z − 5)2 − 4 = 0, (5.15)

S2 :
(︂
(x − 1)2 + (y − 1)2 + (z − 2)2 + 3

)︂2

−16(x − 1)2 + 16(y − 1)2 = 0,
(5.16)

S3 : 4(x − 3)2 + (y + 1)2 + 4(z + 2)2 − 12 = 0. (5.17)
We describe constructions of shadows cast between them and their shadows

cast on a hyperbolic paraboloid P

P : 2(y + 3)2 − 2(x − 5)2 − 25(z + 7) = 0 (5.18)

from the light source L [−1, −2, 10].
The polynomial of Z has degree 8, but we treat its decomposition into factors

(factor surfaces S1, S2, S3). In this case, the factor surface of the highest degree,
4, is the torus.
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A terminator line of each ”factor surface” is its intersection with the first polar
with respect to L. Explicitly, terminators are the four sets of points that satisfy
the following pairs of equations:

factor surface first polar
S1: Eq. 5.15 ∧ 19 + 2x − 2y − 5z = 0 (5.19)

S2: Eq. 5.16 ∧

128 − 30x + 12x2

+2x3 − 29y − 10xy
+3x2y + 10y2 + 2xy2

+3y3 − 104z + 8xz
−8x2z + 4yz − 8y2z

+40z2 + 2xz2 + 3yz2

−8z3 = 0

(5.20)

S3: Eq. 5.17 ∧ 16x + y − 48z − 131 = 0 (5.21)
P : Eq. 5.18 ∧ 24x + 4y − 25z − 708 = 0 (5.22)

Figure 5.16: A selection of the regions contained in subcones. Each picture shows
a different subcone of the scene Z consisting of a sphere S1, torus S2, and ellipsoid
S3. The blue regions are illuminated, the green regions are excluded by the first
polars, and the red regions are in the shade of the blue regions with a shorter
distance to the light source. The top left figure shows the complement of the
union of all subcones in the 3-space; hence it distinguishes the shadow of the
scene on the hyperbolic paraboloid P . The rest of the empty regions are not
shown.
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If a surface has a degree n, its first polar has a degree (n − 1), and the
degree of the terminator line is due to Bézout’s theorem n(n − 1). Therefore, the
terminator line of the entire scene Z would have the degree 8 · 7 = 56. However,
after factorization, the factor surfaces will have degrees 2 for the quadrics and 12
for the torus. The same holds for degrees of tangent cones (Bydžovský [1948]).

Next, we omit the shaded subspaces divided by the first polar. In this case,
the points on illuminated regions have non-negative values in the equations of
the first polars.

Tangent cones are also treated separately for each factor surface. For example,
for the torus S2, we have the following system of polynomial equations:

Eq. (5.16),
Eq. (5.20),

aq1 − (a − 1) − x = 0,

aq2 − 2(a − 1) − y = 0,

aq3 + 10(1 − a) − z = 0.

(5.23)

Eliminating q1, q2, q3, and a leads to an 8th-degree polynomial of the tangent
cone. Similarly, we find the rest of the tangent cones of the surfaces in the scene.

Figure 5.17: A reference hypercube in the 4-D perspective. The colors of the
arrows mark the directions of the coordinate axes: Green → x, Blue → y, Purple
→ z, Red → w.

Next, we decompose the regions bounded by the system of tangent cones into
all subcones and obtain five nonempty and three empty intersecting regions in
this case (Figure 5.16). The subcones are represented by implicit equations and
inequalities.

In the last step, we trace subspaces separated by the first polars over each
subcone and choose the region nearest to the light source.

4-D scenes

Understanding the 4-D visualizations

Let us give a few remarks on how to understand the 4-D visualizations below:

• The visualizations are 3-D models (occluding contours), and the figures in
the paper are only 2-D images of the 3-D scenes.

• Standing in a gallery in front of an actual 2-D painting in the 3-D linear
perspective, we can find the position of our eye such that the picture makes
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Figure 5.18: A 4-D scene with a 3-sphere P and a 3-ellipsoid S in a 4-D perspec-
tive.

an illusion of 3-D space. This is unreachable in the 4-D perspective because
we cannot leave the 3-D space of the 3-D image (of a 4-D object).

• One could think of observing the picture from the inside, i.e., we can reach
any location in the 3-D static image. On the contrary, the change of the
4-D eye/camera position would change the contours of the objects.

• For better orientation, we always attach an image of a reference hypercube
with the center in [0, 0, 0, 0] (Figure 5.17).

• The default value of the oriented eye distance in figures is d = −6, and its
coordinates are [0, 0, d, 0].

• To understand the (3-D) spatial properties of the modeling 3-space, we keep
the software lighting properties of the 3-D graphics.

Technical notes on the implementation of the 4-D perspective

Let us reflect on some pros and cons of the 4-D perspective:

+ Intersections of 3-surfaces in a 4-space are 2-surfaces; hence, we can visu-
alize them using only one implicit equation in the modeling 3-space. The
equation can be obtained directly from the corresponding polynomial sys-
tem.

− 4-D perspective images should include ”inner points” of hypersurfaces, but
we only show their occluding contours. Otherwise, we would not see images
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that overlap in the modeling 3-space. An analogous problem occurs in 3-
D perspective, where we can imagine a smaller object in front of a bigger
object, so the perspective image of the smaller object would lie inside the
image of the bigger object. Although we can easily decompose figures in
the picture plane, we would not see much in the modeling 3-space. The
understanding becomes very unclear with non-closed surfaces, where parts
of hypersurfaces might seem to go through their contours (see Section 5.2.3).

− The algorithm to find and fill the unshaded and shaded parts of surfaces
inside tangent cones works well in theory and is successfully applied in
3-D scenes. However, it meets technical difficulties in 4-D. In our experi-
ments, the computation time to find points on the hypersurface (polynomial
equation in four variables) and inside the subcone (system of polynomial in-
equalities in four variables) was beyond reasonable limits. For this purpose,
a parametric representation might be more appropriate.

4-D scene: “HyperQuadrics” Figure 5.20

See the video in Appendix C.3.
In the first 4-D case (Figure 5.18), we have a 3-ellipsoid

S : (x + 2)2

4 + (y + 1)2

2 + z2 + (w − 4)2 − 1 = 0 (5.24)

casting a shadow on a 3-sphere

P : (x + 5)2 + (y + 6)2 + (z − 2)2 + (w + 3)2 − 36 = 0 (5.25)

from the light source L = [1, 1, −1.5, 5].
In this scene, the given 3-surfaces and their tangent hypercones have degrees

2. The highest degree, 4, has the two-dimensional boundary of the shadow cast
by the 3-ellipsoid on the 3-sphere. The occluding contours Sν and Pν of S and P
are ellipsoids, and the same holds for their terminator 2-surfaces cS , cP and their
images cν

S , cν
P .

Figure 5.19: Transitions of the illuminated part of the 3-sphere P from the point
light source L = [1, 1, zL, 5] moving in the z-direction: (left) zL = 2.5, (center)
zL = 7.5, (right) zL = 12.5. The point L lies in the first polar 3-space for zL = 9.5.
The illuminated part is bounded by the occluding contours of the 3-sphere and
terminator 2-surface with respect to L.
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In the case of hyperquadrics, we can easily deduce the transition of the visible
illuminated parts with respect to the given 4-D perspective (Figure 5.19). The
first polar of the 3-sphere P with respect to the perspective center C is a 3-space,
dividing the 4-space into two half-4-spaces. Thus, we have the following three
cases:

1. The shape of the illuminated part is in a special position when the light
source L is in the polar 3-space (with respect to C), i.e., the terminator 2-
surface of the 3-sphere with respect to L degenerates to an ellipse including
inner points.

2. When L is in the same half-4-space as the center C, the visible illuminated
part includes the inner points of the terminator 2-surface.

3. If the light source L and the center C lie in the opposite half-4-spaces, we
must exclude the inner points of the terminator 2-surface.

Figure 5.20: A 4-D scene with the shadow of a 3-ellipsoid S on a 3-sphere.

4-D scene: ”Full HyperMoon Between HyperMountains”, Figure 5.22

The second 4-D scene (Figure 5.21) shows a more complicated situation. Let us
have a 3-sphere

S : w2 + (x + 1)2 + y2 + (z + 1)2 − 1
4 = 0 (5.26)
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casting a shadow on a 3-surface of degree 3

P : (x − 1)(x + 2)x + y2 + z2 + w = 0 (5.27)

from the light source L = [5, 1, 1, 2].

Figure 5.21: A 4-D scene with a 3-sphere S and a 3-surface P of degree 3 in a
4-D perspective.

The contours of the occlusion are 2-surfaces of degree 2 for Sν and degree 6
for Pν . In this case, it is hard to perceive the 4-D spatial properties of the scene
from the contours. In particular, we cannot intuitively grasp the infinite 3-surface
P .

Let us bring more light to this scene. After finding the terminator 2-surfaces
and tangent hypercones6 to the 3-surfaces through the vertex L, we can create
shadows between the 3-surfaces. The 3-sphere casts a shadow on P . The contour
of the intersection of the tangent hypercone to S with P is a 2-surface of degree 6.
It consists of two disjoint parts, and the part closer to L is omitted in Figure 5.22.
The image of the 2-surface boundary of the shadow of P cast on S is given by a
polynomial of degree 14 and the contour of the shadow of P on itself is a surface
of degree 18.

6The computations of the projection of the tangent hypercone to P was terminated after
too long (5 − 10h).
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Figure 5.22: An illumination of a 3-sphere S and its shadow on a 3-surface P of
degree 3 from a point light source L in a 4-D perspective. The figure contains the
excess intersection of the tangent cone (not visualized) of P , and the self-shaded
region of P is not excluded from the illuminated part.

4-D scene: “HyperRing”, Figure 5.24

See the video in Appendix D.4.
The last 3-surface (Figure 5.21) is given by a polynomial of degree 4:

S : (x − 1)2 + ((w − 2)2 + y2 − 4)2 + z2 − 1 = 0. (5.28)

The first polar SL with respect to the light source L[0, 2, −2, 4] is:

SL : 4w3 − 3x + x2 + 4w2(−8 + y) − 16y2

+4y3 + 4w(16 − 4y + y2) − 2z + z2 = 0.
(5.29)

Let us have a 3-space
P : w + 2 = 0. (5.30)

The occluding contour Sν is after elimination given by a polynomial of degree 8 in
72 terms (in variables x, y, z). After elimination, the terminator surface cν is given
by a polynomial of degree 8 in 146 terms (in variables x, y, z). The tangent cone T
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Figure 5.23: A surface S of degree 4 in a 4-D perspective.

generated by the terminator c (intersection of S and SL) is after elimination given
by a polynomial of degree 8 in 483 terms (in variables x, y, z, w). The occluding
contour of the shadow of S on P is a 2-surface of degree 8 (Figure 5.24).

5.2.4 Discussion and future work

Throughout the paper, we tried to bring the ”most universal” solution to visu-
alizing shadows of algebraic hypersurfaces. In this sense, the method presented
in Section 5.2.1 works in a general dimension; the key point is to construct tan-
gent cones with Equations 5.5. Illumination of a scene, both in 3-D and 4-D, is
a complex process, and we should always consider the properties and positions
of objects in the scene. The critical features of objects in our approach are the
finiteness, orientability, and degree of a hypersurface and its terminator. Addi-
tionally, the position of the point light source and the projection center is crucial
to define the inside and outside of a hypersurface or its part and, consequently, its
visibility. The degree of a hypersurface opens up problems of computational com-
plexity. Evidently, the appropriate setting and the choice of elimination method
(Gröbner basis or the Dixon resultant) plays a crucial role in the computation
time for higher-degree polynomial systems. The computational complexity also
depends on the form of the polynomial, i.e., transformations of the hypersurface.
The computations with hypersurfaces of degree four and higher easily failed af-
ter minor adjustments in our experiments. Furthermore, the diversion between
dimensions became important in the final visualizations of the inner points of
shadows. While in 3-D, we could cover the regions with a satisfying number
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Figure 5.24: The shadow cast by a 3-surface S on a 3-space P . Since the termi-
nator overlaps itself, we cannot properly distinguish the illuminated visible part
of S.

of points, our solution in 4-D was defeated by time to solve a system of equa-
tions and inequalities in four variables. We dropped this case because filling the
3-dimensional volumes would not clarify our visualizations in any way.

The question of perceiving four- and more-dimensional spaces is very chal-
lenging. We only added one more ”perspective” open for further investigation.
One of the possibilities is to study the properties of 3-surfaces through their pro-
jections. Since we developed our method on implicit surfaces, it is convenient for
mathematical visualization. Second, we can pursue more ”natural” illumination
details, including 4-dimensional light intensity, specularity, reflections, etc. Poly-
nomial systems that create tangent cones and occluding contours always contain
first-degree polynomials. Hence, there might be possibilities for improving the
algorithms tailored to our situation and consequently reducing the computation
time. Last but not least, illuminated four-dimensional scenes might be used to
study, understand, and train four-dimensional spatial ability (if possible).

5.2.5 Conclusion

This paper focuses on a four-dimensional visualization based on implicit rep-
resentations of hypersurfaces. We have described a general method to find
shadow boundaries in an arbitrary dimension and applied it in a three- and
four-dimensional space. Furthermore, we have designed a system of polynomial
equations to construct occluding contours of hypersurfaces in a 4-D perspective.
The method was presented on a composed 3-D scene and three 4-D cases with
gradual complexity. Our experimental journey was extensively commented on
throughout the article.
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In this section, we discussed shadows in 4D geometry. In my opinion, shadows
in higher dimensions do not improve clarity and depth as much as shadows in
3D. In the next section, we will try to improve the clarity of 4D images using 3D
printing.

5.3 3D printed models of a tesseract in the dou-
ble orthogonal projection and 4D perspec-
tive

Introduction
3D models and 3D printing are becoming commonplace all around us. Many
companies print their prototypes on a 3D printer before going into production. 3D
models have been with us for a long time (Volkert [2017]). Even in mathematics,
we find many ways to use the possibilities of 3D models (Kupčáková [2002]). 3D
printing can describe reality or be used to understand 4D space.

In descriptive geometry, space is usually drawn on paper (3D is projected into
2D). 4D objects are also usually drawn on paper or a computer screen (4D is
projected into 2D), but keeping them in 3D space is possible. Thanks to modern
technology, 3D printing can skip the last projection and show 4D objects projected
in 3D (Segerman [2016]). For this reason, a 3D-printed model was created for
this work. This 3D printed model was created in Geogebra. This part describes
the projections mentioned before and shows problems with the preparation of the
3D printing and the 3D printing itself.

Figure 5.25: 3D printed models of a tesseract in the double orthogonal projection
and 4D perspective.
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(a) Monge’s projection (b) Double orthogonal projection

Figure 5.26: Visualization of the main principles of above mentioned projections.

Preparation and 3D printing
Projections

The first step is to create a 3D model for 3D printing. The 3D printed model of
a tesseract consists of a tesseract in double orthogonal projection and a tesseract
in 4D perspective. The 3D model is created in Geogebra (figure 5.27). The
interactive Geogebra model can be found at this link:
https://www.geogebra.org/m/xbp8ucgj

Geogebra 3D print export

If we have created model in GeoGebra, it remains to export the model from the
programme for 3D printing. The first problem is continuity. The image (figure
5.28) shows each layer of the 3D print in progress, and mostly, there is a corner
of a cube (one point and two lines). Unfortunately, the lines are not connected
to the point. GeoGebra exports lines and points separately. Maybe GeoGebra
will fix this bug soon, but today, we must use for example the free web browser
program Tinkercad (www.tinkercad.com) to fix this bug. We upload the model to
Tinkercad and export it again. Tinkercad recalculates the continuity itself and
fixes the problem nicely. Another disadvantage of the Geogebra export for 3D
printing is that all lines have the same thickness. The primary and auxiliary lines
cannot be distinguished by their thickness. For this reason, the auxiliary lines in
this model are replaced by a fishing line.

3D printing preparation

The next step is to prepare the 3D model for printing. The first thing we need to
do is resolve the overhanging lines. Overhanging lines are any lines that have an
angle greater than 45 degrees. These lines need support; otherwise, they would
fall under gravity during 3D printing. It is better to keep the number of these
lines to a minimum. Firstly, it is better to change the horizon’s position and other
essential elements to eliminate overhanging lines; in this case, it is also necessary
to rotate with the object, but the horizontal lines remain. For this reason, it is
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Figure 5.27: Models of a tesseract in the double orthogonal projection and 4D
perspective made in Geogebra.
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Figure 5.28: Detail of printed layers in Geogebra export.

also necessary to print support from the filament. The support is removed in
the resulting 3D print, and the model is finished. Many printers do a poor job
of separating the support, and the result does not look good. For this reason,
this model is printed in parts and then glued together to eliminate the amount of
support. Therefore the 3D print is divided into parts before each horizontal line
(figure 5.29).

Conclusion
In this part, a tesseract was projected on a computer screen in double orthogonal
projection and 4D perspective and then transferred from the screen to an accurate
3D model printed on a 3D printer. Some of the pitfalls of 3D printing were
described, from problems with GeoGebra export to the correct positioning of
objects.
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Figure 5.29: Visualisation of one printed part of the models. Each part of the
model has horizonatl line only on the heatbed.
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Conclusion
This thesis is divided into five chapters. The first chapter of this thesis deals
with plane geometry. There are many geometric theorems which are usually
proved algebraically. Therefore, we take some theorems and show geometrical
proofs of them. We aimed to show that, in many cases, geometric theorems
can be proved with geometric proofs. This work focuses on synthetic geometry
in different dimensions, so the second chapter is focused on dimensions. In the
second chapter of this thesis, we introduce n-dimensional geometry and how to
visualise n-dimensional geometry, focusing mainly on four-dimensional geometry.
For this, we use two typical geometrical generalisations of how to describe higher
dimensions. The third part of this thesis aims to generalise Monge’s projection
to double orthogonal projection onto two mutually perpendicular 3-spaces. We
explain the basic principles of how to draw a point, a line, a plane and a shape.
This part of the thesis also briefly introduces the next section. The fourth part
aims to generalise linear perspective to 4D perspective using double orthogonal
projection. After a brief introduction to the historical development of perspective,
the basic principles of 4D perspective are explained. The principles of visualising
basic shapes are described. The final part of this thesis uses double orthogonal
projection and 4D perspective in practice. This section shows several methods of
using 4D visualisation. The first is to visualise and solve problems in the complex
number plane. The complex number plane is visualised as a four-dimensional
space. The central part is devoted to an intersection of a real circle with sets
of lines. In other words, we visualise the circle with its complex parts. The
second part describes shadows in 4D algebraically. We describe how shadows
work algebraically in 3D space and then generalise this approach to 4D space. The
last part describes how we can better understand and visualise 4D space through
3D printing. There has been a huge development in 3D printers in recent years.
Therefore, 3D printers are a good and cheap way to look at 4D space from any
angle and to touch it ourselves using the methods of double orthogonal projection
and 4D perspective.
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Appendices
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A. Attachment: 3D Shadows of
4D Algebraic Hypersurfaces in a
4D Perspective

A.1 Computation times
Table A.1 (Computation times: 4D Scene: ”Full HyperMoon Between Hyper-
Mountains” 5.2.3)

Table A.2 (Computation times: 4D Scene: ”HyperRing” 5.2.3)

Notation:
deg – degrees of polynomials
WM-GB – Wolfram Mathematica implementation of the function GroebnerBasis
with the attributes:

LO: default lexicographic monomial order

MO (BEO):
MonomialOrder → EliminationOrder,
Method → ”Buchberger”

MO (EE):
MonomialOrder → EliminationOrder,
Method → {”GroebnerWalk”,
”EarlyElimination→True”}

MO (GWEE):
MonomialOrder → EliminationOrder,
Method → {”GroebnerWalk”,
”EarlyElimination→True”}

WM-Dix – function DixonResultant in Wolfram Mathematica
Fer-Dix-EDF – Dixon resultant implementation in Fermat
T – terminated after 5 hours or more
F – failed
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B.2 3D Implicit bakery
• Video: https://youtu.be/tKqZn7tzAQE

C.3 4D HyperQuadrics
• Video: https://youtu.be/01kYwSblPEY

D.4 4D HyperRing
• Video: https://youtu.be/6ZdwJ-P18Gw
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B. Attachment: GeoGebra Tools
for Drawing in Double
Orthogonal Projection and 4D
Perspective
Introduction

Every author who writes a text on synthetic geometry has experienced a situation
where inserting some drawn pictures into the written text is necessary. In the
past, figures were drawn by hand and inserted into a book. Nowadays, the figures
are drawn on the computer, and the question is which software should be used
to solve the problem and which software will do it with the least effort. The
pictures can theoretically be drawn in Microsoft Paint (Davison [2014]), but it
will be hard work without the help of tools. A better option is to use special
software designed for projections. A Sketch 360, described in Řada [2021b], is
a program for drawing equirectangular spherical perspectives, but unfortunately,
the program is narrowly focused. For Monge’s projection, it is possible to use
the program Deskriptivńı geometrie by Petr Plavjanik (Plavjanik [2017]). This
program won first place in the national round of the Czech Republic Student’s
Professional Activities (SPA) in mathematics and mathematical informatics. It
was also exhibited at INVEX ’99 in the Creative Hall. Several hundred licences
of the program were sold, and it was used by twenty secondary schools and six
universities in the Czech Republic and at three universities in the USA, Brazil
and Egypt (Plavjanik [2017]). No new program version was released after 2006
(Plavjanik [2021]).

Every user has the choice to choose a specific software (like the one men-
tioned above) and learn how to use it or to use a universal graphical software like
Geogebra (Hohenwarter and Hohenwarter [2002]). In addition, GeoGebra offers
the possibility of making drawing easier with its own custom tools. Then, any
projection can be drawn in an easier way (Poincaré disc model (Manthey et al.
[2016]), immersive perspective (Araújo [2020]), Monge’s projection (Ferdiánová
et al. [2021]). We do not yet know of any software that can display objects in
the double orthogonal projection of a 4-space onto two mutually perpendicular
3-space and 4-perspective. For this reason, we have chosen GeoGebra, which al-
lows you to draw line by line with basic tools as if you were drawing by hand, or
it is possible to create your own custom tools and save the work locally.

Custom GeoGebra tools

To construct some objects in the 4D perspective is necessary to find the object
in 4DDOP and then project the object into a 4-perspective using the associated
4DDOP. This is similar to viewing a Monge projection in a linear perspective.
Recently, it was necessary to visualise a 3-sphere in 4-perspective (figure B.1)
(step-by-step construction Řada [2021b]).
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Figure B.1: 3-sphere in 4-perspective and 4DDOP

To visualise such an object, there is a need to use about 500 construction steps
or make it easier/faster using a command line or custom tools. In GeoGebra, it
is possible to visualise objects by clicking on tools or constructing the object via
the command line. The user can click through if there are already many lines in
the image (especially in 3D). For this reason, it is safer to use the command line
for the right construction. The user can use simple commands. For example:

Line(< Point >, < Point >)

Circle(< Point >, < RadiusNumber >)

Intersect(< Object >, < Object >)
Alternatively, multiple commands composed from simple commands:

Intersect(Line(< Point >, < Point >), Circle(< Point >, < RadiusNumber >)).

Commands inserted through the command line make work easier, and for frequently
repeated commands, you often only need to change the variables inside the command:

Intersect(Line(S1, S2), Circle(S, r))

Intersect(Line(O1, O2), Circle(O, r))

Intersect(Line(K1, K2), Circle(K, r)).

If there is a need to use a structure frequently or in other projects, it is better to
create a GeoGebra tool. After drawing the desired construction from which the tool is
to be made or downloaded as a GeoGebra applet, the user must click on Tools =>
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Create New Tool . Then, select the input and output objects. The tool is successfully
created and can be used or exported. Select custom tools in Manage Tools and click
on Save as... to export custom tools. The tool will then be saved as a .ggt file and can
be opened in any GeoGebra by dragging it with the mouse. It is recommended that
a folder on the computer with tools is placed where the user can drag and drop into
GeoGebra as needed. This way, the tools are always at hand.

Figure B.2: Projection of a point onto a plane in a direction perpendicular to
another plane

It is usually a good idea to keep your distance when creating tools. The user will
not use an incorrectly named tool. It will not be used if the tool has no proper name
because no one will know what it does. Consider constructing a tool that projects a
point into a plane perpendicular to another plane (figure B.2). If the user does not
distinguish in the label which plane is which and in which order they are arranged in
the tool, the result of the construction will be completely different. Point A′′ will be
created instead of point A′ (figure B.2). Moreover, the user will not even notice the
wrong solution if the whole construction is messy because of all the lines and points.

Sometimes, the user needs a tool to construct, for example, a quadric through 9
points. Unfortunately, there is no database of custom GeoGebra tools. On the other
hand, there is a database of GeoGebra applets (Hohenwarter [2021]) where it is possible
to find an applet that constructs a quadric through 9 points (Blossier [2019]). There
is a way to download the applet from the website (at the top right in the menu) and
create your tool from the applet. In this case, the output will be a quadric, and the
input will be the required 9 points.

Sometimes it is worthwhile and convenient to find the appropriate applet on the
Geogebra portal and create the tool from it. Sometimes it is difficult to find the required
applet, or the applet is often imperfect or incomprehensible. It is up to each user to
decide whether it is faster and easier for them to use the command line, create their
own tools, or create them from the GeoGebra applet. This is a question that everyone
has to answer for themselves. The author of this article combined all three methods as
needed.
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Geogebra tools used for visualize 3-sphere in
4-perspective
The author planned to use nine custom tools to simplify the construction of the 3D
sphere in 4D perspective (figure B.1). This number was reduced to five as the re-
maining four were entered via commands on the command line. As mentioned above,
creating a custom tool for everything is unnecessary. The individual constructions used
can be found in the properties of the objects in the GeoGebra applet (Řada [2021b])
after downloading. The most commonly used custom tool in this construction is the
orthogonal projection of a point onto a plane in a given direction. Another tool finds
the corresponding orthogonal projection of a point on the 4-sphere. This tool is specif-
ically designed to solve this problem. The other tools are for general use. Another
tool is used to display the perspective projection of an object from the corresponding
projection of a point in 4DDOP and the given 4D perspective (H, G, Du). The author
uses this custom tool in every project with a 4D perspective. The last tool used is to
display a quadric of 9 points. This tool uses GeoGebra’s analytical capability, and the
quadric is calculated analytically, after which only the calculated surface is visualised.

Conclusion
The author of this article describes the need to accompany texts on geometry with
images. This part mentions the possibility of using special software, which often does
not exist, or using GeoGebra. The article’s author describes the possibility of drawing
almost anything in GeoGebra. The simplest method is to click on all the constructions
with the mouse. This method is time-consuming, and the picture sometimes becomes
labyrinthine and unclear. The second method is to use the command line. The user does
not have the possibility of clicking in the wrong way; the commands can be grouped,
and in the case of a repetitive construction, there is the possibility of changing only
the variables. The last option mentioned in the article is to create your own GeoGebra
tool. The advantages of this approach are the possibility of transferring the tool between
projects and the possibility of creating the tool from GeoGebra applets available online.
Finally, the author describes the tools used to construct the sphere in 4D perspective.
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(2), pp 16-23, 2021
-
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