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Abstract: The task of Multimodal Summarization aims to fuse disjoint infor-
mation from several sources (modalities) and distill it into a concise and precise
summary. In our research, we approach a text-centric variant that requires tex-
tual content in both the input and the output, i.e., the summary. Specifically,
we focus on the Multimodal Summarization with Multimodal Output (MSMO)
approach, which summarizes a textual document accompanied by either a collec-
tion of images or a short video into a textual summary accompanied by a single
image. On the modeling side, we are interested in supervised formulations that
explore a single neural model to generate the multimodal summary end-to-end,
i.e., by simultaneously processing textual and visual modalities. Considering the
task’s novelty, it still lacks the core components of a well-established field, such as
standardized benchmarks (datasets), publicly available baseline models, and even
task-specific metrics. Therefore, our main contributions are aimed at performing
basic research to establish foundations for future work. Namely, we: i) curate
and publish a large-scale video-based dataset for MSMO; ii) perform experiments
to establish the role of pre-training and the influence of the (quality of) visual
input on the (quality of) textual output; iii) design a human evaluation frame-
work for MSMO, and propose a novel metric for evaluating the quality of textual
output; iv) propose a simplified, multi-task formulation of MSMO, that unifies
the image-based, video-based, and text-only variants with a single architecture.
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Introduction
As per Oxford English Dictionary1:

modality (pl. modalities) – the particular way in which something exists,
is experienced or is done

summary (pl. summaries) – a short statement that gives only the main
points of something, not the details

The task of automatic summarization aims to reduce the size of input data in
a way that preserves the key information via the usage of an automated, compu-
tational process. The exact meaning of size or the notion of key information or
computational process will heavily depend on the particular kind of data/prob-
lem that we are currently dealing with. When summarizing a piece of longer text
(e.g., a news article or a medical report), it is often the case that the summary
is also a piece of text in a similar format, just shorter. Therefore, the size can
be expressed in terms of words or characters. But what about summarizing, e.g.,
logs from an internet service? In practical applications, a useful summary should
probably consist of some aggregated statistics (e.g., the average number of API
calls per minute, a distribution with regards to the age/gender/occupation of
users that are interacting with the service), but also explicitly list events that
must be manually reviewed (e.g., a time-window with a high proportion of failed
HTTP requests). In that case, the exact form of input/summary will be differ-
ent – how to define size? Looking from a different perspective – how to define
key information when summarizing a piece of poetry, a poem? Approaching the
problem from yet another angle – when summarizing a video, do we consider,
e.g., downloading the video from the internet and transforming it into a stan-
dardized format (e.g., mp4) a part of computational process, or do we assume that
such process starts with a sequence of frames (sampled from the video) which are
ready to be consumed by a Machine Learning model?

Those kinds of questions become even more challenging once we take into
account that the world around us – and the information that we consume – is
multimodal. The notion of modality is not well defined and depends upon the
particular context. One could say that an apple is multimodal since it has a
texture (perceived with touch), a color (perceived with sight), a scent (perceived
with smell), and a flavor (perceived with taste). Humans are not able to smell
a color or identify a taste by touch. Therefore, distinguishing modalities by the
particular sense that they stimulate introduces a categorization with well-defined
categories and clear rules for separation. In that regard, a news article that
one reads on their smartphone while eating breakfast is not multimodal – all the
information is perceived with one’s eyes (sight). However, a news article will often
consist of a mixture of text (paragraphs, image captions), images (photographs),
and video (a clip with the recording of an event) – and those differ greatly from
the technical perspective (e.g., how the data is stored, how it is embedded into a
website, whether it can be transformed by screen readers for visually impaired,
etc.). Those differences play a key role when we consider the task of summarizing
such a multimodal news article (e.g., to present it on a newsfeed or to draw the

1https://www.oxfordlearnersdictionaries.com
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attention of the reader).
In this thesis, we approach the problem of automatic Multimodal Summa-

rization, which aims to summarize information from multiple modalities into a
common, concise summary. The modalities that we consider are text (that we
require both in the input and in the summary) and vision (images and videos).
We are interested in approaches (models) realized with neural networks and end-
to-end formulations, i.e., ones that simultaneously process text and vision. From
a scientific perspective, our research is motivated by the complexity of Vision and
Language problems. While machine learning models are able to classify an image
as either a cat or a dog with greater accuracy than humans or to generate transla-
tions that (human) annotators consider superior to human-generated ones, tasks
that require reasoning over the combination of textual and visual modalities are
still far from solving.

The thesis is structured as follows: in Chapter 1, we introduce the relevant
background concerning Text Summarization and ViL modeling. In Chapter 2,
we formally introduce the task of Multimodal Summarization and describe the
problems and formulations approached in previous research. In Chapter 3, we
look at the quality evaluation, i.e., what metrics are explored to estimate the
quality of automatic summaries and what protocols are employed to collect hu-
man judgments regarding the quality of the automatically generated outputs. In
Chapter 4, we look at the characteristics of publicly available datasets that en-
abled the previous research. Finally, in Chapter 5, we describe our experiments
related to Multimodal Summarization. Our findings covered in this thesis are
based on five conference papers that the author published during their doctoral
studies (see “List of Publications” at the end of the thesis). A link between the
thesis and published work is done via visual indicators, i.e.,

This section is based on the XYZ article.

to match a section or a chapter to a corresponding article (publication).

Specifically, the contributions presented in this thesis are as follows:
• a proposal of the COMES metric (see Section 3.1.7) for evaluating the

quality of textual summaries;
• a novel framework for collecting human annotations judging the quality and

relevance of pictorial summaries (see Section 3.3);
• a curation and a publication of a large-scale dataset for video-based Multi-

modal Summarization (see Section 4.2);
• an extension of an existing large-scale dataset for image-based Multimodal

Summarization by enriching it with pictorial summaries (see Section 4.3);
• experiments aiming at establishing the role of task-specific pre-training and

the influence of the visual input on the quality of textual output (see Sec-
tion 5.1);

• a unified formulation of MSMO, merging text-only, image-based, and video-
based problems with a common, encoder-decoder architecture trainable in
a multi-task fashion (see Section 5.2);

• a novel metric dedicated to evaluating Machine Translation outputs (see
Appendix A), inspired by the QA/QG approaches to textual summary eval-
uation.
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1. Background
In this Chapter, we wish to establish a set of core concepts, ensuring that both
we and the reader have a shared understanding of them.

In Section 1.1, we will consider Text Summarization (a core problem for text-
centric Multimodal Summarization), highlighting the two variants explored in
previous research. Namely, in Section 1.1.1, we will take a closer look at the ab-
stractive (generative) approaches, and in Section 1.1.2, we will briefly cover the
extractive ones. One might argue that Video Summarization is also a core prob-
lem, especially within the video-based formulation of MSMO (see Section 2.2).
However, since the typical benchmark datasets (see, e.g., Apostolidis et al. (2021))
are annotated with (shot/scene-level) human preferences, and the target is for-
mulated as a short clip (video skim), none of the methods are directly relevan-
t/applicable to our research.

In Section 1.2, we will touch upon the broad family of ViL tasks that the
Multimodal Summarization belongs to. Our concern will be with the methods
commonly explored to obtain numerical representations of visual input (see Sec-
tion 1.2.1) and the modeling approaches to combining textual and visual repre-
sentations (see Section 1.2.2).

Extractive 

Abstractive

Hybrid

Monolingual

Multilingual

Cross-Lingual

Based on Summary 

Language

Based on 

Summarization 

Approach 

Classification of the Automatic Text Summarization Systems 

Sentence-Level
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Multi-Document 
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Summarization

Algorithm 
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Summarization 
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Figure 1.1: Categorization of automatic Text Summarization systems proposed
by El-Kassas et al. (2021). Figure reprint from El-Kassas et al. (2021).
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1.1 Text Summarization
The task of Text Summarization is one of the classical problems in Natural Lan-
guage Processing, aiming at creating a concise and coherent summary of a textual
input that preserves the key concepts and retains the essential pieces of informa-
tion. Considering both its depth – early works published already in the 1950s and
1960s, e.g., Luhn (1958); Edmundson (1969) – and its breadth (see Figure 1.1),
trying to provide even a concise overview, which would still do justice to every
variety and sub-problem, is out of scope of this work. Instead, we will focus on
the modeling approaches, limiting ourselves to those that are realized with neural
networks. Specifically, we would like to provide a (subjective) overview of what
we consider major paradigm shifts and how they interleave with breakthroughs
in multimodal approaches (see Chapter 2). Additionally, we will limit our recap
to single-document problems and approaches operating in a supervised manner,
i.e., with a reference summary. For a comprehensive review of the classical auto-
matic Text Summarization methods, we refer the reader to one of the following
surveys: Suleiman and Awajan (2020); El-Kassas et al. (2021); Widyassari et al.
(2022); Yadav et al. (2022); Zhang et al. (2022b). Readers interested in multi-
document summarization may consult e.g., Ma et al. (2022), or newer works based
on LLMs, e.g., Bhaskar et al. (2023) or Huang et al. (2023).

For the remainder of this Section, the input document D, the reference sum-
mary S, and the automatically created summary Y will be represented by a series
of tokens (words), i.e., D = (d1, . . . , dk); S = (s1, . . . , sm); Y = (y1, . . . , yn). The
summarization model will refer to a system capable of indirectly (or directly)
modeling the conditional probability of p(Y |D). Unless stated otherwise, the de-
cision process is to pick the summary Y from the pool of available candidates
{ ˆ︁Y } that maximizes the conditional probability, i.e., Y = arg max{ˆ︁Y } p( ˆ︁Y |D)

1.1.1 Abstractive Summarization
Within the abstractive formulation of Text Summarization, the summary Y is
generated – or built – based on the available components (tokens), conditioned
on the input document D. The conditioning is realized with a recurrent neural
network involving a decoder, i.e., a component capable of modeling the condi-
tional, per-token probability. In that case, the pool of available candidates { ˆ︁Y }
is not realized directly but estimated with a point-wise (token-based) modeling,
i.e., yi = arg maxy p(y|y1, . . . , yi−1, D), based on the input document D and the
previously generated tokens y1, . . . , yi−1. Such generation process is called autore-
gressive generation, as the probability of a consecutive token depends upon the
tokens generated so far. The non-autoregressive generation that conditions only
on the input document D (and on the positional index i) belongs to a separate
sub-field (see, e.g., Su et al. (2021)) that we will not consider here. The genera-
tion process (decoding) does not assume the length of the output (summary) a
priori but selects the consecutive tokens until the model itself decides to end the
generation, as indicated by a special [EOS] token – or until the maximum desired
length of summary is reached.
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On one hand, the advances in the field follow the generic trends of sequence-
to-sequence modeling. Namely, the replacement of the simple recurrent RNN
cells with LSTM cells (Hochreiter and Schmidhuber, 1997), followed by the sim-
pler but similarly performing GRU (Chung et al., 2014) cells. The introduction
of the Transformer (Vaswani et al., 2017) architecture1 enabled a direct (O(1))
interaction between tokens (compared to O(n) for RNNs) at the cost of quadratic
complexity (O(n2) for Transformer vs O(n) for RNNs) of computing the forward
pass. Devlin et al. (2019) proposed the masked language modeling to pre-train
the textual encoder, contributing to the novel training pipelines – instead of
training the models from scratch, it became a custom to fine-tune pre-trained
components. The unified text-to-text formulation of pre-training – Raffel et al.
(2020) proposed a variant based on the premises of transfer learning, while Lewis
et al. (2020a) explored the denoising (autoencoder) formulation – gave us access
to complete pre-trained models (both encoder and decoder), suitable for task-
specific fine-tuning. Finally, by scaling the model sizes from millions to billions
of parameters (Brown et al., 2020; OpenAI, 2024), decoder-only LLMs have rev-
olutionized the field by performing on par with task-specific models, substituting
fine-tuning (or any other explicit training) with in-context (few-shot) learning
and prompt engineering.

On the other hand, certain advances are specific to the field of Text Summa-
rization. In contrast to other sequence-to-sequence problems, there is a major
discrepancy between the length of the input and the length of the output, with
the former being longer even by the order(s) of magnitude. Therefore, one of the
crucial issues that is still not completely solved is the ability to encode the long
input text effectively. RNNs struggled mostly with the long-term dependencies
between tokens. While they are solved with each token attending to one an-
other in the Transformer architecture (full attention), computational (memory)
problems caused by the quadratic complexity emerged. Therefore, a number of
solutions were proposed that compute the sparse attention only between certain
tokens (see, e.g., Tay et al. (2023)).

A relevant problem concerns positional embeddings. Within the Transformer
architecture, the formulation of attention requires a dedicated module that alters
the token representation to consider its position (absolute or relative) in the input
text. The original implementation of Transformer, i.e., Vaswani et al. (2017),
explored fixed (absolute) positional embeddings that affected the performance if
the length of the input was different from the average lengths encountered during
training (see, e.g., Varis and Bojar (2021)). The following works proposed a
modified design that considers only the relative position (distance) between tokens
(see, e.g., Raffel et al. (2020); Su et al. (2024)), which can be effectively updated
(see, e.g., Press et al. (2022); Chen et al. (2023)) to address the training/test
input length mismatch.

Another task-specific modification to the generic architecture was proposed
by See et al. (2017). The authors build upon the observation that certain enti-
ties from the input (e.g., names, dates, locations) should be preserved (copied)
in the output. To allow explicit copying, the pointer-generation mechanism is
implemented that computes the next-token distribution over an output vocab-

1In this paragraph, n corresponds to the length of the input, expressed in terms of tokens.
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ulary extended with a vector corresponding to input tokens. The experiments
of See et al. (2017) were conducted with the LSTM variant of RNN, but in the
follow-up work Enarvi et al. (2020) managed to show that the pointer-generation
mechanism works also for the Transformer-based models.

A different approach was proposed by Zhang et al. (2020a), who do not
modify the model but focus on the task-specific pre-training. The novel pre-
training objective, Gap Sentence Generation, masks whole sentences from the
input document (creating the “gap”), concatenating the gap-sentences into a
pseudo-summary used as a target.

1.1.2 Extractive Summarization
In contrast to the abstractive formulation, within the extractive one, the pool of
candidate summaries { ˆ︁Y } is realized directly. Namely, as summary candidates,
we consider only the sub-sequences of the input document. The space of sub-
sequences is limited by considering non-overlapping (ordered) input sentences, as
obtained by pre-processing the input document with a sentence splitter.

By default, extractive summarization is approached as an unsupervised prob-
lem decomposed into two subtasks: sentence scoring and sentence selection. The
scoring step produces sentence-level scores based on both word-level (e.g., TF-IDF
importance) and sentence-level (e.g., sentence position (index) in the document,
number of named entities, number of capitalized words) features. While a simple
procedure that ranks the input sentences based on the scores and selects top-
k scoring ones (with k depending on the desired length of the summary) as a
summary is feasible, it has a number of drawbacks, e.g., similar sentences may be
selected for the summary, or the distribution of scores may be biased towards cer-
tain topics (see, e.g., El-Kassas et al. (2020)). Instead, graph-based algorithms
(see, e.g., Erkan and Radev (2004); Mihalcea and Tarau (2004); Barrera and
Verma (2012)) are commonly applied. They transform each input sentence into
a node, with edges representing the relative similarity scores. A graph-specific
ranking algorithm (see, e.g., PageRank (Brin and Page, 1998)) is employed to
select the final summary.

Supervised approaches to extractive summarization are limited. To obtain
the reference summaries for training, the classical approach (see, e.g., Nallapati
et al. (2017)) is to transform the abstractive dataset. One picks sentences from
the input document that maximize a similarity metric (see Section 3.1) with the
(abstractive) reference, i.e., creating the “oracle” summary. During training, the
task is framed as a binary classification to decide whether a sentence should be
part of the summary (sentence labeling) or not (see, e.g., Zhou et al. (2018);
Al-Sabahi et al. (2018); Liu and Lapata (2019b)).

Recent approaches explore LLMs for extractive summarization by prompting
the model with an explicit request to extract k input sentences as the summary
(see, e.g., Zhang et al. (2023a)). However, since the final prediction is generated,
we can not assure that the model will not rewrite parts of the text.

For (extractive) Text Summarization, a trivial but often strong baseline can
be established by taking the first n sentences from the original document (see,
e.g., Narayan et al. (2018); Lewis et al. (2020a). This is especially true in the
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news domain, where the articles are designed to catch the attention of a reader
quickly and, thus, have a skewed distribution content-wise (see, e.g., Grusky et al.
(2018)).
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1.2 Vision and Language Modeling
The task of Multimodal Summarization belongs to a wider family of ViL tasks.
It consists of problems that require reasoning over both textual and visual infor-
mation and can be divided into a number of categories. One can consider:

• Generative tasks, such as:

– Visual Question Answering (text+image→text or text+video→text)
– Image Captioning (image→text)
– Text-to-Image Generation (text→image)

• Understanding tasks, such as:

– Visual Entailment (text+image→label)
– Phrase Grounding (text+image→image region)

• Retrieval tasks, such as:

– Image-to-Text retrieval (image+texts→text)
– Text-to-Image retrieval (text+images→image)

and many others. For a detailed taxonomy, we refer the reader to one of the
recent surveys: Mogadala et al. (2021); Chen et al. (2022); Wang et al. (2022b);
Gu et al. (2022); Zhou and Shimada (2023); Zhang et al. (2024).

In this section, we will focus on the technical aspect, which is common to most
of those problems. Namely, we will be concerned with the problem of multimodal
encoding, i.e., obtaining multi-modal, contextualized representation that can be
passed to task-specific modules, such as the decoder module (e.g., Visual Question
Answering, Multimodal Summarization) or the classification layer (e.g., Visual
Entailment). We would say that the representation is contextualized if features
from one modality had a chance to interact with features from another modality.
The interaction process and how it can be modeled will be a core part of this
section. The modalities on which we will focus are vision – videos (V ) and
images (I) – and text (T ). In the following sections, we will take a closer look
at the encoding process that transforms the input pair of (T, V ) or (T, I) into
a contextualized representation C. C will either be a single vector, i.e., C ∈
Rd or a sequence of vectors, i.e., C ∈ RP ×d. In Section 1.2.1, we will cover
the process of embedding (feature extraction), which turns input modalities into
numerical representations. In Section 1.2.2, we will cover the fusion process that
contextualizes both representations into a common, multimodal representation.

1.2.1 Feature encoding
Due to the sequential nature of textual input, the size (length) of the input
data can be different for every training/test sample. Additionally, due to the
flexible and evolving nature of language, it is not possible to encode every word
(sentence) with a fixed look-up table (see, e.g., Pennington et al. (2014); Mikolov
et al. (2013)). Therefore, to encode text, we employ architectures (see Section 1.1)
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capable of consuming an input of a variable length, encoding words with sequences
of subword units (see, e.g., Sennrich et al. (2016); Kudo (2018); Radford et al.
(2019)).

After the embedding layer (a trainable matrix, assigning a vector to every
subword from the dictionary), the input text is a sequence T = (t1, . . . , tK), with
ti ∈ Rdtext . The encoding process that contextualizes the token representations
(encoder) does not affect the shape of the representation. If a particular appli-
cation requires a single vector to represent the whole text, two approaches are
commonly used. The first one is to aggregate the vectors (along the sequence di-
mension) via an arithmetic sum/average/position-wise max (see, e.g., Tang et al.
(2016); Cer et al. (2018)). The second one prepends (or appends) an additional
[CLS] token (see Devlin et al. (2019)) to the input text and uses the contextual-
ized representation of that token as a representation of the whole sequence (see,
e.g., Radford et al. (2021)).

An image can be represented by the value of its pixels, i.e., I ∈ H × W × Nc,
with H corresponding to the height of the image, W to its width, and the last
dimension is given by the values of a color model, such as RGB (Nc = 3) or
grayscale (Nc = 1). By algorithmic image scaling/resizing, one can unify a col-
lection of images to a common, fixed input size (H × W ). Common sizes include,
e.g., 224 × 224 for the ResNet (He et al., 2016) and MobileNet (Howard et al.,
2017) families of models or 384×384 for the original Vision Transformer (Dosovit-
skiy et al., 2021). We will cover three different architectures employed as feature
extractors, namely ConvNet, Vision Transformer, and Faster R-CNN (Ren et al.,
2015).

ConvNet is a feedforward neural network that stacks convolutional layers with
an altering kernel and stride sizes (parameters of a convolutional layer), gradually
shrinking the spatial dimensions (H, W ) but expanding the channel dimension
(Nc) of an image, i.e., from the initial shape of, e.g., <224, 224, 3> to the final
shape of, e.g., <7, 7, 512> (see, e.g., Tan and Le (2019)). Traditionally, ConvNets
were trained for Image Classification (see, e.g., Deng et al. (2009)). Therefore,
after the stack of convolution layers, a (global) spatial pooling operation is per-
formed, projecting the image representation to <1, 1, dimage> (the value of dimage

is equal to the last dimension of the output, as processed with the final convolu-
tion). During training, this vector (tensor dimensions of size 1, i.e., <1, 1, ·> can
be squeezed) is projected to compute the value of the loss function. Otherwise,
the vector gets extracted as a representation of the image for the downstream task
(see, e.g., Li et al. (2020d); Fu et al. (2021); Jiang et al. (2023)). Some works (see,
e.g., Zhu et al. (2018)) flatten the final spatial dimensions (H ×W → HW ) before
the global pooling layer (e.g., <7, 7, 512> → <49, 512>), obtaining a sequential
representation of the input image. To process videos, Ji et al. (2013) proposed the
3D ConvNets that consume sequences of images/frames, performing the pooling
also along the temporal dimension T , i.e., V ∈ T × H × W × Nc (see, e.g., Qiao
et al. (2022)).

The architecture of Vision Transformer was proposed by Dosovitskiy et al.
(2021), as inspired by the success of the textual Transformer. Vision Transformer
transforms the input image I ∈ H × W × Nc into a sequence p of flattened 2D
patches, i.e., p ∈ RN×(P 2Nc), where (P, P ) is the resolution of each image patch,
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and N = HW/P 2 is the resulting number of patches, which also serves as the
effective input sequence length for the (text-like) Transformer. By prepending
a learnable embedding p0 (similar to the [CLS] token) to the sequential repre-
sentation of the image, one can either extract the encoded, sequential features
p ∈ RN×dimage (see, e.g., Lin et al. (2023a); Zhang et al. (2022c)), or extract only
the single, encoded vector p0 ∈ Rdimage as image representation (see, e.g., Tang
et al. (2024); Qiu et al. (2024)).

The Faster R-CNN (Ren et al., 2015) model is an architecture designed for
object detection. The task is realized by predicting the coordinates of a rectan-
gle enclosing the object (bounding box), along with a label corresponding to the
predicted object class. On the modeling side, it first transforms the input image
with a stack of convolutional layers. Then, a Region Proposal Network (RPN)
component is applied to detect image regions (region proposals) likely to contain
an object. Finally, after spatial pooling, the vectors corresponding to region pro-
posals are classified into one of the object classes, with a second regression head
used for bounding-box regression, i.e., smoothing the coordinates of the predicted
bounding box. When used as a feature extractor, previous works identified up to
k objects (hand-picked threshold), ranked according to the probability of contain-
ing an object, as computed with RPN. For each object, the corresponding feature
vector (after spatial pooling, before classification/bounding-box regression) is ex-
tracted and turned into a sequence i representing an image, i.e., i ∈ Rk×dobject (see,
e.g., Li et al. (2020b)). In settings with more than one image in the input, the
feature sequence is concatenated along the image dimension, i.e., i ∈ RMk×dobject ,
with M corresponding to the number of input images (see, e.g., Xiaorui (2023);
Liang et al. (2023b)).

Due to the average length of a video considered in Multimodal Summarization
(see Chapter 4), it is not feasible to process the whole input video with a single
3D ConvNet. Therefore, previous works have sampled either separate frames
from the video (see, e.g., Li et al. (2020d); Fu et al. (2021)) or distinct sub-
sequences of frames (see, e.g., Krubiński and Pecina (2023); Qiu et al. (2024)),
that after feature extraction, were contextualized at the video-level with an RNN
or Transformer-based encoder (see Section 5.1).

1.2.2 Feature fusion
In this section, we will look at the encoding process that turns the input pair
of (T, V ) or (T, I) into a contextualized representation C ∈ RP ×d. The input
text T consists of token embeddings, i.e., T ∈ RK×dtext , and the input video V
is represented by a sequence of frame-level features, i.e., V ∈ RL×dvideo . While
we differentiate between problems with a single and with multiple images in the
input (see Chapter 2), from the perspective of feature extraction, they are similar.
With multiple images in the input, we extract a vector (or a short sequence) for
each input image and, thus, obtain a sequential representation. If there is only
a single image in the input, it is transformed into a more expressive sequence of
features, as compared to the less expressive vector2 (see Section 1.2.1). Therefore,
in both cases, the image input is represented by a sequence I ∈ RM×dimage . By
using a simple projection based on a dense layer (see Section 5.1), we can assume

2If it is not transformed, a single vector can be considered a sequence of length 1.
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that dtext = dvideo = dimage. This allows us to simplify the notation and assume
that the input is a pair of textual input T ∈ RK×d and a visual input (image(s)
or video) V ∈ RL×d.

Modeling approaches based on RNNs contextualized the representations with
the attention mechanism introduced by Bahdanau et al. (2015). The attention
mechanism was first proposed for the MT task to allow the (variable length) rep-
resentation in the decoder to condition on the (variable length) representation
given by the encoder (see Section 1.1.1). The attention mechanism is not sym-
metrical, as “sequence A attending to sequence B” modifies the representation of
A (not affecting the shape of A), leaving B intact. Considering our focus on the
text-centric formulation of Multimodal Summarization (see Chapter 2), a major-
ity of related works conditioned the textual representation on the visual one (see,
e.g., Li et al. (2018, 2020b)), so that it could be passed to the textual decoder
(see, e.g., Libovický and Helcl (2017) for a further discussion).

Within the Transformer architecture, there are two kinds of attention mecha-
nisms: self-attention (used to contextualize, i.e., encode the input and to allow the
decoder to attend to tokens generated so far) and encoder-decoder-attention (the
mechanism that allows conditioning the next-token probability in the decoder
based on the encoder representations). Both attention mechanisms3 are imple-
mented with Query (WQ), Key (WK), and Value (WV ) matrices that project
the input sequence(s). Within the self-attention formulation, all three matrices
are applied to the same sequence X ∈ RN×d, which gets transformed without
changing its shape, i.e.,

Q = XWQ, K = XWK , V = XWV ;

X = softmax
(︄

QKT

√
d

)︄
V ∈ RN×d.

Within the encoder-decoder-attention that updates the representation in the
decoder, the queries (Q) come from the previous decoder layer, i.e., Y ∈ RM×d,
and the keys and values from the encoder representation X ∈ RN×d. This is
feasible4, since QKT · V = Y WQ · WKX · XWV , i.e., RM×d × Rd×N × RN×d =
RM×N × RN×d = RM×d.

Due to such a flexible formulation, there are a lot of ways (see, e.g., Tan
and Bansal (2019); Kim et al. (2021); Xu et al. (2023b) to implement the cross-
modal (text-to-vision, vision-to-text) interactions (see Figure 1.2). In principle,
we differentiate between early fusion and late fusion. Early fusion (see a), b),
and d) in Figure 1.2 and Section 5.2) first merges both modalities, possibly
changing the sequential dimension, before computing the attention (encoding
step). Late fusion first encodes each modality sequence (see c), e), and f) in
Figure 1.2 and Section 5.1), before the merging step is performed. Since the
encoder-decoder-attention can be stacked, it is also possible to sequentially at-
tend to both single-modality representations and cross-modal ones, mixing in

3Please consult the original Transformer paper, i.e., Vaswani et al. (2017) for further details
(e.g., Multi-Head Attention) that we simplify here for brevity.

4Since softmax and the normalization factor
√

d do not affect dimensions, we skip them here
for simplicity.
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aggregated, sentence-level or video-level features (see, e.g., Li et al. (2020c); Ging
et al. (2020); Papalampidi and Lapata (2023); Xu et al. (2023a).
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Figure 1.2: An overview of transformer-based cross-modal interactions: a) Early
Summation, b) Early Concatenation, c) Hierarchical Attention (multi-stream to
one-stream), d) Hierarchical Attention (one-stream to multi-stream), e) Cross-
Attention, and f) Cross-Attention to Concatenation. Colors indicate features
from separate modalities. Figure reprint from Xu et al. (2023a).
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2. Multimodal Summarization

Parts of this chapter are based on the Ph.D. Thesis Proposal (Krubiński, 2022)
submitted by the author as a part of their doctoral studies.

Following Jangra et al. (2023), we define a Multimodal Summarization task
as follows:

“A summarization task that takes more than one mode of information rep-
resentation (termed as modality) as input and depends on information sharing
across different modalities to generate the final summary.”

Formally, let us define a multimodal document Di as a tuple:

Di = (Mi1, Mi2, . . . , Mik) (2.1)

where Mij denotes disjoint information from a particular modality Mj, such as
video (movie clip), text (textual document), or audio (voice recording) in docu-
ment Di. While using this notation, we always assume that a particular document
Di is aligned. By that, we mean that all modalities are coming from the same
source, and the document is supposed to be presented as a whole1 (see Figure 2.2).
It might be the case that some modalities are aligned on an even finer granulation,
e.g., video subtitles (text) corresponding to particular timestamps in a video clip
(video). Still, we do not require it to say that the document as a whole is aligned.
Therefore, the task of Multimodal Summarization can be formalized with the
following formula:

MS : {Di}k
1

σ−→ Dj (2.2)

by which we mean the task of creating a (multimodal) summary Dj, based on
a collection of input documents {Di}k

1 using the σ symbol to denote a summa-
rization function. If Dj consists of a single modality (i.e., Dj = (Mj1)), we talk
about Multimodal Summarization with Unimodal Output. Otherwise, the task is
called Multimodal Summarization with Multimodal Output.

The formula that we proposed (Eq. 2.2) is, by design, ambiguous. For ex-
ample, it does not limit the output modalities to be a subset of input modali-
ties, which is the case in the majority of applications. It also does not put any
limitations on the summarization function σ – the vague definition does not en-
force information sharing between the modalities. In principle, one could consider
σ = (σ1, . . . , σk) such that each σj acts only on a single modality Mj. It would be,
however, against the intended formulation, which enforces “information sharing

1A counterexample would be a multimodal document created by, e.g., combining a textual
article from Wikipedia with a video obtained from YouTube, and a collection of images from
Imgur, all retrieved with the same keyphrase. While all of the modalities will (hopefully) refer
to the same event/object, they were combined artificially and were not meant to be presented
as a whole.
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Figure 2.1: A Multimodal Summarization (MMS) taxonomy proposed by Jangra
et al. (2023). The dark-orange nodes coming out of the root (in yellow) represent
the segregation based on input, output, and adopted methodology. In contrast,
the light-orange nodes following them represent the respective characteristics of
the research work on which the works can be distinguished. The teal-colored
rectangles in the leaf denote the various categories of each such characteristic.
Figure reprint from Jangra et al. (2023).

across different modalities”. This ambiguity can also be noticed when comparing
with the taxonomy proposed by Jangra et al. (2023) (see Figure 2.1). There-
fore, we need to put in place certain limitations with regard to the Multimodal
Summarization task. Unless stated otherwise, for the remainder of this thesis,
we will focus on a text-centric Multimodal Summarization – we assume that the
textual modality is always present both in the input document and in the output
summary. In addition, we will be mostly concerned with the case of k = 1, i.e.,
our input will be a single multi-modal document, and our interest will mostly be
targeted towards the supervised formulation. In the case of MSMO, the output
modalities that we target are text plus a single image.

In the following sections, we intend to familiarize the reader with some of the
particular problem variations that were approached previously. The categoriza-
tion that we propose is based on the type of input/output data, as we believe it
to be the most crucial one.
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Figure 2.2: Example of a multimodal news article from an online publisher (dai-
lymail.co.uk). Three modalities: text, image(s), and video are presented to a
user. Each of them brings a new, unique piece of information. While particular
modalities may have an inner structure – text can be split into Title, Abstract,
and Story, in general, no specific order can be imposed on objects from different
modalities.
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2.1 Multimodal Summarization with
Unimodal Output

In this problem formulation, the summary is unimodal and, thus, consists only of
the textual modality. Therefore, one can consider purely textual baselines that
generate the textual summary based only on the textual part of the input.

2.1.1 Multiple documents → Text
Early works on Multimodal Summarization explored the usage of the secondary
modalities as an auxiliary source of information to guide the refinement process
of the main (textual) modality by operating on collections of unaligned docu-
ments. Data used in the experiments was created by manually querying a search
engine for a particular phrase and collecting resources from available outputs.
Tjondronegoro et al. (2011) conducted sentiment analysis of web and social me-
dia articles to annotate the key events in sports videos. Those were used as
features to rank sentences from the corresponding text articles, and the top N
were inputted into a pre-defined template. Li et al. (2017) collected videos and
news articles2 covering a hand-crafted list of recent significant world events and
employed human annotators to write reference summaries.

From a modeling point of view, summaries were created in an extractive
manner – non-textual features (audio features from videos transcribed to text
segments, videos converted into a set of key-frames) were not used directly in
the generation process but rather distilled to a set of weights. Those weights
were combined with sentence-level salience scores computed with the graph-based
LexRank algorithm (Erkan and Radev, 2004), and a set of sentences maximiz-
ing the objective function was considered as a summary. By ignoring sentence
weights from particular modalities, the authors claimed an improvement over the
text-only baseline.

2.1.2 Text + Image(s) → Text
Li et al. (2018) introduced the multimodal sentence summarization task in the
news domain, which generates a short textual summary from an <image, sen-
tence> pair. The authors argue that the visual clues are useful for identifying
the event highlights, which should help produce better sentence summaries. In
their experiments, they use the <sentence, headline> tuples from the Gigaword
corpus (Rush et al., 2015) and the search engine to crawl matching images. Hu-
man annotators are used to select the best-matched image for each sentence. The
authors identified the need for a filtering mechanism if, e.g., the image fails to
represent some abstract concepts or is too vague.

Compared to the previous works (see Section 2.1.1), the input documents
are still unaligned, but the non-textual features are directly incorporated in the
representations used for decoding. A multi-modal sequence-to-sequence model is
proposed, with a bidirectional GRU (Chung et al., 2014) as input encoder and a

2In the news domain, the task of summarizing a textual document to a single sentence is
usually called title or headline generation, while a longer summary is often called abstract. The
source document is usually labeled as article.
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uni-directional GRU, attending to both text input and image features extracted
with VGGnet (Simonyan and Zisserman, 2014), as a decoder.

Li et al. (2020b) further study the filtering mechanism on the same dataset
by introducing a hierarchical gating mechanism. After the encoder, hidden states
are updated based on associations with the whole image (global-level gate), with
image patches (grid-level gate), and with the highest scoring object proposals
(object-level gate), as detected by the Faster R-CNN (Ren et al., 2015) model.
An additional regularization module is proposed that uses a pairwise ranking loss
to encourage a similarity score between <image, summary> to be higher than
<image, source> one. The same dataset was further explored by Xiao et al.
(2023), who challenged the unclear contribution of the visual modality to the
quality of the final summary. They introduce a hard, binary gating mechanism
that masks the whole image if the similarity between text and image features
is not sufficient. Besides the negative log-likelihood loss computed between the
hypothesis and reference, additional losses are introduced. They are designed to
model the image complementarity for the summary by steering the generation
towards tokens that are more probable based on multimodal input, as compared
to those that would be generated based only on textual input. Lin et al. (2023a)
argue that to capture the essence of the short, single-sentence input, it is crucial
to identify critical tokens by exploring the visual clues from the input image.

More recent works focus on what we call aligned settings by collecting the
data from multi-modal news websites, where the news articles are accompanied
by image sequences/galleries natively.

Xiaorui (2023) extends the multi-lingual CrossSum dataset (Bhattacharjee
et al., 2023) into the MM-CLS dataset by collecting, on average, 3.2 images
per article from the website of a news provider. In their experiments, they fo-
cus mostly on cross-lingual summarization – allowed by the multi-alignment in
CrossSum – and on knowledge distillation. Namely, they train a monolingual,
multi-modal teacher model and separate student models for each language pair.
Inspired by the approach of Li et al. (2020b), image features are extracted with
a Faster R-CNN trained for object detection. Multiple images in the input are
handled by simply concatenating the image vectors corresponding to the detected
objects, and the architecture is based on the mT5 model (Xue et al., 2021) ex-
tended to handle visual features.

Liang et al. (2023a) build upon the MM-CLS dataset to create the M3Sum
dataset by providing a further alignment that allows them to format a cluster of
languages L1, L2, . . . , Lk so that the cross-lingual alignment is provided for every
direction Li → Lj. This introduces a many-to-many problem, where the visual
features can act as a clue for low-resource pairs. Such formulation allows a de-
cent performance in a few-shot settings. In a similar fashion, Liang et al. (2023b)
extends the XL-Sum dataset (Hasan et al., 2021) by collecting the input images
from news articles. In their experiments, they provide results in high/mid/low
and even zero resource settings by training on data covering almost 50 languages.
The cross-lingual formulation is not considered. Similarly to Xiaorui (2023),
Faster R-CNN is explored as a feature extractor, and multiple images are han-
dled by concatenation. Yet another contribution, the M3LS dataset, was curated
by Verma et al. (2023). The M3LS dataset was derived from news articles pub-
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lished by the British Broadcasting Corporation (BBC) and spans 20 languages,
including a cross-lingual subset for two languages. In their experiments, Verma
et al. (2023) focus on the multi-lingual aspects by exploring the mT5-based model
and approach the multi-modal settings only in English, relying on the models/co-
de by Zhu et al. (2018). The visual modality is present only on the input side,
with, on average, between 1 and 5 images per article, depending on the language.
The limitation with regard to the lack of a target image (multi-modal output)
was observed by the authors themselves. In Section 4.3, we describe the process
of collecting the image target for the subset of M3LS in English that we explored
in our work on unified, multi-task, multi-modal summarization (Krubiński and
Pecina, 2024).

Product 

Image

Product Title

(Midea Refrigerator, Double-Door, Small Double-Door Household Air-Cooled 

Frost-Free Refrigerator, Quiet and Efficient)

Product Details

(Midea golden double-door refrigerator with glass panel is fashionable. The 

technology of stereo air-cooled frost-free makes cold air disperse evenly. The 

refrigerator freezes food quickly, and the space is large enough to meet the 

requirement of the whole family.)

Product Information

(Air-cooled system makes refrigerator frost-free. Soft cooler keeps your 

food moist and fresh ...)

(Golden glass panel shows high quality life ...)

(Freezer's space is very large, which can 

hold lots of food ...)

Product Summary

Figure 2.3: A multimodal product summarization task proposed by Li et al.
(2020a). Figure reprint from Li et al. (2020a).

Besides the news domain, a similar problem formulation was explored in the
e-commerce domain, see, e.g., Chen et al. (2019); Li et al. (2020a); Rong et al.
(2024). Li et al. (2020a) generate a product summary (see Figure 2.3) based on
its title, description, and image, as supplied by the manufacturer. The goal of
the summary is to draw the attention of a potential customer. Reference sum-
maries were created by professionals with the goal of convincing the customer
to buy the product. The proposed dataset was created based on an undisclosed
e-commerce platform, and the modeling approaches are based on a sequence-
to-sequence architecture with LSTM cells and cross-modal attention. Im et al.
(2021) approached a similar problem, opinion summarization, in a self-supervised
manner. Each instance in their dataset consists of a collection of reviews (R) de-
scribing a particular product, user-supplied product images, and additional tab-
ulated metadata – using the data-to-text encoder proposed by Puduppully et al.
(2019). A Transformer-based model is trained to generate a textual summary,
using one of the reviews rj as a target and the remaining ones R−j as input. The
proposed architecture is based upon the encoder-decoder text-only BART (Lewis
et al., 2020a), which is firstly pre-trained for opinion summarization on textual
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data. Image features are extracted with the ResNet101 (He et al., 2016) model.
In the decoder, the attentions to each input modality (text, image, metadata) are
combined via a weighted, position-wise addition. This setup allows the authors to
analyze the influence of each modality and shows that the multi-modal clues are
not very effective (e.g., ROUGE-L3 19.84 →19.54 without the image modality).

Recent works keep expanding the task to new domains. Overbay et al. (2023)
proposed the mRedditSum dataset (3,030 instances) based on discussion threads
from Reddit. By manually filtering subreddits with discussions surrounding visual
content, authors were able to create a dataset in which each instance consists of
a single image, with the textual modality provided by the content of the post
from the original uploader and comments from other users. The summaries were
written by workers from a crowdsourcing platform.

2.1.3 Text + Video → Text
Besides the image modality, a number of works explored the summarization prob-
lem that generated the textual summary based on a textual document and a
(relatively) short video.

The first large-scale resource that facilitated such research – the How2 dataset
– was introduced by Sanabria et al. (2018). The authors collected almost 80,000
instructional videos from the YouTube platform, totaling roughly 2,000 hours.
For each video, corresponding English subtitles and video descriptions were col-
lected. While the video descriptions were manually written by the video creators,
there is no guarantee that automatic ASR systems were not involved in creating
subtitles to some degree. In their experiments, the authors propose a summa-
rization task that, based on subtitles and video frames, generates the description
(summary). A 3D ConvNet model, namely the ResNeXt-101 3D (Hara et al.,
2018) trained for action recognition on the Kinetics dataset (Kay et al., 2017),
is explored as a feature extractor, generating a single vector for every 16 frames.
Text – both input and output – is lowercased and tokenized. Audio features
(43-dimensional vector for every window of 25 milliseconds) are extracted with
Kaldi (Povey et al., 2011). Due to the copyright laws (see Chapter 4), the dataset
is shared only as those pre-computed features, forcing the same feature encod-
ing/processing from all follow-up works. Palaskar et al. (2019) proposed a RNN-
based modeling approach that builds upon the findings on combining attention in
multi-encoder setup by Libovický and Helcl (2017). The best multi-modal model
they train is only marginally better than a SOTA text-only model (ROUGE-L of
54.9 vs 53.9). Khullar and Arora (2020) explored the addition of audio modal-
ity via a trimodal, hierarchical attention mechanism, i.e., text features attend
independently to audio and video features, in the next step, combining those
into a unified representation. While they report an improvement over the text-
only baseline (ROUGE-L of 42.23 vs 39.98), the number of trainable parameters
greatly differs, raising questions about the validity of the results. The audio-
video-text model has 32.08M parameters vs 16.95M of the video-text model – the
number for the text-only variant is not reported.

More recent works switched to the Transformer architecture. Liu et al. (2020)
3Please consult Section 3.1 for a thorough discussion on evaluating the quality of textual

output. Unless stated otherwise, the F1 variant of ROUGE is reported.
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introduced the Forget Gate mechanism (see Section 5.1), which allows the model
to dynamically control the information from auxiliary modalities by scaling them
down. The authors also explore an off-the-shelf ASR system to generate input
text (subtitles) instead of relying on those provided by Sanabria et al. (2018).
When substituting the original subtitles with the ones generated by the ASR sys-
tem, a much smaller drop in performance of the multi-modal model (ROUGE-L
58.2→56.1) compared to the text-only one (ROUGE-L 53.8→43.3) suggests that
the usefulness of visual features is much higher if the core, textual content is of
lower quality. This is in line with our findings related to the pre-training, as
presented in Section 5.1. Yu et al. (2021) explored the effective ways of fusing
visual features with pre-trained, text-only models. Namely, they explore two
cross-attention formulations (a simple one based on video-to-text dot-product
attention and one based on multi-head formulation with the cross-attention for-
mulation from classic decoder) and try to experimentally determine which layer
and which model component (encoder vs decoder) are best suited to perform the
cross-modal attention. The findings suggest that cross-modal attention should
be performed in the encoder and at higher layers. The numerical improvements
attributed to the visual modality are marginal (ROUGE-L 57.5→58.0 for a vari-
ant based on T5) but improve once the Forget Gate and additional encoder that
contextualizes visual representations are employed (ROUGE-L 61.4→64.4 for a
variant based on BART). By substituting video features with random noise dur-
ing the inference, the authors claim the robustness of the text-only component.
However, this also proves that the visual features are not effectively consumed.
The independent experiments by Xu et al. (2023d) came to the same conclusion
that the higher encoder layers are the optimal place to implement cross-modal
attention. Thanks to the work of Sanabria et al. (2018), who translated the
source text (subtitles) from the test-set into Portuguese, some works, e.g., Liu
et al. (2022a), explored the cross-lingual settings, but this research direction did
not catch a lot of attention.

Besides the How2 dataset, a number of other resources were introduced. How-
ever, since they were not publicly shared, most of them were explored only in a
single work. Qiao et al. (2022) propose a WB-News dataset in Chinese based
on the Weibo social media platform. In their experiments, they follow Yu et al.
(2021) and focus on effective ways of fusing visual features with pre-trained text-
only models. They also highlight the importance of task-specific pre-training that
aligns the visual and textual features. Still, the benefits of including the visual
information in the input are not transparent – even during human evaluation,
the multi-modal variant is only marginally better. Using a Likert scale (of 1-
5), the best multi-modal variant scores on average 3.71, while the best text-only
model achieves an average score of 3.65. Faheem et al. (2024) introduced the
first multi-modal dataset in Urdu, targeting Urdu news channels on YouTube. In
their experiments, they follow the MMS architecture (without the image decoder)
proposed by Krubiński and Pecina (2023). The video-based formulation was also
recently approached by Tiwari et al. (2024) in the medical domain, with the
creation of the MM-MediConSummation dataset. The MM-MediConSummation
dataset consists of 467 audio/video recordings of doctor-patient counseling ses-
sions that were manually annotated by medical graduate students. Transcripts
and textual summaries were collected, with the guideline to focus on specific
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aspects, such as the gender of the patient, their age, or the primary intent for
consultation. In their experiments, the authors focus on the benefits of including
non-textual modalities in the input, reaching a conclusion that they are beneficial
to the final quality. A crucial aspect related to the anonymity of patients is not
discussed, with the authors exploring even patient-specific features such as age
or gender.

2.1.4 Other formulations
Besides the textual and visual (images, videos) modalities, the audio modality
was also explored (see, e.g., Sharma et al. (2022); Jung et al. (2024)). However,
we are not aware of any work that would use the audio modality to extract in-
dependent information. If the audio modality consists only of speech, we believe
that the same content can be expressed as text by applying an ASR system. A
certain amount of information that could be beneficial for summarization may
be expressed only via the audio modality, e.g., urban noises suggesting that the
audio was recorded in a city or animal noises suggesting that the recorded even-
t/conversation took place at a farm, but this research direction has not yet been
explored.

A number of other modalities/formulations were also explored to generate
textual summaries. Chen et al. (2019) adds user-specific information (gender,
age, etc.) and additional clues extracted from a knowledge graph to generate
product descriptions in the e-commerce domain. Trieu et al. (2020) generates
textual descriptions based on a coherent set of images. This task is similar to
image captioning, but by aggregating different photos/instances of the same ob-
ject, it converges toward summarization. Himakunthala et al. (2023) generate
video descriptions in a step-by-step manner. The authors start by identifying
keyframes, which are turned into a sequence of sentences (by image captioning)
and image features (by an object detection model). In the next steps, both of
those sequences are consumed to generate an unstructured, dense description.
Finally, a LLM is applied to turn those into a structured, template-like summary
with desired properties.
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2.2 Multimodal Summarization with
Multimodal Output

In this problem formulation, the summary is multimodal and consists of a text
accompanied by a different modality. As announced in Chapter 2, our core in-
terest lies in formulations in which the output (summary) consists of text and a
single image.

2.2.1 Text + Images → Text + Image
The image-based formulation of MSMO was introduced by Zhu et al. (2018). In
their foundational work, the authors curate a novel dataset based on the Daily
Mail portal, collecting the textual articles (source documents and target sum-
maries) together with the input images (on average, 6.6 images per article), which
are presented to the readers to enrich the textual information. The pictorial ref-
erence is not a native part of the data – the authors employ graduate students to
pick up to three relevant images per article, annotating only the testing part of the
data. Thus, during training, there is no direct supervision from the visual modal-
ity. Instead, in their experiments (based on a sequence-to-sequence architecture
with LSTM cells), the authors include a coverage loss that encourages higher val-
ues of attention in the cross-modal attention block. During decoding (inference),
the coverage vector (text-to-image attention) is used to choose the most relevant
vector. This builds upon the intuition that the most relevant image should be
the one with the highest values of attention, i.e., the one deemed the most useful
by the textual decoder. Human evaluation is performed to judge the quality and
usefulness of pictorial summaries. The authors measure the “satisfaction of in-
formativeness”, i.e., whether the annotators consider that the image contributed
positively to their understanding of the summary. The results suggest that peo-
ple might prefer multimodal summaries over text-only ones. When evaluating
the quality of textual summaries with automatic metrics, the best multi-modal
model is only marginally better than the best text-only one (ROUGE-L of 37.74
vs 37.75).

In the follow-up work (Zhu et al., 2020), the authors propose a method to
incorporate direct guidance of visual modality during training. Namely, they
impose an absolute ordering of input images – either based on their position
in original news articles (OR) or based on the semantic similarity between the
reference summary and the caption collected for each image (RR). Next, they
arbitrarily choose a value k and treat the top-k images as the target and the
remaining ones as negatives. This information gets incorporated into the training
as a classification task that, during inference, computes the similarity between
the representation of a particular image and either the encoded source (ENC) or
the summary generated by the decoder (DEC). The authors conclude that the
RR/DEC variant performs the best, although the findings differ based on which
automatic metric is used.

Zhang et al. (2022c) approach the multi-task formulation by generating both
the extractive and abstraction summary. The gold-standard extractive summaries
required for training are obtained with an oracle approach that maximizes the
ROUGE score with the original reference. Jiang et al. (2023) use only the textual
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modality (summaries) as a training signal, exploring pseudo captions to choose
the most relevant image. Namely, for each input image, they explore a text-image
alignment and employ a retrieval model to pick a sub-sequence of tokens from
the gold-standard summary that acts as a pseudo caption for the image. Those
captions are used to train a task-specific image captioning model required for
inference. Finally, during inference, once the textual summary is generated, an
image with the highest lexical similarity between the generated summary and its
pseudo caption is chosen as the pictorial summary.

More recent works approach the problem in a fully supervised manner. Zhang
et al. (2022a) propose a Chinese dataset based on the text-only TTNews (Hua
et al., 2018) and THUCNews (Sun et al., 2016) datasets. They use a search
engine to collect up to 10 relevant images (with corresponding captions) for each
article. In the next step, a semantic matching model is used to filter up to three
most relevant images per article. Finally, human annotators are employed to pick
the most relevant image out of those three. This setup allows training with the
image supervision directly – given a sequence of images I, one of them has a
positive “relevance” label and all the other negative one. During training, image
features are projected and transformed to a numerical score si∈I ∈ R, which,
combined with negative log-softmax, allows computing the log-likelihood loss with
respect to “relevance” annotations. Zhang et al. (2023b) explore the same dataset
and introduce auxiliary losses with the goal of enhancing multimodal semantic
coverage. Specifically, they employ an additional textual decoder to generate a
visual description for each input image. Compared to simple image captioning,
those descriptions have access to the background information provided by the
input article. The description of the most relevant image, as deemed by the
model, is concatenated with the textual summary and, together with the image
itself, forms a multimodal output.

Similarly to the formulation with text-only output (see Section 2.1), the ma-
jority of the works consider the multimodal summarization problem in the news
domain. Works in the other domains exist but are much more scarce. Rong et al.
(2024) use the dataset of multimodal product descriptions (textual descriptions
with multiple images) from a Chinese e-commerce platform introduced by Li et al.
(2020a). The authors claim to have access to a version of the dataset with an-
notated target images, which were not mentioned in the original paper. Since
neither the dataset nor the code is publicly available, we are unable to confirm
the validity of the setup. On the modeling side, the authors propose a novel
approach that employs visual information to explicitly modify the distribution of
possible words. Instead of extending the target vocabulary with source tokens,
similarly to the Pointer-Generator network (see Section 1.1.1), the authors in-
stead try to limit the vocabulary by disregarding words that the model deems
irrelevant, given the multi-modal context. Cross-Entropy loss is computed based
on the projected, single-dimensional, and contextualized image representations
and the gold-standard annotations, directly incorporating the visual signal dur-
ing training.
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Multimodal Summarization 11

Learning signal for frame selection

MLASKMLASK @ EACL 2023

Figure 2.4: Examples of visual modality from the MLASK (Krubiński and Pecina,
2023) dataset. Left – the target image. Right – a subset of input video frames, as
seen by the model. The target image was modified by removing the watermark
in the bottom-right corner.

2.2.2 Text + Video → Text + Image

The video-based MSMO formulation (VMSMO) was first proposed by Li et al.
(2020d). Despite the fact that, for technical reasons, the video is typically con-
verted to a sequence of (down-sampled) frames and thus can be treated as a
collection of images, there are some crucial differences compared with the image-
based formulation. Firstly, the temporal dependency between the frames is clear
and well-defined. This is not the case for inputs consisting of multiple images,
which are commonly encoded independently of one another. Secondly, within
the image-based formulation, it is assumed that the target image (pictorial sum-
mary) is one of the input images. In the video-based formulation, one assumes
that the image target is very similar to one of the frames. The image target may
be created by applying minimal edits, such as cropping or watermark removal. It
may also happen that due to the frame down-sampling, the exact frame, which
resembles the pictorial summary (i.e., the case when the image target is indeed
a frame from the video), gets dropped (see Figure 2.4 for an example from the
MLASK (Krubiński and Pecina, 2023) dataset).

In their field-defining work, Li et al. (2020d) argue that in real-world applica-
tions, a text article is usually accompanied by a video consisting of hundreds of
frames rather than a few images. Therefore, they propose to choose a single frame
to act as a pictorial summary that should represent the salient point of the whole
video. To facilitate their research, they collect a dataset from the largest social
network website in China. Besides individuals, China’s mainstream media also
have accounts on that platform, which they use to post short, lively videos and
articles. Each instance in the curated dataset contains a textual article, a textual
summary, and a video with a reference cover picture. In their experiments, the
cover picture is not used directly. Instead, they regard the frame that has the
maximum cosine similarity with the reference cover picture as the positive sam-
ple and all the others as negative samples. The authors report that the average
cosine similarity of the positive sample is 0.90, proving the validity of the setup.
In their experiments, they employ a dual encoder setup with separate encoding
blocks for videos and text. Video features are extracted only at the frame (image)
level, with a RNN network employed to contextualize the representations. The
supervision from the visual modality is provided by a pairwise hinge loss that
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awards assigning a higher matching score (computed based on the contextualized
frame representations) to the positive sample (one with the highest similarity to
the target image), as opposed to the remaining ones from the input video. Video
pre-processing is done by extracting one of every 120 frames, aiming to obtain
roughly 10 candidate frames. Evaluation with automatic metrics suggests that
the multimodal variant generates the highest quality of textual summaries, with
similar findings based on human evaluation. Yet, the authors train their mod-
els from scratch without exploring even a pre-trained text encoder and compare
only to self-trained models without including the results on any well-established
textual benchmark, raising questions about the validity of the setup.

In a follow-up work, Fu et al. (2021) present a full-scale multimodal dataset
comprehensively gathering documents, summaries, images, captions, videos, au-
dios, transcripts, and titles. The dataset was collected from well-known English
news websites, namely CNN and Daily Mail. Compared to Li et al. (2020d), the
proposed dataset does not include a single reference picture (images are part of
the input document) and thus utilizes unsupervised methods during training4.
The authors still report the aggregated, average cosine similarity between the re-
lated images and the frame selected by the model. It should be highlighted that
the best-performing variant does not achieve significantly higher average cosine
similarity than a trivial baseline that picks a random frame from the video – 69.22
vs 67.69. On the modeling side, the architecture utilizes RNN encoder-decoder
setup with bi-directional LSTM cells, and the video encoding is done at the frame
level, with an encoder providing the temporal dependencies. Our work (see Sec-
tion 5.1) based on the MLASK dataset (Krubiński and Pecina, 2023) was one of
the first formulations of VMSMO that incorporated the frame/image similarity
directly into the training and employed the 3D ConvNet to model the temporal
dependency between consecutive frames.

Tang et al. (2024) proposed the extreme TL;DW (“Too long; didn’t watch”)
formulation of VMSMO that summarizes a pair of text and video to a single frame
and a single sentence. The authors curate a novel resource based on YouTube
and devise a new unsupervised training strategy based on the optimal transport
theory. One of the losses incorporated during training assures the cross-modal
similarity of the output by maximizing the text-image similarity measured with
CLIP (Radford et al., 2021). The video thumbnails act as cover pictures, and the
pixel-level Euclidean distance is computed between the reference and the frame
picked by the model during evaluation. Comparatively low values of automatic
metrics – ROUGE-L of 4.33 achieved by the best model – make it difficult to
analyze the final results.

A recent work of Qiu et al. (2024) builds upon the architecture and formulation
proposed in the MLASK (Krubiński and Pecina, 2023) paper by incorporating
separate frame- and video-level encoders. In their unique formulation, the textual
summary is inpainted onto the cover frame to simulate the video thumbnails from
YouTube. In their experiments, the authors approach the challenging problem of

4The version of the work accepted to the ACL Anthology – Fu et al. (2021) – provided the
results only for the textual output. However, the original, extended version of the work pub-
lished on arXiv – Fu et al. (2020) – also provided the results for visual output. For consistency,
we refer to the version that got accepted to a venue and officially published, but also refer to
the results from the preprint.

27

https://www.cnn.com/
https://www.dailymail.co.uk/home/
https://www.youtube.com/
https://www.youtube.com/


temporal segmentation. A vast majority of previous works sampled the frames
uniformly by skipping all but every n-th frame. In contrast, Qiu et al. (2024)
argue that an initial step of segmenting the video into a sequence of scenes,
followed by scene-level frame sampling, is crucial. We approach this strategy
in Section 5.2.4, with the results of our experiments suggesting that the frame-
sampling step may indeed be of significant importance to the overall quality of
the pictorial summary.

2.2.3 Other formulations
Besides the MSMO formulations covered in previous sections, other variants that
output the <text, image> pair exist but are by far less prevalent.

The first one we would like to cover is the “Video → Text + Image” formu-
lation, a subtask of the more generic cross-modal video summarization problem.
The idea here is to extend a video summarization model with a text decoder
that generates a short summary based on the frame- or video-level representa-
tions, similarly to the Video Captioning problem. The summary can be generated
either based on the whole video (see, e.g., Lin et al. (2023b)) or in a hierarchi-
cal manner that aggregates the partial clues from the frame- or segment-level
representations (see, e.g., Papalampidi and Lapata (2023)).

The second one is the “Text → Text + Image” formulation5, enabled by
the progress in generative AI and fueled mostly by the Generative Adversarial
Nets (Goodfellow et al., 2014) and Stable Diffusion (Rombach et al., 2022) ap-
proaches. We are not aware of any work that would train a single (summarization)
model to generate both the text and the image – previous approaches explored
two separate text-to-text and text-to-image models, see, e.g., El et al. (2019) or
our work (Krubiński and Pecina, 2024) on unified Multimodal Summarization in
Section 5.2.

5With the recent progress in video generation, see, e.g., Sun et al. (2024), a MSMO formu-
lation with <text, video> output seems to be a natural next step.
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3. Quality Evaluation
In Chapter 1, we discussed the difference between extractive and abstractive sum-
marization. If we limit ourselves to the supervised settings, then the extractive
summarization problem can1 be treated as a task of binary classification, thus al-
lowing us to work with the classical Accuracy/Precision/Recall/F-measure met-
rics. If we frame the problem differently, and instead of predicting whether a
sentence/frame is relevant (binary label), we predict how relevant it is, the prob-
lem can be treated as either a regression or retrieval task. It should be noted
that a regression problem can be converted to a (binary) classification problem
by using thresholds to group scores into classes. Similarly, a number of Machine
Learning algorithms (including neural networks) do not predict a class directly
but rather predict a distribution over classes, i.e., a probability of belonging to
a class. If we treat the problem as a regression, one can compute the prediction
error directly via, e.g., Mean Absolute Error (MAE), Mean Squared Error, or
Root Mean Squared Error. If we approach it as a retrieval task (How many of
the sentences/frames, in summary, are relevant? What proportion of relevant
sentences/frames did we choose? Were the sentences/frames chosen for the sum-
mary the most relevant?), then one should report a subset of retrieval metrics
best suited for the particular application (see Section 3.2).

The situation becomes much more challenging if we frame the problem in an
abstractive manner, generating the summary from scratch – based on the input
representation, but without directly copying parts of the input. In that case,
we do not have a fundamental measure telling us how similar two sentences (or
two images2) are. Rather, we fall back on using either human annotators (see
Section 3.1.1 and Section 3.3) or using an automatic heuristic.

In the following sections, we intend to provide an overview of metrics and eval-
uation protocols used to evaluate the quality of textual output (see Section 3.1),
visual output (see Section 3.2) and, finally, multimodal output (see Section 3.3).

1Assuming that we make some additional assumptions, such as taking the sentence split-
ting/frame sampling for granted, or fixing sentence/frame ordering.

2One could argue that if two images have the same size, then comparing the values of RGB
pixels could work. It was shown, however, to be ineffective. The value of a difference would be
large for small deformations (e.g., the distance between an image and the same image shifted
by one pixel), and, overall, is sensitive to noise and changes in brightness, see, e.g., Nakhmani
and Tannenbaum (2013).
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3.1 Textual Output
The task we are concerned with is as follows: given a textual document D, a
reference summary S, and a summary Y (of D) generated by an automatic system
Sys, automatically assign a numerical score m = M(D, S, Y ) that measures
the quality of Y . One differentiates between reference-based and reference-free
evaluation protocols. If one has access to the reference summary S, i.e., m =
M(D, S, Y ) or m = M(S, Y ), the task is called quality evaluation. If the reference
summary S is not available (unsupervised settings), the task is called quality
estimation, i.e., m = M(D, Y ).

In practical applications, we are mostly concerned with the performance not
on a single document Di, but rather on a whole test-set: {Di}K

1 . The score m
assigned to the whole test-set is typically based on aggregated document-level
scores mi, usually by an arithmetical average, i.e., m = 1

K

∑︁K
1 mi(Di, Si, Yi), but

can also incorporate some corpus-level statistics, e.g., a frequency of words/terms.
For the remainder of this chapter, unless stated otherwise, the default aggregation
method will be the average. Thus, we will be discussing metrics at the document-
level, as the extension to the corpus-level is trivial. Since the numerical scores
m that we commonly operate with are corpus-level based, it is considered a
bad practice to compare scores computed based on two (or more) distinct test-
sets. Similarly, given two metrics M1 and M2, we can not make any assumptions
regarding the distribution of scores that they generate (see, e.g., Kocmi et al.
(2024)). Therefore, it should be noted that the intended usage of automatic
metrics is to answer the following question: “Given test-set {Di}K

1 , and two
automatic systems Sys1 and Sys2, decide which performs better, according to
automatic metric M”, which often gets extended3 to: “Given test-set {Di}K

1 , and
a number of automatic systems {Sysj}L

1 , find a system Sysj that performs best,
according to automatic metric M”.

The remaining question concerns the notion of “quality”. As discussed, au-
tomatic metrics are heuristics that one explores when human annotation, which
should be considered the gold standard, is not feasible. In Section 3.1.1, we will
outline several methodologies for the annotation process. For now, let us as-
sume that for a given test-set {Di}K

1 a human annotation was conducted and
that each summary Yij (Yij stands for a summary of document Di, generated
by system Sysj) had been assigned a score hij ∈ R. Given such scores hij, how
can we decide which of the metrics M1, M2, . . . , Mq should be picked in order to
decide which system Sysj performs best?4 The commonly accepted answer is to
pick the metric Mi that achieves the highest correlation coefficient Corr(·) with
human scores. Commonly explored coefficients include Pearson’s r, Spearman’s
ρ, and Kendall’s τ (see, e.g., Deutsch et al. (2022)). Most of the works report
either segment-level5 correlation, i.e., Corr({hij, mij}K,L

i=1,j=1), or system-level cor-
relation, i.e., Corr({ 1

K

∑︁K
i=1 hij,

1
K

∑︁K
i=1 mij}L

j=1). An alternative approach that
computes pairwise accuracy was recently proposed by Kocmi et al. (2021), which,
instead of relying on correlation, explicitly counts the number of pairwise rank

3Some works argue that this logic may be flawed, see, e.g., Kocmi et al. (2021)
4It may happen, that according to metric M1 system Sys3 performs best, but according to

metric M2 system Sys5 is better.
5Following the no-grouping formulation, see Deutsch et al. (2023) for an extensive discussion.
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agreements between metric and human scores. Given (average) human scores hi

and (average) metric scores mi for system Sysi, we count the number of system
pairs {Sysi, Sysj} for which both human annotators and the automatic metric
agree on the relative performance, e.g., both concluding that Sysi is better than
Sysj, i.e., m(Sysi) = mi > mj = m(Sysj) and hi > hj.

3.1.1 Human Evaluation
In the related field of Machine Translation, thanks to the Metrics Shared Task
(Freitag et al., 2023, 2022, 2021; Mathur et al., 2020) collocated with the WMT
(Conference on Machine Translation, historically Workshop on Statistical Ma-
chine Translation) conference since 2008 (Callison-Burch et al., 2008), advances
in the MT models performance are accompanied by continuous development of
new automatic metrics that improve correlation with human judgment and are
robust to both domain shifts and changes in annotation style. Thanks to such a
long-lasting6 and centralized initiative, the annotation methodologies for MT are
standardized and generally produce a single numerical score that measures the
overall quality of translation.

However, this is not the case for Text Summarization. A number of inde-
pendent works analyzed the automatic metrics by comparing them with human
judgments (see, e.g., Bhandari et al. (2020); Fabbri et al. (2021); Liu et al.
(2023a); Deutsch et al. (2022, 2023)). Since there is only a partial overlap in
terms of metrics, datasets, and annotation methods that were examined, a fair
meta-evaluation is not possible. A majority of recent works that conduct man-
ual evaluation label the summaries based on a number of (mostly independent)
dimensions (see Figure 3.1). Koto et al. (2022) identified four key dimensions
across which to evaluate summaries, namely: faithfulness, focus, coverage (see
Figure 3.2) and inter-sentential coherence (also named fluency). They define
them as follows:

• Faithfulness – the degree of factual consistency (and lack of hallucination)
with respect to the source article;

• Focus – assesses semantic equivalence by evaluating the proportion of im-
portant information in the generated summary (precision);

• Cover – assesses semantic equivalence by evaluating the degree of salient
information in the reference summary that the generated summary contains
(recall);

• Fluency – the degree to which the summary sounds natural and has no
grammatical problems.

A different set of dimensions were proposed by Fabbri et al. (2021):
• Coherence – the collective quality of all sentences, as in “The summary

should be well-structured and well-organized. The summary should not just
be a heap of related information but should build from sentence to sentence
to a coherent body of information about a topic.”.

6In 2001, a first edition of Document Understanding Conference (initially Workshop on Text
Summarization) took place. Similarly to WMT, it was centered around constrained settings
explored via shared tasks. However, the event was discontinued in 2007 (https://duc.nist.g
ov/pubs.html). Thus, it did not have a chance to establish itself and propagate standardized
protocols properly.
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Figure 3.1: An overview of evaluation methods by Koto et al. (2022). In the
“Manual” column, we see the annotations related to the dimension of human
evaluation (Faithfulness, Recall, etc.), a label telling us whether the evaluation
was conducted on individual documents (Absolute) or in the context of other
texts (Relative), and a taxonomy of methodologies for human evaluation. Figure
reprint from Koto et al. (2022)

• Consistency – the factual alignment between the summary and the sum-
marized source. A factually consistent summary contains only statements
that are entailed by the source document.

• Fluency – the quality of individual sentences, as in “The summary should
have no formatting problems, capitalization errors or obviously ungram-
matical sentences (e.g., fragments, missing components) that make the text
difficult to read.”.

• Relevance – to measure the selection of important content from the source.
The summary should include only important information from the source
document.

Those categories differ from the ones proposed by Harman and Over (2002)
in the pioneer evaluation campaign conducted as a part of the first Document
Understanding Conference (DUC) in 2001:

• Grammaticality – [All, most, some, hardly any, or none] of the syntactic
units (e.g., sentences, clauses, phrases, etc.) follow the rules of English
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grammatical form (independent of content).
• Cohesion – [All, most, some, hardly any, or none] of the sentences fit in

as they should with the surrounding sentences.
• Organization/coherence – [All, most, some, hardly any, or none] of the

summary is well-organized, i.e., the content is expressed and arranged in an
effective way.

	Gold	summary	:	Info-A;	Info-B;	Info-C

Good	focus,	and	Good	coverage	
Good	focus,	and	Bad	coverage			
Bad	focus,	and	Good	coverage
Bad	focus,	and	Bad	coverage

	:	Info-A;	Info-B;	Info-C	
	:	Info-A;	Info-A
	:	Info-A;	Info-B;	Info-C;	Info-D;	Info-E
	:	Info-D;	Info-E;	Info-F

	System	summary:

Figure 3.2: Illustration of focus and coverage (see Section 3.1.1). Figure reprint
from Koto et al. (2022)

Other works have either proposed a direct mapping between certain dimen-
sions (e.g., Focus unified with Relevance), explored a more fine-grained taxonomy
(e.g., the types of errors proposed for factual evaluation by Huang et al. (2020) are:
Addition, Omission, Inaccuracy intrinsic, Inaccuracy extrinsic, Positive-negative
aspect), or defined the evaluation dimensions themselves (e.g., Overall Quality
dimension in the annotation campaign organized by Stiennon et al. (2020)).

Having discussed the evaluation dimensions, we will now focus on the evalu-
ation methodologies for the annotation process.

Figure 3.3: Illustration of the Direct Assessment evaluation framework. By
switching the position of reference and hypothesis, the same question can be
used to collect annotations for focus and coverage. Figure reprint from Koto
et al. (2022)

• Direct Assessment – The Direct Assessment (DA) framework was first
proposed by Graham et al. (2015) to evaluate quality of MT outputs. Until
2021, it was used as a standard evaluation methodology in WMT. In the
context of summarization, this methodology was explored by, e.g., Koto
et al. (2022) or Koto et al. (2021). During the annotation process, a human
is shown a question and two pieces of text – usually the reference summary
and a summary generated by an automatic system (see Figure 3.3). The
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task is to choose a number between 0 and 100, which will act as the human
score h. To make the process more robust, after the annotation process is
completed, scores from each annotator are usually normalized (across all
documents) to a z-score by subtracting the mean and dividing by standard
deviation.

• Likert Scale – The Likert Scale (Likert, 1932) has its roots in psychological
research. When responding to a Likert item, annotators specify their level of
agreement or disagreement on a symmetric agree-disagree scale for a series
of statements, e.g., choosing 5 for “Strongly agree” and 1 for “Strongly
disagree” (see Figure 3.4). This framework was explored by, e.g., Fabbri
et al. (2021) or Stiennon et al. (2020). The advantage it has over DA is
that it allows the researchers who design the annotation process to explicitly
describe the expected quality of each item on the scale.

• Content-based – Nenkova and Passonneau (2004) designed the Pyramid
protocol specifically for the purpose of summary evaluation. It was inspired
by the early works probed within the Document Understanding Conference
in 2003. It does not require humans to directly judge the quality of a
summary on a numerical (or ordinal) scale. Instead, the process starts by
identifying Summarization Content Units (SCUs) in the reference summary,
which correspond to an atomic unit of information. By design, the frame-
work assumes there is more than one reference available for each document,
and the frequency of SCU among all references acts as its weight (weights
correspond to the level of importance, thus, the pyramid). In the next
step, SCUs are extracted from the hypothesis and matched to the refer-
ence SCUs. The numerical score is computed by counting matching SCUs,
giving more importance to the ones appearing in more references. While
the process has clear advantage – SCU extraction and matching is far less
subjective than direct scoring, allowing in principle a comparison between
different documents and annotators – the annotation cost is high. Shapira
et al. (2019) proposed the LitePyramid protocol, that simplifies the process
by sampling SCUs from the union of references (without the inner-reference
matching), and assigning binary labels (whether the SCU can be inferred
from the hypothesis) to a sample of SCUs, without extracting SCUs from
the hypothesis. The idea was recently re-visited by Liu et al. (2023b), who
argue that the extraction should be done by experts, with the matching step
benefiting more from the scale of evaluation. They also propose a modified
formula for the final score that incorporates the length of reference and
hypothesis, similar to the brevity penalty in BLEU (Papineni et al., 2002).

• Utility-based – An alternative approach to summary evaluation aims to
measure the level of utility by measuring the performance degradation on
an external task if the hypothesis is used in place of the reference. One
such method is through the lenses of QA and was explored by, e.g., Liu
and Lapata (2019a) or Li et al. (2020d). In their formulation, a number of
human annotators are employed to create a set of questions (and answers)
based on the reference summary. Next, the annotators were provided with
the system summaries and were asked to answer the relevant questions,
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without looking at the reference. Finally, a third round of annotations was
conducted to mark the answers either as correct (score 1.0), partially correct
(score 0.5), or incorrect (score 0.0). The final system score is the average
over all of the questions and articles. While very costly, these kinds of
annotations are more in line with practical applications where the ultimate
goal is the satisfaction of the end user.

Figure 3.4: Illustration of the evaluation framework that explores the Likert scale.
Figure reprint from Fabbri et al. (2021)

In the following sections, we will provide an overview of the automatic met-
rics most commonly used to evaluate summarization systems. We will focus on
metrics that aim to measure mostly the overall quality, noting the specialized
lines of work on, e.g., factual consistency (Kryscinski et al., 2020; Xie et al., 2021;
Honovich et al., 2022; Gao et al., 2023).

3.1.2 String-based metrics
The ROUGE metric (Lin, 2004) measures the lexical similarity by counting the
number of overlapping tokens (n-grams, word sequences, word pairs) between the
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reference summary (summaries) and the one created by an automated system. It
was inspired by the successful applications of BLEU and developed based on find-
ings from the early DUC evaluations (Lin and Hovy, 2003). The original paper
does not propose a single metric, but rather a family of metrics, that differ with
the lexical units used to compute the overlap. The most commonly used vari-
ants are ROUGE-1 (overlap of unigrams), ROUGE-2 (overlap of bigrams), and
ROUGE-L (based on the length of the Longest Common Subsequent). In con-
trast to the precision-based nature of BLEU, which explores the brevity penalty
to punish too long translations, ROUGE takes a different approach. Instead,
it is a common practice to report either both precision (fraction of the lexical
units from the hypothesis present in the reference) and recall (fraction of the lex-
ical units in the reference present in the hypothesis) or the combined F-measure
(typically F1, i.e., the harmonic mean).

Despite its simplicity and a number of works criticizing ROUGE for low corre-
lation with human judgments (see, e.g., Fabbri et al. (2021)), it is still often the
single metric being reported for SOTA summarization systems (see, e.g., Tou-
vron et al. (2023b)). Additionally, as recently highlighted by Grusky (2023),
there is a lot of inconsistency when it comes to reporting ROUGE scores. A
number of ROUGE implementations exist7 that differ by, e.g., the usage of stem-
mer or the approach to sentence splitting. What makes it even worse is that
researchers fail to report not only the implementation they use but sometimes
even the ROUGE variant, i.e., it is not clear whether the reported results are
ROUGE-1 or ROUGE-L and whether it is precision, recall, or F-score. While
other lexical-similarity-based metrics such as BLEU or METEOR (Banerjee and
Lavie, 2005) are sometimes reported for summarization systems, their usage is
rather marginal and ROUGE is by far the most prevailing one.

3.1.3 Embedding-based metrics
Building upon the observation that the exact match required by token-based met-
rics may be too strict – it does not consider partial matches nor word similarities
– metrics that compute the similarity based on token embedding were proposed,
with BERTScore (Zhang et al., 2020b) getting the most attention. Despite be-
ing proposed initially for MT and image captioning evaluation, it turned out
to be an effective metric for summarization evaluation. BERTScore uses a pre-
trained encoder – BERT (Devlin et al., 2019) in the original8 implementation,
with RoBERTa-large (Liu et al., 2019) recommended at the time of writing – to
obtain embeddings H = (h1, h2, . . . , hn) of the hypothesis and R = (r1, r2, . . . , rm)
of the reference. Then, it computes precision (P ) and recall (R) as follows:

P = 1
n

n∑︂
1

max
j∈1...m

< hi, rj >

R = 1
m

m∑︂
1

max
j∈1...n

< hj, ri >

7The original implementation of Lin (2004) known as ROUGE-1.5.5 was written in Perl, and
to the best of our knowledge, currently is only available through third-party re-uploaders.

8https://github.com/Tiiiger/bert_score
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with < ·, · > indicating an inner product.
A different way of using pre-trained encoders for evaluation purposes was

proposed by Colombo et al. (2022). The InfoLM metric they propose recursively
masks each token position in both the hypothesis and the reference, remember-
ing the discrete, per-token distributions. Next, the distributions are aggregated
with a weighted average and compared with an information measure, such as the
Kullback-Leibler divergence. It is clear that if H = R, then InfoLM will eval-
uate to 0. In the paper, the authors also show the contrary being true as well,
i.e., if InfoLM evaluates to a substantial score, H, and R differ substantially,
as each token hi is unlikely given rm

1 . Compared to BERTScore, this approach
does not require a calibration related to, e.g., the selection of a layer used to
compute embeddings. A similar approach is proposed by MaskEval (Liu et al.,
2022c), which measures the per-token contribution on the concatenation of source
and hypothesis, allowing application in scenarios where reference summary is not
available.

3.1.4 QA-based metrics

A line of research explored the QA paradigm as an indirect way of evaluating au-
tomatic summaries. The premise is as follows: “The automatic summary should
suffice in practical applications as a substitute for a human-generated summary
if the amount of information it carries – with the information amount judged by
being able to answer similar questions if provided as a context – is close enough.”

Eyal et al. (2019) proposed the APES metric that used the reference summary
to produce a fill-in-the-blank type of questions by finding all possible entities us-
ing a NER system. The APES score for a given summarization model is the
percentage of questions that were answered correctly (using an automatic QA
system), given the automatic summary as a context. Scialom et al. (2019) ex-
tended their work into unsupervised settings by generating questions from the
source document. A follow-up work by Durmus et al. (2020) – FEQA metric –
and Wang et al. (2020) – QAGS metric – automatically generates the natural
language questions from the summary and/or document, no longer relying on
fill-in-the-blank templates (see Figure 3.5). Deutsch et al. (2021a) and Deutsch
and Roth (2022) made further improvements to the pipeline by taking a closer
look at the answer comparison step and examining the impact of low-quality
questions. Manakul et al. (2023) employs multiple-choice questions, and instead
of comparing the most probable ones, compares the distributions over all possible
choices.

Inspired by those works, in Krubiński et al. (2021a), we proposed the MTEQA
metric that applies the same principles to MT evaluation. To compare our solu-
tion against other SOTA metrics, we participated (Krubiński et al., 2021b) in the
WMT21 Metric Shared Task (Freitag et al., 2021), achieving the highest correla-
tion with human annotators on the challenging English→Chinese test-set based
on TED talks. A thorough summary of MTEQA is provided in Appendix A of
this thesis.
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Summarization Kevin Sinûeld scored his ûrst try of the

season against Castleford. Leeds Rhino

scored unbeaten run against Tigers to

six matches. Ryan Hall was sent to

Leeds Rhino for ûrst time in his career .

Leeds showed they are in good shape to

cope with Kevin Sinûeld’s retirement as

they claimed a 26 - 12 derby victory over

Castleford in front of a sell-out crowd at

the Mend-a-Hose Jungle. [...] Ryan Hall

was sent to the sin-bin for the ûrst time in

his career […] Joel Moon scored his ûrst

try of the season […] Leeds extended

their unbeaten run against the Tigers to

six matches

Generated

Questions

Who scored their ûrst try

of the season?
Joel Moon Kevin Sinûeld

Who was sent to Leeds

Rhino for the ûrst time?
<unanswerable> Ryan Hall

How many matches did

they win?
Six matches Six matches

Summary

Answers

Source

Answers

Source

Summary

à

7

à

à

à

Figure 3.5: Overview of the QAGS metric. A set of questions is generated based
on the summary. The questions are then answered using both the source arti-
cle and the summary. Corresponding answers are compared using a similarity
function and averaged across questions to produce the final QAGS score. Figure
reprint from Wang et al. (2020)

3.1.5 LLM-based metrics
The GPT-3 paper (Brown et al., 2020) was one of the first to show that with
enough training data and enough trainable parameters9, a rather simple au-
toregressive language model trained with the causal language modeling (next
token prediction) task can be applied to solve a variety of tasks without any
gradient updates or fine-tuning. Instead, it suffices to provide a few solved
examples in the context, and the model should be able to deduct not only
the task but also, hopefully, the correct answer. For example, given a con-
text of This is awesome!||Positive; This is bad!||Negative; Wow that
movie was great!||Positive; What a horrible show!|| one can expect the
implicit task of textual entailment to be guessed, and the correct label of Negati-
ve to be generated with future tokens. With the usage of instruction tuning (Wei
et al., 2022a; Ouyang et al., 2022), which fine-tunes the model on explicit instruc-
tions followed by correct predictions, one can drop the requirement to provide
examples, and simply prompt the model with commands. Those emerging abili-
ties (Wei et al., 2022b) are still not fully understood, as it was shown (Min et al.,
2022) that, e.g., swapping the labels in the context to random ones barely hurts
the performance.

Considering the impact LLMs had on the whole field, it is not surprising that
they have also been explored as an automatic tool to measure the quality of gen-

9There is no commonly accepted “size”, measured in the number of parameters, a model
should have to be called “large”. We will follow the current trends and refer to the language
models with few-shot or prompting capabilities as LLMs.
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erated texts. Fu et al. (2023) proposed the GPTScore that assigns the cumulative
log-probability of hypothesis h, given source S, aspect definition a (in the case of
summarization, this would correspond to, e.g., fluency), and task description d as
a context, i.e., log p(ht|h<t, T (d, a, S), Θ), with T (·) corresponding to the prompt
template and Θ referring to the parameters of a particular model. After Kocmi
and Federmann (2023) have shown that LLMs are capable of directly scoring a
MT output with an appropriate prompt, e.g.,

Score the following translation from {source_lang} to {target_lang} with respect to
the human reference on a continuous scale from 0 to 100, where a score of zero means
"no meaning preserved" and score of one hundred means "perfect meaning and grammar".

{source_lang} source: "{source_seg}"
{target_lang} human reference: {reference_seg}
{target_lang} translation: "{target_seg}"

Score:
further works (Wang et al., 2023a) have shown that a similar approach also works
for text summarization evaluation. Another usage of LLMs as an evaluation tool
was proposed by Liu et al. (2023c), who, in the prompt, provide the source
document with several candidate summaries and specify an instruction that asks
the model to rank the summaries based on their quality.

For a detailed taxonomy of Natural Language Generation (NLG) evaluation
with LLMs, we refer the reader to a survey by Li et al. (2024).

3.1.6 Trainable metrics
Before LLMs allowed a few-shot or even zero-shot scoring, a commonly explored
approach consisted of using historical data of numerical human annotations to
train a regression model to predict the numerical score.

From the modeling perspective, those metrics use a pre-trained encoder to
encode source/reference/hypothesis – or just source/hypothesis, in the case of
quality estimation – then combine those into a common representation that later
is projected to a single vector. Finally, the vectorized representation is processed
by a stack of fully connected layers, and the whole model, usually with part of the
encoder frozen, is trained with a variant of MSE/L1 loss and the human assigned
quality score as a target. Since the largest collection of such annotated model
outputs is available from the WMT Metric Shared Task10, it is no surprise that the
trainable metrics (also called estimator-based metrics) were mostly explored in
the context of MT. Metrics such as BLEURT (Sellam et al., 2020), COMET (Rei
et al., 2020), xCOMET (Guerreiro et al., 2023) or MetricX (Juraska et al., 2023)
have consistently over the years achieved the highest correlations with human
scores, making use of novel encoders and evolving data augmentation techniques.

Despite those metrics being explored in the context of other NLG tasks, not
much research targeting specifically summarization was published. Sellam et al.
(2020) proposed to use the automatic ROUGE scores to simulate human an-
notations during pre-training but reported the performance only on MT and
data-to-text tasks from the WebNLG Challenge (Gardent et al., 2017).

Therefore, in Krubiński and Pecina (2022), we proposed to explore COMET
for evaluating Text Summarization systems. We introduced a variant of the

10https://github.com/google-research/mt-metrics-eval
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Figure 3.6: An overview of the trainable SummScore metric. Figure reprint
from Lin et al. (2022)

model – COMES – trained on the annotated summarization outputs that used
MT data for pre-training. In order to establish a proper benchmark, we examined
the performance on several datasets with human judgments collected for different
notions of summary quality, covering several domains and languages. We believe
this was one of the first attempts to properly establish the role of trainable met-
rics in constrained settings, where the amount of human annotation is scarce,
thus requiring a transfer learning from higher resource settings. Concurrently
with our work, Lin et al. (2022) published the SummScore that explored only
the SummEval (Fabbri et al., 2021) dataset, following a semi-supervised multi-
round training regime. In their experiments, they train separate models for each
evaluation dimension – Coherence, Consistency, Fluency, and Relevance – and do
not explore transfer learning or task-specific pre-training. The authors use the
source document and hypothesis as inputs when training with the Consistency
and Relevance signals and just the hypothesis when training with the Coherence
and Fluency signals (see Figure 3.6). Based on the rather limited scope of exper-
iments and lack of official implementation, this approach did not catch a lot of
attention11.

11As of May 2024, there is a single citation reported on Google Scholar.
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3.1.7 COMES

This section is based on the From COMET to COMES — Can Summary
Evaluation Benefit from Translation Evaluation? (Krubiński and
Pecina, 2022) article.

In this section, we will provide an overview of our work on the COMES12

(Krubiński and Pecina, 2022) metric.
As briefly discussed in the previous section, one of the factors limiting the

research on trainable summarization metrics is the amount of annotated data.
At the time of writing the COMES paper, the largest datasets of source/refer-
ence/hypothesis triples with human annotations (Fabbri et al., 2021; Bhandari
et al., 2020; Maynez et al., 2020) could be stretched up to thousands of instances,
by, e.g., treating the same source/reference/hypothesis triple scored by three dif-
ferent annotators as separate instances. In reality, the data was even more lim-
ited, as the number of separate source articles that have annotated summaries is
less than one thousand. On the contrary, the amount of annotated source/refer-
ence/hypothesis triples within the MT task was at that time close to 1M instances,
thanks to the WMT conferences (Koehn et al., 2023, 2022; Barrault et al., 2021,
2020b). Building upon this, the question we asked is: Can we use this resource
to improve summary evaluation? While the tasks of Machine Translation and
Text Summarization are different, our research was built upon the belief that the
problem of evaluating the quality of generated output is closely related.

To address this question, we examined the applicability of the COMET –
a metric that is trained on the annotated MT data and capable of directly re-
gressing a quality score – for summary evaluation. We proposed a variant of
the model, COMES, that uses the annotated MT data for pre-training and is
capable of predicting several aspects of summary quality simultaneously. In our
experiments, we mostly explored the SummEval13 (Fabbri et al., 2021) dataset.
It consists of 100 articles randomly sampled from the test split of the CNN/Dai-
lyMail corpus (Nallapati et al., 2016), each of them summarized by 17 systems.
For each system output, the authors collected 3 expert judgments for several
evaluation dimensions, i.e., Coherence, Consistency, Fluency and Relevance on a
Likert scale of 1 to 5. In addition to the original reference, for each article, 10
alternative references were created by Kryscinski et al. (2020). As the COMET
metric trained on the MT data outputs a single overall score, when reporting
COMET performance, we compared this single overall score to all evaluation di-
mensions. To enable (semi-independently) predicting several aspects of summary
quality at once, we proposed a modification that alters the number of outputs in
the last feed-forward layer (see Figure 3.7). We experimented with both training
from scratch (COMES) and pre-training on the annotated MT data by initial-
izing the model weights from the COMET checkpoint (COMES_MT). In both
scenarios, we examined the reference-less variant of the metric (COMES_QE and
COMES_QE_MT, respectively).

12Crosslingual Optimized Metric for Evaluation of Summarization
13https://github.com/Yale-LILY/SummEval
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Pretrained Encoder

Source Reference Hypothesis

Pooling Layer

Embedding Concatenation

Feed-Forward

Coherence Consistency Fluency Relevance

MSE

Figure 3.7: Estimator model architecture used in COMES. Source, reference, and
hypothesis are all independently encoded with a pre-trained encoder. The pooling
layer is used to create sentence embeddings from sequences of token embeddings.
In the COMES variant, the last feed-forward layer has 4 outputs corresponding
to different summary evaluation dimensions. Dashed lines are used to indicate
the reference-less variant. Figure reprint from Krubiński and Pecina (2022).

At the time of working on this article, SummEval was the largest resource
for summary evaluation. Thus, we wanted to use it both for training and eval-
uation. To achieve this, we relied on cross-validation. We split the data into 10
subsets of 10 articles each, using 80 articles for training, 10 for validation (early
stopping), and evaluating the remaining 10. We trained 10 models, used each of
them to score 10% of the available (unseen) data, and merged the results. That
way we could directly compare to other metrics that report correlation on the
whole SummEval dataset. During training, we used each reference and each ex-
pert annotation14 to create more training instances (80 articles × 11 references ×
17 models × 3 annotations = 44, 880 instances). During evaluation, we handled
multiple references by scoring each reference independently and taking the max-
imum score.

Our baseline experiments showed that scoring system outputs with both out-
of-the-box variants (COMET and COMET_QE) resulted in the highest cor-
relation coefficients along all metrics analyzed by Fabbri et al. (2021) for Co-
herence and Relevance dimensions (see Table 3.1). The reference-less variant
(COMET_QE) had a much higher correlation with the Consistency dimension.
Both COMES and COMES_QE variants performed similarly, achieving higher
correlations than both COMET and COMET_QE. However, the effect of pre-
training (COMES_MT) was ambiguous – on average, it did not help, but the

14We have tried averaging human ratings during training, the results were comparable but
slightly worse.
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Metric Coherence Consistency Fluency Relevance
ROUGE-3 F1 0.2206 0.7059 0.5092 0.3529
ROUGE-4 F1 0.3088 0.5882 0.5535 0.4118
BERTScore F1 0.2059 0.0441 0.2435 0.4265
CHRF 0.3971 0.5294 0.4649 0.5882
METEOR 0.2353 0.6324 0.6126 0.4265
Comet 0.5735 0.2353 0.5240 0.6765
Comes 0.6912 0.7206 0.5830 0.7206
Comes_MT 0.6471 0.4412 0.6273 0.7206
Comet_QE 0.4118 0.7206 0.7011 0.5441
Comes_QE 0.6618 0.7647 0.6126 0.7059
Comes_MT_QE 0.6912 0.4853 0.6126 0.6912

Table 3.1: System-level Kendall’s τ correlations with (average) expert annotations
for four evaluation dimensions annotated in the SummEval dataset. The three
metrics with the highest correlation in each column are bolded. Table reprint
from Krubiński and Pecina (2022).

main cause was the poor performance on predicting the Consistency dimension.

To get a better understanding of the metric performance, we applied it to
several other annotated summarization datasets15. Since we trained 10 instances
for each variant of the COMES models, evaluating with each of them allowed us
to estimate the confidence intervals directly, not having to rely on, e.g., boot-
strapping (Deutsch et al., 2021b).

To examine the performance on non-matching evaluation dimensions, we re-
ported results on data16 from the same domain – a subset of the CNN/DailyMail
corpus. Bhandari et al. (2020) produced the numerical gold-standard scores by
rating a system output based on a number of Semantic Content Units (SCUs)
that can be inferred from it. LitePyramid (Shapira et al., 2019) method was
used to obtain SCUs from reference summaries. On this dataset (see Table B.1),
the reference-less COMET_QE outperformed any other variant, almost doubling
the correlation of COMET. The Consistency head of COMES_QE came in sec-
ond. We observed the best correlation to be obtained by the recall variant of
ROUGE, which can be explained by the recall-based nature of annotations. In
an independent work17, Stiennon et al. (2020) annotated a different subset of
the CNN/DailyMail corpus by rating system outputs for Accuracy, Coherence,
Coverage and Overall Quality. On this dataset (see Table B.2), the reference-less
variant COMET_QE performed best, obtaining almost a perfect correlation with
the Overall dimension. This was by far a better result than any traditional metric
considered. COMES trained from scratch outperformed the pre-trained variant
COMES_MT, which may indicate overfitting to the SummEval annotations. Sur-
prisingly, the highest correlation with the Coherence dimension (present in the
SummEval annotations used for training) was not obtained by the Coherence head
of COMES, but the Relevance one. The pre-trained variant (COMES_MT) did

15For clarity, the tables are available in Appendix B.1.
16https://github.com/neulab/REALSumm
17https://github.com/openai/summarize-from-feedback
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not display this unexpected behavior. However, the correlation was marginally
lower compared to the variant trained from scratch (COMES). To validate the
performance on a different domain, we evaluated (see Table B.3) on the sub-
set of the TL;DR corpus (Völske et al., 2017) annotated in a similar manner
by Stiennon et al. (2020). On this dataset, COMET achieved the top correlation,
with COMES clearly lagging behind in performance compared to the pre-trained
COMES_MT variant.

One of the strengths of the COMET metric is its multilingualism – the model
has seen over 30 language pairs during training. To assess its quality as a summary
evaluation tool for non-English data, we evaluated it on the Multi_SummEval
dataset (Koto et al., 2021). With only two system outputs annotated (along
the Focus and Coverage dimensions), the size of the resource is not sufficient
for reporting system-level correlations. Thus, we examined only the summary-
level (segment-level) correlations. For a fair comparison, we wanted to train the
COMES model variant using multilingual data. Due to the lack of sufficient
resources, we fell back to using automatic MT to translate the English data.
This approach has proven successful for, e.g., Question Answering (Lewis et al.,
2020b; Macková and Straka, 2020). As we limited our analysis to the subset
of languages from Multi_SummEval that originates from the MLSUM (Scialom
et al., 2020) corpus, we have translated SummEval into German, French, Russian,
Turkish and Spanish using the uni-directional models provided by the Helsinki-
NLP group (Tiedemann, 2020) and used the data (together with the original,
English SummEval) to train a multilingual COMES model (COMES_MT_ML).
In the summary-level evaluation (see Table B.4), the original COMET metric was
superior to any other variant considered, clearly outperforming the reference-less
variant COMET_QE. Surprisingly, both the COMES_MT and the COMES vari-
ants performed better than the multilingual COMES_MT_ML variant. This is
in line with the findings by Braun et al. (2022), which indicate that summary
evaluations do not survive translation. On this dataset, even the best-performing
COMET was still inferior to both ROUGE and BERTScore. Considering, how-
ever, the relatively small size of the dataset (270 instances per language, outputs
from two systems), we considered the question about COMET/COMES applica-
bility to multilingual evaluation to still be an open one.

As a part of ablation studies, we challenged the requirement of the cross-
validation approach to the SummEval evaluation. We were able to show that the
model trained and evaluated on the whole data was able to achieve almost the
perfect correlation, indicating a strong over-fitting. Additionally, we approached
a potential issue caused by the factor distinguishing MT from summarization.
Namely, the average length of the input. While a typical segment in the MT
test-sets consists of one or two sentences, the typical source document in summa-
rization test-sets can be five or even ten times longer. By examining the lengths
of the tokenized documents from the SummEval dataset, we estimated that only
roughly 50% of them fit completely within the model limit of 512 tokens18. How-
ever, we computed that, on average, 92% of input tokens are consumed, as an
average input document length in tokens equals 502. We were not able to propose
any additional experiments that could numerically estimate the potential gap in

18In all of our experiments, we have explored the large variant of the XLM-RoBERTa (Con-
neau et al., 2020) encoder.
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performance compared to a variant that could consume 100% of input tokens.
By the end of the paper, we concluded that the gap between the off-the-

shelf COMET and the fine-tuned COMES is, in our opinion, not significant
enough to justify relying on COMES, recommending using either the COMET
or COMET_QE to measure the overall quality. This recommendation was taken
into account by (Lozano et al., 2024), who, in their research, used the COMET
metric to evaluate the Retrieval-Augmented LLM system.
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3.2 Visual Output
As discussed in Chapter 2, our focus is the supervised formulation of MSMO
with a single image in the output. In those settings, our input is either a set of
images I = (i1, . . . , in) or a video V = (v1, . . . , vm) represented by the sequence of
frames. For simplicity, we assume that the pre-processing step of frame sampling
was already performed, and all of the m frames are seen be the model. In both
cases, we assume there is a gold-standard pictorial reference r and that the final
goal of an automatic system is picking a single image/frame from the input.

The crucial difference between the image-based and video-based formulation
was discussed in Section 2.1. In the image-based formulation, we assume that
the reference image belongs to the input images, i.e., r ∈ I, or ∃j : ij = r. In
the video-based formulation, we use a metric m to compute similarity m(vj, r)
between each frame vj and reference image r. In practical applications, the
most common metric m is the cosine similarity19 computed between the vectors
corresponding to the (target) image and the (input) frame features. Namely, we
use a pre-trained feature extractor (see Section 1.2.1) to embed the image i into
a vector t = t(i) ∈ Rd. Finally, we either treat the frame vk most similar to
the reference image, i.e., k = arg maxj m(vj, r) as the gold standard, and thus
converge towards the image-based formulation, or directly report the similarity
m(vpred, r) between the reference image and the frame vpred picked by the model.
An alternative approach would be to restrain from using the arg max formulation
and instead consider all frames that are similar enough to the reference as positive
labels. This could be achieved by choosing a particular threshold τ , and assuming
that every frame vk with m(vk, r) ≥ τ has a positive label. The concept of
positive/negative labels is also relevant to the image-based formulation, as some
of the human evaluations conducted in previous research (see, e.g., Zhu et al.
(2018)) mark more than one input image as “relevant”.

The second crucial distinction comes from the modeling design. We either
work with models that directly pick a particular image/frame by, e.g., generating
the index (see Section 5.2) or with models that assign a score s to every input
image/frame, i.e., s(vj) = s(vj, Θ), with Θ indicating model parameters. If we
look only at the index of the top-scoring sample, then we fall back to the previ-
ously discussed case.

If the model picks a single image/frame, then the Accuracy metric (a propor-
tion of predictions where the reference image is currently retrieved by the model)
is a natural choice for the image-based formulation, with the raw similarity score
m(vpred, r) filling the same role for the video-based variant.

If we consider all of the scores, i.e., a ranking of all input samples, then the
task is typically looked at from the perspective of Information Retrieval. This
approach is better suited for formulations that allow more than one positive label
among the input images/frames. In that case, the typically reported metrics are

19From the mathematical point of view, cosine similarity between any two vectors can range
from −1 to 1. The experience shows that for vectors corresponding to features extracted with
the same neural network, the value is usually positive and thus can be treated as a measure of
similarity.
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Precision@k (a proportion of top-k predictions that are relevant), Recall@k (a
proportion of relevant samples within the top-k predictions), and Mean Average
Precision (computed based on values of Precision@k, averaged over several values
of k).

When interpreting and comparing those “visual” metrics between different
works and different datasets, it is important to remember that certain pre-proce-
ssing or implementation-related choices may heavily influence the final scores. For
example, if two separate feature encoders are employed, the distribution of cosine
similarity scores may drastically change. Additionally, the (average) amount of
input images/frames affects the classical baselines. Considering the difficulty
of the task, this is of crucial importance, as even the best-scoring models are
not achieving much higher scores than classical baselines (see Section 2.2 and
Chapter 5). While a simple Accuracy is free of such issues, besides the top-
1 output, it does not tell us much about the model’s performance. One can
imagine a practical application that would require a summary consisting of two
or three images, and in such a case, the whole distribution of scores (the ranking)
becomes a critical factor.
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3.3 Multimodal Output

Parts of this section are based on the MLASK: Multimodal Summariza-
tion of Video-based News Articles (Krubiński and Pecina, 2023) article.

Within the discussed formulation of supervised MSMO (see Chapter 2), both
the model output – (ipred, txtpred) – and the reference – (iref , txtref ) – consist
of a <image, text> pair. We believe that in order to fully grasp the quality of
the multimodal output – both the text and image are supposed to be presented
to the final user as a whole – problem-specific, multimodal metrics should be
employed. However, almost all works report two distinct sets of metrics – the
output text is compared to the reference text, and the output image is compared
to the reference image. The main reason for that is simply the lack of well-
established multimodal metrics. Unfortunately, this issue can not be solved easily
– in order to design (and validate) automatic metrics, a collection of annotated
model outputs is required. Taking aside the practical problems related to, e.g.,
the cost of a large-scale annotation, the field lacks every component required for
such a process:

• there are no standard evaluation frameworks (see Section 3.1.1 for the dis-
cussion on evaluating text-only output);

• a majority of works operate on internal datasets that for various reasons,
are not shared publicly (see Chapter 4);

• the public code-bases and models are mostly tailored for specific dataset-
s/features and can not be easily evaluated with even a slightly different
setup.

Still, a limited number of solutions (see below) have been proposed both in
terms of evaluation design and automatic metrics.

Human Evaluation
The first work (Zhu et al., 2018) to introduce the MSMO task already noticed the
challenging nature of multimodal evaluation. In their image-based formulation,
there is no gold-standard reference picture, but instead, the authors employed
graduate students to select up to three relevant images per article. To collect
human annotations for the pictorial summaries (model output), annotators were
requested to judge the relevance of the output in the context of a gold-standard
textual summary and the subset of images marked as relevant in the previous
step. In total, 600 samples were annotated on the Likert scale of 1 to 5, with
each sample scored by two people. Interestingly, to the best of our knowledge,
no other work on MSMO conducted an evaluation at a similar scale. Even the
first work (Li et al., 2020d) to introduce the video-based VMSMO formulation
did not evaluate the pictorial summaries, collecting human judgments only for
the textual output.

For the purpose of the experiments reported in the MLASK (Krubiński and
Pecina, 2023) paper, we designed our own cross-modal evaluation framework,
better suited for datasets with a single, gold-standard pictorial summary. Since
the input images are actually frames sampled from a video, besides the relevance,
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Figure 3.8: Screenshot of the annotation tool used to collect human judgments
about the quality and usefulness of selected cover frame. For convenience, we
translated all text into English. Figure reprint from Krubiński and Pecina (2023).

we wanted the annotators to also look at the quality. It may happen that a
particular frame sampled from the video is blurred, as it may resemble e.g., a
fading away end of a scene.

To evaluate the quality of cover frame selection, we asked human annotators
to judge the quality and usefulness of an image as a pictorial summary of the
article. Altogether, 18 human annotators participated. All were adult, native
Czech speakers (the textual part of the MLASK dataset is in the Czech language)
who read online news magazines daily. Figure 3.8 displays a screenshot of the
annotation tool. For each instance, the annotators were asked to rate 3 images
on a Likert scale of 0 to 4 (the higher, the better) in the context of the article’s
title and the reference summary.
The suggested interpretation of the scale levels was:

0: The picture is not relevant at all or very marginally (technical quality is
not important).

1: The image is partly relevant (there is a certain connection between what
it captures and the content of the text), but technically imperfect (e.g.,
blurred, cropped inappropriately, taken from an inappropriate angle or at
an inappropriate moment).

2: The image is partly relevant (there is a certain connection between what it
captures and the text content) and of good technical quality.

3: The picture is very relevant but technically imperfect (e.g., blurred, cropped
inappropriately, taken from an inappropriate angle, or at an inappropriate
moment).

4: The picture is both very relevant and of good technical quality. It is a
suitable cover picture.

Compared to the annotation design by Zhu et al. (2018), we did not provide
the reference image as a context, instead including it as one of the options. Such
a premise allowed us to get closer to what we consider a real-life settings, i.e., a
situation where the model output is used instead of the reference. To set up the
annotation, we randomly chose 300 instances from the MLASK test-set and split
them into 10 batches of 30 instances each. We used the first batch to measure the
inter-annotator agreement, asking each annotator to score all the instances in the
control batch plus at least one more batch. For each instance, four images were
considered for annotation: the reference picture, a random frame from the video,
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Figure 3.9: Values of Cohen’s κ used to measure the inter-annotator agreement
on the control batch. Figure reprint from Krubiński and Pecina (2023).

and the outputs of two test models. In the control batch, we always included
the reference picture, hiding the output from one of the methods in 33% of the
cases. In the other batches, we displayed three out of the four images selected
randomly. The reason for such a design is purely practical – during our early
experiments, we noticed that the annotation process was much smoother if all of
the images were presented side by side. When viewed on an average computer
screen, four images presented at once seemed too clunky and hard to read. To
avoid positional bias, we shuffled the images each time before showing them to
the annotator. On average, we collected 2.5 annotations for each image.

Figure 3.9 displays the inter-annotator agreement measured on the control
batch in the form of a heat map. The agreement is measured with Cohen’s
κ coefficient (Cohen, 1960), with the average value of 0.217 indicating a “fair”
agreement. One can notice that three annotators (10, 11, and 13) have a lower
average agreement (average below 0.2, indicated by the dark stripes). As a pre-
caution, we decided to exclude their annotations from further analysis. By doing
so, the average value of Cohen’s κ increased to 0.26, and the average number of
annotations decreased to 2.2.

The results related to the model performance are discussed in Section 5.1.3.

Automatic metrics
As announced in the previous section, due to the lack of a large-scale, publicly
available collection of annotated model outputs, very limited research approached
the creation/design of automatic metrics tailored for multimodal output.

One such metric, MMAE, was proposed by Zhu et al. (2018). Using the 600
annotations they collected, 450 were set aside to train the MMAE metric, and
the remaining 150 were used to evaluate its performance. The MMAE metric
consists of three components: text-to-text similarity measured with ROUGE-L,
image-to-image similarity measured with Image Precision (based on the retrieval
formulation, recall is not relevant as there is a single image in the prediction),
and the cross-modal correspondence MAXsim (an image-to-text retrieval model
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is employed to calculate the similarity between ipred and every sentence in txtref ,
with a max-based approach to aggregation). The MMAE metric is the linear
combination of those three, with the coefficients learned by either a Linear Re-
gression, Logistic Regression, or a simple (shallow) feed-forward network – with
the best results achieved by Linear Regression. Evaluation on the test-split of
the annotated outputs shows that the combined metric achieved a higher cor-
relation than any of the components by itself. In their follow-up work, Zhu
et al. (2020) extend the MMAE metric (MMAE++) by incorporating a fourth
component based on the cross-modal, segment-level retrieval system into the re-
gression setup. Namely, the authors sample image-captions pairs to create a
collection of matching multimodal segments. Given segments ma = (ia, txta) and
mb = (ib, txtb), a pair of matching segments (m∗

a, m∗
b) is created by swapping

text and image, i.e., m∗
a = (ia, txtb) and m∗

b = (ib, txta). Based on such pairs, a
retrieval system is trained to retrieve pairs of matching segments. Finally, this
retrieval system is used to compute a matching score between (ipred, txtpred) and
(iref , txtref ), with a max-based approach to multiple iref images. Using the test-
set of 150 annotations, the MMAE++ with four components scores better than
the simpler MMAE version.

Both the MMAE and MMAE++ metrics not only achieve high correlations
with human annotations but also incorporate every aspect that we deem impor-
tant for evaluating the quality of multimodal output – text-to-text correspon-
dence, image-to-image correspondence, and cross-modal dependencies. However,
they are unfortunately not applicable from a practical point of view. The coef-
ficients are dependent on a particular dataset, a collection of particular model
outputs, and a particular group of human annotators. On top of that, even if
one collects a significant enough collection of annotated model outputs to jus-
tify “generic” coefficients, they would be tied to specific models used in, e.g.,
the retrieval systems (one of MMAE/MMAE++ components). Switching to a
better-performing retrieval model would either require some form of convoluted
score rescaling or another round of coefficient calibration. Therefore, we treat
both the MMAE and MMAE++ metrics as great proof-of-concept initiatives but
restrain from applying them to our own research. Overall, those issues are yet an-
other hint at how difficult and complicated the MSMO task is and that a proper,
task-specific evaluation is key to the further development of this field.

It is also worth mentioning that some work was done on evaluating Multi-
modal Summarization with text-only output, specifically within the “Text + Im-
age → Text” formulation. Wan and Bansal (2022) proposed the CLIPBERTScore
metric, a weighted, linear combination of CLIPScore (Hessel et al., 2021) and
BERTScore (Zhang et al., 2020b). CLIPScore is based on the CLIP image-text
retrieval model and was proposed as a metric to detect hallucinations in image
captions. It is applied to the input image and the textual summary generated by
the model. A multi-image input is also considered, with an additional step that
averages the score over all input images. BERTScore (see Section 3.1.3) is com-
puted between the (textual) hypothesis and the (textual) input document. To
validate the proposed metrics, the authors annotate summaries of 50 articles from
the WikiHow dataset (Koupaee and Wang, 2018), enhanced with input images
by Yang et al. (2021). Their validation shows that the proposed CLIPBERTScore
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outperforms any other metric considered. Interestingly, a simple grid-based tun-
ing of the coefficient used in the linear combination (no intercept, coefficients
sum to 1.0) performs on pair with a calibration based on Linear Regression or
simple feed-forward network, both of which were explored by Zhu et al. (2018)
to calibrate MMAE. Compared to MMAE, CLIPBERTScore is more convenient
to apply – it is based on two well-established models and includes only a single
parameter. We explored it in our experiments on unified, multi-task, multi-modal
summarization (see Section 5.2), adapting it to multimodal output by switching
the input image with the predicted one during the CLIPScore computation.

Jing et al. (2024) build upon the CLIPBERTScore work to introduce the
FALLACIOUS framework for both reference-based and reference-free evaluation.
FALLACIOUS is a QA-based metric (see Section 3.1.4) that, in the first step,
generates binary (yes/no) questions based on the textual hypothesis. The numer-
ical score is produced by counting the percentage of questions that are correctly
answerable based on either the input document or the input image. Compared
to CLIPBERTScore, this approach does not rely on any coefficients that require
calibration. It is, however, more costly (due to the QA/QG steps) and prone to
the same problems as QA-(text-)based evaluation, e.g., a lack of sensitivity to
abstract terms.
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4. Datasets
4.1 Overview
In Chapter 2, we discussed the task of Multimodal Summarization, focusing
mostly on taxonomy and problem variations approached previously. In this chap-
ter, our goal is to provide an overview of the datasets explored in previous research
and to introduce our contributions – a curation of the MLASK dataset (see Sec-
tion 4.2) and the extension of the existing M3LS dataset (see Section 4.3). We
will limit ourselves to the datasets that are publicly available for download, with
a single coherent document in the input. As discussed before, Multimodal Sum-
marization was mostly explored in the news domain, and the datasets were often
curated by web scraping a particular website. Therefore, publicly sharing the
datasets curated by researchers is not always possible due to licensing and intel-
lectual property rights. Works that explored the task in, e.g., the e-commerce
domain, were often published by authors affiliated with industrial research com-
panies. Thus, the artifacts – code, models, and datasets – are kept private and
not meant to be shared with the public at all. On top of that, due to the multi-
modal nature of the datasets – especially the ones containing videos – the size of
the datasets may reach hundreds of gigabytes and require access to a specialized
hosting platform, which may be a limiting difficulty for some research groups.

As a consequence, only a limited number of datasets are freely available to
download. The ones that are published fall into one of the three data categories:

1. Raw data – datasets in this category can be downloaded as a whole, in
the original, raw form, i.e., videos as .mp4 and images as .jpg or .png.
While this form enables a lot of freedom in future works, it may require
substantial computational power for storing and processing.

2. Set of pre-computed features – works in this category do not share
videos/images directly but rather publish frame/image-level features ex-
tracted with a particular feature extractor (see Chapter 1). While this kind
of data enables relatively quick experiments and lowers the entry barrier, it
forces the subsequent works to follow the same pre-processing (e.g., frame
sampling or image cropping) and use the same feature extractors.

3. Instructions to re-create the datasets – a third category consists of
works that do not publish the data at all but rather publish their setup
– usually code and a collection of URLs – that can be used by others to
gather the data. This approach is, however, often flawed. At first, a notable
amount of time and computational resources are required to reconstruct the
dataset. Secondly, most of the content available on the internet is not static,
and URLs may become invalid as providers update their websites1.

A list of publicly available datasets is presented in Table 4.1, with the corre-
sponding sources provided in Table 4.2 .

1In our experiments, we tried to reconstruct the video-based dataset introduced by Li et al.
(2020d), roughly six months after the relevant paper was published. Out of the 184,920 articles
collected in the original data, almost 93% of the corresponding URLs were no longer active.
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MMSS (Li et al., 2018) 66,000 T, I T 1) eng
How2 (Sanabria et al., 2018) 72,983 T, V T 2), 3)* eng, por*
MSMO (Zhu et al., 2018) 314,581 T, I T, I* 1) eng
VMSMO (Li et al., 2020d) 184,920 T, V T, I 3) zho
MM-AVS (Fu et al., 2021) 2,173 T, V, I T 1), 3)* eng
HCSCL-MS (Zhang et al., 2022a) 62,880 T, I T, I 2) zho
MLASK (Krubiński and Pecina, 2023) 41,243 T, V T, I 1) ces
M3LS (Verma et al., 2023) 1,100,000 T, I T 1), 2)* various
M3Sum (Liang et al., 2023a) 1,078,215 T, I T 3) various
mRedditSum (Overbay et al., 2023) 3,030 T, I T 3) eng
MultiSum (Qiu et al., 2024) 5,100 T, V T, I 1)*, 2), 3) eng

Table 4.1: Overview of the publicly available datasets explored for Multimodal
Summarization. “T” refers to the textual modality, “V” to the video modality,
and “I” to the image modality. In the “Language” column, we provide the three-
letter ISO 639-2 code. The ∗ symbol indicates a partial match, e.g., only a part of
the dataset (usually the test-split) is annotated, or only part of the data (images,
but not videos) is released.

Dataset URL

MMSS (Li et al., 2018) https://github.com/ZNLP/ZNLP-Dataset/

How2 (Sanabria et al., 2018) https://github.com/srvk/how2-dataset/

MSMO (Zhu et al., 2018) https://github.com/ZNLP/ZNLP-Dataset/

VMSMO (Li et al., 2020d) https://github.com/iriscxy/VMSMO/

MM-AVS (Fu et al., 2021) https://github.com/xiyan524/MM-AVS/

HCSCL-MS (Zhang et al., 2022a) https://github.com/LitianD/HCSCL-MSDataset/

MLASK (Krubiński and Pecina, 2023) http://hdl.handle.net/11234/1-5135

M3LS (Verma et al., 2023) https://github.com/Raghvendra-14/M3LS/

M3Sum (Liang et al., 2023a) https://github.com/XL2248/D2TV/

mRedditSum (Overbay et al., 2023) https://github.com/Koverbay/mredditsum/

MultiSum (Qiu et al., 2024) https://mmsum-dataset.github.io/

Table 4.2: Overview of the publicly available datasets explored for Multimodal
Summarization, with the corresponding URLs.
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4.2 MLASK

This section is based on the MLASK: Multimodal Summarization of
Video-based News Articles (Krubiński and Pecina, 2023) article.

In the early stages (first quarter of 2021) of our experiments, no video-based
dataset with reference pictorial summaries was available publicly. Therefore, we
focused our attention on curating a dataset that would enable our experiments
and one that could be released to the public to facilitate further research. With
that goal in mind, we decided to curate the dataset based on two news websites
publishing in the Czech language: https://novinky.cz and https://seznam
zpravy.cz. They both publish new articles daily and give access to an extensive
archive of articles from previous years. Instead of scraping the web pages, we
collected the documents via APIs, limiting our analysis to articles containing
videos. By matching the API fields (see Figure 4.1) with the structure of the
website, we were able to identify fields corresponding to: the article’s text, the
article’s abstract, the article’s title, the article’s publication date, a .mp4 video
that accompanied text, and a single image (cover picture) that visually represents
the whole article (see Figure 4.2).

Having collected the articles, we processed them by filtering out documents
that we had identified as invalid or of low quality. The following documents were
dropped:

• with videos longer than 5 minutes;
• with full text shorter than 50 words or longer than 2,000 words;
• with abstract shorter than 10 words or longer than 80 words;
• with title shorter than 2 words;
• with either the full text or abstract identified as non-Czech by the langid2

language-identifier.
The thresholds were chosen manually after exploring the distribution of texts.

In total, the collected dataset contains 41,243 instances, all including the arti-
cle’s text, title, abstract, video, and cover picture. The quantitative statistics of
the data are displayed in Table 4.3. The oldest article was published on the 22nd
of September 2016, and the newest one on the 4th of February 2022. All of the
videos are re-sampled to 25 fps and resized to the same resolution of 1280×720p,
and the average video duration is 85.58 seconds. All of the images are in the .jpeg
format and are published with their original pixel size. The smallest image has
a resolution (width × height) of 199×229, and the largest is 9000×6000, with
40% of images having a resolution of 800×450 and 35% of 1920×1080. We do
not differentiate between the article’s origin, i.e., we treat both source websites
equally by not labeling the documents with their origin. We named the dataset
MLASK, which stands for MultimodaL Article Summarization Kit.

By getting in contact with the media company owning the news websites
that we scraped and receiving the necessary approvals, we were able to publish

2https://github.com/saffsd/langid.py
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1 {
2 "_cls": "ArticlePublished",
3 "_created": "2022-09-03 08:05:12",
4 "_id": "6313849b63f3a49f51dab2da",
5 "adKeywords": [],
6 "authors": [
7 "5a9d100265375b136a38de6b"
8 ],
9 "content": [

10 {
11 "_cls": "ParagraphMolecule",
12 "component": "molecule.paragraph.Paragraph",
13 "componentId": "631384932b38ee436f9e76c2",
14 "properties": {
15 "_cls": "_ParagraphMoleculeProperties",
16 "entityRanges": [],
17 "inlineStyleRanges": [],
18 "text": "Dnes ve 20:17 SELČ se mělo na dvě

hodiny otevřít okno pro start rakety SLS
s modulem Orion k Měsíci. NASA už
předtím na svých stránkách uvedla, že má
potíže s únikem paliva a o několik hodin
později start zcela zrušila."

↪→

↪→

↪→

↪→

↪→

19 },
20 ...
21 },
22 {
23 "_cls": "ParagraphMolecule",
24 "component": "molecule.paragraph.Paragraph",
25 "componentId": "631384932b38ee436f9e76c3",
26 ...
27 },
28 ...
29 ]
30 "title": "NASA podruhé zrušila start rakety k měsíci.

Podívejte se, jak měla letět",↪→

31 "uid": 213174,
32 "videoportalTags": [
33 "6311acf5e62d2906d836e71d"
34 ]
35 ...
36 }

Figure 4.1: An example (Seznam Zprávy API) of an output from the API call
that we used to collect the documents. For clarity, only a subset of retrieved
fields is presented.
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Video

Article

Title

Summary

Image Summary

Figure 4.2: An annotated screenshot representing one of the articles (sez-
namzpravy.cz) collected in our experiments. The <image, text> pair in the
bottom left corner corresponds to the thumbnail representing the article on the
news provider’s main web page, with the “text” field given by the article’s title.
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Mean Q1 Median Q3

Title 11 ± 2.8 9 11 13
Abstract 33 ± 13.9 22 32 43
Article 277 ± 191.7 154 231 343

Table 4.3: Quantitative statistics of the lengths of titles, abstracts, and full texts
(measured in the number of tokens) for the MLASK dataset. Q1 and Q3 denote
the first and the third quartile, respectively. Table reprint from Krubiński and
Pecina (2023).

the collected dataset via the LINDAT/CLARIAH-CZ data repository3, with an
appropriate license4, freely permitting a usage in academic research. Separately,
we also published the code5 that enables re-computing the numerical features
explored in our experiments.

3http://hdl.handle.net/11234/1-5135
4https://lindat.mff.cuni.cz/repository/xmlui/page/szn-dataset-licence
5https://github.com/ufal/MLASK
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4.3 Extension of the M3LS dataset

This section is based on the Towards Unified Uni- and Multi-modal
News Headline Generation (Krubiński and Pecina, 2024) article.

When discussing the formulation of Multimodal Summarization with Uni-
modal Output that consumes a textual document and collection of images to
generate a textual summary, we introduced the M3LS dataset curated by Verma
et al. (2023). At the time of starting the work on the multi-task, multi-modal
summarization (first quarter of 2023, see Section 5.2), it was the largest (376,367
instances) resource of such kind, in English, available publicly. However, our
intended formulation also required the target image (reference image, pictorial
summary). Therefore, we decided to extend the M3LS dataset by collecting the
target images instead of creating a new dataset from scratch.

Figure 4.3: Above – a partial snippet of the bbc.com news hosting website. Below
– the reference images (pictorial summaries) collected based on the specific HTML
tag (see Section 4.3).

We started by analyzing the data instances of M3LS, as shared by the au-
thors6. The dataset is shared in a raw form, with the textual articles encoded
as .json files (see Figure 4.4). By analyzing the HTLM structure of the website
hosting the articles (url field, as provided in the .json files), we were able to

6https://github.com/Raghvendra-14/M3LS
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identify a meta element characterized by a specific HTML tag (property="og:i-
mage") that points to the reference image – the one representing the articles at
the www.bbc.com main page (see Figure 4.3). After collecting the URLs point-
ing to the reference images (success rate of roughly 99.5%), we downloaded and
deduplicated the pictures. The deduplication step was required, as a number of
articles shared a common, template-like image. After this step, we were left with
210,071 articles (56%). Next, we applied a post-processing step that cropped the
images to remove a watermark (see Figure 4.3). We considered this a necessary
step, as the presence of a watermark would be an artificial indicator for a model
that could skew the results. Finally, we filtered those multimodal articles from
the M3LS dataset that fulfilled two conditions: they had at least a single image in
the input and we were able to collect the target image for them, ending up with
115,432 instances. Following the image-based MSMO formulation, we appended
the target image to the source images, with quantitative statistics of the number
of input images in the extended M3LS dataset displayed in Table 4.4.

For the sake of future work and to establish a reproducible baseline, we pro-
posed a split into training/validation/testing based on the publication date: arti-
cles published in January–April of 2021 for validation (5,865 instances), the ones
published in May–October of 2021 for testing (6,854 instances) and the remaining
ones (before January 2021) intended for training (102,713 instances).

We have released the final list of reference image URLs paired with IDs al-
lowing to match with the original M3LS data instance via GitHub, i.e., https:
//github.com/ufal/UNMHG.

Min Q1 Mean Q3 Max
2 2 3.79 4 21

Table 4.4: Quantitative statistics of the number of input images (including the
target image) in the subset of the English M3LS dataset that we extended with
the multimodal target. Table reprint from Krubiński and Pecina (2024).
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1 {
2 "url": "https://www.bbc.com/news/entertainment-arts...",
3 "title": "Time's Up: Boss quits over ties ...",
4 "date": "2021-08-27T09:48:22.000Z",
5 "summary": "Tina Tchen, the head of anti-sexual ...",
6 "0": {
7 "para": [
8 "Ms Tchen, a lawyer and the former chief ...",
9 "The high-profile politician resigned ...",

10 ...
11 ],
12 "images": [
13 [
14 "...f1d0e281821##0##1.jpg",
15 "Mr Cuomo continued to deny the allegations ..."
16 ],
17 ...
18 ]
19 },
20 "keyword": [
21 "#TimesUp campaign"
22 ],
23 "related": [
24 "https://www.bbc.com/news/world-us-canada-58153726",
25 ...
26 ]
27 }

Figure 4.4: An example of a data instance from the M3LS dataset. For simplicity,
all of the retrieved fields are presented, but the actual content is truncated.
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5. Experiments
In this Chapter, we will provide an overview of our experiments related to Mul-
timodal Summarization, as published in Krubiński and Pecina (2023) and Kru-
biński and Pecina (2024). Our main goal is to provide the justifications and
motivations for particular modeling choices and to introduce our qualitative and
quantitative findings.

5.1 MLASK – MMS

This section is based on the MLASK: Multimodal Summarization of
Video-based News Articles (Krubiński and Pecina, 2023) article.

5.1.1 Motivation and Overview
Our work on the video-based MSMO (VMSMO, as introduced in Section 2.2)
develops from the insight that previous works explored mostly models trained
from scratch on the limited, task-specific data. While the particular components,
e.g., the image/frame feature extractor or the textual encoder, are initialized with
weights from a generic, pre-trained checkpoint, the fact that there are numerous
datasets and models available for the core task of text-only summarization was
not explored deeply. Analyzing the experiments of Yu et al. (2021) (text-video
input, but text-only output), we noticed that with the multimodal (visual) clues
included in the input, the reported improvements were more significant for the
models (variants) that performed worse in the text-only settings. Our intuition
was that the benefits of the multimodal input as compared to the text-only one
may be over-estimated by using too weak baselines. Furthermore, we observed
the tendency to take the visual features for granted and focus on the modeling,
i.e., not exploring alternative or combined feature extractors. In that regard, our
goal was to conduct experiments with the same architecture but diverse visual
features and see how it affects the overall quality. Eventually, we wanted to take
a look at the robustness of a trained model – which elements can we simplify
(ideally, at the runtime) without degrading the performance?

However, to conduct such experiments, we need access to the “raw” data
and the “raw” model, and, as discussed in Section 4.2, at the beginning of our
experiments, there was no video-based dataset and no VMSMO model1 available
publicly.

Therefore, our first step was to curate a video-based dataset (see Section 4.2).
Having direct access to the data, we designed and implemented a multi-modal
summarization model (MMS) that, thanks to its modular composition, allowed
us to investigate our hypotheses and research questions.

1The code-base of Li et al. (2020d), i.e., https://github.com/iriscxy/VMSMO, was public
at that time, but it was not directly applicable to our needs. The trained model (checkpoint)
was not shared by the authors.
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Figure 5.1: An overview of the proposed MMS model for Multimodal Summa-
rization. Figure reprint from Krubiński and Pecina (2023).

In the remainder of this section, we go over the particular components of the
base MMS model.

Overview

In our experiments, a video-based news article is represented by a pair (V, X).
V corresponds to the video input – a sequence of frames: V = (v1, v2, . . . , vN).
X is the news article presented as a sequence of tokens: X = (x1, x2, . . . , xM).
We assume that for each article, there is a ground-truth textual summary Y =
(y1, y2, . . . , yL) and a ground-truth cover picture P . The task is to generate a
textual summary ˆ︁Y that includes the main points of the article and to choose
a frame ˆ︁v to act as a cover picture (pictorial summary). The proposed MMS
model (see Figure 5.1) is structured into three parts: Feature Encoder composed
of a text, video, and frame encoder, Cross-modal Interaction Module fusing the
visual and textual representations, and Multimodal Decoder responsible for the
summary generation and frame selection.

Feature Encoder

The Feature Encoder consists of a Text Encoder, a Video Encoder, and a Frame
Encoder.

Text Encoder We use the Transformer encoder model to map the textual news
article into the sequence of contextualized token embeddings (Equation 5.1).

Xenc = TransformerEncoder(X) (5.1)

Video Encoder The news videos in our dataset are several minutes long and
consist of hundreds of frames. To incorporate the short-term temporal dependen-
cies, we segment the video into non-overlapping sequences of frames and use the
3D ConvNet for feature extraction (Equation 5.2). As the feature extractors, we
use the model trained by Ghadiyaram et al. (2019) for video action recognition
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on weakly-supervised social-media videos (internal data) and the visual compo-
nent of the Text-Video model trained in a self-supervised manner by Miech et al.
(2020) on the HowTo100M dataset (Miech et al., 2019). By default, we use a
combination of both features by concatenating them along the hidden dimension.
To incorporate the long-term temporal dependencies, we process the sequence of
video features with the Transformer encoder model (Equation 5.3).

Venc = 3D-CNN(V ) (5.2)
Venc = TransformerEncoder(Venc) (5.3)

Frame Encoder To model the choice of a specific frame as a cover picture,
frame-level representations are needed. In our experiments, we pre-process the
input video by sampling one of every 25 frames as the cover picture candidates (1
frame per second). We examine the usage of EfficientNet (Tan and Le, 2019) and
Vision Transformer (Dosovitskiy et al., 2021) as feature extractors and combine
both by concatenating them along the hidden (feature) dimension. Both models
were trained for image classification on the ImageNet (Russakovsky et al., 2015)
dataset. To put the representations into context, we process the sequence of
frame features with the Transformer encoder model (Equation 5.5).

Vframe = CNN(Sample(V )) (5.4)
Vframe = TransformerEncoder(Vframe) (5.5)

Before applying the Transformer encoder to visual features (Equation 5.3
and Equation 5.5), we project both the video and frame features into the same
dimension as the hidden states of the text encoder.

Interaction Module

Following Yu et al. (2021), who examined different ways of injecting visual infor-
mation into pre-trained generative language models, we employ the multi-head
attention2 (MHA) based fusion (see Section 2.1.2) to obtain the vision-guided
text representation and perform the fusion after the last encoder layer (Equa-
tion 5.6–5.9).

Q = XencWq; Q ∈ RM×d (5.6)
K = VencWk; K ∈ RN ′×d (5.7)
V = VencWv; V ∈ RN ′×d (5.8)˜︂Xenc = MHA(Q, K, V ); ˜︂Xenc ∈ RM×d (5.9)

As suggested by Liu et al. (2020), we use the forget gate mechanism (Equa-
tion 5.10–5.11) so that the model can filter out low-level cross-modal adaptation
information, and to provide a straightforward path to the encoded text represen-
tation Xenc. The ⊗ symbol refers to a position-wise multiplication.

2We use the common notions/abbreviations for Transformer components, as introduced
in Vaswani et al. (2017).
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F = sigmoid(Concat(Xenc, ˜︂Xenc)Wf ) (5.10)ˆ︂Xenc = Concat(Xenc, F ⊗ ˜︂Xenc)Wf ′ (5.11)
Wf , Wf ′ ∈ R2M×d, ˆ︂Xenc ∈ RM×d

We use the same MHA mechanism to obtain the text+video guided frame
representations ˜︁Vframe by substituting Xenc with Vframe in Equation 5.6 and Venc

with ˆ︂Xenc in Equation 5.7 and Equation 5.8. The forget gate mechanism is applied
to derive the final frame representations ˆ︁Vframe by substituting Xenc with Vframe

in Equation 5.10 and ˜︂Xenc with ˜︁Vframe in Equation 5.11.

Multimodal Decoder

To generate the textual summary, we use the standard Transformer decoder
with the vision-guided text representation ˆ︂Xenc as the input (Equation 5.12) and
compute the standard Cross-Entropy loss (CELoss) w.r.t. the target sequence Y
(Equation 5.13).

ˆ︁Y = TransformerDecoder(ˆ︂Xenc) (5.12)
Ltext = CELoss( ˆ︁Y , Y ) (5.13)

To obtain the target labels C for the cover picture (cover frame) selection,
we compute the cosine similarity between the numerical features of the target
image and the candidate frames. The similarity of over 99.99% of instances
was in the [0,1] range, and the remaining negative values were mapped to 0.
Following the previous works (Li et al., 2020d; Fu et al., 2020), we regard the
frame with the maximum cosine similarity as ground-truth (Cmax) and the others
as negative samples, i.e., training with a binary signal. We use a projection
matrix to map the text+video guided frame representations ˆ︁Vframe to a single
vector (Equation 5.14) and compute the binary Cross-Entropy loss (BCELoss,
Equation 5.15) w.r.t. target labels C. We train the whole model end-to-end by
minimizing the sum of losses L (Equation 5.16).

ˆ︁C = ˆ︁VframeWp; Wp ∈ Rd×1 (5.14)
Limage = BCELoss( ˆ︁C, C) (5.15)

L = Ltext + Limage (5.16)

5.1.2 Implementation
Models

We implement our experiments in PyTorch3 and use the small4 variant (300M
trainable parameters) of the mT5 model, as provided via the Transformers (Wolf

3https://github.com/pytorch/pytorch
4https://huggingface.co/google/mT5-small
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et al., 2020) package to initialize the textual encoder and the textual decoder.
Following Yu et al. (2021), we use two separate 4-layer encoders to contextualize
the video and the frame representations (Equation 5.5 and Equation 5.3).

As video feature extractors, we use the R(2+1)D 34-layer IG-65M5 and the
S3D_HowTo1006 models to encode sequences of the length of 32 frames. i.e., to
extract a single vector to encode every 32 frames. To extract frame-level features,
we utilize the B57 variant8 of EfficientNet and the vit-base-patch32-224-in21k9

variant of Vision Transformer to transform every frame into a single numerical
vector. We follow the suggested pre-processing (e.g., image re-sizing, RGB chan-
nel normalization) for each feature extractor independently. The total number of
trainable parameters is approximately equal to 323M. When computing the co-
sine similarity between the frame-level features, we compute the similarity with
respect to both image-level feature extractors10 and average them to obtain the fi-
nal similarity scores explored during training (see Section 5.1.1 and Section 5.1.3)
and evaluation11.

Data

In our experiments, we perform the training/dev/test splits of the MLASK da-
taset (see Section 4.2) following the chronological ordering based on publication
date. We use the articles published in the first half (Jan–Jun) of 2021 for valida-
tion (2,482 instances) and the ones published in the second half (Jul–Dec) of 2021
and the beginning (Jan–Feb) of 2022 for testing (2,652 instances). The remaining
data is used for training (36,109 instances).

For pre-training (see Section 5.1.3), we explore the large-scale, text-only,
Czech news summarization corpus SumeCzech (Straka et al., 2018). SumeCzech
was created by filtering the data from the Common Crawl project 12, based on a
hand-picked list of popular Czech news websites, and consists of 1,001,593 articles.
For each article in the dataset, the following were collected: the article’s headline
(title), the article’s abstract, and the article’s text. Some additional metadata
includes information such as the original URL or the article’s publication date.
The authors proposed a data split based on the clustering of the embedded ab-
stracts, dividing the data into training/dev/test/out-of-domain test as follows:
867,596/44,567/44,454/44,976. In our experiments, to avoid any training/test
data leaks between MLASK and SumeCzech, we post-processed the training split
of SumeCzech data by filtering out the articles that could13 appear in MLASK

5https://github.com/moabitcoin/ig65m-pytorch
6https://github.com/antoine77340/S3D_HowTo100M
7While working on the dissertation, we realized that in the conference paper, i.e., Krubiński

and Pecina (2023), we mistakenly reported that the B4 variant was explored. In the public
code-base, the correct model is referenced.

8https://huggingface.co/google/efficientnet-b5
9https://huggingface.co/google/vit-base-patch32-224-in21k

10Unless only one of the feature extractors is employed in the modeling process (see Sec-
tion 5.1.3). In that case, there is a single similarity score.

11Please consult the public repository for further technical details, i.e., https://github.c
om/ufal/MLASK/.

12https://commoncrawl.org/
13One of the news websites that were explored to curate MLASK, was a part of the hand-

picked list based on which SumeCzech was created.
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based on the date of publication (794,018 left, i.e., 92%).

Metrics

Most existing implementations of ROUGE are English-specific and utilize, e.g.,
an English stemmer or a word bank of English stop words. Since the MLASK
dataset is in Czech, we follow the work of Straka et al. (2018) and evaluate the
model performance with a language-agnostic ROUGERAW

14 variant of ROUGE,
reporting the F1 scores (ROUGE-1, ROUGE-2, and ROUGE-L). This variant
utilizes no stemmer, no stop words, and no synonyms, tokenizing the (hypothe-
sis/reference) texts based on white spaces.

To estimate the quality of cover frame selection, we report the cosine similarity
(CosSim) between the reference image and the chosen cover frame. To examine
the model performance besides the top-1 choice, we follow Li et al. (2020d) and
report Recall@k15 (R@k) considering only the frame closest to the ground-truth
as a positive example. To evaluate the frame scoring at even coarser, video-level
granularity, we report Kendall’s τ 16 (KC) and Pearson’s r17 (PC) correlation
coefficients to measure the correlation of the ordering based on the projected rep-
resentations (Equation 5.14) with the absolute frame ordering based on similarity
with the ground-truth image.

Baselines

To put our experiments into a wider context, we report the performance of several
text-only baselines: i) RandomT extracts three random sentences from the article;
ii) Lead3 extracts three initial sentences; iii) Oracle takes three sentences that
maximize ROUGE-L with the ground-truth abstract (the upper bound for ex-
tractive summarization). Additionally, we report the performance of the (small)
mT5 model fine-tuned for text summarization on the textual data in the Czech
language – mT5-MLASK is fine-tuned on the textual part of the MLASK train-
ing set, and mT5-SumeCzech is fine-tuned on the SumeCzech (see Section 5.1.3)
dataset. We also report a video-only baseline RandomV, which performs a ran-
dom frame ordering.

Setup

We train the multimodal MMS model using the Adam optimizer (Kingma and
Ba, 2015) with β1 = 0.9 and β2 = 0.98. We increase the learning rate linearly
for the first 8,000 steps (0 to 5e-4) and then follow an inverse square root decay
schedule. Since both the text encoder and the decoder are pre-trained, we freeze
them for the first 2 epochs. We limit the document size to 1,536 sub-word tokens
and the summary length to 256 tokens. We train all the models for 50 epochs
with an early stopping applied if ROUGE-L does not improve on the dev-set for 5
consecutive epochs. During decoding, we use the best checkpoint with respect to

14https://lindat.cz/repository/xmlui/handle/11234/1-2615
15https://lightning.ai/docs/torchmetrics/stable/retrieval/recall.html
16https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kendallta

u.html
17https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.

html
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DEV
ROUGE-1 ROUGE-2 ROUGE-L CosSim R@5 R@10 KC PC

RandomT 13.92 1.63 9.02 - - - - -
Lead3 15.47 2.32 10.25 - - - - -
Oracle 22.92 5.37 18.28 - - - - -
mT5-MLASK 18.25 4.14 13.07 - - - - -
mT5-SumeCzech 19.18 4.53 13.76 - - - - -
RandomV - - - 0.335 0.092 0.182 0.000 0.000
MMS 18.34 4.12 13.26 0.563 0.206 0.339 0.303 0.465
+ Masked Video 17.70 3.84 12.81 0.548 0.191 0.320 0.275 0.439
− IG-65M 17.74 3.89 12.95 0.558 0.200 0.323 0.290 0.456
− S3D 17.82 3.88 12.93 0.530 0.187 0.321 0.260 0.428
− Effnet 18.07 4.04 13.13 0.589 0.160 0.280 0.211 0.328
− ViT 17.69 3.71 12.82 0.527 0.192 0.320 0.309 0.488
+ SumeCzech 19.64 4.95 14.32 0.551 0.192 0.319 0.274 0.440

+ Smooth Labels 19.73 4.97 14.34 0.562 0.202 0.332 0.295 0.458
+ Masked Video 19.74 5.02 14.34 0.561 0.197 0.331 0.290 0.452

TEST
MMS 18.45 4.29 13.42 0.552 0.183 0.321 0.306 0.447
+ Masked Video 17.65 3.95 12.88 0.542 0.187 0.332 0.283 0.422
− IG-65M 17.81 4.02 13.07 0.548 0.186 0.321 0.296 0.437
− S3D 17.89 4.03 13.03 0.531 0.177 0.316 0.264 0.408
− Effnet 18.21 4.28 13.37 0.582 0.157 0.279 0.216 0.311
− ViT 17.78 3.94 13.00 0.509 0.176 0.311 0.303 0.452
+ SumeCzech 19.58 4.95 14.30 0.541 0.181 0.318 0.278 0.420

+ Smooth Labels 19.74 4.90 14.34 0.551 0.188 0.330 0.299 0.444
+ Masked Video 19.69 4.91 14.38 0.553 0.184 0.326 0.300 0.439

Table 5.1: Evaluation on the dev-set and test-set of MLASK. The figures are
averaged over three runs with different seeds. The three highest-scoring systems
in each column are bolded independently for test-set and dev-set. Table reprint
from Krubiński and Pecina (2023).

ROUGE-L, utilizing beam search with the beam size of 4, length penalty of 1.0,
and repetition penalty (Keskar et al., 2019) of 2.5. We select the cover frame by
applying argmax to the projected representations (Equation 5.14). We employ
gradient accumulation to train with the effective batch size of 32. Each model
is trained on a single GeForce RTX 3090 GPU, and the average training time is
roughly 36 hours. The text-only models (see Section 5.1.3) are fine-tuned with
the Adafactor (Shazeer and Stern, 2018) optimizer, using a constant learning
rate equal to 5e-4 and trained until ROUGE-L ceased to improve on the relevant
dev-set for 5 consecutive evaluations.

5.1.3 Results and Ablation Studies
A sample of model outputs is provided in Appendix B.2.1.

Looking at the results of the baseline systems (see Table 5.1), both text-
only mT5 variants outperform the trivial baselines (RandomT, Lead3 ), but their
results are below the Oracle performance. Using larger training data (SumeCzech
has roughly 20 times more documents than MLASK) improves the performance
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by approximately 1 ROUGE point. As expected, with the RandomV baseline,
the value of R@10 is twice the value of R@5 – with a random frame ordering,
doubling the set of top-k positions increases the probability of including the single
positive frame (see Section 5.1.1) twice.

The baseline multimodal system (MMS) achieves slightly higher scores than
mT5-MLASK (dev-set ROUGE-1: 18.25 → 18.34, ROUGE-L: 13.07 → 13.26)
but lags behind the text-only mT5-SumeCzech that was trained on a much larger
corpus. While the exact CosSim values can not be compared (they are based
on different feature extractors), the ∆CosSim between the trained model and the
random baseline is much more significant compared to the work of Fu et al. (2021)
and our unified, multi-task formulation (see Section 5.2.3).

In order to understand the effect of the particular components and design
choices, we propose a number of ablation studies related to image/frame repre-
sentations, task-specific pre-training, and the formulation of the training signal.

Firstly, to analyze the effect of the individual visual features (see the discus-
sion on Video Encoder and Frame Encoder in Section 5.1.1), we report the results
of the MMS model, excluding those features one by one (see the rows starting
with the “−” sign in Table 5.1). The scores indicate that the model combining
all the features (i.e., MMS) is superior, as demonstrated by the higher ROUGE
score and the higher values of R@5 and R@10. The variant without the Effnet
frame (image-level) features (MMS-Effnet) achieves higher CosSim, but the value
of CosSim is computed based on different numerical representations, and thus,
the comparison is not straightforward. To avoid this issue, we recommend that
future works disentangle image/frame representations used for computation from
image/frame representations used to compute the similarity. Compared to the re-
maining variants with certain features excluded (that all perform comparatively),
the MMS-Effnet variant achieves higher ROUGE values but lower values of cor-
relation coefficients. This can be explained by the difference in the size of the
extracted feature vectors, i.e., 512/512/2,048/768 for IG-65M/S3D/Effnet/ViT.

Secondly, we wish to establish the role of pre-training. When discussing previ-
ous works on Multimodal Summarization in Chapter 2, we remarked that a num-
ber of works that report significant improvements (∆ROUGE of 3-4) in terms of
the quality of textual output when comparing text-only with multimodal models,
train their models from scratch. Within the text-centric formulation, since the
textual document is available in the input, it is, in principle, possible to generate
a high-quality summary based only on the textual input18, ignoring the visual
clues. Therefore, from the modeling perspective, if we train the model end-to-
end with the training signal based on the textual output, we can not guarantee
that the model will pay a lot of attention to the visual clues. Our hypothesis is
as follows: the better the model is at text-only summarization, the less effective
the usage of visual clues will be, as the model will focus on the textual content.
On the other hand, since the textual summary is part of our desired output (also
in the MSMO formulation), we wish to train our models following the established

18This “greedy” characteristic of multi-modal deep neural networks in nicely discussed in Wu
et al. (2022), and the follow-up works.
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pipelines, including the task-specific pre-training.
To transform this discussion into numbers, we pre-train the textual compo-

nent of the MMS model (mT5) on text-only summarization using the SumeCzech
corpus. In the next step, we replicate the multimodal training and report the
performance in Table 5.1, i.e., MMS+SumeCzech. The results are consistent across
dev-set and test-set – we observe an improvement in the quality of textual output
(∆ROUGE of 1.0-1.5), with a slight degradation in terms of the visual quality,
consistent along all metrics. To deepen this study, we considered using the mT5
architecture for the core textual component but initializing the weights with ran-
dom values. Theoretically, this could provide further insight into the capability
of consuming visual clues. However, we finally decided against performing such
an experiment. When working with fine-tuned models, one can build upon the
experience of others and, to a certain degree, ensure that the correct training
hyper-parameters are applied and focus on their problem/task. When training
from scratch, we would need to perform a large-scale hyper-parameter tuning.
Otherwise, we would not be able to confidently say that the difference in perfor-
mance is due to the usage of visual clues, as opposed to applying an ineffective
training regime.

Thirdly, we look at the training signal from a visual perspective. In Sec-
tion 5.1.1, we explained that to obtain the target labels C for the cover picture
selection, we compute the cosine similarity between the numerical features of the
target image and the candidate frames. We transfer those similarities into a bi-
nary signal Cmax by regarding the frame with the maximum cosine similarity as
a positive and the remaining ones as negatives.

After examining the cosine similarity patterns (see Figure 5.2 and Figure 2.4),
we made an observation regarding the per-video similarities. We noticed that one
of two things may happen – either there is more than one peak, or there are con-
secutive sequences of frames with very similar scores, i.e., capturing a still scene.
Our intuition was that this might harm the model performance by introducing
noise during training – very similar frames might be labeled as both positive and
negative examples. To overcome this issue, besides the binary labels Cmax, we
introduce the smooth labels Csmooth that assign to each frame its “raw” cosine
similarity score with the target image and re-train the MMS model with those
smooth target labels (the “+ Smooth Labels” variant19). The difference in terms
of metric values is minimal but consistent across the dev-set and the test-set and
across (almost) all of the metrics that we consider.

Finally, we perform an experiment to probe the models for sensitivity with
respect to the visual features. Namely, we mask the video features (in the Video
Encoder) with random noise during both training and evaluation. The model
can still access the visual information via the image-level frame features (in the
Frame Encoder), which are left intact.

Surprisingly, for the variant that was pre-trained on a large text-only corpus
(MMS+SumeCzech), masking the video features does not hurt the model perfor-
mance, resulting in even slightly higher scores, i.e., ROUGE-L: 14.34 → 14.38,

19To linearize our research, we decided to perform the experiments with smooth labels based
on the model pre-trained for text-only summarization.
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Figure 5.2: Three examples of cosine similarity (y-axis) plots between the nu-
merical features of the reference cover picture and all candidate frames (x-axis)
from the video. The examples were chosen manually from the MLASK dataset
to present three different video similarity patterns: with a single peak (red), with
more than one peak (blue), and with a consecutive sequence of frames having
very similar scores (violet). Figure reprint from Krubiński and Pecina (2023).

Total Score Adequacy Score
Reference 2.89 ± 0.99 1.64 ± 0.50
RandomV 2.39 ± 1.15 1.44 ± 0.61
System A 2.64 ± 1.10 1.51 ± 0.58
System B 2.66 ± 1.04 1.56 ± 0.52

Table 5.2: System performance on the task of cover picture selection, validated
on the subset of the MLASK test-set. Table reprint from Krubiński and Pecina
(2023).

CosSim 0.551 → 0.553, as reported on the test-set. However, the quality drop is
observed for the model that did not go through the task-specific pre-training, i.e.,
ROUGE-L: 13.42 → 12.88, CosSim 0.552 → 0.542, as reported on the test-set.
After examining the models, we noticed that the representations after the video
encoder (Equation 5.5) are not very meaningful, i.e., every segment is mapped
to a similar vector. We believe this is due to the indirect usage of video repre-
sentations in the Cross-modal Interaction Module – too weak of a learning signal
(gradient) is propagated to the video encoder. Those observations are in line with
our findings related to pre-training – the “weaker” is the core textual component,
the more effective are the additional (visual) clues in the input.

Since those results were rather counter-intuitive, we decided to perform a
human evaluation to validate the quality of the pictorial output. Due to the lack of
a standardized evaluation framework, we designed one ourselves (see Section 3.3),
focusing only on the pictorial output. We decided to validate the outputs from
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two systems – MMS pre-trained on SumeCzech using the smooth labels (MMS
+ SumeCzech + Smooth Labels, further denoted as System A) and the same
model with masked video features (MMS + SumeCzech + Smooth Labels +
Masked Video, further denoted as System B). For comparison, in the evaluation,
we also included the reference picture and a random frame from the video. The
annotators were shown the outputs from several systems at once, with the textual
context provided via the article’s title and the reference summary. They were
asked to rate the images on a Likert scale (see Section 3.1.1) of 0 to 4 (the higher,
the better). The levels on the Likert scale were designed to consider both the
relevance and the quality – it may happen that a particular frame sampled from
the video is blurred, as it may resemble e.g., a fading away end of a scene.

The system-level averages of the scores assessed by the human annotators
(Total Score) are reported in Table 5.2. On average, the reference picture is
assigned the highest score, and our proposed multimodal summarization model
performs better than the random baseline. The results of human assessment
confirm our previous findings based on automatic metrics – that the model is not
utilizing the video features in an effective manner. It is worth noticing, however,
that even the reference picture is not considered very relevant (average score
below 3) and that none of the differences are statistically significant. To examine
the stability of the annotation process, we also report the averages (Adequacy
Score) that disregard the quality of the image and focus only on the relevance.
We do this by mapping the labels from Section 3.1.1, (i.e., 0 → 0; 1 and 2 → 1;
3 and 4 → 2). The results are in line with the original ones.

5.1.4 Implications
Since the publication of the MLASK dataset and the code-base related to our
experiments, a number of follow-up works have been published. Some of them
(e.g., Shohan et al. (2024); Bao et al. (2024)) mention our contribution by using
it as an example of a video-based problem and put it into a wider context by
comparing it with other recent advances. However, (at least) two works directly
apply the MMS architecture to their respective problems/tasks.

Qiu et al. (2024) use our formulation of Feature Encoder, with separate Video
Encoder and Frame Encoder, exploring the same visual feature extractors. Simi-
larly, for thumbnail generation (frame selection) they use the same formulation of
Multimodal Decoder. The authors extend our work by substituting the Text En-
coder with a hierarchical one. In their experiments20, the length of the text input
is, on average, longer. Therefore, they firstly perform a sentence-splitting step
and extract a single vector (corresponding to the special [CLS] token) from each
sentence. Then, the sentence representations are contextualized together with a
second Transformer-based text-only encoder. Additionally, the authors improve
over our uniform sampling of input frames. Namely, they explore the differences
of adjacent frames (represented as CNN feature vectors) to define scenes in the
video, setting a particular threshold to draw scene boundaries. Using K-means
and Euclidean distance, they cluster the candidate frames per scene and remove
redundant (semi-duplicate) candidates from each consecutive scene.

20https://github.com/Jason-Qiu/MMSum_model
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Faheem et al. (2024), who introduce the video-based UrduMASD dataset in
Urdu, claim to use the off-the-shelf version of the MMS model as the sole mul-
timodal system in their experiments. Since their code-base is not public, we are
not able to say whether any modifications were applied.
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5.2 Unifying Uni- and Multi-modal
Summarization

This section is based on the Towards Unified Uni- and Multi-modal
News Headline Generation (Krubiński and Pecina, 2024) article.

5.2.1 Motivation and Overview
This work builds upon the observation that the recent approaches to model-
ing the task of Multimodal Summarization explore sophisticated, modular ar-
chitectures built upon hierarchical cross-modal encoders and modality-specific
decoders, which restrict the model’s applicability to specific data modalities –
once trained on, e.g., text+video pairs there is no straightforward way to apply
the model to text+image or text-only data. From the modeling perspective, there
are a number of issues that one must solve:

• In order to accept both text-only and multimodal input, there must be a
unified approach to generating the encoded input representation so that
they end up in the same subspace. Otherwise, the textual decoder would
need to generate texts conditioned on representations from separate parti-
tions/clusters. The visual inputs are supposed to act as additional, helpful
clues, but the final, encoded multimodal representation should be close to
the text-only representation in the space of all encodings.

• Designing an architecture that can effectively accept a varying number of
images/frames in the input. If each input image i is encoded as a sequence21

tt = tt(i) ∈ R197×768, then, assuming 20 images in the input, a simple
concatenation-based approach (see Section 1.2.2) would require the model
to operate on at least 20 × 197 = 3940 input tokens. This is a few times
more than the maximal input length used for training recent multimodal
encoders (see, e.g., Xu et al. (2023c); Peng et al. (2023); Alayrac et al.
(2022)).

• Handling the temporal dependency in videos. As discussed in Section 2.2,
approaches based on 3D ConvNets were effectively used to encode the se-
quence of frames representing the video. However, if the input is a collection
of images, we would like to restrain from any temporal dependencies – in
the image-based variant, we assume that the input is a set of images.

The task gets even more complicated if we approach the MSMO formulation.
Typical modeling techniques for MSMO (see Section 2.2) compute a numerical
score si ∈ R for each input image/frame (based on the encoded representations)
and via the use of softmax transform them into the probability distribution over
all input images/frames, i.e., softmax(si∈I). Such a formulation allows us to ei-
ther rank the input images/frames or simply pick the most likely one, depending
on the applications – but it requires a dedicated scoring module. While the
SOTA multimodal LLMs (OpenAI, 2024; Yin et al., 2024) are capable of solv-
ing a vast number of complex, ViL tasks, such as complicated Optical Character

21That would be the case when using the popular ViT-L/14 variant of CLIP, i.e., https:
//huggingface.co/openai/clip-vit-large-patch14 as a feature extractor.
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Figure 5.3: Overview of the proposed unified approach to MSMO. The visual
tokens are appended to the text representation. The generated output includes
the textual summary and the index token that indicates which input image (first,
second, third, etc.) is picked as the pictorial summary. During training, a mixture
of video-based, image-based, and text-only data is used. Figure reprint from Kru-
biński and Pecina (2024).

Recognition (OCR) or geometry problems, we believe they still lack some capa-
bilities required for solving the unified variant of Multimodal Summarization, as
discussed above. Therefore, we propose a novel UNMHG22 formulation that
utilizes a simple encoder-decoder model to summarize both uni- and multi-modal
documents and introduce the index tokens to indicate which input image/frame
(first, second, third, etc.) should be considered as the pictorial summary, allowing
us to handle the multimodal output. For brevity, we follow the TL;DW formula-
tion proposed by Tang et al. (2024) and use the article title as the textual target
(i.e., the headline), although the proposed methods can also be applied for other
summarization tasks, such as abstract generation.

An overview of the proposed formulation is presented in Figure 5.3. We trans-
form the visual inputs into a sequence of image features and concatenate them
with the textual (input) token embeddings. Visual features are contextualized
together with textual process, i.e., there is no modality-specific encoder. Instead
of using a dedicated module for image scoring, we realize the target image/frame
representation by appending an index token to the textual target – img_ind_1
indicates that the first image is the target, img_ind_2 that the second, etc. This
formulation allows us to use the standard Transformer architecture trained end-
to-end in a multi-task setting – for the text-only input, we do not extend the
textual embeddings and do not add the index token into the target sequence.
Within the image-based formulation, we shuffle the input images during training
to avoid positional bias.

The index tokens are inspired by the previous work on one-for-all architec-
tures, unifying several vision-and-language tasks, such as the work of Cho et al.
(2021) who introduced the visual sentinel tokens corresponding to image regions,

22UNi- and Multi-modal News Headline Generattion
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Figure 5.4: Overview of the BLIP-2 model, with an encoder-decoder LLM as the
textual component. Figure reprint from Li et al. (2023).

allowing them to realize Visual Grounding with a text-only decoder, or the Task-
and Modality-Agnostic OFA framework (Wang et al., 2022c) that unified the
multi-modal (only single-image inputs were considered) and text-only tasks with
a sequence-to-sequence Transformer. In our experiments, we explore three in-
put/output formats, i.e., text+video→text+image, text+images→text+image, and
text→text. Following Wang et al. (2022a), we handle the temporal dependencies
in a simplified manner – sinusoidal positional embeddings are added to the vi-
sual tokens only when the visual modality comes from a video. We explore two
modeling approaches: i) extending a text-to-text baseline with visual features
and ii) fine-tuning a multimodal foundation model. Building upon the experi-
ence (Johnson et al., 2017) of multi-lingual MT, we append a string ("t+v->t+i",
"t+i->t+i", "t->t") to the input document, to act as a task indicator.

5.2.2 Implementation
Models

As the text-to-text baseline, we use the T5 (Raffel et al., 2020) v1.1 base23 vari-
ant (250M trainable parameters) that we enrich with visual features extracted
with frozen ViT-L/14 CLIP24 (Radford et al., 2021) – we refer to this model as
T5CLIP. We extract a single vector per image/frame25 that we project with a
linear layer to match the hidden dimension size of textual token embeddings. We
extend the model vocabulary with index tokens, i.e., «img_ind_1, img_ind_2,
. . . » that are used for image/frame selection. We train the whole model end-
to-end with the Adafactor (Shazeer and Stern, 2018) optimizer using the default
parameters from the Transformers package26.

For the multimodal baseline, we use the Flan T5-XL (Chung et al., 2023)
version of BLIP-227 (Li et al., 2023, 3.9B parameters). In the BLIP-2 paper,
the authors propose an efficient pre-training strategy to bootstrap a ViL model
from an off-the-shelf frozen image encoder and frozen language model, with both
encoder-decoder and decoder-only variants considered. Such an approach is mo-
tivated by data availability. Since there is much more image-only and text-only

23https://huggingface.co/google/t5-v1_1-base
24https://huggingface.co/openai/clip-vit-large-patch14
25We use the “pooled” representation that extracts encoded embedding of the special CLS

token. An alternative approach that averages the representations along patches (sequence
dimension) is also possible, but we have not explored it. For details, please consult the Vision
Transformer paper, i.e., Dosovitskiy et al. (2021) or see Section 1.2.1.

26Please consult the public repository for further technical details, i.e., https://github.c
om/ufal/UNMHG/.

27https://huggingface.co/Salesforce/blip2-flan-t5-xl
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Figure 5.5: Overview of the BLIP-2 model extended to handle multiple im-
ages/frames in the input.

data compared to multimodal resources, the idea is to leverage the models pre-
trained on a single modality and use the cross-modal data only to align the
representations. The modality alignment is done via a novel Q-Former module,
see Figure 5.4. Q-Former is a shallow Transformer network that uses the K and
V sequences from the frozen image encoder and learns a fixed-sized query embed-
dings Q. The transformed image representation is projected with a linear layer
to match the dimension of textual token embeddings and is finally concatenated
with the textual token, before passing through the frozen LLM. With this ap-
proach, the image representation gets compressed (in the sequence dimension, the
learnable query is much shorter than the original image representation, i.e., 32 vs
257 for the BLIP-2 variant that we explore), and the frozen LLM can digest the
additional, visual information, similarly to the prefix-tuning (Li and Liang, 2021)
approach. Once fine-tuned, the model weights can still be used for text-only
inference by directly querying the frozen LLM component.

However, there is no straightforward way of applying the BLIP-2 model to
an input with multiple images. Therefore, we propose a modification to allow
such an application. Namely, we concatenate the Q-Former features from mul-
tiple images before appending them to the textual embeddings, introducing no
new trainable parameters (see Figure 5.5). Fine-tuning the whole BLIP-2 is fea-
sible neither from the computational perspective (memory requirements of GPU)
nor from the design perspective (we wish to keep the main components frozen).
However, since we alter the visual prefix (multiple images) and our intended task
– Multimodal Summarization – is more specific than the generic pre-training of
BLIP-2, a fine-tuning step is required. We decided to use the LoRA (Hu et al.,
2022) procedure and update only the Q and V matrices in the Q-Former and
Language Model components (5.7M trainable parameters in total), training with
the AdamW (Loshchilov and Hutter, 2019) optimizer with β=(0.9, 0.999), learn-
ing rate of 1e-5 and weight decay of 5e-2. Since the LoRA procedure prohibits
us from updating the matrix of token embeddings, we do not add the index to-
kens directly into the model vocabulary but rely on the model to generate them
from available components28. We also simplify the initial design by removing the

28Once fine-tuned, we use a simple regex (img_ind_\d+) to identify and extract the index
token from the output. While evaluating on the test-set, the model properly generated a
sequence corresponding to index token in 100% of the cases.
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temporal dependency and treating sequences of frames and collections of images
alike.

Data

In our experiments, we use the text-only PENS (Ao et al., 2021), the video-based
MLASK, and the image-based M3LS datasets for training and testing.

The PENS dataset29 contains 113,762 news articles in English and was orig-
inally introduced for personalized news headline generation. We filtered it by
removing articles identified as non-English by the langid30 language identifier,
and those where the title has less than 2 words or more than 25 words. In the
next step, we de-duplicated the data based on the article and title fields. We
were left with 100,992 documents (89%), out of which 5,000 were used for valida-
tion and testing and the remaining ones (90,992) for training. Since the textual
part of MLASK – at the time of our experiments, the largest publicly available
video-based news summarization dataset – is in the Czech language, we used the
CUBBITT (Popel et al., 2020) Machine Translation system31 to translate articles
and summaries (titles) into English. We use the same data split as previously,
i.e., 36,109/2,482/2,652 instances for training/validation/testing. As described
in Section 4.3, we extend the English subset of the image-based M3LS dataset
by collecting the cover pictures and use the data split based on the publication
date that we proposed, i.e., 102,713/5,865/6,854 instances for training/valida-
tion/testing.

Metrics

We measure the quality of the textual output with ROUGE-L and BERTScore,
reporting the F1 scores. For the pictorial output, we report the cosine simi-
larity (CosSim) between the ViT-L/14 CLIP features of the target image and
the one chosen by the model. To measure the multi-modal interactions, we
report the CLIPBERTScore metric, adapted to the MSMO variant (see Sec-
tion 3.3). It is computed as a weighted average32 of the CLIPScore of the cho-
sen image and the generated summary and the BERTScore precision of the in-
put article and the generated summary. For the image-based data, we also re-
port the top-1 accuracy (Top-1 Acc), i.e., the percentage of predictions where
the target image is correctly retrieved. We use the ROUGE metric from the
TorchMetrics package33 and the original implementations of BERTScore34 and
CLIPBERTScore35. The signature of the BERTScore model that we use is:
roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.29.0.dev0)-rescaled.
For readability reasons, we re-scale both BERTScore and CLIPBERTScore into
the [0–100] range by multiplying the numerical scores by 100.

29https://msnews.github.io/pens_data.html
30https://github.com/saffsd/langid.py
31https://ufal.mff.cuni.cz/cubbitt
32We use the recommended α = 0.25, i.e., CLIPBERTScore = α × CLIPScore + (1 − α) ×

BERTScore
33https://torchmetrics.readthedocs.io/en/stable/text/rouge_score.html
34https://github.com/Tiiiger/bert_score
35https://github.com/meetdavidwan/faithful-multimodal-summ
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Baselines

We report two textual, extractive baselines: Lead that extracts the first sentence
and Oracle that picks a sentence maximizing ROUGE-L with the ground-truth.
For the off-the-shelf textual abstractive baselines, we use the Alpaca (Taori et al.,
2023) and BRIO (Liu et al., 2022b) models. The Stanford Alpaca model36 is a
text-only, Transformer-based LLM, fine-tuned from the LLaMA (Touvron et al.,
2023a) model to follow instructions. It has been trained on the automatically
generated data created with the Self-Instruct (Wang et al., 2023b) techniques. In
our experiments, we use the following prompt:

Below is an instruction that describes a task, paired with an
input that provides further context. Write a response that
appropriately completes the request.

### Instruction:
Generate a one-sentence summary of a given text, using no mo-
re than 10 words.

### Input:
__DOCUMENT_TEXT__

### Response:"

We report results with the 7B parameter variant and, for generation, utilize
beam search of size 4, length penalty of -5.0, and repetition penalty of 2.5. In
our early experiments, we noticed that truncating the input at the token level
resulted in words and sentences being cut in half, which negatively affected the
model performance. To avoid this, we use the wtpsplit package (Minixhofer
et al., 2023) to prompt the model with full sentences, capping the input length
(i.e., __DOCUMENT_TEXT__) at 1000 characters. BRIO (Liu et al., 2022b) is a
recent encoder-decoder model trained for both summary generation and evalu-
ation, i.e., the ability to score the quality of candidate summaries. We use the
Yale-LILY/brio-xsum-cased variant (568M parameters), which is based upon
the pre-trained PEGASUS (Zhang et al., 2020a) model and fine-tuned on the
XSum (Narayan et al., 2018) dataset to generate single-sentence summaries.

For the video-based data, we compare with a variant of the MLASK-MMS
(MMS) model (see Section 5.1). We use the configuration based on the small
variant of mT5, with all four feature extractors and activated smooth labels,
and train the model on the MLASK dataset machine-translated into English. We
report a trivial baseline RandomVi that picks a random image/frame for both the
video-based and image-based data. To further establish a comparison with the
recent developments (see Section 2.2), we also report a generative visual baseline
based on Stable Diffusion. We employ the stabilityai/stable-diffusion-2-1
model prompted with the textual target (_TEXT_) using the following template:
“High quality, photorealistic photo of _TEXT_”.

36https://github.com/tatsu-lab/stanford_alpaca
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Setup

We train all the models for up to 10 epochs with early stopping applied if ROUGE-
L F1 does not improve for 5 consecutive epochs. We limit the source size to 1024
sub-word tokens and the target length to 128 tokens. We train on a machine with
three NVIDIA A40 GPUs, and the average training time is 24 hours for the T5
variants (effective batch size 300) and one week for the BLIP-2 variant (effective
batch size 60). During decoding, we utilize beam search of size 4, length penalty
of 1.0, and repetition penalty of 2.5. Unless training on data corresponding only
to a particular input/output format (e.g., text+video→text+image), all of the
trainings are done in a multi-task fashion. At each training step, a mini-batch
is sampled from every dataset (PENS/MLASK/M3LS). The three mini-batches
are processed one-by-one, and the average value of the loss is back-propagated to
update the trainable parameters.

5.2.3 Results
A sample of model outputs is provided in Appendix B.2.2.

ROUGE-L BERTScore
MLASK PENS M3LS MLASK PENS M3LS

dev test dev test dev test dev test dev test dev test
Lead 12.28 12.19 16.51 16.27 9.74 9.85 10.67 10.77 8.85 9.10 9.57 10.03
Oracle 24.44 25.01 38.99 39.17 23.85 23.65 21.09 21.99 31.78 31.91 18.43 19.34
Alpaca 14.81 15.07 26.80 26.92 16.54 16.96 18.67 19.14 28.40 28.62 19.34 20.78
BRIO 15.56 15.58 16.40 16.55 18.18 18.79 15.97 16.49 16.61 16.83 23.30 25.03
T5CLIPMLASK 20.79 21.32 - - - - 25.46 25.99 - - - -
T5CLIPPENS - - 43.00 44.21 - - - - 45.12 46.70 - -
T5CLIPM3LS - - - - 29.63 29.68 - - - - 33.84 34.48
T5CLIP 21.48 21.43 43.07 44.47 29.64 29.38 26.43 26.36 45.24 46.80 33.16 33.73
T5CLIPw=10 21.48 21.57 42.60 43.74 29.32 29.28 25.98 26.43 44.31 45.74 32.67 33.25
T5CLIPw=50 20.63 21.05 40.87 42.15 26.92 26.88 25.21 25.55 41.72 43.40 29.14 29.71
T5CLIPSmooth 21.30 21.32 43.25 44.39 30.06 30.03 26.50 26.24 45.53 46.94 33.70 34.44
BLIP-2 23.25 24.24 43.03 44.37 32.82 33.02 27.87 28.94 44.56 46.27 35.91 37.24
MMS 19.99 20.07 - - - - 23.97 24.38 - - - -

Table 5.3: Evaluation of the textual output quality on the validation and
test splits for each modality-specific dataset (PENS for text→text, MLASK for
text+video→text+image, and M3LS for text+images→text+image). The three
highest-scoring systems in each column are bolded independently for test-set and
dev-set. Table reprint from Krubiński and Pecina (2024).

Textual Output

Table 5.3 compares the models trained separately on each task/dataset (e.g.,
T5CLIPPENS) with the ones trained in the multi-task fashion (T5CLIP). The
results are comparable, with additional textual data improving the performance
on the smallest video-based dataset – MLASK. MLASK has roughly one-third of
the documents compared to both PENS and M3LS, and since it was machine-
translated into English, the addition of genuine textual data could have been ex-
pected to help. The proposed baselines are lagging behind the task-specific mod-
els. By manually examining the outputs of Alpaca, we notice that the model tends
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to generate more than one sentence in the output. Despite explicitly instructing
the model to generate the summary ...using no more than 10 words, on av-
erage, there are 15.8 words in the summary, with the results consistent among
all three datasets. To put this number into perspective, the headlines (titles)
in the test-split of PENS/MLASK/M3LS have, on average, 10.5/9.1/12.3 words.
Despite being trained with the single-sentence summaries from XSum as a tar-
get, BRIO generates, on average, as many as 29 words in the summary. Those
results suggest that the headline/title/single-sentence summary may correspond
to distinct concepts and might not be comparable between datasets – even from
the same domain of news summarization.

Overall, the highest scores are obtained by the fine-tuned BLIP-2, which in-
tegrates the largest language component – Flan T5-XL. The findings based on
both metrics considered (ROUGE-L and BERTScore) are aligned. The only
major discrepancy is the Oracle baseline, which, however, by design, is biased to-
wards ROUGE. The MMS model achieves the lowest scores, but the comparison
is not completely fair – we have not pre-trained the core textual component for
summarization, which in our experiments on MLASK was shown to be a crucial
factor (see Section 5.1). If we compare the performance of the MMS model with
the T5CLIPMLASK one that was fine-tuned on the same data, the difference is not
very significant, with ∆ROUGE-L of roughly 1. The difference can be attributed
to either the size of the textual component – MMS uses a “small” variant of mT5,
while T5CLIPMLASK employs the “base” variant of T5, or the fact that the T5
component is English-only, and thus the vocabulary is better suited for English
input/output.

CosSim CLIPBERTScore Top-1 Acc
MLASK M3LS MLASK M3LS M3LS

dev test dev test dev test dev test dev test
RandomVi 0.61 0.61 0.75 0.76 - - - 33.20 33.59
T5CLIPMLASK 0.64 0.64 - - 70.56 70.59 - - - -
T5CLIPM3LS - - 0.97 0.97 - - 69.57 69.70 93.59 94.56
T5CLIP 0.64 0.64 0.93 0.94 70.67 70.65 69.61 69.77 87.49 88.55
T5CLIPw=10 0.64 0.64 0.96 0.97 70.99 70.99 69.74 69.92 93.03 94.05
T5CLIPw=50 0.64 0.63 0.96 0.97 71.12 71.11 69.60 69.72 91.76 93.19
T5CLIPSmooth 0.64 0.63 0.82 0.81 70.65 70.61 69.83 69.96 39.91 38.55
BLIP-2 0.63 0.62 0.83 0.84 71.46 71.44 70.07 70.26 60.46 61.73
MMS 0.68 0.68 - - 71.50 71.53 - - - -
Stable Diffusion v2.1 0.42 0.43 0.44 0.44 - - - - - -

Table 5.4: Evaluation of the visual output quality on the validation and test
splits for each modality-specific dataset (PENS for text→text, MLASK for
text+video→text+image, and M3LS for text+images→text+image). The highest-
scoring system in each column is bolded independently for test-set and dev-set.
Table reprint from Krubiński and Pecina (2024).

Visual Output

The relatively high CosSim scores of the random visual baseline (Table 5.4) may
indicate that the CLIP features are not distinctive enough for the closely re-
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Figure 5.6: The quality of the visual and textual output during the BLIP-2 fine-
tuning, reported on the validation split of the M3LS dataset. We report CosSim
and Top-1 Acc metrics for the visual output and ROUGE-L for the textual one.

lated images/frames coming from the same article. A similar phenomenon was
reported by Fu et al. (2021) (see Section 2.2), who report CosSim of 0.692 with
their best model vs CosSim of 0.677 with the random baseline, calculating the
similarity based on ResNet-50 features. The model (T5CLIPM3LS) trained solely
on the image-based data (M3LS) performs slightly better than the multi-task one
(T5CLIP). We attribute this to the potentially easier image-based task formu-
lation (see Section 2.2) where the target input (i.e., one with CosSim = 1.0) is
present in the input. The correlation between CosSim and Top-1 Acc is evident –
the best-performing T5CLIPM3LS model achieves almost 95% of Accuracy, which
evaluates to an average CosSim (0.97) close to 1.0. The Top-1 Acc of the random
baseline evaluates to the expected value of roughly 33% – on average, there are
roughly three input images (see Section 4.3).

The highest scores of both CLIPBERTScore and CosSim are achieved on
MLASK by the MMS model, which uses a separate visual encoder and frame-
scoring module. The difference in terms of CosSim is roughly the same between
the MMS model and the T5CLIP, as between the T5CLIP and the random base-
line. Those results indicate that while the simplified, unified architecture can
approach solving the MSMO task, there is still a gap left compared to the so-
phisticated task-specific architecture. Our solution based on the BLIP-2 model
performs noticeably worse than all of the T5CLIP variants. The high CLIP-
BERTScore scores can be explained by the great quality of textual output – 75%
of the CLIPBERTScore is computed based on the BERTScore precision of the
input article and the generated summary. The significant drop in Top-1 Acc com-
pared to the T5CLIP variants (~90% →~60%) can be attributed to the lack of
explicit index tokens that force the model to predict a specific string.

By analyzing the scores on the M3LS dev-set during BLIP-2 fine-tuning (see
Figure 5.6), we can notice that later into the training, both metrics drop, sug-
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gesting a possible over-fitting or slight divergence. On the contrary, the quality
of the textual output, as measured with ROUGE-L, constantly increases during
the whole training. Surprisingly, despite the drop in the Top-1 Acc by roughly 30
p.p., the value of CosSim decreases by a mere 0.05. Those results indicate a high
degree of similarity between input images – picking an image different from the
reference does not hurt the average similarity. The visual baseline based on Stable
Diffusion scores noticeably below other models. Despite those results, considering
the unclear nature of CosSim as an evaluation metric37 and the visual quality and
adequacy of the generated cover pictures (see Appendix B.2.2), we believe that
the generative approaches to visual summarization will be a prominent research
direction in the upcoming years.

5.2.4 Ablation Studies
We designed several auxiliary experiments to provide a deeper look into the uni-
fied architecture’s performance.

Firstly, we examine the performance with respect to the frame sampling of
the video-based input (see Section 2.2). In our core experiments discussed above,
we pre-process the video by sampling the frames at 1fps (on average, 86 frames
per video). Considering that the longest video from the MLASK dataset lasts
five minutes without any further processing, the unified model would need to
consume representations of 300 frames. Such a number of frames is too large to
process with the BLIP-2 model – it uses the Q-Former to map each input image
into 32 visual tokens, which would require us to process sequences of length up
to 9,600. Therefore, we decided to further down-sample the video by sampling 20
frames evenly spaced across the video (on average, 19.9 frames per video – some
of the videos do not last 20 seconds). In their foundational work on VMSMO, Li
et al. (2020d) considered only 10 frame candidates, but their input videos were
shorter, with an average length of one minute.

To examine how this affects the model performance, we trained a variant of
T5CLIPMLASK (T5CLIPMLASK ALL) that uses the denser (1 frame per second)
sampling for each video. The results on the MLASK dev-set (compared with the
T5CLIPMLASK model that samples up to 20 frames) are as follows: ROUGE-L:
20.79 → 20.55, BERTScore: 25.46 → 25.12, CosSim: 0.64 → 0.61 – with more
input frames, performance degradation is observed both in terms of textual and
visual output. From the textual perspective, those results suggest that the vi-
sual clues are not effectively utilized, with more frames introducing mostly noise.
From the visual perspective, the value of CosSim may indicate a performance
comparable to a random baseline. However, by analyzing the distribution of pre-
dicted frames and looking at the training curves, there is a clear learning pattern
visible. In our previous experiments with the MLASK dataset (see Section 5.1),
we discussed the similarity patterns between the input frames and the target im-
age. By allowing more frames in the input, we potentially introduce more similar
frames and, thus, dilute the learning signal.

37Since the visual outputs are generated from scratch, the space of image embeddings as com-
puted with feature extractors is not well examined. Even less can be said about the distribution
of CosSim scores, computed on such feature vectors.
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To further examine this phenomenon, we experimented with a frame sampling
algorithm inspired by previous works on detecting scene/shot changes in video –
if two frames are similar enough (similarity above a certain threshold), then the
expected delta in performance, if we use one instead of the other, is marginal.
That allows us to drop one of them, reducing the number of frames. In our imple-
mentation, to compare with the uniform sampling, we want to limit ourselves to
(up to) 20 frames per video. Therefore, we iteratively remove similar frames from
the video until there are no more than 20 frames left. Formally, the algorithm
proceeds as follows:

[1] We assume to be given a sequence of frames V = (v1, . . . , vm), the initial
threshold τ (0.95), and the maximal desired number of frames Λ (20). We
initialize the output (candidate) subsequence ˆ︁V = V . We proceed by using
an off-the-shelf feature extractor to turn the sequence of frames V into a
sequence of frame features F ( ˆ︁F ). We iteratively repeat steps [2] and [3],
modifying ˆ︁V , until we end up with a subsequence ˆ︁V = (vi1, . . . , vik) of V ,
such that k ≤ Λ.

[2] If k = | ˆ︁V | ≤ Λ, we stop the algorithm and return ˆ︁V . Otherwise, we sample
Λ (seed) frames Vseed evenly spaced across the candidate frames ˆ︁V . Then,
we compute the CosSim matrix M between the candidate and the seed
features, i.e., M = CosSim( ˆ︁F , Fseed) ∈ Rk×Λ. We will say that vi and vj

are at least τ -close, if Mij ≥ τ . Next, we identify frames (rows) i that
satisfy minj Mij < τ , i.e., frames that are not at least τ -close to any of
the seed frames in Vseed. If there are no such frames, it means that every
candidate frame v ∈ ˆ︁V is at least τ -close to at least one of the frames in
Vseed. Therefore, we decrease the threshold (in our implementation by 0.05)
and jump to step [2]. Otherwise, we jump to step [3].

[3] We update the collection of candidate frames ˆ︁V by dropping those that are
at least τ -close to at least one of the frames in Vseed, merging the remaining
ones with Vseed, i.e., ˆ︁V = Vseed ∪ {vi ∈ ˆ︁V : minj Mij < τ}, and jump to step
[2].

The algorithm is guaranteed to converge as we reduce the number of candidate
frames in step [3]. By reducing the threshold τ in step [2], we guarantee that after
a finite number of steps, we will identify a frame that is “not at least τ close”,
and thus jump to step [3]. If the inverse was true, the set of candidate frames
would need to be equal to the set of seed frames and consist only of a single
element38. To prove it, it is enough to consider the case of ˆ︁V = Vseed ∪ {ˆ︁v}, i.e.,
M = CosSim( ˆ︁F , Fseed) ∈ R1×Λ, the rest follows by induction. Let us assume
that the inverse is true, i.e., that ∀ 1 > ε > 0, we have minj Mj ≥ ε. Since
0 ≤ CosSim ≤ 1 and closed intervals in R are complete, we get that minj Mj = 1,
and thus ∀j ∈ {1, . . . , Λ}; Mj = 1. But this implies that ∀vseed ∈ Vseed; vseed = ˆ︁v,
and thus Vseed = {ˆ︁v} – contradiction.

After processing all of the videos with the algorithm described above, we
trained the T5CLIPMLASK ALG variant with, on average, 19.8 input frames per
video. Comparing with the T5CLIPMLASK model, the results on the MLASK
dev-set are as follows: ROUGE-L: 20.79 → 20.85, BERTScore: 25.46 → 25.34,

38“The remaining straightforward but tedious mathematical details are left as an exercise for
the interested reader.”
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CosSim: 0.64 → 0.59. Mixed results are observed, with a marginal improvement
in ROUGE-L and a comparable decrease in BERTScore. The value of CosSim is
lower than the one achieved by the random baseline despite both the distribution
of output labels and the shape of the learning curve not indicating any issues.

Our conclusions are as follows: the frame sampling process can have a non-
trivial influence on the quality of both textual and visual output. However, the
fact that the textual input is sufficient to generate a high-quality summary means
that the models are not greatly affected by the quality of the visual input, putting
our observations in line with the “greedy learning” hypothesis by Wu et al. (2022).
With respect to the quality of the visual output, we conclude that the CosSim
metric is not a clear indicator of the performance and that further research into
the multimodal metrics is required (see Section 3.2 and Section 3.3). Our ob-
servations are further confirmed by the experiment in which we mask the values
of the visual features with random noise and do the inference with the T5CLIP
model trained on genuine data. While the Top-1 Acc drops to a chance level
(M3LS test-set 88.55→37.9), the quality (measured with ROUGE-L) of the tex-
tual output is not greatly affected (M3LS test 29.38→29.32).

Secondly, we look at the training process from the perspective of the index to-
kens. The idea here is to alter the learning signal by focusing more on the visual
output, i.e., modifying the loss computation with respect to the index tokens.
Those experiments are conducted only with the T5CLIP variant and are enabled
by the explicit addition of index tokens to the vocabulary. We explore the smooth
labels (see Section 5.1) applied uniformly to both video-based and image-based
input39 and a second approach that assigns greater weights w to the visual to-
kens during Cross-Entropy loss computation40. Using 10 times greater weight
(T5CLIPw=10) improves the Top-1 Acc on M3LS (compared with T5CLIP, still
lags behind the task-specific T5CLIPM3LS), while using 50 times greater weight
(T5CLIPw=50) brings no further improvement, degrading the quality of textual
output. The smooth labels (T5CLIPSmooth), designed for the video-based data,
are not effective on image-based data, as indicated by the low values of both Cos-
Sim and Top-1 Acc. Similarly to our experiments on the original MLASK dataset
(see Section 5.1), the smooth labels have a minor, positive impact on the quality
of the textual output that we attribute to more stabilized training, correspond-
ing to the more wide-spread, general-purpose label smoothing technique (Szegedy
et al., 2016).

Thirdly, we wish to examine the model performance on a task-specific dataset
that was not explored for training. For that purpose, we explore the test-split
of the MSMO dataset (see Section 4.1). This dataset consists of 10,261 English
news articles with a varying number of input images. For each article, between 0

39The smooth labels are implemented by modifying the target distribution over all tokens, i.e.,
we assign the (normalized) similarity to each index token representing an input image/frame,
and 0 to all remaining index tokens (the number of input images/frames varies for each docu-
ment) and the tokens from the original vocabulary.

40The weight assigned to the original, non-index tokens is always 1.0. When training with
the classical (non-smooth) formulation, the target is a single visual token, and thus, all of the
other visual tokens are not affected by the weight, see https://pytorch.org/docs/stable/
generated/torch.nn.CrossEntropyLoss.html.
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ROUGE-L BERTScore % Relevant % Img Predicted
Alpaca 23.56 26.77 - -
BRIO 18.64 17.34 - -
T5CLIP 25.21 27.42 56.2% 95.1%
T5CLIPM3LS 20.79 21.66 58.6% 100.0%
T5CLIPw=10 25.55 27.30 55.3% 61.7%
T5CLIPw=50 26.08 27.40 55.9% 38.5%
T5CLIPSmooth 24.32 26.56 55.7% 91.7%

Table 5.5: Evaluation of the visual and textual output quality, reported on the
post-processed test-split of the MSMO dataset (see Section 4.1).

and 6 of the input images were marked as “relevant” by the human annotators. In
the first step, we filter the test-data by dropping articles with more than 20 input
images and those for which annotators did not mark even a single input image,
leaving us with 9,460 instances (92%). In the next step, we drop the articles for
which all of the input images were marked as relevant by the annotators, leaving
us with 5,063 documents (49%). Since the proposed unified models are trained
to predict a single image to act as a pictorial summary, the evaluation must be
adapted to the case of multiple image targets. Instead of reporting a simple Top-1
Acc, we will report the percentage of predictions for which the hypothesis belongs
to the set of relevant images. By dropping the documents with all of the input
images marked as relevant, we make the task non-trivial. Instead of reporting a
random baseline, we provide the proportion (across the down-sampled test-set)
of input images that are relevant, which corresponds to a trivial baseline that
marks all input images and is equal to 50.74%.

The evaluation results are reported in Table 5.5. Besides the ROUGE-L and
BERTScore metrics, we report the percentage of predictions belonging to the
relevant images and the percentage of instances for which the index token was
predicted in the output41. If the index token is not predicted, we consider the
first image as the model output. Models trained in the multi-task fashion seem to
out-perform the one trained only on the M3LS dataset (T5CLIPM3LS), suggesting
the benefits of additional textual data and the multi-task setup. However, this
variant scores the highest in terms of the relevance of the predicted image. The
T5CLIPw=50 variant predicts the index token only for 39% of articles but performs
on pair in terms of relevance. This is caused by our fallback formulation – on this
test-set, always predicting the first image achieves a relevance score of 55.1%. By
comparing with the off-the-shelf textual baselines (Alpaca and BRIO), we prove
the validity of our setup, which in the multi-task settings outperforms both of
them.

41When evaluating on the test-splits of the datasets used for fine-tuning, the value was always
100%. Thus, we have not explicitly reported it.
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Conclusions
Considering the relative novelty of the task of Multimodal Summarization, our
main research goal was not to solve a well-defined problem but rather to pro-
vide more insights into the task-specific phenomena and establish foundations for
future works.

By curating and releasing the MLASK dataset (see Section 4.2), we created a
publicly available artifact that, thanks to its completeness (all of the data modal-
ities are accessible directly via a dedicated data repository, with a transparent
training/validation/test split), will hopefully establish itself as one of the stan-
dardized benchmarks. The corresponding code-base, thanks to its modular struc-
ture and replicable nature, was already used and modified by other researchers
in follow-up works (see Section 5.1.4).

Our research targeting the evaluation of the textual output provided yet an-
other link between Machine Translation and Text Summarization. In our work
on the COMES metric (see Section 3.1.7), we empirically proved that trainable,
estimator-based metrics trained only on (multilingual) MT data are also applica-
ble for evaluating (monolingual) textual summaries. Although less specific than
metrics dedicated to summarization, their performance in evaluating the overall
quality was on par with dedicated solutions. In a symmetrical manner, in our
work on the MTEQA metric (see Appendix A), we demonstrated that a content-
based evaluation of MT, originally applied mostly to summarization, can be an
effective tool for domain-specific texts. Due to the implicit assumptions of the
fluency and grammatical correctness of the machine-generated text, the proposed
evaluation through the lenses of QA was, by design, not meant as a sole metric
to judge the quality of MT systems.

Our experiments with neural networks trained end-to-end for Multimodal
Summarization (see Chapter 5) experimentally confirmed a number of our hy-
potheses but also raised additional questions. We observed that both pre-training
(see Section 5.1.3) and multi-task training (see Section 5.2.3) are effective ways
of using the high-resource text-only data to improve the quality of the textual
output within the MSMO formulation of Multimodal Summarization. Unfor-
tunately, those improvements were generally not accompanied by proportional
improvements in terms of the quality of the visual output. An approach that
considers the whole distribution of similarities between the input images (frames)
and the reference one to formulate the training signal gives some improvement for
the video input (see Section 5.1.3). However, those improvements do not carry
to an input with multiple images (see Section 5.2.4). It is true that within the
image-based formulation of MSMO, the target image is among the input ones,
and within the video-based formulation, we only assume the presence of a very
similar frame. Nonetheless, the fact that the target images are judged by humans
only as “partly relevant” (see Section 5.1.3) undermines the foundations of such
analysis. Still, we believe that those issues require further research, as the met-
rics currently used to evaluate visual outputs (see Section 3.2 and Section 3.3)
give us inconsistent and counter-intuitive results (see Section 5.2.4). It must be
noted that the VMSMO formulation, which summarizes a video to a single image
(frame), may be considered ill-defined. Due to the size difference between the
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input (video lasting for a couple of minutes ) and the output (a single image), the
capacity to carry meaningful (and comparable) information is vastly contrasting.

The unified formulation of MSMO (see Section 5.2) that realizes text+video→
text+image, text+images→text+image, and text→text variants of Multimodal
Summarization with a single sequence-to-sequence model follows the recent trends
of unifying text and vision via Transformer-based models. While the perfor-
mance generally lags behind the sophisticated, modular architecture, the idea
of using visual tokens instead of a dedicated decoder (scoring module) allows
for re-formulating the task and applying the SOTA decoder-only, vision-capable
LLMs.

Limitations

It is crucial to recognize that our work and our findings have certain limitations.
Some of them are technical and related to the experimental nature of our research.

• When automatically curating the MLASK dataset (see Section 4.2) and
collecting the extension of the M3LS dataset (see Section 4.3), a number of
algorithmic checks were conducted to assure the quality and adequacy of
each data instance. However, a human validation was conducted only on
a sample of roughly 100 articles, and thus, it is possible in principle that
some corrupted or miss-matched data made it into the final datasets.

• Only a small number of trainings was conducted for each model/variant
considered. Thus, our comparisons are mostly point-wise, without consid-
ering the error estimates properly.

• Our experiments were enabled by modern, powerful GPUs. The cost related
to purchasing and operating such a piece of equipment may reduce the
reproducibility of our work, while the necessary energy consumption can
have a non-trivial impact on the environment.

The other limitations concern the design part of the presented experiments.
• Our experiments are conducted only on a small number of datasets, includ-

ing the ones created by ourselves. Since the MLASK dataset is in the Czech
language, our findings in Section 5.1 are limited to a single, minor language.
As a consequence, when working with English data in Section 5.2, we had
to rely on an automatic machine translation system to align the MLASK
dataset with other resources. Our choices are due to data sparsity, as dis-
cussed in Chapter 4.

• Accordingly, a broader comparison with other architectures/models would
be beneficial. While we compared with a number of text-only summariza-
tion models, due to the lack of public code-bases and reference checkpoints
(model weights) for Multimodal Summarization, we were not able to ap-
propriately compare with other works. The lack of sufficient computational
power made it unfeasible to compare with different text-only pre-trained
models used to initialize the textual component.

• When exploring the unified formulation of MSMO (see Section 5.2), certain
variants (see Chapter 2), e.g., text+video→text, images→text or video→
text+images were not considered.

• In Section 5.1, we took a sequential approach to ablation studies by adding
(or removing) components one by one. While a full-scale grid search would
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enable better estimation of the influence of each component, it was not
feasible with our resources.

Other limitations concern, e.g., the usage of the off-the-shelf generative models
(see Section 5.2), which were trained on (partially undisclosed) data that poten-
tially may include harmful content such as sexually explicit materials or toxic,
stereotyped language. We did not apply any filtering to the model outputs, so the
predictions may not be free of bias. With the field advancing to more practical
applications, this could pose a serious threat.

We acknowledge that despite our best efforts, mistakes of human origin (e.g.,
code-related) may have occurred.

Future Work

Considering how fast-paced the current research on Artificial Intelligence (AI),
Machine Learning, Natural Language Processing, and Computer Vision is, we
consider making any predictions about the future of Multimodal Summarization a
courageous choice. Instead, we rather highlight what we consider major obstacles
and challenges that still remain.

• Lack of publicly available datasets and baselines (models) that would be ap-
plicable to a variety of data formats (e.g., to both text+video and text+image
inputs).

• Lack of task-specific metrics. To enable proper research on evaluation meth-
ods, not only datasets and models but also collections of human annotations
are required. Automatic metrics are crucial, as without them, it is not pos-
sible to correctly measure the progress of the field.

• The (mostly) extractive nature of the visual component. With the cur-
rent progress in generative AI, we believe that enabling formulations with
text-only input and multimodal output, e.e.,g text→text+image and text→
text+video would bring the task to a more realistic settings and enable
wide-spread practical applications.
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A. MTEQA
A.1 Overview

This chapter is based on the Just Ask! Evaluating Machine Transla-
tion by Asking and Answering Questions (Krubiński et al., 2021a) and
MTEQA at WMT21 Metrics Shared Task (Krubiński et al., 2021b) ar-
ticles.

In Chapter 3, we briefly introduced the MTEQA (Machine Translation
Evaluation with Question Answering) metric for MT evaluation, which we de-
signed inspired by the QA-based approach to summary evaluation. In this Ap-
pendix, we will provide an overview of our work.

It is said, when Richard got 
sick, Salahudin sent him 

few Plum fruit which were 
kept in the snow.

Reference MT output

Extracted Answers

Plum fruit

Salahudin

Generated Questions

What did Salahudin send to Richard when 
he got sick?

Who sent Richard Plum fruit when he got 
sick?

It is said that when Richard 
got sick, Salahuddin sent 

him some aloof, which was 
kept in the snow.

MT Answers

some aloof

Salahuddin

in the 
snow

in the 
snow

Where were the Plum fruit kept when 
Richard got sick?

Figure A.1: An illustration of the MTEQA pipeline. One of the MT answers
is clearly wrong, one is correct but the other differs with just a single character,
raising a question about the choice of the answer-comparison metric. Figure
reprint from Krubiński et al. (2021a).

The MTEQA metric builds upon the fact that state-of-the-art (neural) MT
systems tend to produce a fluent output but sometimes fail in the adequacy of the
translation. Therefore, our goal was to design an automatic metric that could
pinpoint the potentially miss-translated phrases and judge to what extent the
reference phrasing differs from the one in the MT hypothesis.

To do so, we leverage the automatic QG and QA systems to formulate and
answer human-readable questions about the MT system output. Specifically, to
check whether a piece of information is preserved, we automatically generate pairs
of a question and its (gold-standard) answer from the reference translation and
employ a question-answering system to provide a new (test) answer given the
question and the MT output (translation) used as the context. The generated
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(test) answer is then compared to the gold-standard answer. We assume that if it
was possible to answer a question looking only at the reference, it should also be
possible to answer this question looking only at the MT output and that the two
answers should be identical or very similar. In principle, the proposed MTEQA
metric requires solving the following tasks, see Figure A.1:

1. Answer extraction – identifies the key information in a sentence, which
should also be present in the MT output. This extraction can be treated
in a hierarchical/nested manner. For instance, given the sentence “Today
for dinner I had an organic pasta with garlic.”, the question “What did you
have for dinner today?” can be correctly answered by all the following
phrases pasta, organic pasta and organic pasta with garlic. Thus, answer
extraction is performed first, and the questions are generated afterward for
each of the answers independently. The same question can be paired with
multiple (nested) answers which allows capturing a partial correspondence.

2. Question generation – given a reference translation, produces a human-
readable question, for which a given keyphrase is the correct answer. For
each of the extracted answers, each question is generated independently
from the other answers.

3. Question answering – generates an answer, given a natural language
question and a sentence used as a context. Since we assume that the MT
output should carry enough information to answer any question asked based
on the reference, we do not consider the non-answerable questions.

4. Answer comparison – assesses to what extent the generated answer
is correct, given the gold-standard answer extracted from the reference.
Metrics based on exact match should be avoided because they are too
strict. For example, given the gold-standard answer “Tchaikovsky”, both
the “Tchaikovski” and “Beethoven” would get the same score.

Formally, for a given segment si, reference translation ri and MT system
output ti, MTEQA proceeds as follows:

1. Generate the gold-standard answers ai1, ai2, . . . , aik from the reference ri

2. For each answer aij and reference ri, generate a natural language question
qij

3. Answer each question qij using the MT output ti as a context, obtaining
answer ãij

4. The final score for a given translation of a segment si is the average over
all of the generated questions:

MTEQA(ti) =
∑︁k

1 D(aij, ãij)
k

,

where D(·, ·) is a string-comparison metric used to compare the two answers,
and k is the number of gold-standard answers extracted from the reference.

A.2 Implementation
In our initial experiments, we have explored the T5 model (Raffel et al., 2020)
fine-tuned on the SQuAD dataset (Rajpurkar et al., 2016) for all three sub-
tasks, i.e., answer extraction, question generation, and question answering. We
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cs-en de-en zh-en en-de en-cs
12 12 16 avg 14 12

MTEQA F1 0.782 0.997 0.952 0.893 0.946 0.845
sentBLEU 0.844 0.978 0.948 0.859 0.934 0.840
BLEU 0.851 0.985 0.956 0.854 0.928 0.825
PRISM 0.818 0.998 0.957 0.880 0.958 0.949
YiSi-2 0.764 0.988 0.964 0.821 0.899 0.714

Table A.1: System-level Pearson correlation for selected metrics used for mea-
suring MT quality with DA human assessment over MT systems using the new-
stest2020 references. Average (avg) is computed over all to-English directions
available. A number below the language pair indicates the number of systems
considered. Table reprint from Krubiński et al. (2021a).

Pattern Extracted Answer Sentence
NOUN Coldplay ... the British rock group Coldplay with special guest performers ...
ADJ NOUN natural grass As is customary for Super Bowl games played at natural grass stadiums ...
DET NOUN a fumble ... including a fumble which they recovered for a touchdown ...
NUM NOUN 10 times The South Florida/Miami area has previously hosted the event 10 times ...
PROPN PROPN Carolina Panthers ... the National Football Conference (NFC) champion Carolina Panthers ...
DET ADJ NOUN A professional fundraiser A professional fundraiser will aid in finding business sponsors ...
DET VERB NOUN a broken arm ... went down with a broken arm in the NFC Championship Game ...
NUM PUNCT NUM 15–1 The Panthers finished the regular season with a 15–1 record ...
DET NOUN ADP NOUN the application of electricity Tesla theorized that the application of electricity to the brain ...

Table A.2: Examples of the most frequent POS patterns of gold-standard answers
in the XQuAD dataset that we explored to create the POS pattern bank. Table
reprint from Krubiński et al. (2021a).

evaluated the metrics based on the submissions to the WMT20 News translation
task (Barrault et al., 2020a) and their (direct) human assessments (DA), see
Table A.1. We report individual results for selected translation directions into
English plus aggregated results (average) for all to-English directions which were
part of the WTM20 Metric Task (Barrault et al., 2020a) evaluation campaign1.

The basic variant of MTEQA used the world-level F1 metric (MTEQA F1),
following the classical evaluation protocol for QA. We have compared several lex-
ical similarity metrics (see Table A.3) for the answer comparison step, obtaining
the best average results with BLEU (MTEQA bleu).

Having observed that the baseline model generates, on average, roughly 2
answers per reference – and the same number of questions, as a single question
is generated for each answer – we explored additional ways of generating valid
questions, as they constitute the whole predictive power of MTEQA. Firstly, we
considered exploiting the MT output as an additional source of question/answer
pairs. After following the standard procedure, we swapped the roles of MT out-
put and reference – we generated gold-standard answers and questions from the
MT output and used reference as a context to answer them. This mimics the
approach to precision/recall in, e.g., BERTScore. We did not consider the source
segment, as it would have required a cross-lingual QA system. Secondly, we ex-
plored external methods to mark keyphrases (potential answers) in the reference.
Namely, given a sentence as the input, we parsed it using UDPipe (Straka et al.,
2016) to extract part of speech (POS) tags. Then, we extracted phrases match-

1cs, de, ja, pl, ru, ta, zh, iu, km, ps → en
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cs-en de-en zh-en ja-en ru-en ps-en
avg

MTEQA F1 0.782 0.997 0.952 0.982 0.908 0.982 0.893
MTEQA chrf 0.796 0.996 0.959 0.982 0.901 0.980 0.887
MTEQA bleu 0.762 0.998 0.954 0.983 0.925 0.985 0.894
MTEQA exact 0.762 0.998 0.954 0.966 0.910 0.986 0.883
MTEQA F1 Out 0.808 0.998 0.949 0.980 0.917 0.984 0.891
MTEQA chrf Out 0.835 0.997 0.957 0.979 0.910 0.986 0.891
MTEQA bleu Out 0.809 0.998 0.950 0.981 0.929 0.984 0.896
MTEQA exact Out 0.827 0.999 0.948 0.969 0.902 0.983 0.884
MTEQA F1 Kp 0.851 0.998 0.944 0.978 0.930 0.986 0.896
MTEQA chrf Kp 0.890 0.998 0.951 0.978 0.927 0.981 0.905
MTEQA bleu Kp 0.844 0.998 0.939 0.973 0.945 0.991 0.900
MTEQA exact Kp 0.858 0.997 0.938 0.959 0.936 0.990 0.893
MTEQA F1 Out Kp 0.831 0.998 0.942 0.978 0.914 0.992 0.893
MTEQA chrf Out Kp 0.851 0.998 0.947 0.977 0.917 0.990 0.902
MTEQA bleu Out Kp 0.842 0.998 0.938 0.971 0.913 0.990 0.895
MTEQA exact Out Kp 0.838 0.998 0.936 0.960 0.918 0.992 0.887

Table A.3: System-level Pearson correlation for various variants of the proposed
MTEQA metric with DA human assessment over MT systems using the new-
stest2020 references. The average is computed over all to-English directions
available. Table reprint from Krubiński et al. (2021a).

ing one of the patterns in our POS pattern bank. The POS pattern bank was
created by parsing the sentences from XQuAD (Artetxe et al., 2020) dataset,
extracting the POS patterns corresponding to the gold-standard answers, and
taking the most frequent patterns. This dataset contains professional transla-
tions of the development set of SQuAD, translated into various languages from
different language families and using different scripts. Table A.2 shows some ex-
amples of the extracted POS patterns. Additionally, we extracted named entities
mentioned in the reference using a combination of two multilingual NER mod-
els, POLYGLOT-NER (Al-Rfou et al., 2015), and Stanza (Qi et al., 2020). The
union of the extracted phrases and named entities was considered as the poten-
tial answers, see an example in Table A.4. On average, this yielded roughly 7
answers/questions per reference.

When evaluating the metric performance (see Table A.3), we observed that
the average correlation with human judgments – the way of measuring metric
performance – obtained using the MT output to generate questions (rows with
Out) was very similar but slightly worse than the one using just the questions
from the reference. However, the method based on POS pattern matching and
NER (rows with Kp) yielded improvements over various translation directions.
After all, the best-performing configuration of MTEQA was based on answer
extraction with POS pattern matching and NER together with the chrF metric
used for answer comparison (MTEQA chrf Kp). Our implementation and
setup are publicly available at https://github.com/ufal/MTEQA.
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Answer Question
Answers extracted using the method based on POS sequences and NER tags
the stadium Where did the cat fall from?
an American football
match

At what event did spectators catch a cat?

upper deck What part of the stadium did the cat fall from?
A cat What animal was caught by spectators at an American football

match in Miami Gardens?
Florida Where is Miami Gardens located?
spectators Who caught a cat at an American football match in Miami Gar-

dens?
Miami Gardens Where was a cat caught by spectators at an American football

match?
Answers extracted using the baseline model
cat What animal was caught by spectators at a football match in Mi-

ami Gardens?
Miami Gardens Where was a cat caught by spectators at an American football

match?

Table A.4: Extracted keyphrases and generated corresponding questions for the
sentence: “A cat was caught by spectators at an American football match in Miami
Gardens, Florida, after it fell from the stadium’s upper deck.”, that compare the
baseline and keyphrase extraction method based on POS pattern matching and
NER. Table reprint from Krubiński et al. (2021a).

A.3 Discussion
To compare our solution against other SOTA metrics, we submitted the MTEQA
metric (Krubiński et al., 2021b) to the WMT21 Metric Shared Task. One of the
limitations of MTEQA is the requirement for a QA/QG system in the target
language. This prohibited us from computing scores for every translation direc-
tion/target language. Besides English (Hausa, German, Czech, Russian, Chinese,
Japanese, Icelandic→English), we have also submitted results for language pairs
with German (English, French→German) and Czech (English→Czech) as target
languages. The non-English QA/QG systems were trained by fine-tuning the
multilingual mT5 model (Xue et al., 2021) on the machine-translated SQuAD.
We exploited the existing translations into German by Lewis et al. (2020b) and
into Czech by Macková and Straka (2020). Performance of those systems on
newstest2020 is reported in Table A.1, in columns “en-de” and “en-cs”.

The results were mixed. In the news domain, which was the core of WMT
evaluations in recent years, MTEQA was in the middle of the pack for system-level
correlations and tended to score below average in the segment-level correlations,
see Table A.3 for the Hausa→English direction as an example. However, MTE-
QA achieved the highest correlation with human annotators on the challenging
English→Chinese test-set based on TED talks, see Figure A.2. Those results
suggest that while MTEQA should not be used on its own as a sole metric to
measure the performance of MT system, it has its applications in niche domains
when a specialized, targeted evaluation is essential.

Still, the QA-based approach to MT evaluation that we proposed caught some
attention in the scientific community. Han et al. (2022) propose the word-by-word
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ref-A ref-B
MQM 5.52 0.42
MTEQA 0.47 (3) 0.74 (1)
TER 0.40 (9) 0.71 (2)
BERTScore 0.42 (6) 0.69 (3)
bleurt-20 0.45 (5) 0.68 (4)
cushLEPOR (LM) 0.39 (11) 0.68 (5)
Prism 0.46 (4) 0.68 (6)
COMET-MQM_2021 0.40 (8) 0.67 (7)
BLEU 0.30 (13) 0.65 (8)
YiSi-1 0.42 (7) 0.65 (9)
chrF 0.40 (10) 0.62 (10)
MEE2 0.36 (12) 0.60 (11)
C-SPECpn 0.49 (2) 0.54 (12)
tgt-regEMT 0.5 (1) 0.37 (13)
average 0.42 0.64

Figure A.2: Pairwise accuracy of metrics submitted to the WMT21 Metric Shared
Task, reported for the task of ranking system pairs on the TED Chinese→English
test-set, using either ref-A (original reference of low quality) or ref-B (extra ref-
erence of high quality). For the definition of pairwise accuracy, see Section 3.1.
Figure reprint from Freitag et al. (2021).

metric correlation

bleurt-20 0.955
COMET-DA_2020 0.949
Prism 0.948
bleurt-21-beta 0.947
BERTScore 0.947
YiSi-1 0.944
RoBLEURT 0.944
regEMT 0.940
COMET-DA_2021 0.939
sentBLEU 0.936
chrF 0.924
COMETinho-DA 0.923
MTEQA 0.909
COMET-MQM_2021 0.902
COMET-QE-DA_2021-src 0.898
COMETinho-MQM 0.880
TER 0.823
C-SPEC 0.810
OpenKiwi-MQM-src 0.806
YiSi-2-src 0.795
COMET-QE-MQM_2021-src 0.782
C-SPECpn 0.720
regEMT-baseline 0.525
regEMT-src 0.363
regEMT-baseline-src 0.014

metric correlation

COMET-MQM_2021 0.076
RoBLEURT 0.075
COMET-DA_2021 0.072
C-SPEC 0.070
Prism 0.070
C-SPECpn 0.066
COMET-QE-DA_2021-src 0.064
COMET-DA_2020 0.062
BERTScore 0.062
COMETinho-DA 0.056
OpenKiwi-MQM-src 0.051
YiSi-1 0.049
COMET-QE-MQM_2021-src 0.047
bleurt-20 0.046
YiSi-2-src 0.046
regEMT 0.043
bleurt-21-beta 0.039
COMETinho-MQM 0.036
chrF 0.021
regEMT-src 0.009
sentBLEU -0.010
regEMT-baseline -0.067
regEMT-baseline-src -0.067
MTEQA -0.067
TER -0.125

Figure A.3: Correlations for the Hausa→English translation direction reported on
the newstest2021 dataset. System-level Pearson correlation is reported on the left
and the segment-level Kendall-Like correlation on the right. Primary submissions
are bolded, and baselines are underlined. Figure reprint from Freitag et al. (2021).
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question-answering evaluation task to examine simultaneous (partial) transla-
tions. The authors, given a source language question, translate the question word
by word into the target language and try to answer it as soon as possible, mea-
suring the quality and timely adequacy of simultaneous translation. Han et al.
(2023) propose a framework for handling “explicitation” – an explicit realization
of implicit information in the source language that professional translators have
thanks to, e.g., cultural knowledge – that explores an automated multilingual QA
system to determine whether the explicit realization improves the translation.
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B. Auxiliary Results
In this Appendix, we include the numerical results of auxiliary experiments and
examples of model outputs.

B.1 COMES

This section is based on the From COMET to COMES — Can Summary
Evaluation Benefit from Translation Evaluation? (Krubiński and
Pecina, 2022) article.

As discussed in Section 3.1.7, due to the cross-validation approach to testing
on the SummEval dataset, we trained/fine-tuned several COMES instances. They
differ by the exact articles used for training/fine-tuning. Thus, when evaluating
on datasets other than SummEval, we evaluate with each instance, reporting
mean and standard deviation.

REALSumm results
In Table B.1, we report the system-level Kendall’s τ correlations on the REAL-
Summ corpus (100 articles × 25 models), annotated by Bhandari et al. (2020).
“Score” column is used for metrics that output a single score, the following ones
correspond to outputs from each of the COMES heads. From the analysis, we
excluded 2 articles that appear in the SummEval dataset.

Metric LitePyramid SCU

Sc
or

e

C
oh

C
on

sis
te

nc
y

Fl
u

R
el

ROUGE-1 r 0.779
ROUGE-2 r 0.853
ROUGE-L r 0.746
BERTScore r 0.538
JS-2 0.518
MoverScore 0.264
Comet 0.457
COMES 0.242 ± 0.05 0.561 ± 0.07 0.290 ± 0.02 0.481 ± 0.05
Comes_MT 0.405 ± 0.03 0.423 ± 0.02 0.434 ± 0.02 0.409 ± 0.03
Comet_QE 0.745
Comes_QE 0.264 ± 0.06 0.592 ± 0.04 0.309 ± 0.06 0.490 ± 0.06
Comes_MT_QE 0.457 ± 0.05 0.473 ± 0.04 0.472 ± 0.04 0.460 ± 0.05

Table B.1: System-level Kendall’s τ correlations on the REALSumm corpus an-
notated by Bhandari et al. (2020). The three metrics with the highest correlation
in each column are bolded. Table reprint from Krubiński and Pecina (2022).
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“Human Feedback” data results
Table B.2 presents the system-level Kendall’s τ correlations on the subset of the
test split of the CNN/DailyMail corpus annotated by Stiennon et al. (2020). The
columns indicate different evaluation dimensions in the annotated (test) data. In
the rows, we include outputs from each of the COMES heads that correspond
to evaluation dimensions used in the training data. From the analysis, we ex-
cluded 6 articles that appear in the SummEval dataset. In Table B.3, we present
the corresponding numbers when evaluating on the subset of the TL;DR corpus
annotated by Stiennon et al. (2020) in a similar manner.

Metric O
ve

ra
ll

A
cc

ur
ac

y

C
ov

er
ag

e

C
oh

er
en

ce

ROUGE-1 f 0.647 0.752 0.621 0.464
ROUGE-2 f 0.569 0.699 0.542 0.438
ROUGE-L f 0.595 0.699 0.569 0.412
BERTScore f 0.621 0.725 0.595 0.464
Comet 0.843 0.686 0.817 0.425

COMES

Coh −0.204 ± 0.05 −0.050 ± 0.04 −0.230 ± 0.05 0.264 ± 0.04
Con 0.722 ± 0.12 0.630 ± 0.06 0.695 ± 0.12 0.565 ± 0.07
Flu 0.209 ± 0.10 0.340 ± 0.07 0.186 ± 0.09 0.625 ± 0.07
Rel 0.774 ± 0.03 0.703 ± 0.04 0.750 ± 0.03 0.627 ± 0.02

Comes_MT

Coh 0.366 ± 0.16 0.403 ± 0.12 0.340 ± 0.16 0.654 ± 0.07
Con 0.455 ± 0.11 0.418 ± 0.10 0.431 ± 0.12 0.604 ± 0.11
Flu 0.433 ± 0.12 0.414 ± 0.11 0.407 ± 0.12 0.634 ± 0.06
Rel 0.379 ± 0.16 0.403 ± 0.12 0.353 ± 0.16 0.654 ± 0.06

Comet_QE 0.922 0.660 0.895 0.477

Comes_QE

Coh −0.158 ± 0.1 −0.017 ± 0.09 −0.184 ± 0.10 0.305 ± 0.09
Con 0.714 ± 0.05 0.630 ± 0.05 0.688 ± 0.05 0.544 ± 0.06
Flu 0.170 ± 0.13 0.272 ± 0.11 0.144 ± 0.13 0.559 ± 0.08
Rel 0.695 ± 0.07 0.648 ± 0.06 0.669 ± 0.07 0.646 ± 0.04

Comes_MT_QE

Coh 0.480 ± 0.11 0.467 ± 0.09 0.454 ± 0.11 0.668 ± 0.03
Con 0.528 ± 0.07 0.484 ± 0.08 0.502 ± 0.07 0.638 ± 0.06
Flu 0.519 ± 0.07 0.480 ± 0.08 0.493 ± 0.07 0.647 ± 0.05
Rel 0.493 ± 0.09 0.477 ± 0.08 0.467 ± 0.09 0.678 ± 0.02

Table B.2: System-level Kendall’s τ correlations on the subset of CNN/DailyMail
corpus annotated by Stiennon et al. (2020). The three metrics with the highest
correlation in each column are bolded. Table reprint from Krubiński and Pecina
(2022).

Multi_SummEval results
In Table B.4, we report the summary-level (segment-level) Pearson correlations
on the subset of Multi_SummEval corpus annotated by Koto et al. (2021). Koto
et al. (2021) collected human judgments for Focus and Coverage, using the Direct
Assessment method to collect scores on a continuous scale of 1 to 100. For other
metrics, see Table 2 in Koto et al. (2021). For readability reasons, we report only
the mean COMES scores and do not report variance.
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Metric O
ve

ra
ll

A
cc

ur
ac

y

C
ov

er
ag

e

C
oh

er
en

ce

ROUGE-1 f 0.545 0.000 0.576 0.333
ROUGE-2 f 0.576 0.091 0.606 0.424
ROUGE-L f 0.606 0.061 0.636 0.394
BERTScore f 0.424 −0.121 0.455 0.212
Comet 0.727 −0.061 0.758 0.273

COMES

Coh −0.058 ± 0.19 0.306 ± 0.15 −0.052 ± 0.18 0.124 ± 0.09
Con 0.239 ± 0.05 0.082 ± 0.01 0.209 ± 0.05 −0.003 ± 0.05
Flu 0.227 ± 0.09 −0.106 ± 0.04 0.258 ± 0.09 0.039 ± 0.04
Rel 0.600 ± 0.12 0.042 ± 0.08 0.630 ± 0.12 0.315 ± 0.08

Comes_MT

Coh 0.682 ± 0.02 −0.100 ± 0.03 0.712 ± 0.02 0.294 ± 0.03
Con 0.536 ± 0.14 −0.155 ± 0.05 0.567 ± 0.14 0.215 ± 0.09
Flu 0.561 ± 0.10 −0.161 ± 0.07 0.591 ± 0.10 0.233 ± 0.07
Rel 0.676 ± 0.03 −0.112 ± 0.03 0.706 ± 0.03 0.282 ± 0.03

Comet_QE 0.545 0.121 0.576 0.394

Comes_QE

Coh 0.088 ± 0.27 0.258 ± 0.14 0.100 ± 0.27 0.173 ± 0.15
Con 0.206 ± 0.11 0.085 ± 0.06 0.182 ± 0.11 0.012 ± 0.08
Flu 0.218 ± 0.11 −0.073 ± 0.06 0.248 ± 0.11 0.055 ± 0.06
Rel 0.533 ± 0.09 0.085 ± 0.07 0.564 ± 0.09 0.315 ± 0.07

Comes_MT_QE

Coh 0.564 ± 0.04 0.048 ± 0.04 0.594 ± 0.04 0.394 ± 0.02
Con 0.491 ± 0.11 0.012 ± 0.08 0.521 ± 0.11 0.321 ± 0.09
Flu 0.473 ± 0.11 0.000 ± 0.07 0.503 ± 0.11 0.297 ± 0.10
Rel 0.555 ± 0.05 0.058 ± 0.04 0.585 ± 0.05 0.385 ± 0.03

Table B.3: System-level Kendall’s τ correlations on the subset of TL;DR corpus
annotated by Stiennon et al. (2020). The three metrics with the highest correla-
tion in each column are bolded. Table reprint from Krubiński and Pecina (2022).

Focus Coverage
Metric de es tr fr ru de es tr fr ru
Comet 0.82 0.51 0.64 0.47 0.42 0.82 0.54 0.72 0.40 0.45
Comet_QE 0.29 0.06 0.03 0.01 0.10 0.31 0.09 0.27 −0.03 0.24

COMES

Coh 0.21 0.03 0.07 0.16 −0.01 0.15 −0.01 −0.05 0.08 −0.07
Con 0.33 0.11 0.21 0.10 0.14 0.35 0.13 0.30 0.07 0.22
Flu 0.36 0.05 0.10 0.11 0.08 0.33 0.06 0.10 0.05 0.15
Rel 0.42 0.15 0.25 0.18 0.12 0.44 0.20 0.38 0.15 0.26

Comes_MT

Coh 0.37 0.13 0.25 0.15 0.08 0.36 0.09 0.31 0.11 0.14
Con 0.31 0.10 0.20 0.14 0.09 0.30 0.09 0.24 0.09 0.16
Flu 0.31 0.10 0.21 0.14 0.09 0.30 0.09 0.25 0.09 0.16
Rel 0.36 0.12 0.25 0.15 0.09 0.35 0.09 0.30 0.10 0.15

Comes_MT_ML

Coh 0.03 −0.01 −0.03 0.13 −0.09 −0.04 −0.04 −0.17 0.10 −0.14
Con 0.10 0.02 0.01 0.00 0.01 0.10 0.00 0.01 −0.02 0.12
Flu 0.23 0.02 0.09 0.07 0.01 0.22 0.03 0.08 −0.01 0.01
Rel 0.36 0.20 0.16 0.15 0.06 0.38 0.25 0.27 0.16 0.23

Table B.4: Summary-level Pearson correlations on the Multi_SummEval corpus
annotated by Koto et al. (2021). The three metrics with the highest correlation
in each column are bolded. Table reprint from Krubiński and Pecina (2022).
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B.2 Examples of Model Outputs
B.2.1 MLASK-MMS
A sample of outputs from the models trained on the MLASK dataset, see Sec-
tion 5.1. Automatic translations into English are provided for convenience. “Sys-
tem A” is the MMS + SumeCzech + Smooth Labels model, and “System B” is
the MMS + SumeCzech + Smooth Labels + Masked Video one.

Reference Ze století páry rovnou do 21. století. Tak by měla vypadat proměna hlavního
brněnského nádraží. Ze současného místa v centru města by se mělo nádraží
přesunout o několik set metrů, kde vznikne nový komplex na zelené louce. Jeho
podoba by měla být z pera architektů nizozemského ateliéru Benthem Crouwel
Architects.
From the century of steam straight into the 21st century. This is what the
transformation of Brno’s main railway station should look like. From its current
location in the city centre, the station should be moved a few hundred metres to
create a new green meadow complex. Its design should be from the architects of
the Dutch studio Benthem Crouwel Architects.

System A Nové hlavní nádraží v Brně by mělo přijít na 50 miliard korun. Vítězný ateliér
má zkušenosti z Nizozemska, Nizozemska nebo Nizozemska.
The new main railway station in Brno should cost CZK 50 billion. The winning
studio has experience from the Netherlands, the Netherlands or the Netherlands.

System B Nové hlavní nádraží v Brně by mělo být hotové do roku 2035. Vítězný ateliér,
který má s nádražím bohatou zkušenost, dostal od města peníze za 50 miliard
korun.
The new main railway station in Brno should be ready by 2035. The winning
studio, which has extensive experience with the station, received money from the
city worth CZK 50 billion.

Table B.5: Textual summary – MLASK-MMS Example 1. Table reprint from
Krubiński and Pecina (2023).

(a) System A (b) System B

(c) Reference (d) Random

Figure B.1: Pictorial summary – MLASK-MMS Example 1. Figure reprint
from Krubiński and Pecina (2023).
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Reference Pětasedmdesátiletý řidič, který při páteční nehodě v Tatcích na Kolínsku usmrtil
tříleté dítě a druhé vážně zranil, stejně jako jejich matku, je podezřelý z usmrcení
z nedbalosti a z těžkého ublížení na zdraví z nedbalosti. Příčinou nehody byl zřejmě
mikrospánek, uvedla v sobotu v tiskové zprávě policejní mluvčí Vlasta Suchánková.
The 75-year-old driver, who killed a three-year-old child and seriously injured the
other, as well as their mother, in Friday’s accident in Tatky, Cologne, is suspected
of negligent homicide and grievous bodily harm. The cause of the accident was
apparently microsleep, police spokesperson Vlasta Suchánková said in a press
release on Saturday.

System A Dva trestné činy usmrcení z nedbalosti vyšetřují od pátečního odpoledne policisté
v Nymburce, kde se srazilo osobní auto s dvěma malými holčičkami. Na dotaz
Novinek to ve čtvrtek řekla mluvčí policie Eva Suchánková.
Two crimes of culpable homicide have been under investigation since Friday af-
ternoon by police officers in Nymburk, where a car collided with two little girls.
Police spokesperson Eva Suchánková told News on Thursday.

System B Dvě malé holčičky zemřely v pátek odpoledne při nehodě dvou aut na Nymbursku.
Jeden člověk byl vážně zraněn, druhý je ve vážném stavu v nemocnici. Právu to
řekla mluvčí policie Eva Suchánková.
Two little girls died in a two-car accident in Nymburk on Friday afternoon. One
person was seriously injured, the other is in a serious condition in hospital. Police
spokesperson Eva Suchánková told the law.

Table B.6: Textual summary – MLASK-MMS Example 2. Table reprint from
Krubiński and Pecina (2023).

(a) System A (b) System B

(c) Reference (d) Random

Figure B.2: Pictorial summary – MLASK-MMS Example 2. Figure reprint
from Krubiński and Pecina (2023).
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Reference Minulý týden v pátek se v Česku začaly oficiálně prodávat nové chytré hodinky
Apple Watch Series 7. Zájem byl tak vysoký, že už po pár hodinách zmizely
prakticky všechny hodinky z pultů českých obchodů. A vše nasvědčuje tomu, že si
případní zájemci budou muset na další várku ještě dlouho počkat.
Last week on Friday, the new Apple Watch Series 7 was officially launched in
the Czech Republic. Interest was so high that after a few hours practically all
watches disappeared from the counters of Czech shops. And all indications are
that potential buyers will have to wait a long time for the next batch.

System A V pátek se začaly oficiálně prodávat nové chytré hodinky od společnosti Apple.
Zájem o novinku byl tak vysoký, že se v některých případech nepodařilo uspokojit
všechny zákazníky, kteří si objednali hodinky s týdenním předstihem.
On Friday, Apple’s new smartwatch officially went on sale. Interest in the new
smartwatch was so high that in some cases it was not possible to satisfy all
customers who ordered the watch a week in advance.

System B Zájem o novou generaci chytrých hodinek Watch Series 7 byl tak vysoký, že se
v některých případech nepodařilo uspokojit všechny zákazníky, kteří si objednali
hodinky s týdenním předstihem. Novinka má být daleko lépe než předchůdce –
dostala extrémně tenké rámečky okolo displeje.
Interest in the new generation of Watch Series 7 smartwatches was so high that
in some cases it failed to satisfy all customers who ordered a watch a week in
advance. The novelty is supposed to be far better than its predecessor – it got
extremely thin frames around the display.

Table B.7: Textual summary – MLASK-MMS Example 3. Table reprint from
Krubiński and Pecina (2023).

(a) System A (b) System B

(c) Reference (d) Random

Figure B.3: Pictorial summary – MLASK-MMS Example 3. Figure reprint
from Krubiński and Pecina (2023).
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B.2.2 UNMGH
A sample of outputs from the models trained in a multi-task fashion for unified,
uni- and multi-modal summarization, see Section 5.2.

Walrus counting from space: How
many tusked beasts do you see?

(a) Reference

Thousands of volunteers to count
Arctic walruses from space

(b) T5CLIP

Scientists count walruses from
space

(c) BLIP-2

Walruses are heavily dependent
on sea-ice, which has been
in sharp retreat, leading to
increased difficulty for the
animals to hunt and rest.

(d) Stable Diffusion 2.1 + Alpaca

Figure B.4: Pictorial summary – M3LS Example 1. Figure reprint from Krubiński
and Pecina (2024).
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Ireland’s Naval Service marks
its 75th anniversary

(a) Reference

’I thought the navy was cool and
really interesting’

(b) T5CLIP

Irish Navy celebrates 75th
anniversary

(c) BLIP-2

Covid has ensured that
anniversary commemorations will
be more subdued than the 50th
anniversary celebrations, when
foreign navies visited Ireland.

(d) Stable Diffusion 2.1 + Alpaca

Figure B.5: Pictorial summary – M3LS Example 2. Figure reprint from Krubiński
and Pecina (2024).
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Man seriously injured his head
at waste treatment company,
helicopter flew for him

(a) Reference

A worker was injured in a truck
at a waste treatment plant in
Prague

(b) T5CLIP

A man was injured at a waste
treatment company in Prague. He
was airlifted to hospital

(c) BLIP-2

A man was injured in a waste
treatment company in Prague. He
died at the scene

(d) MMS

Man injured at waste treatment plant, airlifted conscious to
hospital.

(e) Stable Diffusion 2.1 + Alpaca

Figure B.6: Pictorial summary – MLASK Example 1. Figure reprint from Kru-
biński and Pecina (2024).
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I will make the universe
accessible to all of you,
exulted Branson. Prepare 5
million

(a) Reference

Branson’s "a once-in-a-lifetime
experience". Take a ride in
space with his crew

(b) T5CLIP

Richard Branson became the
second 70-yearold to go into
space

(c) BLIP-2

The world’s richest man has a
new era of space travel, Branson
and his family are heading to
the edge of space

(d) MMS

Virgin Galactic successfully completed its first commercial space
flight, marking a major milestone for space tourism.

(e) Stable Diffusion 2.1 + Alpaca

Figure B.7: Pictorial summary – MLASK Example 2. Figure reprint from Kru-
biński and Pecina (2024).
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