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1 Binary stars
Stars, especially massive ones, often occur in binaries or higher-order multiples.

A binary star is a system of two stars that are gravitationally bound and orbit
a common center of mass. The stars tidally interact with each other, and if
their separation is small enough, they start exchanging mass, which dramatically
affects their evolution and can lead to the merger of the system. In Sect. 1.1, we
provide an overview of the Roche model, which is used to describe the equilibrium
configuration of binary stars. We discuss the classification of binary stars based
on the method of observation in Sect. 1.2, and we explore contact binaries and
dark companion binaries in more detail in Sects. 1.3 and 1.4, respectively.

1.1 Roche model
In a reference frame that corotates with a binary system, three forces act

on a test particle that is at rest with respect to the frame: the gravitational
forces of the two stars and the centrifugal force due to the rotation of the system.
The Roche model assumes that the two stars are in a circular orbit and their
masses are concentrated in point masses located at their centers. Under these
assumptions, the net force on the particle can be expressed as the gradient of the
Roche potential Φ,

Φ = −GM1

r1
− GM2

r2
− 1

2ω2r2
3, (1.1)

where M1 and M2 are the masses of the two stars, r1 and r2 are the distances of
the particle from the centers of the two stars, r3 is the distance of the particle
from the center of mass of the system, and ω is the angular velocity of the system.
If we express ω from Kepler’s third law and divide Eq. (1.1) by GM1/a, where a
is the semimajor axis of the orbit, we obtain the normalized Roche potential ϕ,

Φ/(GM1/a) ≡ ϕ = − 1
r̃1

− q

r̃2
− 1

2(1 + q)r̃2
3, (1.2)

where r̃i = ri/a, i = 1, 2, 3, and q = M2/M1 is the mass ratio of the two stars.
The normalized Roche equipotentials do not depend on the parameters a and M1,
which are absorbed in the normalization factor, and their shape is determined
only by the mass ratio q. In hydrostatic equlibrium, the surface of each star
coincides with a closed equipotential. We show the contours of the normalized
Roche potential for z = 0 and q = 0.5 in Fig. 1.1.

The net force on a test particle at rest in the rotating frame vanishes when
∇ϕ = 0. In general, there are five points, known as the Lagrange points, where this
condition is satisfied. We show the Lagrange points labeled as L1–L5 in Fig. 1.1.
The Lagrange point L1 lies between the two stars and the critical equipotential
passing through it defines the Roche lobes of the stars. When the sizes of the
stars are small relative to their separation, they reside deep within the Roche
lobes, where the equipotentials are nearly spherical, and the stars are said to be
in a detached configuration (Fig. 1.2a). As we decrease the separation between
the stars or equivalently increase their sizes, the surfaces of the stars move closer
to the Roche lobes, and the equipotentials start to significantly deviate from
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Figure 1.1 Normalized Roche potential in the orbital plane of a binary star with
q = 0.5. The solid white lines represent the equipotentials passing through the Lagrange
points L1–L3.

spherical. When one of the stars fills its Roche lobe, it starts transferring mass
to the companion, and the system becomes a semidetached binary (Fig. 1.2b).
If both stars overflow their Roche lobes, they form a contact binary (Fig. 1.2c).
The contact configuration is stable up to the outer critical equipotential, which
represents the maximum volume the system can occupy before it starts losing mass
and angular momentum through the L2 point. The L3 point is located beyond
the outer critical equipotential and is therefore of lesser physical significance. The
L4 and L5 form equilateral triangles with the centers of the two stars and despite
being maximum points of the Roche potential, they are stable due to the effect of
the Coriolis force, provided q ≲ 1/25 (Murray & Dermott 1999).

1.2 Binary classification
The classification of binary stars into detached, semidetached, and contact

binaries introduced by Kopal (1955, 1959) is based on the physical configuration
of the system with respect to the critical inner and outer Roche equipotentials.
However, the physical character of the system is not always apparent, which is
why classification based on the method of observation is often more practical. We
distinguish between the following types of binary stars according to the way they
are observed (Carroll & Ostlie 2017):

• Visual binaries. Visual binaries are systems which can be resolved into

8



(a)

(b)

(c)

Figure 1.2 Face-on schematics of detached (a), semi-detached (b) and contact
(c) binary configurations. The solid black lines represent the inner critical Roche
equipotentials of the systems.
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two stars with a telescope. The typical separation of the stars is of the order
of arcseconds, and their periods range from a few years to centuries. Visual
binaries should not be confused with optical doubles, which are not actually
binaries but coincidentally appear close together in the sky with no physical
connection.

• Astrometric binaries. If one of the stars in the system is much brighter
than the other, or the companion is a compact and electromagnetically
silent object, such as a black hole or a neutron star, it may not be possible
to observe both components directly. In such cases, the presence of the
companion can be inferred from periodic wobbles of the visible star around
the center of mass of the system.

• Spectroscopic binaries. If the stars in a binary system are too close to be
visually resolved into individual components, we can infer their binary nature
from periodic Doppler shifts in their spectra. The separation between the
stars in spectroscopic binaries is usually very small and their orbital periods
are of the order of days. We distinguish between single-lined spectroscopic
binaries, where the spectrum of only one component is observed, and double-
lined spectroscopic binaries, where the spectra of both components are
visible.

• Photometric binaries. Photometric binaries are systems which exhibit
periodic variations in their light curves. The variations can be due to the
mutual eclipses of the stars, tidal distortion of the stars (ellipsoidal variables),
reflection of light off the surface of the stars, or Doppler beaming of light
due to their orbital motion of the stars. Based on the shape of the light
curve, we further distinguish between EA, EB, and EW eclipsing binaries,
roughly corresponding to the detached, semidetached, and contact binary
configurations, respectively.

In this thesis, we focus on photometric binaries, namely contact
binaries observed as EW eclipsing binaries and ellipsoidal variables hosting
electromagnetically silent black holes and neutron stars, which we refer to as dark
companion binaries. These systems are of particular interest to us because their
unique nature is imprinted in their light curves, making it possible to identify
them and infer the parameters of their populations from photometry alone. We
discuss these systems in more detail in the following section.

1.3 Contact binaries
The prototype of the EW variable class, W Ursae Majoris (W UMa), was

first observed by Muller & Kempf (1903), who hypothesized that its variability
and short period of approximately four hours are due to a rotating body with
an unequal brightness distribution or deformed shape that significantly deviates
from a sphere. The authors also considered the possibility that the observed light
curve might be produced by two stars of equal size and luminosity in a close
orbit around each other, but they concluded that the long-term stability of such
configuration is uncertain. It was later revealed that the variations are caused
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by equal-depth primary and secondary eclipses and the period of the system is
actually twice as long, confirming the binary nature of the system (Russell et al.
1917; Adams & Joy 1919). However, it was not until the 1940s and 1950s that
the existence of contact binaries was seriously considered and the connection with
W UMa systems was made (Kuiper 1941; Kopal 1955).

The seminal paper by Kuiper (1941), which introduced the term contact
binary, revealed that contact configurations with non-identical components are
intrinsically unstable, leading to large-scale circulations carrying mass between
the components as long as the masses are unequal. This is in agreement with
the observed light curves of W UMa systems, which exhibit equal-depth primary
and secondary minima, pointing to nearly identical mean surface brightnesses of
the components. Yet, W UMa systems with unequal masses are known to exist,
giving rise to the so-called Kuiper paradox. The paradox was resolved by Lucy
(1968b), Lucy (1976), Flannery (1976), and Webbink (1976), who developed a
model which assumes that the stars are separately out of thermal equilibrium
but the system as a whole maintains a global thermal equilibrium. As a result,
the binary undergoes a series of thermal relaxation oscillations (TROs)—cycles
of mass transfer on the thermal timescale, during which the components move
mass back and forth between each other. During the TROs, the system alternates
between contact and semidetached states, and the equal effective temperatures
of the components are achieved through turbulent convection driven by pressure
gradients.

Despite the success of the TRO model in explaining the geometry and light
curves of W UMa variables, there are some discrepancies between the model
predictions and observations, such as the lack of semidetached systems with
periods shorter than 0.45 days (Stȩpień 2011). To address these discrepancies,
Stȩpień (2004), Stępień (2006), and Stȩpień (2009) proposed a model in which the
components reach thermal equilibrium following a rapid mass transfer and mass
ratio reversal. The difference from the TRO model is that the secondary is an
evolved star with a hydrogen-depleted core, which is why it seems oversized for its
mass when interpreted as a main-sequence star. The equal effective temperature of
the components is achieved through large-scale circulation carrying high entropy
matter from the primary to the secondary. Regardless of the exact mechanism,
we observe secular evolution of the system towards smaller mass ratios until
it starts losing mass through the L2 point or becomes unstable to the tidal
Darwin instability (Darwin 1879) and merges. Due to the correlation between the
parameters of contact binary systems, the Darwin instability leads to a minimum
mass ratio qmin, below which basically no contact binaries should be observed.

In this thesis, we present a Bayesian reformulation and extension of the method
by Rucinski (2001) for the inference of qmin from the photometric amplitude
distribution of W UMa systems. The method utilizes synthetic light curves for
likelihood-free inference of the parameters of the mass ratio distribution of contact
binary stars. We provide a high-level overview of the employed data analysis
techniques—synthetic light curve generation and Bayesian inference—in Chap. 2,
and we present a detailed description of our method for the inference of qmin in
Chap. 4.
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Figure 1.3 Face-on schematic of a dark companion binary with q = 5. The solid
black line represents the inner critical Roche equipotential of the system.

1.4 Dark companion binaries
Dark companion binaries represent an interesting class of binary systems. In

Fig. 1.3, we show a schematic of a dark companion binary hosting a black hole
five times more massive than the visible companion. The star is close to filling its
Roche lobe, resulting in large ellipsoidal variations in its light curve. If it actually
overflowed the critical equipotential and started transferring mass to the black
hole, the system could be observed as an X-ray binary and would no longer be
considered a dark companion binary. However, black hole X-ray binaries seem
to be a rare outcome of binary evolution, and only about 1000 such systems are
estimated to exist in our Galaxy (Portegies Zwart et al. 1997; Corral-Santana
et al. 2016). Conversely, based on binary synthesis models, a significant fraction
of black hole binaries might actually be dark companion binaries (Breivik et al.
2017; Chawla et al. 2022), highlighting the importance of characterizing the dark
companion binary population.

The lack of strong electromagnetic signatures of black holes and neutron stars
in dark companion binaries makes it difficult to detect them. As a result, only a
few such systems have been discovered so far. All these systems were identified by
searching available spectroscopic and astrometric catalogs and selecting objects
exhibiting peculiar patterns consistent with the presence of a dark companion,
such as unusually high binary mass functions or large photocenter wobbles. There
is no issue with this approach when applied to archival data, but if we want
to systematically search for new dark companion binaries, it would be highly
cost-inefficient to obtain high-resolution spectra and/or astrometric measurements
for large numbers of randomly selected objects. It would be far more practical to
preselect dark companion binary candidates based on photometry and then follow
up with spectroscopic and astrometric observations only on the most promising
candidates, optimizing the allocation of resources and maximizing the chances of
discovery.

To facilitate the search for dark companion binaries in large photometric
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surveys, Gomel et al. (2021b,a) developed a proxy for the minimum mass ratio of
dark companion systems, the modified minimum mass ratio (mMMR), derived
solely from the photometric amplitude of the ellipsoidal variations. The method is
based on the idea that high values of mMMR could be indicative of the presence
of a dark companion in the system. In practice, the method yields high false
positive rates (Nagarajan et al. 2023), pointing to the need for a more sophisticated
approach to the problem.

In this thesis, we present a novel method for the identification of dark
companion binaries based on both the photometric amplitude and the shape
of the light curves. The method utilizes principal component analysis (PCA)
to construct low-dimensional representations of synthetic light curves of dark
companion binaries and their common contaminants, such as contact binaries
and semidetached binaries. We then train a random forest classifier on the PCA
representations of the light curves to distinguish between the different types of
binaries and identify dark companion binary candidates. We outline the techniques
of light curve synthetis and random forest classification in Chap. 2, and we describe
our method for the identification of dark companion binaries in large photometric
surveys in Chap. 5.

13



2 Selected methods of data
analysis

In this chapter, we provide an overview of selected methods of data analysis that
we utilized in the main part of the thesis, including light curve synthesis (Sect. 2.1),
Bayesian inference (Sect. 2.2), and random forest classification (Sect. 2.3). We
present brief descriptions of the methods and demonstrate their applications
through simple examples.

2.1 Light curve synthesis
Both contact binaries and dark companion binaries are strongly affected by

tidal interactions between the components, which manifests as variations in their
light curves. Although thousands of contact binary light curves have been observed,
only a fraction of these systems have well-determined physical properties, yielding
a heterogeneous sample of contact binaries with known parameters. The situation
is even worse for dark companion binaries, where only a few systems have been
observed so far (see Sect. 5.1 for an incomplete list of such detections). The
lack of well-curated samples of contact and dark companion binaries hinders the
application of machine learning techniques to study of these systems. However,
recent advances in numerical simulations of binary systems have made it possible
to synthesize light curves of contact and dark companion binaries with high
accuracy, allowing us to generate large homogeneous samples of well-characterized
systems.

In this thesis, we make extensive use of PHOEBE 2∗ (PHysics Of Eclipsing
BinariEs, Prša et al. 2016; Conroy et al. 2020b). PHOEBE is an open-source modeling
code in Python for computing theoretical light curves, radial velocity curves as
well as spectral line profiles of eclipsing binary systems. The code allows the user
to specify a wide range of physical and orbital parameters of the system, including
but not limited to the atmosphere tables for the components, passbands, and limb-
darkening and gravity-brightening coefficients. PHOEBE supports parallelization
via MPI and offers swappable backends for computing the light curves, including
JKTEBOP† (Southworth et al. 2004), ellc‡ (Maxted 2016), and native PHOEBE
backend. The code allows for the inclusion of various advanced effects in the
model, such as irradiation, spin-orbit misalignment, or reddening and extinction.
As of version 2.3, PHOEBE includes a general framework for inverse problem
solving, allowing the user to infer the physical parameters of the system from
observational data. To test the robustness and accuracy of PHOEBE in solving the
inverse problem, we tried to reproduce the results from Maxted et al. (2020), who
precisely estimated the masses and radii of the stars in the binary system AI Phe
using various methods, including PHOEBE. We present the results of our analysis
in Chap. 3.

∗https://phoebe-project.org
†https://www.astro.keele.ac.uk/jkt/codes/jktebop.html
‡https://github.com/pmaxted/ellc
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Figure 2.1 Synthetic light curves of a contact binary system with q = 0.3 observed
at different inclinations.

To illustrate the capabilities of PHOEBE in generating binary light curves,
we present Figs. 2.1–2.2, which show synthetic light curves of contact binary
systems with q = 0.3 and dark companion binary systems with q = 3 observed
at different inclinations. The light curves vary smoothly with inclination and
demonstrate the similarities and differences between the two types of binary
systems, especially close to the maxima. In Chap. 4, we generate a large number
of contact binary light curves similar to those in Fig. 2.1 but covering a much
wider range of parameters. This allows us to model the photometric amplitude
distribution of contact binaries as a function of the parameters of their mass-ratio
distribution, providing a novel approach for constraining the minimum mass ratio
of contact binary stars. We follow a similar approach in Chap. 5, where we
generate synthetic light curves of dark companion binaries, contact binaries, and
semidetached binaries to investigate whether the information contained in the
light curves is sufficient to reliably distinguish between these types of systems.

2.2 Bayesian inference
Traditional statistical methods of parameter estimation, such as least squares

fitting or χ2 minimization, operate within the frequentist framework, which treats
the parameters as fixed but unknown quantities. In contrast, Bayesian inference
treats the parameters as random variables with probability distributions, allowing
for the use of Bayes’ theorem to update the distributions as we collect more data.
We write Bayes’ theorem as

p(θ|D) = L(θ|D)p(θ)
p(D) , (2.1)
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Figure 2.2 Synthetic light curves of a dark companion binary system with q = 3
observed at different inclinations.

where p(θ|D) is the posterior distribution of the parameters θ given the data D,
L(θ|D) ≡ p(D|θ) is the likelihood of θ given D, p(θ) is the prior distribution of θ,
and p(D) is the marginal likelihood also known as the prior predictive or evidence.
Assuming that the observations are independent and identically distributed (i.i.d.),
the likelihood function can be factorized as

L(θ|D) =
N∏︂

i=1
l(di|θ), (2.2)

where N is the number of data points, di is the ith data point, and l(di|θ) ≡ p(di|θ)
is the single-observation likelihood of θ given di.

The prior distribution p(θ) encodes our knowledge about the parameters
before observing the data. If we have no prior knowledge of the problem, we
can use a non-informative uniform prior, assigning equal probability to all values
of θ within a certain interval. The posterior distribution reflects the updated
knowledge about the parameters after observing the data. In high-dimensional
problems, the likelihood is often computationally expensive to evaluate, making
direct calculation of the posterior distribution intractable. In such cases, Markov
Chain Monte Carlo (MCMC) methods provide a way to directly sample the
posterior distribution without the need for evaluating the evidence. MCMC
methods operate by constructing a sequence of samples where the inclusion of
each sample in the sequence depends only on the ratio of the posterior distribution
at the proposed and the current position in the parameter space, eliminating the
evidence from the calculation. In practice, a number of chains are generated in
parallel, each starting from a different initial position in the parameter space. For
more details about MCMC methods, we refer the reader to Ivezić et al. (2020).

Following the approach of Hogg et al. (2010), we illustrate the application of
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Figure 2.3 Chain plots of the parameters of the linear model.

Bayesian inference on a simple example of fitting a line to a set of data points. We
considered a linear model y = 0.84x + 3.75, and we randomly sampled 50 values
of x from the interval [0, 5]. We then injected y with uncorrelated Gaussian noise
with standard deviation σ = 0.2 to simulate observational errors. The likelihood
of the model is given by

L(a, b|{xi, yi}N
i=1) =

N∏︂
i=1

l(a, b|xi, yi)

=
N∏︂

i=1

1√
2πσ2

exp
(︄

−(yi − axi − b)2

2σ2

)︄
.

(2.3)

We considered non-informative uniform priors for the parameters a and
b, and we assumed that σ is known. We sampled the posterior distribution
p(a, b|{xi, yi}N

i=1) using the emcee§ implementation of MCMC (Foreman-Mackey
et al. 2013). We generated 32 chains, which we initialized at the values of a and
b that maximize the likelihood, and we ran the chains for 5000 steps each. We
discarded the first 100 steps of each chain as burn-in to eliminate the impact
of the initial conditions, and we thinned the chains by a factor of 30 to reduce
the autocorrelation between the samples. We present the chain plots of the
parameters a and b in Fig. 2.3, and we show the obtained posterior distributions
of the parameters in Fig. 2.4.

We observe that the posterior distributions are concentrated at the true values
of the parameters, demonstrating the ability of Bayesian inference to recover
the true parameters of the model. In addition, by taking different percentiles of
the sampled posterior distributions, we can construct credible intervals for the
parameters, providing uncertainties of the estimates. Credible intervals, which
represent the probability that the parameter lies within the interval, should not be
confused with confidence intervals, which are frequentist constructs and describe
the proportion of intervals that would contain the true parameter value if the

§https://emcee.readthedocs.io
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Figure 2.4 Prior and posterior distributions of the parameters a (top panel) and b
(bottom panel).
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Figure 2.5 Comparison of the true model, maximum likelihood model, and models
sampled from the posterior distribution of the parameters a and b.

experiment were repeated many times. We illustrate the utility of credible intervals
in Fig. 2.5, where we overlay the true model and the maximum likelihood model
on models sampled from the posterior distribution, allowing us to visualize the
uncertainty in the estimated model parameters.

Although simplified, this example demonstrates all the essential steps of
Bayesian inference. We follow the same approach in Chap. 4, where we use
Bayesian mixture modeling to construct a sample of contact binary stars from
the Kepler Eclipsing Binary Catalog (Kirk et al. 2016).

2.3 Random forest classifiers
Astronomical problems often involve identification of objects based on their

observed properties, e.g., classification of variable stars based on their light curves
or morphological classification of galaxies. There are many machine learning
algorithms available for classification tasks, ranging in complexity from simple
linear classifiers to complex deep neural networks, but random forest classifiers
have proven to be particularly effective in many astronomical applications due to
their robustness and scalability (e.g., Jayasinghe et al. 2018, 2019; Dubath et al.
2011; Förster et al. 2021).

Random forest classifiers are a subclass of random forests, introduced in their
current form by Breiman (2001), which can be used for both classification and
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Figure 2.6 Schematic representation of a decision tree classifier.

regression. A random forest classifier consists of an ensemble of decision tree
classifiers, where each tree is trained on a different random subset of the training
data. A decision tree classifier is a collection of nested if-else statements that
recursively split the data into subsets to achieve the best separation of the classes.
We illustrate the architecture of a decision tree classifier in Fig. 2.6. The tree starts
with a root node containing the entire dataset, which is then split into two child
nodes by imposing a threshold condition on the values of the most informative
feature. Each child node is either a leaf node, which is terminal node that contains
the final prediction (class probabilities), or a decision node, which is further split
and the process repeats. A node becomes a leaf node if it is pure (contains only
one class) or if a stopping criterion is met, e.g., the number of samples in the node
falls below a certain value. The tree is grown until all nodes are leaf nodes.

There are different metrics to determine what feature and threshold should be
used to split the data at each node. For example, the information gain measures
the decrease in the entropy of the node due to the split. We define the entropy
S(X) of a node X as

S(X) = −
n∑︂

i=1
pi(X) log pi(X), (2.4)

where n is the number of classes in the data and pi(X) is the probability that a
randomly selected sample from X belongs to the class i. Denoting the entropies
of the left and right child nodes of X obtained by splitting the data on the feature
F with a threshold t as S(X|F ≤ t) and S(X|F > t), respectively, we write the
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information gain IG(X, F, t) of the split as

IG(X, F, t) = S(X) − Nleft

N
S(X|F ≤ t) − Nright

N
S(X|F > t), (2.5)

where Nleft and Nright are the numbers of samples in the left and right child nodes,
respectively. We obtain the best split at each node by maximizing the information
gain over all possible features and thresholds. For continuous features, there are
infinitely many thresholds to be considered. In practice, the search is limited to
the midpoints between the sorted unique values of the features.

Gini impurity, which represents the probability that a randomly selected
sample is misclassified if it is randomly labeled according to the class distribution
of the node, is another metric that is often used to find the best split. We define
the Gini impurity G(X) of a node X as

G(X) = 1 −
n∑︂

i=1
p2

i (X), (2.6)

where the meanings of the symbols are the same as in Eq. (2.4). The Gini
impurity reaches its minimum value of 0 when the node is pure. In analogy with
the information gain, the optimal split is obtained by minimizing the weighted sum
of the Gini impurities of the child nodes over all possible features and thresholds.

Decision tree classifiers have many favorable properties, such as interpretability,
ability to handle both numerical and categorical data, and invariance to the scaling
of the features. However, they are prone to overfitting, especially when the trees
are too deep. We can mitigate the effect of overfitting by setting a maximum
depth of the tree or requiring a minimum number of samples in the leaf nodes.
Another option is to fully grow the tree and then prune it by removing certain
branches that hurt the performance of the classifier on validation data. Despite
these regularization techniques, overfitting remains a major weakness of decision
tree classifiers.

Random forest classifiers address the issue of overfitting by averaging the
predictions from multiple decision trees. The idea is based on the central limit
theorem, which states that the squared error of the mean of N i.i.d. random
variables scales as 1/N and tends to zero as N increases. For this to hold for
the average of the predictions of an ensemble of decision trees, the trees should
be independent and the predictions should be uncorrelated. Random forests
achieve this by bootstrap aggregating (bagging) and attribute sampling. Bagging
corresponds to training each decision tree on a different subset of the training
data and aggregating the predictions of the trees by majority voting. In brief, we
construct the training sets for the trees by randomly sampling the original training
set with replacement until we have obtained a set of the same size, yielding 63.2%
unique samples in each training set on average. Attribute sampling introduces
additional randomness into the training process by considering only a random
subset of the features at each split, further increasing the independence of the
trees. The number of features to consider at each split is a hyperparameter of
the random forest classifier, and it is typically set to

√
M , where M is the total

number of features.
We illustrate the use of random forest classifiers on a model example. We

generated a synthetic dataset of 3000 samples using make_classification from
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Figure 2.7 Scatter plot of the first two features of the synthetic dataset.

the sklearn.datasets module in Python. The dataset consists of two classes
and ten features, three of which are informative. We randomly split the dataset
into two halves corresponding to the training and test sets. We show a scatter
plot of the first two features of the dataset in Fig. 2.7. We then trained the
scikit-learn implementation of the random forest classifier on the training set
using the default hyperparameters, with n_estimators = 100, max_depth = None,
and min_samples_leaf = 1. The classifier achieved an accuracy of 1.0 on the
training set and 0.954 on the test set, demonstrating the ability of random forest
classifiers to generalize well to unseen data. In Fig. 2.8, we visualize the decision
boundary of the classifier in the space of the first two features, setting the remaining
features equal to their mean values. The decision boundary is non-linear and
divides the feature space into regions predominantly occupied by either of the
two classes. We also evaluated the feature importances of the classifier, which
are proportional to the accumulated decrease in the Gini impurity due to the
splits on the respective features. We present the obtained feature importances in
Fig. 2.9, demonstrating the ability of the classifier to correctly identify the first
three features as the most informative.

We leverage the power of random forest classifiers in Chap. 5, where we
train them on low-dimensional representations of synthetic light curves of dark
companion binaries, contact binaries, and semidetached binaries to investigate the
possibility of distinguishing between these types of systems based on photometric
data alone.
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Figure 2.8 Decision boundary of the random forest classifier trained on the synthetic
data. The features that are not shown are set equal to their mean values. Overplotted
are the test samples colored by their true class.
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Figure 2.9 Feature importances of the random forest classifier trained on the synthetic
data.
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Abstract
Eclipsing Binaries (EBs) are known to be the source of most accurate stellar

parameters, which are important for testing theories of stellar evolution. With
improved quality and quantity of observations using space telescopes like TESS,
there is an urgent need for accuracy in modeling to obtain precise parameters. We
use the soon to be released PHOEBE 2.3 EB modeling package to test the robustness
and accuracy of parameters and their dependency on choice of parameters for
optimization.

3.1 Introduction
It is well known that eclipsing binaries (EBs) provide highly accurate

observations of stellar parameters, which is important for testing theories of star
evolution. Thanks to the increasingly more precise photometry of the past and
recent space missions (e.g. Kepler (Borucki 2016) and the Transiting Exoplanet
Survey Satellite (TESS ; Ricker et al. 2014)), it is now possible to observe and
study EBs in details never seen before (e.g. reflection from the companion,
lensing, or Doppler beaming). To understand the observations, one needs to
employ models capable of making predictions with sufficient precision, so that
it is possible to compare the observations with predicted theoretical values. A
popular example of such software is PHOEBE (Prša et al. 2016; Horvat et al. 2018;
Jones et al. 2020), a robust Python package for modeling of EB systems. The
latest release provides users with control over a large number of orbital and
physical parameters, which allows them to generate synthetic light curves and
radial velocities of the binary system. One can also take advantage of various
built-in or imported solvers (e.g. emcee) and optimizers (e.g. Nelder-Mead)
to solve the inverse problem—for a comprehensive introduction to the inverse
problem using PHOEBE see Conroy et al. (2020a).

For the purpose of this paper, we use the soon to be released version 2.3 of
PHOEBE to try and reproduce the results from the article by Maxted et al. (2020),

∗The following text is a postprint version of an article accepted for publication in
Contributions of the Astronomical Observatory Skalnaté Pleso. The first three authors
contributed equally to this work and are listed in alphabetical order. The published article is
available at https://www.astro.sk/caosp/Eedition/FullTexts/vol51no1/pp58-67.pdf.
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which examines a number of various methods to accurately estimate the masses
and radii for the stars in the binary system AI Phoenicis (AI Phe). This system,
which contains two well-separated, sharp-lined stars of comparable luminosity,
was first identified as an EB by Strohmeier (1972). It is an excellent target for
model testing as it is relatively bright (V = 8.6 mag), has a long orbital period
(P ≈ 24.59 days), and does not show any distinct spots nor flares associated with
increased magnetic activity of the components (e.g., Kirkby-Kent et al. 2016;
Maxted et al. 2020).

To compare the results by Maxted et al. (2020), we first carried out a number
of runs with varying underlying physical models, free parameters, and their
initial values (see Section 3.2). This further motivated us to design a controlled
experiment in order to systematically analyze the effect of parameterization
choice on the final light curve resulting from the model (Section 3.3). Finally,
in Section 3.4, we compare our results from the controlled experiment with the
Maxted et al. (2020) values, and we discuss our findings regarding the precision
of the employed model.

3.2 Observations and Modeling Set-up
The photometric data of AI Phe used in the subsequent analyses were obtained

under the TESS Guest Investigator Program (G011130, P.I. Maxted; G011083,
P.I. Helminiak; G011154, P.I. Prša) during Sector 2 of the TESS mission observed
in the 2-min cadence mode (TIC 102069549). The Sector was observed for 27 days
from 2458354.113259 BJD to 2458381.517643 BJD (covering both the primary
and secondary eclipse), and the data were reduced by the TESS data processing
pipeline developed by the Science Processing Operations Center (SPOC; Jenkins
et al. 2016). In our analyses, we used the Pre-search Data Conditioning Simple
Aperture Photometry (PDCSAP) light curve, which was additionally detrended
by fitting a chain of 5th order Legendre polynomials (Maxted et al. 2020, Section
2.6).

To get a sense of the effect of parameterization on the resulting values, we
independently solved the inverse problem for AI Phe by using a separate model
with its own set of free parameters and approximation of physical phenomena
(e.g. limb-darkening law, reflection, etc.). Following the approach from Maxted
et al. (2020), we initialized the parameters of the models with their estimates
from Kirkby-Kent et al. (2016), which are summarized in Table 3.1.

The initialized free parameters were used as input to the Nelder-Mead algorithm
(Nelder & Mead 1965) in order to refine the estimates. These estimates then
served as a starting point for initial distributions (either Gaussian or uniform) of
the free parameters entering the Markov Chain Monte Carlo (MCMC) algorithm
implemented in the emcee solver (Foreman-Mackey et al. 2013), which we used to
obtain posterior distributions of the relevant parameters. Furthermore, we used
the following software: Python (Van Rossum & Drake 2009), and the Python
libraries Matplotlib (Hunter 2007) and numpy (van der Walt et al. 2011).

Unfortunately, the individual runs did not yield satisfactory results as
the obtained values showed a wide spread. Due to the different choices of
parameterization and the large numbers of parameters, it was not possible to
associate the observed variation with a specific parameter or a set of parameters.
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Table 3.1 A list of the parameters of the binary system AI Phe that were adopted
from Kirkby-Kent et al. (2016).

Parameters Values
P (days) 24.592483
q 1.0417
e 0.1821
ω (o) 110.73
i (o) 88.502
M1 (M⊙) 1.1973
M2 (M⊙) 1.2473
R1 (R⊙) 1.835
R2 (R⊙) 2.912
T1 (K) 6310
T2 (K) 5237.3

Therefore, we decided to design a controlled experiment, in which we defined a
“nominal” run and then we examined the effect of altering the parameters one at
a time. For more information see the following section.

3.3 Controlled Experiment
The “nominal” run (which we shall denote “Run A”) served as a benchmark

for all the other runs (“B” through “K”), which we systematically varied from
Run A in a controlled fashion—that is, for each run, we altered one aspect of the
“nominal” set-up and kept the rest unchanged. For the definitions of Runs B–K,
see Table 3.2.

Table 3.2 A list of the individual runs and their differences from the “nominal” run.

Run Description
A The “nominal” run
B Logarithmic limb darkening law
C Sample/interpolate in phase-space
D Marginalization over albedos
E Marginalization over gravity darkening parameters
F Marginalization over gravity darkening parameters from

Claret & Bloemen (2011)
G Marginalization over noise nuissance parameter
H Marginalization over parameters q and a using radial velocities

posteriors from Gallenne et al. (2019) on q and a sin i
I Meshes on binary surfaces to estimate Lpb
J TESS light curve without detrending (PDCSAP)
K Masking the out-of-eclipse points

Run A uses the binary star model ellc (for more information see Maxted
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2016) with the quadratic limb-darkening law in the “lookup” mode (automatic
querying of coefficients from tables based on mean stellar values), and uses the
Stefan-Boltzmann approximation in the determination of the passband luminosity,
Lpb, which is needed to scale the fluxes and estimate the surface-brightness ratio.
Similar to our initial test runs, we initialized the parameters with values from
Kirkby-Kent et al. (2016), and then used the Nelder-Mead algorithm to refine
the estimates. After that, we used the emcee solver to sample over the radii, R1
and R2, (for the primary and secondary component), the eccentricity, e, along
with the argument of pericenter, ω0, (parameterized as e sin ω0 and e cos ω0), the
time of the primary eclipse, T0, the third light, l3, Lpb, the ratio of the effective
temperature of the secondary and primary component, Tsecondary/Tprimary, and the
orbital inclination, i, to get an estimate for their uncertainties. We present the
obtained results in Fig. 3.1.

3.4 Discussion of Results
Analysis of Runs A–K shows a rather limited spread of the obtained values,

with the individual parameters lying within each other’s uncertainties (see Fig. 3.1).
Seeing that the parameters have a fairly small effect on the final results, this
implies that the high variation of our initial runs was most likely not caused by
any specific parameter but rather by a combined effect of various parameterization
choices. That said, it is still clear that the choices made in Table 3.2 do influence
the final results.

As for the runs presented in Maxted et al. (2020), each of them employs a
distinct combination of the underlying physical model, optimization method and
parameterization (see Table 3.3). In principle, to properly compare our results
with those obtained by Maxted et al. (2020), the initial set-ups should also be
compared so that the effect of initial configuration choice can be distinguished
from other effects. Although we compare our results with all the runs listed in
Table 3.3 (see Fig. 3.1), we shall inspect in detail only the initial set-ups for Runs
A and S by Maxted, as they utilize the same physical binary model (ellc) and
optimization method (emcee) as our runs. Our runs use a wrapper for mapping of
PHOEBE parameterization onto ellc, and thus they minimize the effect of choice
(there is still the freedom of parameterization) and can serve as a “benchmark”
for our results. Moreover, Runs A and S by Maxted use essentially the same
initial set-ups, therefore it suffices to examine only the former (which additionally
corrects for instrumental systematic variations). To avoid confusion, we shall
prefix the runs by Maxted et al. (2020) with “M-” (e.g. Run A by Maxted becomes
Run M-A) in the rest of the section.

For the sake of simplicity, we shall compare the parameterization of Run M-A
only with our “nominal” Run A, which is assumed to be representative of the
other runs (for their definitions, see Table 3.2). In Table 3.4, we compare the free
parameters entering the emcee algorithm in the two runs. Apart from working
with mostly disjunct (but correlated) sets of free parameters, the runs also differ
in the limb-darkening law (power-2 for Run M-A and quadratic for Run A) and
the treatment of the stellar masses. Run A adopts the values 1.1973 M⊙ and
1.0417 from Kirkby-Kent et al. (2016) for the mass of the primary component
and the ratio of the masses of the secondary and primary component, respectively.
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Figure 3.1 A comparison between the parameters resulting from Runs A–K and those
obtained by Maxted et al. (2020). The filled rectangle represents the 1-σ spread around
the average of the runs from the Maxted et al. paper (see Table 3.3), while the dotted
box shows the same for our controlled runs. The inner box in the l3 vs i plot represents
a zoomed-in view on the parameter distribution.

In addition, the stellar masses are held constant at the Kirkby-Kent values as
they have minimal effect on the light curve. In contrast, Run M-A uses the
emcee posterior distributions of the free parameters together with observed radial
velocities of the binary system to get an estimate for the masses. Finally, both
runs hold the semi-major axis constant, with Run M-A assuming the value of
47.868 R⊙ and Run A keeping it equal to 47.941 R⊙.

Coming back to the general case, we expected our results to agree with those
obtained by Maxted et al. (2020) within the reported uncertainties despite the
differences in the initial set-ups of the runs. However, Fig. 3.1 shows that this is
not the case as none of the results from Runs A–K lies in the 1-sigma spread of the
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Table 3.3 An overview of the various runs analysed in the paper by Maxted et al.
(2020). The table was adopted from page 6 of the mentioned paper.

Run Investigator Model Optimization Limb-darkening Detrending Notes
A Maxted ellc emcee power-2 celerite

B Helminiak JKTEPOB L-M quadratic sine+poly Monte Carlo error
estimated

C Torres EB emcee quadratic spline Quadratic l.d. coeffs.
fixed

D ” ” ” ” ”
E Graczyk WD2007 L-M logarithmic – Fixed l.d. coefficients
F Johnston PHOEBE 1.0 emcee square-root –
G Prša PHOEBE 2.1 MCMC grid legendre
H Orosz ELC DE-MCMC logarithmic polynomial
I Orosz ” ” square-root ”
J Orosz ” ” quadratic ”
K Southworth JKTEBOP L-M quadratic polynomial
L Southworth JKTEBOP L-M cubic polynomial

S Maxted ellc emcee power-2 celerite Same as Run A with
SAP light curve

Table 3.4 A list of the free parameters entering the emcee algorithm in Runs M-A
and A. The “Nelder-Mead” column marks the parameters which were optimized before
running emcee, in order to speed-up the convergence of the posterior distributions.

Parameter Description Run M-A Run A
emcee Nelder-Mead emcee

e cos ω ✓ ✓
e sin ω ✓ ✓
f Flux scaling factor ✓
fc

√
e cos ω ✓

fs

√
e sin ω ✓

h1,F, h2,F
Parameters of the power-2 limb
darkening law for star 1 ✓

h1,K, h2,K
Parameters of the power-2 limb
darkening law for star 2 ✓

i Orbital inclination ✓ ✓ ✓
k Ratio of the radii ✓
l3 Third light ✓ ✓
Lpb Passband luminosity ✓
rsum Sum of the fractional radii ✓
R1 Radius of the primary star ✓ ✓
R2 Radius of the secondary star ✓ ✓
σf Standard error per observation ✓

ST
Surface brightness ratio averaged over
the stellar disks in the TESS band ✓

T0 Time of primary eclipse ✓ ✓ ✓
Tsecondary/Tprimary Ratio of the effective temperatures ✓ ✓

Maxted et al. (2020) values. As to the reason behind this discrepancy, multiple
explanations present themselves. First, due to time and computational constraints,
we stopped our emcee runs after appearing flat (converged to a single value) for
about 1500 iterations compared to ∼10000 iterations for the runs in Maxted et al.
(2020). Thus, there is a slight possibility that the runs might yet “jump” and
converge to some other values. All of our runs, however, were treated consistently
with each other, and still exhibit the influence of a number of decisions in the
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fitting process on the final results. Next, the mapping between the PHOEBE and
ellc parameterizations includes several assumptions and approximations, which
leads to residuals between the two forward models (see Fig. 3.2). This suggests
that the offset between the two sets of results might be caused by not employing
the native PHOEBE backend.

Figure 3.2 Residuals between the ellc and PHOEBE forward models for the nominal
case. This shows the influence of the approximations in mapping between the
parameterization of the different codes and likely explains the offset between the
results from our controlled sample and those in Maxted et al. (2020).

3.5 Conclusions
In this work, we tried to fit the parameters of AI Phoenicis from the TESS

light curve and to reproduce the values estimated by Maxted et al. (2020). First,
we independently modeled the light curves with individual sets of free parameters
and their approximations, e.g., difference between initialized parameters of binary
masses, radius, effective temperatures of the stars, or model of limb darkening,
reflections etc. Since our independent models did not lead to the same results
for the system parameters of AI Phe, we designed a controlled experiment to
systematically analyze the effect of the parameterization.

The parameters obtained from different runs were expected to be distributed
in a parameter space as found in Maxted et al. (2020) but we find our results to
be quite different in comparison to the accuracy that has been found before. We
suspect the discrepancy may be reconciled by running emcee for substantially
longer to allow further convergence and to switch to the native PHOEBE forward
model to avoid the assumptions and approximations in the translation between
parameterizations. Our results do, however, show the importance of several
different choices in the fitting process on the final parameter values and their
uncertainties.
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Abstract
The mass ratio q of a contact binary star evolves through mass transfer,

magnetic braking, and thermal relaxation oscillations to low values until it crosses
a critical threshold qmin. When this occurs, the binary undergoes the tidal Darwin
instability, leading to a rapid coalescence of the components and to an observable
brightening of the system. The distribution of q has not been measured on a
sufficiently large population of contact binary stars so far because determining q
for a single contact binary usually requires spectroscopy. As was shown previously,
however, it is possible to infer the mass-ratio distribution of the entire population
of contact binaries from the observed distribution of their light-curve amplitudes.
Employing Bayesian inference, we obtained a sample of contact binary candidates
from the Kepler Eclipsing Binary Catalog combined with data from Gaia and
estimates of effective temperatures. We assigned a probability of being a contact
binary of either late or early type to each candidate. Overall, our sample includes
about 300 late-type and 200 early-type contact binary candidates. We modeled
the amplitude distribution assuming that mass ratios are described by a power
law with an exponent b and a cutoff at qmin. We find qmin = 0.087+0.024

−0.015 for
late-type contact binaries with periods longer than 0.3 days. For late-type binaries
with shorter periods, we find qmin = 0.246+0.029

−0.046, but the sample is small. For
early-type contact binary stars with periods shorter than one day, we obtain
qmin = 0.030+0.018

−0.022. These results indicate a dependence of qmin on the structure
of the components, and they are broadly compatible with previous theoretical
predictions. We do not find any clear trends in b. Our method can easily be
extended to large samples of contact binaries from TESS and other space-based
surveys.

4.1 Introduction
A contact binary system consists of two stars that have filled their Roche

lobes and started sharing a single envelope. The luminosity generated by the
individual stars is efficiently distributed through the envelope, leading to a nearly
constant temperature across the whole shared surface, regardless of the masses of
the components (Lucy 1968b,a; Shu et al. 1976; Shu & Lubow 1981). If the orbital

∗The following text is a postprint version of an article accepted for publication in Astronomy
& Astrophysics. The published article is available at https://www.aanda.org/articles/aa/
pdf/2023/04/aa45613-22.pdf.
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inclination is sufficiently high, contact binaries can be observed as eclipsing W
Ursae Majoris (W UMa) or EW variables. In the rest of the paper, we use the
terms contact binary, W UMa variable, and EW variable interchangeably. The
class of W UMa variables is characterized by equal-depth primary and secondary
eclipses and by periods from approximately 0.22 days up to about one day (e.g.,
Rucinski 2007; Jiang et al. 2012). There are two subclasses of W UMa variables:
A type (or early type) and W type (or late type). In A-type systems, both
components are A or F stars, in contrast to G-K stars, which make up W-type
systems. Jayasinghe et al. (2020) showed that this dichotomy of W UMa variables
is most likely related to their location relative to the Kraft break, which is a sudden
drop in the average rotation rate of stars in the temperature range 6200–6700
K. The drop is caused by the different efficiency of magnetic braking for stars
possessing or lacking subsurface convection zones (Kraft 1967). The two subclasses
also differ in the slopes of their period–luminosity–color (PLC) relations, which
result from the blackbody relation applied to Roche-lobe filling stars (Rucinski
1994, 2004; Pawlak 2016). Additionally, Stępień & Gazeas (2012) argued that
W-type systems with periods shorter than 0.3 days form a distinct population that
is different from both A types and longer-period W types.

Observations suggest that the majority of contact binaries originate in triple
systems (e.g., Pribulla & Rucinski 2006; D’Angelo et al. 2006; Hwang 2023).
Some of these triples might condense directly out of the star-forming region, but
they are more likely the result of dynamical interaction between independent
binaries or higher multiples followed by the ejection of the excess stars (e.g.,
Bate et al. 2002; Tokovinin 2014; Antognini & Thompson 2016). Under the right
conditions, the inner binary in the triple system is subject to the von Zeipel–Lidov–
Kozai mechanism, forcing the orbital eccentricity and inclination to undergo long
oscillation cycles. The cycles lead to the extraction of orbital energy through tidal
friction and the inner orbit gradually shrinks (Lidov 1962; Kozai 1962; Eggleton
& Kiseleva-Eggleton 2001; Fabrycky & Tremaine 2007; Naoz 2016). This process
is no longer efficient when the orbital period of the inner binary reaches about
1–3 days. At that point, either magnetic braking or nuclear evolution of the more
massive component takes over, and coupled with tidal friction, it reduces the
period even further, leading to the formation of a contact binary system (Eggleton
& Kisseleva-Eggleton 2006; Hwang & Zakamska 2020). The relative importance
of the two mechanisms depends on the mass of the stars in the binary. Magnetic
braking is thought to be the driving force in the formation of W-type systems,
while nuclear evolution is most likely the dominant mechanism in the precontact
phase of A-type systems (Yıldız 2014).

After it is formed, a contact binary evolves toward low mass ratios q on the
timescale of the dominant evolutionary process. The evolution to small q is not
linear, and the binary goes through a series of thermal relaxation oscillations
(TROs), during which the flow of mass is temporarily reversed and the contact is
broken (Lucy 1976; Flannery 1976; Robertson & Eggleton 1977; Yakut & Eggleton
2005; Paczyński et al. 2006). The cycle length of TROs is set by the thermal
timescale of the secondary, which grows as q decreases. As a result, contact
binaries pile up at small q (Rucinski 2001). Stępień (2006, 2011) and Stępień &
Gazeas (2012) proposed an alternative to the TRO model, which assumes rapid
initial mass transfer followed by a mass-ratio inversion and linear evolution toward
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small q. Regardless of the actual mechanism, the trend toward unequal masses
continues until the binary becomes unstable due to the tidal Darwin instability,
which occurs when the spin angular momentum of the more massive component
exceeds one-third of the orbital angular momentum of the system (e.g., Darwin
1879; Hut 1980). The angular momentum criterion translates into a minimum
mass ratio qmin (Webbink 1976; Rasio 1995). The exact value of qmin depends
on the stellar structure and masses of the components, but theoretical models
generally predict values below 0.1 (Rasio 1995; Li & Zhang 2006; Arbutina 2007,
2009; Wadhwa et al. 2021). Alternatively, the binary can expand and overflow its
outer critical surface before it reaches qmin, leading to a rapid mass and angular
momentum loss through the vicinity of the L2 point (Webbink 1977; Shu et al.
1979; Stępień & Gazeas 2012; Pejcha et al. 2016b,a; Hubová & Pejcha 2019).
When the contact binary becomes unstable due to either of the two mechanisms, it
enters the dynamical common envelope phase, which is accompanied by a luminous
red nova transient (e.g., Tylenda et al. 2011; Ivanova et al. 2013b,a; Pejcha 2014;
Pejcha et al. 2017; MacLeod et al. 2017; Blagorodnova et al. 2021) and leads to a
single, rapidly rotating remnant (Paczyński et al. 2007).

The effects of all the evolutionary processes are imprinted on the mass-ratio
distribution of contact binaries. Since many of these processes, such as magnetic
braking and thermal and tidal instabilities, are not completely understood, we
might be able to illuminate them by studying the observed mass-ratio distribution
(Vilhu 1981). Surprisingly, little work has been done to observationally constrain
the distribution of q on sufficiently large and homogeneous samples of contact
binaries with a well-understood selection function. The reason is that to accurately
estimate q of a contact binary system, spectroscopy of both components is typically
required. Another option is to infer q directly from photometry, but this method
does not yield reliable results due to the degeneracy of contact binary light curves
with respect to q and the orbital inclination. An exception to this is the special case
of totally eclipsing contact systems, for which the degeneracy is lifted and q can be
reliably estimated, but precise photometry is required to resolve the shape of the
minimum for the low amplitudes expected from systems with small q (Rucinski
2001; Terrell & Wilson 2005; Hambálek & Pribulla 2013). Yakut & Eggleton (2005)
investigated parameters of about 100 binaries close to contact, but their systems
were collected from the literature and could be a very biased representation of
the actual population. More efforts have focused on the determination of qmin.
For several contact binaries, q is close to the theoretically predicted minimum
value (e.g., Paczyński et al. 2007; Li et al. 2021; Wadhwa et al. 2021; Popov &
Petrov 2022; Christopoulou et al. 2022), but it is unclear how these detections
relate to the entire population. Recently, Kobulnicky et al. (2022) performed a
computationally expensive Monte Carlo exploration of the light-curve parameter
space for about 200 contact binaries and found that qmin increases with orbital
period from 0.044 at 0.74 days to 0.15 at 2 days. However, none of these approaches
scale well to the large amounts of astronomical data that have recently become
available or will become available in the future.

To overcome these issues, Rucinski (2001) developed an independent method
for the inference of the mass-ratio distribution using only photometric amplitudes
extracted from contact binary light curves. The method does not require modeling
of each contact binary system in the sample individually, but rather it exploits
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the strong correlation between the shape of the mass-ratio distribution and the
photometric amplitude distribution of contact binary stars. Rucinski (2001)
constructed a sample of contact binaries from ground-based data and modeled the
mass-ratio distribution as a power law with a cutoff at qmin, but could not obtain
any reasonable constraint on qmin due to the insufficient sensitivity of ground-based
photometry, blending, and the limited size of their sample. Another complication is
that at low photometric amplitudes, contact binary samples can be contaminated
by unresolved companions, ellipsoidal variables, or various types of pulsating
stars (Skarka et al. 2022). The advantage of the method of Rucinski (2001) is
that it requires neither spectroscopy nor tedious modeling of individual objects,
and it is therefore very well suited for current and future massive high-precision
photometric surveys.

Our goal is to characterize the mass-ratio distribution and qmin of contact
binaries with the help of high-precision photometric amplitudes that are available
from space-borne telescopes. In Section 4.2 we formulate the ideas of Rucinski
(2001) in the framework of Bayesian inference. In Section 4.3 we describe our
initial sample of contact binary candidates from the Kepler Eclipsing Binary
Catalog. In Section 4.4 we present a Bayesian model for selecting a clean sample
of contact binaries using the PLC relation. In Section 4.5 we infer the mass-ratio
distribution of contact binary stars, and we investigate its dependence on various
parameters of our model. Finally, in Section 4.6 we summarize our findings and
discuss possible future extensions and applications of the method.

4.2 Method
The light curves of contact binary stars are special because their shapes depend

more strongly on the geometrical features of the system than on the intrinsic
properties of the stellar components. Due to the transfer of mass and energy
in the system, the two components have nearly identical effective temperatures,
rendering the light curve amplitude a almost exclusively dependent on the orbital
inclination i, the fill-out factor f , and the mass ratio q, that is, a = a(i, f, q).
The fill-out factor is usually defined by linearly relating the photospheric Roche
potential to the potentials of the L1 and L2 points, giving f = 0 for stars barely
touching at L1 and f = 1 for stars starting to overflow L2. The mass ratio is
defined as the ratio of the less massive star to the more massive component, that
is, q ≤ 1. Higher-order physical effects such as gravitational and limb darkening
do not significantly affect a, but rather influence the shape of the light curve.
These effects can be used to alleviate the degeneracy between i, f , and q, but their
usefulness is reduced by the necessary time-consuming modeling and the effects of
stellar spots. Depending on their distribution on the surface, spots can deform
the light curve and decrease or increase the observed a. The position and size of
spots changes over time, which suggests that estimates of a can be improved by
averaging data taken over longer periods of time. Furthermore, not the amplitude
of any single system, but the overall distribution constructed from many systems
is important.

In this section, we give a general overview of the procedure to obtain the
distribution of q from the observed distribution of a based on Rucinski (2001)
(Sect. 4.2.1). We describe the functional form of the mass-ratio distribution
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(Sect. 4.2.2) and the construction of light curves and amplitude distributions
(Sect. 4.2.3), and we present the Bayesian procedure for finding posteriors
(Sect. 4.2.4).

4.2.1 Overview of the method
The observed distribution of light-curve amplitudes A(a) for a constant f is

given by

A(a) =
∫︂

δ (a′(i, q) − a) I(i)Q(q)didq =

=
∫︂

I(i)Q(q(i, a))∂q

∂a
(a, i)dq,

(4.1)

where we assume that the joint probability distribution of (i, q, f) can be separated
into individual components, specifically, I(i) is the distribution of i, and Q(q) is
the distribution of q, which we aim to obtain. The second line of Eq. (4.1) works
out an explicit form for A(a) by assuming that a(i, q) can be inverted to give a
function q(i, a). This form of A(a) is similar to what was derived by Rucinski
(2001). For most of this work, we suppress the dependence of a(i, q) on f by
assuming that all contact binaries have the same value of f . Detailed light-curve
models as well as the TRO theory suggest that f is typically small, 0 ≲ f ≲ 0.5,
and that its distribution has a poorly defined maximum around f ≈ 0.25 (Lucy
1973; Rucinski 1973, 1997). However, there are some indications that early-type
binaries have higher f than late-type ones (Mochnacki 1981). Still, we chose
f = 0.25 as the default value, and we investigate the sensitivity of our results to
f in Sect. 4.5.4.

In Fig. 4.1 we outline our procedure for obtaining Q(q) from A(a). The
key assumptions are that the inclinations are distributed isotropically, that is,
I(i) ∝ sin i (Fig. 4.1a), and that the function a(i, f, q) can be calculated with a
binary light-curve synthesis code (Fig. 4.1b). For a constant q, the distribution of
a is peaked near the maximum a achievable for the given q (Fig. 4.1c). Following
Rucinski (2001), we modeled Q(q) as a power law with a cutoff at qmin (Fig. 4.1d,
Sect. 4.5.3). The existence of qmin gives rise to a local maximum in A(a) and
prevents A(a) from diverging as a −→ 0. The value of qmin is directly related to
the location of the local maximum, while the exponent in the power law controls
the overall shape and slope of A(a) (Fig. 4.1e).

By employing a specific goodness-of-fit metric, it is possible to find the optimal
value of the two parameters that best match the observed data. Rucinski (2001)
used χ2-minimization applied to the binned histogram of A(a). This is problematic,
because binning leads to loss of information and the result might depend on the
specific choice of the bins. In this work, we use Bayesian inference, which is
applicable to both binned and continuous data and works even with small samples.
By applying the Bayes theorem, we obtain the posterior distributions of the mass-
ratio distribution parameters (Fig. 4.1f). By marginalizing over the posteriors, we
smooth out the amplitude distribution and the mass-ratio distribution, obtaining
their 1σ credible intervals in the process (Figs. 4.1g and 4.1h).
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Figure 4.1 Summary of our method for the inference of the mass-ratio distribution of
contact binary stars. (a) Assuming the orbits of contact binary systems are randomly
distributed in space, the probability of observing a system with an inclination i is
proportional to sin i. (b) By using light-curve synthesis models, we derive the contact
binary photometric amplitude a as a function of i for different values of the mass
ratio q. (c) By marginalizing out the inclination, we obtain a as a function of q. (d)
We approximate the mass-ratio distribution by a power law with index b and a sharp
cutoff at the minimum mass ratio qmin. (e) By using the power law to marginalize out
q, we construct the full photometric amplitude distribution, with its shape strongly
depending on the value of qmin. (f) We apply Bayesian inference to fit the amplitude
distribution to a sample of contact binary stars, yielding the posterior distribution of
the parameters of the model. (g) We marginalize over the posterior and get the mean
amplitude distribution (solid green line) and its 1σ credible interval (green band). (h)
Repeating the same procedure, we obtain the mean mass-ratio distribution and its 1σ
credible interval.
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4.2.2 Mass-ratio distribution
Motivated by Rucinski (2001), we considered two different power-law

prescriptions for Q(q), which should capture the essential manifestations of
contact binary evolution, specifically, the pile-up of objects at small q and a cutoff
at qmin. The two prescriptions are

Q1(q; Θ) =
⎧⎨⎩

1
K

q−b if qmin < q ≤ 1,

0 else,
(4.2a)

Q2(q; Θ) =
⎧⎨⎩

1
K

(1 − q)b if qmin < q ≤ 1,

0 else,
(4.2b)

where qmin represents the theoretical minimum q cutoff due to the Darwin
instability, b controls the slope of the power law, and Θ = (qmin, b). The parameter
b encodes the effect of nuclear evolution, magnetic braking, and TROs. The
normalization constant K ensures that Q1 and Q2 integrate to unity.

4.2.3 Amplitude distribution and light-curve synthesis
After defining I(i) and Q(q; Θ), we could use Eq. (4.1) to obtain A(a; Θ), but

this requires inverting a(i, q) to give q(i, a) and calculating its derivative with
respect to a. This is difficult, because a(i, q) is not an analytic function of its
arguments and a forward light-curve synthesis model is needed to get from (i, q, f)
to a. Moreover, the derivative must be calculated numerically, which amplifies
any numerical noise introduced in the calculation of q(i, a). As Rucinski (2001)
showed, a much simpler option is to sample the joint distribution I(i) × Q(q; Θ)
and obtain A(a; Θ) by repeated evaluation of a(i, q).

We used PHOEBE version 2.3.58 (Prša & Zwitter 2005; Prša et al. 2016;
Conroy et al. 2020b) to derive the functional form of a. We started by initializing
the default contact binary supplied by PHOEBE. To make f unconstrained, we
flipped the constraints on the potential of the envelope and the equivalent radius.
Next, we changed the effective temperature of both components to 5700 K and
we set the passband to “Kepler:mean”. We did not change the default limb
darkening and gravitational brightening coefficients. We evaluated this model on
a three-dimensional grid of i, q, and f , and for each value of f, we performed
linear interpolation of a as a function of i and q. The grid covers 0 ≤ i ≤ 90◦ with
a step of 0.5◦ and 0.01 ≤ q ≤ 1 with a step of 0.01. We do not expect f to have
a significant impact on the shape of the light curves, therefore, we considered
only six discrete values f = (0.15, 0.25, 0.5, 0.75, and 0.99). We show the linearly
interpolated a as a function of i and q in Fig. 4.2.

Next, we obtained the synthetic distribution of a from Q(q; Θ) by randomly
sampling the joint distribution of i and q, I(i)Q(q), for a given f, and we evaluated
a for each sample using linear interpolation. To get from the synthetic amplitude
distribution to A(a; Θ), we employed kernel density estimation (KDE), which is
a nonparametric approach for estimating the probability density function from
a finite sample by replacing each localized observation with a delocalized kernel
function. By performing KDE with a normal kernel of bandwidth h, we obtained
an analytical approximation of A(a; Θ).
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Figure 4.2 Dependence of the contact binary photometric amplitude on the orbital
inclination i for different fixed values of the mass ratio q (left) and vice versa (right),
conditional on distinct values of the fill-out factor f . For each panel, the transition from
blue to red indicates the gradual increase in the fixed parameter from its minimum to
its maximum value.
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For our KDE, we chose to use a linear combination of Gaussians centered on
the drawn amplitudes with standard deviations given by h. For this to converge
to A(a; Θ) as the number of drawn samples goes to infinity, we ought to correct
for the boundary effect, which is a downward bias near the boundaries of the
KDE support. The effect is present only when the modeled distribution is nonzero
near the boundaries, which is the case for A(a −→ 0), as demonstrated by Rucinski
(2001). To mitigate the boundary effect, we followed the procedure for a first-degree
boundary correction outlined by Jones (1993). We also adopted a sufficiently
high value for the right boundary, so that A(a; Θ) effectively goes to zero as
a approaches this value (a ≳ 3 mag). This left us with a correctly calibrated
analytical approximation of A(a; Θ), which we denote by Â(a; Θ).

The stochastic process involved in the generation of the synthetic distribution
entering the KDE means that Â(a; Θ) is not a deterministic function of Θ. In other
words, repeated evaluation of Â(a; Θ) for the same Θ will give slightly different
results depending on the number of samples entering the KDE. We explore the
nondeterministic property of Â(a; Θ) in more detail in Appendix 4.A.

4.2.4 Likelihood construction
Given a sample of contact binaries, we can infer the mass-ratio distribution

by assuming a specific Q(q; Θ) and fitting the resulting A(a; Θ) to the observed
distribution of photometric amplitudes. In the Bayesian framework, this is achieved
by evaluating the Bayes theorem and updating the prior distribution of the model
parameters based on the observed data, resulting in the posterior distribution of
the parameters.

The most essential ingredient entering the Bayes theorem is the likelihood
function L (model parameters|data), which is the probability of observing the
data given the parameters of the model, viewed as a function of these parameters.
Assuming the observed amplitudes are drawn independently from A(a; Θ), the
likelihood L (Θ|{ak}N

k=1) of Θ given a sample of N amplitudes {ak}N
k=1 is the

product of the individual generative distributions weighted by the probability of
each object being a contact binary star,

L (Θ|{ak}N
k=1) =

N∏︂
k=1

pCB,k

∫︂
Â(a; Θ)N (a; ak, σak

)da, (4.3)

where pCB,k is the weight of the k-th object and we use the KDE approximation
Â(a; Θ) instead of the true distribution A(a; Θ). In addition to the sampling
noise of Â(a; Θ), each observed ak also comes with its own uncertainty σak

, as we
discuss in more detail in Sect. 4.3.3. To factor the uncertainties into the model,
we convolved Â(a; Θ) with normalized Gaussians N (a; ak, σak

), which we used
to model the uncertainty of the observed amplitudes. This procedure smears the
likelihood in Eq. (4.3) even further. Fortunately, the specific form of Â(a; Θ) given
by a sum of Gaussians makes it relatively fast and straightforward to perform the
convolutions.

We used emcee (Foreman-Mackey et al. 2013) to sample the posterior
distribution of the parameters. As a compromise between accuracy and
computational cost, most runs were carried out with a KDE smoothing bandwidth
h = 0.02 and KDE number of Gaussians n = 10000. Running on 16 logical cores
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in parallel, a typical run with 16 walkers and 2500 steps takes 30 to 50 minutes
to complete. We discarded the first 500 steps of each chain as burn in. We also
thinned the chains by a factor of 20, which is higher than the autocorrelation
time of most of our runs (Table 4.C.1).

4.3 Data
Our method for the inference of the mass-ratio distribution requires highly

precise photometric measurements of contact binary light curves. At the time
of writing, no catalog of contact binaries is available that would satisfy this
requirement. For this reason, we constructed our own sample of contact binaries
based on the photometry from Kepler (Borucki et al. 2010). First, we took
the Kepler Eclipsing Binary Catalog (KEBC; Prša et al. 2011; Kirk et al. 2016;
Abdul-Masih et al. 2016) (Sect. 4.3.1) and combined it with data from Gaia and
other catalogs (Sect. 4.3.2). Finally, we determined the photometric amplitude of
each object in the sample using detrended Kepler fluxes (Sect. 4.3.3).

4.3.1 Kepler Eclipsing Binary Catalog
The third revision of the KEBC contains 2920 eclipsing and ellipsoidal systems

in the primary mission field of view of Kepler. The online version of the catalog∗

also includes the data from the K2 mission (K2 Engineering and C1–C5; Howell
et al. 2014), increasing the total number of observed systems to 3584. The selection
function of stars observed by Kepler is well understood (Batalha et al. 2010),
and we mitigated its effects by considering late- and early-type contact binaries
separately (Sect. 4.4). The construction of the KEBC involved manual filtering
of objects that might affect the selection efficiency as a function of amplitude.
However, the photometric precision of Kepler allows comfortable detection of
signals with a ≪ 0.01 mag, which is much smaller than a ≈ 0.2 mag, where we
expect the local maximum of the amplitude distribution (Fig. 4.1). We therefore
did not perform any correction of the sample, effectively assuming that the
selection efficiency is 100% in the range of amplitudes of our interest.

In addition to basic astrometric and photometric data, the catalog also contains
output from the Kepler Eclipsing Binary Pipeline, which is a collection of several
methods that are used to extract additional information from the data. For
instance, locally linear embedding (LLE; Matijevič et al. 2012) is used to obtain
the morph parameter that quantifies the detachedness of binary systems. Values
of morph between 0 and 0.5 indicate a detached binary system, while over-contact
systems usually have values from 0.7 to 0.8. The interval from 0.5 to 0.7 is
occupied by semidetached systems, and values above 0.8 but below 1 correspond
to ellipsoidal variables. The pipeline also includes polyfit, which is a polynomial-
chain approximation used for light-curve fitting (Prša et al. 2008). Polyfit yields
normalized fluxes, which can be used to calculate light-curve amplitudes.

∗http://keplerEBs.villanova.edu
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4.3.2 Cross-match with other catalogs
Using the CDS XMatch Service with a matching radius of 5′′, we combined the

KEBC with Gaia DR2 (Gaia Collaboration et al. 2018) and Gaia EDR3 (Brown
et al. 2021). Gaia DR3 was not available at the time when we finalized the data
we used for this study. After matching, we had multiple Gaia objects for some of
the KEBC objects. To ensure uniqueness of the match, we calculated the relative
fluxes of the individual Gaia sources and retained only the objects with relative
Gaia EDR3 fluxes higher than 99%. We obtained luminosities from Gaia DR2
(field lum_val). These luminosities are based on the Apsis–FLAME pipeline, which
assumes single stars. This is not entirely appropriate for contact binaries, and we
discuss possible improvements in Sect. 4.6. Next, we cross-matched the sample
with a catalog of stellar effective temperatures for objects in Gaia DR2 constructed
by Bai et al. (2019). They obtained the temperatures by performing regression
on stars from four spectroscopic surveys: the Large Sky Area Multi-Object Fiber
Spectroscopic Telescope, the Sloan Extension for Galactic Understanding and
Exploration, the Apache Point Observatory Galactic Evolution Experiment, and
the Radial Velocity Extension. Bai et al. (2019) found that the temperatures
estimated in this way are precise to about 200 K. Finally, we excluded any system
for which information about its period, luminosity, or effective temperature was
lacking, which reduced our sample to 2353 objects.

4.3.3 Determination of amplitudes
The KEBC does not specify the photometric amplitudes of the systems, but it

is possible to calculate them from polyfit, which is available for most objects in
the catalog. However, polyfit does not return amplitude uncertainties resulting
from time variation of light curves, and in some cases, it even yields incorrect
amplitudes. For this reason, we chose to estimate the amplitudes directly from
the detrended fluxes included in the catalog. For each object observed during the
primary mission of Kepler, we took the long-cadence data and divided them into
blocks corresponding to 18 Kepler quarters (Q0–Q17). Most quarters represent
∼90 days of observation. For systems observed during the K2 mission, we divided
the data into ten equal-size blocks. Before we tried to estimate the amplitudes,
we ran some checks to ensure the completeness of the phase-folded light curves
observed during the individual blocks, and we excluded the blocks with very few
data around phase 0.

Within each block, we estimated the mean minimum flux. First, we sorted the
data by ascending flux. Then, we iterated over the individual data points and
applied local sigma clipping, taking only a close neighborhood of each data point
in the phase and flux space into account. When the flux of the data point was
not within three standard deviations from the mean of its neighbors, we excluded
it as an outlier. In the opposite case, we stopped the iteration and proceeded to
the next step.

Second, based on the distribution of the fluxes in the neighborhood of the
selected data point, we distinguished between light curves with wide, narrow,
and sharp minima. For each type of light curve, we adopted a different method
for the calculation of the minimum flux. In the case of wide minima, which are
characteristic of continuously varying light curves relevant to our analysis, we
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Figure 4.3 Procedure for estimating light-curve amplitudes. Top panel: Detrended
Kepler light curve of the contact binary KIC 7871200 observed during quarter Q4.
The dashed line is the result of polyfit. The data points labeled “Detected extrema”
correspond to the minimum and maximum normalized fluxes resulting from the procedure
described in Sect. 4.3.3. Middle panel: Photometric amplitudes extracted from the light
curves observed during the individual Kepler quarters. The solid black line represents the
arithmetic average of the values. Bottom panel: Comparison of photometric amplitudes
resulting from our procedure (x-axis) and polyfit (y-axis). The slope of the line indicates
a downward bias in the estimates from polyfit, most likely resulting from its tendency
to underestimate the depth of light-curve minima.
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approximated the vicinity of the data point selected in the previous step with a
second-degree polynomial and we localized its minimum.

We estimated the mean maximum flux in a similar manner, with the exception
of some systems, for which we took the median of the observed fluxes as the
maximum. The top panel in Fig. 4.3 illustrates the procedure on the light curve of
contact binary KIC 7871200. Using the Pogson equation, we then calculated the
amplitude within each block and obtained the mean amplitude and its standard
deviation over all blocks (Fig. 4.3, middle panel). For some systems, only one or
two blocks passed the completeness checks, making it difficult to reliably estimate
the amplitude uncertainty. For these systems, we calculated the amplitude on
the full data set and assumed an uncertainty of 4%, which is comparable to the
median uncertainty of ∼3.6% obtained from the systems with more than two
complete blocks.

After we determined the mean amplitude for each object in the sample, we
compared our method with polyfit (Fig. 4.3, bottom panel), and we fit the relation
between the two with a straight line. The slope of the line indicates a downward
bias in the estimates from polyfit. The origin of the bias is not obvious, but
visual inspection of randomly chosen light curves reveals the tendency of polyfit
to underestimate the depth of light-curve minima.

4.4 Identification of contaminants
When a classification based on light-curve morphology is attempted, a sample

of contact binaries can become contaminated by various types of pulsating variable
stars, rotating spotted stars, or ellipsoidal variables. By ellipsoidal variables we
mean binaries with at least one tidally deformed star, but without a Roche-
overflowing shared envelope. This contamination is especially prominent at low
amplitudes, where a clean sample is crucial for determining qmin. The KEBC has
a disproportionately large number of objects with a < 0.01 mag, and it is unlikely
that most of them are true contact binaries.

To obtain a clean sample of contact binaries, we employed additional
information in the form of a PLC relation, which is a combined constraint
based on the Roche geometry, the third Kepler law, and the Stefan–Boltzmann
law. For example, ellipsoidal variables at a given color and period will appear
as underluminous compared to contact binaries because the area of their
stellar surface is smaller. Rotating spotted stars at a given luminosity and
temperature can have a range of rotational periods that are often longer than
the corresponding Keplerian orbital period. Similarly, genuine contact binaries
with bright unresolved companions that contaminate the Kepler photometry and
reduce the observed amplitude also appear as outliers to the PLC relation. This
is important because a large fraction of contact binaries should have a companion
(Pribulla & Rucinski 2006; D’Angelo et al. 2006). Because of the steepness of the
mass–luminosity relation on the main sequence, only companions with masses
similar to or higher than the mass of the contact binary influence the amplitude
and cause the object to deviate from the PLC relation. By identifying these
outliers and removing them from our sample, we mitigated the effect of third light
on the observed distribution of photometric amplitudes. We already removed the
stars with bright companions resolved by Gaia from our sample in Sect. 4.3.2.
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By modeling the population of contact binaries as a tube in the PLC space,
we filtered out most of the contaminants. We followed the general approach
for Bayesian data fitting and mixture modeling outlined in Hogg et al. (2010).
That is, we viewed our sample as a mixture of a genuine signal (contact binaries)
and background noise (everything except contact binaries). We modeled the
components using different generative models, with each model conditional on
its own set of parameters. Our analysis was based on luminosities from Gaia
DR2, which are obtained under the assumption that the sources are single stars.
Despite this drawback, we show in the following sections that our filtering method
works even with these data.

We give a general overview of the method in Sect. 4.4.1, and we construct
the generative model of the problem in Sect. 4.4.2. In Sect. 4.4.3 we obtain the
posteriors of the model parameters, and we calculate the probability of being
a contact binary of either late or early type for each object in our sample in
Sect. 4.4.4. Finally, we present our clean sample of contact binaries in Sect. 4.4.5.

4.4.1 Intrinsic scatter of the PLC relation
We model the PLC relation as a straight line in the πλτ -space, where π =

log(P/d), λ = log(L/L⊙), and τ = log(Teff/K). The relation is not exact, but
rather has an intrinsic scatter, which means that the data points can depart from
the relation even if we were able to observe all variables with perfect accuracy.
Intrinsic scatter is generically present whenever some additional unmeasured
quantities affect the measurements but are not accounted for in the relation.

The standard practice is to model the observed data as a single realization of
a sequence of independent and identically distributed random variables, in which
case the probability distribution of the whole sample is simply the product of
the probability distributions from which the individual data points are drawn.
In reality, noise is also present, and each data point is measured with a finite
uncertainty. This implies that unlike the idealized noise-free data, the actually
observed data are not distributed according to the intrinsic-scatter distribution,
but rather each observed data point is drawn from an effective distribution given
by the convolution of the intrinsic scatter with the uncertainty distribution of the
data point. This is true if the individual data points are drawn independently,
which we assumed implicitly.

We modeled the effective distribution in the framework of Bayesian inference.
In principle, the effective distribution is different for each data point, but when
we assume that all data points share the same uncertainty distribution, then
formally, they are all drawn from the same effective distribution. In the absence of
uncertainty measurements or a physically motivated prescription for the intrinsic
scatter, it is more practical to directly model the effective distribution than the
two convolution components individually. This allows us to view the originally
noisy data generated from the intrinsic scatter as though they were noise free, but
generated from the effective distribution, which implicitly reflects the uncertainty
properties of the data.
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4.4.2 Generative model
We constructed the generative model of the signal as the product of the effective

distributions evaluated for each data point, but since the data are effectively noise
free, we may, at least formally, fix the coordinates of the data points along a chosen
dimension and instead construct a generative model conditional on these values.
The difference is that the conditional generative model yields the probability of
drawing a random sample with the same observed coordinates along the chosen
dimension as the original sample, while the full generative model imposes no
such constraint. This reduces the complexity of our problem significantly, as it
is much easier to parametrically model a sequence of normalized cuts through
the effective distribution than the effective distribution itself. However, this
is efficient only when the parameters of the normalized cuts vary continuously
with the independent variable, as otherwise the number of the parameters of the
conditional generative model would scale with the size of the sample.

Traditionally, the variable that is known with the smallest uncertainty is
treated as the independent variable. If we were to follow this approach for the
signal, we would model the effective distribution of λ and τ conditional on π
because π can be measured with the highest accuracy. However, the choice of the
independent variable is not that essential when the effective distribution rather
than the intrinsic scatter is modeled directly. Motivated by this, we constructed
the generative model for the signal conditional on λ instead of π. We emphasize
that our point here is not an accurate characterization of the PLC relation, but
rather efficient distinction between contact binaries and contaminants.

In Fig. 4.4 we show the Hertzsprung–Russell diagram of our sample, which
reveals that most data points lie on the main sequence. We excised the data points
that are located above the line λ = 9.09τ − 33.18 (solid black line in Fig. 4.4).
The periods of most of the removed objects are longer than a few days (bottom
panel in Fig. 4.4), which indicates subgiant or giant components. In addition,
visual inspection of the light curves reveals that many of the removed objects are
similar to heartbeat stars or have other light curve peculiarities. This reduces the
number of the objects in the sample to 2172 and allows us to adopt a particularly
simple conditional generative model for the background, where the background
data points are generated from a plane with a nonzero Gaussian thickness in τ .

We modeled the conditional effective distribution of the signal as a two-
dimensional uncorrelated Gaussian distribution in π and τ centered on the PLC
relation. The total conditional effective distribution p(π, τ |λ, θ) of a single data
point is a weighted sum of the conditional effective distributions for the signal
pS(π, τ |λ, θ) and the background noise pB(π, τ |λ, θ),

p(π, τ |λ, θ) = XpS(π, τ |λ, θ) + (1 − X)pB(π, τ |λ, θ), (4.4)

where X is the weight parameter, and θ is a vector of all the model parameters.
We write the conditional effective distributions as

pS(π, τ |λ, θ) = N (π; µSπ, σSπ)N (τ ; µSτ , σSτ ), (4.5)

pB(π, τ |λ, θ) =
⎧⎨⎩

N (τ ;µBτ ,σBτ )
πmax−πmin

if πmin ≤ τ ≤ πmax,

0 else,
(4.6)
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where we suppressed the dependence of the parameters of the Gaussians on λ. The
specific form of Eq. (4.6) comes from the assumption that the background noise
is distributed uniformly between the minimum and maximum observed values of
π, denoted by πmin and πmax.

To account for a possible change in the slope of the PLC relation, we considered
a separate effective distribution for late-type and early-type contact binaries. The
two distributions are formally the same, but each has its own set of parameters
and is applicable only to a subset of the signal, disjunct from the other subset.
We suspect that the dividing line between the samples will be along the Kraft
break, but instead of using previously determined dividing lines such as the one
from Jayasinghe et al. (2020), we included the location of the break in our model
as one of the parameters. The only constraint was that the transition in the PLC
relation from late types to early types is smooth. From the modeling point of
view, it is more convenient to model the break along the λ-axis rather than τ -axis,
as λ acts as the independent variable. This is possible because the PLC relation
provides us with a unique mapping between τ and π. In general, we need two
separate models for the background as well, because the parameters of the noise
may also change at the Kraft break. However, in the case of the noise, we did not
require that the transition is continuous.

Using subscripts 1 and 2 to refer to the parameters of the models below
and above the break, we assumed the following functional dependencies for the
parameters of the Gaussians:

µSπ =
⎧⎨⎩απ1 + βπ1λ if λ ≤ λK,

απ1 + (βπ1 − βπ2)λK + βπ2λ if λ > λK,
(4.7)

σSπ =
⎧⎨⎩ασπ1 + βσπ1λ if λ ≤ λK,

ασπ2 + βσπ2λ if λ > λK,
(4.8)

µSτ =
⎧⎨⎩ατ1 + βτ1λ if λ ≤ λK,

ατ1 + (βτ1 − βτ2)λK + βτ2λ if λ > λK,
(4.9)

σSτ =
⎧⎨⎩αστ1 + βστ1λ if λ ≤ λK,

αστ2 + βστ2λ if λ > λK,
(4.10)

µBτ =
⎧⎨⎩m1 + l1λ if λ ≤ λK,

m2 + l2λ if λ > λK,
(4.11)

σBτ =
⎧⎨⎩w1 if λ ≤ λK,

w2 if λ > λK,
(4.12)

where λK denotes the location of the break along λ. The prescriptions for µSπ and
µSτ above the break (λ > λK) derive from the requirement that the PLC relation
is continuous at the transition.

Since we employed conditional generative models instead of full generative
models, we only required that the total conditional effective distribution is
normalized within a given slice of constant λ and not in the whole parameter
space. This allowed us to model the weight parameter X as a function of λ, and
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the simplest nontrivial choice is to assume linear dependence,

X =
⎧⎨⎩αX1 + βX1λ if λ ≤ λK,

αX2 + βX2λ if λ > λK.
(4.13)

We emphasize that this choice does not imply that the probability of being a
contact binary for each individual object depends linearly on λ. Instead, X sets
the relative weight of the signal and the noise for the objects within a given slice,
and the linear dependence on λ is just the simplest nontrivial model that can be
employed. In total, our model has 25 parameters, which are listed together with
their definitions in Table 4.B.1.

Denoting the jth object in our sample of M objects (M ≥ N) with the
subscript j, we can write the likelihood of the total conditional generative model
as

L (θ|{πj, τj}M
j=1) =

M∏︂
j=1

p(πj, τj|λj, θ), (4.14)

where the curly brackets are shorthand for iterating over all objects in the sample.

4.4.3 Posterior sampling
Following the Bayesian approach, we modeled the parameters of the model as

random variables. We assumed that the prior distribution p(θ) is separable, and
we assigned a uniform prior to each parameter. Using the Bayes theorem,

p(θ|{πj, τj}M
j=1) =

L (θ|{πj, τj}M
j=1)p(θ)

p({πj, τj}M
j=1)

, (4.15)

we then arrive at the joint posterior distribution p(θ|{πj, τj}M
j=1).

We used emcee to sample the posterior distribution. With a total of 50 walkers,
we ran the sampler for 160 000 steps to ensure that the chains converge. The steps
in the chains were generated via differential evolution, and we discarded the first
10000 steps as burn-in. To reduce autocorrelation, we only considered every 300th
sample in the chains. We optimized the efficiency by sampling the distribution in
two steps. First, we prescribed rather broad priors for the parameters and ran
the sampler for a few thousand steps. Then we restricted the priors based on the
results from the initial run, and we ran the sampler again for the full 160 000
steps. Fig. 4.B.1 and 4.B.2 show the chain plots and corner plots resulting from
the run. We present the median values of the parameters together with their 16th
and 84th percentiles in Table 4.B.1.

4.4.4 Probability calculation
After we obtained the posterior distribution, we assigned the probability of

being a contact binary star to each data point in our sample. The idea is that
given a sample in a slice of constant λ, the probability of being a contact binary
system is simply the conditional probability of being drawn from the conditional
effective distribution of the signal. In general, the probability of the jth data point
being a contact binary depends on the value of θ, and a straightforward derivation
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Table 4.1 Photometric amplitudes and probabilities of being a contact binary of
either late or early type for the objects in our sample.

KIC/EPIC a (mag) σa (mag) pCBL pCBE
1026032 0.085360 0.001293 0.0000 0.0000
1026957 0.001115 0.000429 0.0000 0.0000
1432214 0.098101 0.000707 0.0000 0.0000
1571511 0.022127 0.000116 0.0000 0.0000
1572353 0.116464 0.004660 0.9474 0.0000

... ... ... ... ...
212163353 0.098400 — 0.0000 0.0000
212175535 0.080279 — 0.9402 0.0000

Notes. The full table is available online. For some systems, we were not able to reliably
estimate their amplitude uncertainties. In our analysis, we adopted an uncertainty of
4% for these systems (Sect. 4.3.3).

for a mixture of two distributions with a fixed θ within a slice of constant λ gives
us

pCB,j(θ) = XjpS(πj, τj|λj, θ)
XjpS(πj, τj|λj, θ) + (1 − Xj)pB(πj, τj|λj, θ) , (4.16)

where Xj ≡ X(λj, θ). When we replace the total contact binary effective
distribution pS(πj, τj|λj, θ) with the part purely below or above the break and
assume that the distribution is zero for the data points on the opposite side of
the break, we obtain the probabilities pCBL,j(θ) and pCBE,j(θ) of being a contact
binary of either late or early type.

To remove the dependence on θ, we calculated the average probability using
the thinned posterior sample that we obtained from emcee. This amounts to
marginalizing out the parameters of the conditional generative model using the
posterior probability distribution, that is,

pCB,j =
∫︂

pCB,j(θ)p(θ|{πj, τj}M
j=1)dθ. (4.17)

Again, if we replaced pCB,j with pCBL,j or pCBE,j , we would obtain the marginalized
probabilities of being a contact binary of either late or early type.

4.4.5 Clean sample of contact binaries
In Table 4.1 we show the photometric amplitudes and calculated probabilities

for the objects in our sample. In Fig. 4.5 we show a projection of our sample to
the πτ -plane, where the color of each point indicates the probability of being a
contact binary of either late or early type. Our model assigns late-type contact
binaries to a tight locus around the PLC relation, while for early-type binaries
the scatter is significantly larger. This is consistent with previous results (e.g.,
Jayasinghe et al. 2020). Similarly, the position of the break in the PLC relation
matches the results of Jayasinghe et al. (2020) remarkably well, even though no
prior information other than the existence of a break along the PLC relation
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Figure 4.5 Projection of our sample to the πτ -plane. The color of each object
corresponds to the probability of being a late-type (top panel) or early-type (bottom
panel) contact binary star. The solid lines show our best-fit PLC relations, and the
dotted line shows the position of the Kraft break from Jayasinghe et al. (2020).
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Figure 4.6 Period distribution of contact binaries in our sample. Top panel: Our full
late-type and early-type samples (filled histogram) and their high-amplitude subsamples
(dashed lines). Middle panel: Comparison of our samples with the KEBC, where the
dashed black line marks the full KEBC, and the filled histogram shows the period
distribution of objects with morph ≥ 0.7. Bottom panel: Our sample in comparison
to the samples from OGLE (Soszyński et al. 2016), ASAS-SN (Jayasinghe et al. 2018,
2019, 2020), and the recent catalog by Green et al. (2022). The histograms in all panels
are appropriately rescaled and, where available, weighted by the probability of being a
contact binary of the respective type.
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Figure 4.7 Amplitude distribution of the late-type (dashed orange line) and early-
type (dashed red line) contact binaries in our cleaned sample. The dashed black line
shows the amplitude distribution of the full KEBC, and the solid black line shows the
distribution of the KEBC with morph ≥ 0.7. The late- and early-type histograms are
weighted by the probability of being a contact binary of the respective type.

enters our model. This confirms our suspicion that the slope of the PLC relation
changes at the Kraft break.

With these results, we can assess the quality of our sample and compare it
to other existing samples of contact binaries. In Fig. 4.6 we show the period
distribution of our clean sample of contact binaries. In the top panel, we compare
the period distributions of our late- and early-type samples with their high-
amplitude subsamples (a > 0.15 mag). The distributions of high-amplitude
objects closely follow the distributions of the full samples. This implies that
low-amplitude objects must also follow similar distributions, and therefore, they
are consistent with being contact binaries. In the middle panel, we compare
our samples with the unprocessed KEBC. The full KEBC substantially differs
for periods longer than about 0.5 days, which is due to the presence of detached
binaries. These can be efficiently removed by considering a cut on the morph
parameter. However, the modified KEBC still differs from our sample, especially
at short periods. In the bottom panel of Fig. 4.6, we compare our combined
late- and early-type sample with other contact binary samples from the literature.
The Galactic bulge contact binary sample of Soszyński et al. (2016) peaks at
noticeably longer periods than what we find. Since Soszyński et al. (2016) also
reported some short-period objects, it is not clear whether the shift is entirely
due to the greater distance of the Galactic bulge compared to the Kepler field
or if the population is truly different. The period shift is in contrast with the
contact binary sample from ASAS-SN (Jayasinghe et al. 2018, 2019, 2020; Pawlak
et al. 2019), which peaks at around the same periods as our sample, and agrees
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Figure 4.8 Relative amplitude uncertainty σa/a as a function of amplitude a for our
late- and early-type samples. We show only objects with amplitude estimates in at least
five Kepler quarters, morph ≥ 0.7, and a probability of belonging to either type greater
than 0.5.

relatively well with our sample even for P ≳ 0.6 d, which are typical periods for
early-type contact binaries. Recently, Green et al. (2022) published a sample of
ellipsoidal and contact binaries, and their period distribution closely follows the
distribution of our combined sample for log P ≲ −0.2. For longer periods, their
sample appears to have fewer early-type objects than what we find. This is most
likely due to a decreased efficiency of their selection algorithm for these systems.

In Fig. 4.7 we show the amplitude distributions of our two samples compared to
the KEBC catalog. The figure shows that both the full KEBC and its morph ≥ 0.7
subsample have a high fraction of objects with very small a < 0.05 mag, while
our samples show a smaller fraction at these amplitudes. We suggest that this
is due to the contaminants in the KEBC that were removed by our model. We
emphasize that correctly obtaining the low-amplitude part of the distribution is
important to model the mass-ratio distribution of contact binary stars properly.

In Fig. 4.8 we show the relative amplitude uncertainty σa/a of our two samples.
For the vast majority of objects, σa/a < 0.1. The relative uncertainty is higher
only for several objects with very small amplitudes, which does not significantly
affect our results. It is interesting to note that the late-type sample shows
systematically higher amplitude uncertainties than the early-type sample. We can
explain this observation by the appearance, disappearance, or migration of spots
on the surfaces of late-type stars, which causes variations of the amplitude over
time. We show an example of these amplitude variations in the middle panel of
Fig. 4.3. Unless spots on contact binaries exhibit strong variability on timescales
longer than the duration of the Kepler mission, our results in Fig. 4.8 imply that
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Table 4.2 List of samples constructed from our Bayesian model for the identification
of contact binary stars.

Sample Type Prob. cutoff P (days) Eff. size
CB1p50 Late 0.5 — 258.99
CB1p60 Late 0.6 — 256.27
CB1p70 Late 0.7 — 249.00
CB1p80 Late 0.8 — 228.04
CB2p10 Late 0.1 ≤ 0.3 62.40
CB2p20 Late 0.2 ≤ 0.3 61.96
CB2p30 Late 0.3 ≤ 0.3 61.38
CB2p40 Late 0.4 ≤ 0.3 61.07
CB2p50 Late 0.5 ≤ 0.3 60.59
CB3p50 Late 0.5 > 0.3 198.41
CB3p60 Late 0.6 > 0.3 197.30
CB3p70 Late 0.7 > 0.3 192.69
CB3p80 Late 0.8 > 0.3 177.76
CB4p10 Early 0.1 < 1 106.42
CB4p20 Early 0.2 < 1 105.56
CB4p30 Early 0.3 < 1 105.56
CB4p40 Early 0.4 < 1 104.91
CB4p50 Early 0.5 < 1 104.42
CB5p10 Early 0.1 — 162.62
CB5p20 Early 0.2 — 161.55
CB5p30 Early 0.3 — 160.8
CB5p40 Early 0.4 — 159.49
CB5p50 Early 0.5 — 158.58

Notes. We require morph ≥ 0.7 for all samples.

our method is not significantly affected by stellar spots.

4.5 Results
In this section, we present the results of our method for the inference of the

mass-ratio distribution of contact binary stars. In Sect. 4.5.1 we define various
populations of contact binaries and provide an overview of all models that we
investigated. Next, we compare Bayes factors of the individual models and select
a fiducial model for each population (Sect. 4.5.2). We present and discuss the
mass-ratio distributions of contact binaries for the fiducial set of parameters in
Sect. 4.5.3. Finally, we discuss the dependence of our results on the probability
cutoffs distinguishing contact binaries from contaminants (Sect. 4.5.6), on our
choice of the default fill-out factor (Sect. 4.5.4), on the splitting period for late-type
binaries (Sect. 4.5.5), and on the hyperparameters of our model (Sect. 4.5.7).
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Figure 4.9 Chain plots and corner plots resulting from the run Q2CB3p80. We ran
the sampler for a total of 2500 steps, but we discarded the first 500 steps as burn-in,
and we thinned the chains by a factor of 20.

4.5.1 Populations of contact binary stars
We are interested in estimating the mass-ratio distribution for different

populations of contact binary stars. For late-type binaries, we distinguish between
the full population (CB1) and the populations of binaries with periods shorter
(CB2) or longer (CB3) than Psplit = 0.3 days (see Stępień & Gazeas 2012, for
a justification of this period division). For early-type binaries, we distinguish
between a population of early-type contact binaries with P < 1 day (CB4) and
an extended population containing all early-type contact binaries without a
constraint on the period (CB5). These populations are separate, but overlap. By
imposing various probability cutoffs on the individual populations, we obtain a
number of samples with varying levels of contamination. In Table 4.2 we list the
samples together with their definitions and their sizes. The effective sample size
is calculated as ∑︁k pCB,k for k belonging to the given sample and having pCB,k

higher than the probability cutoff. To maximize the size of the samples while
keeping the contamination as low as possible, we limited the maximum probability
cutoffs for populations CB2, CB4, and CB5 to 0.5. In contrast, the high number
of late-type contact binaries with periods around 0.37 days (Paczyński et al. 2006)
allowed us to consider cutoffs up to 0.8 for populations CB1 and CB3.

For each population CB1–CB5, we also investigated the dependence on the
mass-ratio prescription, fill-out factor, and various model hyperparameters. In
Table 4.C.1 we give a complete list of our model runs. The runs labeled Q1
and Q2 used the power-law prescriptions Q1 and Q2 , respectively, as defined in
Eq. (4.2). All Q1 and Q2 runs were carried out with the default values of f = 0.25,
h = 0.02, and n = 10000. The runs labeled F investigated the dependence of the
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results on the fill-out factor (Sect. 4.5.4), while the runs starting with S examined
how the choice of Psplit affects the mass-ratio distribution of the two late-type
subpopulations (Sect. 4.5.5). Finally, the runs labeled H studied the dependence
on the hyperparameters h and n (Sect. 4.5.7).

4.5.2 Fiducial models and Bayes factors
For each model, we determined the posterior distribution of qmin and b.

In Fig. 4.9 we illustrate our results by showing the chain plots and posterior
distributions for the run Q2CB3p80. The remaining Q1 and Q2 posteriors can be
found in Figure 4.C.1. The number of steps is sufficient for the chains to converge
and the parameters qmin and b show no significant correlation.

To select a fiducial model for each population, we need to determine which
power-law prescription for the mass-ratio distribution fits the observed data better.
We achieved this by calculating the posterior Bayes factors (Aitkin 1991) for each
pair of Q1 and Q2 runs defined on the same sample. In other words, for each
sample, we compared the goodness-of-fit of the two power laws by taking the ratio
of the posterior average of the corresponding model likelihoods. We calibrated the
Bayes factors according to the scale proposed by Aitkin (1991), which suggests
that posterior Bayes factors of 20, 100, or 1000 constitute a strong, very strong, or
an overwhelming weight of sample evidence in favor of the model with the higher
value. We present the results of the comparison in Table 4.3.

In most cases, the second power-law prescription Q2 is preferred over Q1, or the
comparison is inconclusive. The exception is population CB5, where Q1 performs
better than Q2. However, the weight of sample evidence is reversed when the
Bayes factor is evaluated on population CB4 (the evidence varies from very strong
to strong, depending on the employed probability cutoff), suggesting that the
preference of Q1 is most likely due to an increased contamination of the CB5
samples in the long-period tail of the contact binary distribution. For populations
CB1 and CB3, the Bayes factors are between 10 and 16, which gives substantial
but not strong evidence in favor of Q2. The analysis is inconclusive for population
CB2, where the Bayes factors are very close to unity for all probability cutoffs.
Overall, our results indicate a general preference for Q2, which agrees with the
results reported by Rucinski (2001). Based on these results, the fiducial models
for our three populations are Q2CB2p50, Q2CB3p80, and Q2CB4p50.

Now we address the issue of whether our separate treatment of short-period
contact binaries is supported by the data. In other words, we wish to quantify
whether fitting the two populations separately and doubling the number of free
parameters gives better results than fitting the entire population with a single
model. For late-type binaries, we calculated the posterior Bayes factor comparing
the combined Q2CB2p50+Q2CB3p50 model with model Q2CB1p50. This is
justified because the two samples CB2p50 and CB3p50 are disjoint. The calculation
yields a Bayes factor of about 71, providing strong evidence in favor of treating
short-period and long-period late-type contact binaries separately. For early-type
binaries, the limited size of the CB5 samples unfortunately prevents us from
performing a similar analysis for periods shorter and longer than one day. Taking
also the increased contamination of our CB5 population into account, which likely
occurs due to the strongly decreasing frequency of contact binaries with period,
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Table 4.3 Posterior Bayes factors for the two power-law prescriptions Q1 and Q2,
different contact binary populations (CB1–CB5), and different probability cutoffs.

Models Posterior Bayes factor
Q2CB1p50 vs. Q1CB1p50 15.02
Q2CB1p60 vs. Q1CB1p60 10.76
Q2CB1p70 vs. Q1CB1p70 14.87
Q2CB1p80 vs. Q1CB1p80 12.33
Q2CB2p10 vs. Q1CB2p10 1.36
Q2CB2p20 vs. Q1CB2p20 1.17
Q2CB2p30 vs. Q1CB2p30 1.04
Q2CB2p40 vs. Q1CB2p40 1.00
Q2CB2p50 vs. Q1CB2p50 1.03
Q2CB3p50 vs. Q1CB3p50 10.55
Q2CB3p60 vs. Q1CB3p60 11.44
Q2CB3p70 vs. Q1CB3p70 16.53
Q2CB3p80 vs. Q1CB3p80 15.67
Q2CB4p10 vs. Q1CB4p10 178.49
Q2CB4p20 vs. Q1CB4p20 49.31
Q2CB4p30 vs. Q1CB4p30 47.32
Q2CB4p40 vs. Q1CB4p40 32.58
Q2CB4p50 vs. Q1CB4p50 30.44
Q2CB5p10 vs. Q1CB5p10 0.00
Q2CB5p20 vs. Q1CB5p20 0.01
Q2CB5p30 vs. Q1CB5p30 0.02
Q2CB5p40 vs. Q1CB5p40 0.05
Q2CB5p50 vs. Q1CB5p50 0.08
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we completely discarded CB5 from our analysis. From this point on, we only
consider three distinct contact binary populations: CB2, CB3, and CB4.

4.5.3 Mass-ratio distribution of contact binary stars
We now present our main results. In Fig. 4.10 we show the inferred amplitude

and mass-ratio distributions for the three distinct contact binary populations
CB2, CB3, and CB4. The distributions were obtained by marginalizing over the
posteriors of the model parameters. We show the posterior distributions of qmin
and b for the three populations in Fig. 4.11. In Fig. 4.12 we compare the fiducial
values of qmin and b with the values obtained from models with different choices
for some parameters, specifically, the mass-ratio distribution prescription (Q1 vs.
Q2), fill-out factor, and hyperparameters h and n. We show the full posterior
distributions of all models in Appendix 4.C. The fiducial models give for the
minimum mass ratio

qmin =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0.246+0.029

−0.046 CB2 (late-type binaries with P ≤ 0.3 d),

0.087+0.024
−0.015 CB3 (late-type binaries with P > 0.3 d),

0.030+0.018
−0.022 CB4 (early-type binaries with P < 1 d),

(4.18)

and for the slope of the mass-ratio distribution

b =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
7.66+4.45

−3.15 CB2 (late-type binaries with P ≤ 0.3 d),

3.84+0.96
−0.80 CB3 (late-type binaries with P > 0.3 d),

5.82+1.52
−1.30 CB4 (early-type binaries with P < 1 d).

(4.19)

Figs. 4.10 and 4.11 show that qmin varies noticeably between our populations.
There is a clear trend that qmin decreases with increasing P . The same holds for the
mean values of q calculated from the marginalized mass-ratio distributions, which
go from qmean = 0.33+0.21

−0.19 for population CB2 to qmean = 0.25+0.06
−0.06 for population

CB3 and qmean = 0.16+0.04
−0.04 for population CB4. Using the PLC relation, we can

translate the trend in qmin into effective temperatures and luminosities: higher
temperatures, luminosities, and larger radii imply lower values of qmin. The
shape of the CB4 fiducial posterior indicates that qmin for this populations is
also consistent with being zero, but the limited size and the relatively high
contamination of the CB4 fiducial sample prevent us from performing further
tests of this hypothesis. We do not observe any clear trend in the values of the
power-law exponent b. We discuss the astrophysical implications of our findings
in Sect. 4.6.

4.5.4 Dependence on fill-out factor
Following Rucinski (2001), we carried out all our Q1 and Q2 runs with f = 0.25.

To analyze the impact of f on the fiducial models, we performed the runs FCB2–
FCB4, which considered five different values of f : 0.15, 0.25, 0.5, 0.75, and 0.99.
Fig. 4.12 shows that the value of qmin strongly depends on f in populations CB2
and CB3, with larger f pushing qmin to lower values. Although the credible
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Figure 4.10 Amplitude (left panel) and mass-ratio (right panel) distributions for
our three populations CB2, CB3, and CB4. The solid black lines in the left panel
show weighted histograms of the observed data. The solid blue, green, and red lines
in both panels are obtained by marginalizing out the functional form of the Q2 power
law, and the dashed lines show Q2 evaluated for the median values of b and qmin. The
colored bands represent the 1σ credible intervals around the marginalized amplitude
and mass-ratio distributions. The vertical dotted lines in the right panel compare the
median values of qmin between the three populations.
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Figure 4.12 Dependence of qmin and b on the mass-ratio prescription Q1, fill-out
factor f , and hyperparameters of the model h and n. The colored bands represent the
1σ credible intervals resulting from the fiducial models for the three populations. We
show the full posterior distributions in Figs. 4.C.1, 4.C.2, and 4.C.5.
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Figure 4.13 Dependence of qmin on the splitting period for populations CB2 and
CB3. The colored bands represent the 1σ credible intervals of the fiducial models. For
the purpose of this plot, we lowered the probability cutoff of the fiducial model for
population CB3 from 0.8 to 0.5. The full posterior is plotted in Fig. 4.C.3.

intervals overlap for f ≤ 0.75, the trend is clear. For population CB4, the values
of qmin are consistent within the 1σ credible intervals across the whole range of f .
Moreover, the power-law index b grows with f for all three populations.

In principle, we should be able to obtain the best-fitting value of f by evaluating
the posterior Bayes factors of the models. In this specific case, all Bayes factors
are below 5, rendering the analysis inconclusive. Consequently, we are not able to
infer the optimal value of f from our data and we kept f = 0.25 based on previous
detailed models and theoretical considerations (Sect. 4.2.1).

4.5.5 Dependence on splitting period
The choice to distinguish between the populations of late-type contact binaries

with P ≤ 0.3 d and P > 0.3 d is motivated by Stępień & Gazeas (2012), who
argued that binaries with P ≲ 0.3 d do not live long enough to evolve to small q ,
but instead merge at moderate q due to the L2 overflow. Realistically, we expect
a smooth transition between the two populations at around Psplit ≈ 0.3 d. If this
is the case, qmin of population CB2 should gradually shift to lower values with
increasing Psplit and increase or remain unchanged for Psplit < 0.3 d. Conversely,
qmin of population CB3 should not significantly change when Psplit is increased,
but it should shift to higher values for Psplit < 0.3 d.

To investigate this hypothesis, we carried out runs SCB2 and SCB3, which
examine how the fiducial results for populations CB2 and CB3 change when we
shift Psplit from 0.30 d to 0.25 d or 0.35 d. To increase the size of the CB3 sample,
we performed the analysis with a probability cutoff of 0.5 instead of the fiducial
value 0.8. We summarize the output from the runs in Fig. 4.13, where we compare
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Figure 4.14 Dependence of qmin and b for populations CB2, CB3, and CB4 on different
probability cutoffs separating contact binaries from contaminants. The colored bands
represent the 1σ credible intervals of the fiducial models. We show the full posterior
distributions in Fig. 4.C.4.

the resulting values of qmin. The trends of qmin are consistent with our hypothesis
overall, indicating that the observed difference between qmin of the two late-type
populations is genuine and not just an artifact of the choice of Psplit.

4.5.6 Dependence on probability cutoffs
In Fig. 4.14 we show how the fiducial values of qmin and b change when we

gradually decrease the probability cutoff that separates contact binaries from
contaminants. The values are consistent with each other, and we do not observe any
jumps or discontinuous changes in the full posterior distributions (Fig. 4.C.4). In
most cases, as the probability cutoff increases, the posteriors simply become more
concentrated toward the central point, which is the desired behavior. Population
CB4 is an exception to this rule, with its qmin posteriors peaking close to zero
or exactly at zero, depending on the employed probability cutoff. The CB4
posteriors of qmin appear to be cut off from the left, which is typically seen when
the parameter is actually zero, but the prior enforces that it takes non-negative
values.
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4.5.7 Dependence on hyperparameters
In defining the fiducial models, we had to make specific choices for the

hyperparameters. To ensure that the obtained results are robust with respect
to these choices, we carried out a number of runs with different values of the
hyperparameters. In Fig. 4.12 we investigate the dependence of qmin and b on h
and n. We tried three different values of h (runs H1CB2–CB4 with h = 0.01, 0.02,
and 0.03) and three different values of n (runs H2CB2–CB4 with n = 10000, 50000,
and n = 100000). The resulting qmin and b are consistent with each other and
almost perfectly overlap within their 1σ credible intervals. Detailed investigation
of the posterior distributions in Fig. 4.C.5 shows that the overall shapes and
positions remain very similar. Our results indicate that n = 10000 is already
enough for the runs to converge to the correct solution, which justifies our fiducial
choice of this value.

4.6 Discussions and conclusions
We have extended and reformulated the method for the estimation of the

mass-ratio distribution of contact binary stars developed by Rucinski (2001),
which exploits the simplicity of contact binary light curves. Setting the fill-out
factor to f = 0.25 and assuming that binary orbits are randomly oriented in
space, we obtained a semi-parametric mapping between the mass-ratio distribution
and the photometric amplitude distribution (Sect. 4.2). We approximated the
mass-ratio distribution as a power law with a slope b and a sharp cutoff at qmin,
and using Bayesian inference, we obtained the posterior distributions of these
parameters. This is possible because the position of the local maximum in the
amplitude distribution is strongly correlated with the value of qmin (Fig. 4.1). For
the method to work, a sufficiently large sample of contact binaries is required
that is complete for amplitudes a ≳ 0.1 mag or less. Such data sets have only
recently become available from Kepler and other space-based telescopes. The
advantage of the method is that it infers qmin and b purely from photometry, while
other methods typically require much more costly spectroscopic observations or
exhaustive modeling of stars one by one.

We constructed our sample from the Kepler Eclipsing Binary Catalog (Prša
et al. 2011; Abdul-Masih et al. 2016; Kirk et al. 2016), which we combined
with luminosities from Gaia DR2 (Gaia Collaboration et al. 2018) and effective
temperatures from Bai et al. (2019) (Sect. 4.3). To filter out detached and
semidetached binaries as well as other types of contaminating variable stars,
we made use of the PLC relation (Sect. 4.4). We distinguished between late-
and early-type contact binaries, and we assumed that both types follow their
own PLC relations, with a continuous transition between the two relations. We
further assumed that the individual contact binaries are scattered around their
respective PLC relations, and we modeled the contaminating noise as Gaussian
(Sect. 4.4). Employing Bayesian inference, we assigned a probability of being a
contact binary of either late or early type to each object in the sample (Fig. 4.5).
Late-type contact binaries have systematically larger amplitude scatter than
early-type objects (Fig. 4.8), which is most likely due to the presence of time-
varying stellar spots in the atmospheres of late-type stars. Seeing that the relative
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amplitude uncertainty remains below 10% for most objects, we conclude that
this phenomenon does not significantly affect our method for the inference of the
mass-ratio distribution.

Using different period cutoffs, we constructed five separate but overlapping
populations of contact binary stars (Sect. 4.5.1): all late-type contact binaries
(CB1), late-type contact binaries with P ≤ 0.3 d (CB2), late-type contact binaries
with P > 0.3 d (CB3), early-type contact binaries with P < 1 d (CB4), and all
early-type contact binaries with no constraint on the period (CB5). For each
population, we defined multiple samples by imposing different cutoffs on the
probability of being a contact binary of either type (Table 4.2). We fit each sample
with two different power-law prescriptions for the mass-ratio distribution, as
defined in Eq. (4.2), and for each sample, we calculated the posterior Bayes factor
comparing the goodness-of-fit of the two prescriptions (Sect.4.5.2). In most cases,
the second prescription Q2 ∝ (1 − q)b yields a better fit than the first prescription
Q1 ∝ q−b (Tab. 4.3), but the evidence is not strong, with most Bayes factors at or
below 20. A notable exception is the CB5 population, where Q1 outperformed
Q2. This result is most likely affected by the increased contamination of the CB5
samples. The population of late-type contact binaries with P ≤ 0.3 d (CB2) does
not favor either prescription. Only the CB4 population gives conclusive evidence in
support of Q2 against Q1. In conclusion, we observe a marginally strong evidence
in support of Q2, which agrees with the previous results of Rucinski (2001).

Adopting Q2 as the mass-ratio distribution of contact binary stars, we justified
the separate treatment of populations CB2 and CB3 by calculating the posterior
Bayes factor of the combined CB2+CB3 model and the model for CB1. We found
very strong evidence in support of the combined model (Sect. 4.5.2 and 4.5.5).
Consequently, we investigated the two populations CB2 and CB3 separately, and
we discarded the combined population CB1. We also discarded CB5 due to the
increased contamination of its samples. In summary, we were left with three
distinct contact binary populations CB2, CB3, and CB4.

Our results for qmin and b are summarized in Sect. 4.5.3. We find that qmin
decreases with increasing orbital period. For late-type binaries with P ≤ 0.3 d,
we find a relatively high qmin = 0.246+0.029

−0.046. For normal late-type binaries, we find
qmin = 0.087+0.024

−0.015. For early-type binaries with P < 1 d, we find qmin = 0.030+0.018
−0.022.

Our results are compatible with theoretical predictions of qmin. Specifically, our
qmin for late-type binaries with P > 0.3 d agrees with theoretical values for solar-
type stars, where Rasio (1995) predicted qmin = 0.08 for an n = 3 polytrope. It is
also known that qmin scales with the stellar gyration radius, which is relatively
small for early-type stars (Rasio 1995; Wadhwa et al. 2021; Blagorodnova et al.
2021). This agrees with our very small qmin for this population. However, given
the credible interval of our result, we cannot definitely claim detection of the
signature of the Darwin instability in the early-type population.

The trend of decreasing qmin with increasing orbital period agrees with the
conclusions of Stępień & Gazeas (2012), who argued that this is due to the
different timescales of mass transfer and angular momentum loss in low-mass
contact binaries and more massive systems. The relatively moderate mass transfer
in low-mass (short-period) contact binaries is insufficient to make the binary
unstable to the Darwin instability, but instead, it leads to the overflow of the outer
Roche lobe, resulting in the loss of mass angular momentum through the L2 point
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and culminating with merger at comparatively larger q than in the case of the
Darwin instability. In contrast, Kobulnicky et al. (2022) argued for an opposite
trend, where qmin increases with period for P ≳ 0.8 d. Their model assumed that
new contact binary systems form with q ≈ 1 and conservatively evolve toward
longer periods and smaller q until the onset of the Darwin instability.

We find different values of the power-law index b for different populations, but
unlike for qmin, we do not observe a clear trend with the orbital period. For Q2,
Rucinski (2001) reported b = 6±2, which is consistent with our results for all three
populations (CB2: b = 7.66+4.45

−3.15, CB3: b = 3.84+0.96
−0.80, and CB4: b = 5.82+1.52

−1.30).
We note that Rucinski (2001) did not distinguish between late- and early-type
contact binaries and that their sample is complete only for a ≳ 0.3 mag. Our
relative uncertainties in b for populations CB3 and CB4 are only mildly smaller
than those reported by Rucinski (2001), which is understandable given the similar
sample sizes. Larger samples of contact binaries are required to better constrain
b. This could be quite rewarding because b encodes physical processes such as
nuclear evolution, magnetic braking, and thermal relaxation oscillations (Vilhu
1981). Rucinski (2001) indeed suggested that b is related to the thermal timescale
of the secondary star and thus to the exponent of its mass–luminosity relation.

Our results show that qmin noticeably depends on the value of the fill-out
factor f (Sect. 4.5.4 and Fig. 4.12), but our analysis of the posterior Bayes factors
was inconclusive due to the insufficient evidence in favor of any specific f (all
factors were below 5). Consequently, we were not able to constrain f from our
data. Nonetheless, thermal relaxation oscillations theory suggests that f should
be small and similar to our default value f = 0.25 (Lucy 1973; Rucinski 1973,
1997; Paczyński et al. 2006). Still, there is some evidence that f is different
for late- and early-type binaries (Mochnacki 1981). In addition to the fill-out
factor, we also verified that our estimates of b and qmin are fairly robust with
respect to the splitting period Psplit between populations CB2 and CB3 (Sect. 4.5.5
and Fig. 4.13), the probability cutoff (Sect. 4.5.6 and Fig. 4.14), and the KDE
bandwidth h and number of Gaussians n involved in the construction of the
amplitude distribution (Sect. 4.5.7 and Fig. 4.12).

The method presented here can easily be extended to the large samples of
contact binaries expected from TESS and other space-based telescopes. In addition
to giving better estimates for the parameters of the current model, these samples
will enable characterization of more complex models that better capture the
underlying mass-ratio distribution of contact binaries. One way to improve the
current model is to include the splitting period as a parameter in the generative
distribution constructed in Sect. 4.4.2. With this modification, we could fit
the mass-ratio distributions of populations CB2 and CB3 simultaneously, and
by marginalizing out the exact location of the split, we would obtain Psplit-free
estimates of qmin for the two populations.

A straightforward improvement of our approach would come from using more
precise values for effective temperatures and luminosities. The recently released
Gaia DR3 (Gaia Collaboration et al. 2022) provides a significant improvement
over DR2, but unfortunately, the physical parameters continue to be based on
single-star models (Creevey et al. 2022). We showed here that this assumption
does not significantly affect our results, but improvements in this area could
provide better distinction of contact binaries from various contaminants.
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Another exciting possibility comes from combining space-borne all-sky
photometry from TESS or Gaia with data from massive spectroscopic surveys
such as SDSS-V (Kollmeier et al. 2019), WEAVE (Dalton et al. 2012), 4MOST (de
Jong et al. 2019), LAMOST (Zhao et al. 2012), or Gaia RVS (Katz et al. 2022).
These spectroscopic surveys often secure several spectra of each object. Although
obtaining complete orbital and physical solution is still hard with these data alone
(e.g., Price-Whelan et al. 2018), even a constraint with a low signal-to-noise ratio
of the radial velocity amplitude or the flux ratio of the two components might
greatly increase the statistical power of our model by excluding ranges of possible
inclinations for each binary. Operationally, we would simultaneously fit the model
to the observed amplitude and mass-ratio distributions, effectively yielding a
nonuniform prior on the parameters of the power law. Ultimately, the scalability
and flexibility of our method make it a powerful tool for the inference of the
mass-ratio distribution and the minimum mass ratio of contact binary stars.

We thank Matthew Green for sharing their sample of contact binaries and our referee,
Panagiota-Eleftheria Christopoulou, for her helpful comments. This work has been supported
by INTER-EXCELLENCE grant LTAUSA18093 from the Ministry of Education, Youth, and
Sports. The research of OP has been supported also by Horizon 2020 ERC Starting Grant
‘Cat-In-hAT’ (grant agreement no. 803158). This research made use of the cross-match service
provided by CDS, Strasbourg.
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4.A Evaluation of likelihood
When the amplitude distribution in Sect. 4.2 was evaluated, we were only

able to construct Â(a; Θ), which is an analytical approximation to A(a; Θ). The
approximation involves performing KDE on a finite number of randomly drawn
amplitudes, which introduces a stochastic element into the process, transforming
Â(a; Θ) into a random variable. This means that the likelihood in Eq. (4.3) does
not yield a unique value for a given Θ and {ak}N

k=1, but is actually a random
variable itself.

As illustrated in Fig. 4.A.1, the noise in Â(a; Θ) can be significantly reduced by
employing a sufficiently large number of samples, but for the stochastic behavior
to completely disappear, we would have to use the same input for KDE in each
evaluation of Â(a, Θ). Unfortunately, none of these options are feasible; increasing
the number of drawn amplitudes comes at huge computational cost due to the
repeated log-likelihood evaluation during an MCMC run, and fixing the KDE
input requires an analysis of which amplitude sample leads to the most accurate
representation of A(a), which cannot be achieved in any practical way.

Instead of trying to minimize the stochastic effect, we fully embraced the
nondeterministic nature of Â(a; Θ) and modeled it as a sampling noise in A(a; Θ).
We note that the scatter in A(a; Θ) is different from the scatter in the PLC relation
that we investigated in Sect. 4.4.1. The scatter in A(a; Θ) smears the distribution
itself, while the scatter in the PLC relation affects an originally exact relation
and transforms it into a distribution. In principle, the extent to which A(a; Θ) is
smeared depends on the value of Θ, which further adds to the complexity of the
problem. The smearing can be equivalently viewed as an implicit dependence of
Â(a; Θ) on an additional 2n parameters corresponding to the (i, q) positions of
the n samples entering the KDE algorithm. Denoting the individual parameters
by Yl, with l going from 1 to 2n, we can write the likelihood as

L̂ (Θ, {Yl}2n
l=1|{ak}N

k=1) =
N∏︂

k=1
pCB,k

∫︂
Â(ak; Θ, {Yl}2n

l=1)N (a; ak, σak
)da. (4.A.1)

By including these parameters, we remove the stochasticity and the likelihood
becomes deterministic again. The additional parameters are distributed according
to the joint distribution of i and q, which is given by I(i) × Q(q; Θ) and serves
as the conditional prior for these parameters. Since we are only interested in the
posterior of Θ, we did not actively sample the additional parameters and their
prior did not directly enter the Bayes theorem. Instead, in each step of the MCMC
run, we updated Θ according to the chosen step-proposal strategy (e.g., stretch
move or differential evolution) and the additional 2n parameters are simply drawn
from the prior. This is equivalent to sampling the full posterior,

p(Θ, {Yl}2n
l=1|{ak}N

k=1) = L (Θ, {Yl}2n
l=1|{ak}N

k=1)p({Yl}2n
l=1|Θ)p(Θ)

p({ak}N
k=1)

, (4.A.2)

and marginalizing out the additional parameters, yielding the marginalized
posterior probability distribution of Θ, or p(Θ|{ak}N

k=1).
This approach does not yield the posterior for the additional parameters,

which is needed for the marginalization of Â(a; Θ, {Yl}2n
l=1) or the calculation of

the Bayes factors. To reconstruct the full posterior, we substituted the posterior
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of the additional parameters with the prior. This is justifiable because in the limit
of N −→ ∞, the stochastic amplitude distribution Â(a; Θ, {Yl}2n

l=1) converges to
A(a; Θ), causing the posterior of the additional parameters to converge to the
prescribed prior.

0.0 0.5 1.0
0

1

2

3

A
(a

)

0.0 0.5 1.0 0.0 0.5 1.0

n = 1000

n = 10000

n = 100000

a (mag)

Figure 4.A.1 Comparison of synthetic contact binary amplitude distributions
resulting from the kernel density estimation performed on samples of different sizes. The
distribution is rather noisy for n = 1000, but the noise is already significantly reduced
for n = 10000. When we increase the number of samples to 100000, the distribution
effectively converges to the correct shape.
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4.B Additional tables and figures for the identification of
sample contamination

Here, we present a list of the parameters of our Bayesian model for removing
contaminants in the sample of contact binaries (Tab. 4.B.1), plots of the MCMC
chains resulting from the model (Fig. 4.B.1), and visualization of the posterior
distribution of the model parameters (Fig. 4.B.2).

Table 4.B.1 List of the parameters of our Bayesian model for the identification of
contact binary stars.

Parameter Definition Value
Global parameters

λK λ-location of the Kraft break along the PLC relation 0.7631+0.0021
−0.0017

αX1 X = αX1 + βX1λ, λ ≤ λK
0.1727+0.0086

−0.0086
βX1 0.0591+0.0219

−0.0225
αX2 X = αX2 + βX2λ, λ > λK

−0.0538+0.0537
−0.0520

βX2 0.4750+0.0262
−0.0283

PLC parameters
απ1 µSπ = απ1 + βπ1λ, λ ≤ λK

−0.5077+0.0015
−0.0015

βπ1 0.2243+0.0043
−0.0044

βπ2 µSπ = απ1 + (βπ1 − βπ2)λK + βπ2λ, λ > λK 1.2614+0.0490
−0.0484

ατ1 µSτ = ατ1 + βτ1λ, λ ≤ λK
3.7337+0.0010

−0.0010
βτ1 0.1159+0.0023

−0.0023
βτ2 µSπ = ατ1 + (βτ1 − βτ2)λK + βτ2λ, λ > λK 0.0672+0.0033

−0.0031
ασπ1 σSπ = ασπ1 + βσπ1λ, λ ≤ λK

0.0277+0.0013
−0.0013

βσπ1 0.0206+0.0033
−0.0033

ασπ2 σSπ = ασπ2 + βσπ2λ, λ > λK
−0.1754+0.0986

−0.1081
βσπ2 0.3961+0.0891

−0.0820
αστ1 σSτ = αστ1 + βστ1λ, λ ≤ λK

0.0159+0.0007
−0.0007

βστ1 −0.0032+0.0016
−0.0017

αστ2 σSτ = αστ2 + βστ2λ, λ > λK
0.0470+0.0045

−0.0048
βστ2 −0.0153+0.0039

−0.0035
Background noise parameters

m1 µBτ = m1 + l1λ, λ ≤ λK
3.7370+0.0006

−0.0006
l1 0.0855+0.0013

−0.0013
m2 µBτ = m2 + l2λ, λ > λK

3.7496+0.0077
−0.0076

l2 0.0738+0.0077
−0.0078

w1 σBτ = w1, λ ≤ λK 0.0268+0.0004
−0.0004

w2 σBτ = w2, λ > λK 0.0307+0.0010
−0.0010

Notes. We assumed that contact binaries are scattered around the PLC relation,
parametrically expressed as (λ, µSπ, µSτ ) in the log-luminosity λ vs. log-period π vs.
log-effective temperature τ space. The σS parameters control the level of scatter around
the relation. We modeled the background noise as though it were generated from a
thick plane (λ, π, µB) with its thickness controlled by the σB parameters. We present
the values of the parameters with their 1σ credible intervals.
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Figure 4.B.2 Corner plot resulting from the emcee run of our Bayesian model for the
identification of contact binary stars. We ran the sampler for a total of 160 000 steps,
but we discarded the first 10000 as burn-in, and we thinned the chains by a factor of
300. Visual inspection of the plot confirms that the number of steps was sufficient for
the chains to converge.
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4.C Additional tables and figures for the mass-ratio
distribution

We show how the posterior distributions of b and qmin depend on the two
mass-ratio distribution parameterizations (Fig. 4.C.1), fill-out factors (Fig. 4.C.2),
splitting periods (Fig. 4.C.3), probability cutoffs (Fig. 4.C.4), and model
hyperparameters (Fig. 4.C.5). We also present a complete list of all our emcee
runs together with the resulting values of b and qmin (Tab. 4.C.1).
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Figure 4.C.1 Posterior distributions of b and qmin conditional on Q1 (left) and Q2
(right) for populations CB1–CB5 and different probability cutoffs.
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Figure 4.C.2 Dependence of the fiducial posterior distributions of b (left) and qmin
(right) for populations CB2–CB4 on different fill-out factors.
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Figure 4.C.3 Dependence of the fiducial posterior distributions of b (left) and qmin
(right) for populations CB2 and CB3 on different splitting periods between the two
populations.
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Figure 4.C.4 Dependence of the fiducial posterior distributions of b (left) and qmin
(right) for populations CB2–CB4 on different probability cutoffs.
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5 Distinguishing between light
curves of ellipsoidal variables with
massive dark companions, contact
binaries, and semidetached bina-
ries using principal component
analysis∗

Authors: M. Pešta and O. Pejcha
Submitted to: Astronomy & Astrophysics

Abstract
Photometric methods for identifying dark companion binaries – binary systems

hosting quiescent black holes and neutron stars – operate by detecting ellipsoidal
variations caused by tidal interactions. The limitation of this approach is that
contact and semidetached binaries can produce similarly looking light curves.
In this work, we address the degeneracy of ellipsoidal light curves by studying
the differences between synthetically generated light curves of dark companion,
semidetached, and contact binary systems. We inject the light curves with various
levels of uncorrelated and correlated Gaussian noise to simulate the effects of
instrumental noise and stellar spots. Using principal component analysis (PCA)
and Fourier decomposition, we construct low-dimensional representations of the
light curves. We find that the first two to five PCA components are sufficient to
explain 99% of variance in the data. The PCA representations are generally more
informative than the Fourier representation for the same number of coefficients as
measured by both the silhouette scores of the representations and the macro recalls
of random forest classifiers trained on the representations. The random forest
classifiers reach macro recalls from 0.97 in the complete absence of noise to 0.70
in the presence of spots and strong instrumental noise, indicating that the classes
remain largely separable even under adverse conditions. We find that instrumental
noise significantly impacts the class separation only when its standard deviation
exceeds 10−3 mag, whereas the presence of spots can markedly reduce the class
separation even when they contribute as little as 1% of the light curve amplitude.
We discuss the application of our method to real ellipsoidal samples, and we show
that we can increase the purity of a sample of dark companion candidates by a
factor of up to 27 if we assume a prior purity of 1%, significantly improving the
cost-efficiency of follow-up observations.

∗The following text is a preprint version of an article submitted for publication in Astronomy
& Astrophysics. The preprint is available at https://arxiv.org/pdf/2408.11100.

83

https://arxiv.org/pdf/2408.11100


5.1 Introduction
Most stellar-mass black holes (BHs) are discovered in binary systems, where

their presence is revealed either through high-energy emission from accretion
processes (e.g., Remillard & McClintock 2006; Corral-Santana et al. 2016) or
by gravitational waves radiated during mergers with companions (e.g., Abbott
et al. 2016; Abbott et al. 2023). Many binaries with neutron stars (NSs) have
been discovered in the same way. In reality, only a small fraction of BH and NS
binary configurations are expected to yield observable X-ray or gravitational wave
signatures. This suggests the existence of a large population of dark companion
binaries, which host electromagnetically silent BHs and NSs orbited by normal
luminous stars. Given that a significant fraction of BH binaries might actually
be wide-orbit binaries (Breivik et al. 2017; Chawla et al. 2022), characterizing
the dark companion population is crucial for enhancing our understanding of the
evolution of massive stars and the formation of compact objects.

Without accretion or mergers, the presence of a dark companion in the system
can only be infered from subtle photometric, spectroscopic, and astrometric
effects that it induces in the companion star. For this reason, only a few dark
companion binaries have been discovered so far. A non-exhaustive list of dark
companion detections includes two BHs and one BH candidate in the globular
cluster NGC 3201 identified using spectroscopy from MUSE (Giesers et al. 2018;
Giesers et al. 2019), one BH or NS identified in data from APOGEE (Thompson
et al. 2019), two BHs found in catalogs of single-lined spectroscopic binaries (Mahy
et al. 2022; Shenar et al. 2022), and three BHs, one NS, and 20 NS candidates
detected in Gaia astrometry (El-Badry et al. 2023b,a, 2024b; Gaia Collaboration
et al. 2024; El-Badry et al. 2024a). In all these studies, a small number of
candidates were selected based on criteria derived from available spectroscopic
or astrometric data. The most promising candidates were then followed up with
high-resolution spectroscopy, if not already available, to confirm the presence of
the dark companion. The limitation of this approach is that spectroscopy and
astrometry are available only for a small fraction of stars, significantly reducing
the pool of candidates for follow-up analysis. While photometry is available for a
much larger number of stars, the challenge lies in identifying the most promising
candidates based solely on photometric signatures of dark companions.

In a close binary system consisting of a star and a massive dark companion, the
gravitational pull of the companion tidally distorts the star, inducing ellipsoidal
variations in the light curve of the system. In principle, by sifting through large
photometric surveys and identifying stars that exhibit ellipsoidal variations, we can
select candidates for follow-up analysis that are likely to harbor dark companions.
Recent examples of such work include Green et al. (2023), who identified over
15 000 ellipsoidal variables in data from TESS, Gomel et al. (2023), who presented
over 6 000 dark companion candidates from Gaia DR3, and Gomel et al. (2021c),
who studied over 10 000 ellipsoidal variables from OGLE. The problem with this
method is that besides dark companion binaries, ellipsoidal samples typically
contain large numbers of contact binaries, semidetached binaries, and possibly
other types of objects that produce similar light curves. In fact, dark companion
binaries most likely make up only a small fraction of ellipsoidal variables, making
it extremely cost-inefficient to follow up on all candidates with high-resolution
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spectroscopy.
To increase the fraction of dark companion binaries in ellipsoidal samples,

further filtering is required. For example, we could filter objects based on the
quality of their spectral energy distribution fits assuming a single-star model
(Kapusta & Mróz 2023) or we could consider only objects with high binary mass
functions (Rowan et al. 2024). However, the former method requires multi-band
photometry, which is not always available, while the latter relies on radial velocity
measurements, thus defeating the goal of avoiding the need for spectroscopy in
the candidate selection process. In our previous work (Pešta & Pejcha 2023), we
used Bayesian mixture modeling to isolate a sample of contact binaries from the
Kepler Eclipsing Binary Catalog. In principle, we could use the same method
to exclude contact binaries from samples of ellipsoidal variables, but the method
requires estimates of effective temperatures and luminosities for all objects in the
sample, limiting its applicability.

A particularly attractive way of selecting dark companion binary candidates
using only information contained in their broadband photometric light curves was
developed by Gomel et al. (2021a,b), who introduced a proxy for the minimum mass
ratio of dark companion binaries derived from the observed ellipsoidal amplitude
of the system. This proxy, which they termed the modified minimum mass ratio
(mMMR), is always strictly lower than the actual mass ratio of the system, and
its large values can be indicative of the presence of a massive dark companion.
The method is most sensitive to dark companion binaries with primaries close to
filling their Roche lobes and inclinations close to 90◦. Conversely, low-inclination
systems or systems with a primary that did not yet evolve to fill its Roche lobe
will show small mMMR even for large mass ratios. The method assumes that and
all variability comes from the tidal deformation of the primary induced by the
dark companion. When this assumption is violated, the method yields spurious
results, resulting in high false-positive rates. For example, Nagarajan et al. (2023)
spectroscopically followed up on the 14 most promising candidates obtained using
the mMMR method by Gomel et al. (2023) and found that all harbor a low-
mass non-degenerate star instead of a dark companion, with spotted contact
binaries being the most likely culprits behind the false positives. Consequently,
the efficiency of the mMMR method hinges on the purity of the ellipsoidal sample,
which is typically low due to the prominent presence of contaminants (e.g., Green
et al. 2023).

A proper way to address the issue of photometric identification of dark
companion binaries would be to train a machine learning classifier on a large
sample of ellipsoidal light curves for which we know the true nature of the systems,
allowing the classifier to learn the differences between the classes and automatically
detect dark companion binaries in new data. Many have followed this approach in
the wider context of automatic classification of periodic variables, e.g., Paczyński
et al. (2006); Pawlak et al. (2016); Soszyński et al. (2016); Jayasinghe et al. (2019);
Cheung et al. (2021), etc. However, this method requires a well-curated training
sample in which all classes are sufficiently represented. This is generally not
an issue in variable star classification, where large samples of studied objects
are readily available, but a representative sample of confirmed dark companion
binaries is currently lacking, preventing us from following this approach in the
context of dark companion binary identification.
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Even in the absence of a well-defined sample of dark companion binaries, it is
still possible to study the degeneracy of ellipsoidal light curves using theoretical
models. In this work, we investigate the similarities and differences between
synthetically generated light curves of dark companion binaries, semidetached
binaries, and contact binaries, which we consider to be to the most likely dark
companion binary impostors. We inject the light curves with various levels of
uncorrelated and correlated Gaussian noise to simulate the effects of instrumental
noise and stellar spots (Sect. 5.2), allowing us to study the separation of the
classes under adverse observing conditions. To better visualize the light curves
and make the differences between the classes more pronounced, we reduce the
light curves using principal component analysis (PCA) and Fourier decomposition.
We compare the informativeness of the PCA and Fourier representations using the
silhouette score, and we quantify the separation of the classes in each representation
using the macro recall of random forest classifiers trained on the representations.
We describe the methodological details of our analysis in Sect. 5.3, and we present
the results of our study in Sect. 5.4. We summarize and discuss the implications
of our findings in Sect. 5.5.

5.2 Synthetic data
The small number of confirmed dark companion binaries prevents us from using

real observations to systematically study the degeneracy of ellipsoidal light curves.
To overcome this limitation, we generated synthetic light curves of dark companion
binaries and their common contaminants (Sect. 5.2.1), which we further modified
with correlated and uncorrelated noise to account for the effects of instrumental
noise and stellar spots (Sec. 5.2.2).

5.2.1 Physical models
We used PHOEBE v2.4.10 (Prša et al. 2016; Conroy et al. 2020b) to generate

synthetic light curves of dark companion binaries, semidetached binaries, and
contact binaries. We started by initializing the default detached, semidetached
or contact binary system, conditional on the type of the variable we wanted
to generate. In all cases, we set the passband to TESS:T, the number of
triangles of the stellar components to 10 000, and we kept the default limb
darkening calculation settings, with the coefficients interpolated directly from
either the PHOENIX or the ck2004 model atmosphere tables, depending on the
effective temperatures of the stellar components. In dark companion systems,
we set distortion_method = none for the dark companion, allowing us to
isolate the variations caused by the tidal deformation of the star without
accounting for the presence of eclipses. In all other cases, we kept the default
distortion_method = roche.

For each binary class, we defined a grid of physical and orbital parameters that
affect the shape of the light curve. In the case of dark companion binaries, the light
curve does not significantly depend on the mass M nor the effective temperature
Teff of the stellar component but rather on the mass ratio q, the inclination i,
and the semi-major axis a of the system. We therefore fixed M = 1 M⊙ and
Teff = 6 000 K. We varied q from 0.05 to 10 with a step of 0.05 for 0.05 ≤ q ≤ 1
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and a step of 1 for 1 < q ≤ 10, i from 5◦ to 90◦ with a step of 5◦, and a from
1 R⊙ to 10 R⊙ with ten evenly spaced steps in the logarithmic scale. We fixed
the equivalent radius R of the stellar component at 1 R⊙. Due to the scaling
properties of the Roche potential, varying R has the same impact on the shape of
the light curve as varying a.

Compared to the dark companion case, the light curves of semidetached
variables additionally depend on the ratios of Teff and R of the stellar components.
We considered Teff ratios of 0.5, 1, and 2, and we varied Teff, the gravity brightening
coefficients, and the bolometric reflection coefficients of the system accordingly so
that both the primary and the secondary were covered by the available atmosphere
tables and the system passed all PHOEBE internal checks. We considered four
different R ratios: 0.1, 0.5, 2, and 5, with R of the primary fixed by the condition
that the primary fills its Roche lobe. We sampled q, i, and a in the same way as
in the dark companion case.

The simplest is the case of contact binary stars, whose light curves depend
primarily on q, i, and the fill-out factor f of the system. We sampled i and q
in the same way as in the previous cases, with the only difference being that we
limited q to 0.05 ≤ q ≤ 1. We considered f = 0.15, 0.25, 0.5, and 0.75, and we
assumed that both components share a common atmosphere with Teff = 6000 K.

Not all parameter combinations produced a valid light curve. Some setups
were not covered by either atmosphere table or yielded a configuration that
was incompatible with the assumed binary class (e.g., Roche overflow in dark
companion binaries). We excluded these configurations from the analysis. We
also excluded any setup that yielded a light curve with a photometric amplitude
smaller than 0.01 mag. By performing these cuts, we obtained samples of 492 dark
companion, 37 386 semidetached, and 1 302 contact binary synthetic light curves.
The observed disparity in the sample sizes does not reflect the relative occurrence
rates of the three binary classes but rather the relative extents of their parameter
spaces. To counter this imbalance, we randomly undersampled the semidetached
binary class by a factor of 20, resulting in a total of 1 846 semidetached light
curves. Finally, we randomly split the data into training, validation, and test
sets, with 20% of each variable class going to the test set and 20% going to the
validation set.

We generated the light curves in the magnitude space with a resolution of 100
points per orbit, covering phase from −0.5 to 0.5. We shifted the light curves
so that the phase 0 corresponds to the primary minimum, and we discarded
the rightmost point of each light curve to avoid redundancy at phase 0.5. We
normalized the light curves by vertically shifting and rescaling them in such a
way that the maximum and the minimum were equal to 1 and 0, respectively.
Hereafter, we shall refer to this sample of normalized synthetic light curves as S0.

5.2.2 Addition of noise and oversampling
To account for the effects of instrumental noise and stellar spots, we injected

the sample S0 with various levels of uncorrelated and correlated noise. We
modeled the instrumental noise as uncorrelated Gaussian noise with standard
deviations σWN = 10−4, 10−3, and 10−2 mag, covering almost the entire range of
the TESS noise characteristic curve (Ricker et al. 2015). We modeled the effects of
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spots as correlated Gaussian noise, which we generated using the scikit-learn
implementation of Gaussian processes with a periodic ExpSineSquared kernel.
We considered correlated noise with standard deviations σCN = 0.01, 0.05, and 0.10
of the unperturbed light curve amplitude and correlation length scales lCN = 0.25,
0.50, and 1.00 of the orbital period. The standard deviation of the injected
correlated noise is proportional to the amplitude of the unperturbed light curves,
because we want to simulate a scenario in which stellar spots account for a specific
fraction of the overall light curve amplitude, having the same relative effect on
all light curves. Also, since we assume that all variability in the light curves
before noise injection comes from eclipses and ellipsoidal variations, the light curve
amplitude should be zero for a system observed exactly face-on irrespective of the
presence of spots, which would not be the case if we injected correlated noise with
an absolute standard deviation.

For each combination of the levels of correlated and uncorrelated noise,
including the complete absence of noise, we generated multiple realizations of each
light curve in the sample S0, with the oversampling factor inversely proportional
to the occurrence rate of the corresponding binary class in the sample. We
oversampled each semidetached and contact binary light curve 10 times, and each
dark companion binary light curve 30 times, resulting in 40 synthetic samples
with well-sampled noise distributions. To prevent data leakage, we oversampled
the training, validation, and test sets separately, so that each light curve and
its noisy realizations were present in only one of the sets. After injecting the
noise, we normalized the light curves by: i) fitting each light curve with a fourth-
order Fourier series, ii) horizontally shifting the light curves so that the primary
minimum (corresponding to the maximum magnitude) of the Fourier fit is at
phase 0, iii) vertically shifting and rescaling the light curves so that the Fourier
fit has a minimum and maximum of 0 and 1, respectively. We present a list of all
synthetic samples and their noise characteristics in Table 5.1.

5.3 Methods
Light curves can be viewed as vectors in a high-dimensional space, with

the dimension of the space given by the total number of data points in the
light curve. Current space-based photometric surveys have typical sampling
frequencies of the order of seconds to minutes, resulting in densely sampled light
curves with thousands of points. Intuitively, the denser the sampling, the more
information the light curve contains and the easier it should be to construct a
classifier that can distinguish between different types of objects generating the
light curves. In practice, the high-dimensional nature of the data might actually
hurt the performance of the classifier. The reason is that as the dimension of
the data increases, the number of samples required to evenly cover the space
grows exponentially, and the available data become increasingly sparse. This
phenomenon, known as the curse of dimensionality (Bellman 1957), is further
exacerbated by the fact that real-life light curves are often contaminated by noise
and outliers, which in combination with overfitting can lead to poor generalization
to previously unseen data.

Training an accurate light curve classifier that generalizes well to new
observations requires a training sample which is representative of the true
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Table 5.1 List of synthetic samples of dark companion, semidetached, and contact
binary light curves. Each sample was generated with a different combination of
uncorrelated noise standard deviation σWN, correlated noise standard deviation σCN
(proportional to the unperturbed light curve amplitude), and correlation length scale
lCN (in units of the orbital period). All samples contain the same number of light curves,
with 14 760 coming from the dark companion class, 18 460 from the semidetached class,
and 13 020 from the contact class, resulting in a total of 46 240 light curves.

Sample σWN (mag) σCN lCN
W0C0 – – –
W0C1L25 – 0.01 0.25
W0C1L50 – 0.01 0.50
W0C1L100 – 0.01 1.00
W0C5L25 – 0.05 0.25
W0C5L50 – 0.05 0.50
W0C5L100 – 0.05 1.00
W0C10L25 – 0.10 0.25
W0C10L50 – 0.10 0.50
W0C10L100 – 0.10 1.00
W1C0 10−4 – –
W1C1L25 10−4 0.01 0.25
W1C1L50 10−4 0.01 0.50
W1C1L100 10−4 0.01 1.00
W1C5L25 10−4 0.05 0.25
W1C5L50 10−4 0.05 0.50
W1C5L100 10−4 0.05 1.00
W1C10L25 10−4 0.10 0.25
W1C10L50 10−4 0.10 0.50
W1C10L100 10−4 0.10 1.00
W10C0 10−3 – –
W10C1L25 10−3 0.01 0.25
W10C1L50 10−3 0.01 0.50
W10C1L100 10−3 0.01 1.00
W10C5L25 10−3 0.05 0.25
W10C5L50 10−3 0.05 0.50
W10C5L100 10−3 0.05 1.00
W10C10L25 10−3 0.10 0.25
W10C10L50 10−3 0.10 0.50
W10C10L100 10−3 0.10 1.00
W100C0 10−2 – –
W100C1L25 10−2 0.01 0.25
W100C1L50 10−2 0.01 0.50
W100C1L100 10−2 0.01 1.00
W100C5L25 10−2 0.05 0.25
W100C5L50 10−2 0.05 0.50
W100C5L100 10−2 0.05 1.00
W100C10L25 10−2 0.10 0.25
W100C10L50 10−2 0.10 0.50
W100C10L100 10−2 0.10 1.00
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distribution of the data. However, in our synthetic dataset, the relative frequencies
of the binary classes and their within-class parameter distributions are the result
of our choices and do not reflect the actual occurrence rates of the different binary
configurations. In addition, we injected the synthetic data with the correlated
and uncorrelated noise to systematically study the separation of the classes under
various noise levels rather than to simulate the noise characteristics of real data,
which are specific to the instrument and observing conditions.

Despite the synthetic data not being representative, we can still use it to
quantify our ability to distinguish between the three binary classes. This can be
achieved by constructing a discriminative low-dimensional representation of the
data and investigating the separation of the classes in this representation. The idea
is based on the observation that classification tasks often include a dimensionality
reduction preprocessing step where the data is projected to a low-dimensional
space in a way that preserves most of the information contained in the original
high-dimensional data. In the absence of a representative training sample, we
can separate dimensionality reduction from the classification task, allowing us to
focus on the quality of the data representation rather than on the performance
of the classifier. Apart from alleviating the effects of the curse of dimensionality
and overfitting, dimensionality reduction also makes data easier to visualize and
interpret, resulting in a more compact and informative representation. Once we
have collected a representative sample, we can project the data to the learned
low-dimensional space and train a classifier on the reduced data, ensuring robust
generalization to new observations.

There are many dimensionality reduction methods, ranging in complexity
from simple summary statistics and direct encodings to sophisticated latent
representations learned directly from the data through optimization. In this work,
we utilized PCA, a simple linear method that is easy to interpret and requires
next to no hyperparameter tuning. By performing PCA separately on the three
binary classes, we obtained three distinct latent representations of the synthetic
data, each optimized to capture the underlying structure of the respective class
(Sect. 5.3.1). As a baseline for comparison, we also expanded the light curves
into Fourier coefficients, which is a standard practice in time series analysis
(Sect. 5.3.2). We used two metrics to quantify the separation of the classes in
the PCA and Fourier representations: the silhouette score, which compares the
average intra-class distance to the average inter-class distance (Sect. 5.3.3), and
the macro recall of random forest classifiers, which can be interpreted as a measure
of the mean non-overlap of the classes in the feature space (Sect. 5.3.4).

5.3.1 PCA representations
PCA (Pearson 1901; Hotelling 1933) is an orthogonal affine transformation of

the feature space – a Euclidean vector space with the dimensions corresponding to
the data features and each data point represented as a vector in the space – to a
new basis in which the features are uncorrelated. The transformation is achieved
by centering and projecting the data in the directions of the unit eigenvectors (i.e.,
principal components) of the covariance matrix of the data, with the eigenvalues
given by the variances of the data along the eigenvectors. When ordered by their
eigenvalues, the eigenvectors maximize the projected variance in the orthogonal
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complement of the preceeding components, resulting in an orthonormal basis in
which the first principal component is oriented in the direction of the highest
variance in the data, the second principal component points in the direction of
the highest variance in the subspace perpendicular to the first component, and so
on for higher-order components. By keeping only the principal components whose
eigenvalues add up to a certain fraction of the total variance, we can reduce the
dimensionality of the data while retaining most of the information contained in
the original high-dimensional space.

Our motivation for using PCA in this work is multifold: (i) PCA is a
well-tested, widely adopted method that is easy to use and computationally very
efficient. (ii) PCA is a simple yet powerful enough method to gain intuition with
dimensionality reduction, allowing us to illustrate the idea of using data-driven
methods for feature extraction and classification before moving on to more
sophisticated methods. (iii) With only one tunable hyperparameter, the number
of retained principal components, PCA does not require extensive tuning, making
it an ideal starting point in any dimensionality reduction task. (iv) The linear
character of PCA representations makes them robust to noise, meaning that
small perturbations in light curves do not significantly alter their representations.
Consequently, we can perform PCA on noiseless light curves and then project
noisy light curves using the obtained principal components, knowing that similar
light curves will have similar representations, which is not necessarily the case with
non-linear methods. (v) When interpreted in the original magnitude space, the
principal components can be interpolated, yielding a set of continuous functions
that are orthogonal under the standard L2 inner product. In analogy with
Fourier decomposition, these continuous principal components can then be used
to generalize the PCA representation to light curves with arbitrary sampling.

In our analysis of the synthetic light curves, we utilized the scikit-learn
implementation of PCA. The implementation returns the unit eigenvectors and
the eigenvalues of the covariance matrix of the centered data, meaning that the
mean is subtracted from each vector before the computation. Using the noiseless
sample S0 as input, we performed PCA separately on the light curves of each
binary class, yielding three distinct orthonormal bases of principal components.
The synthetic light curves have a resolution of 100 points per orbit, with the last
point removed for reasons related to the point (v) above, resulting in vectors of
length Ngrid = 99. PCA preserves the dimensionality of the feature space, so the
number of principal components in each basis is also Ngrid.

We performed PCA on the normalized light curves instead of the original
light curves in the magnitude space to ensure that the principal components
reflect the intrinsic variations in the shapes of the light curves rather than the
variations in amplitude. Since the amplitudes vary significantly within the classes,
performing PCA on the original light curves would yield principal components
that are dominated by amplitude, thereby obscuring the shape variations and
resulting in suboptimal data representation. By factoring out the absolute scale
before performing PCA and treating amplitude as a separate feature, we ensure
that the morphology of the light curves is properly captured by the principal
components, maximizing the overall information content of the representation.

If we denote the ith principal component of the class K as eK
i , where

K = DC, SD, C for the dark companion, semidetached, and contact binary
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classes, respectively, we can expand any normalized light curve v evaluated on
the same grid as the principal components as

v = eK
0 +

Ngrid∑︂
j=1

cK
j eK

j , (5.1)

where eK
0 is the mean normalized light curve of the class K and the vector of

coefficients cK
Ngrid

= (cK
1 , cK

2 , . . . , cK
Ngrid

) gives the coordinates of v in the PCA basis
of the class K. If we consider the full vector of coefficients, the representation is
perfect with no information loss. If we keep only the first n < Ngrid coefficients,
we can write the reconstruction of v as

vK
n = eK

0 +
n∑︂

j=1
cK

j eK
j , (5.2)

with the reduced vector of coefficients cK
n = (cK

1 , cK
2 , . . . , cK

n ) constituting the
n-dimensional PCA representation of the light curve in the basis of the class K.
The superscript K on the left side of Eq. (5.2) emphasizes that the light curve
reconstructed from the first n principal components is class-dependent, unlike the
fully reconstructed light curve in Eq. (5.1).

The coefficients cK
n can be obtained either by projecting the light curve onto

the principal components or equivalently by fitting the light curve with a linear
combination of the principal components using least squares. The equivalence of
the two methods allows us to easily generalize the PCA representation to light
curves with arbitrary sampling by interpolating the principal components in the
normalized magnitude space and fitting the light curve with the interpolated
principal components. By allowing arbitrary non-uniform sampling, we are no
longer guaranteed the orthogonality of the principal components when evaluated
on the new grid. Consequently, the PCA coefficients obtained from least squares
fitting can change as we increase the number of the components in the fit. However,
for densely sampled light curves, we expect the most informative coefficients to
converge for n ≪ Ngrid, yielding a representation that is robust to the light
curve sampling. With a typical sampling frequency of the current space-based
photometric surveys of the order of seconds to minutes, this condition is satisfied
for a vast majority of light curves.

There is one issue with defining the PCA representation using principal
components with a unit norm. If we doubled the resolution of the synthetic
light curves and performed PCA on this finer grid, the photometric amplitude
of the principal components would be approximately

√
2 times smaller than the

amplitude of the original principal components. This is because the principal
components are normalized to have a unit norm, and the finer grid contains twice
as many points as the original grid. To avoid this issue, we fixed the scaling of
the principal components to have a unit amplitude in the normalized magnitude
space. This scaling ensures that the PCA coefficients are directly comparable
between representations obtained from grids with different resolutions. Denoting
the rescaled principal components as ẽK

j , we can write the projection of the light
curve v onto the first n rescaled principal components of the class K as

vK
n = eK

0 +
n∑︂

j=1
c̃K

j ẽK
j , (5.3)
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where the vector of rescaled coefficients c̃K
n = (c̃K

1 , c̃K
2 , . . . , c̃K

n ) forms the n-
dimensional PCA representation of v in the rescaled PCA basis of the class
K. The generalization of the rescaled PCA representation to light curves with
arbitrary sampling is achieved in the same way as in the case of the original unit
PCA representation.

Both the unit and the rescaled PCA representations operate on normalized light
curves, which are vertically shifted and rescaled so that the amplitude of the fourth-
order Fourier fit is equal to unity. By normalizing the light curves, we lose the
information about their absolute scaling. To recover this information, we prefix the
vector of PCA coefficients in both representations with the amplitude obtained from
the Fourier fit, increasing the dimensionality of the representations by one. We shall
denote the amplitude as c0 and the extended unit and rescaled PCA representations
as capital CK

n = (c0, cK
1 , cK

2 , . . . , cK
n ) and C̃K

n = (c0, c̃K
1 , c̃K

2 , . . . , c̃K
n ), respectively.

This way, the amplitude of the light curve is encoded as the zeroth element of the
extended PCA representations, allowing us to rescale the normalized light curve
back to the original magnitude space by multiplying the PCA coefficients and the
mean light curve with c0.

5.3.2 Fourier representation
Historically, expansion to Fourier coefficients has been the most popular method

for dimensionality reduction of time series data. In discrete Fourier series, we
decompose a uniformly sampled normalized light curve v of length Ngrid into a
linear combination of harmonics of increasing order up to the Nyquist frequency,
totalling Ngrid coefficients. For an odd Ngrid, this can be expressed as

v = a01 +
(Ngrid−1)/2∑︂

j=1
ajcosj + bjsinj, (5.4)

where 1 is a constant Ngrid-dimensional vector of ones and cosj and sinj are
vectors of the jth-order cosine and sine harmonics sampled on the same grid as
the light curve. The base period of the harmonics is given by the period of the
light curve, which is equal to one for phased light curves.

To emphasize the similarity between Fourier decomposition and PCA, we can
factor out the mean light curve and express v as

v = eK
0 +

Ngrid∑︂
j=1

c̃F
j ẽF

j , (5.5)

where eK
0 is the mean normalized light curve of the class K and

ẽF
j =

⎧⎪⎪⎨⎪⎪⎩
1 if j = 1,

cosj/2 if j > 1 is even,

sin(j−1)/2 if j > 1 is odd.

(5.6)

We use the tilde notation from the previous section to emphasize the fixed scaling
of the discretized Fourier basis elements. The mean light curve eK

0 can belong to
any class K = DC, SD, C. In this work, we are mainly interested in searching
for dark companion binaries, so we choose K = DC. By keeping only the first
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n coefficients, we can reduce the dimensionality of the data while capturing the
information about frequencies up to the harmonic preceded by the nth coefficient.
We write the reconstruction of v using the first n coefficients as

vF
n = eDC

0 +
n∑︂

j=1
c̃F

j ẽF
j . (5.7)

Motivated by the analogy between Eqs. (5.7) and (5.2), we define the n-dimensional
Fourier representation of v as the vector of coefficients c̃F = (c̃F

1 , c̃F
2 , . . . , c̃F

n).
Consequently, all the considerations from the previous section regarding the
generalization of the PCA representations to light curves with arbitrary samplings
apply to the Fourier representation as well.

In addition to the standard “rescaled” Fourier representation (the discretized
harmonics have fixed scaling), we also define the unit Fourier representation
cF

n = (cF
1 , cF

2 , . . . , cF
n), where the coefficients are obtained with respect to

the normalized Fourier basis elements with unit norms. By analogy with
the PCA representations, we define the extended Fourier representation as
C̃F

n = (c0, c̃F
1 , c̃F

2 , . . . , c̃F
n ), where c0 is the amplitude of the light curve defined

in the previous section. The extended unit Fourier representation is defined
analogously as CF

n = (c0, cF
1 , cF

2 , . . . , cF
n ).

Hereafter, we collectively refer to the PCA and Fourier representations as the
latent representations, and we refer to the vector spaces spanned by the coefficients
of the latent representations as the latent spaces. We further distinguish between
rescaled and unit latent representations, which differ in the scaling of the basis
vectors. The extended latent representations, be they rescaled or unit, include the
amplitude of the light curves as the zeroth element, ensuring that the information
about the absolute scale is preserved. We omit the lower index n in the notation
when we refer to the latent representations in general, without reference to a
specific dimension.

5.3.3 Silhouette score
There are various ways to assess the separation of clusters in a dataset, with

the silhouette score being one of the most popular clustering measures (Rousseeuw
1987). The silhouette score quantifies how similar an object is to its own class
compared to the other classes. The score ranges from −1 to 1, with higher values
indicating better separation of the classes. The silhouette score of the ith object
in the class K is calculated as

sK
i = bK′

i − aK
i

max(aK
i , bK′

i ) , (5.8)

where aK
i is the average Euclidean distance of the ith object to all other objects in

the class K, and bK′
i is the average distance of the ith object to all objects in the

closest neighboring class K ′ ̸= K. In our analysis, we utilized the scikit-learn
implementation of the silhouette score, namely the silhouette_samples function,
which returns the silhouette score of each object in the dataset. We calculated the
overall silhouette score of the dataset as the average of the individual silhouette
scores weighted by the inverse of the respective class sizes, yielding a robust
measure of clustering quality that is insensitive to class imbalance.
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In general, higher values of the silhouette score indicate better separation of
the classes in the dataset. However, the silhouette score is not invariant under
independent rescaling of the features, meaning that the score can be artificially
inflated by rescaling each feature with a different factor. Without a physically
motivated scaling of the features, the absolute value of the silhouette score is
not meaningful. Still, the silhouette scores of two competing representations can
be directly compared to asses which representation separates the classes better,
provided the bases of the representations are brought to the same (arbitrary) scale.
The simplest way to achieve this is to normalize the basis vectors to have unit
norms, which is the approach we followed in our analysis.

To compare the class separation in the PCA and Fourier representations, we
calculated the weighted silhouette scores of the representations cDC

n , cSD
n , cC

n , and
cF

n as a function of the dimension of the representation n = 1–9. We evaluated
the silhouette scores on the unit representations instead of the extended unit
representations, because we want to maximize the class separation with respect
to the shapes of the light curves independent of their amplitudes. The amplitude
is a robust discriminative feature and, in the presence of strong noise, it can skew
the silhouette scores of low-dimensional representations towards artificially high
values, potentially obscuring the true number of coefficients that maximize the
separation of the classes. Also, the amplitude affects the silhouette scores of all
latent representations in roughly the same way, and since we are only interested
in the difference between the silhouette scores of different representations and not
their absolute values, we can safely omit the amplitude from the calculation. To
provide a baseline, we also calculated the silhouette score of the full representation
consisting of 99-dimensional vectors of normalized light curves in the magnitude
space. We performed the calculation on the validation sets of the samples W0C0,
W100C0, W0C10L50, and W100C10L50, which are the synthetic samples with the
lowest and the highest levels of uncorrelated and correlated noise, either separately
or in combination. Hereafter, we shall refer to these samples as the corner cases.
The corner cases provide the most extreme conditions for the separation of the
classes, and the conclusions drawn from the them are generally applicable to the
intermediate cases as well.

5.3.4 Macro recall and random forest classifiers
There are several downsides to using the silhouette score as a measure of

class separation in the latent space. First, due to the silhouette score not being
invariant under independent rescaling of the features, the absolute value of the
silhouette score is meaningless, only the difference between the silhouette scores
of different representations is informative. Second, we calculated the silhouette
scores as a function of the number of coefficients in the representation. However,
not all coefficients are equally informative, meaning that the first n coefficients can
yield a lower silhouette score that the same number of non-consecutive but more
informative coefficients. Third, the silhouette score as a measure of separation is
best suited for convex clusters, which is not necessarily the case for the binary
classes in the latent representations, not to mention the full representation. For
concave overlapping and/or nested clusters, the silhouette score can be close to
zero even if the clusters are perfectly separated. For these reasons, we turn to a
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more robust measure of class separation: the macro recall.
In a classification task, the recall RK of a classifier for the class K is defined as

RK = TPK

TPK + FNK

, (5.9)

where TPK is the number of class-K true positives (correctly predicted objects in
the class K) and FNK is the number of class-K false negatives (objects in the
class K that were incorrectly predicted as belonging to a different class). The
macro recall RM of the classifier is calculated as a simple arithmetic average of
the recalls of the Nclasses individual classes,

RM = 1
Nclasses

Nclasses∑︂
K=1

RK . (5.10)

The benefit of the macro recall is that it is not sensitive to the class sizes, which
makes it an ideal measure of class separation for imbalanced datasets or datasets
with unknown class frequencies, such as our synthetic data. The macro recall
should not be confused with the accuracy A of the classifier, which is calculated as

A =
∑︁Nclasses

K=1 TPK∑︁Nclasses
K=1 (TPK + FNK)

=
Nclasses∑︂

K=1
fKRK , (5.11)

where fK are the relative frequencies of the classes in the dataset. By comparing
Eqs. (5.11) and (5.10), we see that the macro recall coincides with the accuracy
only if the classes are balanced, i.e., if fK = 1/Nclasses for all K. In the case of
imbalanced classes, the accuracy is skewed towards the recall of the majority
class, while the macro recall treats all classes with equal importance. However,
if we train the classifier directly on the imbalanced data, the macro recall can
also become skewed, provided the classes are not well-separated in the latent
space. For the macro recall to be a robust measure of the mean non-overlap of the
classes in the latent space, we need to artificially balance the data by weighing the
samples with the inverse of their class sizes prior to training the classifier. This
way, we can ensure that the classifier is not biased towards the majority class and
the class contours in the latent space are not affected by the class sizes.

The macro recall is specific to the classifier, which means that it can change
when we train a different classifier on the same data or when we use the same
classifier with different hyperparameters. Choosing the optimal classifier that
yields the best macro recall is a non-trivial task that requires hyperparameter
tuning and cross-validation to select the best performing model. Without any
prior knowledge of the problem, the best approach is to start with a simple and
robust classifier that does not require excessive tuning, such as the random forest
classifier (Breiman 2001), which is known to perform well on a wide range of
problems and is not too sensitive to the choice of hyperparameters.

Random forests operate by constructing a large number of decision trees that
are trained on random subsets of the data and features. The final prediction is
made by taking the average of the individual tree predictions, making the method
robust to overfitting and noise. In our analysis, we used the scikit-learn
implementation of the random forest classifier. For each synthetic sample
(Table 5.1), we trained a number of random forest classifiers with different
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hyperparameter configurations on the extended rescaled representations C̃K
n ,

K = DC, SD, C, F and n = 1–9. To provide a baseline, we also considered
the (1 + 99)-dimensional extended full representation consisting of photometric
amplitudes + normalized light curves, and the one-dimensional representation
consisting of photometric amplitudes only. In addition, we augmented each
representation except the extended full representation with the variances of the
coefficients obtained from the least squares fits of the photometric amplitude
and the latent coefficients, and we retrained the random forest classifiers on the
augmented representations. We did this to examine whether the uncertainties
of the coefficients contain useful information that could help us better separate
the classes. We calculated the uncertainty of the photometric amplitude as the
variance of the residuals from the fourth-order Fourier fit of the light curve.
Given an extended rescaled representation C̃K

n , we denote its augmented version
as C̃K+V

n , where K = DC, SD, C, F, and n is the number of coefficients in the
representation.

We trained the random forest classifiers on the extended rescaled
representations to ensure that absolute scale of the light curves is taken
into account when separating the classes. We did not include the amplitude in the
calculation of the silhouette scores, because it could bias the optimal number of
coefficients towards lower values in the presence of strong noise, but the properties
of the random forest classifier make it possible to include the amplitude in the
input without obscuring the discriminative patterns in the coefficients of the
representations. In addition, the macro recall is an absolute measure of class
non-overlap, which means that we are actually interested in its values, not just its
differences between different representations. To achieve the best possible macro
recall, it is necessary we consider all the information contained in the light curves,
including the amplitude.

We obtained the optimal hyperparameters of the random forest classifiers
trained on each representation of each synthetic sample by performing a basic grid
search for selected hyperparameters. Namely, we considered: the number of trees
in the forest n_estimators = 100, 500; the minimum number of samples required
to be at a leaf node min_samples_leaf = 1, 10; and the method for selecting
the number of features at each split max_features = sqrt, log2, None. We used
the default values for the remaining hyperparameters. In all cases, we trained
the random forest classifiers on the training sets, performed the hyperparameter
tuning on the validation sets, and evaluated the best performing classifiers on the
test sets of the synthetic samples.

5.4 Results
In this section, we present the results of our analysis of the synthetic light curves

of dark companion, semidetached, and contact binary systems. In Sect. 5.4.1, we
provide an overview of the PCA models of the three binary classes. We visually
inspect the PCA and Fourier representations of the light curves in Sect. 5.4.2, and
we compare the informativeness of the representations using the silhouette score
in Sect. 5.4.3. In Sect. 5.4.4, we quantify the separation of the classes in the latent
representations using the macro recall of random forest classifiers trained on the
representations, and we assess the impact of the coefficient variances on the macro
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Figure 5.1 Mean normalized light curves of dark companion, semidetached, and
contact binary systems. The mean light curves are subtracted from the light curves of
the corresponding class before performing PCA.

recall in Sect. 5.4.5. Finally, is Sect. 5.4.6, we obtain the expected precision of the
random forest classifiers on previously unseen data.

5.4.1 PCA models of synthetic light curves
We show the mean normalized light curves of dark companion, semidetached,

and contact binary systems in Fig. 5.1. The light curves exhibit a remarkable
similarity, particularly between the mean dark companion and contact binary
light curves, highlighting the importance of the finer details captured by principal
components in distinguishing between the classes. In Fig. 5.2, we show the first
nine rescaled principal components of the three binary classes. The principal
components have a unit amplitude and are unique up to a sign change. Due to the
normalization of the synthetic light curves, all components coincide at phase 0,
corresponding to the primary minimum of the light curves. Compared to the mean
light curves, we observe significant differences between the classes already in the
first few principal components, with the differences becoming more pronounced as
we move away from the primary minimum towards the secondary minimum at
phases −0.5 and 0.5. Higher-order principal components are progressively more
oscillatory, making it harder to interpret the differences between the classes. Still,
we observe that the dark companion components are generally more similar to the
contact components than to the semidetached components, revealing increased
levels of degeneracy between these two classes.

Starting with the fifth component, the dark companion components become
increasingly affected by numerical noise, basically becoming pure noise by the
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Figure 5.2 First nine principal components of dark companion, semidetached, and
contact binary light curves, ordered by explained variance in descending order.
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Figure 5.3 Cumulative explained variance of the principal components of dark
companion, semidetached, and contact binary light curves. The dashed line indicates
the threshold of 99% explained variance.

ninth component. Consequently, the first four to five principal components capture
virtually all the variance in the dark companion binary light curves. This is not
the case for the semidetached and contact binary light curves, which require
more components to capture the same level of variance. The disparity in the
informativeness of the principal components can be also seen in Fig. 5.3, which
shows the cumulative explained variance as a function of the number of retained
PCA components for the three binary classes. The dark companion binary light
curves require only two principal components to explain more than 99% of the
variance, while the contact and semidetached binary light curves require four and
five components, respectively, to cross the 99% threshold.

5.4.2 Latent representations of synthetic light curves
Utilizing the PCA models and the discretized Fourier basis, we constructed the

representations c̃DC
3 , c̃SD

3 , c̃C
3 , and c̃F

3 of the validation sets of the four corner cases:
samples W0C0, W100C0, W0C10L50, and W100C10L50. In Fig. 5.4, we show
the scatter plots of the first and third coefficients of the latent representations for
these samples. Panel (a) illustrates the rich structure of the PCA representations
of the noiseless sample W0C0, where the dark companion and contact binaries
form relatively well-separated clusters, while the semidetached binaries are scatter
all over the latent space. In contrast, the Fourier representation is collapsed along
the third coefficient and does not show a clear separation between the classes.

Panel (b) of Fig. 5.4 displays the latent representations of the sample W100C0,
which was injected with uncorrelated Gaussian noise at σWN = 0.01 mag. The
light curves from this sample exhibit much greater scatter in the latent spaces
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compared to the noiseless light curves, making it more challenging to differentiate
between the classes. Despite this, the PCA representations still retain some of
the original structure, especially in the cases of the representations c̃DC

3 and c̃C
3 .

In the Fourier representation, the classes are almost completely mixed, with the
exception of the semidetached class, which protrudes from the main intermixed
cluster. The situation becomes even worse when we introduce correlated noise,
intended to simulate the effects of surface spots. In panel (c) of Fig. 5.4, we present
the latent representations of the sample W0C10L50, which was injected with
correlated Gaussian noise at σCN = 0.1 and lCN = 0.5. The Fourier representation
of the light curves is practically featureless, with the classes clumped together in a
single cluster. The representation c̃SD

3 is slightly more informative, but the classes
are still thoroughly mixed. We observe the best separation of the classes in the
representations c̃DC

3 and c̃C
3 , but the separation is still far from ideal, with most

of the structure present in the sample W0C0 lost due to the correlated noise.
Panels (b) and (c) of Fig. 5.4 demonstrate the independent effects of

uncorrelated and correlated noise on the representations of the synthetic
light curves. In panel (d), we show the latent representations of the sample
W100C10L50, which incorporates the combined noise from the samples W100C0
and W0C10L50. The cumulative effect of the two types of noise is remarkably
similar to the effect of correlated noise alone, with the classes only slightly more
mixed in all representations. We conclude that correlated noise, such as the one
arising from surface spots, affects the structure of the latent representations more
severely than uncorrelated noise, disrupting the patterns present in the absence of
noise and effectively mixing the classes.

Although our discussion is based on the visual inspection of the first and
third coefficients of the latent representations, the projections to the remaining
coefficients yield similar results (Figs. 5.A.1–5.A.2). The only difference is that
for some projections, the representation c̃SD seems to be the most informative,
while for others, c̃DC or c̃C separate the classes better. In all projections, the
Fourier representation c̃F yields worse visual separation than the most informative
PCA representation, demonstrating the superiority of the PCA representations in
capturing the latent structure of the synthetic light curves.

5.4.3 Silhouette scores
While visual inspection of the latent representations can provide qualitative

insight into the separation of the dark companion, semidetached, and contact
binary light curves, the silhouette score allows for a more quantitative and
systematic approach to assessing the separation of the classes in the different
representations. In Fig. 5.5, we show the silhouette scores for the unit
representations cDC

n , cSD
n , cC

n , and cF
n of the validation sets of the corner cases,

evaluated as a function of the number of coefficients in the representation n = 1–9.
The solid black lines represent the silhouette scores for the full representations
of the samples, which vary from approximately 0.085 in the case of the sample
W0C0 (Fig. 5.5a) to about −0.04 for the sample W100C10L50 (Fig. 5.5d). Taken
at face value, the silhouette scores of the full representations are low, indicating
that the classes are not well separated in the original high-dimensional space.
However, as we discuss in Sect. 5.3.3, the absolute value of the silhouette score
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Figure 5.4 Scatter plots of the first and third coefficients of the representations c̃DC,
c̃SD, c̃C, and c̃F of the dark companion, semidetached, and contact binary light curves
in the validation sets of the synthetic samples W0C0 (a), W100C0 (b), W0C10L50 (c),
and W100C10L50 (d). We describe the synthetic samples in Sect. 5.2, and we provide
the definitions of the representations in Sects. 5.3.1–5.3.2.
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Figure 5.5 Weighted silhouette scores for the representations cDC, cSD, cC, and cF

of the validation sets of the synthetic samples W0C0 (a), W100C0 (b), W0C10L50
(c), and W100C10L50 (d), evaluated as a function of the number of coefficients in the
representation. The solid black lines represent the weighted silhouette scores calculated
for the full normalized light curves in the validation sets. We describe the synthetic
samples in Sect. 5.2, and we define the representations in Sects. 5.3.1–5.3.2.
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is not important, only the difference between the silhouette scores of different
representations is informative. Thus, we use the silhouette score of the full
representation as a benchmark against which we compare the silhouette scores of
the latent representations to see whether projection to a lower-dimensional space
can improve the separation of the classes.

Due to the orthogonal character of the unit PCA and Fourier representations,
the silhouette scores of the representations converge to the silhouette score of the
full representation as the number of coefficients n goes to Ngrid. The reason is that
the distance in the definition of the silhouette score is calculated using the dot
product of the difference vector with itself, which is preserved under orthogonal
transformations. In the case of the synthetic samples W0C0 and W0C10L50
(Fig. 5.5a and c), the silhouette scores of the PCA representations quickly plateau
slightly above or below the benchmark limit value, with the exception of the
representation cSD, whose silhouette score for the sample W0C10L50 is still
increasing at n = 9. Most likely, the silhouette score of cSD reaches maximum
at n > 9, but we did not investigate this further. The situation is different for
the samples W100C0 and W100C10L50 (Fig. 5.5b and d), where the silhouette
scores of all latent representations peak high above the benchmark score and then
gradually start to decrease towards the limit value, or they continue to increase
up to n = 9, reaching maximum at n ≥ 9 (representation cC). In all four corner
cases, the silhouette score of the representation cF follows similar trends to the
silhouette scores of the PCA representations, but it requires more coefficients to
reach the same levels of class separation, with the exception of the first one to
two coefficients, which seem to be more informative than the PCA coefficients.

The general trends in the silhouette scores of the latent representations under
different noise conditions can be explained by the properties of the injected noise
or the lack thereof. In the absence of noise (Fig. 5.5a), the PCA representations
require only a few coefficients to almost perfectly reconstruct the light curves,
leaving only negligible unexplained variance to be captured by higher-order
coefficients. Consequently, the higher-order coefficients are close to zero and
do not significantly contribute to the silhouette score, which explains the quick
plateauing of the silhouette scores. In other words, the first three to four coefficients,
depending on the PCA representation, capture effectively all the information that
is present in the full light curves and account for most of the separation between
the classes. Conversely, the representation cF requires at least eight coefficients
to reach the plateau, pointing to the poor alignment of the Fourier basis with the
data.

The power spectrum of a light curve injected with noise is the sum of the
power spectrum of the signal, the power spectrum of the noise, and an additional
interference term arising from the interaction of the signal and the noise. While
the power spectrum of the signal is skewed towards low frequencies, the power
spectrum of uncorrelated noise is flat, which means that, in relative terms, low-
order coefficients of the PCA representations are less affected by the noise than
higher-order coefficients. Given that most of the signal is contained in the first
four to five coefficients, we are able to extract useful information from light curves
even in the presence of strong uncorrelated noise. This can be seen in Fig. 5.5b,
where the silhouette scores of the the representations cDC and cSD peak at n = 4
and 5, respectively, and then start to decrease as we keep adding coefficients
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that are increasingly more affected by the noise. Compared to the case with no
noise, the contribution of the higher-order coefficients to the silhouette score is
not negligible, because they capture the high-frequency noise that is absent in the
former case. Given that the high-frequency noise affects all classes equally, the
classes become gradually more mixed together as we increase n, resulting in the
low benchmark silhouette score of the full representation. The silhouette scores
of the representations cC and cF follow a similar trend, but they require more
coefficients to reach the same levels of class separation as cDC and cSD, revealing a
suboptimal alignment of their bases with the data. While the silhouette score of cF

peaks at n = 6, with its value below the maximum achieved by cDC, the silhouette
score of cC is still increasing at n = 9, possibly attaining global maximum at
n > 9. However, this is not likely, considering the negligible explained variance of
the higher-order coefficients.

The situation is different when we inject the light curves with strong correlated
noise, where the power spectra of both the signal and the noise are skewed towards
low frequencies (Fig. 5.5c). In this case, the noise effectively masks the signal in the
low-order coefficients of the PCA representations, preventing us from recovering
the original signal. Not being able to distinguish between the signal and the noise,
the representations treat the noise as part of the signal, resulting in a scenario
analogous to the noiseless case. The first few PCA coefficients are enough to
capture virtually all variance in the light curves, pushing higher-order coefficients
to zero. Consequently, the silhouette scores of the representations cDC and cC

quickly settle slightly below the benchmark score, whose value itself is significantly
lower than in the noiseless case. The Fourier representation cF is affected even
more strongly, with its silhouette score approaching the benchmark from well
below and requiring more than nine coefficients to reach the benchmark, if at all.
The only representation that decidedly outperforms the benchmark is cSD, whose
silhouette score is still increasing at n = 9, demonstrating the resilience of the
semidetached representation to correlated noise.

The combined effect of strong correlated and uncorrelated noise is to decrease
the separation between the classes even further, pushing the benchmark score
to clearly negative values. (Fig. 5.5d). Despite the low benchmark score, the
silhouette scores of the latent representations are comparable to the values obtained
for the sample W0C10L50, revealing that in the presence of both types of noise i)
the latent representations still manage to disentangle low-frequency signal from
high-frequency noise and ii) the level of the correlated noise is the decisive factor
in determining the structure of the latent representations and the separation of
the classes. The latter is consistent with our visual inspection of the corner cases
in the previous section, where the latent representations of the samples W0C10L50
and W100C10L50 exhibited similar features.

Based on our analysis of the silhouette scores, the representation cSD seems to
be the most flexible and robust to noise, achieving the best separation of the
classes for the samples W0C10L50 and W100C10L50 and almost matching the
best performing representation for the samples W0C0 and W100C0. Conversely,
the representation cC seems to be the least informative of the PCA representations,
underperforming in the presence of strong uncorrelated noise, but yielding
comparable silhouette scores to cDC for the samples W0C0 and W100C10L50.
For n > 2, the representation cF generally achieves worse silhouette scores than
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the best performing PCA representation for the same number of coefficients,
possibly with the exception of the samples W0C0 and W100C0, where it performs
comparably to cDC at n = 8–9. Still, cF does not achieve the maximum silhouette
score in any of the corner cases, which is consistent with our visual inspection of
the latent representations in the previous section, where the Fourier representation
consistently yielded worse class separation than the most discriminative PCA
representation.

5.4.4 Macro recalls and random forest hyperparameters
The silhouette score is useful for comparing the separation of the dark

companion, semidetached, and contact binary classes across different latent
representations, but it does not provide an absolute measure of class separation. To
address this, we trained random forest classifiers on the extended representations
C̃DC

n , C̃SD
n , C̃C

n , and C̃F
n of the training sets of all synthetic samples (Table 5.1)

for n = 1–9, and we conducted a basic hyperparameter search on the validation
sets of the samples to find the configurations that yield the best macro recalls. In
Fig. 5.6, we present the obtained validation macro recalls of the random forest
classifiers as a function of n for the four corner cases. The errorbars show the
minimum and the maximum validation macro recalls achieved by the classifiers
during the hyperparameter tuning. The solid black lines represent the best macro
recalls achieved by the classifiers trained on the extended full representations. We
also trained random forest classifiers on the one-dimensional representations of
the samples, but we do not show the results in the plots, because they make them
less readable. The best validation macro recalls achieved by the classifiers trained
on the one-dimensional representations are: RV

M = 0.46 for the noiseless sample
W0C0 (Fig. 5.6a) and RV

M = 0.55 for the remaining corner cases (Fig. 5.6b–d).
In all corner cases, the macro recalls of the PCA representations quickly reach

a saturation point somewhere between n = 3 and 6, and then they level off with
a slight increase or decrease. We observed similar trends in the silhouette scores
of the PCA representations, but the saturation points of the macro recalls are
generally shifted towards higher n compared to the peaks and plateaus in the
silhouette scores. The representation C̃DC of the samples W0C0 and W0C10L50
exhibits the most pronounced shift, with the macro recall saturation points at
n = 5–6 and the silhouette score plateaus at n = 3. Another difference between
the silhouette scores and the macro recalls of random forest classifiers is that the
latter are not as sensitive to the presence of uninformative features. This can
be seen by comparing the trends in the silhouette scores and the macro recalls
for the PCA representations of the samples W100C0 and W100C10L50. The
silhouette scores of the representations cDC and cSD peak at n = 4–6 and then
start to decrease, eventually reaching the benchmark silhouette score well below
the maximum at n = Ngrid (Figs. 5.5b and d), while the macro recalls of the
representations C̃DC and C̃SD take the same number of coefficients to reach a
plateau located slightly above or below the limit value of the best macro recall
achieved for the extended full representation, allowing only for a marginal increase
or decrease with additional coefficients (Figs. 5.6b and d).

Both the shift of the saturation points towards higher n and the generally non-
decreasing trends in the macro recalls of the PCA representations with increasing
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Figure 5.6 Validation macro recalls of the random forest classifiers trained on the
representations C̃DC, C̃SD, C̃C, and C̃F of the synthetic samples W0C0 (a), W100C0
(b), W0C10L50 (c), and W100C10L50 (d), evaluated as a function of the number of
coefficients in the representation. The errorbars show the minimum and the maximum
validation macro recalls for a given number of coefficients. The solid black lines represent
the best validation macro recalls achieved by the classifiers trained on the extended full
representations of the samples. We describe the synthetic samples in Sect. 5.2, and we
provide the definitions of the representations in Sects. 5.3.1–5.3.2.

n can be explained by the nonlinear nature of the random forest classifier and its
robustness to noise and overfitting. The nonlinear nature allows the classifier to
learn complex decision boundaries that are not necessarily convex nor connected,
making it possible to extract useful information even from coefficients that decrease
the silhouette score of the representation. The robustness to noise and overfitting
means that even if we include an uninformative feature, the classifier can learn
to ignore it and focus on the informative features, leaving the macro recall
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essentially unchanged. These arguments also extend to the macro recall of the
representation C̃F, which follows the same non-decreasing trend with increasing n,
but consistently requires more coefficients to reach the same levels as the macro
recalls of the PCA representations. The only exception is the sample W100C0,
where C̃F performs comparably to the PCA representations. Unlike the PCA
representations, C̃F does not show a significant shift in the macro recall trends
towards higher n compared to the trends in the silhouette score, indicating that
the silhouette score is relatively well-aligned with how the data is organized in
the Fourier latent space.

In Table 5.2, we present the optimal representations and random forest
hyperparameters that yielded the best validation macro recalls for each synthetic
sample. We also present the class and macro recalls of the best performing
classifiers evaluated on the validation and test sets of the synthetic samples,
demonstrating the generalization of the recalls to previously unseen data. The
optimal number of trees in the forest is n_estimators = 500 in the majority of
cases, but for some samples, n_estimators = 100 yields better results. We do not
observe a clear pattern between the optimal value of n_estimators and the level or
type of noise, indicating that the random forest classifier is robust to the choice of
this hyperparameter in the context of the synthetic samples. The optimal minimum
number of samples at a leaf node alternates between min_samples_leaf = 1
and 10, but in the presence of moderately strong to strong uncorrelated noise
(σWN ≳ 10−3 mag) and/or correlated noise (σCN ≳ 0.05 and lCN ≤ 0.5), the optimal
value is preferentially min_samples_leaf = 10, reducing the risk of overfitting.
In the majority of noise conditions, the optimal method for selecting the number
of features at each split is max_features = sqrt, but in the limit of strong
uncorrelated and correlated noise, max_features = log2 is also a valid choice.
Overall, the setup with n_estimators = 500, min_samples_leaf = 10, and
max_features = sqrt seems to be the most robust, yielding the best macro
recalls for 11 out of 40 synthetic samples across a wide range of noise conditions.

To visualize the optimal representations of the synthetic samples, we present
Fig. 5.7. The figure shows the representations that yielded the best validation
macro recalls for each synthetic sample, along with the corresponding dimensions
at which these recalls were attained. The samples are color-coded according to
the highest macro recall achieved on their validation sets. In most cases, the best
macro recalls are achieved for the representation C̃SD. The dominance of C̃SD is
most pronounced in the regime of strong correlated noise, where it consistently
outperforms the other representations. This is in agreement with what we observed
in our analysis of the silhouette scores of the latent representations, where the
representation cSD yielded the highest silhouette scores for the samples W0C10L50
and W100C10L50. The superior performance of C̃SD and cSD in the presence of
correlated noise is most likely due to the increased variance of semidetached binary
light curves compared to dark companion and contact binary light curves (Fig. 5.3),
resulting in more informative higher-order principal components that are less
affected by numerical noise and are able to better capture the effects of correlated
noise. As we decrease the level of correlated noise in the synthetic samples, first C̃C

and then C̃DC become more competitive, occasionally outperforming C̃SD. In the
absence of correlated noise, C̃DC is generally superior to the other representations.
Irrespective of the noise conditions, the best performing PCA representation
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Table 5.2 Optimal representations and random forest hyperparameters that yielded
the best validation macro recalls (RV

M) on the synthetic samples. We also present the
validation class recalls for the dark companion (RV

DC), semidetached (RV
SD), and contact

(RV
C) binary light curves as well as the test class recalls (RT

DC, RT
SD, RT

C) and the test
macro recall (RT

M) of the best performing classifiers. We describe the synthetic samples
in Sect. 5.2 and provide the definitions of the representations in Sects. 5.3.1–5.3.2. The
definitions of the hyperparameters are given in Sect. 5.3.4.

Sample Representation n_estimators min_samples_leaf max_features RV
DC RV

SD RV
C RV

M RT
DC RT

SD RT
C RT

M

W0C0 C̃DC
8 500 1 sqrt 0.98 0.98 0.98 0.98 0.96 0.98 0.96 0.97

W0C1L25 C̃SD
9 100 1 sqrt 0.91 0.91 0.97 0.93 0.92 0.90 0.95 0.92

W0C1L50 C̃SD
8 100 10 sqrt 0.94 0.92 0.96 0.94 0.95 0.91 0.97 0.94

W0C1L100 C̃SD
7 500 1 sqrt 0.96 0.97 0.98 0.97 0.96 0.97 0.97 0.97

W0C5L25 C̃C
9 500 10 sqrt 0.86 0.76 0.88 0.83 0.83 0.71 0.84 0.80

W0C5L50 C̃SD
9 500 10 sqrt 0.84 0.79 0.90 0.84 0.83 0.74 0.86 0.81

W0C5L100 C̃SD
8 500 1 sqrt 0.90 0.91 0.95 0.92 0.93 0.90 0.92 0.91

W0C10L25 C̃SD
7 500 10 sqrt 0.81 0.69 0.76 0.75 0.79 0.66 0.73 0.72

W0C10L50 C̃SD
9 500 10 sqrt 0.80 0.73 0.77 0.77 0.79 0.69 0.75 0.74

W0C10L100 C̃SD
9 500 1 sqrt 0.86 0.83 0.89 0.86 0.87 0.82 0.87 0.85

W1C0 C̃DC
8 100 1 sqrt 0.96 0.96 0.98 0.96 0.96 0.95 0.97 0.96

W1C1L25 C̃SD
9 500 1 sqrt 0.90 0.91 0.97 0.93 0.92 0.91 0.95 0.93

W1C1L50 C̃SD
9 500 1 sqrt 0.93 0.93 0.97 0.94 0.93 0.93 0.96 0.94

W1C1L100 C̃SD
8 500 1 sqrt 0.96 0.96 0.98 0.97 0.96 0.95 0.97 0.96

W1C5L25 C̃SD
6 500 10 sqrt 0.85 0.75 0.88 0.83 0.83 0.70 0.86 0.79

W1C5L50 C̃SD
9 500 10 sqrt 0.84 0.78 0.88 0.84 0.83 0.74 0.86 0.81

W1C5L100 C̃SD
9 500 1 sqrt 0.91 0.90 0.94 0.92 0.91 0.88 0.92 0.91

W1C10L25 C̃SD
7 500 10 sqrt 0.81 0.69 0.77 0.75 0.79 0.64 0.71 0.71

W1C10L50 C̃SD
9 500 10 sqrt 0.80 0.71 0.80 0.77 0.78 0.67 0.75 0.73

W1C10L100 C̃SD
9 500 1 sqrt 0.86 0.83 0.90 0.86 0.85 0.81 0.86 0.84

W10C0 C̃SD
9 500 1 sqrt 0.91 0.91 0.96 0.93 0.94 0.89 0.93 0.92

W10C1L25 C̃SD
9 500 1 sqrt 0.90 0.89 0.95 0.91 0.91 0.86 0.92 0.90

W10C1L50 C̃SD
8 500 1 sqrt 0.91 0.89 0.95 0.92 0.92 0.87 0.93 0.91

W10C1L100 C̃SD
9 500 1 sqrt 0.91 0.90 0.96 0.92 0.93 0.89 0.93 0.92

W10C5L25 C̃C
7 500 10 log2 0.85 0.78 0.87 0.83 0.83 0.71 0.84 0.80

W10C5L50 C̃C
9 100 10 sqrt 0.86 0.77 0.88 0.84 0.82 0.72 0.85 0.80

W10C5L100 C̃SD
8 100 10 sqrt 0.88 0.84 0.94 0.88 0.88 0.81 0.91 0.87

W10C10L25 C̃SD
7 100 10 log2 0.81 0.70 0.75 0.75 0.79 0.64 0.72 0.72

W10C10L50 C̃SD
9 100 10 sqrt 0.80 0.72 0.79 0.77 0.78 0.68 0.74 0.73

W10C10L100 C̃SD
8 500 10 sqrt 0.85 0.78 0.90 0.84 0.84 0.75 0.85 0.81

W100C0 C̃DC
7 100 10 log2 0.90 0.74 0.83 0.83 0.88 0.71 0.78 0.79

W100C1L25 C̃DC
7 100 10 sqrt 0.90 0.74 0.82 0.82 0.87 0.70 0.77 0.78

W100C1L50 C̃DC
7 500 10 log2 0.91 0.75 0.82 0.83 0.87 0.70 0.77 0.78

W100C1L100 C̃SD
5 500 10 sqrt 0.90 0.73 0.84 0.82 0.88 0.70 0.79 0.79

W100C5L25 C̃SD
7 100 10 log2 0.87 0.70 0.80 0.79 0.84 0.66 0.76 0.75

W100C5L50 C̃SD
5 500 10 sqrt 0.86 0.72 0.80 0.79 0.83 0.67 0.77 0.76

W100C5L100 C̃SD
8 100 10 sqrt 0.87 0.72 0.82 0.80 0.83 0.69 0.78 0.77

W100C10L25 C̃SD
7 500 10 log2 0.83 0.67 0.70 0.73 0.79 0.62 0.68 0.70

W100C10L50 C̃SD
7 100 10 log2 0.81 0.68 0.72 0.73 0.77 0.64 0.69 0.70

W100C10L100 C̃SD
7 500 10 log2 0.83 0.71 0.80 0.78 0.79 0.68 0.76 0.74

consistently outperforms C̃F as well as the one-dimensional representation and
the extended full representation, even if marginally in the presence of correlated
noise.

Regarding the optimal number of coefficients in the latent representations,
we observe that the best macro recalls are generally achieved for n = 7–9, but
as few as five coefficients are enough in the case of the samples W100C1L100
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Figure 5.7 Latent representations that yielded the best macro recalls on the validation
sets of the synthetic samples. We describe the synthetic samples in Sect. 5.2, and we
provide the definitions of the representations in Sects. 5.3.1–5.3.2.

and W100C5L50. The relatively high numbers of coefficients required to achieve
the best macro recalls can be explained by the non-linear nature of the random
forest classifier and its robustness to overfitting. These properties ensure that
the classifier generally does not perform significantly worse when trained on a
representation with more coefficients, even if the increase in the macro recall
is only marginal and the classifier would perform comparably well with fewer
coefficients. It is possible that in some cases, the optimal number of coefficients is
even greater than nine, but we did not explore this possibility further. Even if
that was the case, the marginal increase in the macro recall beyond the saturation
points (Fig. 5.6) makes the analysis largely redundant. Consequently, the random
forest classifier is robust to the choice of the number of coefficients in the latent
representations, provided we are in the saturated macro recall regime. As a rule
of thumb, seven to nine coefficients should be sufficient to capture all the relevant
information while avoiding overfitting, but in the presence of strong noise, fewer
coefficients may be more appropriate.

In Fig. 5.8, we show the best macro recalls achieved by the random forest
classifiers on the validation sets of the synthetic samples (top panel) and the
macro recalls of the best performing classifiers on the test sets (bottom panel).
By evaluating the macro recalls on the test sets, we obtain a more realistic
estimate of the class overlap in the latent representations. We observe that the
test macro recalls are generally lower than the validation macro recalls, but the
difference is relatively low, with a maximum decrease of 0.05 in absolute terms,
demonstrating reliable generalization to previously unseen data. In the presence
of purely uncorrelated noise, the test macro recalls vary from RT

M = 0.96 to 0.79,
while for purely correlated noise, the macro recalls range from RT

M = 0.97 to 0.75,
depending on σCN and lCN. The general trend is that for fixed σWN and σCN,
the test macro recalls decrease with decreasing lCN, revealing that the effect of
correlated noise is more adverse for shorter correlation length scales. Overall,
the test macro recalls of the best performing random forest classifiers range from
RT

M = 0.97 (noiseless sample W0C0) down to RT
M = 0.70 (samples W100C10L25

and W100C10L50), indicating a fairly low overlap of the classes in the latent space
even in the presence of high levels of uncorrelated and correlated noise.
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Figure 5.8 Best validation macro recalls achieved by the random forest classifiers
trained on the latent representations of the synthetic samples (top panel) and the macro
recalls of the best performing classifiers evaluated on the test sets of the synthetic
samples (bottom panel).

5.4.5 Impact of variances on macro recalls
To assess the additional information contained in the uncertainties of the

coefficients of the latent representations, we repeated the analysis, including
the optimization of the hyperparameters of the random forest classifiers, on the
extended latent representations augmented with the variances obtained from the
least squares fits of the photometric amplitude and the coefficients. In Fig. 5.9,
we show the obtained validation macro recalls as a function of n for the four
corner cases. The errorbars and the solid black lines have the same meaning
as in Fig. 5.6. For readibility reasons, we do not show the results for the one-
dimensional representations. The best validation macro recalls achieved by the
classifiers trained on the one-dimensional representations augmented with variances
are: RV

M = 0.59 for the sample W0C0 (Fig. 5.9a), RV
M = 0.62 for the samples

W100C0 and W0C10L50 (Fig. 5.9b–c), and RV
M = 0.61 for the sample W100C10L50

(Fig. 5.9d). This represents an absolute increase of 0.13 to 0.17 in the macro
recalls of the one-dimensional representations compared to the unaugmented
case. We observe a similar shift to higher macro recalls for all augmented latent
representations across all synthetic samples, but the shift becomes less pronounced
with increasing n. The increase in the macro recalls is most prominent in the
noiseless sample W0C0, where the performance of the PCA representations is
considerably improved for up to n = 6–7, and the macro recall of the representation
C̃F+V is positively affected all the way up to n = 9, outperforming even the PCA
representations. In the presence of noise, the macro recalls of low-dimensional
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latent representations are still higher when augmented with variances, but the
improvement practically vanishes beyond the saturation points of the unaugmented
representations.

Figure 5.9 Validation macro recalls of the random forest classifiers trained on the
augmented representations C̃DC+V, C̃SD+V, C̃C+V, and C̃F+V of the synthetic samples
W0C0 (a), W100C0 (b), W0C10L50 (c), and W100C10L50 (d), evaluated as a function
of the number of coefficients in the representation. The errorbars show the minimum
and the maximum validation macro recalls for a given number of coefficients. The solid
black lines represent the best validation macro recalls achieved by the classifiers trained
on extended full representations of the samples. We describe the synthetic samples in
Sect. 5.2 and provide details about the augmented representations in Sect. 5.3.4.

We present the optimal augmented representations and hyperparameter
setups for each synthetic sample in Table 5.3. The optimal setups are remarkably
similar to the setups obtained for the unaugmented representations, with
the most significant difference being the preference of max_features = None
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instead of max_features = log2 in the limit of strong noise. Other than
that, the optimal setups remain largely unchanged, with n_estimators = 500,
min_samples_leaf = 10, and max_features = sqrt leading to the best results
for 13 out of 40 synthetic samples. Similarly, the optimal representations are
mostly unaffected by the inclusion of the variances, with C̃SD+V yielding the best
macro recalls for the majority of the samples and absolutely dominating in the
presence of strong correlated noise (Fig. 5.10). Perhaps suprisingly, the Fourier
representation seems to benefit the most from the inclusion of the variances in the
input of the random forest classifiers, replacing C̃DC+V as the most informative
representation in the absence of correlated noise and outperforming C̃SD+V on
several occasions, especially in the presence of strong uncorrelated noise. Similar
to the representations without the variances, the augmented representations
achieve the best results for n = 7–9. This is not surprising, given the marginal
increase in the macro recalls beyond the saturation points of the unaugmented
representations at n = 3–6 (Fig. 5.9). Consequently, the best validation macro
recalls achieved by the random forest classifiers and the test macro recalls of
the best performing classifiers are almost identical whether we augment the
representations with the variances or not (Figs. 5.8 and 5.11). Even in the
noiseless case, where the impact of the variances is the most pronounced, the
improvement is only marginal. In some cases, the best macro recall even decreases
when we include the variances (e.g., samples W10C1L25–100).

We conclude that while the inclusion of variances can significantly improve
the macro recall of random forest classifiers trained on low-dimensional latent
representations (n ≲ 3), the positive effect diminishes with increasing dimension of
the representation, becoming negligible once we cross the macro recall saturation
points of the unaugmented representations at n = 3–6. Consequently, augmenting
the latent representations with variances is generally not necessary, provided the
dimension of the representation is sufficiently high to capture all the relevant
information. To achieve the best results, we recommend training the classifier on
latent representations with n = 7–9.

Figure 5.10 Augmented latent representations that yielded the best macro recalls on
the validation sets of the synthetic samples. See Sects. 5.2 and 5.3.4 for the descriptions
of the synthetic samples and the augmented representations, respectively.
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Table 5.3 Optimal augmented representations and random forest hyperparameters
that yielded the best validation macro recalls (RV

M) on the synthetic samples. We also
provide the validation class recalls for the dark companion (RV

DC), semidetached (RV
SD),

and contact (RV
C) binary light curves as well as the test class recalls (RT

DC, RT
SD, RT

C)
and the test macro recall (RT

M) of the best performing classifiers. See Sect. 5.2 for the
description of the synthetic samples and Sect. 5.3.4 for the definitions of the augmented
representations and the hyperparameters.

Sample Representation n_estimators min_samples_leaf max_features RV
DC RV

SD RV
C RV

M RT
DC RT

SD RT
C RT

M

W0C0 C̃F+V
9 100 10 sqrt 0.98 0.99 0.98 0.98 0.97 0.98 0.96 0.97

W0C1L25 C̃SD+V
8 500 1 sqrt 0.92 0.90 0.97 0.93 0.92 0.90 0.95 0.92

W0C1L50 C̃SD+V
8 500 1 sqrt 0.94 0.93 0.97 0.95 0.94 0.93 0.96 0.94

W0C1L100 C̃F+V
8 500 1 sqrt 0.98 0.97 0.98 0.97 0.96 0.98 0.97 0.97

W0C5L25 C̃F+V
9 500 10 sqrt 0.87 0.75 0.87 0.83 0.83 0.71 0.83 0.79

W0C5L50 C̃SD+V
8 500 10 sqrt 0.85 0.78 0.90 0.84 0.82 0.74 0.86 0.81

W0C5L100 C̃F+V
9 500 1 sqrt 0.92 0.91 0.94 0.92 0.94 0.89 0.91 0.91

W0C10L25 C̃SD+V
9 500 10 sqrt 0.81 0.70 0.75 0.75 0.78 0.66 0.71 0.72

W0C10L50 C̃SD+V
8 500 10 sqrt 0.80 0.72 0.77 0.77 0.78 0.69 0.74 0.74

W0C10L100 C̃SD+V
9 500 1 sqrt 0.86 0.83 0.90 0.86 0.86 0.81 0.87 0.85

W1C0 C̃F+V
8 500 10 sqrt 0.96 0.97 0.98 0.97 0.96 0.96 0.97 0.96

W1C1L25 C̃SD+V
9 500 10 sqrt 0.93 0.88 0.97 0.93 0.92 0.87 0.96 0.92

W1C1L50 C̃SD+V
8 500 1 sqrt 0.93 0.93 0.97 0.94 0.93 0.93 0.96 0.94

W1C1L100 C̃F+V
8 500 1 sqrt 0.96 0.96 0.98 0.97 0.96 0.96 0.96 0.96

W1C5L25 C̃SD+V
7 100 10 sqrt 0.85 0.76 0.88 0.83 0.82 0.70 0.85 0.79

W1C5L50 C̃SD+V
9 500 1 sqrt 0.83 0.81 0.86 0.84 0.82 0.77 0.83 0.81

W1C5L100 C̃F+V
9 100 10 sqrt 0.93 0.89 0.94 0.92 0.94 0.86 0.91 0.90

W1C10L25 C̃SD+V
7 100 10 None 0.80 0.70 0.75 0.75 0.78 0.64 0.71 0.71

W1C10L50 C̃SD+V
9 500 10 sqrt 0.80 0.71 0.79 0.77 0.78 0.68 0.74 0.73

W1C10L100 C̃SD+V
8 500 1 sqrt 0.86 0.83 0.90 0.86 0.85 0.80 0.86 0.84

W10C0 C̃SD+V
8 500 1 sqrt 0.90 0.91 0.96 0.92 0.94 0.90 0.93 0.92

W10C1L25 C̃F+V
9 500 10 sqrt 0.91 0.87 0.96 0.91 0.90 0.84 0.93 0.89

W10C1L50 C̃SD+V
8 500 1 sqrt 0.90 0.89 0.95 0.91 0.91 0.87 0.92 0.90

W10C1L100 C̃SD+V
8 500 1 sqrt 0.91 0.90 0.96 0.92 0.92 0.89 0.93 0.91

W10C5L25 C̃C+V
7 500 10 sqrt 0.85 0.77 0.87 0.83 0.82 0.71 0.84 0.79

W10C5L50 C̃SD+V
8 500 10 sqrt 0.85 0.77 0.88 0.83 0.83 0.73 0.85 0.80

W10C5L100 C̃SD+V
8 100 10 sqrt 0.88 0.84 0.94 0.89 0.86 0.81 0.91 0.86

W10C10L25 C̃SD+V
7 500 10 sqrt 0.81 0.71 0.74 0.75 0.78 0.65 0.71 0.72

W10C10L50 C̃SD+V
9 500 10 sqrt 0.80 0.72 0.78 0.77 0.78 0.69 0.73 0.73

W10C10L100 C̃SD+V
8 500 10 None 0.85 0.77 0.91 0.84 0.84 0.75 0.85 0.81

W100C0 C̃F+V
8 500 10 sqrt 0.90 0.75 0.83 0.83 0.89 0.71 0.78 0.79

W100C1L25 C̃F+V
8 500 10 None 0.89 0.75 0.83 0.83 0.86 0.70 0.78 0.78

W100C1L50 C̃F+V
9 100 10 None 0.89 0.76 0.83 0.82 0.87 0.70 0.78 0.78

W100C1L100 C̃SD+V
6 100 10 sqrt 0.90 0.74 0.83 0.82 0.87 0.70 0.78 0.79

W100C5L25 C̃F+V
8 500 10 None 0.86 0.72 0.79 0.79 0.84 0.67 0.74 0.75

W100C5L50 C̃F+V
9 500 10 None 0.86 0.73 0.79 0.79 0.83 0.68 0.76 0.76

W100C5L100 C̃F+V
8 500 10 None 0.86 0.74 0.82 0.80 0.83 0.70 0.78 0.77

W100C10L25 C̃SD+V
7 100 10 sqrt 0.83 0.67 0.69 0.73 0.79 0.63 0.67 0.70

W100C10L50 C̃SD+V
8 100 10 None 0.81 0.68 0.71 0.73 0.78 0.64 0.69 0.70

W100C10L100 C̃SD+V
7 100 10 None 0.83 0.71 0.79 0.78 0.80 0.68 0.75 0.74

5.4.6 Expected precision of random forest classifiers
The relatively high macro recalls of the random forest classifiers on the

validation and test sets of the samples of dark companion, semidetached, and
contact binary light curves must be interpreted in the context of the synthetic
data, which we deliberately balanced to avoid bias towards a particular class.
Consequently, the macro recalls should be understood as a measure of the mean
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Figure 5.11 Highest validation macro recalls achieved by the random forest classifiers
trained on the augmented latent representations of the synthetic samples (top panel)
and the macro recalls of the best performing classifiers evaluated on the test sets of the
synthetic samples (bottom panel).

non-overlap of the classes in the latent space rather than the expected accuracy of
the classifier on real data. Despite that, we can still use the class recalls obtained
for the test sets of the synthetic samples (Table 5.2) to estimate the expected
precision of the classifier on previously unseen data, provided we know the relative
frequencies of the classes in the sample. Assuming the worst case scenario, where
all misclassifications fall into the dark companion class, we can estimate the
expected precision PDC of the classifier for the dark companion class as

PDC = fDCRT
DC

fDCRT
DC + fSD(1 − RT

SD) + fC(1 − RT
C) , (5.12)

where fDC, fSD, and fC are the relative frequencies of the dark companion,
semidetached, and contact binary classes in the sample, respectively, and RT

DC,
RT

SD, and RT
C are the class-specific test recalls of the classifier trained on data

with the same noise characteristics as the sample. The expected precision of
the classifier for the semidetached and contact binary classes can be calculated
analogously. The expected precision PDC tells us what fraction of the objects
in the sample classified as dark companions can we expect to be actual dark
companions, as opposed to RT

DC, which tells us what fraction of the actual dark
companions in the sample can we expect to be classified as such. The expected
precision allows us to estimate the purity of the refined sample of objects classified
as dark companions, which is crucial for assessing the cost-efficiency of follow-up
observations. Alternatively, if the relative frequencies are unknown, we can
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estimate the prior purity of the sample that is required to achieve a predefined
level of purity in the refined sample, helping us decide whether the sample is
worth pursuing.

We illustrate the calculation of PDC with a model example: consider a sample
of ellipsoidal variables with fDC = 0.01, fSD = 0.66, and fC = 0.33, and a classifier
with RT

DC = 0.96, RT
SD = 0.98, and RT

C = 0.96, corresponding to the best-case
scenario in Table 5.2. If we plug these values into Eq. 5.12, we obtain PDC ≈ 0.27,
yielding a refined sample of objects classified as dark companions with an expected
purity of approximately 27%, which is a significant improvement over the 1%
prior purity of the full sample. If we decrease the class recalls to RT

DC = 0.79,
RT

SD = 0.62, and RT
C = 0.68, corresponding to the worst-case scenario in Table 5.2,

we obtain a refined sample with PDC ≈ 0.02, merely doubling the purity of the
full sample. This example demonstrates that even low-purity samples can yield
significantly improved results if the classifier produces high enough recalls for all
classes.

In practice, we cannot reasonably expect that the noise characteristics of
real data will exactly match the characteristics of one of our synthetic samples.
When designing the synthetic samples, our goal was not to simulate realistic
observing conditions but rather to systematically study the effects of correlated
and uncorrelated noise on our ability to distinguish between the three binary
classes. Consequently, the classifiers trained on the synthetic samples are not
directly applicable to real data. However, if we somehow manage to transfer
the noise characteristics of real observations to the synthetic data, including the
effects of spots and other phenomena that introduce variations from the synthetic
models, we can train a classifier on the augmented data and obtain class recalls
that are specific to the target sample. In general, this is a challenging task,
requiring a detailed understanding of the instrumental noise of the survey and
the physical processes affecting the shapes of the light curves, such as flares,
pulsations, etc. As a first approximation, we can fit the light curves in the target
sample using Gaussian process regression, modeling the mean as a Fourier series
of sufficiently high order. We can then inject the residuals from the Fourier fit of
a randomly selected light curve into a preselected noiseless synthetic light curve
(before normalization), independently repeating the process several times for all
light curves in the synthetic data. By training, validating, and testing the classifier
on the augmented data, we can obtain class recalls that roughly reflect the noise
characteristics of the target sample, allowing us to estimate the expected precision
of the classifier on real data.

5.5 Discussion and conclusions
In this work, we addressed the issue of whether it is possible to identify non-

interacting black holes and neutron stars in close binary systems based solely on the
effects they induce in the broadband photometric light curves of their companion
stars. A massive compact companion in a close binary system can tidally deform
the primary star into a teardrop shape, causing periodic changes in the area of
the star that is visible to the observer and giving rise to ellipsoidal variations
in its light curve. By searching for stars that exhibit ellipsoidal variations, we
can potentially identify binary systems that host electromagnetically silent black
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holes and neutron stars, which we collectively refer to as dark companions. The
problem with this approach is that other types of objects, such as contact binaries
and semidetached binaries, can also exhibit ellipsoidal variations, making the
identification of dark companions challenging.

One way to distinguish dark companion binaries from contaminants is to train
a machine learning classifier on a well-curated sample of their observed light curves
in which each class properly represented. However, the limited number of known
dark companion binaries prevents us from following this approach. Instead, we
generated a large number of synthetic light curves of dark companion binaries,
semidetached binaries, and contact binaries, covering a wide range of physical
and orbital parameters of the systems (Sect. 5.2.1). To account for the effects
of instrumental noise and stellar spots, we injected the light curves with various
levels of correlated and uncorrelated Gaussian noise, resulting in 40 synthetic
samples (Table 5.1). While injecting the noise, we oversampled each binary class
by a different oversampling factor, mitigating the bias towards the majority class
and resulting in a more balanced representation of the classes (Sect. 5.2.2). We
normalized the light curves in the synthetic samples by fitting them with a fourth-
order Fourier series, realigning them to have the primary minimum at phase 0, and
vertically shifting and rescaling them so that their Fourier fits have a minimum
and maximum of 0 and 1, respectively.

To uncover the underlying discriminative patterns in the high-dimensional
synthetic data, we reduced the light curves using PCA and discrete Fourier
series – two linear methods that are well-suited for the decomposition of discrete
periodic signals. We performed PCA separately on the noiseless normalized light
curves of each binary class, yielding three distinct PCA bases, with the expansion
coefficients in the bases forming the PCA representations of the light curves. We
also constructed a discretized Fourier basis by sampling the Fourier basis functions
on the same grid as the synthetic light curves. For the Fourier representation to be
directly comparable with the PCA representations, we subtracted the mean dark
companion binary light curve from all light curves, including the semidetached
and contact binary light curves, prior to the decomposition. In all four bases, we
distinguished between unit and rescaled latent representations, as well as extended
unit and rescaled latent representations, where the extended representations
contain the amplitude of the light curve as the zeroth element. We provide a
detailed description of the representations and their notations in Sects. 5.3.1–5.3.2.

Our analysis of the noiseless synthetic sample S0 revealed that the mean light
curves of dark companion binaries, semidetached binaries, and contact binaries
are very similar (Fig. 5.1), demonstrating the difficulty of distinguishing between
the classes using photometric data alone. The finer details of the light curves
are captured by the principal components, which differ between the classes and
become progressively more oscillatory with increasing order (Fig. 5.2). In all
cases, the cumulative explained variance of the PCA components exceeds 99%
somewhere between the second and fifth component (Fig. 5.3), indicating that
the light curves are effectively confined to low-dimensional hyperplanes in the
original high-dimensional space and justifying the use of PCA for dimensionality
reduction.

Visual inspection of the latent representations of the synthetic samples W0C0,
W100C0, W0C10L50, and W100C10L50, which are the corner cases with the
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lowest and the highest levels of correlated and uncorrelated noise, revealed major
differences between the PCA and Fourier representations (Fig. 5.4). We found
that the first three coefficients of the PCA representations exhibit much richer
structure in the latent space than the coefficients of the Fourier representation,
in which the distributions of the classes are collapsed along the third coefficient,
mixing the classes together and decreasing their separation. This is true for all
corner cases, but the differences are more pronounced in the absence of correlated
noise. We found that correlated noise affects the structure of the latent space
on a more fundamental level than uncorrelated noise, making it more difficult
to visually separate between the classes. Still, even in the presence of strong
correlated and uncorrelated noise, the PCA representations retain some of their
original structure, while the Fourier representation becomes almost featureless,
demonstrating the superiority of the PCA representations.

To compare the class separation in the unit PCA and Fourier representations
under different noise conditions, we calculated the silhouette scores of the four
corner cases as a function of the number of coefficients in the representation
n = 1–9 (Sect. 5.4.3). We provide the definition of the silhouette score and details
of its calculation in Sect. 5.3.3. Our findings from the analysis of the silhouette
scores are largely consistent with the conclusions drawn from the visual inspection
of the corner cases. We found that the PCA representations generally yield better
class separation than the Fourier representation for a given n, with the exception
of the first few coefficients which seem to be more informative in the Fourier
representation (Fig. 5.5). This holds true across all corner cases, demonstrating
the robustness of the PCA representations to noise. The silhouette scores of the
PCA representations typically peak or plateau at n = 3–6, depending on the
level and type of injected noise. The only exception is the contact representation,
which exhibits a more gradual increase of the silhouette score with n, similar
to what we observe for the Fourier representation. By comparing the silhouette
scores of the latent representations with the benchmark silhouette score of the full
representation, we found that the latent representations are much more immune to
uncorrelated noise than correlated noise, confirming what we observed in Figs. 5.4c–
d. The semidetached representation proved to be the most robust to correlated
noise, yielding the best class separation for the synthetic samples W0C10L50
and W100C10L50. We found that in the absence of correlated noise, the dark
companion representation outperforms the other representations, achieving the
highest silhouette scores for the synthetic samples W0C0 and W100C0.

To assess the mean overlap of the classes in the latent space, we trained random
forest classifiers on the extended rescaled latent representations of the synthetic
samples and analyzed their macro recalls as a function of n = 1–9 (Sect. 5.4.4).
We describe the calculation of the macro recalls and the hyperparameter setups
of the random forest classifiers in Sect. 5.3.4. We observed that the macro recalls
of the PCA representations start to saturate at n = 3–6, depending on the
representation and the noise level, and then slightly increase or decrease with
increasing n (Fig. 5.6). The saturation points of the PCA representations are
slightly shifted to higher n compared to the plateaus and peaks of the silhouette
scores, especially in the case of the dark companion representation of the samples
W0C0 and W0C10L50. We observed no significant shift in the saturation points
of the Fourier representation, indicating good alignment of the silhouette score
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with the Fourier representation.
Consistent with the results of our analysis of the silhouette scores, we observed

that the semidetached representation generally yields the best macro recalls in the
presence of correlated noise, while the dark companion representation outperforms
the other representations in the complete absence of noise and in the presence
of strong uncorrelated noise (Fig. 5.7). However, the best macro recalls are
typically obtained for n = 7–9, where the differences between the macro recalls are
marginal and all PCA representations perform comparably (Fig. 5.6). In all corner
cases except W100C0, the Fourier representation consistently yields lower macro
recalls than the PCA representations for the same n. In addition, the Fourier
representation does not achieve the best macro recalls for any of the synthetic
samples, suggesting that the classes are generally more intermixed in the Fourier
latent space and pointing to the superiority of the PCA representations in terms
of class separation and robustness to noise.

We obtained the best validation macro recalls of the random forest classifiers
on the synthetic samples by taking the maximum across all representations and
hyperparameter setups (top panel of Fig. 5.8). By evaluating the best performing
random forests on the test sets of the synthetic samples, we verified that the
validation macro recalls generalize well to previously unseen data, with a typical
decrease of 1–5% in absolute terms, depending on the synthetic sample (bottom
panel of Fig. 5.8). The test macro recalls of the best performing random forest
classifiers vary from RT

M = 0.97 in the absence of noise to RT
M = 0.70 in the presence

of strong correlated and uncorrelated noise, manifesting low to medium overlap of
the classes in the latent space. We found that in the presence of moderate levels
of uncorrelated noise (10−4 mag ≤ σWN ≤ 10−3 mag), the overlap of the classes is
largely determined by the level of correlated noise, with shorter correlation lengths
generally yielding worse class separations. Uncorrelated noise starts to significantly
affect the macro recalls only at higher levels (σWN > 10−3 mag), whereas correlated
noise can considerably increase the class overlap even at low to moderate levels
(0.01 ≤ σCN ≤ 0.05). This contrast reveals a more fundamental effect of correlated
noise on the separation of the classes in the latent space. Nevertheless, even in the
presence of strong correlated noise (σCN = 0.1), which can amount to significant
surface coverage with stellar spots, the classes remain largely separated in the
latent space, with test macro recalls reaching RT

M = 0.70–0.72.
We retrained the random forest classifiers on the extended representations

augmented with the variances of the photometric amplitude and the latent
coefficients to investigate whether the inclusion of the variances in the input
of the classifiers improves the separation of the classes (Sect. 5.4.5). We found
that while the macro recalls of low-dimensional PCA representations (n ≲ 3)
significantly increase, the improvement is only marginal beyond the saturation
points of the unaugmented representations at n = 3–6. The positive effect of
the variances is the most pronounced in the case of the Fourier representation,
where the macro recalls are considerably improved for n = 1–9 across all noise
conditions (Fig. 5.9), even surpassing the macro recalls of the PCA representations
in the complete absence of noise and in the presence of strong uncorrelated noise
(Fig. 5.10). However, the best macro recalls of the random forest classifiers trained
on the augmented representations (Fig. 5.11) remain largely unchanged compared
to the macro recalls obtained for the unaugmented representations, pointing to
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the limited benefit of including the variances in the representations.
Using the obtained test class recalls (Table 5.2), we showed that it is possible

to estimate the expected precision of the classifier on real data, assuming we
have a rough estimate of the relative frequencies of the classes in the sample
(Sect. 5.4.6). We illustrated the calculation of the expected precision on a model
example, and we showed that in the best-case scenario, we can increase the purity
of a dark companion sample by a factor of up to 27, assuming a prior purity of
1%.

There are several limitations to our study that need to be addressed. First,
we generated the synthetic light curves using PHOEBE binary models, which are
not perfect representations of reality. As a result, the synthetic light curves may
not capture all the complexities of real light curves, such as Doppler beaming
and boosting (Loeb & Gaudi 2003; Zucker et al. 2007), which are not supported
as of version 2.2. In addition, we made several simplifying assumptions in the
generation of the synthetic light curves, such as the circularity of the orbits or the
default limb darkening calculation settings. However, we expect that these effects
are secondary to the main features of the light curves and become negligible in the
presence of noise. Consequently, we do not expect the main findings of our study,
such as the superiority of the PCA representations over the Fourier representation,
to be significantly affected by these assumptions.

Second, we injected the synthetic light curves with various levels of uncorrelated
and correlated Gaussian noise to account for the effects of instrumental noise and
stellar spots, respectively. While the uncorrelated noise is a good approximation
of the instrumental noise, the correlated noise is a very simplified model of the
effects of stellar spots, which can be more complex in reality. Also, we limited our
analysis to lCN = 0.25, 0.5, and 1, which may not cover the full range of possible
timescales of the spots. A more realistic treatment of spots could be achieved
either by simulating the spots directly in PHOEBE, which would greatly increase
the size and complexity of the synthetic data as well as the computational cost
of its generation, or by using spot models of single stars (e.g., Luger et al. 2019,
2021b,a) instead of correlated Gaussian noise. In addition, we did not consider
the effects of other sources of noise, such as the intrinsic variability of the stars.
All these effects can potentially complicate the separation of the classes in the
latent space and decrease the macro recalls on real data. To avoid modeling the
noise altogether, we can transfer the noise characterics directly from the target
sample as we described in Sect. 5.4.6, taking into account all the complexities
and idiosyncracies of real astronomical observations and yielding a more accurate
estimate of the expected precision of the classifier on real data. There are several
samples of ellipsoidal variables in the literature that are suitable for this purpose,
e.g., Green et al. (2023); Gomel et al. (2023, 2021c). We plan to investigate these
samples using our method in future work.

Third, in our analysis, we implicitly assumed that ellipsoidal samples contain
only dark companion binaries, semidetached binaries, and contact binaries, which
we regard as the most challenging classes to separate. In reality, low-inclination
detached binaries are also prominently present in ellipsoidal samples, and other
types of objects, such as pulsating stars and spotted rotating stars, can be
found in the samples as well. We excluded detached binaries from our analysis,
because we assumed that their light curves are sufficiently similar to those of
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semidetached binaries to be treated as such by the classifier, effectively increasing
the relative frequency of the semidetached class in the sample. However, further
analysis is required to confirm the validity of this assumption. If needed, our
method can be easily extended to accommodate detached binaries as a separate
class, allowing for a more detailed differentiation between the classes. As for
pulsating stars and spotted rotating stars, these can be efficiently removed from
the sample by performing suitable cuts on period and amplitude (Green et al.
2023). Consequently, we assume that the fraction of these objects in ellipsoidal
samples is negligible, and their effect on the performance of the classifiers is
minimal. Lastly, in our definition of dark companion binaries, the dark companion
is either a black hole or a neutron star. In practice, it is difficult to distinguish
ellipsoidal variations induced by a neutron star from those induced by a massive
white dwarf (WD), leading to contamination of the dark companion class by
these objects. Since the true nature of the dark companion can only be reliably
determined through high-resolution spectroscopy, we did not attempt to separate
dark companion binaries from binaries hosting massive WDs. Instead, we treated
them as a single class in our analysis, leaving their separation up to follow-up
observations. To assess the level of contamination by massive WDs, further
analysis of the candidates identified by our method is required.

Fourth, we trained the classifiers on the extended latent representations, which
encode the absolute scales and the morphologies of the light curves, but do not
take into account their periods. While we expect that most of the discriminative
information is contained in the shapes of the light curves, the periods can provide
additional information about the physical characters of the systems, potentially
improving the separation of the classes. We plan to investigate the impact of
including the periods in the latent representations on the performance of the
classifiers in future work.

Fifth, to obtain the boundaries and quantify the overlap between the classes,
we trained the random forest classifiers on the oversampled synthetic data, which
we further balanced by weighting the objects with the inverse of the class size. This
is a valid approach, provided the distributions of the objects within the classes
are representative. That is, the objects of a given class populate the parameter
space in a way that is representative of real data. However, this is not the case
in our synthetic data, which we generated on uniform and log-uniform grids of
physical and orbital parameters of the systems (Sect. 5.2.1). Our motivation
was to cover a wide range of parameters in order to capture the full diversity
of the light curves rather than to mimic the real distributions of the objects.
Consequently, the boundaries of the classes in the latent space may be distorted
with respect to real data, leading to biased estimates of the macro recalls to
either side. This can only be avoided by generating synthetic light curves with
representative distributions of the parameters, which is a challenging task given
the complexity of the parameter space. Representative distributions of at least
some physical parameters could be obtained using binary population synthesis
(e.g., Weller & Johnson 2023; Chawla et al. 2023). Until we train the classifiers on
data with representative parameter distributions, we cannot quantify the impact
of parameter sampling strategy on the macro recalls and the expected precision
of the classifiers. However, assuming that the objects within the classes do not
accumulate close to the decision boundaries in the latent space, we expect our
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estimates to generalize well to real data.
Our method of projecting light curves to PCA components learned from

synthetic data can be easily extended to multi-band photometry, which can
provide additional information about the physical properties of the systems. For
example, ultraviolet photometry from upcoming satellites such as QUVIK (Werner
et al. 2024; Krtička et al. 2024) or ULTRASAT (Shvartzvald et al. 2024) could
be used to constrain the nature of semidetached binaries, including binaries with
stripped-envelope stars (Rowan et al. 2024). Precise ultraviolet observations could
also be used to further break the degeneracy between contact binaries and dark
companion binaries using the different limb darkening properties of these systems
in UV. We plan to pursue this direction in future work.

Another possibility of improving our method is to explicitly model the
correlated noise in the light curves using Gaussian processes. We found that
correlated noise affects the light curves on a more fundamental level than
uncorrelated noise, preventing the latent representations from disentangling the
signal from the noise. This is not suprising – by fitting the light curves using
least squares, we implicitly assume homoscedastic uncorrelated Gaussian noise,
which is clearly not justified in the presence of correlated noise. We can avoid
this assumption by modeling the light curves using Gaussian process regression
with a nonzero mean given by a linear combination of Fourier components. We
expect that this approach will yield more robust latent representations of the light
curves and better separation of the classes in the latent space. The recovered
parameters of the correlated noise can possibly also be informative about the
physical properties of the systems. We intend to explore this approach in future
work.

MP thanks Yuan-Sen Ting for helpful discussions. We acknowledge the support of the
Czech Science Foundation Grant No. 24-11023S. The work of OP was supported by the Charles
University Research program No. UNCE24/SCI/016. This work made use of the following
software packages: PHOEBE (Prša et al. 2016; Conroy et al. 2020b), numpy (Harris et al. 2020),
scikit-learn (Pedregosa et al. 2011), matplotlib (Hunter 2007), pandas (Wes McKinney
2010).
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5.A Scatter plots of the coefficients of the latent
representations

Figure 5.A.1 Scatter plots of the first and second coefficients of the representations
c̃DC, c̃SD, c̃C, and c̃F of the dark companion, semidetached, and contact binary light
curves in the validation sets of the synthetic samples W0C0 (a), W100C0 (b), W0C10L50
(c), and W100C10L50 (d). We describe the synthetic samples in Sect. 5.2 and provide
the definitions of the representations in Sects. 5.3.1–5.3.2.
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Figure 5.A.2 Scatter plots of the second and third coefficients of the representations
c̃DC, c̃SD, c̃C, and c̃F of the dark companion, semidetached, and contact binary light
curves in the validation sets of the synthetic samples W0C0 (a), W100C0 (b), W0C10L50
(c), and W100C10L50 (d). We describe the synthetic samples in Sect. 5.2 and provide
the definitions of the representations in Sects. 5.3.1–5.3.2.
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Conclusion
The unifying theme of this thesis is the application of machine learning methods

to study binary star populations through photometric observations. Until recently,
this would not have been possible due to the absence of suitable data analysis
techniques and the lack of sufficiently large high-precision photometric samples.
However, with the recent advancements in the fidelity of numerical models of
binary star systems and the advent of large-scale space-based photometric surveys,
such as the Kepler and TESS missions, it has become possible to study binary
star populations in unprecedented detail.

To effectively extract information from binary star light curves, we require a
precise physical model of the binary system capable of reproducing observed light
curves with high accuracy. In this thesis, we utilized PHOEBE, a state-of-the-art
binary star modeling software. Before we applied PHOEBE on a large scale, we
wanted to validate its accuracy and robustness to parameterization on an example
of a single binary system. By robustness to parameterization, we mean the impact
of the choice of the free parameters of the model and the parametric prescriptions
of the physical processes included in the model, such as reflection and limb
darkening, on the inferred physical parameters of the system. To this end, we
tried to recover the physical and orbital parameters of the eclipsing binary system
AI Phoenicis, a relatively bright (V = 8.6) detached system with well-constrained
parameters from the literature (Chap. 3). To study the effects of parameterization
on the results, we defined a nominal model, and we systematically varied the
free parameters and hyperparameters of the model one at a time, inferring the
parameters of the system for each variation. We found that parameterization has
little effect on the results, with the inferred parameters mostly consistent with
each other and showing only a limited spread around the nominal values. However,
we found that the our results are not consistent with the values reported in the
literature. While there are several possible explanations for the discrepancy, we
conclude that the most likely cause is the assumptions and approximations in the
wrapper that PHOEBE uses to interface with the ellc forward model, which we
used instead of the native PHOEBE backend to speed up the computation. Further
investigation revealed a systematic offset in the light curves produced by the two
backends, possibly explaining the offset in the inferred parameters. To avoid such
discrepancies in the future, we switched to the native PHOEBE backend for the
subsequent analyses in this thesis.

Next, we turned our attention to the problem of the estimation of the minimum
mass ratio qmin of contact binary stars. The value of qmin has a significant impact
on the evolution of contact binary stars, as it determines the onset of the tidal
Darwin instability, leading to the rapid coalescence of the components. The
minimum mass ratio is difficult to measure directly, because it requires detailed
spectroscopic observations for a large sample of contact binary stars, which is
difficult to obtain in practice, especially for systems close to the tidal instability.
In this thesis, we presented a method for the inference of qmin from the observed
distribution of light curve amplitudes of contact binary stars (Chap. 4). We
applied this method to a sample of contact binary candidates, which we obtained
by modeling the Kepler Eclipsing Binary Catalog as a Bayesian mixture of contact
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binary stars and contaminants. This way, we assigned a probability of being a
contact binary of either late or early type to each object in the sample, with
the probabilities serving as weights in the subsequent analysis. We modeled the
mass-ratio distribution of contact binary stars as a power-law Q ∝ qb with a cutoff
at qmin. We utilized PHOEBE to construct the amplitude distribution of contact
binaries as a function of the parameters of Q, allowing us to infer qmin by fitting
the model to the observed distribution of light curve amplitudes from Kepler.
Performing the analysis separately for late-type contact binaries with periods
P ≤ 0.3 d and P > 0.3 d, and for early-type contact binaries with P < 1 d, we
found qmin = 0.246+0.029

−0.046, 0.087+0.024
−0.015, and 0.030+0.018

−0.022, respectively, indicating a
dependence of qmin on the structure of the components. The method that we
developed can be easily extended to large samples of contact binaries from TESS
and other space-based surveys.

Lastly, we addressed the issue of identifying dark companion binaries—
ellipsoidal variables hosting electromagnetically silent black holes and neutron
stars—in large photometric surveys. This is a challenging task because the light
curves of dark companion binaries can be similar to those of semidetached and
contact binaries, yielding high false-positive rates when not properly accounted
for. To systematically study the differences between these classes, we generated
synthetic light curves of dark companion, semidetached, and contact binaries
(Chap. 5). We injected the light curves with various levels of uncorrelated and
correlated Gaussian noise to simulate the effects of instrumental noise and
starspots. We then reduced the light curves using PCA and Fourier decomposition,
resulting in low-dimensional representations of the light curves. We found that
the first two to five PCA components are typically enough to explain 99% of the
variance in the data. We used two metrics to compare the informativeness of
different representations: the silhouette score, which quantifies how similar and
object is to its own class compared to other classes in a given representation, and
the macro recall of random forest classifiers trained on the representations, which
we interpret as the mean non-overlap of the classes in the representation space.
We found that the PCA representations are generally more informative than the
Fourier representation for the same number of coefficients as measured by both
metrics. The macro recalls achieved by the random forest classifiers trained on
the representations range from 0.97 in the complete absence of noise to 0.70 in
the presence of spots and strong instrumental noise, indicating that the classes
remain largely separable even under adverse observing conditions. We found that
the effect of instrumental noise on our ability to distinguish between the classes is
not that severe, provided that its standard deviation does not exceed 10−3 mag.
In contrast, the presence of spots can significantly reduce the class separation
even when they contribute as little as 1% of the light curve amplitude. Finally, we
proposed a way to apply the random forest classifiers trained on synthetic data to
real ellipsoidal samples, showing that we can increase the purity of a sample of
dark companion candidates by a factor of up to 27 if we assume a modest prior
purity of 1%. Our method is easily extendable to multi-band photometric light
curves and can be further improved by explicitly modeling the correlated noise in
the light curves using Gaussian processes, paving the way for a systematic search
for dark companion binaries in large photometric surveys.
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Stȩpień, K. 2004, in IAU Symposium, Vol. 219, Stars as Suns : Activity, Evolution
and Planets, ed. A. K. Dupree & A. O. Benz, 967
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