o

ey

B R,
ZKTHS

VETENSKAP

3% OCH KONST o¢

Basscet

Prof. Dr. Philipp Haller

KTH Royal Institute of Technology, Sweden

School of Electrical Engineering and Computer Science (EECS)
Division of Theoretical Computer Science (TCS)

Stockholm, September 4", 2024

Expert Report on Mr. Dort's Dissertation Entitled '""Read-only Types and Purity for
DOT"

It is my pleasure to provide an expert report on the PhD thesis report by Vlastimil Dort. The
dissertation presents several original contributions in programming languages research concerned
with safe, typed object-oriented programming. The focus of the thesis is on controlling side effects
in object-oriented programming languages that support mutable objects, that is, objects with
mutable fields. By restricting side effects using static types, the ability to reason about programs and
their reliability can be increased significantly. Scala is a modern programming language with a
flexible and expressive type system, grounded in a foundational family of calculi (the DOT calculi)
for which type soundness has been established formally. While Scala and its type system have
excellent support for functional programming where side effects are either strictly limited (for
instance, to local state within a function, say) or absent entirely ("pure functional programming"), to
date it has been impossible to specify and enforce side-effect freedom. As a result, the ability to
reason about such mostly-functional code has been fundamentally limited. The present doctoral
dissertation of Mr. Dort proposes extensions to Scala's type system, formalized in the toDOT
calculus, a variant of a core calculus in the DOT family, which enable expressing reference
mutability, that is, whether a reference is either mutable (i.e., unrestricted) or read-only, preventing
the mutation of an object's fields through that reference, transitively. These type-based extensions
enable, for the first time, to specify and enforce a fine-grained notion of side-effect freedom both in
DOT-based calculi (formally) and in Scala (practically).

In the following we summarize contributions and key parts of the content of the main chapters.
These summaries serve to inform the assessment of the dissertation as based on the technical
content of the dissertation. Chapters which are not mentioned explicitly are not ignored, however.
Instead, their contribution is reflected in the overall assessment provided at the end of this report
which also evaluates and assesses orthogonal aspects of the presented work.

The PhD thesis makes three main contributions.

The first contribution is roDOT, an extension of a core calculus in the DOT family, which

provides type system extensions for expressing and enforcing reference mutability. The design of

roDOT is unique in the way in which features of DOT are utilized in order to keep the required

extensions as economical as possible. The meta-theory consists of two main results: first, type

safety; second, an immutability guarantee, which expresses an essential property provided by the
Royal Institute of Technology School of Electrical Engineering and Computer Science

KTH, Drottning Kristinas vég 30, SE-100 44 Stockholm, Tel: +46 8 790 60 00 . E-mail: info@kth.se www.kth.se



reference mutability in roDOT. Type safety states that for a well-typed term, reduction terminates in
a finite number of steps or reduction continues indefinitely, i.e., the reduction of a well-typed term
does not result in a stuck term/configuration. The immutability guarantee states that in a well-typed
configuration, an object is either immutable (i.c., it is not mutated after any number of steps) or it
is/was reachable by mutable references. This guarantee ensures that the only way to mutate an
object is by using a mutable reference. In order to state this guarantee precisely, a notion of
mutable reachability is formalized. On object is mutably reachable if it is reachable in the current
configuration using only read-write references. The theorem providing the immutability guarantee
states that each object in a typed configuration is either mutably reachable, and can therefore be
mutated, or it remains unchanged after any number of reduction steps. The roDOT calculus and its
meta-theory have been mechanized using the Coq proof assistant, including the proofs of all
theorems. Therefore, we can be confident in the correctness of the presented results. The
mechanization is the result of a collaboration with Yufeng Li from the University of Watetloo.

The roDOT calculus and its meta-theory can be regarded as a new scientific result, since it is
the first result to, in the context of a DOT calculus with mutable fields, (a) formalize reference
mutability and (b) establish an immutability guarantee. The importance of this result is highly
significant for programming languages combining functional and object-oriented
programming, since it shows how reference mutability can be added to the DOT family of calculi
in a sound way, providing an essential immutability guarantee. The immutability guarantee is, in
turn, important to guarantee other properties, including a side-effect freedom guarantee (see the
next contribution) and, potentially, a data-race freedom guarantee. A key possible application of
the result is to serve as a foundation for a principled and sound implementation of reference
mutability for the Scala programming language.

The second contribution of the PhD thesis is an extension of the above roDOT calculus and type
system with the concept of side-effect freedom (SEF). Being able to know which methods are
guaranteed to be side-effect-free eases reasoning about program behavior and enables various
program optimizations. An important application of the SEF guarantee is the safe
transformation of programs invoking SEF methods without changing their behavior.
Desired safe transformations include caching method call results, and reordering calls to SEF
methods for the purpose of optimization. The thesis formalizes the SEF guarantee in the context
of an extended roDOT calculus, and provides the proofs of several key theorems: type safety; the
SEF guarantee (which establishes that calling a SEF method does not modify existing objects in the
heap); and, finally, the transformation guarantee (which establishes that two programs with swapped
calls to SEF methods produce the same results). The extended roDOT calculus and its meta-theory
have been mechanized using the Coq proof assistant, including the proofs of all theorems.
Therefore, we can be confident in the correctness of the presented results. The mechanization is the
result of a collaboration with Yufeng Li from the University of Watetloo.

The extended roDOT calculus and its meta-theory can be regarded as a new scientific result,
since it is the first result to consider side-effect freedom (SEF) in the context of a DOT calculus
with mutable fields. The importance of this result is highly significant for programming
languages combining functional and object-oriented programming, since the SEF guarantee
(together with the theorem on safe program transformation) enables important program
optimizations for such languages. A possible application of the result would be provably sound
program optimizations performed by compilers for the Scala language.

Kungliga Tekniska hégskolan Royal Institute of Technology School of Electrical Engineering and Computer Science

KTH, Drottning kristinas v&g 30, SE-100 44 Stockholm, Tel: +46 8 790 92 70, Email: info@kth.se
www.kth.se



The third contribution of the PhD thesis is a prototype implementation of the theoretical results
in the reference compiler for the Scala language, Dotty. Moreover, a case study is presented which
applies the prototype implementation to Scala's collection library, the most important part of Scala's
core library. The case study exposes patterns (concerning required type annotations) that result
from adopting the proposed extensions for reference mutability. The case study can be regarded
as a new scientific result, since no such study and analysis has been performed previously. This
result is very important for the development of languages like Scala, since it shows in which
way generic collections libraries would have to be evolved in order to benefit from the presented
approach to reference mutability. A possible application of the result is a sound and
production-ready implementation of reference mutability for the Scala language.

In summary, the thesis presents several new scientific results of high importance to research in
the area of programming languages, with a particular focus on languages combining functional
and object-oriented features, such as Scala. The potential applications of these results are highly
promising, since they would enable powerful guarantees, such as an immutability guarantee and a
SEF guarantee, to programs written in Scala, a language that is used in a number of large-scale,
business-critical systems.

The extent, length, and form of the dissertation are adequate. Moreover, the text of the dissertation
is of excellent quality regarding language and style. Figures, listings, and examples are very well
thought-out, readable, and help the illustration. In particular, I appreciate the annotations on the
sides of theorems and lemmas which translate the formal language into informal text to help guide
the reader.

The dissertation is based on several prior publications with co-authors. There are no indications
that the presented scientific contributions have not been achieved independently by Mr. Dort.
Furthermore, there are no indications that rules of good scientific conduct have been violated.

In summary, the thesis clearly proves the author's ability for creative scientific work. I
consider the dissertation of Mr. Dort to be an excellent dissertation on the international level, and
therefore recommend acceptance.

Questions to discuss at the defense:

Q1: Page 52, Figure 3.6: In typing rule TT-Write, why does x1 have to have type T1? Wouldn't it be
less restrictive and still sound if x1 would be required to have type T2?

Q2: Could the transformation framework presented in Chapter 4 potentially be adapted/extended
to ensure deterministic concurrent execution (assuming the calculus would be extended with
concurrent tasks)? Ensuring deterministic program results in the presence of non-deterministic
interleavings of concurrent tasks, usually requires reasoning about permissible reorderings of
statements/expressions/ tasks.

Kungliga Tekniska hégskolan Royal Institute of Technology School of Electrical Engineering and Computer Science

KTH, Drottning kristinas v&g 30, SE-100 44 Stockholm, Tel: +46 8 790 92 70, Email: info@kth.se
www.kth.se



Q3: What do you see as the main challenges for the adoption of your approach in the mainline
Dotty compiler and Scala's collections library? To reduce the amount of type annotations, could
certain abbreviations or defaults (thus avoiding annotations) perhaps be helpful?

Yours sincerely,

Prof. Dr. Philipp Haller

KTH Royal Institute of Technology, Sweden

School of Electrical Engineering and Computer Science (EECS)
Division of Theoretical Computer Science (TCS)

Email: phaller@kth.se, Phone: +46 8 790 81 20

Kungliga Tekniska hégskolan Royal Institute of Technology School of Electrical Engineering and Computer Science

KTH, Drottning kristinas v&g 30, SE-100 44 Stockholm, Tel: +46 8 790 92 70, Email: info@kth.se
www.kth.se



