
DOCTORAL THESIS

Vlastimil Dort

Read-only Types and Purity for DOT

Department of Distributed and Dependable Systems

Supervisor of the doctoral thesis: doc. RNDr. Pavel Parízek, PhD.
Study programme: Computer Science

Study branch: Software Systems

Prague 2024

I declare that I carried out this doctoral thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

ii

I am grateful to assoc prof. Pavel Parízek for supervising my PhD studies and this
thesis, prof. Ondřej Lhoták for supervising my visit to University of Waterloo in
Canada and introducing me to DOT, Yufeng Li for collaborating on mechanizing
the roDOT calculus in Coq, and Ifaz Kabir for allowing us to use his version of
the mechanization as the baseline and providing us help.

I am also grateful to my colleagues at the Department of Distributed and
Dependable System for a friendly environment and support.

iii

iv

Title: Read-only Types and Purity for DOT

Author: Vlastimil Dort

Department: Department of Distributed and Dependable Systems

Supervisor: doc. RNDr. Pavel Parízek, PhD., Department of Distributed and
Dependable Systems

Abstract: Mainstream object-oriented programming languages, such as Java or
Scala, typically allow objects to be mutated by assigning new values to their fields,
but it is also common to write code that only accesses objects in a read-only way.
Reference mutability is a technique for controlling mutation by distinguishing
read-only and mutable references with types. It has been thoroughly studied in
Java, and implemented as compiler extensions. Scala is an evolving programming
language which integrates many advanced type system features, most notably
path-dependent types. To address questions about soundness, the formal Depen-
dent Object Types (DOT) calculus has been developed, which provides a formal
proof of soundness for the core of Scala’s type system.
In this thesis, we explore the possibility of using DOT’s features to integrate ref-
erence mutability. We define the roDOT calculus, which is based on a version of
DOT with mutable fields, and encodes the mutability of object references using
a special type member. This encoding makes it possible to use path dependent
types to refer to mutability of a reference, and use intersection and union types to
combine mutabilities and implement viewpoint adaptation, ensuring the transi-
tive property of read-only references. In addition to updating the type soundness
proof of DOT to this extension, we state and prove the Immutability guarantee,
which formally states that objects in roDOT can be only mutated through the
use of mutable references.
Modern code also often makes use of pure methods, which have properties of
mathematical functions. The ReIm type extension for Java showed the connection
of reference mutability to purity of methods, in particular, the side-effect-free
property. We explore purity conditions in roDOT and pose the SEF guarantee, by
which the type system guarantees that methods that can be typed with read-only
parameters are side-effect free. Applying the ideas of ReIm to roDOT required
just a few changes to the type system, but necessitated re-working a significant
part of the soundness proof. We proved the SEF guarantee by applying the
previously stated Immutability guarantee.
In addition to the SEF guarantee, we state a transformation guarantee, which
ensures that in a roDOT program, calls to SEF methods can be safely reordered
without changing the outcome of the program. The transformation guarantee is
proven by applying the SEF guarantee within a framework for reasoning about
safe transformations of roDOT programs.
We mechanized the definition of roDOT, the soundness proof and all the guar-
antees using the Coq proof assistant. As a demonstration of the possibility of
bringing the ideas of roDOT to Scala, we provide a patch to the Dotty compiler,
which implements basic reference mutability checking.

Keywords: type systems, dependent types, DOT calculus, reference mutability,
purity

v

vi

Contents

1 Introduction 5
1.1 Object-Oriented Programming . 6
1.2 Type Systems . 6
1.3 Formalization of Scala . 9
1.4 Mechanization . 10
1.5 Goals and Contribution . 10
1.6 Outline . 11

2 Background 13
2.1 Type Systems . 13

2.1.1 Advanced Type System Features 13
2.1.2 Type System Formalization 16

2.2 Basic Concepts and Terminology 17
2.3 DOT Calculi . 19

2.3.1 Formalization and Soundness 20
2.3.2 Extensions with Additional Scala Features 21
2.3.3 Theoretical Grounding . 21

2.4 Baseline DOT . 22
2.4.1 Structure of a DOT calculus 22
2.4.2 Syntax and Semantics of the Baseline DOT 23
2.4.3 Type Soundness . 28
2.4.4 Invertible Typing . 29

2.5 Mechanization of DOT Calculi . 30
2.5.1 Baseline DOT mechanization 31

3 The roDOT Calculus 37
3.1 Introduction . 37

3.1.1 Type Systems for Reference Mutability 38
3.2 Design of roDOT . 39

3.2.1 Requirements . 39
3.2.2 Example . 40
3.2.3 Representing Mutability Types 40
3.2.4 Additional Changes to the Calculus 42

3.3 Full Description of the roDOT Calculus 44
3.3.1 Syntax . 45
3.3.2 Typing . 48
3.3.3 Runtime Configuration . 55
3.3.4 Reduction . 58
3.3.5 Example . 59

3.4 Type Soundness . 60
3.5 Immutability Guarantee . 64

3.5.1 Proof of the Immutability Guarantee 65
3.5.2 Context Shortening Lemmata 66
3.5.3 Finishing the Immutability Guarantee Proof 71

3.6 Mechanization . 72

1

3.7 Related Work . 76
3.7.1 Read-only References in Programming Languages 76
3.7.2 Reference Mutability Type Systems 76
3.7.3 Mutability in DOT Calculi 78

4 Method Purity for roDOT 81
4.1 Side-effect Freedom and Purity in Programming Languages 83
4.2 Method Purity for roDOT . 84

4.2.1 Components of Purity . 84
4.2.2 Viewing Purity from Three Perspectives 85
4.2.3 Run-time SEF Condition (Perspective 2) 86
4.2.4 Static SEF Condition (Perspective 1) 87
4.2.5 SEF Guarantee . 88
4.2.6 Using Pure Methods in roDOT (Perspective 3) 88
4.2.7 Determinism in DOT and roDOT 89
4.2.8 Termination in DOT and roDOT 89

4.3 Recognizing Read-only Types . 90
4.3.1 Static SEF Condition for roDOT 91
4.3.2 The Updated roDOT Calculus 93
4.3.3 Layered Typing . 97
4.3.4 Typing Layers . 98
4.3.5 Properties of Layered Typing 101
4.3.6 Variants of Subtyping Rules 104

4.4 The SEF Guarantee . 106
4.4.1 The Runtime SEF Condition 106
4.4.2 The SEF Guarantee . 108
4.4.3 Overview of the Proof . 108
4.4.4 Similarity . 109
4.4.5 Proof of the SEF Guarantee 111

4.5 Transformations . 114
4.5.1 Transformation Framework 114
4.5.2 The Call-swapping Transformation 125
4.5.3 The Call-swapping Transformation Guarantee 125

4.6 Mechanization . 128
4.6.1 Typing Modes . 128
4.6.2 Mapping of Definitions and Theorems 129

4.7 Related Work . 131
4.7.1 Pure Calculi and Programming Languages 132
4.7.2 Imperative Calculi and Languages 133
4.7.3 Capability and Effect Systems 136

5 Implementation Experience 137
5.1 Background – The Dotty Compiler 137
5.2 Explicit Mutable References . 139
5.3 Demonstration Implementation in Dotty 143

5.3.1 Examples . 144
5.3.2 Overview of Changes . 145

5.4 Obstacles Encountered . 146
5.5 Case Study: Scala Collections . 147

2

6 Conclusion 151
6.1 Future Work . 151

Bibliography 153

List of Figures 167

List of Tables 169

List of Abbreviations 171

List of Publications 173

A Attachments 175
A.1 Mechanization of roDOT in Coq 175

A.1.1 Using the Attached Source Code 175
A.1.2 Using the Docker Image 175
A.1.3 Verifying the Proofs . 175

A.2 Demonstration of Reference Mutability Checking in Dotty 176
A.2.1 Using the Attached Source Patch 176
A.2.2 Using the Docker Image 177

3

4

1. Introduction
Computer programming is an established endeavor of modern society, making it
possible to automate common tasks and achieve higher speed and precision in
many fields.

Since the early days, computer programming relies on the use of program-
ming languages, which define textual representations of programs that are both
readable by humans and executable by computers.

Over the years, the programming languages have evolved in many directions.
The current trends in the evolution of programming languages include:

• Avoiding programmer errors – by the means of ahead-of-time (compile-time)
checks which ensure that program code conforms to rules set by the pro-
gramming language or assertions expressed by the programmer. A typical
example is the use of a type system, which ensures that values of some type
(such as integers) in the program are used in the intended way, and such
values are not confused with different types of values, such as strings.

• Avoiding repetition and boilerplate – by allowing writing code which is
reusable in multiple contexts. Examples of that are the polymorphism of
objects in object-oriented languages, separation of interface and implemen-
tation, and generic programming. Common patterns of design and imple-
mentation are getting integrated into the languages – lambda expressions
in C++, C# and Java; record types in C# and Java; asynchronous pro-
gramming in C++ and C#.

• Producing more efficient machine code – by the means of optimizations
performed by an ahead-of-time compiler or a JIT compiler. An optimizer
can reorganize the program code to allow fast execution, but must operate
within the boundaries set by the semantics defined by the programming
language.

On one hand, programming languages rarely provide any guarantee about
execution time, letting the programmer focus on good use of provided ab-
straction and leaving the issue of fast execution to the compiler. On the
other hand, it is recognized that high performance code requires changes
in programming style, such as using value types instead of reference types.
Recently, the expressivity of value types is being expanded in C#, and
there is ongoing work to bring value types to Java. In C++, move seman-
tics allowed defining operations in a class that makes handling its instances
more efficient, shifting the burden of caring about efficiency from users to
implementers of a class.

While in the past and for some languages still today, the languages were
steered by private parties (developer decision or companies decision, often as cus-
tomer demand) nowadays, major languages have put in place a community based
process, where language proposals are posted, reviewed and
voted on [5, 7, 6].

5

While design decisions of the past are sometimes regretted, this process allows
involvement of multiple parties including researches. Research can be used as a
base for, or to evaluate and provide critique for proposals.

When a extension of a type system is proposed (recently explicitly nullable
types, safe references), it is expected that the type system will provide certain
guarantees to its users, but understanding all the implications is not easy. For-
malization of a language or feature can provide hard evidence of the claimed
properties.

This thesis aims to advance the development of object-oriented programming
languages and their formalization, In particular by extending the DOT calculus,
a formalization of the core of type system of Scala, by features associated with
read-only references.

In the following sections 1.1 to 1.3, we provide a high-level overview of relevant
aspects of object-oriented programming, type systems and formalizations of type
systems.

1.1 Object-Oriented Programming
Object-oriented programming is one of the most popular programming paradigms,
being at the core of the most popular languages Java, C#, JavaScript and Python.

While being so popular, the languages gathered lots of criticism [30, 105, 32].
Recently, there is an increasing effort to address their deficiencies by improving
the languages, or designing and implementing new languages.

In particular, functional programming is gaining popularity, and object ori-
ented languages react by incorporating FP concepts, such as lambda expressions
and algebraic types.

The Scala programming language is an object-oriented language compatible
with Java includes many concepts from Functional programming [82].

In this thesis, we use Scala as the practical programming language in which
we advance the formalization effort.

1.2 Type Systems
Withing the space of programming languages, there is a divide between statically
typed and dynamically typed languages [27, 72]. The advantages of static typing
are the ability to keep track of the possible values of variables, parameters and
fields. If used properly, this may lead to:

• More efficient code. The compiler can generate more efficient code for
handling statically typed data, because it can handle things more specifi-
cally. On the other hand, in a dynamically typed lang, the type must be
checked at run-time to determine which action should be taken and if it is
valid.

• Prevention of errors. Type checking can detect mismatched expectations
between components. In dynamic languages, a value of a wrong type can
be passed to a function, and such a mistake can cause problem at a later
point in the program, making it difficult to find the cause of the problem.

6

• Structuring code. Using types can help divide the problem space by
focusing on handling a particular type of values in a given piece of code.

• More self-documented code. The types aiding understanding of the
code [73] and allowing development tools to provide targeted assistance.

Disadvantages of static types are the following:

• Lack of expressiveness. The programmer is limited in their ability to
express the intent by the available features in the type system. Such was
the case in Java and C# before introduction of generics, where explicit casts
to the actual type had to be used when working with collections.

• Complexity. When the type system is too powerful, it may become hard
to understand. Reported errors may be incomprehensible, such as errors
involving templates in C++.

• Annotation burden. In order to provide precise typing information, pro-
grammers are required to write more code, which may be repetitive and
seem unnecessary. This problem is addressed by automatic inference of
types, which allows keeping the advantages of static typing without addi-
tional effort. Type inference for local variables has been added to C++,
C# and Java. Generic and template arguments are also inferred at function
calls. In lambda expressions, the types of parameters can also be inferred.

In the simple view, types specify the set of values that can appear at a par-
ticular point in the program. Types can also be used in more advanced ways,
to check additional properties, and to specify the effects [78]. The type system
provides certain guarantees that the programmers can rely on.

Avoiding runtime errors is one of the advantages of a static type system. The
type systems of practical programming languages such as Java and Scala are
not sound in the sense that it is possible to craft a program that will pass type
checking in the compiler, but fail with an error at runtime (in the case of Java
and Scala, fail run-time type checks at the level of the JVM).

The above is not surprising. Practical languages usually provide ways to
intentionally circumvent type checking by means such as type casts, dynamic
invocation, or run-time reflection. Although runtime errors caused by using such
constructs are common, it is usually considered to be an acceptable risk tied to
using such features. Prevention measures include static analysis tools, general
discouragement of using the features unless really needed, and encouraging extra
care and testing. It is usually not the plan of language designers to fix such
unsoundness at the level of the type system.

In the case of JVM-based languages, there are actually two levels of type
systems – of the surface language (Java, Scala) and the JVM itself.

If the type system of Java or Scala is unsound, it can lead to a run-time excep-
tion (invalid cast or missing method), but thanks to run-time checks performed
by the JVM, it would not lead to a crash or breach of security by corrupting mem-
ory. Nevertheless, this situation is highly undesirable, because it goes against the
expectation of programmers and could potentially lead to incorrect behavior of
the program.

7

While programmers understand that usage of casts and reflection can lead to
run-time type errors, they might expect that programs which contain no casts or
reflection will be safe. It has, however, been shown that the type systems of Java
and Scala are unsound even for such programs.

Although making such problematic programs may require using various trick
requiring good knowledge of the language, their existence means that there is
no real guarantee provided by the type system. Also, adding more and more
complicated features into the language may open more soundness holes and make
it more likely for programmers to stumble upon them.

Having a formal definition with a proof of soundness ensures, that using the
features modeled by the calculus will never lead to runtime errors.

With increasing complexity of the type systems, it becomes harder to see if
the type system provides the expected guarantees.

8

class Graph{

// Class Node is a type member of class Graph

class Node{ ... }

// Type Node is dependent on the containing object

def createNode(): Node = ...

def connectNodes(a: Node, b: Node): Unit = ...

}

class Searcher{

// Using path−dependent types to refer to a type member

// of another object

def shortestPath(g: Graph, source: g.Node, target: g.Node) = ...

}

val g: Graph = new Graph

// Using a dependent type to specify the containing object

val a: g.Node = g.createNode()

val b = g.createNode()

// This call is allowed, because both nodes belong to graph g

g.connectNodes(a, b)

// This call is allowed, because both nodes belong to graph g

new Searcher().shortestPath(g, a, b)

// To demonstrate how dependent types can prevent errors,

// node c belongs to a different graph

val g2: Graph = new Graph

val c = g2.createNode()

// Attempting to connect nodes from different graphs

g.connectNodes(a, c) // Type mismatch g.Node != g2.Node

Figure 1.1: Example of dependent types in Scala

1.3 Formalization of Scala
Scala is an object-oriented programming language, built on top of the Java

Virtual Machine and integrating improved features of Java with functional con-
cepts.

The type system in Scala includes several modern features, the distinctive
feature being dependent types.

Dependent types are based on allowing objects to contain type members, and
allow constructing a type by selecting a type member from an object identified
by a path. Type members are an object-oriented analogue of generic type pa-
rameters.

In the example in Figure 1.1, the inner class Node is actually a type dependent
on the containing object.

The expressiveness of dependent types allow better specifying the intent, pre-
venting errors. For example in Figure 1.1, type checking prevents passing nodes
that do not belong tho the same graph into connectNodes.

Also, they can be involved in implicit lookup, allowing programmers to omit

9

// Array types are covariant in Java

Object[] array = new String[1];

array[0] = 1; // Run−time error

// It is normally not possible to create a value of type Nothing

// However, array allocation allows creating

// an arrray with elements of any type initialized to null

val x = new Array[Nothing](1)

// x(0) should be null, but also have type Nothing

val y: Int = x(0) // Run−time error

Figure 1.2: Example of run-time type errors in Java and Scala

un-interesting pieces of code which the compiler can fill in automatically based
on the types.

However, in Scala, unsoundness has been observed involving dependent types
[15]. Simple examples of code producing run-time type errors are shown in Fig-
ure 1.2. If the unsoundness is not well understood, that could lead to errors or
wrong code.

That lead to formalization efforts, producing the DOT calculus.
The DOT calculus [18] is a formal mathematical calculus which encodes se-

lected and simplified features of the Scala types system and semantics. The
development of the calculus and a particular version used in this work will be
described in Section 2.3.

1.4 Mechanization
Formalization can be done in traditional “manual” style of definitions and proofs.
That is error-prone and long.

For type systems, which are in several variants, leads to repetition and low
ability to reuse proofs.

The calculi are usually based on inductive definitions: programs are composed
of parts like an abstract syntax tree. Also the process of typing a program can
be expressed using inductive rules, where the typing of the program is composed
of typing its parts.

Coq [26, 2] is a system for writing and automatically checking proofs, with
focus on inductive definitions and proofs. It is common to mechanize program
calculi and prove the properties of type systems and automated program analyses
in Coq [39, 101, 70].

1.5 Goals and Contribution
The objective of this thesis is to further extend the understanding of advanced
type-system features in object-oriented programming languages by means of for-
malization of program calculi, which can provide proven and mechanically verifi-
able guarantees.

10

In particular, this thesis extends the DOT calculus, a formalization of the core
of the Scala programming language, with features related to controlling reference
mutability. The result is a definition and mechanization of the roDOT calculus
and guarantees about type safety, object immutability and side-effect-freedom.

This thesis presents these contributions to the development of DOT calculi:

• Extending the DOT calculus with reference mutability, based on permis-
sions encoded using member types.

• A statement and proof of the Immutability guarantee.

• Encoding side-effect-free methods.

• Side-effect-free guarantee.

• Encoding safe transformations.

• Particular safe transformations based side effect guarantee.

• Mechanization of all the above contributions in Coq.

1.6 Outline
This thesis consist of two major parts, describing the work related to read-only
references and side-effect-free methods respectively.

Chapter 2 introduces basic concepts used in this work, gives an overview on
the DOT formalization efforts, and presents a full version of a baseline calculus,
which is based on prior work and is used as a base for this work.

In Chapter 3, we present the roDOT calculus, which incorporates the feature
of reference mutability into DOT. We discuss the requirements, and individual
changes that are used to implement it. Then, we update the proof of safety, and
present the immutability guarantee (the main guarantee of reference mutability)
and prove it. The content of this chapter is based on the paper Reference mu-
tability for DOT by Vlastimil Dort and Ondřej Lhoták, presented at the 34th
European Conference on Object-Oriented Programming (ECOOP), 2020 [43].

In Chapter 4, we extend the roDOT calculus with a way to reason about
side-effect-free (SEF) methods. We discuss different interpretations of the side-
effect-free condition, and identify changes to the roDOT calculus required to
provide guarantees about side-effect freedom. Because of the changes, we update
the proof of safety once again, and present new guarantees (SEF guarantee and
transformation guarantee) and prove them. The content of this chapter is based
on the paper Pure methods for roDOT by Vlastimil Dort, Yufeng Li, Ondřej
Lhoták and Pavel Parízek, which has been accepted to appear at the 38th Eu-
ropean Conference on Object-Oriented Programming (ECOOP) in September
2024 [44].

In Chapter 5 we describe our experience with our attempt to implement ref-
erence mutability in the Dotty compiler for Scala. We describe relevant internals
of the Dotty compiler related to the implementation, and provide a patch for the
Dotty compiler that is able to check reference mutability in simple cases. Fi-
nally, we looked at the Scala collection library to identify the patterns that would
emerge when applying reference mutability types in Scala code.

11

12

2. Background
In this chapter, we present the necessary background for our thesis.

In Section 2.1, we provide a brief overview of modern type system features,
which are relevant to this thesis. In Section 2.2, we explain the most important
concepts and terms used in this thesis. In Section 2.4, we present the baseline
DOT, a formal calculus, and that we use as a base for formalizing type system
features related to read-only types. In Section 2.5, we discuss how a formal
calculus like DOT is mechanized – implemented in a machine-checkable form,
where its stated properties can be automatically verified.

2.1 Type Systems
Type systems [90] in programming languages allow generating efficient code deal-
ing with particular kinds of data, and compile-time checking of correct usage of
data. In object-oriented languages, the type system is based on a hierarchy of
classes.

2.1.1 Advanced Type System Features
In memory-safe object oriented languages, such as Java, C# or Python, it is
possible to use an object at runtime without knowing its type at compile time.
For example, a list data structure can work with any type of elements. Often,
however, the type of the element is known, so the compiler can check correct
usage of the elements. To help with these common scenarios, type systems are
extended with advanced features that allow more precise information about the
types of objects to be expressed within the language.

Intersection types Often, we don’t use the precise type of an object, but just
one its supertypes, which puts an upper bound on the type, and allows working
with the object to the extent of the supertype. If more than one such upper
bounds is known, they can be used together in an intersection type. In Java,
intersection types are limited to occur in generic bounds.

// Intersection type in Java

<T> void m(List<? extends String & T> l){ ... }

// Intersection type in Scala

def m(x: Comparable & Serializable) = { ... }

Intersection types are useful in formalization of object oriented languages, be-
cause the allow expressing a type containing multiple members as an intersection
of single-member declarations. In Java, the full list of members is known at ob-
ject creation time, but in Compositional Programming disjoint intersection types
[86], values can be merged arbitrarily.

Union types In Java, union types are limited to exception handler clauses,
where they allow handling multiple exception types with common code. In Scala

13

3, union types are first-class types. The compiler, however, avoids inferring union
types, as that could lead to blow up the size of the type.

// Union type in Java

try { ... }

catch(Exception1 | Exception2 e) { ... }

// Union type in Scala

def m(x: Int | String) = { ... }

Union types may have further properties of interest: disjointness, when the
branches of the union are disjoint types, so the actual type of the object uniquely
determines the active branch of the union, and exhaustivity, when a union
covers all possible subtypes of a superclass in a sealed class hierarchy.

Top and Bottom types In a type system with subtyping, it is useful to have
two special types – one that is a subtype of all types, and one which all types are
a subtype of.

The top type is a supertype of all types, meaning all values have this type. In
Scala, this type is called Any.

The bottom type is a subtype of all types. In Scala, such type is named
Nothing. If there existed a value of such type, it could be casted to any other
type, meaning it would have to behave like all classes in the type system at the
same time. That is not possible, but the use of the bottom is different – it
allows expressing that evaluation of a piece of code cannot ever end normally.
For example, a method declared to return Nothing can only be implemented by
throwing an exception, entering an infinite recursion, or exploiting unsoundness
in the type system.

Another use of the top and bottom types is in bounds of type parameters and
type members, where the upper bound being Any and/or the lower bound being
Unknown means the type or parameter is unbounded in that direction.

Type members In Scala, type members can be abstract and overriden in sub-
classes.

abstract class C{

// Abstract type member

type T

}

class D extends C{

// Type memeber T is overridend by class definition

class T{...}

}

class E extends C{

// Type memeber T is overridend by alias definition

type T = String

}

Each type member has a lower and an upper bound, which can be specified
independently. If bounds are not specified, then they are the bottom and top

14

types Unknown and Any. For concrete type members, the upper and lower bounds
are the same.

abstract class C{

// Equivalent to type T

type T >: Unknown <: Any

}

class E extends C{

// Equivalent to type T = String

type T >: String <: String

}

Type members can be used in path-dependent types, which are types formed by
a path (a variable and zero or more field selections) and a type member selection.

// Path−dependent type referring to a parameter variable

def m(x: C)(y: x.T) = { ... }

class Node{

type T

// Path−dependent type involving self−reference
val value: this.T

val next: Node

// Path−dependent type involving field selections

def m(): this.next.next.T

}

In Scala, type members have a lot in common with generic type parameters,
a major difference being that type parameters cannot be used in path-dependent
types.

Refinement types Refinement types allow making a type more precise by nar-
rowing the bounds of members or adding new members to an existing type. They
can be considered a structural-typing version of the more usual class inheritance.

class C{

type A

}

// The type of x is a refinement of type C,

// where the bounds of A are narrowed down to Int and

// the declaration of method m is added

val x : C {type A = Int ; def m(): Int } = ...

Type annotations Annotations allow attaching additional information to
types, that is not a part of the type system used by the compiler, but can be
used by external tools. In Java, annotations are limited to constant values com-
posed of simple types (strings, numbers). In Scala, an annotation can contain an
arbitrary value.

// Type annotation in Java

void m(@Nullable String s){ ... }

15

// Type annotation in Scala

def m(s: List[String @unchecked]) = { ... }

Checker framework [87] provides a convenient way of extending the type sys-
tem with new features by means of type qualifiers attached to normal types as
type annotations. The checking is run as a compiler plugin, which accesses the
type annotations, checks proper usages of the qualifiers, infers qualifiers for local
variables. Custom type hierarchies can be implemented to target specific prob-
lems, ranging from simple ones for checking for nullability [42] or integer signed-
ness [71], to complex type systems with dependent types, such as checking locking
discipline with a Lock Checker [46] or array accesses using the Index checker [66].
The following example shows how the index checker uses a dependent qualifier
attached to a method parameter, to ensure that accessing an element of an array
will not throw an IndexOutOfBoundsException.

void m(Object[] array, @IndexFor("array") int index){

// The follwing access is guaranteed to succeed

// by the Index checker

Object o = array[index];

...

}

2.1.2 Type System Formalization

Formal program calculi have been developed alongside programming languages
for decades, in order to answer theoretical questions, show correctness and verify
designs.

The most ubiquitous calculus, the λ-calculus [35, 23], has the advantage of
syntactic simplicity, which made it suitable for much of research on computability,
type systems, decidability, typing algorithms. It has been used as a base for a
plethora of extensions and more complex systems, including the DOT calculus.

The Java programming language [53] had originally a simple type system
based on classes. Later, it was extended with generics, which made it more
complicated. Due to the popularity and relative simplicity, Java has been used
as a base for multiple experimental language features.

Featherweight Java [60] is a formal calculus that models classes, Featherweight
Generic Java also supports generic parameters. It is being used to prototype and
evaluate language extensions [102].

Minimal calculi have been also defined for an earlier versions of Scala [40],
and other languages such as Go [54], Swift [92], and Rust [89].

There is usually a degree of disconnect between real code, formalized calculi
and mechanization. The formalization usually omits features, which are deemed
not relevant to the properties that are being examined in the formalization. This
helps the formalization be more understandable and generalizable. On the other
hand, the mechanization includes technical details which would be distracting in
the formal presentation, and are therefore simplified or omitted.

16

2.2 Basic Concepts and Terminology
In the rest of the thesis, we will use concepts related to formal calculi. The
meaning is usually standard within the field of programming-language research,
but some terms may have specific connotation within DOT or Coq, which we
explain in the following list.

For concepts which correspond to formal syntactic elements, we provide the
variable names in parenthesis, which we use for variables.

Formal calculus A formal definition consisting of syntax, typing rules and se-
mantics. Modeling selected aspects of a programming language. The pur-
pose is to enable formal and verified reasoning about the language or pro-
posed extensions.
In this thesis, we define two formal calculi: the baseline DOT calculus based
on previous work in Section 2.4 and the roDOT calculus in Section 3.3.

Syntax A specification of how a program or its parts can be constructed. It is
presented in BNF (Backus-Naur form) style, non-terminals are italic Roman
or Greek letters.
In this thesis, we define the syntax of the baseline DOT in Section 2.4.2
(Figure 2.1) and of roDOT in Section 3.3.1 (Figure 3.2).

Term (t) Formalized representation of program code. Not all syntactically
formed terms are meaningful. In DOT, terms have two roles: to represent
the input program, and the state of execution in operational semantics.

Type (T) Representation of known properties of a piece of program code (term,
object). Some types may be meaningful but uninhabited, such as the bot-
tom type ⊥, which represents a lower bound in the lattice of types.

Variable (x, z, s, y, w) A simple syntactic entity. Can be substituted with
another variable (or a term, but that is not used in DOT). In DOT, all
variables are term-level. In DOT, variables have two roles: 1) Referring
to function parameters and local declarations, self-references in the source
program. 2) Representing object locations and references at runtime.

Typing context (Γ) A typing context is a list of variable-type pairs, assigning
a type to each variable. That type is used at the top of the typing derivation
involving this variable, and can be considered the most precise type for that
variable. In DOT, types in the context can contain free variables introduced
earlier in the context.

Typing judgment (Γ ⊢ X : T) A relation between a program element X (in
DOT, a term or an object) and its type, within a given typing context. In
DOT, the type of a term is not determined uniquely – a term can have
multiple types at the same time.

Subtyping (Γ ⊢ T1 <: T2) A relation (partial order) between types, associated
with the ability to convert a element of the subtype to the super type.

17

The type T1 on the left is more precise than the type T2 on the right. In
the presence of a subsumption rule, if a term has some type, it also has
all of its supertypes, so typically subtyping is not used in premises of other
rules.

Typing rules Specification of assigning types to terms or whole program.
A typing rule has zero or more premises (above line) and one conclusion
(below line). All premises must be satisfied to derive the conclusion.

Derivation A proof of a judgment applied to specific parameters, in the form of
a sequence or a tree, starting with rules that have not judgment premises,
and ending with a concluding rule that produces the target expression.

Well-typed A piece of a program is well-typed, when a type can be derived for
it using the appropriate typing rules.

Program (t) A self-contained piece of code that can be executed. In the case
of a calculus without modeling side effects, the program has no input or
output. In the case of DOT, a program is represented by a term which is
well-typed under an empty context.

Member Definition (d) A field, a method or a type member. In DOT, member
definitions have two roles – they constitute object literals in the program,
which are blueprints for objects that should be instantiated at that point.
Also, they constitute each instantiated object on the heap, storing the code
of the object’s methods and current values of all its fields.

Declaration (D) A type of a field, type member or a method definition. In the
calculus presented here, it is defined with type, but in the mechanization
as a mutually inductive definition.

Object An entity consisting of member definitions. Putting together data
(fields) and behavior (methods).
In Scala and DOT, objects can also contain type definitions as members.

Heap (Σ) A collection of objects instantiated during program execution. The
heap stores the object that can be referred to from multiple places by its
location.

Location (y) A unique identifier of an object on the heap during execution. In
DOT with mutable fields, it is represented by a variable.

Stack (σ) A part of a configuration, containing frames, which are parts of terms
to be evaluated later. In DOT, used to keep continuations of let-in terms.

Configuration (c) A state of program evaluation. Initial configuration has
empty stack and heap and a term representing the program. An answer
has empty stack and single variable.

Dependent type A type referring to a variable. In DOT, containing a type
selection (x.A).

18

Semantics Definition of the behavior of programs [51].

Small-step semantics Semantics defined by transformation of program con-
figuration from initial state to answer, with intermediate steps related by
reduction relation.

Reduction Relation between a configuration and the next configuration.

Soundness A property of a calculus ensuring that all typed programs will always
have a step to execute, or reach answer configuration.
In the formal definition this can be as "never get stuck", but in real program-
ming language, this would typically result in run-time type error (Java) or
undefined behavior (crash or data corruption).

Judgment A relation, typically between a syntactic element, a typing context
and a type, defined inductively using rules.

Decidable typing A typing judgment is decidable, if every instance of the typ-
ing judgment can be proven or disproven. With inductive definition, the
positive is proved by forming a derivation by applying typing rules, the
negative by inversion. Typing in DOT is conjectured to be undecidable.

Inductive definition A definition of a (often infinite) set or a relation, where
the members are defined by a finite number of (often parametric) rules.
And the members are produced by application of these rules in the form
of a finite derivation. Infinite derivation does not produce a member of the
set. Both the syntax and the typing are defined using inductive definitions.
The finite nature of the derivation allows employing proof by induction.
Inductive sets are similar to algebraic data types in functional programming
or, more loosely, to sealed class hierarchies in object-oriented programming.
If multiple inductive definitions refer to each other, they are mutually
inductive.

2.3 DOT Calculi
The increasing complexity of Scala’s type system and discoveries of unsoundness
in Scala demanded that a formal calculus be defined, in which Scala’s core type
system feature scan be modeled and questions about soundness can be verifiably
answered.

The most desirable property is the proof soundness, because having it gives
confidence that the type system of the language and the type checking imple-
mented in the compiler will prevent unexpected runtime errors in the compiled
programs.

The formalization effort was successful and resulted in the DOT calculus.
Over the years, several versions of DOT calculi were published in research papers,
starting from initial concepts, to fully developed calculi with soundness proofs,
integrating various language features, and adjusted to answer different research
questions.

19

An advantage of having a formal calculus like DOT is that can be extended
with new features before implementing them in the language, to study their
properties and to guide their development. For example, a soundness proof of such
extension will show that implementing the feature will not break the expectations
of type safety of the language. A new feature may also provide additional desired
guarantees about the programs, which can be shown formally in the calculus.

In this thesis, we extend one of the versions of dot with features pertaining
to reference mutability. To put our work in the context of this development,
we briefly overview the history and the various version of DOT calculi. We will
not go to details about the way language features are encoded here – a detailed
example of a full calculus is given later in Section 2.4, which will be used as a
baseline for the following development in this thesis.

2.3.1 Formalization and Soundness

The ideas for the DOT calculus were proposed in 2012 [16]. The first version
represented types of objects differently than later DOT calculi, with refinement
types. This calculus did not include a proof of soundness yet.

The key challenge in proving soundness of DOT is the possibility of bad bounds.
A type member with bad bounds, for example with the lower bound being the
top type and the upper bound being the bottom type, can cause a collapse of the
type hierarchy, where all types are subtypes of each other.

The reason DOT can still be sound is that while it is possible to use a type
with bad bounds, it is not possible to create a value of such type, much like as it
is not possible to have a value of the bottom type. However, the existence of bad
bounds makes reasoning about typing difficult in general.

Difficulties in proving soundness of the DOT calculus resulted in the need
to scale back first, and led to the creation of a simplified µDOT [17] calculus,
published in 2014. This calculus omitted lattice-related type constructors (the
top and bottom types, unions, and intersections).

In 2016, a variant nicknamed WadlerFest DOT [18], was published and be-
came the first “full” DOT for which a soundness proof [96] was completed. The
soundness proof was mechanized in Coq.

WadlerFest DOT was simpler than the original proposal in that it constructs
types of objects from more basic components. Instead of refinement types, it uses
intersections with member declarations, and a separate recursive type construct is
used to allow self-reference in member types. The type of an object is a recursive
type wrapped around an intersection of member individual declarations. Instead
of distinguishing between method and field members, methods are encoded as
fields initialized to contain a lambda-function value.

However, the proof was considered too complicated for it to be used in further
development of DOT calculi. Subsequently, a simpler proof for the same calculus
was made [95], based on the idea of inert contexts which cannot have bad bounds
and simplified definitions of typing that work in inert contexts – tight and in-
vertible typing. The baseline DOT that we use in this thesis is derived from this
version.

20

2.3.2 Extensions with Additional Scala Features
WadlerFest DOT was designed with the focus on soundness proof for Scala’s
dependent types.

WadlerFest DOT has a limitation on how the paths in path dependent types
can be formed. While in Scala, the path can contain multiple field selections
and type selections, in DOT, the path has only two parts, a variable and a type
member selection. The extension pDOT [94] addresses this by allowing longer
paths. A limitation of pDOT is that it requires object filed be declared with a
precise type of the value they are initialized with. The support for longer paths
also significantly complicated the soundness proof of the calculus.

The restrictions on typing member declaration is lifted in gDOT [50], instead
weakening the type of self-references within objects to prevent circular derivations.
The soundness proof uses a different approach than the previous calculi. It is
based on logical relations and implemented in the Iris framework for Coq [4, 62],

While Scala has mutable objects, the objects in WadlerFest DOT and most
DOT calculi are immutable – all fields of the object are set at the time of its
creation and cannot be changed later.

This approach brings the calculus closer to functional programming, and al-
lows the calculus to be simpler because objects can be directly embedded in the
program as values, without a need for defining a heap of objects.

Mutable WadlerFest DOT [93] was the first DOT with soundness proof and
mutability. Here, the mutability was implemented using mutable slots and mu-
table and read-only references to such slots.

A more direct approach, where objects on the heap can have fields reassigned,
was used in κDOT [64], which also introduced a concept of object constructors
to model gradual object initialization, as part of an effort to formalize safe object
initialization, preventing null pointer errors due to uninitialized object fields. This
was finished in ιDOT [65].

These calculi were mechanized in Coq, and the code is available on Github.
After publication, authors improved the Coq proofs and made several version. A
version with mutable fields but without constructors is feature-wise on par with
our baseline and was used as a base for our Coq implementation.

A simplified version [63] with mutable fields, but without the specific kDOT
feature of constructors, was used as a base for the mechanization of roDOT.

The rich type system of Scala is complemented with the ability to use implicits
– values that do not have to be written in the code, but are automatically inserted
by the compiler, based on the type of the desired type. Moving from Scala 2 to
Scala 3, implicits were mostly redesigned to avoid common pitfalls and encourage
preferred practices. With the redesign, a new possibilities are brought by implicit
function types [83]. Implicit function types are formalized in the DIF calculus
(DOT with implicit functions) [61].

2.3.3 Theoretical Grounding
Another interesting direction in which the family of DOT calculi spans, is away
from Scala by removing features such as fields and recursive types, moving closer
towards foundational calculi of functional programming – System F and System
F<:, but keeping the distinguishing feature of the DOT family – type members.

21

The D<: calculus [18] is DOT without intersection and recursive types, so
it is not possible to construct objects. If was designed as a generalization of
System F<: [31] with added path dependent types. It includes type members and
dependent function types, which make type-checking hard by involving the issue
of bad bounds.

The type-level functions in various calculi based on System F can be encoded
using type members in a analogous calculus in the DOT family. The calculi
between System F and DOT were organized into the System D Square [14]

The encoding of System F<: in System D<: is useful for investigating the issue
of decidability of typing in DOT calculi, which is important for the possibility of
implementing efficient type-checking algorithms.

It has been shown that typing and subtyping in D<: is undecidable [57, 58],
and therefore it is conjectured that they are undecidable in DOT calculi too.

Restricted versions of D<: has been designed, that has decidable subtyping
[79, 80]. As an alternative calculus that is closer to Scala while having decidable
subtyping, jDOT [58] supports recursive types, but restricts recursion to single
member declarations.

Another property of interest is strong normalization – whether well typed
programs are guaranteed to terminate. While DOT was designed to be Turing
complete (therefore not strong normalizing), System D<: has been shown to be
strong normalizing [107].

2.4 Baseline DOT
In this section, we present the baseline DOT calculus that we will later extend
with reference mutability.

Implementing a new feature in a DOT calculus requires choosing a baseline
version of the calculus, to which the new feature will be added. The baseline
should contain already well studied features, so one can focus on the new feature
and possible interactions with the existing features.

Our baseline is not identical to any version of the calculus published in re-
search papers, but it is close to kDOT [64]. Because the focus of our work is
reference mutability, our baseline DOT uses kDOT’s implementation of mutable
objects. However, we removed constructor feature in baseline DOT, because con-
structors have specific purpose of object initialization and are not necessary to
model reference mutability.

2.4.1 Structure of a DOT calculus
The DOT calculi based on WadlerFest DOT, including our baseline and the
following work, share a common structure that we describe here.

The syntax describes how types and terms are formed. A term is a repre-
sentation of a program or a piece of program. Terms can contain object literals,
where objects consist of one or more member definitions.

Valid terms are assigned a type by applying typing and subtyping rules. To
give types to terms containing free variable, a typing context is used which assigns
types to variables.

22

x ::= Variable
| z local
| s self
| y location
d ::= Definition
| {a = t} field
| {A = T} type
| d1 ∧ d2 aggregate
Γ ::= Context
| · empty
| Γ, x : T binding

l ::= Literal
| ν(s : T)d object
| λ(z : T)t lambda
t ::= Term
| vx var
| let z = t1 in t2 let
| let z = l in t let-lit.
| x1.a := x2 write
| x.a read
| x1x2 apply

T ::= Type
| ⊤ top
| ⊥ bottom
| ∀(z : T1)T2 function
| µ(s : T) recursive
| {a : T1..T2} field decl.
| {A : T1..T2} type decl.
| x.A projection
| T1 ∧ T2 intersection

Figure 2.1: Baseline DOT syntax

Σ ::= Heap
| · empty heap
| Σ, y → l heap object

σ ::= Stack
| · empty stack
| let z = □ in t :: σ let frame
c ::= ⟨t; σ; Σ⟩ Configuration

Q ::= Member type
| {a : T..T} tight field decl
| {A : T..T} tight type decl

R ::= Record type
| Q member
| R1 ∧ R2 intersection
S ::= Inert type
| ∀(z : T1)T2 function
| µ(s : R) object

inert ·(BInert-Empty) inert Γ
inert Γ, y : S

(BInert-Bind)

Figure 2.2: Baseline DOT run-time syntax

Semantics is defined in a small-step fashion, with reduction rules each applying
to a particular kind of a term. A machine configuration, apart from the term being
executed, contains additional context, such as a stack and a heap. Execution
starts from an initial configuration with empty stack, heap, etc, and ends with
an answer configuration, where the focus of execution has been reduced into a
single value.

2.4.2 Syntax and Semantics of the Baseline DOT
The syntax of the baseline DOT is in Figure 2.1 and Figure 2.2.

A program is expressed as a term, which, if correctly typed, reduces to a
location of a single item on the heap.

Variables All variables in DOT and the baseline DOT are term-level.

23

x /∈ dom Γ2

Γ1, x : T, Γ2 ⊢ x : T
(BVT-Var)

Γ ⊢ x : µ(s : T)
Γ ⊢ x : [x/s]T

(BVT-RecE)

Γ ⊢ x : [x/s]T
Γ ⊢ x : µ(s : T)

(BVT-RecI)

Γ ⊢ x : T1
Γ ⊢ x : T2

Γ ⊢ x : T1 ∧ T2
(BVT-AndI)

Γ ⊢ x : T1
Γ ⊢ T1 <: T2

Γ ⊢ x : T2
(BVT-Sub)

Γ ⊢ x : T

Γ ⊢ vx : T
(BTT-Var)

Γ ⊢ x1 : ∀(z : T1)T2
Γ ⊢ x2 : T1

Γ ⊢ x1x2 : [x2/z]T2
(BTT-Apply)

Γ ⊢ x : {a : T2..T3}
Γ ⊢ x.a : T3

(BTT-Read)

Γ ⊢ x1 : T1
Γ ⊢ x : {a : T1..T2}
Γ ⊢ x.a := x1 : T2

(BTT-Write)

Γ ⊢ t : T1
Γ ⊢ T1 <: T2

Γ ⊢ t : T2
(BTT-Sub)

Γ, s : T1 ⊢ d : T1
Γ, z : µ(s : T1) ⊢ t : T2

z /∈ fv T2

Γ ⊢ let z = ν(s : T1)d in t : T2
(BTT-New)

Γ, z1 : T1 ⊢ t1 : T2
Γ, z : ∀(z1 : T1)T2 ⊢ t2 : T3

z1 /∈ fv T1
z2 /∈ fv T3

Γ ⊢ let z2 = λ(z1 : T1)t1 in t2 : T3
(BTT-Fn)

Γ ⊢ t1 : T1
Γ, z : T1 ⊢ t2 : T2

z /∈ fv T2

Γ ⊢ let z = t1 in t2 : T2
(BTT-Let)

Figure 2.3: Baseline DOT typing rules

We distinguish several kinds of variables, based on where they are declared
or where they emerge from. Although this distinction is not important for con-
structing and typing a program, using different symbols for each kind of variable
will make the origin of the variable more apparent in definitions and examples,
and in the later extension, we will use the variable kind to restrict which variables
can occur in certain places.

Abstract variables are bound by term elements, of which local variables z are
bound by let terms and lambdas, and self variables s that are bound by object
literals.

Heap locations y represent addresses in the runtime heap. Locations cannot
appear in the surface syntax – the initial configuration of a program uses only ab-
stract variables. Locations created only in runtime configurations as the program
executes and creates objects on the heap.

Typing rules for variables are in Figure 2.3.

24

Γ ⊢ T <: ⊤(BST-Top)

Γ ⊢ ⊥ <: T (BST-Bot)

Γ ⊢ T <: T (BST-Refl)

Γ ⊢ T1 <: T2
Γ ⊢ T2 <: T3

Γ ⊢ T1 <: T3
(BST-Trans)

Γ ⊢ x : {A : T1..T2}
Γ ⊢ T1 <: x.A

(BST-SelL)

Γ ⊢ x : {A : T1..T2}
Γ ⊢ x.A <: T2

(BST-SelU)

Γ ⊢ T1 ∧ T2 <: T1
(BST-And1)

Γ ⊢ T1 ∧ T2 <: T2
(BST-And2)

Γ ⊢ T1 <: T2
Γ ⊢ T1 <: T3

Γ ⊢ T1 <: T2 ∧ T3
(BST-And)

Γ ⊢ T3 <: T1
Γ ⊢ T2 <: T4

Γ ⊢ {A : T1..T2} <: {A : T3..T4}
(BST-Typ)

Γ ⊢ T3 <: T1
Γ ⊢ T2 <: T4

Γ ⊢ {a : T1..T2} <: {a : T3..T4}
(BST-Fld)

Γ ⊢ T3 <: T1
Γ, z : T3 ⊢ T2 <: T4

Γ ⊢ ∀(z : T1)T2 <: ∀(z : T3)T4
(BST-Fn)

Figure 2.4: Baseline DOT subtyping rules

Terms In DOT, each variable is also a term. In the baseline DOT, we always
make a distinction between terms and variables. This makes it possible to sep-
arate typing rules for terms from typing rules for variables. When a variable is
used as a term, we use the notation vx. This kind of a term signifies a part of a
program that is fully evaluated.

A let term evaluates one term and substitutes the result into another term.
Terms in DOT and the baseline DOT are in A-normal form (ANF). Only let

terms can have arbitrary subterms, other terms can only reference variable, not
terms.

Thus, every non-trivial term must be evaluated and assigned to a variable in
a let binding before it can be used in a later term.

A write term changes the value of a field of an object on the heap. A read
term reads the value of a field. It evaluates either to the term value given to
the field when the object was created, or (because fields can be reassigned) the
last value written to a field, An apply term applies a lambda substituting the
argument into its body, which is retrieved from the heap.

Typing rules for terms are in Figure 2.3.

Example 1 (Simple term in baseline DOT). let x = x1.a1 in x2.a1 := x is a term
which first reads the value of field a1 from the object referenced by x1 into a local
variable x, then writes the value to field a2 of an object referenced by x2. The
equivalent code in Scala would be x2.a2 = x1.a1.

25

Γ ⊢ {A = T} : {A : T..T}(BDT-Typ) Γ ⊢ t : T

Γ ⊢ {a = t} : {a : T..T}
(BDT-Fld)

Γ ⊢ d1 : T1
Γ ⊢ d2 : T2

d1 and d2 have distinct member names
Γ ⊢ d1 ∧ d2 : T1 ∧ T2

(BDT-And)

Figure 2.5: Baseline DOT definition typing rules

Heap items and Literals Programs in kDOT and the baseline DOT can
create heap items, which are either lambda abstractions or objects.

The heap items are constructed from literals, which can only appear in a let
of the form let z = l in t, ensuring that every literal can be referred to by some
variable z.

Types must be explicitly specified in lambda and object literals. Lambdas
have a function type, which specifies the type of the parameter and allows the
lambda to be applied to a argument of such type in an apply term.

An object has a self parameter s (modeling the this keyword in Scala) and a
sequence d of member definitions. Object members are either fields, which store
a term that is reduced after each read of the field, or type members.

Typing rules for object definitions are in Figure 2.5.

Example 2 (Using an object in baseline DOT). If variables xa and x have type T ,
then let xo = ν(s : {a = xa} ∧ {m = λ(z : T)s.a := z}) in let xm = xo.mx in xm.x
is a term which first creates an object which stores the value of xm in field a
and in field m, stores a function which reassigns the field a. Then, it reads the
function from the field m and applies it to argument x. The equivalent code in
Scala would be the following:

class C(var a:T){

def m(z:T) = {a = z}

};

val xo = new C(xa);

xo.m(x)

The field containing a function implements the concept of object methods and
the action of reading a field and applying it in turn implements a method call.

Types Objects have a recursive type containing an intersection of field or type
declaration types corresponding to the definitions forming the object. The re-
cursive type allows the declarations to refer to other members of the object. An
intersection type is a common subtype of two types. As in kDOT, a field decla-
ration type specifies two types for a field, a setter and a getter type. The getter
type is given to a read term that reads the field, while the setter is the type a
variable must have so that it can be written to the field. A type declaration type
specifies the lower and upper bounds for a type member, which can be referred

26

y1 → ν(s : T) . . .1 {a = t} . . .2 ∈ Σ
⟨y1.a; σ; Σ⟩ ↦−→ ⟨t; σ; Σ⟩

(BR-Read)

y1 → ν(s : T) . . .1 {a = t} . . .2 ∈ Σ1
Σ2 = Σ1[y1 → ν(s : T) . . .1 {a = vy2} . . .2]

⟨y1.a := y2; σ; Σ1⟩ ↦−→ ⟨vy2; σ; Σ2⟩
(BR-Write)

y1 → λ(z : T)t ∈ Σ
⟨y1y2; σ; Σ⟩ ↦−→ ⟨[y2/z]t; σ; Σ⟩

(BR-Apply)

Σ2 = Σ1, y → λ(z1 : T)t1

⟨let z2 = λ(z1 : T)t1 in t2; σ; Σ1⟩ ↦−→ ⟨[y/z2]t2; σ; Σ2⟩
(BR-LetFn)

Σ2 = Σ1, y → ν(s : T)[y/s]d
⟨let z = ν(s : T)d in t; σ; Σ1⟩ ↦−→ ⟨[y/z]t; σ; Σ2⟩

(BR-LetNew)

⟨let z = t1 in t2; σ; Σ⟩ ↦−→ ⟨t1; let z = □ in t2 :: σ; Σ⟩(BR-LetPush)

⟨vy; let z = □ in t :: σ; Σ⟩ ↦−→ ⟨[y/z]t; σ; Σ⟩(BR-LetLoc)

Figure 2.6: Baseline DOT reduction (operational semantics)

to by type selection. The top type ⊤ is a supertype of every type; the bottom
type ⊥ is a subtype of every type.

Subtyping rules are in Figure 2.4.

Example 3 (Typing an object in baseline DOT). The object defined in Example 2
has type µ(s : {a : T..T} ∧ {m : ∀(z : T)T..∀(z : T)T}).

Operational semantics Evaluation of a program is defined by small-step se-
mantics, by step-wise reduction of an initial configuration, until an answer con-
figuration is reached. The initial configuration consists of a term (representing
the full program), an empty stack, and an empty heap.

A configuration represents a full state of evaluation of a program. During
evaluation, items can be added to the heap, frames can be pushed to and popped
from the stack, and the term representing the focus of execution changes according
to the reduction rules.

The heap binds locations y to literals l. The heap is modified by creating a
new item using the let-lit term, or by changing the value of a field using the write
term.

In a final answer configuration, the stack is empty and the term is in normal
form – it is a variable term referring to a location of a single item on the heap.
The reduction rules are in Figure 2.6.

27

Γ ⊢ T1 <: T2

Γ ⊢ · : T1, T2
(BCT-EmptyS)

Γ ⊢∼ ·(BCT-EmptyH)

Γ ⊢ σ : T2, T3
Γ, z : T1 ⊢ t : T2

z /∈ fv T2

Γ ⊢ let z = □ in t :: σ : T1, T3
(BCT-LetS)

Γ1 ⊢ Γ2 ∼ Σ
Γ1, z : T1 ⊢ t : T2

z /∈ fv T1

Γ1 ⊢ Γ2, y : ∀(z : T1)T2 ∼ Σ, y → λ(z : T1)t
(BCT-FnH)

Γ1 ⊢ Γ2 ∼ Σ
Γ1 ⊢ d : [y/s]R

Γ1 ⊢ Γ2, y : µ(s : R) ∼ Σ, y → ν(s : R)d
(BCT-ObjH)

Γ ⊢ Γ ∼ Σ
Γ ∼ Σ

(BCT-CorrH)

Γ ∼ Σ
Γ ⊢ t : T1

Γ ⊢ σ : T1, T2

Γ ⊢ ⟨t; σ; Σ⟩ : T2
(BCT-Corr)

Figure 2.7: Baseline DOT configuration typing rules

2.4.3 Type Soundness

The type soundness property of the calculus ensures that evaluation of a typed
term either progresses indefinitely or reaches a final configuration. A key ingre-
dient of the type soundness proof is the definition of inert typing contexts. A
concrete object in the heap holds a specific term in each field and a specific type
in each type member, so it is possible to type such an object with a type in which
all member types are tight: each declaration of a type member {A : T..T} has
equal upper and lower bounds T and each field declaration type {a : T..T} has
equal getter and setter types T . Such types with tight bounds are called inert,
and many theorems about DOT calculi hold only in typing contexts containing
only inert types [95].

Typed configurations In a typed configuration, heap correspondence ensures
that for each location in the context, the heap contains a function or an object
of the specified type. For objects, it means that if Γ(y) = µ(s : R), then Σ(y) =
ν(s : R)d, where Γ ⊢ d : [y/s]R. The type R is syntactically the same in Γ and
Σ. Typing rules for configurations are in Figure 2.7.

28

General typing
Γ ⊢ x : T

General subtyping
Γ ⊢ S <: T

Tight typing
Γ ⊢# x : T

Tight subtyping
Γ ⊢# S <: T

Invertible typing
Γ ⊢## x : T

Precise typing
Γ ⊢! x : T

Figure 2.8: Dependencies (→) and equivalence (⇔) between definitions of typing
in DOT

Soundness theorems A progress theorem proves that if a configuration can
be typed in a typing context that gives an inert type for each object in the heap,
then it is in a normal form or steps to another configuration.

A preservation theorem proves that the resulting configuration after the step
can still be given the same type in an inert context that corresponds to the
possibly updated heap.

Theorem 1 (Baseline Safety).
If ⊢ t0 : T , The initial term t0 is well typed,

then either ∃y, j, Σ: ⟨t0; ·; ·⟩ ↦−→j ⟨vy; ·; Σ⟩ then execution terminates in j steps
with answer y,

or ∀j: ∃tj, σj, Σj: ⟨t0; ·; ·⟩ ↦−→j ⟨tj; σj; Σj⟩. or continues indefinitely.

Proofs of soundness theorems The proof of Theorem 1 is a direct adaptation
of the proof from kDOT (and WadlerFest DOT). It uses auxiliary definitions of
variable typing and subtyping, which are equivalent under inert typing contexts.

The relations of these definitions is depicted in Figure 2.8.

2.4.4 Invertible Typing
Invertible typing (Γ;ρ ⊢## x : T) has the following essential properties:

• It is equivalent to general typing Γ;ρ ⊢ x : T in an inert context.
• Derivations of declaration types can be inverted. That means, for Γ;ρ ⊢

w : D, where D is a declaration type such as {a : T}, it allows us to show
that the type assigned to w in Γ is an object type containing D or a more
precise declaration of the same member. Because the types in Γ correspond
to the object on the heap (Γ ∼ Σ), the actual object referred to by w must
contain a corresponding member definition in Σ, and therefore it is safe to
access that member.

Because configurations during execution are typed in inert contexts, this guaran-
tees that a well-typed program does not attempt to access a non-existing member
of an object while being executed. Additionally, we use invertible typing in a new
role, to prove Lemma 22.

Invertible typing in DOT [95], also adopted in roDOT, has two layers. The
first layer, precise typing, does not use subtyping, and only deals with declara-
tion types precisely as they appear in the typing context.

For each reference w, its type in the typing context is a recursive type con-
taining an intersection of declarations, and a mutability declaration. Precise

29

Γ;ρ ⊢## x : T1
Γ;ρ ⊢## x : T2

Γ;ρ ⊢## x : T1 ∧ T2
(VT##-AndI)

Γ;ρ ⊢## x : [x/s]T
T indep s

Γ;ρ ⊢ [x/s]T ro [x/s]T
Γ;ρ ⊢## x : µ(s : T)

(VT##-RecI)

Γ;ρ ⊢## x : T1

Γ;ρ ⊢## x : T1 ∨ T2
(VT##-Or1)

Γ;ρ ⊢## x : T2

Γ;ρ ⊢## x : T1 ∨ T2
(VT##-Or2)

Figure 2.9: Example rules of invertible typing

typing allows opening this recursive type and destructing the intersection types
to extract one of the declarations.

The second layer, invertible typing combines both variable typing and sub-
typing into a single layer. In DOT and the original roDOT, it has fewer rules than
general typing and subtyping, because it only has rules that construct the target
type syntactically “bottom-up”, such as closing recursive types with VT##-RecI,
or deriving intersection and union types. Examples of those rules are shown in
Figure 2.9. Thus the derivations of invertible typing are unambiguously guided
by the syntax of the target type.

Figure 2.8 shows relations of the different versions of typing. The equivalence
of general and invertible typing requires showing both directions. In DOT and
the original roDOT, the direction from invertible to general typing is very easy,
because each rule in invertible typing corresponds to a straightforward application
of just a few rules from general typing. The direction from general to invertible
typing is more involved. It uses tight typing as an intermediate step, and a
significant part of the proof is showing that invertible typing is closed under tight
subtyping, stated here as Lemma 2.

Lemma 2 (Invertible typing is closed under subtyping). If Γ;ρ ⊢## x : T1, and
Γ;ρ ⊢# T1 <: T2, where Γ ∼ ρ, then Γ;ρ ⊢## x : T2.

2.5 Mechanization of DOT Calculi

The numerous existing variants of DOT calculi, mentioned in Section 2.3, were
published in research papers. To avoid ambiguities and ensure that there all proof
are correct, the publication of each DOT calculus is usually accompanied with a
mechanized version of its definitions and proofs.

Th basic definitions and theorem are provided in the text, but due to space
constraints, a certain level of syntactic simplification must be employed. Not all
definitions can be included, and the proofs are only described at a high level,
because a full proof of the presented theorems would be very long.

The original DOT was mechanized using the Coq proof assistant [96]. A
mechanization for a DOT calculus with mutable fields, which is reasonably close
to our baseline calculus, was done by Ifaz Kabir [63]. We use this version as the
base for mechanization of the calculi defined in this thesis.

30

2.5.1 Baseline DOT mechanization

SyntaxClasses

Syntax

GeneralTyping OperationalSemantics

CanonicalForms

Safety.v

Figure 2.10: Structure of the Coq definitions and soundness proof for DOT

The mechanization is a Coq project using the TLC library [34], which extends
Coq’s logic with axioms of classical logic. The Coq project is structured into parts,
which are shown in Figure 2.10 and described below. The files referenced in
this chapter can be found in the baseline mechanization [63] under the directory
dot-simpler/dot-field-mut-stage-1. Our mechanization (Attachment A.1)
follows the same basic structure.

Syntax classes The syntactic elements of DOT calculi (and in general) have
several several common properties independent of the particular meaning of those
elements within the calculus. We may call them “common sense” properties, re-
garding free variables, or various forms of substitution. For example, if a variable
is not free in a syntactic element, then substituting for that variable does not
change anything.

In order to be able to reason about such properties for any element of syntax,
these properties are implemented using type classes.

These definitions are in the file Lib/SyntaxClasses.v.
Each type class defines a particular operation on or a property of a syntactic

element. Type classes Openable, SubstVar and Closing define different variants
of substitution in the locally-nameless representation. Class FreeVar defines
collecting the set of free variables.

Class Openable (A : Set) := open_rec : nat −> var −> A −> A.

Class FreeVar (A : Set) := fv : A −> vars.

Class SubstVar (A : Set) := subst_var : var −> var −> A −> A.

The common sense properties are each defined as a class with a single propo-
sition. For example the property above is defined as class SubstFresh.

Class SubstFresh ‘(AS : AbstractSyntax A) :=

subst_fresh : forall x y X,

x \notin fv X −> subst_var x y X = X.

Syntax

In Figure 2.1, terms and types are defined inductively – terms and types a re
formed using constructors, where each constructor may have parameters of vari-

31

ous types such as terms, types, variables, labels, etc.
In Coq, these definitions represented by inductive sets. Such inductive defini-

tion consists constructors analogous to the definition as presented in Figure 2.1.
The presented syntax uses various glyphs aimed at conciseness, readability and a
familiar look similar to other formal calculi, but the mechanized version replaced
uses a with unified functional application (curried).

Locally nameless representation Another difference is that DOT mecha-
nizations use a locally nameless notation[33] to represent variables. The basic
definitions of language calculi (including the lambda calculus) represent variables
using a set of names, where a variable is used in a binder construct, and then the
same name can be used in the scope to refer to this variable. An example of this
in the baseline DOT are function terms, let terms, object literals and recursive
types.

This representation makes it necessary to deal with possible conflicts of vari-
able names, such as when a binder (constructor, which creates a variable bind-
ing) is nested within a scope of another binder that uses the same variable name.
Constructing complex terms requires ensuring that conflicts do not emerge, which
may require generating unique names and substituting a conflicting name with
another name.

These problems can be avoided by representation of variables using De Bruijn
indices[41].

In this representation, a binder does not specify any name for the variable, but
a use of a variable is represented by an integer index, which specifies which of the
enclosing binder it refers to, 0 being the closest binder, 1 the next and so on.. This
way, terms can be safely composed without the need for any modifications. On
the other hand, this representation is not well suited for working with variables
that are not bound in the term itself, such as the locations of objects on the
heap. The locally nameless representation combines these two approaches, where
a variable can be either free or bound, where free variables are represented by
names and bound variables by De Bruijn indices.

Which constructors are binding is not determined by the definition of the
recursive set itself, but by the means of an opening operation, which can convert
bound variables to free variables. Whenever descending into sub-term is required,
such as when typing a subterm, then the term is “opened” – de Bruijn indices
that refer to the top level binding are replaced by a named variable.

A reverse operation of closing, which replaces named variables by indices, is
used much less often. The syntax, nor the typing rules forbid creation of terms
with invalid indices, which larger than the number of binding constructors above.
A term which does not contain such indices, and therefore is valid stand-alone,
is referred to as “closed”.

Note that there is a slight confusion of terminology. A “closed term” is a term
which contains no unbound indices. If one level of binding was stripped, then
the “opening” operation can be used to get a “closed” term, while the "closing"
operation will produce a term that is not closed.

Syntax The syntax is defined with inductive and mutually inductive definitions
in files Syntax/Vars.v, Syntax/Types.v, and Syntax/Terms.v.

32

The following example shows a mutually inductive definition of types (T , typ)
and declarations (D, dec).

Inductive typ : Set :=

| typ_top : typ

| typ_bot : typ

| typ_rcd : dec −> typ

| typ_and : typ −> typ −> typ

| typ_sel : avar −> typ_label −> typ

| typ_bnd : typ −> typ

| typ_all : typ −> typ −> typ

with dec : Set :=

| dec_typ : typ_label −> typ −> typ −> dec

| dec_trm : trm_label −> typ −> typ −> dec.

Each such definition is followed by instantiating the syntactic classes described
above.

In Lib/SyntaxClasses.v, there is a framework for lifting properties such as
SubstFresh from individual variables to terms and types. All is needed is to prove
this property for variables, and prove properties Transform and Collect for the
particular syntax. These properties state how generic mapping and collection
operations are distributed through the syntax.

Then every property that is expressed in terms of those two operations (such as
TransformSubstFresh in SyntaxClasses/TransformCollect.v) are automati-
cally lifted to that syntax.

The run-time syntax – stacks, heaps and configurations are defined in Syntax/
AbstractMachine.v.

General Typing The typing relation is defined in GeneralTyping/
GeneralTyping.v as a mutually inductive definition of 5 judgments: typing
terms, literals, individual definitions, aggregate definitions, and subtyping.

The typing judgment is used through a type class, so that a common syntax
G ⊢ t : T can be used for terms, literals and definitions.

The following excerpt shows the subsumption rule for typing terms:

| ty_sub : forall G (t : trm) T U,

G ⊢ t : T −>
G ⊢ T <: U −>
G ⊢ t : U

General typing supports the weakening, narrowing and substitution,
which allow manipulating typed terms and changing the typing context.
These lemmata are used in the safety proof. They are defined an
proven in GeneralTyping/Weakening.v, GeneralTyping/Narrowing.v and
GeneralTyping/Substitution.v. The proofs are mutually inductive on the 5
typing judgments.

The Coq proof assistant is based on calculus of inductive definitions [26].
Both the syntax and typing rules of a DOT calculus are represented by inductive
definitions in Coq.

33

Typing judgments

The typing relations are also inductive definitions – parametric propositions,
where the parameters are the typing context, the element being typed and the
type.

Each typing rule is represented by a constructor, with parameters including
the variables and all premises of the rule. A typing derivation is constructed by
induction from these constructors. Because of how the typing rules are defined,
this induction closely follows the structure of the term, but there are differences
- subsumption, opening terms.

Operational semantics Operational semantics is defined by the reduction re-
lation red in OperationalSemantics/OperationalSemantics.v. The reduction
rules are fairly straightforward except the filed assignment rule, which updates
a particular field of a particular object on the heap. This updating operation is
defined in OperationalSemantics/HeapUpdate.v.

Canonical forms The typing relations used in the safety proof –
tight, precise and invertible typing – are defined in CanonicalForms/
TightTyping.v. CanonicalForms/PreciseTyping.v and CanonicalForms/
InvertibleTyping.v. These judgments are used in inert typing contexts,
which are defined in CanonicalForms/RecordAndInertTypes.v. The equiv-
alence of general, tight and invertible typing under inert contexts is proven
in CanonicalForms/TightTyping.v. CanonicalForms/GeneralToTight.v and
CanonicalForms/InvertibleTyping.v.

Correspondence of heap with a typing context is defined in CanonicalForms/
HeapCorrespondence.v.

The file CanonicalForms/TightTyping.v contains lemmata which allow in-
verting typing of a term under an inert context and retrieve the referenced objects
from the heap and find their types.

Safety theorem Finally, the entry-point file Safety.v defines configuration
typing, and proves the safety by the progress and preservation theorems.

Mechanized Proofs

Many properties about typing relations have similar form, where the conclusion
and one of the premises of the lemma is a typing judgment:

Lemma lemma_about_typing parameters:

TypingConditions1 −>
Preconditions −>
TypingConditions2.

Examples of such lemmata are the weakening, narrowing and substitution
properties.
Lemma weaken_ty_trm: forall G1 G2 (t : trm) T,

G1 ⊢ t : T −>
ok (G1 & G2) −>
G1 & G2 ⊢ t : T.

34

The mechanized proof of such lemma usually conforms to this common struc-
ture:

• 1. Induction on the typing premise (using the induction tactic).

• 2. Inversion of other premises using the inversion tactic.

• 3. Rewriting of the goal and hypotheses, so that they conform to the form
expected by the induction hypothesis.

• 4. Application of the induction hypothesis.

The induction tactic applied in step 1 generates a goal for each constructor
of the inductive definition. For example, for proving a typing property, a goal
is generated for each typing rule. Then, steps 2-4 must be applied to each such
goal. In some proofs, many of such goals can be handled by applying the same
tactics, but sometimes, each goal is solved separately.

Induction A proof method based on reducing the problem into smaller sub-
problems until reaching trivial problems, or, viewed the other way around, pro-
ducing solutions to a general problem starting from trivial problems and com-
posing solutions of smaller problem to solve bigger problems. The proof is finite,
ensured by decreasing size of the problem based on the inductive definition. The
induction hypothesis is a solution of a subproblem used to solve larger problems.
It has the same form as the conclusion. Choosing the proper form of the induc-
tion hypothesis is key; often the problem must be stated in more general form for
the induction to work. In Coq, induction is employed using the induction tactic,
which applies an induction scheme, which is a lemma that Coq generated from
the inductive definition.

Inversion A proof step deriving the premises of an inductive rule from the
conclusion.

Sometimes only one rule of the definition matches the hypothesis. In case
multiple rules match, multiple cases must be solved. For example, inversion can be
applied on a reduction judgment where the source term has known form, resulting
in one variant for each. For general typing, the subsumption rule causes inversion
to be practically useless. In Coq, inversion is employed using the inversion tactic.

Mutually inductive definitions The sets of terms, literals, and definitions are
mutually inductive, because a term can contain an object literal, which can con-
tain a member definition and such definition can contain a term. Such mutually
inductive definitions are supported in Coq, when multiple inductive definitions
are defined together.

Similarly, the typing judgments for terms, literal and definitions must be
mutually inductive.

While the mutually inductive definitions look like normal inductive definitions,
mutually inductive proofs in Coq are harder to do than when working with single
induction. The goal must have the form of conjunction of the properties for each
of the set in the mutual induction.

35

Backward reasoning A proof method based on having a goal (starting from
conclusion) and applying lemmas that match the goal, requiring one or more
premises that become the new goals. This way, the proof is constructed back-
wards, from the conclusion towards the premises. This can be well automated
in Coq. Often, there is only a small number of lemmas that can be applied to a
given goal, and the parameter of the lemmas are often determined by the goal.
This allows exploring the space using backtracking.

Forward reasoning A proof method based on constructing new propositions
from known propositions, starting from the premises. This way is typically not
possible to automate, because typically many rules may be applied with many
parameters and the space of possible derivations is too big.

36

3. The roDOT Calculus
In this chapter, we describe the roDOT calculus, an extension of DOT with
reference mutability. This chapter has the following structure:

In Section 3.1, the concepts of reference mutability are introduced, including
motivations and existing implementations of this feature in programming lan-
guages.

In Section 3.2 the design decisions for incorporating reference mutability to
DOT calculi are presented. We identify the requirements needed from a type sys-
tem to implement a useful reference mutability system, discuss how the features
of DOT can partially satisfy the requirements, and introduce the changes that
we make to DOT to fulfill the requirements.

Section Section 3.3 describes the roDOT calculus, the implementation of ref-
erence mutability in a calculus based on the baseline DOT.

In Section 3.4 and Section 3.5, we define properties of roDOT, namely type
soundness and the immutability guarantee, and discuss their proofs. We have
mechanized roDOT including its properties in Coq. This process is described in
Section 3.6.

In section Section 3.7, roDOT is compared to existing type systems with
reference mutability.

The content of this chapter is based on the research paper Reference mutability
for DOT [43].

3.1 Introduction
In main-stream object-oriented languages, such as Java, C#, objects are by de-
fault mutable, that is, objects contain fields which can be updated.

When that happens, the identity of the object is preserved, but the value is
changed.

At the same time, two objects can represent the same value while having
separate addresses, and the value represented by one object can change during
execution of the program.

This is in contrast with the concept of referential transparency, where the
value and identity of objects cannot be separated.

The ability to mutate objects causes difficulties in programming, such as:

• Confusion between identity and equality.

• Object copying. If two pieces of code are put together where one may
mutate the object while the other needs it to be constant, the object may
need to be copied. Sometimes not necessarily (defensive copy.)

• Missing optimization opportunities, where an object is not intended
to change in a piece of code, but the optimizer cannot assume that the
value is not changed, because it can be changed from code outside of the
optimizer’s view.

• Race conditions. If an object is mutated and at the same time accessed
from another thread, the result is undefined.

37

Read-only (const)

Writeable (unqualified) Immutable (immutable)

Figure 3.1: Hierarchy of reference mutability qualifiers in D

Several programming languages support constructs that limit mutability in
different ways:

• In C++, const denotes immutable variables and read-only pointers refer-
ences. The constness qualifier is attached to the underlying type.

• In Java, final denotes immutable variables and fields. For fields, final
requires definite initialization. Final fields allow certain optimization
(caching, moving accesses). Final fields provide guarantees even in pres-
ence of data races. There are exceptions to these rules: Reflection does
not allow setting final fields, but allows removing the final modifier. Se-
rialization assigns final fields. There are special exception for access to
System.in and System.out, which restrict write access outside of the rules
of the language.

• In C#, readonly denotes immutable fields [8].

• Field accesses can be hidden behind getter and setter methods. If only a
getter is available for a private field, the field is effectively read-only.

Difference between immutable objects and read-only references A clear
distinction must be made between read-only references and immutable objects.

A read-only reference can point to a mutable object. While the object cannot
be changed through the read-only reference, it can still be changed through other
references. That can happen from the same or another thread. If an object is
immutable, its value will never change, and all references to it are effectively
read-only.

The difference between read-only and immutable references is nicely visible
in the D language [3], where the immutable pointer qualifier guarantees that the
referred object is immutable, unqualified pointers allow mutation, and both are
convertible to const pointers as shown in Figure 3.1.

Transitively read-only references Read-only references can apply to the
first level of indirection, or be transitive. In that case, the result of an access
through the indirection are also read-only.

3.1.1 Type Systems for Reference Mutability
Reference mutability types systems (called reference immutability) [106, 59], have
been studied especially in Java as a way to control mutation. References to objects
are classified as either read-write or read-only, and writes to fields through a read-
only reference are forbidden. This applies transitively: when a reference is read
from the field of an object through a read-only reference, the newly-read reference

38

is made read-only as well. As a result, if all parameters of a function are read-only
(and if there are no accesses to global variables), the function must be pure in
the sense that it cannot modify any state in the heap that existed before it was
called, although it does have the ability to allocate and mutate new objects.

Our original goal was to bring read-only references to Scala. An empirical
study [55] showed that about 35 to 70 percent of classes in large Scala codebases
are either deeply or shallowly immutable. One challenge is the complexity of Scala
and its type system relative to Java, and the interaction of reference mutability
with Scala language features. A second challenge is that for maintainability and
ease of adoption, we seek a system that integrates well with Scala’s existing type
system. Reference mutability implementations for Java add entirely new type
systems on top of Java’s type system. Since Scala’s type system already provides
powerful and expressive features, it ought to be possible to use those features to
implement at least parts of a reference mutability system, and we explore the
feasibility of such an approach. By reusing existing features as much as possible,
we aim for an implementation that would require few changes to an existing Scala
compiler so that it could be easily maintained as the compiler evolves.

When we began this project, we explored designs by prototyping them in the
Dotty compiler for Scala 3. The subtle conceptual errors that we encountered re-
vealed the need for a more principled approach. Therefore, we switched our focus
from implemenation to formal definition of reference mutability in the context of
the DOT calculus.

3.2 Design of roDOT
In this section, we discuss how the baseline DOT system can be extended to
support read-only references, and explain individual design decision, that together
lead to roDOT.

3.2.1 Requirements
First, we identify a list of requirements, which any extension of an existing type
system with reference mutability should satisfy:

Keeping expressiveness of the original calculus The extended type sys-
tem should admit programs that are valid in the baseline calculus (possibly
with simple adaptations).

Mutability constraints The type system should provide a way to distinguish
between read-write and read-only references to objects. All read-write ref-
erences should be convertible to read-only references, but not the other
way. This can be achieved by having a read-only and read-write version for
each type, and making the read-write type a subtype of the corresponding
read-only type.

Integration with type system features The extensions should use existing
features of the DOT type system where possible, and not interfere with
them.

39

Type soundness The extensions should not make the type system unsound –
each typed program should reduce to an answer or run indefinitely.

Guarantee of immutability The type system should guarantee that only read-
write references are used to mutate objects. This guarantee should be tran-
sitive: starting from a read-only reference, the system should prevent muta-
tion of any other objects reached by any sequence of field reads. To achieve
this, if a read term reads from a field of an object through a read-only
reference, the result of the read should be given a read-only type, even if
the field contains a read-write reference. This change in the type of the
reference is called viewpoint adaptation [59].

Mutability polymorphism Previous work [106, 59] demonstrated the impor-
tance of methods that are polymorphic in the mutability of the receiver.
Consider a getter method that reads a field of an object. When called on a
read-only reference, the method can obtain only a read-only reference from
the field due to viewpoint adaptation, and thus its return type must be
read-only. But, when the same method is called on a read-write receiver,
it can read a read-write reference from the field, and its return type should
reflect this.

3.2.2 Example
As an example, we will encode an object with a field a and getter and setter
methods mg and ms for that field. In Scala, such an object would be created by
instantiating the following class:

class C {

var a: T = _

def m_s(z: T): Unit = {a = z}

def m_g: T = a

}

In the baseline DOT, such an object can be created by the following let state-
ment:
let z = ν(s : To){a = x} ∧ {ms = let z1 = λ(z : T)s.a := z in z1} ∧ {mg = s.a} in t,
where
To ≜ µ(s : {a : T} ∧ {ms : ∀(z : T)⊤} ∧ {mg : T}) and x is an initial value of type
T .

The method ms mutates the contents, so a reference mutability type system
should prevent calling it on a read-only reference. The method mg should be poly-
morphic in the mutability of the receiver. After we present the roDOT calculus,
we will show how this example can be encoded in it in Section 3.3.5.

3.2.3 Representing Mutability Types
The core feature of roDOT is the ability to distinguish read-only and read-write
references. In this section, we describe how this distinction can be achieved in an
extension of the baseline DOT.

40

Mutability Marker

First, we must decide how to distinguish read-write and read-only types.
Previous approaches, such as ReIm, use a type qualifier which is a part of a

type, but is kept separate from the usual types. This makes sense in a relatively
simple type system such as Java.

However, in a complex type system such as DOT’s, there is another straight-
forward way to represent mutability and other type capabilities. We can define
a special marker type M, which will designate read-write references. Then, any
type can be made read-write by intersecting it with M.

We define an operation rw(T) ≡ T ∧M, which for any reference type T creates
its read-write counterpart.

This satisfies our requirement that a read-write type should be a subtype
of the read-only version of the same type, because by usual subtyping rules,
T ∧ M <: T .

With this definition, we can test whether a type is read-write by testing
whether it is a subtype of the marker type M. For a reference x, we define
an operation Γ ⊢ isrw x as a typing judgment Γ ⊢ x : M. In a type system
with reference mutability, this judgment will be used as a precondition for a write
operation using this reference.

Capability Type Members

Second, we need some mechanism to implement mutability polymorphism.
In ReIm and Checker Framework, polymorphism is supported by a special

polymorphic qualifier. This polymorphic qualifier acts as an implicit type pa-
rameter, where every occurrence of the polymorphic qualifier can be instantiated
to the same concrete qualifier.

This approach conveniently supports simple cases, but has several disadvan-
tages:

• It is not possible to specify bounds for the polymorphic qualifier.

• There can only be one polymorphic qualifier in a declaration.

• It is not possible to combine qualifiers from multiple declarations.
We can achieve this with a careful choice of the read-write marker type: we

reserve a type member name M for mutability, and choose M ≡ {M : ⊥..⊥}.
With this definition, the mutability marker is a declaration of a special type

member with tight bounds equal to the bottom type. A similar declaration
with loose bounds such as {M : ⊥..⊤} does not enable mutability. Therefore,
we can construct types for which the mutability is controlled by this bound:
T ∧ {M : ⊥..S} is mutable if S <: ⊥.

Them mutability polymorphism can be achieved by using types with the same
bound, but also, these capabilities can be combined together.

Dependent Capabilities

This choice of the mutability marker, together with how dependent types are
defined in DOT, makes it possible for a type to depend on the mutability of a
reference x using the type selection x.M.

41

The type {M : ⊥..x.M} is read-write (in the sense of being a subtype of
{M : ⊥..⊥}) if (and in an inert context only if) the reference x is read-write (has
type {M : ⊥..⊥}).

Using this dependent mutability, we can define a method type where the
mutability of the result is defined to be the same as its parameter.

Viewpoint Adaptation

Third, the type system requires an operation Γ ⊢ x ▷ T → T ′ that performs the
viewpoint adaptation described above.

Given a reference x and a type T of a field, Γ ⊢ x ▷ T → T ′ should be a type
equivalent to T if x is a read-write reference, but if x is a read-only reference, the
viewpoint-adapted type should be a read-only version of T .

This operation can be composed from two simpler operations: making a read-
only version of T and combining the mutability of T with the mutability of x.

While a read-write version of a given type can be made with a simple in-
tersection, the opposite operation of making a read-only version cannot be done
using any of the type operations in the baseline DOT. If it is already the case
that T <: {M : ⊥..⊥}, none of the operations removes this subtyping relationship
while otherwise keeping T unchanged. Therefore, we need a new type-level oper-
ator ro that makes a read-only version of a type. We will define Γ ⊢ T ro T ′ as a
binary relation of types by recursion on the syntax of T , so that T ′ is a supertype
of T , but not a subtype of {M : ⊥..⊥}.

We also need to combine the mutabilities of x and T . The mutability of x can
be expressed using the type selection x.M, but to determine the mutability of T ,
we need to define another relation mu similar to ro. In Γ ⊢ T mu T ′, the type
T ′ is a lower bound for the special type member M given by T . We will define
the ro and mu relations in detail in Section 3.3.2.

Using these new type operators, we can define viewpoint adaptation as Γ ⊢
x ▷ T → Tr ∧ {M : ⊥..Tm ∨ x.M}, where Γ ⊢ T ro Tr and Γ ⊢ T mu Tm.

Union Types

Notice that the upper bound Tm ∨ x.M is a union type. To implement viewpoint
adaptation, we therefore need to extend DOT with union types. Union types are
a feature of Scala 3 and were studied in some variants of DOT [96, 17], but not
in kDOT, from which our baseline DOT is derived.

Note that even with union types added, ro cannot be implemented by a simple
union T ∨ notM of T with some fixed read-only type notM , because the set of
members of such a union type is the intersection of the members of T and notM ,
so the union type would not have all the members of T .

3.2.4 Additional Changes to the Calculus

Above we showed how to define mutability of a type and related type operations.
To make this work within the type system in a sound way, we need additional
changes to other features of the type system.

42

Recursive Types

If we were to allow the self type T in a recursive type µ(s : T) to be read-write, an
object of such a type would be inherently mutable, i.e., viewpoint adaption would
not be able to create a read-only reference to it. This is because the read-write
type µ(s : T ∧ {M : ⊥..⊥}) is not a subtype of the read-only variant µ(s : T), for
there is no subtyping between recursive types in DOT.

This means that the mutability of an object must be expressed outside the
recursive type as µ(s : T) ∧ {M : ⊥..⊥}, as opposed to inside as as µ(s : T ∧ {M :
⊥..⊥}).

We also require the self type T to not refer to s.M, the mutability of the self
variable. Otherwise, the mutability could be stored in a type member such as
{A : s.M..⊥}, from which we could infer s.M <: ⊥, which would again make the
object inherently mutable.

Methods

In a type of a mutability-polymorphic method, such as the getter mg from the
example, we want to specify its return type to be dependent on the mutability of
the receiver. When the method is called on a read-write receiver reference, the
type of the return value will become read-write as well, because of the mutability-
dependent return type.

In the baseline DOT, a method is encoded as a function value stored in a field
of an object. Given that the declaration of a field is typed with a self-variable s
in scope, it would seem natural to use s.M for defining methods with return types
polymorphic in the mutability of the receiver. For example, {m : ∀(z : ⊤)({a :
⊤}∧{M : ⊥..s.M})} would be a method that returns a read-write reference to an
object with field a when called on a read-write receiver, but returns a read-only
reference to the same object when called on a read-only receiver.

The problem with this encoding is that the dependent mutability s.M in the
return type would refer to the mutability of the object that the method is con-
tained in, not to the mutability of the reference to that object through which the
method is called. Distinguishing these two concepts requires a rather complicated
example, which we will present in Section 3.3.1.

To distinguish these concepts in roDOT, we introduce a new kind of variable r
to represent the receiver reference and write it as an explicit additional parameter
of each method. The type given to this parameter decides its mutability. In
polymorphic methods, we type it as read-only, so that the method can be called
on either a read-write or a read-only receiver.

Furthermore, the baseline DOT splits the typing of a method invocation into
two steps: the first step reads the function value from the field and the second step
applies the function to an argument. This two-step process separates the receiver
reference, which is present only in the first step, from the function application in
the second step. Thus, the mutability of the result can no longer polymorphically
depend on the mutability of the receiver reference.

To overcome this problem, we need to unify method selection and method
invocation into one step, so that the type of the method invocation can depend
on the type of the receiver. We extend the baseline DOT with an explicit method
construct. A method is called in a single step using a term of the form x1.m x2,

43

which selects the method from the receiver x1 and applies it to an argument x2.
A method type then has the form {m(z : T1, r : T3) : T2}.

Visibility

If a method captures a variable from its surrounding environment, it can write
to the object that the variable refers to even if it is called on a read-only receiver
and with a read-only argument. To prevent this, we hide variables other than
the receiver and method parameter in the typing context when typing the body
of a method, so the method cannot capture them. Despite this restriction, it is
still possible to encode a method that captures variables as follows: the captured
variables are copied into fields of the containing object. This workaround ensures
that viewpoint adaptation is applied when the captured variable is read out of
the field of the object.

Receiver Parameters of Type Declarations

The use of the receiver parameter in method declarations introduces one incon-
venience: For a method with a dependent return type, its return type referring
to r cannot be abstracted using a type member, because the type member can-
not refer to this parameter, and in the baseline DOT, type members cannot be
parameterized.

To overcome this, we allow type member to have a parameter, which can be
used in the bounds of the type member. We do not however enable specifying
bounds for this parameter, to avoid bringing in the complexity of higher order
types into the calculus.

For most type declarations shown here, this parameter is unused and not
relevant, so we omit it. It is however supported by the full definition of the
calculus and by the mechanized version.

Reference Variables

In the baseline DOT, at runtime, a reference value is a heap location y, which is
a unique identifier of some item in the heap.

To state and prove roDOT immutability guarantee, we need to distinguish
read-only and read-write references to the same object in a runtime configuration.

We therefore extend the calculus with reference variables w. Two references
w, w′ may designate the same location y, but can have different mutabilities
in the typing context Γ. To track the correspondence between references and
locations, runtime configurations are extended with an environment ρ that maps
each reference w to the location y that it designates.

In summary, the baseline DOT distinguishes three kinds of variables: local
variables and method parameters z, recursive self variables s, and heap locations
y. To these three, roDOT adds receiver variables r and reference variables w.

3.3 Full Description of the roDOT Calculus
In this section, we present the formal definition of roDOT.

44

x ::= Variable
| u abstract
| v global
u ::= Abstract
| z local
| s self
| r receiver
v ::= Global
| y location
| w reference
t ::= Term
| vx var
| let z = t1 in t2 let
| let z = ν(s : T)d in t let-literal
| x1.a := x2 write
| x.a read
| x1.m x2 call
B ::= Type name
| A type member
| M mutability

Γ ::= Context
| · empty
| Γ, x : T binding
| Γ, ! hide
d ::= Definition
| {a = x} field
| {m(z, r) = t} method
| {A(r) = T} type
| d1 ∧ d2 aggregate
T ::= Type
| ⊤ top
| ⊥ bottom
| µ(s : T) recursive
| {a : T1..T2} field decl
| {m(z : T1, r : T3) : T2}method decl
| {B(r) : T1..T2} type decl
| x1.B(x2) projection
| T1 ∧ T2 intersection
| T1 ∨ T2 union
| N read-only ⊥

Figure 3.2: roDOT syntax

The roDOT calculus [43] evolved from DOT with mutable fields. In roDOT,
write access to a field is controlled by a reference mutability permission. It is
based on an idea of a reference capability represented by a special type member
M. A reference can only be used to mutate an object if the type of the reference
includes this capability, in the form of a type member declaration {M : ⊥..⊥}.
Without this capability, the field can only be read, but with it, the field can also
be written to. The permission applies transitively, in the sense that reading from
a read-only reference always produces read-only references.

The roDOT calculus has the type safety property (Theorem 10) – a term that
has a type in an empty context can be executed and either reduces to an answer,
or executes indefinitely.

The essential property of roDOT is the immutability guarantee (Theorem 11):
in order for an object to be mutated, a writeable reference to it must exist, or it
must be possible to reach it by a path of writeable fields, starting from a writeable
reference – the object must be mutably reachable, as defined in Figure 3.17.

3.3.1 Syntax
The syntax of roDOT is defined in Figure 3.2; the shading highlights changes
from the baseline DOT (Figure 2.1). It uses the A-normal form of terms from
DOT. To avoid ambiguity, if a variable is used in the position of a term, it is
marked as vx. Unlike other versions, the roDOT calculus does not have λ values,
but methods are a kind of object member (and cannot be reassigned), so there is
a more explicit relationship of a method, the containing object and the reference

45

used to call the method.

Terms

Terms are formed by the same syntax as in the baseline DOT, except that the
function application syntax is replaced by a method call syntax and lambda
literals are replaced by method definitions with the ordinary parameter z and
receiver parameter r. Since the calculus no longer needs lambda literals, all
literals are objects, so we inline them into the let-lit term. Furthermore, the
values of fields are variables x rather than arbitrary terms t. Terms were needed
in the baseline DOT to allow fields to hold lambdas to encode methods.

Variables

When typing the program or a part of it, free variables are assigned a type in
a typing context Γ. There are several kinds of variables. Abstract variables are
variables bound in terms such as let-in terms and method definitions. When
the program executes, objects are created on the heap, and variables referring to
concrete objects on the heap are substituted in place of the abstract variables.
Each object on the heap has a unique location y and one or more references w. In
an object on the heap, the values of fields are locations of other objects. In terms,
only references may appear. The kind of the variable has no effect on execution
or typing.

Variables x are classified as either abstract variables u, which are bound in
terms and definitions in the initial program, or global variables v, which are gen-
erated during reduction and are used in the heap and the runtime environment.
They are not expected to be used in the initial term. Abstract variables are either
general local variables z, object self variables s, or method call receivers r. Global
variables are either heap locations y or references to heap locations w. A typing
context Γ can give a type to variables of any kind.

Types

The types form a lattice, with the top, bottom, union and intersection types. Ob-
jects can contain multiple members – fields, methods and type members. Types
of objects are formed by intersection of individual declaration types for each mem-
ber. The declarations are wrapped in a recursive type, so several declarations in
one object type can reference each other, using a member type selection s.A(r).
The parameter r in type declarations and selections allows parameterizing a type
member. This feature is not used in this work and the parameter will be omitted
in the text.

The special type member M denotes the mutability of a reference. When
accessing an object through a reference which does not have this capability, for
example {a : T..T}, the field can only be read. With it, for example {a : T..T} ∧
{M : ⊥..⊥}, the field can also be written to.

In the declaration of the type member M, the lower bound is always ⊥, and
the upper bound determines the mutability. If the upper bound is also ⊥, it
means the reference is mutable. Otherwise, it is read-only. This way, mutable
references are subtypes of read-only references, so a mutable reference can be

46

used anywhere a read-only reference is expected, but not vice versa. We will use
MT as a shorthand for the type member declaration {M : ⊥..T}, or just M when
the bound is not important.

To support viewpoint adaptation, we add union types. They are dual to
intersection types and make it possible to define a distributive subtyping rule for
intersections of type member types (ST-TypAnd in Figure 3.4), which makes it
possible to combine multiple mutability declarations into one. A new type N is a
read-only version of ⊥.

An example of a type of an object with a type member A, a field a, method
m and a mutability declaration is

µ(s : {A : TA..TA} ∧ {a : Ta..Ta} ∧ {m(r : Tr, z : Tz) : Tm}) ∧ {M : ⊥..⊥}

Declaration of a method allows specifying a more precise type of the receiving
reference. This allows the type of the method to require that the receiver be
writeable, or allow it to be read-only. It is similar to the ability to annotate the
type of the this parameter in Java, used by the Checker Framework [53, 9].

The ability to create dependent types x.A(r) is the defining feature of the
DOT calculus. In roDOT, this feature is also used to express the mutability of a
reference, by selecting the special type member M.

Certain operations in roDOT require using a read-only version of a type. N
is a special type which acts as a read-only version of the bottom type.

Methods

Method declarations bind the parameter variable z and the receiver variable r.
In the corresponding definition, we omit the types, because they are not needed.
Each method has only one parameter other than the receiver. Multiple values
can be passed to a method by wrapping them in an object and passing a reference
to the object as the argument.

To motivate the dedicated syntax for methods, consider an object that con-
tains a method a that returns a reference with the same mutability s.M as the
receiver that it is called on. In the syntax of the baseline DOT, this object could
have the type T ≜ µ(s : {a : ∀(z : T ′){M : ⊥..s.M}}). Suppose x1 is a read-write
reference to such an object; it has type T ∧{M : ⊥..⊥}. Now suppose x1 is copied
to another reference x2 that is read-only. The reference can be made read-only in
various ways: one way is to store x1 into a field of some other object y, and then
read it back into x2 through a read-only reference to y, so viewpoint adaptation
will make the type of x2 read-only. But, even though x2 is read-only (i.e., x2.M is
not a subtype of ⊥), x2 still has the same field types copied from x1. In particular,
x1 has the type T ∧{M : ⊥..⊥}, the type T , the type {a : ∀(z : T ′){M : ⊥..x1.M}}
(by VT-RecE), and the type {a : ∀(z : T ′){M : ⊥..⊥}} (by ST-SelU). Even though
x2 is read-only, it still also has the latter field types. Thus, the expression x2.a
can be typed as a function with a read-write return type, even though the receiver
x2 is read-only.

If we introduced methods, but without the receiver variable r, the type of
the object would be T ≜ µ(s : {m(z : T ′) : {M : ⊥..s.M}}). Suppose again
that x1 is a read-write reference to the object, which is copied to x2 and made
read-only. As before, the VT-RecE rule can be applied to the type of x1 before

47

it is made read-only, so x1 has the type T ∧ {M : ⊥..⊥}, the type T , the type
{m(z : T ′) : {M : ⊥..x1.M}}, and the type {m(z : T ′) : {M : ⊥..⊥}}. Even though
x2 is a read-only reference, it still also has the latter method types, and thus
the method can return a read-write reference even when called on the read-only
receiver x2.

To avoid these problems, we prohibit references to the mutability s.M of the
self object reference s in all definitions; the return type can only refer to the
mutability of r, the receiver reference on which the method will be called.

One may wonder whether we could have achieved the same thing without
changing the baseline DOT syntax by encoding a method with receiver r and
parameter z using currying as {a = λ(r : T3)λ(z : T1)t}. The method would then
be called on receiver r with argument x as (r.a r) x, i.e., the receiver r would
have to be repeated. The problem with this encoding is that in the type of an
object, we have to write the types of the object’s methods, and those method
types contain the type for the receiver, which should be the type of the object
itself. Thus, the type of an object would have to recursively include itself, and
thus the structure of the type would be infinite. On the other hand, with the
explicit syntax for method types ({m(z : T1, r : T3) : T2}), we can resolve this
issue in the typing rule for method definitions: when we add the receiver r to the
typing context for typing the method body, we add it not just with the specified
type T3, but with an intersection of T3 with the self type of the object containing
the method. This removes the need to recursively repeat that self type inside T3.

Type Members

Type members can have either an ordinary name A, or the special mutability
member name M, which cannot be defined in an object literal. We write B
in places where both A and M can be used. In the formal syntax, all type
members have a receiver parameter r with no type specified: the general form
is {B(r) : T1..T2}. In a type selection, an argument for this parameter must be
provided, and is substituted into the bounds T1 and T2. To reduce clutter, we
omit writing the receiver parameter when it is not used in the bounds.

The M is a special member used as the mutability marker. A type {M : ⊥..T}
is read-write if T <: ⊥ and read-only otherwise. Only the upper bound of M is
significant for mutability because the lower bound is always ⊥. A dual encoding
would be equally possible, in which the lower bound would be significant and
the upper bound would always be ⊤, so a read-write type would be expressed by
{M : ⊤..⊤}.

The receiver parameter r allows making a generic method type, where the
mutability of the result is determined by a type member of the containing object.
For example, the mutability of the return type of the method in µ(s : {m(z : ⊤, r :
⊤) : s.A(r)}) depends on A. It is read-write if the object defines {A(r) = {M :
⊥..⊥}}, read-only if the object defines {A(r) = {M : ⊥..⊤}}, and polymorphic if
the object defines {A(r) = {M : ⊥..r.M}}.

3.3.2 Typing
The typing rules in Figure 3.6 describe correctly formed programs. In addition
to the typing context Γ, which assigns types to variables, the left side of the

48

⊤

{M : ⊥..⊤}

{M : ⊥..⊥}

µ(s : R)

µ(s : R) ∧ {M : ⊥..⊤}

µ(s : R) ∧ {M : ⊥..⊥}

⊥

N

Figure 3.3: Type hierarchy in roDOT

typing judgment includes an environment ρ that connects references in the terms
to locations of objects on the heap. There is one typing rule for each kind of a
term and object member definition. The write term is guarded by a check of the
mutability permission on the receiving reference. Reading a field is possible using
all references, but to enforce the transitivity of read-only references, the type
of the resulting reference is changed, to not be writeable if the source reference
is read-only. This is done by making a read-only version of the field type, and
adding a mutability declaration with a bound that is a union of the mutability
of the source reference and the mutability of the field type.

The type-level operations of extracting a read-only version of a type and its
mutability are defined in Figure 3.7.

The typing and subtyping rules are shown in Figures 3.4, 3.6 and 3.8. The
rules are obtained from the baseline DOT by applying the syntactic changes and
by adding additional rules. As in the baseline DOT, typing rules for variables are
separated from typing rules for terms.

The typing rules apply both to determine which initial terms are valid pro-
grams and to give types to intermediate terms during reduction in order to prove
type safety. When used for this second purpose, the terms may contain type
selections on reference variables such as w.A. For two references w and w′ to the
same location y, types w.A, w′.A and y.A are considered equivalent. In order
to achieve this, subtyping and typing statements have the environment ρ on the
left-hand side. The environment is passed around in all the typing rules, but only
used in ST-Eq, which states that if two types only differ in references, then they
are subtypes. It has no effect on typing of initial program terms, because those
do not contain references w and are typed with empty ρ.

Subtyping Rules

The rules of subtyping (in Figure 3.4) can be divided into several categories –
rules that make subtyping a partial order (reflexivity and transitivity); rules for
the lattice types (top, bottom, union, intersection), including a distributivity
rule, and two additional rules for intersection types; rules for the special N type;
subtyping of member declarations (fields, methods and types); rules for selection
types.

To understand the subtyping relationship between read-only and read-write
types, Figure 3.3 shows a part of the type hierarchy.

49

Γ;ρ ⊢ T <: T (ST-Refl)

Γ;ρ ⊢ T1 <: T2
Γ;ρ ⊢ T2 <: T3

Γ;ρ ⊢ T1 <: T3
(ST-Trans)

Γ;ρ ⊢ T <: ⊤(ST-Top)

Γ;ρ ⊢ ⊥ <: T (ST-Bot)

ρ ⊢ T1 ≈ T2

Γ;ρ ⊢ T1 <: T2
(ST-Eq)

Γ;ρ ⊢ T1 <: T1 ∨ T2
(ST-Or1)

Γ;ρ ⊢ T2 <: T1 ∨ T2
(ST-Or2)

Γ;ρ ⊢ T1 <: T3
Γ;ρ ⊢ T2 <: T3

Γ;ρ ⊢ T1 ∨ T2 <: T3
(ST-Or)

Γ;ρ ⊢ T1 <: T2
Γ;ρ ⊢ T1 <: T3

Γ;ρ ⊢ T1 <: T2 ∧ T3
(ST-And)

Γ;ρ ⊢ T1 ∧ T2 <: T1
(ST-And1)

Γ;ρ ⊢ T1 ∧ T2 <: T2
(ST-And2)

Γ;ρ ⊢ x : {B(r) : T1..T2}
Γ;ρ ⊢ [x2/r]T1 <: x.B(x2)

(ST-SelL)

Γ;ρ ⊢ x : {B(r) : T1..T2}
Γ;ρ ⊢ x.B(x2) <: [x2/r]T2

(ST-SelU)

Γ;ρ ⊢ T3 <: T1
Γ;ρ ⊢ T2 <: T4

Γ;ρ ⊢ {B(r) : T1..T2} <: {B(r) : T3..T4}
(ST-Typ)

Γ;ρ ⊢ T3 <: T1
Γ;ρ ⊢ T2 <: T4

Γ;ρ ⊢ {a : T1..T2} <: {a : T3..T4}
(ST-Fld)

Γ;ρ ⊢ N ∧ {M(r) : ⊥..⊥} <: ⊥(ST-N-M)

Γ;ρ ⊢ N <: µ(s : T)(ST-N-Rec)

Γ;ρ ⊢ N <: {a : T1..T2}(ST-N-Fld)

Γ;ρ ⊢ N <: {A(r) : T1..T2}(ST-N-Typ)

Γ;ρ ⊢ T3 <: T1 Γ, z : T3;ρ ⊢ T6 <: T5
Γ, z : T3, r : T6;ρ ⊢ T2 <: T4

Γ;ρ ⊢ {m(z : T1, r : T5) : T2} <: {m(z : T3, r : T6) : T4}
(ST-Met)

Γ;ρ ⊢ N <: {m(z : T1, r : T3) : T2}(ST-N-Met)

U = {B(r) : T1 ∨ T3..T2 ∧ T4}
Γ;ρ ⊢ {B(r) : T1..T2} ∧ {B(r) : T3..T4} <: U

(ST-TypAnd)

Γ;ρ ⊢ T1 ∧ (T2 ∨ T3) <: (T1 ∧ T2) ∨ (T1 ∧ T3)(ST-Dist)

Figure 3.4: roDOT subtyping rules

50

Γ = Γ1, x : T, Γ2

Γ;ρ ⊢ x : T
(VT-Var)

Γ;ρ ⊢ x : T1
Γ;ρ ⊢ T1 <: T2

Γ;ρ ⊢ x : T2
(VT-Sub)

Γ;ρ ⊢ x : T1
Γ;ρ ⊢ x : T2

Γ;ρ ⊢ x : T1 ∧ T2
(VT-AndI)

Γ;ρ ⊢ x : µ(s : T)
T indep s

Γ;ρ ⊢ x : [x/s]T
(VT-RecE)

Γ;ρ ⊢ x : [x/s]T
T indep s

Γ;ρ ⊢ [x/s]T ro [x/s]T
Γ;ρ ⊢ x : µ(s : T)

(VT-RecI)

Γ;ρ ⊢ x : T

Γ;ρ ⊢ x : {M(r0) : ⊥..⊤}
(VT-MutTop)

Figure 3.5: roDOT variable typing rules

The ST-Refl and ST-Trans rules ensure that subtyping is a preorder, and the
ST-Top and ST-Bot rules establish ⊤ and ⊥ as the maximum and minimum
elements. The ST-Or* and ST-And* rules define the usual properties of unions
and intersections. ST-Dist makes them distribute and ST-TypAnd allows merging
bounds of type members in intersections.

The ST-Typ, ST-Met and ST-Fld rules allow subtyping between declaration
types. In ST-Met, the parameter is in the typing context for subtyping of the
receiver types, and both the parameter and receiver are in the context for sub-
typing of the result types. In ST-Typ, the r parameters do not have bounds and
are not added to the typing context for subtyping. It is important for the proofs
that in the tight-subtyping variant of this rule, the typing contexts remain inert.

The ST-Met rule is a counterpart of a subtyping rule for function types in
DOT, which plays a major role in DOT being conjectured to be undecidable [57].
Correspondingly, in roDOT, this rule makes it difficult to test whether a particular
type is read-write or read-only.

The ST-Sel* rules give bounds to type selections. They substitute the pro-
vided argument for the receiver parameter.

The ST-N-M rule makes ⊥ the greatest lower bound of N and {M : ⊥..⊥},
expressing that nothing can be both read-write and read-only. The other ST-N-*
rules establish N as a lower bound of read-only types. As in the baseline DOT,
there is no subtyping between different recursive types.

Variable Typing Rules

Variables appearing in terms and definitions have types given by the typing rules
in Figure 3.5. These rules allow opening and closing recursive types, and deriving
intersection types. More types can be derived using subsumption and subtyping.

The VT-Var rule gives variables the type assigned by the typing context,
VT-Sub adds subsumption and VT-AndI gives variables intersection types.

The typing rules VT-RecE and VT-RecI allow opening and closing recursive
types. Both rules require that the inner type T is independent of the mutability
s.M of s, written T indep s. The introduction rule additionally requires the

51

Γ;ρ ⊢ x : T
Γ vis x

Γ;ρ ⊢ vx : T
(TT-Var)

Γ;ρ ⊢ t : T1
Γ;ρ ⊢ T1 <: T2

Γ;ρ ⊢ t : T2
(TT-Sub)

Γ;ρ ⊢ t1 : T1
Γ, z : T1;ρ ⊢ t2 : T2

z /∈ fv T2

Γ;ρ ⊢ let z = t1 in t2 : T2
(TT-Let)

Γ;ρ ⊢ x1 : {m(z : T1, r : T3) : T2}
Γ;ρ ⊢ x1 : [x2/z]T3

Γ;ρ ⊢ x2 : T1
Γ vis x1 Γ vis x2

Γ;ρ ⊢ x1.m x2 : [x1/r][x2/z]T2
(TT-Call)

Γ;ρ ⊢ x1 : T1
Γ;ρ ⊢ x : {a : T1..T2}

Γ;ρ ⊢ x : {M(r) : ⊥..⊥}
Γ vis x1 Γ vis x

Γ;ρ ⊢ x.a := x1 : T2
(TT-Write)

Γ, s : T1;ρ ⊢ d : T1
Γ, z : µ(s : T1) ∧ {M(r) : ⊥..⊥};ρ ⊢ t : T2

z /∈ fv T2
T1 indep s

Γ;ρ ⊢ let z = ν(s : T1)d in t : T2
(TT-New)

Γ;ρ ⊢ x : {a : T1..T2}
Γ;ρ ⊢ T2 ro T3

Γ;ρ ⊢ T2 mu(r) T4
Γ vis x

Γ;ρ ⊢ x.a : T3 ∧ {M(r) : ⊥..(T4 ∨ x.M(r))}
(TT-Read)

Figure 3.6: roDOT term typing rules

inner type to be read-only by requiring that the ro operation does not change
the original type.

To ensure that the type selection x.M is valid for every variable x, we add the
axiom VT-MutTop, which gives every variable the type {M : ⊥..⊤}.

Term Typing Rules

Typing of terms requires that all variables occurring free in a term, but not as a
part of a type (we call them t-free), are visible, as discussed in Section 3.2.4. For
each such occurrence, there is a premise Γ vis x in the corresponding rule. By
Vis-Var, only the variables after the ! are visible for term typing. Variables in the
context before the ! can still be used for type selection. This separation makes
use of our explicit notation for a variable used as a term, written vx, and typed
using only the part of the context after the !. A plain variable x that appears in
a type selection x.A is typed using the full typing context.

The TT-Var rule gives types given by variable typing to visible variables. TT-
Sub adds subsumption for term types. TT-Let types let terms as in the baseline
DOT.

The TT-New rule should give a read-write type to every constructed object.

52

Therefore, the type of z in the context for typing t in let z = ν(s : T1) in t is
changed to rw(µ(s : T1)). The type T1 written for s must correspond to the
definitions and cannot refer to s.M. Because objects are given a recursive type,
this corresponds to the requirement that recursive types must always be read-only.

The TT-Call rule for method calls substitutes both the parameter and the
receiver into the result type. The type declared for r restricts the type of the
receiver. The typing rule for method application checks that both the receiver
and the argument have the expected type. For example, if the receiver parameter
type is declared to have a read-write type, the method can be called only on
read-write references.

In TT-Write, we add a premise to ensure that the reference whose field we
are mutating is read-write: x : {M : ⊥..⊥}.

Finally, in TT-Read, we need to viewpoint-adapt the type T2 of the field with
the mutability of the reference x through which we are reading the field. For
x : {a : T1..T2}, we change the type of x.a from T2 to T5, and add a premise
Γ ⊢ x ▷ T2 → T5.

Viewpoint Adaptation

In Section 3.2.4, we described how viewpoint adaptation can be expressed in
terms of two new type relations Γ ⊢ T ro Tr and Γ ⊢ T mu Tm.

The relations are defined together in Figure 3.7. The operation Γ ⊢ T ro Tr
means that Tr is a supertype of T that is definitely read-only. The ro relation
extracts the parts of a type other than mutability. Thus, the relation maps the
mutability type member type {M : T..T ′} to ⊤. The relation is the identity
on the ⊤ type, field and method declarations, and type declarations other than
M. Because we want T <: Tr whenever Γ ⊢ T ro Tr, the relation must also be
the identity on recursive object types, because they do not participate in any
subtyping relationships other than reflexivity and subtyping with ⊥ and ⊤. To
enforce this, the typing rule for recursion introduction needs to ensure that the
self type T is read-only.

On intersection and union types, the ro relation is defined recursively on the
two parts of the type. For a type selection x.B(x2), ro is applied recursively
to the upper bound of B in the type of x. For the bottom type ⊥, ro cannot
simply return ⊥ itself because ⊥ is read-write since ⊥ <: {M : ⊥..⊥}. We make
N a subtype only of types that are definitely known to be read-only, including
declaration types other than M and all recursive types.

The mu relation is defined to return T2 for {M(r) : ⊥..T2}, to recurse on
intersection and union types and into the upper bound of a type selection, and to
return ⊤ for all other (read-only) types. Because in TS-M, the type T2 may refer
to the receiver r, the mu relation is parameterized by a variable that binds to this
receiver. This variable is used in the declaration of M in the viewpoint-adapted
type in TT-Read.

Definition Typing

Definition typing, shown in Figure 3.8 (DT-*), is only used in the context of the
TT-New rule, where the self reference s is the last variable in the typing context.

53

Γ;ρ ⊢ ⊤ ro ⊤
Γ;ρ ⊢ ⊤ mu(r) ⊤

(TS-Top)

Γ;ρ ⊢ ⊥ ro N
Γ;ρ ⊢ ⊥ mu(r) ⊥

(TS-Bot)

T = {A(r) : T1..T2}
Γ;ρ ⊢ T ro T

Γ;ρ ⊢ T mu(r0) ⊤

(TS-Typ)

T = {m(z : T1, r : T3) : T2}
Γ;ρ ⊢ T ro T

Γ;ρ ⊢ T mu(r0) ⊤

(TS-Met)

T = {a : T1..T2}
Γ;ρ ⊢ T ro T

Γ;ρ ⊢ T mu(r) ⊤

(TS-Fld)

Γ;ρ ⊢ x : {B(r) : T1..T2}
Γ;ρ ⊢ [x2/r]T2 ro T3

Γ;ρ ⊢ [x2/r]T2 mu(r0) T4

Γ;ρ ⊢ x.B(x2) ro T3
Γ;ρ ⊢ x.B(x2) mu(r0) T4

(TS-Sel)

T = {M(r) : T1..T2}
Γ;ρ ⊢ T ro ⊤

Γ;ρ ⊢ T mu(r) T2

(TS-M)

T = µ(s : T1)
Γ;ρ ⊢ T ro T

Γ;ρ ⊢ T mu(r) ⊤

(TS-Rec)

Γ;ρ ⊢ T1 ro T2
Γ;ρ ⊢ T3 ro T4

Γ;ρ ⊢ T1 ∧ T3 ro T2 ∧ T4
(TS-AndR)

Γ;ρ ⊢ T1 mu(r) T2
Γ;ρ ⊢ T3 mu(r) T4

Γ;ρ ⊢ T1 ∧ T3 mu(r) T2 ∧ T4
(TS-AndM)

Γ;ρ ⊢ T1 ro T2
Γ;ρ ⊢ T3 ro T4

Γ;ρ ⊢ T1 ∨ T3 ro T2 ∨ T4
(TS-OrR)

Γ;ρ ⊢ T1 mu(r) T2
Γ;ρ ⊢ T3 mu(r) T4

Γ;ρ ⊢ T1 ∨ T3 mu(r) T2 ∨ T4
(TS-OrM)

Figure 3.7: roDOT type splitting relations

Singling out this variable from the rest of the typing context is important for the
DT-Met rule, in order to give r a type derived from the type of the object.

Typing of field definitions DT-Fld allows using s as the value of the field. It
requires the value of the field to be visible, and gives the field a type with tight
bounds. Typing type members allows tight bounds, but we also allow fixing just
the upper bound and leaving the lower bound to be ⊥. This allows declarations of
ordinary type members to be similar to the declarations of the mutability member
M, which always have ⊥ as the lower bound.

In DT-Met, z is given the parameter type specified in the method declaration,
but the type for r is formed by intersecting the declared type with the type T4
given to s in TT-New. The rule looks up the type of s in the context and gives
the same type to r. Additionally, a version of T4 with s replaced by r is added
to the intersection, allowing deriving the recursive type µ(s : T4) for r.

Variables other than the parameter and the receiver are hidden from the
context and not allowed to be used as a value in the method. That is achieved
in DT-Met by splitting the typing context for the method body into two parts
separated with an ! symbol.

54

Γ, s : T4;ρ ⊢ {A(r) = T} : {A(r) : T..T}(DT-Typ)

Γ, s : T4;ρ ⊢ {A(r) = T} : {A(r) : ⊥..T}(DT-TypB)

Γ, s : T4;ρ ⊢ x : T
Γ, s : T4 vis x

Γ, s : T4;ρ ⊢ {a = x} : {a : T..T}
(DT-Fld)

Γ, s : T4;ρ ⊢ d1 : T1
Γ, s : T4;ρ ⊢ d2 : T2

d1 and d2 have distinct member names
Γ, s : T4;ρ ⊢ d1 ∧ d2 : T1 ∧ T2

(DT-And)

z /∈ fv T1 ∪ fv T4, r /∈ fv T3 ∪ fv T1 ∪ fv T4
Γ, s : T4, !, z : T1, r : T4 ∧ [r/s]T4 ∧ T3;ρ ⊢ t : T2

Γ, s : T4;ρ ⊢ {m(z, r) = t} : {m(z : T1, r : T3) : T2}
(DT-Met)

Figure 3.8: roDOT definition typing rules

Σ ::= Heap
| · empty heap
| Σ, y → d heap object
σ ::= Stack
| · empty stack
| let z = □ in t :: σ let frame

ρ ::= Environment
| · empty environment
| ρ, w → y assignment
c ::= Configuration
| ⟨t; σ; ρ; Σ⟩
Γh ::= Heap Context
| Γ, y/s : R

Figure 3.9: roDOT run-time configuration syntax

3.3.3 Runtime Configuration
The syntax of runtime configurations is shown in Figure 3.9. A machine con-
figuration c consists of a focus of execution t, stack s, runtime environment ρ
and heap Σ. Each frame of the stack is a let term with a hole □ into which the
reduced focus of execution will be substituted. The runtime environment ρ is a
new part of a configuration, which maps references w to the locations y to which
they refer.

Because the only items in the heap are objects, we omit the header ν(s : R)
and store only the definition d, which is an intersection of field, method and type
member definitions. The values of fields of heap objects are restricted to only
locations y by heap correspondence. Since each object in the heap is at a known
location y, we substitute this location y for any occurrences of the self variable s
in the member definitions.

Type safety and other properties are based on the fact that during execution,
the type of the configuration is preserved. The rules for typing a machine config-

55

Q ::= Record member type
| {a : T..T} tight field
| {m(z : T1, r : T3) : T2} method
| {A(r) : T..T} tight type
| {A(r) : ⊥..T} upper-bounded type

R ::= Record type
| Q member
| R1 ∧ R2 intersection
S ::= Inert type
| µ(s : R) ∧ {M(r) : ⊥..T} object

inert ·(Inert-Empty) inert Γ
inert Γ, y : S

(Inert-Bind)

Figure 3.10: roDOT inert contexts

uration are in Figure 3.11. As the program executes and new objects are added
to the heap, new locations and reference variables are used to refer to the objects.
To give the configurations a type, these variables are added to the typing context.
Their type is the type of the object, and has a fixed form – it is a recursive type
containing declarations of all the object’s members, intersected with a declaration
of mutability. A typing context that only contains types of this form is called
inert context. Under an inert context, stronger claims can be made about pes
of variables than in a general context [95], and it plays an important role in the
proof of safety.

Valid configurations are given a type under an inert context Γ. The rules
for typing configurations are given in Figure 3.11. Stack typing assigns to each
stack a pair of types, an input type T1 and an output type T3, indicating that
if the focus of execution reduces to a value of type T1, then the entire stack will
reduce to a value of type T3. The environment ρ must correspond to the typing
context, meaning that each reference w corresponding to a location y under ρ must
appear after y in Γ and have the same type except for mutability. The heap must
correspond to Γ, which requires that for every location y in Γ, an object has to
exist on the heap, and the object must have the correct type with y substituted
for s. Finally, to type a configuration, the CT-Corr rule checks environment
correspondence and heap correspondence, then types the focus of execution t and
the stack σ, checks that the type of the focus of execution matches the input
type of the stack, and finally gives the output type of the stack to the entire
configuration.

Environment

When a new object is created, both a fresh location y and a fresh reference w
are created, with the same read-write type. The location y is put on the heap,
the reference w is put into the focus of execution, and w is connected to y by
the environment ρ. When writing a reference w to a field, the corresponding
location y is stored on the heap. Its mutability is determined by the type of the
field. When reading the value of field a from a reference w1, a new reference w2
is created for the location y2 stored in the field of the object stored at location
y1 = ρ(w1) on the heap. The new reference w2 is given the type of y2 with
the mutability changed by viewpoint adaptation to be an upper bound of the

56

Γ;ρ ⊢ T1 <: T2

Γ;ρ ⊢ · : T1, T2
(CT-EmptyS)

Γ;ρ ⊢∼ ·(CT-EmptyH)

Γ ∼ ·(CT-EmptyE)

Γ;ρ ⊢ σ : T2, T3
Γ, z : T1;ρ ⊢ t : T2

z /∈ fv T2

Γ;ρ ⊢ let z = □ in t :: σ : T1, T3
(CT-LetS)

Γ1;ρ ⊢ Γ2 ∼ Σ
Γ1;ρ ⊢ Γ2, w : T ∼ Σ

(CT-RefH)

Γ1;ρ ⊢ Γ2 ∼ Σ
Γ1, y/s : R;ρ ⊢ d : [y/s]R

R indep s

Γ1;ρ ⊢ Γ2, y : µ(s : R) ∧ {M(r) : ⊥..⊥} ∼ Σ, y → d
(CT-ObjH)

Γ1 ∼ ρ
Γ = Γ1, w : µ(s : R) ∧ {M(r) : ⊥..T}, Γ2
Γ1 = Γ3, y : µ(s : R) ∧ {M(r) : ⊥..⊥}, Γ4

Γ ∼ ρ, w → y
(CT-RefE)

Γ;ρ ⊢ Γ ∼ Σ
all fields in Σ are locations

Γ;ρ ∼ Σ
(CT-CorrH)

inert Γ
Γ ∼ ρ

Γ;ρ ∼ Σ
Γ;ρ ⊢ t : T1

Γ;ρ ⊢ σ : T1, T2
no locations in t and σ

Γ ⊢ ⟨t; σ; ρ; Σ⟩ : T2
(CT-Corr)

Figure 3.11: roDOT configuration typing rules

mutability of the field and of the reference w1.

Heap Correspondence

The heap correspondence relation checks that the type of each location y in the
typing context corresponds to the object stored at y in the heap.

The type of y in the context is the read-write version of the type specified
when creating the object. That is, when a literal ν(s : T)d leads to creating y on
the heap, then Σ(y) = [y/s]d and Γ(y) = µ(s : T) ∧ {M : ⊥..⊥}.

To check that the definition of the object corresponds to its type, we define
a modified definition typing. The baseline DOT uses the same rules for typing
object literals in let statements and typing heap items in heap correspondence.
In roDOT, to preserve typing after the substitution, the type of r in the context
for method bodies must be changed to use y instead of s in T4. Because of that,
we have a set of definition typing rules for heap items HT-*, similar to the set
of definition typing rules DT-* in Figure 3.8. They give types to definitions on
the heap in a heap context with the special syntax Γ, y/s : T4. We show only
the HT-Met rule which differs from DT-Met in that it removes s from the typing

57

Γ, y/s : T4;ρ ⊢ {A(r) = T} : {A(r) : T..T}(HT-Typ)

Γ, y/s : T4;ρ ⊢ {A(r) = T} : {A(r) : ⊥..T}(HT-TypB)

Γ;ρ ⊢ x : T
Γ vis x

Γ, y/s : T4;ρ ⊢ {a = x} : {a : T..T}
(HT-Fld)

Γ, y/s : T4;ρ ⊢ d1 : T1
Γ, y/s : T4;ρ ⊢ d2 : T2

d1 and d2 have distinct member names
Γ, y/s : T4;ρ ⊢ d1 ∧ d2 : T1 ∧ T2

(HT-And)

z /∈ fv T1 ∪ fv T4, r /∈ fv T3 ∪ fv T1 ∪ fv T4
Γ, !, z : T1, r : [y/s]T4 ∧ [r/s]T4 ∧ T3;ρ ⊢ t : T2

Γ, y/s : T4;ρ ⊢ {m(z, r) = t} : {m(z : T1, r : T3) : T2}
(HT-Met)

Figure 3.12: roDOT heap definition typing rules

context and substitutes y for s in T4. The reason for this is so that in the HT-Met
rule shown in Figure 3.8, r can be given the types [y/s]T4 and [r/s]T4. Other
HT-* rules not shown here are similar to the DT-* rules, except that HT-Fld
does not put s into the context for typing x.

3.3.4 Reduction
The operational semantics is defined as small step semantics, with machine con-
figurations (Figure 2.2) consisting of a term in the focus of execution t, a stack σ,
heap Σ and an environment ρ. The environment ρ maps references to locations
and the heap Σ maps locations to objects. The stack σ is used to evaluate let-in
terms. A stack frame contains the second part of the term while the first part
(represented by □ in the frame) is being evaluated. The stack is not used to
implement method calls.

The execution starts with the program, an empty stack, empty heap and an
empty environment, and proceeds by steps defined in Figure 3.13, until it reaches
an answer configuration, which has an empty stack and the focus of execution
is a single variable. During execution, new items are added to the heap and the
environment (there is no garbage collection).

Reduction is defined in Figure 3.13. There is a reduction step for each kind
of term, which produces the next configuration. We change the reduction from
the baseline DOT to use reference variables w to represent references in runtime
configurations, rather than directly using the locations y. Rules that access the
heap have additional premises that relate the references with the corresponding
locations in the environment. If the term is a single variable and the stack is
empty, then no step can be taken and the evaluation ends in a final configuration.
The R-LetPush and R-LetLoc rules work with the stack in the same way as in the

58

w1 → y1 ∈ ρ1
y1 → . . .1 {a = y2} . . .2 ∈ Σ

ρ2 = ρ1, w2 → y2

⟨w1.a; σ; ρ1; Σ⟩ ↦−→ ⟨vw2; σ; ρ2; Σ⟩
(R-Read)

w1 → y1 ∈ ρ
w3 → y3 ∈ ρ

y1 → . . .1 {a = y2} . . .2 ∈ Σ1
Σ2 = Σ1[y1 → . . .1 {a = y3} . . .2]

⟨w1.a := w3; σ; ρ; Σ1⟩ ↦−→ ⟨vw3; σ; ρ; Σ2⟩
(R-Write)

w1 → y1 ∈ ρ
y1 → . . .1 {m(z, r) = t} . . .2 ∈ Σ

⟨w1.m w2; σ; ρ; Σ⟩ ↦−→ ⟨[w1/r][w2/z]t; σ; ρ; Σ⟩
(R-Call)

ρ2 = ρ1, w → y
Σ2 = Σ1, y → [y/s][ρ1]d

⟨let z = ν(s : T)d in t; σ; ρ1; Σ1⟩ ↦−→ ⟨[w/z]t; σ; ρ2; Σ2⟩
(R-LetNew)

⟨let z = t1 in t2; σ; ρ; Σ⟩ ↦−→ ⟨t1; let z = □ in t2 :: σ; ρ; Σ⟩(R-LetPush)

⟨vw; let z = □ in t :: σ; ρ; Σ⟩ ↦−→ ⟨[w/z]t; σ; ρ; Σ⟩(R-LetLoc)

answer ⟨vw; ·; ρ; Σ⟩(Ans-Var)

Figure 3.13: roDOT reduction (operational semantics)

baseline DOT. The R-Write rule overwrites the value of a field on the heap. In
a R-Read step, a new reference to an object is created in the focus for a location
that was stored in a field. The R-Call rule is changed to apply a method of an
object instead of a function value. It substitutes both the parameter and the
receiver into the method body and proceeds to reduce it. In a R-LetNew step,
the heap is extended with a new object y and the environment is extended with
a new reference w with the same read-write type. The definition of the object on
the heap is constructed from the provided object literal by replacing all references
by corresponding locations and replacing the self variable by y.

3.3.5 Example
In roDOT, we can rewrite the example from Section 3.2.2 with the intended
mutability types.

Assume that T is a read-only type in the sense that Γ ⊢ T ro T . Then we
can let the field have a read-write type by adding the mutability marker. By
using the mutability marker as the type of r in ms, we can express that the
setter can only be called on read-write references. By adding {M(r0) : ⊥..r.M}

59

General typing
Γ;ρ ⊢ x : T

General subtyping
Γ;ρ ⊢ S <: T

Tight typing
Γ;ρ ⊢# x : T

Tight subtyping
Γ;ρ ⊢# S <: T

Invertible typing
Γ;ρ ⊢## x : T

Precise typing
Γ;ρ ⊢! x : T

Figure 3.14: Dependencies (→) and equivalence (⇔) between definitions of typing
in roDOT

Type soundness
theorems 8, 9, 10

Mutability
guarantee 11

Typed
reduction

equivalence

Progress
lemmata 3

Preservation
lemmata 4

Type splitting
lemmata 5 Mreach preservation

lemmata 13, 14

Typing inversion
lemmata

Substitution
and weakening
lemmata 6, 7

Tight
typing

equivalence

Mutability
lemmata 15–21

Figure 3.15: Overview of properties and dependencies within proofs of the main
theorems

to the result type of mg, we ensure that the getter only returns a read-write
reference if called on a read-write reference. The type of the object will be
To1 ≜ µ(s : {a : T ∧ {M : ⊥..⊥}} ∧ {ms(z : T ∧ {M : ⊥..⊥}, r : {M : ⊥..⊥}) :
⊤} ∧ {mg(z : ⊤, r : ⊤) : T ∧ {M(r0) : ⊥..r.M(r0)}}). Given an initial value
x of type T ∧ {M : ⊥..⊥}, it can be instantiated in let z = ν(s : To1){a =
x} ∧ {ms(r, z) = r.a := z} ∧ {mg(r, z) = r.a} in t.

To allow storing read-only values in the a field as well, we can parameterize
the mutability of the field using a type member A. The type of the object will
then be: To2 ≜ µ(s : {A : ⊥..⊤} ∧ {a : T ∧ {M(r0) : ⊥..s.A(r0)}} ∧ {ms(z :
T ∧ {M(r0) : ⊥..s.A(r0)}, r : {M : ⊥..⊥}) : ⊤} ∧ {mg(z : ⊤, r : ⊤) : T ∧ {M(r0) :
⊥..r.M(r0) ∨ s.A(r)}}).

3.4 Type Soundness
Figure 3.14 follows the same scheme as the baseline DOT in Figure 2.8

Type soundness ensures that evaluation of a typed term does not get stuck
in a non-final configuration where no reduction rule can be applied. Similarly to
kDOT, it is shown using two properties of reduction: Progress means that unless
a typed configuration is final, a step can be taken. Preservation means that the
step retains the type of the configuration.

We state the properties differently than kDOT. Typing a configuration re-
quires a typing context, which after taking a step such as creating a new object,
might have to be extended to give a type to the newly created location. The
usual reduction rules do not specify how the typing context should change. For
the proofs, we define a typed variant of reduction. It transforms configurations in

60

the same way as the rules in Figure 3.13. Additionally, it requires the configura-
tion to have a type, and also produces a typing context for the next configuration.
This makes type preservation easier to state because the typing context is fixed,
and makes it possible to state a similar preservation property for proving the
immutability guarantee.

An overview of the structure of the proofs is shown in Figure 3.15.
The typed reduction rules for the two interesting cases are shown in Fig-

ure 3.16. In TR-Read, a type for a new reference variable is constructed. This
type must be precise enough so that the resulting term keeps the expected type,
but at the same time, it must be read-only if either the field or the reference to
the containing object was read-only. We construct the type by taking the recur-
sive part of the heap type of the object and changing the mutability. The new
mutability is an upper bound of the mutability of the containing object, expressed
by w1.M, and the mutability of the field type given by mu.

In TR-LetNew, both the new location y1 and the reference w1 are given a
read-write type based on the object literal. The other typed reduction rules (not
shown) are straightforward because the typing context does not change.

We state progress and preservation for each of these 6 typed reduction rules,
which each handle one syntactic form of a term. Progress states that if a config-
uration with such a term in the focus of execution has a type, then a typed rule
can be applied. Preservation states that the context produced by the rule gives
the new configuration the same type. Lemmata 3 and 4 are examples of progress
and preservation for the TR-Read rule.

Lemma 3 (Progress for Read).
If Γ ⊢ ⟨w1.a; σ1; ρ1; Σ1⟩ : T0, For a configuration with a read term in

the focus of execution,

then there exists w2, a reference w2 can be created,

such that Γ ⊢ ⟨w1.a; σ1; ρ1; Σ1⟩ : T0 ↦−→
↦−→ Γ, w2 : T2 ⊢ ⟨vw2; σ1; ρ2; Σ1⟩.

such that a typed step can be taken,
where w2 is added to the typing context
and becomes the focus of execution

Lemma 4 (Type preservation for Read).
If Γ ⊢ ⟨w1.a; σ1; ρ1; Σ1⟩ : T0 ↦−→

↦−→ Γ, w2 : T2 ⊢ ⟨vw2; σ1; ρ2; Σ1⟩,
A typed reduction step with a read
term in the focus of execution

then Γ, w2 : T2 ⊢ ⟨vw2; σ1; ρ2; Σ1⟩ : T0. results in a configuration with the same
type.

Note that these lemmata also imply progress and preservation of the untyped
reduction rules. For progress, since the premises of each typed reduction rule
contain all the premises of the corresponding untyped reduction rule, if progress
ensures that some typed reduction rule applies to a configuration, then the corre-
sponding untyped reduction rule also applies. Preservation for untyped reduction
rules requires that there exist some extended typing context in which the next
configuration has the same type, and the typed reduction rules explicitly provide
this context.

The proofs of these lemmata follow the recipe from [64] and [95]. We define
precise, tight and invertible variants of typing for variables, and a tight variant
of subtyping. Invertible typing together with heap correspondence ensures that
objects used in Read, Write or Call terms have the member needed for progress,
and preservation. In an inert context, typing and invertible typing are equivalent.

61

t0 = w1.a
Γ ⊢ ⟨t0; σ1; ρ1; Σ1⟩ : T0 Γ;ρ1 ⊢ w1 : {a : T4..T3}

Γ;ρ1 ⊢ T3 mu(r) T7
w1 → y1 ∈ ρ1

Γ = Γ3, y2 : µ(s1 : R1) ∧ {M(r0) : ⊥..⊥}, Γ4
T2 = µ(s1 : R1) ∧ {M(r) : ⊥..(T7 ∨ w1.M(r))}

y1 → . . .1 {a = y2} . . .2 ∈ Σ1
ρ2 = ρ1, w2 → y2

Γ ⊢ ⟨t0; σ1; ρ1; Σ1⟩ : T0 ↦−→ Γ, w2 : T2 ⊢ ⟨vw2; σ1; ρ2; Σ1⟩
(TR-Read)

t0 = w1.a := w3
Γ ⊢ ⟨t0; σ1; ρ1; Σ1⟩ : T0

w1 → y1 ∈ ρ1 w3 → y3 ∈ ρ1
y1 → . . .1 {a = y2} . . .2 ∈ Σ1

Σ2 = Σ1[y1 → . . .1 {a = y3} . . .2]
Γ ⊢ ⟨t0; σ1; ρ1; Σ1⟩ : T0 ↦−→ Γ ⊢ ⟨vw3; σ1; ρ1; Σ2⟩

(TR-Write)

t0 = w1.m w2 Γ ⊢ ⟨t0; σ1; ρ1; Σ1⟩ : T0
w1 → y1 ∈ ρ1

y1 → . . .1 {m(z, r) = t} . . .2 ∈ Σ1

Γ ⊢ ⟨t0; σ1; ρ1; Σ1⟩ : T0 ↦−→ Γ ⊢ ⟨[w1/r][w2/z]t; σ1; ρ1; Σ1⟩
(TR-Call)

t0 = let z = ν(s : R)d in t
Γ ⊢ ⟨t0; σ1; ρ1; Σ1⟩ : T0

T = µ(s : R) ∧ {M(r0) : ⊥..⊥}
Σ2 = Σ1, y1 → [y1/s][ρ1]d ρ2 = ρ1, w1 → y1

Γ ⊢ ⟨t0; σ1; ρ1; Σ1⟩ : T0 ↦−→ Γ, y1 : T, w1 : T ⊢ ⟨[w1/z]t; σ1; ρ2; Σ2⟩
(TR-LetNew)

t0 = let z = t1 in t2 Γ ⊢ ⟨t0; σ1; ρ1; Σ1⟩ : T0
σ2 = let z = □ in t2 :: σ1

Γ ⊢ ⟨t0; σ1; ρ1; Σ1⟩ : T0 ↦−→ Γ ⊢ ⟨t1; σ2; ρ1; Σ1⟩
(TR-LetPush)

t0 = vw1 Γ ⊢ ⟨t0; σ1; ρ1; Σ1⟩ : T0
σ1 = let z = □ in t :: σ2

Γ ⊢ ⟨t0; σ1; ρ1; Σ1⟩ : T0 ↦−→ Γ ⊢ ⟨[w1/z]t; σ2; ρ1; Σ1⟩
(TR-LetLoc)

Figure 3.16: roDOT typed reduction

62

Notable differences from the baseline DOT are in the TR-Read and TR-
LetNew cases.

In Lemma 4, it must be shown that the new reference variable w2 has the
expected viewpoint-adapted type as defined by the TT-Read typing rule. This
type T2 is formed by an intersection of a read-only part and a mutability member
declaration. To show that the reference has the read-only part of the type, we
use Lemma 5 , which states that a reference w corresponding to a location y has
the read-only version of the type of y.

Lemma 5 (References share read-only types of locations).
If Γ;ρ ⊢ y : T1, For a location y with type T1

and Γ;ρ ⊢ T1 ro T2, and a read-only version T2 of that type

and Γ ∼ ρ and w → y ∈ ρ, and for a reference corresponding to y,

then Γ;ρ ⊢ w : T2. the reference shares the type T2.

Showing the same for the mutability part of the type is easy, because it is
formed in the same way as in the TT-Read term typing rule.

The rule also changes the runtime environment ρ. Correspondence of ρ with
the typing context is ensured because w is given the same type as y except for
mutability.

In the TR-LetNew rule, it must be shown that heap correspondence is pre-
served. That is, the object on the heap has the type given to the new location
y added to Γ. First, we show that definitions keep their type if references are
replaced by locations, by Lemma 6. Then, we use a variant of a substitution
Lemma 7 to show that if the definitions d of the object had type T1 given by the
DT-* definition typing rules, then under substitution of the location y for the self
variable s, the definition will get the type by the HT-* typing rules. Preservation
of ρ correspondence is ensured by giving w1 the same type as y1.

Lemma 6 (Definition dereferencing).
If Γ, s : T2;ρ ⊢ d : T1 and Γ ∼ ρ, In a typed definition

then Γ, s : T2;ρ ⊢ [ρ]d : T1. the references can be replaced by loca-
tions, preserving the type.

Lemma 7 (Substitution in definition).
If Γ, s : T3;ρ ⊢ d : T1, For a typed definition d in a context

with a self variable s of type T3,

and s /∈ Γ and Γ vis y and Γ;ρ ⊢ y : [y/s]T3, and a location y that has such a type,

then Γ, y/s : T3;ρ ⊢ [y/s]d : [y/s]T1. the location can be substituted for the
self variable to get typing under a heap
context.

Finally, weakening lemmata state that adding variables to the typing context
preserves typing derivations.

With progress and preservation lemmata proven for individual cases, we can
state a common progress and preservation Theorem 8.

Theorem 8 (Typed Progress and preservation).
If τ1 ⊢ c1 : T , A well typed configuration

then either answer c1, is either an answer

or exists c2, Γ2, such that c1 ↦−→ c2 or can step by typed reduction

and Γ1, Γ2 ⊢ c2 : T . resulting in a configuration with the
same type.

63

Γ ⊢ ⟨t; σ; ρ; Σ⟩ mreach y1
y1 → . . .1 {a = y2} . . .2 ∈ Σ

Γ;ρ ⊢ y1 : {a : ⊥..{M(r) : ⊥..⊥}}
Γ ⊢ ⟨t; σ; ρ; Σ⟩ mreach y2

(Rea-Fld)

t tfree w ∨ σ tfree w
w → y ∈ ρ

Γ;ρ ⊢ w : {M(r) : ⊥..⊥}
Γ ⊢ ⟨t; σ; ρ; Σ⟩ mreach y

(Rea-Term)

Figure 3.17: Mutably reachable objects

By induction on the number of steps, type soundness of typed reduction fol-
lows – Theorem 9. Because typed reduction affects typed configurations in the
same way as untyped reduction, we can easily show the final type soundness for
untyped reduction Theorem 10.

Theorem 9 (Typed reduction Safety).
If ⊢ t0 : T , The initial term t0 is well typed,

then either ∃w, j, Σ, ρ, Γ:
⊢ ⟨t0; ·; ·; ·⟩ : T ↦−→j Γ ⊢ ⟨vw; ·; ρ; Σ⟩

then typed execution terminates in j
steps with answer w,

or ∀j: ∃tj, σj, Σj, ρj, Γj:
⊢ ⟨t0; ·; ·; ·⟩ : T ↦−→j Γj ⊢ ⟨tj; σj; ρj; Σj⟩.

or continues indefinitely.

Theorem 10 (Safety).
If ⊢ t0 : T , The initial term t0 is well typed,

then either ∃w, j, Σ, ρ:
⟨t0; ·; ·; ·⟩ ↦−→j ⟨vw; ·; ρ; Σ⟩

then execution terminates in j steps
with answer w,

or ∀j: ∃tj, σj, Σj, ρj:
⟨t0; ·; ·; ·⟩ ↦−→j ⟨tj; σj; ρj; Σj⟩.

or continues indefinitely.

3.5 Immutability Guarantee
We define the immutability guarantee that roDOT provides as follows: an object
on the heap Σ in a configuration c = ⟨t; σ; ρ; Σ⟩ typed under Γ can be modified
in an execution starting from c only if it is mutably reachable, i.e., reachable
from the configuration using only read-write references. Mutable reachability is
formally defined in Figure 3.17. By the Rea-Term rule, y is mutably reachable
if a read-write reference to it occurs in the focus of execution t or the stack σ in
a position other than in type selection (the reference is t-free in t or σ). By the
Rea-Fld rule, y2 is mutably reachable if its location is stored in the field of some
mutably reachable object y1 and this field has read-write type. The immutability
guarantee does not say anything about objects which are yet to be created; these
may be modified. We will prove that if an object y on the heap Σ in the initial
configuration c is not mutably reachable, then it will not appear on the left-hand
side of a write term in any execution starting from c.

64

3.5.1 Proof of the Immutability Guarantee

A new essential property of the type system is the immutability guarantee, ex-
pressed by Theorem 11. It says that if an object exists in a typed configuration
c1, then either it is mutably reachable by mreach (and therefore can change), or
it stays the same after any number of execution steps (never changes).

Theorem 11 (Immutability guarantee).
If y → d ∈ Σ1 and Γ1 ⊢ ⟨t1; σ1; ρ1; Σ1⟩ : T , For an object at some point during well-

typed execution,

and ⟨t1; σ1; ρ1; Σ1⟩ ↦−→k ⟨t2; σ2; ρ2; Σ2⟩, at any later point,

then either y → d ∈ Σ2 either the object does not change,

or Γ1 ⊢ ⟨t1; σ1; ρ1; Σ1⟩ mreach y. or it was reachable by mutable refer-
ences.

For the proof, we again make use of the typed reduction rules from Figure 3.16.
We show two properties of mreach: First, Lemma 12 states that if an object is
mutated in a reduction step, then it was mutably reachable before the step.
Second, Theorem 13 states that mreach is preserved by typed reduction, that is,
an existing object that is not mreach will never become mreach in the future.
This has to be shown for each of the reduction rules.

Lemma 12 (Mutated objects are mutably reachable).
If Γ1 ⊢ ⟨t1; σ1; ρ1; Σ1⟩ : T ↦−→

↦−→ Γ2 ⊢ ⟨t2; σ2; ρ2; Σ2⟩,
For any step during execution

and y → d ∈ Σ1, and some object on the heap,

then either y → d ∈ Σ2 either the object is not changed,

or Γ1 ⊢ ⟨t1; σ1; ρ1; Σ1⟩ mreach y. or it was mutably reachable.

Theorem 13 (Preservation of mutable reachability in one step).
If Γ1 ⊢ ⟨t1; σ1; ρ1; Σ1⟩ : T ↦−→

↦−→ Γ2 ⊢ ⟨t2; σ2; ρ2; Σ2⟩,
For a step of typed execution,

y → d ∈ Σ1, and Γ2 ⊢ ⟨t2; σ2; ρ2; Σ2⟩ mreach y, and an object mutably reachable after
the step,

then Γ1 ⊢ ⟨t1; σ1; ρ1; Σ1⟩ mreach y. the object must have been reachable be-
fore the step.

The proof of Lemma 12 is straightforward from the reduction and typing
rules, because only the TR-Write rule modifies existing objects on the heap and
the typing rule for write terms requires the object reference to have a read-write
type.

The rest of this section is about proving Theorem 13. For each of the 6
reduction rules, we look at the changes in the configuration and typing context
that affect the mreach relation.

In the TR-LetPush and TR-LetLoc rules, the only difference in the configu-
ration relevant to mreach is that t-free object references are moved between the
focus and the stack. No new references are introduced, and the heap, environ-
ment and context do not change. These cases are handled by Lemma 14, which
states that under these conditions, no object becomes mutably reachable.

65

Lemma 14 (Mutable reachability and focus and stack).
If Γ ⊢ ⟨t2; σ2; ρ; Σ⟩ mreach y, If y is reachable in some cofiguration,

and ∀x: (t2 tfree x ∨ σ2 tfree x) ⇒
⇒ (t1 tfree x ∨ σ1 tfree x),

and another configuration differs only
in the focus and the stack, but contains
all the t-free variables in the focus and
on the stack,

then Γ ⊢ ⟨t1; σ1; ρ; Σ⟩ mreach y. then y is reachable in that configuration
too.

For TR-Call, Lemma 14 also applies, because the HT-Met rule ensures that
variables other than the receiver and the argument are not visible, and therefore
cannot be t-free in the body of the method.

In TR-Write, a location may be stored on the heap as a new value of a read-
write field. The typing of write terms ensures that if the field is read-write, then
the reference w3 that provided the value was read-write, so the location y3 was
mutably reachable from the focus of execution.

A TR-LetNew step creates a new mutably reachable object. New objects are
not covered by the immutability guarantee, but the new object may contain read-
write fields referring to existing objects. Similarly to the Write case, the typing
of field definitions in the object literal ensures that if the fields have read-write
type, then the references in the literal must have been read-write.

The TR-LetNew rule also adds a new location and reference to the typing
context. The preservation of mreach depends on an essential property of how
mutability is defined: existing read-only references and fields cannot be made
read-write by creating new objects and references. Lemma 15 states that if a
variable v1 is read-write in an inert context Γ with a new location y2 added,
then it was already read-write in the context Γ without y2. (In other words, it
keeps its mutability if the last location y2 is removed from the context.) We state
Lemma 16 for mutability of fields and similar Lemmata 17 and 18 for adding a
new reference w2 to Γ and ρ.

3.5.2 Context Shortening Lemmata
In order to prove mutability in a preceding configuration in the Read and LetNew
cases, we need to prove that a variable or a field had a mutable type in a typing
context before a new variable has been added. Because adding variables to the
typing context can allow more types to be derived for pre-existing variables, we
need to show that the new variable does not participate in the typing derivation.

Lemma 15 (Shortening for location mutability).
If v1 ̸= y2, and Γ2 = Γ1, y2 : T , For a variable in a context ending with

a different location,

and Γ2;ρ ⊢ v1 : {M : ⊥..⊥}, if that variable is mutable in that con-
text,

then Γ1;ρ ⊢ v1 : {M : ⊥..⊥}. then it is mutable in a context where
that location is removed.

Lemma 16 (Shortening for location field mutability).
If y1 ̸= y2, and Γ2 = Γ1, y2 : T , For a variable in a context ending with

a different location,

and Γ2;ρ ⊢ y1 : {a : ⊥..{M : ⊥..⊥}}, if that variable has a mutable field in
that context,

then Γ1;ρ ⊢ y1 : {a : ⊥..{M : ⊥..⊥}}. then it has a mutable field in a context
where that location is removed.

66

Lemma 17 (Shortening for reference mutability).
If v1 ̸= w2, and Γ2 = Γ1, w2 : T , For a variable in a context ending with

a different reference,

and ρ2 = ρ1, w2 → y2, and Γ2 ∼ ρ2, and a corresponding environment end-
ing with that reference,

and Γ2;ρ2 ⊢ v1 : {M : ⊥..⊥}, if that variable is mutable in that con-
text,

then Γ1;ρ1 ⊢ v1 : {M : ⊥..⊥}. then it is mutable in a context where
that reference is removed.

Lemma 18 (Shortening for reference field mutabilitiy).
If y1 ̸= w2, and Γ2 = Γ1, w2 : T , For a variable in a context ending with

a different reference,

and ρ2 = ρ1, w2 → y2, and Γ2 ∼ ρ2, and a corresponding environment end-
ing with that reference,

and Γ2;ρ2 ⊢ y1 : {a : ⊥..{M : ⊥..⊥}}, if that variable has a mutable field in
that context,

then Γ1;ρ1 ⊢ y1 : {a : ⊥..{M : ⊥..⊥}}. then it has a mutable field in a context
where that location is removed.

The case of adding a new reference to an existing location has a quite straight-
forward proof: in the typing derivation that gives a read-write type in the new
context, we can replace the new reference by the corresponding location.

The case of adding a new location y2 is more complicated, because the location
has a type that may not be present anywhere else in the context. We can use the
infrastructure of invertible typing to show that the mutability of a reference w1,
location y1, or its field a can be derived from the type specified for w1 or y1 in
Γ by tight subtyping. That is sufficient to prove Lemma 15, but in Lemma 16,
we still need to show that the upper bound given to y1.a in the typing context is
a tight subtype of {M : ⊥..⊥}. It is not possible to show that for subtyping of
arbitrary types, even if both types do not reference the variable y2. In particular,
this is caused by subtyping of method types, where subtyping of the result type
may be in a typing context that is not inert. Fortunately, we need this property
only for the special case when the right-hand side of the subtyping is the simple
type {M : ⊥..⊥}, as stated by Lemma 19.

Type Approximation and Restricted Subtyping

In order to prove Lemmas 16 and 18, we need to show that typing which is valid
under the typing Γ1, y2 : T1 is also valid in just Γ. In order to do that, we need
to find a derivation that does not use the bounds of any type member of y2.

To arrive at such a derivation, we define auxiliary, restricted versions of sub-
typing, in which the use of type member bounds is restricted to just one direction
and the use of method subtyping is restricted in order to avoid dealing with non-
inert contexts. To link the types involved in the original and restricted deriva-
tions, we define type approximation relations, which replace type selections and
method types with simpler types such as ⊤ and ⊥.

Type approximations are defined in Figure 3.18, where ϵ can be s, m, or e,
and δ is either ⊕ or ⊖, signifying the direction of the approximation. Restricted
subtyping is defined in Figure 3.19, where ϵ can be s or m.

• The selection inlining approximation (Γ ⊢ T1 ↦−→s
δ T2 in Figure 3.19) is a

relation between two types which allows replacing type selections by their
bounds in one direction δ. The direction ⊕ used in covariant positions

67

⊤ ↦−→ϵ
δ ⊤(TAϵ-Top)

⊥ ↦−→ϵ
δ ⊥(TAϵ-Bot)

Γ ⊢ T1 ↦−→ϵ
−δ T3

Γ ⊢ T2 ↦−→ϵ
δ T4

Γ ⊢ {a : T1..T2} ↦−→ϵ
δ {a : T3..T4}

(TAϵ-Fld)

µ(s : T1) ↦−→ϵ
δ µ(s : T1)(TAϵ-Rec)

Γ ⊢ T1 ↦−→ϵ
δ T3

Γ ⊢ T2 ↦−→ϵ
δ T4

Γ ⊢ T1 ∧ T2 ↦−→ϵ
δ T3 ∧ T4

(TAϵ-And)

v1.B(x2) ↦−→ϵ
δ v1.B(x2)(TAϵ-Sel)

Γ ⊢ T1 ↦−→ϵ
δ T3

Γ ⊢ T2 ↦−→ϵ
δ T4

Γ ⊢ T1 ∨ T2 ↦−→ϵ
δ T3 ∨ T4

(TAϵ-Or)

Γ ⊢ T1 ↦−→ϵ
−δ T3

Γ ⊢ T2 ↦−→ϵ
δ T4

Γ ⊢ {B(r) : T1..T2} ↦−→ϵ
δ {B(r) : T3..T4}

(TAϵ-Typ)

Γ ⊢! v1 : {B(r) : T1..T2}
Γ ⊢ [x2/r]T2 ↦−→s

⊕ T3

Γ ⊢ v1.B(x2) ↦−→s
⊕ T3

(TAs-SelU)

Γ ⊢! v1 : {B(r) : T1..T2}
Γ ⊢ [x2/r]T1 ↦−→s

⊖ T3

Γ ⊢ v1.B(x2) ↦−→s
⊖ T3

(TAs-SelL)

N ↦−→m
⊕ N(TAm-N)

N ↦−→m
⊖ ⊥(TAm-N-Bot)

Γ ⊢ T ↦−→s
δ T (TAs-Refl)

{m(z : T1, r : T3) : T2} ↦−→m
⊕ ⊤(TAm-MetU)

{m(z : T1, r : T3) : T2} ↦−→m
⊖ ⊥(TAm-MetL)

N ↦−→e
⊕ N(TAe-N)

N ↦−→e
⊖ ⊥(TAe-N-Bot)

v1.B(x2) ↦−→e
⊕ ⊥(TAe-SelU)

v1.B(x2) ↦−→e
⊖ ⊤(TAe-SelL)

{m(z : T1, r : T3) : T2} ↦−→e
⊕ ⊤(TAe-MetU)

{m(z : T1, r : T3) : T2} ↦−→e
⊖ ⊥(TAe-MetL)

Figure 3.18: Type approximation

replaces by upper bounds. The result type is a supertype of the original
type. The direction ⊖ used in contravariant positions replaces by lower
bounds. The result type is a subtype of the original type.

• The method type approximation (T1 ↦−→m
δ T2 in Figure 3.19) is a re-

lation between two types which replaces method types by ⊤ or ⊥. The
direction ⊕ used in covariant positions replaces by ⊤. The result type is
a supertype of the original type. The direction ⊖ used in contravariant
positions replaces by ⊥. The result type is a subtype of the original type.

68

Γ;ρ ⊢ϵ
δ T <: ⊤(STϵ

#-Top)

Γ;ρ ⊢ϵ
δ ⊥ <: T (STϵ

#-Bot)

Γ;ρ ⊢ϵ
δ T <: T (STϵ

#-Refl)

ρ ⊢ T1 ≈ T2

Γ;ρ ⊢ϵ
δ T1 <: T2

(STϵ
#-Eq)

Γ;ρ ⊢ϵ
δ T1 <: T2

Γ;ρ ⊢ϵ
δ T2 <: T3

Γ;ρ ⊢ϵ
δ T1 <: T3

(STϵ
#-Trans)

Γ;ρ ⊢ϵ
δ T1 <: T1 ∨ T2

(STϵ
#-Or1)

Γ;ρ ⊢ϵ
δ T2 <: T1 ∨ T2

(STϵ
#-Or2)

Γ;ρ ⊢ϵ
δ T1 <: T3

Γ;ρ ⊢ϵ
δ T2 <: T3

Γ;ρ ⊢ϵ
δ T1 ∨ T2 <: T3

(STϵ
#-Or)

Γ;ρ ⊢ϵ
δ N <: µ(s : T)(STϵ

#-N-Rec)

Γ;ρ ⊢ϵ
δ T1 ∧ T2 <: T1

(STϵ
#-And1)

Γ;ρ ⊢ϵ
δ T1 ∧ T2 <: T2

(STϵ
#-And2)

Γ;ρ ⊢ϵ
δ T1 <: T2

Γ;ρ ⊢ϵ
δ T1 <: T3

Γ;ρ ⊢ϵ
δ T1 <: T2 ∧ T3

(STϵ
#-And)

Γ ⊢! v : {B(r) : T1..T2}
Γ;ρ ⊢s

⊕ v.B(x2) <: [x2/r]T2
(STs

#-SelU)

Γ ⊢! v : {B(r) : T1..T2}
Γ;ρ ⊢s

⊖ [x2/r]T1 <: v.B(x2)
(STs

#-SelL)

Γ;ρ ⊢ϵ
−δ T3 <: T1

Γ;ρ ⊢ϵ
δ T2 <: T4

Γ;ρ ⊢ϵ
δ {a : T1..T2} <: {a : T3..T4}

(STϵ
#-Fld)

Γ;ρ ⊢ϵ
δ N ∧ {M(r0) : ⊥..⊥} <: ⊥(STϵ

#-N-M)

Γ;ρ ⊢ϵ
δ N <: {B(r) : T1..T2}(STϵ

#-N-Typ)

Γ;ρ ⊢ϵ
δ N <: {a : T1..T2}(STϵ

#-N-Fld)

Γ;ρ ⊢# T3 <: T1
Γ, z : T3;ρ ⊢ T6 <: T5 Γ, z : T3, r : T6;ρ ⊢ T2 <: T4

Γ;ρ ⊢s
δ {m(z : T1, r : T5) : T2} <: {m(z : T3, r : T6) : T4}

(STs
#-Met)

T = {B(r) : T1 ∨ T3..T2 ∧ T4}
Γ;ρ ⊢ϵ

δ {B(r) : T1..T2} ∧ {B(r) : T3..T4} <: T
(STϵ

#-TypAnd)

Γ;ρ ⊢ϵ
δ T1 ∧ T2 ∨ T3 <: (T1 ∧ T2) ∨ (T1 ∧ T3)(STϵ

#-Dist)

Γ;ρ ⊢s
δ N <: {m(z : T1, r : T3) : T2}(STs

#-N-Met)

Γ;ρ ⊢ϵ
−δ T3 <: T1 Γ;ρ ⊢ϵ

δ T2 <: T4

Γ;ρ ⊢ϵ
δ {B(r) : T1..T2} <: {B(r) : T3..T4}

(STϵ
#-Typ)

Γ ⊢! v : {B(r) : T1..T2}
[x2/r]T2 ↦−→m

⊕ T3

Γ;ρ ⊢m
⊕ v.B(x2) <: T3

(STm
#-SelU)

Γ ⊢! v : {B(r) : T1..T2}
[x2/r]T1 ↦−→m

⊖ T3

Γ;ρ ⊢m
⊖ T3 <: v.B(x2)

(STm
#-SelL)

Figure 3.19: Restricted subtyping

69

• The selection type approximation (T1 ↦−→e
δ T2 in Figure 3.19) is a

relation between two types which allows replacing type selections types by
⊤ or ⊥. The direction ⊕ used in covariant positions replaces by ⊥. The
direction ⊖ used in contravariant positions replaces N by ⊤.

• One-way tight subtyping (Γ; ρ ⊢s
δ T1 <: T2 in Figure 3.19) is a limited

variant of tight subtyping, which allows using the selection rules only in one
direction δ.

• No-method tight subtyping (Γ; ρ ⊢m
δ T1 <: T2 in Figure 3.19) is a limited

variant of tight subtyping, which allows using the selection rules only in one
direction δ, and does not have subtyping between method types.

In Lemma 19, the premise T2 nosel y2 means that T2 does not contain type
selections involving y2. The # sign indicates the use of tight subtyping.

Lemma 19 (Shortening for subtyping).
If Γ2 = Γ1, y2 : T1, In a context ending with a location,

and Γ2;ρ ⊢# T2 <: {M : ⊥..⊥}, where T2 is a mutable type

and T2 nosel y2, which does not contain selections from
that location,

then Γ1;ρ ⊢ T2 <: {M : ⊥..⊥}. then T2 is mutable in a context where
that location is removed.

T2 M

T2 T3 T4

T2 M

T5 T6

T2 T5 M

T2 M

Γ2;ρ ⊢# T2 <: M

⊕
s ⊕ s

Γ2;ρ ⊢s
T2 <: T3 Γ2;ρ ⊢s

T3 <: T4

Γ2;ρ ⊢s
T2 <: M

⊕
m ⊕ m

Γ2;ρ ⊢m
T5 <: T6

⊕ e ⊕ e

Γ1;ρ ⊢# T2 <: T5 Γ1;ρ ⊢# T5 <: M

Γ1;ρ ⊢# T2 <: M

Figure 3.20: Diagram of the progression of the proof for Lemma 19

Proof sketch of Lemma 19. We want to show that the subtyping derivation never
needs to use y2, that is, that we can derive the same subtyping without invoking
the ST#-SelL or ST#-SelU rules on selections from y2. There are 3 ways in

70

which the original derivation may involve y2: using the ST#-SelL or ST#-SelU
selection rules, using subtyping of method types, or using rules such as ST-Top
or ST-And1, where one of the types may be chosen freely. The proof proceeds in
3 steps, where in each step, we eliminate one of these issues by simplifying the
types on both sides of the subtyping, and showing that the simplified types are
related by a restricted version of subtyping.

The progression of the proof is shown in Figure 3.20, where M is either ⊥ or
{M(r) : ⊥..⊥}. In multiple steps, starting with the subtyping Γ2;ρ ⊢ T2 <: {M :
⊥..⊥}, we approximate the types on both sides to get a derivation in a restricted
version of subtyping.

For the first step, we use the type approximation relation ↦−→s. Because in an
inert context, bounds are either tight or have a lower bound of ⊥, using the ST#-
Sel* rules does not add anything that could not be derived by other subtyping
rules. Therefore, we can get rid of unnecessary uses of ST#-Sel* in the subtyping
derivation by replacing type selections by their bounds. The approximation has
two variants, ↦−→s

⊕ and ↦−→s
⊖, that replace a type selection by its upper (respec-

tively lower) bound. The restricted version of subtyping allows using the selection
rules only in the direction from the selection to the bound, not vice versa.

In the second step, we show that subtyping of method types is not needed
using a approximation relation ↦−→m that replaces all method types by ⊤ or ⊥.
The restricted version of subtyping does not have the ST-Met rule.

In the last step, we show that y2 never has to appear in the types involved
in the derivation of the subtyping taken from left to right. The approximation
↦−→e replaces the remaining selections on y2 by ⊤ or ⊥, in types occurring in
intermediate steps of the subtyping derivation.

In each of these steps, the type on the left-hand side, starting with T2, is
simplified to a supertype, and the {M : ⊥..⊥} on the right hand side is not
affected by the simplification (shown by double lines in Figure 3.20). Therefore
after all the steps, we get Γ1;ρ ⊢ T2 <: {M : ⊥..⊥}.

3.5.3 Finishing the Immutability Guarantee Proof
Finally, in the TR-Read rule, a new reference is added to the context. The effect
of adding the reference to the typing context is handled by Lemmata 17 and 18. A
final piece in the proof of mreach preservation is mutability of the new reference
w2 created in a TR-Read step. It is created for a location that was stored in a
field and is put into the focus of execution. We must ensure that the reference is
read-write only if the field was read-write. Because the mutability of w2 is a union
of the field mutability and the mutability of the source reference w1, we first show
that if w2 is read-write, then both the field and the source are read-write. For
the field, we use Lemma 20 to show that the field has type {a : ⊥..{M : ⊥..T7}},
and then by Lemma 18, it must have had the same type before.

Lemma 20 (Mutability of a type by subtyping).
If Γ;ρ ⊢ T1 mu(r) T2, If T1 has mutability T2,

then Γ;ρ ⊢ ⊤ <: T2 then either it is a top-like mutability
(meaning read-only),

or Γ;ρ ⊢ T1 <: {M(r) : ⊥..T2}. or it can be derived by subtyping with
a mutability declaration.

71

For the object, we need Lemma 21 to show that if the upper bound of w1.M
in the new context is ⊥, then w1 was a read-write reference in the old context Γ.

Lemma 21 (Mutability of a reference by typing in a shortened context).
If w1 ̸= w2, For two different references,

and Γ, w2 : T2;ρ2 ⊢# w1.M(r) <: ⊥, where one is mutable in a context con-
taining the other reference,

and ρ2 = ρ1, w2 → y2 and Γ, w2 : T2 ∼ ρ2, which is the last one in the context and
the corresponding environment,

then Γ;ρ1 ⊢ w1 : {M(r2) : ⊥..⊥}. the mutability of the first reference can
be derived by typing in a context with-
out the second reference.

We use the ↦−→s
⊕ relation from the proof of Lemma 19 above to show this. It

simplifies w1.M(r) to its bound: Γ, w2 : T2 ⊢ w1.M(r) ↦−→s
⊕ T1. Then, by further

simplifying both sides of the subtyping, we find a type which is a supertype of T1
and subtype of ⊥ in Γ.

3.6 Mechanization
We mechanized the roDOT calculus in Coq, starting from the implementation of
field-mutable DOT by Ifaz Kabir. The mechanization was done in collaboration
with Yufeng Li from University of Waterloo, and is attached to this thesis as
Attachment A.1.

In this section, we describe the main changes that had to be done and the
challenges encountered in that process. Finally, Section 3.6 shows how the mech-
anized definitions and theorems correspond to those provided in this thesis.

Differences Between the Presentation and Mechanization

There are several differences between the text presentation in the thesis and the
mechanization, in order to improve readability, organization and extensibility of
the code.

• The mechanized syntax uses a locally nameless representation, where vari-
ables bound in terms and literals are represented by de Bruijn indices rather
than variable names.

• Definitions of an object represented by a list of definitions (while they are
structured by a binary intersection in the text definition, the structure is
irrelevant).

• The mechanization represents multiple variants of the calculus, where the
syntax is shared, but the differences in typing rules are achieved through
the typing mode mechanism described above.

• The mechanized syntax contains additional constructor such as trm_apply,
lit_fun, ctx_stop, item_fun. Hoverer, the typing rules related to these
constructors are disabled by the typing mode feature checks explained
above. Since the theorems are involve typed terms and machine config-
urations, these additional constructors are irrelevant.

72

• The kind of a variable (reference/location, etc.), which is determined by the
variable letter in the text version, is kept track of in the typing context in
the mechanization.

• The special handling of the self-reference in the typing of object literals
and objects on the heap is implemented using the objctx parameter of
typing. This parameter is a parameter of each typing judgment in addition
to the usual typing context. This allows typing object literals and objects
on the heap with the same typing rules, passing objctx_lit for typing
object literals and objctx_heap for typing heap items. For term typing,
the objctx is empty.

• To ensure no conflicts of variable names, definitions and theorems contain
additional well-formedness and freshness premises where necessary, which
are omitted in the text.

• For the purpose of generating fresh variables and ensure no conflict of vari-
able names between entries of the machine configuration and types in the
typing context, machine configurations carry a an additional entry Lv, which
stores all the variable names that appeared at any step of the execution so
far.

• Definition types and object literals are not part of the definition of terms
(trm) and types (typ) directly, but use separate definitions (lit, def) used
through constructors typ_rcd, lit_obj.

• We use additional definitions to avoid code repetition and to improve ex-
tensibility.

• The definitions of transformations and similarity are structured using the
type classes feature of Coq, to allow reusing definitions and lemmas for
different syntactic elements.

Inductive Definitions

Term, variable, definition typing and subtyping are defined using mutual induc-
tion. Coq allows generating fully or partially mutual induction schemes. The
proofs must be specifically structured to conform to this scheme - the conclusion
is a conjunction of judgments and the typing condition must come first.

Typing Environments

In DOT, all typing relations use the typing context, which was represented by a
list of pairs, where the first item is the variable name and the second item is its
type. In roDOT, additional information is needed:

• The subtyping relation uses the equivalence based on the correspondence
between references and locations in the runtime environment.

• The typing context for typing definitions contains the self variable which is
handled in a specific way when typing method definitions.

• Variables in a typing context may be hidden in method bodies.

73

Induction by Size

Although, for example term typing closely follows the syntax of terms, there is
a difference between induction on term typing and the terms itself. There can
be multiple typings for the same term, with different size. Also, in term typing,
subterms are opened before typing.

In case where the induction hypothesis cannot be directly applied to the sub-
term occurrence, one may define a metric such as induction depth, then use
inductive scheme on natural numbers.

Typing Modes

Our Coq definitions and theorems support extensibility, which allows extending
the calculus with additional typing rules, and verifying multiple versions of the
calculus simultaneously. This is achieved by parameterizing the definitions and
theorems with the parameter typing_mode. Possible values of typing_mode are
defined in GeneralTyping/TypingMode.v. Each value represent a version of the
calculus, where each version can have a different set of features. Some typing
rules and theorems are only available if a specific feature is enabled. This is
achieved by a feature check in the rule or theorem, for example looking like
mode_has_mutability typing_mode ->.

For mechanization of roDOT, the mode representing this version of the cal-
culus is rodot.

Mechanized Definitions and Theorems

The following table shows which definition or lemma in the mechanization repre-
sents each lemma and definition in this thesis.

Figure 3.2

Definition avar in file Syntax/Vars.v
Definition varkind in file Syntax/Vars.v
Definition trm in file Syntax/Terms.v
Definition typ_label in file Syntax/Labels.v
Definition ctx in file Syntax/Context.v
Definition def and defsin file Syntax/Terms.v
Definition typ and decin file Syntax/Types.v

Figure 3.4 Mutually inductive definition subtyp
in file GeneralTyping/GeneralTyping.v

Figure 3.5 Mutually inductive definition ty_var
in file GeneralTyping/GeneralTyping.v

Figure 3.6 Mutually inductive definition ty_trm
in file GeneralTyping/GeneralTyping.v

Figure 3.7 Mutually inductive definition ty_incap, ty_capbnd
in file GeneralTyping/GeneralTyping.v

Figure 3.8 Mutually inductive definition ty_def, ty_defs
in file GeneralTyping/GeneralTyping.v

Figure 3.9

Definition heap in file Syntax/Heap.v
Definition stack in file Syntax/Stack.v
Definition renv in file Syntax/Env.v
Definition config in file Syntax/AbstractMachine.v
Definition objctx in file Syntax/Objctx.v

Figure 3.10
Definition record_dec in file CanonicalForms/RecordTypes.v
Definition record_type in file CanonicalForms/RecordTypes.v
Definition inert_type in file CanonicalForms/Inert.v
Definition inert in file CanonicalForms/Inert.v

74

Figure 3.11
Definition ty_stack in file CanonicalForms/ConfigTyping.v
Definition ty_config in file CanonicalForms/ConfigTyping.v
Definition renv_corr in file CanonicalForms/EnvCorrespondence.v
Definition heap_correspond in file CanonicalForms/HeapCorrespondence.v

Figure 3.12 Mutually inductive definition ty_def, ty_defs
in file GeneralTyping/GeneralTyping.v

Figure 3.13 Inductive definition red, answer
in file OperationalSemantics/OperationalSemantics.v

Figure 3.14

Definition subtyp in file GeneralTyping/GeneralTyping.v
Definition subtyp_t in file CanonicalForms/TightTyping.v
Definition precise_flow in file CanonicalForms/PreciseTyping.v
Definition ty_var in file CanonicalForms/GeneralTyping.v
Definition ty_trm_t in file CanonicalForms/TightTyping.v
Definition ty_var_inv in file CanonicalForms/FlatInvertibleTyping.v

Lemma 3 One of the cases of typed_progress handled in typed_progress_read
in file OperationalSemantics/TypedProgress.v

Lemma 4 One of the cases of typed_preservation
in file OperationalSemantics/TypedPreservation.v

Figure 3.16 Inductive definition typed_red
in file OperationalSemantics/TypedOperationalSemantics.v

Lemma 5 Lemma reference_incap_type
in file CanonicalForms/ReferenceTypes.v

Lemma 6 Lemma ty_deref_defs
in file OperationalSemantics/HeapInstantiate.v

Lemma 7 Lemma instantiation_defs
in file CanonicalForms/HeapCorrespondence.v

Theorem 8
Theorem typed_progress
in file OperationalSemantics/TypedProgress.v
and Theorem typed_preservation
in file OperationalSemantics/TypedPreservation.v

Theorem 9 Theorem typed_red_soundness
in file OperationalSemantics/TypedSoundness.v

Theorem 10 Theorem soundness_initial
in file /Safety.v

Figure 3.17 Inductive definition mut_reach
in file Mutability/MutableReachability.v

Theorem 11 Theorem immutability_guarantee
in file Mutability/ImmutabilityGuarantee.v

Lemma 12 Lemma mutated_mreach
in file Mutability/ImmutabilityGuarantee.v

Theorem 13 Theorem mreach_preservation
in file Mutability/ImmutabilityGuarantee.v

Lemma 14 Lemma mreach_preserve_vars
in file Mutability/ImmutabilityGuarantee.v

Lemma 15 Lemma shortening_typ_loc
in file CanonicalForms/Shortening.v

Lemma 16 Lemma shortening_fld_typ_loc
in file CanonicalForms/Shortening.v

Lemma 17 Lemma shortening_typ_ref
in file CanonicalForms/Shortening.v

Lemma 18 Lemma shortening_fld_typ_ref
in file CanonicalForms/Shortening.v

Lemma 19 Lemma shortening_subtyp_typ_loc
in file CanonicalForms/Shortening.v

Lemma 20 Lemma musub
in file Mutability/ImmutabilityGuarantee.v

Lemma 21 Lemma wmu
in file Mutability/ImmutabilityGuarantee.v

75

3.7 Related Work
The distinction of read-only and mutable references is relevant in many program-
ming languages. There is so far not a consensus on handling this issue and each
language has a different approach.

3.7.1 Read-only References in Programming Languages
Some programming languages have reference mutability as a part of their type
system.

The const-qualified pointers and methods in the C++ programming language
disallow mutation of the object pointed to [104]. However, const is not transitive,
so it does not correspond to our definition of immutability. There is no concept
of a viewpoint-adapted field. Qualifier polymorphism is not supported, but can
be achieved using templates, or by directly duplicating the definitions in source
code.

The D language has transitive const and immutable type qualifiers, which
express reference and object immutability [13]. Like in the Java-based systems,
D does not have intersection, union and dependent types, and objects have class
types. Qualifier polymorphism is limited to templates combined with D’s ad-
vanced support for support of metaprogramming and compile-time evaluation.

The Pony programming language defines reference capabilities, which qualify
the type of every reference [37, 103, 19]. The system is defined in the context of
multiple simultaneously running actors, and by allowing only one actor to have a
read-write reference or multiple actors to have read-only references to an object,
it ensures that no race conditions can occur when modifying an object. The
qualifiers not only specify whether the reference can be used to mutate an object,
but also limit which other references to the same object may exist within the
same or a different actor. Qualifiers corresponding to read-write and read-only
references as used in this thesis would be ref and box. Pony also has viewpoint
adaptation applied to types of fields, and it can be also used from source code by
writing arrow types, which allow viewpoint adapting a type by a type parameter,
this, or box.

In Rust, mutability is tied to ownership. There can only be one mutable
reference to an object. Read-only references are transitive. Although a reference
can be qualified by lifetime parameters, its mutability is fixed, so there is no
mutability polymorphism.

3.7.2 Reference Mutability Type Systems
Scala is influenced by Java, which has seen several extensions for reference mu-
tability.

Javari [106] extends the Java syntax with reference mutability qualifiers. An
unqualified reference type T is by default a read-write reference, while readonly T
is a read-only reference. Javari comes with both a formal system based on Feath-
erweight Java [60], and an implementation in the Checker Framework [87], using
type annotations. The type system provides a transitive immutability guaran-
tee, but allows opting out of that by declaring fields as always assignable, even

76

through read-only references, or as always read-write, meaning viewpoint adap-
tation does not apply to them. (Non-transitive immutability could be achieved in
the framework of our type system by removing the viewpoint adaptation in the
typing rule for read terms and changing the definition of mutable reachability.)
Qualifiers can be applied to any type in the program. Qualifier polymorphism
is limited to the romaybe qualifier, which acts as a variable qualifier which can
be instantiated at use locations by mutable or readonly – all romaybe qualifiers
in a method declaration by the same qualifier. This allows Javari to express the
first example To1 from Section 3.3.5:

class C {

T a;

void m_set(T z) {a = z;}

romaybe T m_get() romaybe {return a;}

}

The field is by default this-mutable and the m_set method is by default mutable
with a mutable parameter. Javari allows mutability to be part of a type argument,
so we could make the field a mutability-polymorphic like in the second example
To2, but we would not be able to express the full example because Javari has no
way to combine the mutability of the field with the mutability of the receiver of
m_get.

The type system of ReIm [59] is simpler than that of Javari to enable fast and
scalable inference of qualifiers. It has only 3 qualifiers, mutable, readonly and
polyread. The polyread qualifier expresses simple qualifier polymorphism and
viewpoint adaptation, similar to romaybe in Javari. Fields are either readonly
or polyread; always-read-write fields are not supported. Usage of qualifiers is
limited – they can be applied to any type, but not to type arguments of generic
types. The first example To1 can be expressed in ReIm as follows:

class C {

polyread T a;

void m_set(mutable C this, mutable T z) {a = z;}

polyread T m_get(polyread C this) {return a;}

}

The second example To2 cannot be expressed due to the lack of qualifiers on type
arguments.

Immutable Generic Java (IGJ) [110] encodes mutability qualifiers in Java
generics. It defines the first parameter of a class or interface to specify its muta-
bility: the type T<Mutable> is read-write and the type T<ReadOnly> is read-only.
This approach agrees with our desire to use features of the underlying type sys-
tem to specify reference mutability. IGJ does not have viewpoint adaptation.
Transitivity has to be opted into by declaring fields with a “this-mutable” type,
using the mutability parameter of the containing class. As in Javari, fields may
be declared always assignable. IGJ also supports object immutability by distin-
guishing ReadOnly references and Immutable references. The latter guarantee
that the object will not be modified through any reference. Our first example To1
can be expressed in IGJ as follows by explicitly specifying viewpoint adaptation
in the return type of the getter method:

77

class C<I extends ReadOnly> {

T<Mutable> a;

@Mutable void m_set(T<Mutable> z) {a = z;}

@ReadOnly T<I> m_get() {return a;}

}

The second example To2 cannot be fully expressed for the same reason as in Javari.
Glacier [38] has a system based on class immutability. It has only two qualifiers

that apply to classes. An @Immutable class must only have immutable subclasses
and all fields must have immutable types. All other classes are @MaybeMutable.
Class types other than the top class Object cannot be qualified when used and
always have the mutability declared by the class.

The type systems above were implemented in the Checker Framework. This
framework expresses type qualifiers using Java annotations, so that the Java
syntax does not have to be modified. Qualifiers that apply to the receiver of a
method are written by annotating the explicit this parameter. We achieve the
same result in our approach using the explicit receiver parameter to a method.
Explicit this parameters are not supported in Scala.

The type systems above share the limitations of Java generics and of Java; in
particular, they do not support type intersections and unions.

The reference mutability system for the C# language [52] is the most flexible.
As in the systems above, a type is composed of a qualifier and a normal type.
In this type system, a generic class can be parameterized by both normal types
and type qualifiers, but separately, by declaring a second qualifier parameter list
after the type parameter list. Therefore, a class may have any number of qualifier
parameters, which can be used to individually specify mutability of fields, method
parameters and result types, or be passed as qualifier arguments to the types used
at those places. Qualifiers can be combined by the special type operator⇝, which
viewpoint adapts the second qualifier by the first one. This makes it possible to
express a class similar to our second example To2 from Section 3.3.5 as follows:

class C<PT> {

PT T a;

void Ms(PT T z) writable {a = z;}

PC⇝PT T Mg<_><PC>() PC {return a;}

}

Other supported features include object immutability and uniqueness in a
multi-threaded context for safe parallelism.

3.7.3 Mutability in DOT Calculi

In traditional DOT calculi, such as WadlerFest DOT, objects are immutable and
their fields cannot be changed. A heap is not needed because object literals can
be used directly as values in terms.

Mutable WadlerFest DOT [93] introduced mutability by means of mutable
cells, which are allocated to hold a single variable and can be reassigned to other
variables. In this scheme, an equivalent of a mutable field can be achieved by
having a field which contains a mutable cell. Although the field itself cannot be

78

reassigned, writing a value to this cell and reading the value of the cell behaves
as writing and reading a value from a mutable field.

The lambda values used to represent methods and cells used to represent
fields are separate items on the heap. As an example, an object type with a
field a of type T , a getter mg and a setter ms would have the type To = µ(s :
{a : Ref T} ∧ {mg : T} ∧ {ms : ∀(x : T)T}) and be defined as ν(s : To){a =
ref 1} ∧ {mg = !s.a} ∧ {ms = λ(x : T).(s.a := x)}).

A move towards a more direct definition of mutable fields has been made in
kDOT [64], where all objects are stored on the heap and referred to by object
locations, and field assignments through such locations directly modify the object
on the heap. This approach is closer to how object mutation works in Scala. With
slight modifications, we used it as the baseline for our type system.

Reference mutability has been also defined for System F<: [68]. In the System
F<:M calculus, read-only types are created by the readonly type operator. A
reference of a record type {a : T} can be used to read and write the field a.
However, with a read-only type readonly{a : T}, the field can only be read. To
ensure transitivity of read-only references, such read produces a read-only type –
the typing rule for read-only read is:

Γ | Σ ⊢ x : readonly {a : T}
Γ | Σ ⊢ x.a : readonly T

The existence of two typing rules for reading a field means that it has to
be known whether the access is read-only or mutable. On the other hand, in
roDOT there is only one typing rule for field reads, which can be polymorphic in
mutability thanks to the use of a dependent type.

79

80

4. Method Purity for roDOT
In the previous chapter, we introduced roDOT, a formal calculus which extends
the DOT calculus with the support for reference mutability. In this chapter, we
will use that as a foundation to explore a closely related topic of pure methods –
methods that behave like mathematical functions.

As we explained before, in typical practical object-oriented programming lan-
guages, such as Java or Scala, references by default allow mutation of objects.
Some references in a program are, however, intentionally never used to mutate
objects, and are used in a read-only way. This distinction motivates reasoning
about reference mutability in object-oriented languages.

Following a similar pattern, methods in object-oriented languages are typi-
cally allowed to exhibit several behaviors which are not possible in mathematical
functions – methods may cause side effects, have non-deterministic results, and
may not terminate. Still, many methods intentionally avoid these behaviors and
are designed behave like mathematical functions. Such methods are called pure.

Recognizing which methods in a program are pure is of great interest. Be-
cause pure methods affect program execution in a limited way, as opposed to
non-pure methods, knowing which methods are pure eases analysis of program
behavior (both manual and automatic). Furthermore, this knowledge may help
improving the program, either in source code form or during compilation, by al-
lowing modifications that are guaranteed to not change the program’s behavior,
such as caching the results of method calls [56] end eliminating common compu-
tations [67].

In this chapter, we explore in which ways method purity can be defined within
the context of the roDOT calculus, both from the perspective of static typing and
run-time semantics, and also how pure methods can be used in programs.

Generally speaking, purity comprises three distinct properties: (1) side-effect-
freedom, (2) determinism, and (3) termination. We particularly focus on a single
aspect of method purity – side effect freedom (SEF), as this aspect is most related
to roDOT’s distinguishing feature of expressing reference mutability with types.

We extend the roDOT calculus with the concept of side-effect-free methods.
Informally speaking, in mutable DOT calculi, a method of an object has side
effects if calling it can result in modification of the receiving object or other
existing objects. On the other hand, side-effect free methods never mutate objects
that existed on the heap before the method was called.

We show that the read-only reference types, as defined in roDOT, can be
used to statically ensure that certain methods are side-effect free. We use the
idea from ReIm [59], which is that methods that have only read-only parameters
cannot mutate existing object thanks to the transitivity property of read-only
references. Based on that, we pose the side-effect-free guarantee (SEF guarantee)
by which the type system ensures that methods of certain types are side-effect
free.

Applying the idea of recognizing SEF methods by argument types to roDOT
required dealing with several challenges specific to Scala and roDOT. One impor-
tant challenge is that in order to state and prove the SEF guarantee, we needed
a way to test whether a given type is read-only. As we will explain, this is not

81

possible in the original roDOT type system as defined in Section 3.3. To make it
possible, roDOT’s type system required just a few small changes, but necessitated
re-working a significant part of the soundness proof. We substantiate the changes
to the roDOT type system, and develop a new proof of soundness. This proof is
based on new definition of auxiliary typing judgments, defined in multiple layers,
where each layer supports different features of roDOT’s type system.

Another challenge was formally defining and proving the SEF guarantee in
the updated calculus. The roDOT operational semantics says that fresh heap
addresses are chosen during method execution. Therefore, after calling a SEF
method, these heap addresses can be different, yet the heap still has the same
overall structure. We formally define a concept of similarity of heaps in roDOT to
describe this relation. We prove the SEF guarantee by simulating the execution of
a SEF method with a similar execution, where writeable references are removed,
and by applying roDOT’s immutability guarantee.

As an application of the SEF guarantee, we show that our definition of side-
effect-free methods can also be used to guarantee that programs invoking calls
to SEF methods can be safely transformed without changing their behavior. In
particular, we state a transformation guarantee, which says that in a roDOT
program, calls to SEF methods can be safely reordered, without changing the
outcome of the program (assuming execution on single threaded abstract machine
as defined in roDOT’s semantics).

Formalizing program transformations in roDOT has to deal with specific is-
sues, such as the fact that program code and values are mixed together on the
program heap, or the heap similarity mentioned above. In order to deal with
these issues, we design a general framework for roDOT, which provides a general
way to define program transformations, defines what properties a safe program
transformation must have. The framework provides a general theorem about
lifting the safety of transformation from execution of a small piece of code to
execution of the whole program. We prove the transformation guarantee using
the SEF guarantee and the lifting theorem.

We formally defined and proved the SEF and transformation guarantees
within the updated roDOT, and extended the mechanization of roDOT from
the previous chapter with the new definitions, theorems and proofs.

Outline The rest of the chapter is organized as follows: In Section 4.1, we intro-
duce the concepts of purity and side-effect-freedom. In Section 4.2, we describe
our approach for defining these concepts within roDOT. We look deeper into the
aspects of side-effect freedom in roDOT from different perspectives, and provide
informal definitions of side effect freedom conditions. We show how these per-
spectives are related to each other, and link them together with informal versions
of our guarantees.

In Section 4.3, we motivate and show the necessary updates to roDOT’s type
system, and describe a new proof of soundness for the updated calculus. In
Section 4.4, we formally state the SEF guarantee and present its proof.

In Section 4.5, we look into the safe transformation enabled by the SEF guar-
antee. We define a general framework for working with safe transformations in
roDOT. Then we define a particular transformation, swapping two method calls,
which is safe on the condition that both methods are side-effect free. We prove

82

the safety of this transformation using the SEF guarantee.
In Section 4.6, we describe how we updated our mechanization of roDOT to

support the new features an properties. In section Section 4.7, we compare our
approach to other approaches to purity in object-oriented languages.

The content of this chapter is based on the research paper Pure methods for
roDOT [44].

4.1 Side-effect Freedom and Purity in Program-
ming Languages

A feature common to many object-oriented programming languages is that ex-
ecution of a method can have side effects, such as creating new objects on the
heap or modifying (mutating) existing objects. Often, causing side effects is the
primary purpose of a method. For example, a setter method modifies a field of
the receiving object. Such effects are also the reason why, in general, execution of
a method cannot be treated as evaluation of a function in a mathematical sense,
because every call of a method with possible side effects can produce different
results.

That being said, many methods in object-oriented programs are actually de-
signed as side-effect-free and meant to work like pure mathematical functions,
producing the same result on each invocation. An example of such methods are
getters, or generally, computations based solely on the arguments passed into the
method. Creating methods without side effects is also often considered to be a
good practice, because it reduces hidden dependencies, and these methods can
be used more freely without the fear of unwanted interaction of their effects.

For example, the program code fragment val x = computeX() ; val y =
computeY(), which involves two side-effect-free methods, can be transformed to
val y = computeY() ; val x = computeX() by swapping the order of method
calls without any observable change in the program behavior and semantics. Writ-
ing side-effect-free methods also enables a greater degree of parallelization (con-
currency) and, in general, makes it easier to understand the program behavior.
Therefore, the issue of purity is relevant to most mainstream object-oriented pro-
gramming languages, such as Java, C++, C# and Scala.

However, in common programming languages, pure functions and methods
with effects are typically unified under a single concept of a method, and there
is no way to express, check and make use of method purity at the language level.
The idea that a method is pure can be expressed using an annotation (see, e.g.,
Checker Framework [45, 10] and Code Contracts [48]), but one must look into the
documentation of such an annotation for the exact meaning of purity, and there
may be limited possibilities of checking automatically whether the annotation is
applied properly.

In the context of Java, ReIm [59] introduced annotations with a formal mean-
ing, which give rise to a type system that allows to recognize side-effect-free
methods using the types of their parameters – if all parameters of a method,
including the receiver, have read-only types, the method cannot get hold of a
writeable reference to an existing object, so it is necessarily side-effect free. The
advantage of this general approach, based on the usage of static type systems

83

for reasoning about purity and side-effect freedom, is the possibility to prove
soundness of such annotations.

Scala favors a functional programming style, so Scala programs are likely to
contain more methods (than Java programs) that can be identified as side-effect-
free. Our objective in this chapter is to design a type system that guarantees
side effect freedom for Scala methods and supports advanced language features
present in Scala.

The original DOT calculus does not model mutation of objects, so purity can-
not be addressed there, but roDOT, defined in Chapter 3 has mutable fields and a
type system feature to distinguish read-only and mutable references. roDOT also
provides an immutability guarantee, which we will make use of in this chapter:
an object can only be mutated if there is a path of mutable references to it from
the code being executed.

4.2 Method Purity for roDOT
We use roDOT, introduced in Chapter 3, as a baseline for this chapter. The
reasons to choose roDOT for this task are that unlike previous DOT calculi, it
has mutable fields and a type system feature to distinguish read-only and mutable
references. It also provides the immutability guarantee (Theorem 11): an object
can only be mutated if there is a path of mutable references to it from the code
being executed.

In this section, we look at the possible meaning of method purity in roDOT,
and informally define several purity conditions for roDOT, which will be formally
defined and thoroughly discussed in later sections.

In Section 4.2.1 we look at the three components of purity: side-effect freedom,
determinism and termination. In the rest of the chapter, we will focus on the
side-effect freedom component.

In Section 4.2.2, we identify three perspectives to look at purity. Each per-
spective will lead us to different purity conditions, and the main results of this
chapter will be theorems linking these perspectives together.

The following sections each describe one of the perspectives: Section 4.2.3
defines conditions for the behavior of SEF methods. To be able to recognize SEF
methods statically, in Section 4.2.4 we define a sufficient condition for a method
to be SEF based on the types of its parameters, analogous to ReIm [59]. Section
Section 4.2.6 describes how a program containing calls to pure or SEF methods
can be safely modified without changing its result. In Section 4.2.7, we briefly
look at determinism in roDOT (determinism is otherwise not in the focus of this
thesis).

4.2.1 Components of Purity
In order for a method to be pure – behave like a mathematical function – it needs
to have the following 3 properties.

1. Side-effect freedom. Side effects are modifications of global state or IO
operations. In roDOT, there is no IO and the global state is the heap.

84

Methods can have side effects of creating or modifying objects on the heap.
We discuss side effect in Section 4.2.3.

2. Determinism. The result of the method needs to be determined by the
arguments and the global state. In roDOT, the global state is the heap.
roDOT does not model non-deterministic choices, but the result of instan-
tiating an object is non-deterministic. We discuss determinism in Sec-
tion 4.2.7.

3. Termination. The method must eventually produce a result and return
to the caller – it cannot enter infinite recursion.

In literature, the treatment is inconsistent In this thesis, we will focus on the
SEF property.

The discussing in the following section applies to purity, also other properties.
We briefly look at the properties. From section Section 4.3 onward, we will only
SEF property.

4.2.2 Viewing Purity from Three Perspectives
In this section, we informally define the meaning of side-effect freedom in roDOT,
and informally state the main results of this thesis: the SEF guarantee and the
transformation guarantee.

We structure our work around an observation that (in any programming lan-
guage or calculus), we can look at side-effect freedom from different perspectives:

1. Recognize which methods are pure statically at compile time, using types.
2. Define what events can happen or cannot happen at runtime when a pure

method is executed.
3. Differentiate SEF methods from general methods based on how they can

be safely used in programs, in ways not generally safe for methods that are
not known to be SEF.

For each of these perspectives, we will state a SEF condition, each giving
a different definition of SEF methods in roDOT. First we do it informally in
this section, and then formalize the definitions in the following sections. The
guarantees then form connections between different SEF conditions.

The first perspective is important because we can see how pure methods are
useful. A definition of purity gives us guarantees about what we can do with a
pure method. (For example, knowing that inserting a call to a pure method into
a correct program will not change the behavior of the program.) It is, however,
a view from outside of the method, looking at it as an opaque unit, and does not
tell us how to construct a pure method or check it.

The second perspective is looking at the small step semantics of the method,
where we can say that pure methods are not allowed to perform certain actions,
such as mutating an object. This perspective is most directly related to how the
semantics of the roDOT calculus is defined. Purity in roDOT viewed from this
perspective is described in Section 4.2.3.

Finally, the third perspective is useful because it provides a way to recognize
and check that a method is pure, by just looking at the code. We must, however,

85

accept the fact that statically, it will not be possible to recognize all methods that
are pure from the first or second perspective, like we accept that type checking
may reject some programs that would actually execute correctly. We give the
view from perspective is described in Section 4.2.4.

The practical use of a purity system comes when it allows us to look at
the code, and based on what we see (from the third perspective) gives us a
guarantee about its behavior (second perspective) and how it can be used (the
first perspective). The second perspective can be a connecting step between the
first and the third perspectives. The SEF guarantee defined in Section 4.4, makes
the connection from the third to the second perspective, while the transformation
guarantee, detailed in Section 4.5, links the third perspective with the first.

Because the second perspective is most directly related to the semantics of
roDOT, we will look at ways to define purity by defining various conditions from
this perspective, and then look at what such conditions imply from the first
perspective, and how such conditions can be proven from the third perspective.

4.2.3 Run-time SEF Condition (Perspective 2)
Saying that a method is side-effect-free is informally understood as saying that
the execution of the method will not perform any actions that are considered to
be side effects. This view corresponds to the second perspective on our list.

This perspective is most directly related to the semantics. In roDOT, this
means looking at the small step semantics, defining the beginning and end of
execution of a method, and defining the SEF condition in terms of the state of
execution or the steps performed between the beginning and the end. When
looking at the effects caused by method execution, the only relevant part of
the machine configuration is the heap (the focus of execution is the part being
evaluated, the stack cannot be changed, and the mapping from references to
locations is only relevant for typing). The heap can only be modified by two
kinds of execution steps: instantiation of an object and writing a value to a field
of an object on the heap.

The condition of side-effect-freedom can be stated in multiple versions of vary-
ing strength. In the strictest sense, we could say that a SEF method cannot have
any effect on the heap at all. That could be achieved by completely forbidding
execution of any statements that may change the heap. In roDOT, those are ob-
ject creation, which extends the heap, and field write statements, which mutate
existing objects. This strict SEF condition would mean that no object instantia-
tions and no field writes are allowed. That would, however, be overly restrictive,
as object instantiation is one of the basic operations in object-oriented program-
ming. It is therefore usually (such as in [97, 100, 59, 45]) allowed that a SEF
method can instantiate new objects, and also write to the fields of those newly
instantiated objects. In turn, the only forbidden action is writing to fields of
previously existing objects.

Another choice in the definition is when the change to the heap is detected,
which leads to different answers to questions such as: (a) Is it allowed to write
to a field of an existing object, if the value written is the same as the current
value so the object does not actually change? (b) Is it allowed to write to a
field of an existing object, if the field is restored to the previous value before

86

the end of the method execution? We choose to allow (a) but not (b), so our
definition observes the state of the heap at every moment during the execution of
the method. Allowing (b) would lead to a weaker condition, which would check
the state of the heap only at the end of the method call. Forbidding (a) would
lead to a stronger condition, defined in terms of allowed steps of execution rather
than in terms of the state.

Definition (SEF condition for 2nd perspective, informal statement of 7). An
execution of a method is side-effect free, when at every step of execution until
returning from the method, the heap contains all the objects from the start of
execution in an unchanged state.

This condition will be formally defined in Section 4.4.1.

4.2.4 Static SEF Condition (Perspective 1)
The static perspective (the first in our list) is useful because it provides a way to
check that a method is SEF by looking at the code. We must, however, accept
that statically, it will not be possible to recognize all methods that are pure
from the second (and third) perspective, just like type checking may reject some
programs that would actually execute correctly.

In ReIm [59], SEF methods are recognized by the mutability of the parameters.
roDOT uses the same notion of transitive read-only references, therefore it should
be possible to use an analogous condition in roDOT.

Definition (2, static SEF condition, informal statement). A method has a SEF
type, if both its parameter and its receiver parameter have read-only types.

This condition will be formally defined in Section 4.3.1.
The following examples, Example 4 and Example 5, illustrate its ability to

recognize SEF methods.
Example 4. A getter defined as {mget(r, z) = z.a} can be typed with {mget(r :
⊤, z : {a : ⊤..⊤}) : ⊤}. Both ⊤ and {a : ⊤..⊤} are read-only types, and therefore
the getter is SEF by Definition 2.
Example 5. The method msef defined by {msef (r, za) = (let x = ν(ro : Ro) . . . in
za.max)} calls a method of its argument, passing a newly allocated object to it.
This method has type {msef (r : ⊤, za : Tz) : ⊤}, where Tz = {ma(r : ⊤, z : µ(ro :
Ro)∧{M(r) : ⊥..⊥}) : ⊤}. By Definition 2, msef is SEF, because it has read-only
parameters, even though it calls ma, which may mutate the heap.

Example 6 shows how viewpoint adaptation transitively ensures that read-
only parameters cannot be used to modify existing objects. Example 7 shows
how a dependent type can change whether the method is SEF or possibly not.
Example 6. The method defined by {mva(r, z) = (let x = z.a in x.b := r)} mutates
an object stored in a field of the argument z, and therefore is not SEF. This
method cannot be typed with a read-only type for the parameter z, because even
if the field a has a mutable type, by viewpoint adaptation of fields in roDOT, the
variable x would also have a read-only type, so the subsequent write would not
be allowed.

87

Example 7. A method with a type {mdep(r : ⊤, za : {a : ⊤..⊤} ∧ x.A) : ⊤}
has a parameter with a type dependent on the variable x, which can decide the
mutability. This method is recognized as SEF only in contexts where N <: x.A.
When x.A <: M⊥, then the method can (indirectly) mutate the argument.

4.2.5 SEF Guarantee
For the SEF guarantee (Theorem 37), we want to be able to claim that a
method is SEF based on the type of the method declaration. The SEF guarantee
makes the connection from the first to the second perspective.

Theorem (37, informal statement). Let c1 be a well-typed machine configuration
just prior to executing a method call step w1.mw2. If, by typing of the receiving
reference w1, the method m has a SEF type, then the execution of the method will
be side-effect free.

This condition is formally defined and discussed in Section 4.4.2.
The SEF guarantee that we pursue requires the parameters to have read-only

types. The notion of read-only types is already present in roDOT in the form of
type splitting (Figure 3.7), where its purpose was to make a read-only counterpart
of a type to support viewpoint adaptation when accessing a field, and to ensure
that recursive types are read-only. We will revise the way to recognize read-only
types in Section 4.3.1.

4.2.6 Using Pure Methods in roDOT (Perspective 3)
Finally, the third perspective shows why SEF methods are useful. It is, however,
a view from outside of the method, and does not tell us how to construct a SEF
method or check it.

The practical use of a type system with SEF methods comes when it allows
us to look at the code, and based on what we see (from the first perspective)
gives us a guarantee about its behavior (second perspective) and how it can be
used (the third perspective). An example of this is allowing safe transformations
of the program, which can be applied at coding time using IDE-provided code
transformations, or at compile time as optimizations. Certain transformations
may be not safe if applied to general methods, but are guaranteed to be safe for
pure of SEF methods.

For example, calls to SEF methods can be safely reordered, because they do
not have side effect that could interfere with each other. If the method is also
deterministic, then duplicate calls of the same method with the same arguments
can be de-duplicated, because the method always returns the same value. In that
sense, the purity and SEF properties allow more flexibility in how the method
can be used.

To keep the problem simple, we will look at one particular case of such trans-
formation: reordering calls to SEF methods, which we can narrow down to swap-
ping two SEF method calls. With SEF methods, the code x1.m1(); x2.m2()
is equivalent x2.m2(); x1.m1(). We will express this swapping as a transfor-
mation of a program containing two method calls into another program with the
calls swapped.

88

Definition (Call-swapping transformation of programs, informal statement). A
program t1 is transformed into t2 by SEF call-swapping, when the programs are
the same except in one place, where t1 calls two methods in succession, but t2
calls them in the opposite order. Furthermore, within the contexts of typing these
method calls, both methods have the same read-only types, and allow both programs
to be typed in the same manner.

Example 8. A chain of calls let x1 = xo1.m1xa1 in let x2 = xo2.m2xa2 in t, can trans-
formed by call swapping into let x2 = xo2.m2xa2 in let x1 = xo1.m1xa1 in t.

The static condition from the first perspective is already a part of the def-
inition of the transformation. The transformation guarantee then states that
this transformation is safe – it does not change the behavior of the program.
By that, the guarantee connects the static condition (first perspective) with the
call-swapping transformation (third perspective). We use the run-time condi-
tion (second perspective) as a connecting step between them in the proof of this
guarantee.

Theorem (52, informal statement). The call-swapping transformation of pro-
grams is safe, in the sense that if for any programs t1 and t2 related by this
transformation, provided that t1 terminates with an answer c1, then t2 also ter-
minates with an answer c2, which is the same as c1, except for certain unavoidable
differences in variable names and in method bodies.

The formal definition of the transformation, formal statement of the transfor-
mation guarantee and an outline of its proof is provided in Section 4.5.

4.2.7 Determinism in DOT and roDOT
In this thesis, we focus only on the SEF part of purity, but let’s look at the
deterministic condition briefly.

For a method to be deterministic, it must always return the same value when
called with the same arguments and with the same reachable part of the heap.

DOT calculi generally have deterministic semantics – there is no way to ex-
press a nondeterministic choice. However, there is one source of non-determinism:
the locations of objects on the heap.

Therefore, not all methods in roDOT are deterministic in this sense – if a
SEF method returns an object that was allocated by the method, it will return a
different object each time it is called, and therefore is not deterministic. This is an
important difference, because the returned object can be subsequently mutated,
so for example a call to such non-deterministic method cannot be safely de-
duplicated.

4.2.8 Termination in DOT and roDOT
The DOT calculus does not have a loop construct, but allows recursive calls,
making it possible to enter an infinite loop. An example of a method which
simply calls itself is ν(s : R){m(r, z) = r.mz} The possibility of non-termination
is necessarily reflected in the soundness theorems (Theorem 1 and Theorem 10).

89

DOT calculus was designed to be Turing-complete [107] language, which
means termination is undecidable. roDOT is designed to preserve the expres-
sive power of DOT, so conjecture that this holds for roDOT as well.

In this thesis, we focus on the SEF property and do not stat type-system guar-
antees about termination. Possible non-termination is considered in the design
of the transformation framework and Theorem 52 in Section 4.5.

4.3 Recognizing Read-only Types

In this section, we formalize the static SEF condition in roDOT given informally
in Section 4.2.4. The notion of read-only types, used by this condition, was
already defined in roDOT, we identify issues with that definition in regards to
this new use.

We fix them by updating the calculus with small changes, which comprise
adding one new subtyping rule and one type splitting rule, and one restriction
added to the method subtyping rule. The updated calculus is neither a subset
or superset of the original, so it is necessary to update the proof of soundness of
the calculus and the immutability guarantee, which were proven by hand for the
original roDOT [43].

The soundness proof followed the scheme from [95] and uses an auxiliary
definition of invertible typing, which allows doing proofs by induction on the
typing of variables. This is possible thanks to eliminating possible cycles in
the derivation, by forcing the derivation to follow the syntactic make-up of the
target type. One of the new subtyping rules, however, breaks this soundness
proof, because it introduces new possibilities to derive types in cycles, which
cannot be repaired by simply handling additional cases in the original proof. We
implemented a new proof based on a different auxiliary typing definition, which
avoids cycles by forcing the derivation to construct the target type by following a
given order of type constructors (for example, all union types are handled before
intersection types).

Compared to the original invertible typing, which handled most features in a
single judgment with many rules, the new approach leads to a definition in several
layers, where each layer has just a small number of typing rules. We call this set
of judgments layered typing. In layered typing, we re-prove important properties
of invertible typing, so that the new definition fits into the rest of the existing
soundness proof, and also prove new properties required for the SEF guarantee.

The rest of this section is structured as follows: in Section 4.3.1, we formalize
static SEF condition which was informally stated in Section 4.2.4.

and discuss the meaning of read-only types in roDOT. In Section 4.3.2, we
propose small changes to the roDOT calculus to make definitions work for the SEF
guarantee. Although the changes are kept to the minimum, we show how they
break the safety proof of roDOT, which used invertible typing adopted from the
baseline DOT. In Section 4.3.3, we describe the new layered typing that replaces
invertible typing in the updated proof and show its important properties.

90

4.3.1 Static SEF Condition for roDOT
In the SEF guarantee (Theorem 37), we claim that a method is SEF based on
the type of the method declaration. Our SEF guarantee follows the approach of
ReIm [59] and requires the parameters to have read-only types.

Read-only Types in roDOT

The check if a type is read-only was also present in roDOT, but it had a limited
purpose – to ensure that recursive types are read-only in VT-RecI (Figure 3.5).
It was not based on subtyping, but rather on the relation ro, which makes a
read-only version of a type using the syntax-based type splitting (Figure 3.7).

This definition did not guarantee that all supertypes of a read-only type are
also read-only. As we will explain below, this would be a critical problem for the
SEF guarantee, because it would not be guaranteed that a subtype of an SEF
method type is also SEF.

We solve this problem by using a different notion of read-only types, based
on subtyping with the “read-only bottom” type N.

The purpose of N in the original roDOT was to be the read-only version of
the type ⊥, which was necessary for defining the ro relation. Because the bottom
type ⊥ is a subtype of all types, it is inherently mutable. For that reason, the
type N was added and made a lower bound of read-only types. That allows us to
define read-only types as supertypes of N.

Definition 1 (Read-only types). A type T is read-only, if Γ;ρ ⊢ N <: T .

With Definition 1 settled, we discovered a few problems related to read-only
types, which would not allow us to state the SEF guarantee in the original roDOT.

Our proof of the SEF guarantee, specifically Lemma 43 in Section 4.4.5, relies
on the idea that if a reference has some read-only type, then any other reference to
the same object has that type too. Note that because of subsumption, a variable
of a mutable type also has the corresponding read-only types. This essentially
means that in any place where a reference is used by virtue of its read-only type,
it can be replaced with a read-only version of that reference. With the new
Definition 1 of read-only types, this can be stated as:

Lemma 22 (Read-only types are shared by all references).
If Γ ∼ ρ and Γ;ρ ⊢ y : T For a location y with a type T ,

and Γ;ρ ⊢ N <: T , if the type is read-only,

then Γ;ρ ⊢ w : T for any w such that ρ[w] = y. then any corresponding reference w has
that type.

This, however, does not work in the original roDOT, because of union types.
Union types were not a part of the baseline DOT, but were added to roDOT in
order to be used to define viewpoint adaptation (union types are already a part
of Scala’s type system), along with the subtyping rules ST-Or, ST-Or1, ST-Or2,
ST-Dist, which are shown in Figure 3.4. Using unions, however, we can construct
a type that is a supertype of both N and a mutability declaration:
Example 9 (In the original roDOT, counter-example to Lemma 22 in the original
roDOT). Let Tam := {a : Ta} ∨ M⊥

1 be a union of some field declaration with
1MT is a shorthand for the type member declaration {M : ⊥..T}.

91

a declaration of mutability, and Tbm := {b : Tb} ∧ M⊥ be a type of a writeable
reference to some other field b.

The type Tam is not a mutable reference type – the mutability declaration
contained in this type is not in an intersection with the field declaration. It is
read-only, because Γ;ρ ⊢ N <: Tam by the rules of subtyping of union types and
by ST-N-Fld.

Let y1 be a location of type Tbm, and w2 be a reference to y1 with type
Tb := {b : Tbm}. By subtyping of union and intersection types, Γ;ρ ⊢ Tbm <: Tam,
so by subsumption, y1 has type Tam. By Lemma 22, w2 should have also type
Tam, but in the original roDOT, it does not.

We observe that the read-only type Tam in this counter-example is a union
of disjoint declarations, so it does not allow accessing the field aam, or any other
member. Therefore, Tam is no more useful for typing programs than ⊤. In order to
make Lemma 22 work, we decided to extend the type system with new subtyping
rules to make types like this equivalent to ⊤. These changes will be described in
Section 4.3.2.

The SEF condition

A method is statically SEF if the types of its receiver and parameters are read-only
according to Definition 1 i.e., they are supertypes of N. Thanks to subsumption
and subtyping of method types, the type {m(z : N, r : N) : ⊤} is a type bound
for methods named m and requires that both the argument and receiver have
read-only types.

Definition 2 (Static SEF condition). A method is statically SEF if it has a type
{m(z : N, r : N) : ⊤}

In Section 4.4.2, we will show that this condition works because a method
must access all objects through the argument or the receiver (capturing values is
modeled using fields of the receiver). This bound requires that both the argument
and receiver have read-only types, so any references stored in fields of those objects
will also be seen as read-only, because of viewpoint adaptation. Therefore, the
method will not be able to get a writeable reference to any existing object.

Typing of Method Calls and Subtyping of Method Types

In order for the SEF guarantee (Theorem 37) to work with Definition 2, it is
critical that all subtypes of a SEF method type are also SEF. The reason is at
the site of a method call, the observed static type of the method is a supertype
of the actual type of the method within its containing object, so this is needed
to make the connection from the SEF type at a call site to the SEF type of the
actual method.

That is why Definition 1 needs to be based on subtyping, so that all super-
types of read-only types are read-only (method types are contravariant in their
parameter types).

Still, the type system required one more change related to a possible de-
pendency between the types of method parameters. In roDOT, the type of the
receiver r can be a dependent type referring to the other parameter z of the

92

method. If, however, the receiver type depended on the mutability of the param-
eter z, then while typing the body of the method, it would be possible to derive
that z is mutable, even if its type is read-only in the sense of Definition 1. If r has
the type {A : z.M..⊥}, one can use the typing rules ST-SelL and ST-SelU to de-
rive z.M <: ⊥. The change to the rules TT-Call and ST-Met shown in Figure 4.1
prevent this issue by disallowing using method types where the receiver depends
on the mutability of the receiver, and subtyping between method types where the
receiver does not depend on the mutability of the parameter and methods where
it does.

4.3.2 The Updated roDOT Calculus

Γ;ρ ⊢ N <: T

Γ;ρ ⊢ T ro T
(TS-N)

Γ;ρ ⊢ ⊤ <: N ∨ {M(r) : T1..T2}(ST-NM)

Γ;ρ ⊢ T3 <: T1 Γ, z : T3, r : T6;ρ ⊢ T2 <: T4
Γ, z : T3;ρ ⊢ T6 <: T5 T6 indep z ⇒ T5 indep z

Γ;ρ ⊢ {m(z : T1, r : T5) : T2} <: {m(z : T3, r : T6) : T4}
(ST-Met)

Γ;ρ ⊢ x1 : {m(z : T1, r : T3) : T2} Γ vis x1 Γ vis x2

Γ;ρ ⊢ x1 : [x2/z]T3 Γ;ρ ⊢ x2 : T1 T3 indep z

Γ;ρ ⊢ x1.m x2 : [x1/r][x2/z]T2
(TT-Call)

Figure 4.1: Updated typing rules for roDOT

In the previous section, we defined the static SEF condition, but identified
several reasons why this definition would not work as intended in roDOT as-is.
We fix these issues by changes to the roDOT calculus, which amount to two new
and one modified typing rule:

• A new subtyping rule ST-NM (Figure 4.1) is added, which makes it so that
the union of a mutability declaration and the read-only lower bound N is
a top-like type (the other direction of subtyping was already a part of the
type system).

• A new rule TS-N (Figure 4.1) is added to type splitting, making it so that
all types that are read-only by Definition 1 are unaffected by the splitting
operation.

• The typing rule TT-Call subtyping rule ST-Met has a new premise (shown
highlighted in Figure 4.1), which disallows introducing a dependency be-
tween the receiver type and the parameter in typing method calls and
subtyping method of method types. This fixes the problem described in
Section 4.3.1.

The new rule ST-NM fixes the counter-example to Lemma 22, because now we
have Γ;ρ ⊢ ⊤ <: Tam, derived from Γ;ρ ⊢ ⊤ <: N ∨ M⊤ and Γ;ρ ⊢ N <: {a : Ta}.
By subsumption and Γ;ρ ⊢ w2 : ⊤, that also means that Γ;ρ ⊢ w2 : Tam.

93

Additionally, because subtyping with N becomes the preferred way to deter-
mine that a type is read-only. we can use it improve the type splitting relation
⊢ ro , by extending it with a new rule TS-N, shown highlighted in Figure 4.1.

With that, the condition in VT-RecI that recursive types are read-only, Γ;
ρ ⊢ T ro T , becomes equivalent to Definition 1:

Lemma 23 (Read-only types). Γ;ρ ⊢ N <: T ⇔ Γ;ρ ⊢ T ro T .

Type Soundness of the Updated Calculus

The changes described above require updating the type soundness proof of the
calculus, to show that the changes did not allow invalid programs to be typed.
Also the immutability guarantee has to be proven in the updated calculus.

The new subtyping rule ST-NM has a significant effect on the soundness proof,
because it makes it possible to derive many additional union types, such as the
now top-like type M ∨ N.

The proof of soundness of roDOT before these changes followed the structure
of the “simple” soundness proof for DOT [95]. The core part of this proof is
to show that if a reference w has some declaration type D (such as a field {a :
T}), then the type associated with w in the typing context Γ is an object type
containing D or a more precise declaration of the same member. That means, for
Γ;ρ ⊢ w : D, where D is a declaration type, because the types in Γ correspond to
the object on the heap (Γ ∼ Σ), the actual object referred to by w must contain
a corresponding member definition in Σ, and therefore it is safe to access that
member.

This proof is based on two alternative definitions of typing for variables – tight
typing and invertible typing (see Figure 3.14 in Section 3.4). These alternative
definitions are equivalent to normal typing inert contexts, and make it easier to
reason about typing, such as making claims about objects on the heap based,
on the types of variables that refer to them. The relations between the different
versions of typing were shown in Figure 3.14.

Tight typing is used as an intermediate step in equivalence of general and
invertible typing. It is very similar to general typing – it has the same rules,
except that subtyping rules involving selection types (ST-SelL and ST-SelU in
Figure 3.4) are different. In general typing, they use variable typing to find the
bounds of the type member, which makes general subtyping mutually recursive
with variable typing. In tight typing, the corresponding rules use precise typing,
a simpler version of variable typing, which does not have subsumption.

Updating tight typing for our modified rules is straightforward – we apply the
same changes as to general typing, and the proof of equivalence between general
and tight typing still works. However, we will show that updating invertible
typing poses a challenge, as it cannot be easily extended with the additional
rules.

Updating Tight and Invertible Typing

In this section, we revisit relevant aspects of the original soundness proof.
The main utility of invertible typing was providing a simple path of derivation

of a variable’s type, starting from the type given to it by the typing context, and

94

µ(s : {a : T..T} ∧ {A : {a : T..⊤}}) ∧ M⊥

µ(s : {a : T..T} ∧ {A : {a : T..⊤}}) M⊥

{a : T..T} ∧ {A : {a : T..⊤}}

{a : T..T} {A : {a : T..⊤}}

pr
ec

ise

{a : ⊥..T} w.A

w.A ∧ {a : ⊥..T}

µ(s : s.A ∧ {a : ⊥..T})

µ(s : s.A ∧ {a : ⊥..T}) ∨ S

{a : ⊥..T}

{a : ⊥..T} ∨ S {a : T..⊤} ∨ S

({a : T..⊤} ∧ {a : ⊥..T}) ∨ S

(w.A ∧ {a : ⊥..T}) ∨ S

µ(s : s.A ∧ {a : ⊥..T}) ∨ S

in
ve

rt
ib

le

atomic

union
logic

main

Figure 4.2: Example derivation of a type by invertible typing (left) and layered
typing (right). The variable w has the type µ(s : {a : T..T} ∧ {A : {a : T..⊤}}) ∧
M⊥ in the typing context and S is an arbitrary type.

ending with a type that was used to access a member at some particular point in
the program. This direct path then allowed induction-based proofs of properties
of the typing relation.

This task would be especially hindered if the typing rules allowed cycles in
the derivation, which would allow the derivation to go through unnecessarily
complicated types. For example, with general typing, it is possible to derive
Γ ⊢ x : T from Γ ⊢ x : T ∧ T and vice versa. Therefore, a derivation of type
T can start with Γ ⊢ x : T , go through arbitrarily complicated types such as
(T ∧ T) ∧ T , and come back to T . This inhibits arguments by induction on the
derivation of a general typing.

Invertible typing in DOT prevented this by ensuring that the derivation closely
follows the syntactic make-up of the target type.

The original roDOT adopted the invertible typing from DOT [95], where it
has two layers, which we present using an example derivation of a type for a
variable w in Figure 4.2.

The first layer, precise typing, only derives types by deconstructing the type
of the variable given by the typing context. For each reference w, its type in the
typing context is an intersection of a mutability declaration with a recursive type
containing an intersection of declarations. Precise typing allows opening this
recursive type and extracting the declarations from the intersection, but does not
support subtyping. The top of Figure 4.2 shows individual steps of this process.

The second layer, invertible typing, combines both variable typing and
subtyping into a single layer. In DOT and the original roDOT, it has fewer
rules than general typing and subtyping, because it only has rules that construct
the target type syntactically “bottom-up”, such as closing recursive types (akin
to VT-RecI), or deriving intersection and union types. Thus the derivations of
invertible typing are unambiguously guided by the syntax of the target type. The
left side of Figure 4.2 shows individual steps of this process in building up the
type µ(s : s.A ∧ {a : ⊥..T}) ∨ S for w.

Because we changed the definition of general typing as described in Sec-

95

tion 4.3.2, it is necessary to update invertible and tight typing as well. Updating
tight typing is straightforward – the same changes are applied as to general typ-
ing.

To adapt invertible typing to the addition of the new rule ST-NM, it is not
enough to just extend invertible typing with a rule that derives Γ;ρ ⊢## x : N∨M,
because ST-NM (Figure 4.1) allows deriving many more types, if used together
with other subtyping rules.

The distributivity rule ST-Dist (Figure 3.4) actually allows deriving arbitrarily
large types from TN ∨ TM, where the TN and TM parts can consist of intersections
and unions of various types, containing N and M somewhere.

Therefore, the invertible typing has to be changed to derive those types, in
order to make it equivalent with general and tight typing.

Inversion of typing with union types As per Figure 3.14, invertible typing
was equivalent to tight typing. That required invertible typing to be closed under
tight subtyping (Lemma 24).

Lemma 24 (In original roDOT, invertible typing is closed under subtyping).
If Γ;ρ ⊢## x : T1, and Γ;ρ ⊢# T1 <: T2, where Γ ∼ ρ, then Γ;ρ ⊢## x : T2.

The proof of Lemma 2 in DOT and the original roDOT, is by induction on
Γ;ρ ⊢# T1 <: T2, and relies on “invertibility” of invertible typing: for a given
T1, there is, depending on the top-level type constructor in T1, only one or a few
rules of invertible typing that can possibly derive this type, and the premises of
these rules are invertible typing judgments, types simpler than T1. Inversion can
be used to obtain derivations with simpler types, which are used to continue the
induction.

In Lemma 24, the case of T1 being a union type relies on case analysis of
deriving union types, which corresponds to inverting the ST-Or rule (Lemma 25).

Lemma 25 (In original roDOT, typing with union types can be inverted).
If Γ;ρ ⊢## x : T3 ∨ T4, If a reference has an union type in the

original roDOT

then either Γ;ρ ⊢## x : T3 or Γ;ρ ⊢## x : T4. then it has one of the types forming the
union.

This lemma is however, not compatible with ST-NM. The addition of ST-
NM, together with the existing rules ST-Or and ST-Dist (Figure 3.4), breaks in
a significant way that cannot be repaired by simply handling additional cases to
the proof.

The rule ST-NM adds new ways of deriving union types such as N ∨ M⊥, and
the distributivity rule ST-Dist actually allows deriving arbitrarily large types of
the form TN ∨ TM, where the two parts can consist of arbitrary intersections and
unions of various types that contain N and M⊥ somewhere within them.

For example, with the variables from Example 9, we have Γ;ρ ⊢ w2 : {a :
Ta} ∨ M⊥. Such a type cannot be derived in a syntactically bottom-up manner
that invertible typing is based on, because neither part of the union is a type of
w2 (Γ;ρ ̸⊢ w2 : {a : Ta} and Γ;ρ ̸⊢ w2 : M⊥).

Lemma 25 cannot be easily fixed by adding additional cases to account for
the new possibilities of deriving union types, because of the ST-Dist rule (shown
in Figure 3.4), where the union on the left side appears under an intersection.

96

As shown in Section 2.4.4, the proof of Lemma 2 relies on the ability to do
case analysis of deriving union types (Lemma 25). After the addition of ST-NM,
Lemma 25 is not true anymore.

The type N ∨ M⊥ is top-like, but the addition of the ST-NM rule also allows
deriving some non-top-like types, which may be specific to the variable being
typed. For example, using ST-NM, w2 also has the type {a : Ta}∨({b : Tb}∧M⊥).

As an example of a more complex type, consider (({a : Ta} ∨ {b : Tb}) ∧ {b :
Tb}) ∨ ({b : Tb} ∧ (M⊥ ∨ {a : Ta})). With this type, it is not easy to tell the
role of each part in the typing derivation, and we definitely cannot do that by
inverting just one step of the derivation anymore.

Rather than trying to fix the original invertible typing by adding more rules,
we defined a new alternative definition of an auxiliary typing judgment, which is
also equivalent to general typing under inert context, but in its design, focusing
on the types that can be derived using the new rule ST-NM.

4.3.3 Layered Typing
In layered typing, we avoid the need for Lemma 25 by organizing the derivation
of a type not bottom-up, but by handling different type constructors which can
appear in the target type in separate layers of typing judgments.

The problematic new type derivations use ST-NM and possibly ST-Dist, which
work with unions and intersections. For simplicity, let’s for a while ignore other
aspects of typing, and only focus on unions and intersections. To isolate our prob-
lem with inverting derivations of union types, we completely separate derivation
of union types from intersection types – all union type constructors are derived
before any intersection types.

This approach adapts well to the addition of the ST-NM rule, because this
rule is just another way to derive union types (where one of the sides contains M
and the other N). We separate them into two layers that can derive union types.

First, the basic layer, derives the newly top-like types possible by the rule ST-
NM. Because intersections, recursive types and selections are out of the picture
at this layer, these types have a simple form of possibly nested union types,
where one of the sides contains N and the other M, where M is a declaration
{M : ⊥..T} for some bound T . We will write that as ⊢ N ◁ TN and ⊢ M ◁ TM.
Second, the union layer derives types possible by the rules ST-Or1 and ST-Or2,
allowing nesting a known type of w in a union with any other type. This way,
the layers retain the information about how a union type has been derived and
those cases can be handled separately when inverting the derivation.

Intersection types can be handled in analogy to how any logical formula can
be derived by starting from conjunctive normal form (CNF) and pushing con-
junctions down. Any type constructed from a mixture of union and intersection
types can be derived by starting from an intersection of union types and pushing
the intersections down.

The logic layer sitting above the union layer can derive any mixture of unions
and intersections using the LTL-And rule shown in Figure 4.7. It takes derivations
of two types that may have some parts in common but differ in one place. The
common part C∨ is a syntactical context which combines the argument into a
union with other types. For example, we can write the two types {a1 : T1} ∨ {a2 :

97

T2} and {a1 : T1}∨M⊥ as C∨[{a2 : T2}] and C∨[M⊥]. If we view these two types
as an intersection, then the rule pushes the intersection down to the place where
the two types differ. In the example derivation on the right of Figure 4.2, we
derived two union types on the union layer. (The type {a : T..⊤} was derived on
the previous layer and S is an arbitrary type.) On the logic layer, we combined
them into one type, pushing the intersection down to the left.

For example, the variable y1 from Example 9, has the type {a1 : T1} ∨ ({a2 :
T2} ∧ M⊥), which is derived as follows: By precise typing, y1 has types {a2 : T2}
and M⊥. On the union layer, it has types {a1 : T1}∨{a2 : T2} and {a1 : T1}∨M⊥,
and on the logic layer, it has the type {a1 : T1} ∨ ({a2 : T2} ∧ M⊥).

So far, we ignored some features of the type system – subtyping between
declaration types, and ways of deriving selection types and recursive types. The
rest of type constructors are handled either below the basic layer or above the logic
layer. Subtyping between declarations is handled in an atomic layer positioned
between precise typing and the basic layer. This layer only deals with types that
are single declarations.

Recursive type of the form µ(s : T) and selection types (x.B(y)) have a
common property that in a typing derivation, they can “wrap around” or replace
any part of the derived type.

If the type is being derived bottom-up like in invertible typing, recursive types
are derived by a rule analogous VT-RecI, which wraps around a previously derived
type and replaces T by µ(s : T). Similarly, type selections are derived by a rule
analogous to using VT-Sub and ST-SelL, replacing a part T of the target type
by x1.B(x2), when T is the bound of B in x1.

If, however, we look at the final type of a whole derivation, the recursive
type might appear under unions and intersections, and may contain unions and
intersections within it. For example, in Figure 4.2, the left side of the union is
wrapped under a recursive type in the last step.

Therefore, in layered typing, these constructors must be handled after the
logic layer. We do it for both of them in a final, main layer.

The rules on this layer allows any part T of the type under unions and in-
tersection, to be replaced by µ(s : T). For example, y1 also has type µ(s : {a1 :
T1}) ∨ {a2 : T2} on the main layer.

4.3.4 Typing Layers

C∨ ::= Union context
| □ type hole
| T ∨ C∨

1 right union
| C∨

1 ∨ T left union

C∧∨ ::= Logic context
| □ type hole
| T ∨ C∧∨

1 right union
| C∧∨

1 ∨ T left union
| T ∧ C∧∨

1 right intersection
| C∧∨

1 ∧ T left intersection

Figure 4.3: Syntactic context

98

Γ ⊢! x : T1
ρ ⊢ T1 ≈ T2

Γ;ρ ⊢a x : T2
(LTA-Prec)

Γ;ρ ⊢a x : T1

Γ;ρ ⊢a T1 <: T2
Γ;ρ ⊢a x : T2

(LTA-Sub)

Figure 4.4: Rules of atomic typing

Γ;ρ ⊢a x : T

Γ;ρ ⊢b x : T
(LTB-Atom)

⊢c N ◁ T1
⊢c M ◁ T2

Γ;ρ ⊢b x : T1 ∨ T2
(LTB-NM)

⊢c M ◁ T1
⊢c N ◁ T2

Γ;ρ ⊢b x : T1 ∨ T2
(LTB-MN)

Figure 4.5: Rules of basic typing

Γ;ρ ⊢b x : T

Γ;ρ ⊢c x : T
(LTC-Basic) Γ;ρ ⊢c x : ⊤(LTC-Top)

Γ;ρ ⊢c x : T1

Γ;ρ ⊢c x : T1 ∨ T2
(LTC-Or1)

Γ;ρ ⊢c x : T2

Γ;ρ ⊢c x : T1 ∨ T2
(LTC-Or2)

Figure 4.6: Rules of union layer typing

Γ;ρ ⊢c x : T
x ∈ dom Γ
Γ;ρ ⊢l x : T

(LTL-Or)

Γ;ρ ⊢l x : C∨[T1]
Γ;ρ ⊢l x : C∨[T2]

Γ;ρ ⊢l x : C∨[T1 ∧ T2]
(LTL-And)

Figure 4.7: Rules of logic typing

Γ;ρ ⊢l x : T

Γ;ρ ⊢m x : T
(LTM-Logic)

Γ;ρ ⊢m x : C∧∨[[v3/r]T1]
Γ ⊢! v2 : {B(r) : T1..T2}
Γ;ρ ⊢m x : C∧∨[v2.B(v3)]

(LTM-Sel)

Γ;ρ ⊢m x : C∧∨[[x/s]T]
T indep s

Γ;ρ ⊢# N <: [x/s]T
Γ;ρ ⊢m x : C∧∨[µ(s : T)]

(LTM-Rec)

Γ;ρ ⊢m x : C∧∨[N]
Γ;ρ ⊢m x : C∧∨[µ(s : T)]

(LTM-N)

Figure 4.8: Rules of main typing

The layers of invertible and precise typing are summarized in Table 4.1, along
with an example of a type that can be derived on each layer, and a selection of

99

typing rules that are used to derive those types in general typing, and therefore
show the connection between layered and general typing. Full definitions are
shown in Figures 4.4–4.8.

The layers of the new invertible typing (above precise typing) are the following:

• Atomic layer (Γ;ρ ⊢a x : T , Figure 4.4). Typing on this layer only gives
variables single declaration types – the declarations derived by precise typ-
ing, and their supertypes (equivalence and subtyping rules between decla-
rations are handled here).

• Basic layer (Γ;ρ ⊢b x : T , Figure 4.5). This layer gives all variables the
top-like union types of the form TN ∨ TM and TM ∨ TN, where ⊢ N ◁ TN
and ⊢ M ◁ TM. For example, the top-like types N ∨ {M(r0) : T1..T2} and
{M(r0) : T1..T2} ∨ N.

• Union layer (Γ;ρ ⊢u x : T , Figure 4.6). This layer handles union types
and ⊤. The union types are formed putting a known type of the variable
into a union with another, completely arbitrary type.

• Logic layer (Γ;ρ ⊢l x : T , Figure 4.7). This layer handles intersection
types and distributivity. Intersection types are handled by treating the
unions derived by the union layer as CNF, and pushing intersections down.
The (LTL-And) rule takes derivations of two types that may have some
parts in common but differ in one place. For example, we can write the
two types {a1 : T1} ∨ {a2 : T2} and {a1 : T1} ∨ M⊥ as C∨[{a2 : T2}]
and C∨[M⊥], where C∨ is the common part – a syntactical context which
combines the argument into a union with other types. The rule takes two
such types, preserves their common part, and combines the differing parts
using an intersection type – pushing the intersection down from the top to
its target place.

• Main layer (Γ;ρ ⊢m x : T , Figure 4.8). Derives types containing the
recursive type constructors and type selections, by closing the recursive type
around a part of the type, or replacing a part of the type by a type selection.
Here, the syntactic context C∧∨ can consist of a mixture of unions and
intersections. The rules LTM-Sel and LTM-Rec have additional conditions,
which correspond to the conditions in the corresponding rules in tight typing
and subtyping.
The LTM-N rule handles the fact that Γ;ρ ⊢ N <: µ(s : T).

Additional definitions

The layered typing uses additional typing judgments:

• Atomic subtyping (Figure 4.9) is tight subtyping restricted to simple
declarations.

• The definition of N- and M-supertypes (used in the basic typing layer)
is also layered. The basic layer (Figure 4.10) recognizes declarations and
recursive types, and the union layer (Figure 4.11) adds top and union types.

100

Layer Example type Relevant rules

Precise typing {a : T..T}, {A : T..T},
{m(S, T) : U}, {M : ⊥..⊥} ST-And1, ST-And2, VT-RecE

Atomic layer {a : T..U}, {A : T..U},
{m(S, T) : U}

ST-Met, ST-Fld
ST-Typ, ST-Eq

Basic layer N ∨ M⊥ ST-NM

Union layer ⊤, T ∨ U ,
{a1 : T1..T2} ∨ M⊥

ST-Or1, ST-Or2, ST-Top

Logic layer T ∧ U ,
{a1 : T1..T2} ∧ {M : ⊥..T} ST-Dist, ST-And, VT-AndI

Main layer µ(s : T), x.A,
µ(s : {a1 : T1..T2} ∧ s.A(s)) VT-RecI, ST-SelL, ST-N-Rec

Table 4.1: Layers of new invertible typing

Γ;ρ ⊢# T3 <: T1
Γ;ρ ⊢# T2 <: T4

Γ;ρ ⊢a {B(r) : T1..T2} <: {B(r) : T3..T4}
(LSA-Typ)

Γ;ρ ⊢# T3 <: T1
Γ, z : T3;ρ ⊢ T6 <: T5

Γ, z : T3, r : T6;ρ ⊢ T2 <: T4

Γ;ρ ⊢a {m(z : T1, r : T5) : T2} <: {m(z : T3, r : T6) : T4}
(LSA-Met)

Γ;ρ ⊢# T3 <: T1
Γ;ρ ⊢# T2 <: T4

Γ;ρ ⊢a {a : T1..T2} <: {a : T3..T4}
(LSA-Fld)

Figure 4.9: Rules of atomic subtyping

⊢b M ◁ {M(r0) : T1..T2}(LNB-M)

⊢b N ◁ N(LNB-N)

⊢b N ◁ {a : T1..T2}(LNB-Fld)

⊢b N ◁ {m(z : T1, r : T5) : T2}(LNB-Met)

⊢b N ◁ {A(r) : T1..T2}(LNB-Typ)

Figure 4.10: N and M supertypes

4.3.5 Properties of Layered Typing
For this new layered invertible typing, we proved the properties laid out in Sec-
tion 2.4.4.

• If a location has a declaration type by layered typing, then it also has a
declaration type type by precise typing, with the same or tighter bounds.
This property has three variants, for type declarations (Lemma 26), field

101

⊢b N ◁ T

⊢c N ◁ T
(LNC-Basic) ⊢c N ◁ ⊤(LNC-Top)

⊢c N ◁ T1

⊢c N ◁ T1 ∨ T2
(LNC-Or1)

⊢c N ◁ T2

⊢c N ◁ T1 ∨ T2
(LNC-Or2)

⊢b M ◁ T

⊢c M ◁ T
(LMC-Basic) ⊢c M ◁ ⊤(LMC-Top)

⊢c M ◁ T1

⊢c M ◁ T1 ∨ T2
(LMC-Or1)

⊢c M ◁ T2

⊢c M ◁ T1 ∨ T2
(LMC-Or2)

Figure 4.11: N and M supertypes union layer

(Lemma 27) and method declarations (Lemma 28).

• Layered typing is equivalent to general typing. As in the original proof,
we use tight typing as a step between general and layered typing, then
Lemma 29 and Lemma 35.

• We also use layered typing to prove Lemma 22 – if a location has some
read-only type in layered typing, then all references to that location have
that type too.

With these properties, the safety proof from roDOT, with invertible typing
replaced by the new layered typing definition, works as a safety proof of the
updated calculus.

Lemma 26 (Type declaration inversion).
If Γ;ρ ⊢m x : {B(r) : T1..T2}, If a variable has a type member type at

a main layer,

then there exist T3, T4
such that Γ;ρ ⊢! x : {B(r) : T3..T4},

then it has the same type member by
precise typing

and Γ;ρ ⊢# T1 <: T3 and Γ;ρ ⊢# T4 <: T2. with possibly tighter bounds.

Proof. Declaration types are only affected by the atomic layer, so we can simply
invert all rules on the layers above, and the rules on the atomic layer give us the
desired result.

Lemma 27 (Field declaration inversion). If Γ;ρ ⊢m x : {a : T1..T2}, then there
exist T3, T4 such that Γ;ρ ⊢! x : {a : T3..T4}, Γ;ρ ⊢# T1 <: T3 and Γ;ρ ⊢# T4 <: T2
.

Lemma 28 (Method declaration inversion). If Γ;ρ ⊢m x : {m(z : T1, r : T5) : T2},
then there exist T3, T4, T6, such that Γ;ρ ⊢! x : {m(z : T3, r : T6) : T3}T4, Γ;
ρ ⊢# T3 <: T1, Γ, z : T3;ρ ⊢# T6 <: T5 and Γ, z : T3, r : T6;ρ ⊢# T2 <: T4.

Lemma 29 (Tight to layered typing).
If Γ;ρ ⊢# x : T , Tight typing

then Γ;ρ ⊢m x : T . implies main layer typing.

102

The implication from tight typing to invertible typing requires us to show that
invertible typing is closed under the rules of tight typing and subtyping. Because
the main layer deals with parts of a type under some syntactic context C∧∨, it is
useful to formulate the property in this way:

Lemma 30 (Layered typing closed under subtyping).
If Γ;ρ ⊢m x : C∧∨[T1], A part of a type given by layered typing under ∧ and ∨,

and Γ;ρ ⊢# T1 <: T2,
then Γ;ρ ⊢m x : C∧∨[T2].

can be replaced by any supertype.

Similarly to how it was done for invertible typing in the original roDOT, the
proof involves inverting the rules of layered typing. Here though, the inversion
has to to go through multiple layers of typing, until it reaches the layer where
the type system feature involved in the subtyping rule is handled.

Below, we show examples of properties of typing on the main layer that are
analogous to subtyping rules.

The subtyping rules for intersection types (ST-And1, ST-And2 and ST-And)
must be handled at the logic layer by the rule LTL-And. On the main layer, we
show that the features of the main layer do not interfere with intersection types,
so we can derive and invert them in the same manner:

Lemma 31 (Intersection at the main layer).
If Γ;ρ ⊢m x : C∧∨[T1], If x has two types by main layer typing

and Γ;ρ ⊢m x : C∧∨[T2],
then Γ;ρ ⊢m x : C∧∨[T1 ∧ T2]. then it also has the type made by intersection of

the two types.

Lemma 32 (Inversion of intersection at the main layer).
If Γ;ρ ⊢m x : C∧∨[T1 ∧ T2], If x is given a type containing an inter-

section by main-layer typing,

then Γ;ρ ⊢m x : C∧∨[T1] then it also has type with only one of
the branches of the intersection.

and Γ;ρ ⊢m x : C∧∨[T2].

The rule ST-Or can be handled, thanks to induction on the tight subtyping
and to the syntactic context C∧∨, by a simpler property:

Lemma 33 (Inversion of union types at the main layer).
If Γ;ρ ⊢m x : C∧∨[T ∨ T], If x has a type containing a union of equal types,

then Γ;ρ ⊢m x : C∧∨[T]. then the union can be replaced by a single part.

On the main layer, the N type can be replaced by any read-only type:

Lemma 34 (Replacement of N at the main layer).
If Γ;ρ ⊢m x : C∧∨[N], If x has a type containing the read-only bottom

type N,

and Γ ⊢m N ◁ T ,
then Γ;ρ ⊢m x : C∧∨[T]. then that part can be replaced by any other read-

only type.

Finally, the other implication (invertible typing implies tight typing) is ex-
pressed by Lemma 35.

Lemma 35 (Layered to tight typing).
2.5in If Γ;ρ ⊢m x : T , Layered typing

then Γ;ρ ⊢# x : T . implies tight typing.

103

This was very easy in the original DOT, because there, each rule of invertible
typing can be mirrored by application of just a few rules of tight typing and
subtyping.

In layered typing though, the same approach only works up to the logic layer.
On the main layer, there is a problem that the rule LTM-Rec allows closing a
recursive type anywhere under a syntactic context C∧∨.

However, general and tight typing do not have subtyping rules for recursive
types. The rule that closes recursive types in tight typing, which has the same
form as VT-RecI, can only close the whole type, and not just a part of it.

That is because this rule is part of a typing judgment, not subtyping. There-
fore, it cannot be combined with other subtyping rules (subtyping of unions,
intersections, transitivity).

To solve this problem, we can make use of the requirement that the inside of
a recursive type must be read-only. Then, we can look at what importance this
part of the type has in the typing derivation. We can actually show that any
read-only part of a type is either derived from the type of the variable, or it can
be replaced by N:

Lemma 36 (Replacement of N supertypes at the main layer).
If Γ;ρ ⊢m x : C∧∨[T], If x has a type containing

and Γ ⊢m N ◁ T , a read-only type T ,

then either Γ;ρ ⊢m x : T then either x has type T

or Γ;ρ ⊢m x : C∧∨[N]. or T can be replaced by N in the type of x.

This lemma allows us, for a type C∧∨[T], to either bring the type T to the top
level and use VT-RecI to derive the recursive type, or to replace T by N and use
subtyping with Γ;ρ ⊢# N <: µ(s : T).

This approach has one issue, however: we cannot prove Lemma 35 by induc-
tion on the main-layer typing derivation, because when we use Lemma 36, it gives
a derivation of just T , which is not a sub-derivation of the derivation of C∧∨[T],
so we cannot use the induction hypothesis on it.

Instead of doing the proof directly by induction on the derivation, we do
the proof by first using induction on the number of main-layer rules applied in
the derivation, and second induction on the number of union and intersection
constructors within the type.

We handle the main-layer rule applications one by one, so this metric is de-
creasing, except the case when Lemma 36 needs to be used. It is only needed
if C∧∨ has at leas one union/intersection constructor. In that case, we can find
a derivation of T that has the same number of main-layer rule application as
C∧∨[T] and the number of union/intersection constructors is lowered.

4.3.6 Variants of Subtyping Rules
In addition to fixing the soundness proof, the layered-typing infrastructure also
allows further extensions of typing with respect to mutability tags and N. We
implemented two independent optional extensions.

• Making M⊥ and N complementary, so that ⊢ N ∧ M⊥ <: ⊥ and ⊢ ⊤ <:
N ∨ M⊥.

104

• Generalizing the variable typing rule VT-MutTop (shown in Figure 3.5)
into a subtyping rule, so that ⊢ ⊤ <: M⊤.

Γ;ρ ⊢ ⊤ <: N ∨ {M(r) : ⊥..⊥}(ST-NMC-Top)

Γ;ρ ⊢ N ∧ {M(r) : ⊥..⊥} <: ⊥(ST-NMC-Bot)

Γ;ρ ⊢ ⊤ <: {M(r) : ⊥..⊤}(ST-M-Top)

Figure 4.12: Variant of subtyping rules for roDOT

The first extension formalizes the idea that read-only and mutable types are
complementary. The top-side subtyping ⊢ ⊤ <: N ∨ M⊥ is already ensured by
ST-NM added in Section 4.3.2. We can add the bottom-side subtyping as a new
rule, ST-NMC-Bot shown in Figure 4.12. This will make N ∧ tMbot equivalent
by subtyping to ⊥.

However, adding ST-NMC-Bot would make the type system unsound, because
the ST-NM rule is formulated without any restrictions on the bounds of the
mutability member. By using ST-NM with bad bounds, the whole type hierarchy
will collapse as explained in Example 10.
Example 10 (Counter-example for soundness with both ST-NM and ST-NM-
C-Bot). First, we will show a derivation of ⊢ {M : ⊥..⊥} <: {M : ⊤..⊥}. By
the properties of lattice types, we have ⊢ {M : ⊥..⊥} <: ⊤ ∧ {M : ⊥..⊥} and
{M : ⊤..⊥} ∨ ⊥ <: {M : ⊤..⊥}. By the rules ST-NM and ST-NMC-Bot, we have
⊤∧{M : ⊥..⊥} <: ({M : ⊤..⊤}∨N)∧{M : ⊥..⊥} and ({M : ⊤..⊤}∧{M : ⊥..⊥})∨
(N∧{M : ⊥..⊥}) <: {M : ⊤..⊥}∨⊥. Finally by distributivity of ∧ and ∨, we have
({M : ⊤..⊤} ∨ N) ∧ {M : ⊥..⊥} <: ({M : ⊤..⊤} ∧ {M : ⊥..⊥}) ∨ (N ∧ {M : ⊥..⊥})
and the desired subtyping follows by transitivity.

Because of subsumption, with this we can derive Γ ⊢ x : {M : ⊤..⊥} for any
x that is mutable in Γ, thus getting a value of a type with bad bounds.

As soon as that happens, the type hierarchy collapses, because Γ ⊢ ⊤ <:
x.M <: ⊥.

To fix this problem, the bounds in the ST-NM rule must be restricted – this
is shown as rule ST-NMC-Top in Figure 4.12.

As the second extension, we can revisit rule VT-MutTop from in Figure 3.5,
which expresses the idea that a mutability declaration with the upper bound
being ⊤ does not represent any useful information. This can be generalized
into a subtyping rule ST-M-Top shown in Figure 4.12, which can be used in
more contexts than directly for typing a variable. This allows recognizing more
methods as SEF, because with these rules, N <: {M(r) : ⊥..⊤}.

For example, in the method type {m(r : ⊤, z : {M(r) : ⊥..x.A(y)}) : ⊤}, the
type of the parameter z, contains a declaration of the mutability member M. In
a context where x.A(y) <: ⊥, this parameter is a mutable reference, but another
context where ⊤ <: x.A(y), it is a read-only type. With the original definition,
this type is not recognized as read-only even in such a context, because the rule
does not consider the bounds in the type declaration. With the variant definition,
it is recognized as read-only, and therefore the method has a SEF type.

105

4.4 The SEF Guarantee
In Section 4.2.5, we informally stated the SEF guarantee, which provides the
connection between a static typing condition (Definition 2) and run-time behavior
of the method.

In this section, we present the formal definitions of the run-time SEF condition
(Definition 7 in Section 4.4.1) and the SEF guarantee (Section 4.4.2). We then
outline the proof of the guarantee in Section 4.4.3 and discuss the details of the
proof in Section 4.4.5. In Section 4.4.4, necessary lemmas about similarity are
provided, and the proof is finished in Section 4.4.5.

4.4.1 The Runtime SEF Condition
We informally stated the run-time SEF condition in Section 4.2.3, where we
mentioned that several possible versions of such a condition could be defined. In
our approach, we allow a pure method to create new objects and to modify just
these new objects, which are under full control of the method.

The main SEF condition is that the method must not modify any existing
objects that are already on the heap when the method starts executing. We can
state such a condition in three variants, depending on the way that it is checked
that an object was not modified. Here we will use the variant that guarantees
that existing objects on the heap do not change. In such a case, we say that
a given execution of a method, starting from a method call start and reaching
method call end in k steps, has the Sef-I property (Definition 7).

To arrive at the formal definition, we can start with a very strict definition
which prevents any side effect by forbidding any creation or modifications of any
objects.

Definition 3 (Sef-N0). A method execution ⟨w1.m w2; σ; ρ1; Σ1⟩ ↦−→k ⟨vw3; σ;
ρ2; Σ2⟩ is Sef-N0 when for every j ≤ k and ⟨w1.m w2; σ; ρ1; Σ1⟩ ↦−→j ⟨t3; σ3; ρ3;
Σ3⟩ the term t3 is not an object creation or write term.

Instead of looking at the steps being executed, we can define a similar condi-
tion by observing the state of the heap at every moment during the execution of
the method. This weaker condition, Sef-I0 defined in Definition 4, allows writes
to the heap, as long as the value being written is the same as the value that
already exists at the affected heap location.

Definition 4 (Sef-I0). A method execution ⟨w1.m w2; σ; ρ1; Σ1⟩ ↦−→k ⟨vw3; σ; ρ2;
Σ2⟩ is Sef-I0 when for every j ≤ k and ⟨w1.m w2; σ; ρ1; Σ1⟩ ↦−→j ⟨t3; σ3; ρ3; Σ3⟩
we have Σ3 = Σ1.

As an even slightly weaker condition, we can only check the state of the heap at
the end of the method call. This condition, Sef-O0 defined in Definition 5, allows
the method to modify the heap as long as it restores the heap to its original state
before it returns.

Definition 5 (Sef-O0). A method execution ⟨w1.m w2; σ; ρ1; Σ1⟩ ↦−→k ⟨vw3; σ;
ρ2; Σ2⟩ is Sef-O0 when Σ2 = Σ1.

106

In a system executing in a single thread and where we are only interested in
the result of execution, the differences between the three are not observable.

In a language where creating objects is a core feature, forbidding creation of
a new object is very restrictive. Also, although creating a new object affects the
heap, it does not affect any other existing objects, so execution of code that is not
using the newly created object is also unaffected. Therefore, it makes sense to
allow pure methods to create new objects. Because the method is in full control
of such objects, it also makes sense to allow it to modify these new objects.

With this approach, the main SEF condition is that the method must not
modify any existing objects that are already on the heap when the execution
of the method starts. We can state such a condition in all the three variants:

Definition 6 (Sef-N). A method execution ⟨w1.m w2; σ; ρ1; Σ1⟩ ↦−→k ⟨vw3; σ; ρ2;
Σ2⟩ is Sef-N when for every j ≤ k and ⟨w1.m w2; σ; ρ1; Σ1⟩ ↦−→j ⟨t3; σ3; ρ3; Σ3⟩
the term t3 is not a write term.

Definition 7 (Sef-I). A method execution ⟨w1.m w2; σ; ρ1; Σ1⟩ ↦−→k ⟨vw3; σ; ρ2;
Σ2⟩ is Sef-I when for every j ≤ k and ⟨w1.m w2; σ; ρ1; Σ1⟩ ↦−→j ⟨t3; σ3; ρ3; Σ3⟩, Σ1
is a prefix of Σ3.

Definition 8 (Sef-O). A method execution ⟨w1.m w2; σ; ρ1; Σ1⟩ ↦−→k ⟨vw3; σ; ρ2;
Σ2⟩ is Sef-O when Σ1 ⊆ Σ2.

Definition 7 uses heap prefix to express that a new items may be added to the
heap. It is defined in Definition 9.

Definition 9 (Heap prefix). A heap Σ1 is a prefix of Σ2, Σ1 ⊆ Σ2, when ∀y ∈
domΣ, Σ1[y] = Σ2[y]

From these three definitions, Definition 6 is unnecessarily restrictive, because
it forbids modifications of existing objects. The difference between Definition 7
and Definition 8 is that Definition 8 allows modifying an object, as long as it is
changed back before returning from the method. Making use of this possibility
would require tracking the values assigned to the fields, which is out of scope of
roDOT’s type system. Also, although we only consider single-threaded execution
in this thesis, Definition 8 would not adapt well to possible extensions to multi-
threaded environments, because any changes to the object within the method
would be observable from other threads. For these reasons, in this thesis, we use
the Definition 7 property as the definition of a SEF method and the basis for our
SEF guarantee.

Method Call Limits

Because we are going to define conditions about what can be happening while
a method is executing, we need to first define what it means in roDOT that a
method starts and ends its execution. The semantics of DOT is defined in such
a way that it is easy to find when the method starts, but it is not immediately
obvious when it ends.

In roDOT, a method is called by a term w1.m w2. Execution of a method starts
with the step R-Call. A method call start is a configuration of the form ⟨w1.m w2;
σ; ρ1; Σ1⟩, where w1 is the receiver, m is the called method, w2 is the argument,

107

σ is the continuation stack, and Σ1 is the existing heap (the environment ρ1 does
not have a special significance here).

The execution proceeds by replacing the call term w1.m w2 with the body
of the method. Then, the body is executed, which can possibly involve adding
objects to the heap, and pushing and popping frames from the stack. However,
frames are only popped from the stack by R-LetLoc, when the focus of execution
has been reduced to a single variable w. Also, the frames on the stack do not
affect the execution in any way until they are popped from the stack.

It all means that unless there is an infinite loop, the body of the method will
eventually evaluate to a single value. The machine will reach a configuration
⟨vw3; σ; ρ2; Σ2⟩, where w3 is the result of the call and σ is the same stack as at
the method call start.

The first such configuration after a method call start is the corresponding
method call end. Another such configuration could possibly occur later in a
completely unrelated way (i.e., the following execution may restore the stack to
the same state), but only the first such configuration is the method call end.

When a method call end is reached, the execution will either terminate, or
proceed by popping a frame from the stack.

4.4.2 The SEF Guarantee
The SEF guarantee, which we informally stated in Section 4.2.5, says that calling
a SEF method (i.e. a method where both the receiver and parameter have read-
only types) does not modify existing objects in the heap during its execution.
Theorem 37 is based on the Sef-I property (Definition 7), and speaks about the
state of the heap at every point during the call. It is not the strongest possible
purity guarantee, because this allows writing the value that already is in the field.
On the other hand, it does not allow the value of fields to be changed and then
changed back.

Theorem 37 (Sef-I Guarantee).
If Γ ⊢ c1 := ⟨w1.m w2; σ1; ρ1; Σ1⟩ : T c1 is a well-typed configuration with a

method call in focus

and Γ ⊢ w1 : {m(z : N)(r : N) : ⊤}, which is a read-only methods,

then for any k: then for any number of steps of execu-
tion

Either ∃j < k, c1 ↦→j ⟨vw3; σ1; −; −⟩, either the method has finished execu-
tion within k steps,

or c1 ↦→ −; −; −; Σ2 or after k steps, the heap Σ2

and Σ1 ⊆ Σ2. contains the all the items from Σ1 un-
changed.

4.4.3 Overview of the Proof
The SEF guarantee talks about objects not being modified during the execution
of methods, based on the mutability of method parameters. We base our proof of
the SEF guarantee on the immutability guarantee (IG, Theorem 11), which guar-
antees that individual objects can only be modified through mutable references.
More precisely, it says that an object can only be modified if there is a path of
writeable references leading from the executed code to the modified object. This

108

guarantee was proven for roDOT [43] and is included of our mechanization in
Coq.

However, the immutability guarantee cannot be applied at the start of the
method, because there may be many mutable references to objects on the heap.
Also, IG guarantees immutability until the end of execution of the whole program,
but the SEF guarantee only until the end of the method.

These differences can be bridged by taking the machine configuration at the
method start, and constructing a different configuration that will execute the
same way until the end of the method, but removing the parts that prevent the
IG from applying.

The first thing to note is that at the method start, the stack is not relevant
to how the method executes and stays the same until the end of the method. We
therefore remove this stack entirely, and get an execution of the method isolated
from the rest of the program. This execution proceeds through the same steps
as the method execution in the original state, but stops at the method end. By
removing the stack, we rid the configuration of any references to objects that
might be used after the method call returns. But if we apply the IG to this
configuration, it will guarantee that objects are not modified until the end of the
method, which is exactly what is needed for the SEF guarantee.

Removing the stack is not enough for the IG to apply though, because a
SEF method can be called with arguments that are mutable references. We do
not want to prevent that from happening during normal execution, because even
when a method is SEF, it can be useful to pass mutable references to the method
and have the method return one of these references with its mutability intact.

What is special about a SEF method is that (because of the types of its
declared parameters) it cannot use the mutability during its execution. Therefore,
even if it is called with mutable arguments, it should execute in exactly the same
way as if it were called with read-only arguments.

So the second modification to the configuration after removing the stack is
to change the mutability of the arguments to read-only. That way, the alterna-
tive configuration contains no writeable references, and therefore IG guarantees
that no objects that were on the heap at the start will be modified. Still, this
alternative configuration executes the same steps as the original execution from
the method call start up to the method call end, therefore the original method
execution also does not modify any existing object on the heap until the method
call end.

The rest of this section contains text written in collaboration with Yufeng Li,
from [44].

4.4.4 Similarity
Because during execution of a roDOT program, fresh variables are used for new
location and references, two executions of the same program may use different
variable. In order to be able treat different executions of the same program as
equivalent, we define the similarity relation.

Similarity relates structurally equivalent syntactic elements such as terms,
objects or whole configurations, which can differ in their free variables. The

109

correspondence of variable names on two sides of the equivalence is specified by
a renaming.

Definition 10 (Renaming). Renaming is a pair of lists of variables X :=
x1, ..., xL and Y := y1, ..., yL which renames xi on the left to yi on the right
for each i in 1..L.

For simple syntactic elements, similarity is defined by the ability to get both
sides of the equivalence by substitution starting from a common element.

Definition 11 (Similar variables, objects, terms and stacks). Two terms t1 and
t2 (or variables, objects and stacks) are similar by renaming X to Y , written
t1

X Y≈ t2, if there exists a term t3 and with list of variables W := w1, ..., wL, such
that fv t3 ⊆ {wi}i=1,...,L and [xi/wi]it3 = t1 and [yi/wi]it3 = t2.

The definition of similarity for configurations is complicated by variables in the
domains Σ and environment ρ. Because the domains cannot contain duplicates,
but we want to have duplicates in the renaming used for the term, there are
two lists of variables – one used for domains of Σ and ρ and the other for their
codomain, for the term and the stack.

Definition 12 (Similar configurations). Two configurations ⟨t1; σ1; ρ1; Σ1⟩ and
⟨t2; σ2; ρ2; Σ2⟩ are similar up to renaming V to W in the input and X to Y in the
output, written − X Y≈

U V
−, when

• Terms and stacks are similar by renaming X to Y : t1
X Y≈ t2 and σ1

X Y≈ σ2.

• Heaps and environments are similar with respect to renaming inputs. For
each uk from U and vk from V , either Σ1[uk] X Y≈ Σ2[vk] or ρ1[uk] X Y≈ ρ2[vk].

• Heap correspondence in similarity. If u is a heap location in Σ1 and v a
heap location in Σ2 such that u

X Y≈ v, then u
U V≈ v

Moreover, similarity of configurations is preserved by reduction (Lemma 38)
and ensures the existence of reduction for similar configurations (Lemma 39).

Lemma 38 (Similarity is preserved by reduction).
If c1

X Y≈
U V

c2 for c1,c2 well-typed Given two similar well-typed configurations,

and ci ↦→n c′
i, if both of them reduce in n steps,

then ∃K := (yn)n=1,...,N then there exists a renaming

and L := (y′
n)n=1,...,N

such that K and L are fresh in ci, of new variables

and c′
1

X,K Y,L
≈

U,K V,L
c′

2. by which the results are similar.

Proof. It suffices to consider the case of a single-step reduction (i.e. when n = 1)
because one can just use subject reduction and induction for the multi-step case.
In the single-step case, we solve each case of ci ↦→ c′

i (defined in Figure 3.13),
taking advantage of the fact that t1

X Y≈ t2, where ti is the term of ci, to ensure
that the same reduction rule is used to reduce both ci ↦→ c′

i.

110

The freshness of the variables yi,k follows from the fact that new in all reduc-
tion rules, the domains of Σ and ρ are either unchanged or extended with fresh
variables. The cases of field read and writes are justified by the second and third
conditions of Definition 12 along with the fact that configuration typing means
heap correspondence.

Lemma 39 (Similarity ensures reduction).
If c1

X Y≈
U V

c2 for c1,c2 well-typed Given two similar well-typed configura-
tions,

and c1 ↦→n c′
1, if one of them reduces in n steps,

then there exists c′
2 then the other configuration

for which c2 ↦→n c′
2. also reduces in n steps to a similar con-

figuration.

Proof. If c2 is an answer configuration, then by similarity c1 must be an answer
configuration too. Because there are no reduction steps defined for answer con-
figurations, it is possible only when n = 0. In the inductive case, use the subject
reduction property and the similarity part of Lemma 38.

The final part of carrying over the SEF property to c2 is to formalize the
phenomenon that reduction only changes fields.

Definition 13 (Objects identical except fields). For objects o1 and o2, we write
o1

fld≈ o2 to mean they are identical except for possibly the values of fields.

Lemma 40 (Reduction only changes fields).
If ⟨−; −; −; Σ⟩ ↦→n ⟨−; −; −; Σ′⟩ If the heap Σ can evolve into Σ′ by ex-

ecution,

and y ∈ dom Σ, and y is a location of an object in Σ,

then Σ[y] fld≈ Σ′[y]. then the corresponding object in Σ′ is
identical except fields.

Proof. The only reduction rule that changes existing objects is the field-write
reduction rule, which changes just the fields.

4.4.5 Proof of the SEF Guarantee
The strategy of the proof of Theorem 37 is to focus on the second case of the SEF
guarantee by using the immutability guarantee to show the theorem for a config-
uration c2 obtained by temporarily truncating the stack of c1 from Theorem 37.

Lemma 41 (SEF guarantee without stack).
If Γ ⊢ c1 := ⟨w1.m w2; σ1; ρ1; Σ1⟩ : T , For c1 satisfying the conditions of The-

orem 37,

and Γ ⊢ w1 : {m(z : N)(r : N) : ⊤},
c′

1 := ⟨w1.m w2; ·; ρ1; Σ1⟩, if the stack is removed

and c′
1 ↦→n c′

2 then for all steps of reduction

then Σ1 ⊆ Σ2. the heap of c′
2 contains all objects of c′

1
without modification.

It is easy to prove the full SEF theorem with this result for c2.
The premise of the immutability guarantee is that c2 is well-typed in some

context Γ2 and there are no mutably reachable objects in c2 with respect to the

111

typing of Γ2. Clearly c2 is well typed in the original context Γ. But for the part
about mutably reachable objects, we cannot just take Γ as Γ2 because for this
Γ2 must assign read-only types to wi. Even though we have (r : N) in the typing
Γ ⊢ w1 : {m(z : N)(r : N) : ⊤}, this does not necessarily mean Γ[w1] is a read-only
type. For example, w1 might be mutable in Γ but m just does not make use of
mutability.

For this reason, instead of using Γ as Γ2, we construct Γ2 and show that c2 is
well-typed in Γ2 like so:

1. Reference elimination. Remove bindings for wi from Γ and replace all oc-
currences of wi with the corresponding location yi in both Γ and c2.

2. Read-only weakening. Add back bindings for wi, where the new type bound
to wi is the type bound to yi except with the mutable part set to read-only.

The two steps above correspond to the following two lemmas.

Lemma 42 (Reference elimination).
If Γ ⊢ c1 := ⟨w1.m w2; σ1; ρ1; Σ1⟩ : T If c1 and Γ satisfy the conditions of

T heorem 37,

and Γ ⊢ w1 : {m(z : N)(r : N) : ⊤},
and ρ1[wi] = yi

Γ′ := [wi/yi]Γ \ wi Γ′ is a context obtained from Γ by first
removing bindings for wi and then re-
placing wi with yi.

ρ′ := ρ \ wi ρ′ is an environment obtained from ρ1
by removing bindings for wi

Then Γ′;ρ′ ⊢ y1.m y2 : ⊤ Term typing: y1.m y2 is well-typed un-
der Γ′ and ρ′

Γ′;ρ′ ∼ [yi/wi]iΣ1. Heap correspondence:

Proof. Because wi is a reference to location yi, types assigned to yi and wi by
Γ differ only by mutability, and yi has a mutable type. So Γ[yi] is a subtype of
Γ[wi], and the result follows by substitutivity.

Lemma 43 (Read-only weakening).
If Γ ⊢ c1 := ⟨w1.m w2; σ1; ρ1; Σ1⟩ : T Let c1 be a well-typed configuration

with a method call in focus

where Γ ⊢ w1 : {m(z : N)(r : N) : ⊤}, which satisfies the conditions of
T heorem 37 (the method is SEF)

and ρ1[wi] = yi.
Then there exist Ti, where N <: Γ2[Ti] Then there is a context Γ2 binding wi

to read-only types

c′′
1 := ⟨w1.m w2; ·; ρ1; [yi/wi]iΣ1⟩ ⊢ ⊤. such that the configuration is well-

typed in Γ2.

Proof. Take Γ′ and ρ′ as from Lemma 42. Let Ti be the read-only version of Γ[yi]
so that Ti differs from Γ[wi] only by mutability. The goal is to take Γ2 := Γ′(wi :
Ti)i.

The hardest part of showing Γ2 ⊢ c′
1 : ⊤ is the part of typing w1.m w2. Note

that the only difference between Ti and Γ[wi] is that Ti is by construction read-
only while Γ[wi] is possibly mutable. So the idea is to use the same derivation of
Γ′ ⊢ y1.m y2 : ⊤, in the process taking advantage of the fact that Γ ⊢ w1 : {m(z :
N)(r : N) : ⊤} means nowhere in the derivation did one need to use the fact that
Γ[wi] is potentially mutable.

112

In the derivation of Γ′ ⊢ y1.m y2 : ⊤, one sees there are sub-derivations giving
read-only types Ti to yi. Lemma 22 says that for any context Γ and environment
ρ that are in correspondence, if a location yi can be derived to have a read-only
type Ti then one may give the same type Ti to any references wi to the location
yi. The result of Lemma 43 follows.

By Lemma 43 along with the immutability guarantee, we have SEF established
for c′′

1 := ⟨w1.m w2; ·; ρ1; [yi/wi]iΣ1⟩. However, notice in particular that we need
SEF for c′

1 := ⟨w1.m w2; ·; ρ1; Σ1⟩ in Lemma 41, where there is no substitution
[yi/wi]i in the heap. Nevertheless, the substitution [yi/wi]i can be ignored in
the sense that execution can only change fields of objects, but fields are always
locations while wi are references. Because c′

1 and c′′
1 are the same everywhere

except for [yi/wi]i on the heap, the SEF property of c′′
1 can be carried over to

c′
1. The first part of carrying the SEF property over to c′

1 is to relate each k-th
step of execution starting from c′′

1 and the k-th step of execution starting from
c′

1. With the definition of similarity from Section 4.4.4, Lemma 44 formalizes the
idea that c′

1 is similar to c2 up to renaming W := w1, w2 to Y := y1, y2:

Lemma 44 (Similarity for eliminated references).
Let c′

1 := ⟨w1.m w2; ·; ρ1; Σ1⟩ Let c′
1 satisfy the conditions of

Lemma 41

and c′′
1 := ⟨w1.m w2; ·; ρ1; [yi/wi]iΣ1⟩ ⊢ ⊤ and c′′

1 the conditions of Lemma 43.

then c′
1

W Y≈ c′′
1 These configurations are similar by re-

naming wi to yi for i = 1, 2.

Proof. By definitions of c′
1, c′′

1 and Definition 12.

Finishing the proof

We are now ready to prove Lemma 41.

Proof of Lemma 41. We use Lemmas 38, 39 and 44 to get

c′
1 c′′

1

c′
2 c′′

2

W Y
≈

n n
W,K Y,L

≈
K L

where K and L are fresh in both c′
1 and c′′

1. Let Σ2 be the heap of c′
2 and Σ′′

2 be
the heap of c′′

2. Let y be a heap location of Σ1, so that Lemma 40 applied to the
left edge means that Σ1[y] fld≈ Σ2[y]. The immutability guarantee applies to the
right edge because of Lemma 43 and so we know Σ′′

2[y] = Σ1[y]. The freshness
of K and L, and the bottom edge then implies Σ2[y] W Y≈ Σ′′

2[y] W Y≈ Σ1[y]. But
Σ1[y] can only differ from Σ2[y] in field values and wi are references, so they never
occur as values of fields, therefore Σ2[y] = Σ1[y].

And with this, Theorem 37 follows straightforwardly.

Proof of Theorem 37. By classical reasoning, assume the first condition is false so
that the goal is to prove the second condition. That is, assume that there is no j <
k such that the top-most frame of c1 is popped after execution by j steps: c1 ↦→j

113

⟨vw3; −; −; Σ2⟩. Then, the sequence of reductions c1 ↦→ ... ↦→ c4 by Lemma 39
corresponds to a sequence of reductions c2 ↦→ ... ↦→ c3 because even though c2
has no awaiting frames, there are no frame pops in this execution sequence by
the current assumption. By Lemma 41, the second condition follows.

4.5 Transformations
In Section 4.2.6, we informally stated the transformation guarantee, which con-
nects the static SEF condition with a practical application – any two calls to
SEF methods can be safely swapped (the code x1.m1(); x2.m2() is equivalent
to x2.m2(); x1.m1()). In other words, the absence of side effects allows chang-
ing the order of execution.

This guarantee is a specific case of how methods known to be SEF can be
used in more ways than general methods that may have side effects. For exam-
ple, safe transformations such as this could be applied to at compile time as an
optimization, or while writing program code in a text editor, and be guaranteed
to not break the program.

Proving the transformation guarantee for roDOT shows also that the SEF
guarantee (Theorem 37) is strong enough to guarantee that swapping two such
method calls will not change the behavior of a roDOT program.

In order to define the call-swapping transformation and the associated guar-
antee in a formal way, we have to deal with several technicalities particular to
the roDOT calculus. These concerns would equally apply to other safe transfor-
mations that we can imagine, such as reordering field reads or removing dead
code.

In order to separate the common problems from the specific case of swapping
calls, but build a general framework that can be used to define various transfor-
mations of roDOT programs and to reason about safety of those transformations.
We instantiate it here only with the call swapping transformation, but it could
prove the general part of a proof of safety for other transformations, such as
reordering field reads or removing dead code.

In Section 4.5.1, we present the framework for defining and reasoning about
safe program transformations in roDOT and similar calculi, including a general
Theorem 48 about safety of transformations. In Section 4.5.2, we define the
transformation that swaps two calls to methods that are statically determined to
be side-effect free (Definition 21). In Section 4.5.3 we present a statement and
proof of the transformation guarantee, which guarantees that the call-swapping
transformation is safe – does not change the result of a program.

4.5.1 Transformation Framework
In the transformation framework, we define a general form for roDOT program
transformations, the precise meaning of a safe transformation that “does not
affect the behavior of the program”.

The framework is based around the idea of type-respecting equivalence rela-
tions [91], where, generally speaking, two programs can be treated as equivalent

114

under a given typing context, if they both have the same type under that typing
context and evaluate to the same value.

There are, however, specific issues in roDOT that need to be considered:

• Programs in DOT are terms in λ-calculus style and A-normal form. They
are not formed by sequences of statements, but rather by nesting let-in
terms.

• The program can contain object literals and method definitions, so a trans-
formation such as swapping two calls can also be located inside a body of
a method.

• The transformation can be conditioned on local typing information, such
as the method calls being recognized as SEF. In roDOT, this necessitates
looking at the typing context Γ that is used for typing that part of the
program.

• The execution of a program is defined using small-step operational seman-
tics, starting from an initial configuration and applying reduction steps until
reaching an answer.
For discussion of what a safe transformation is, we will consider two pro-
grams, an original program and a transformed program, which only differ
in ways allowed by the transformation. Such a transformation is safe if exe-
cutions of those two programs reach the “same” answer. We cannot require
the answers of the two programs to be identical, because of the following
points.

• In the initial program, a transformation, such as swapping calls, can be
located anywhere, including inside a body of a method of an object literal,
such as let x = ν(r : R){m(r, z) = tm} in t2.
During execution of an roDOT program, objects are created on the heap.
Each object on the heap includes a copy of the code of its methods, which
can be affected by the transformation.
Therefore, if we look at execution of the two programs in parallel, the
transformation affects not only the program being executed, but also the
bodies of these methods in objects on the heap.
In DOT, the code (terms) and values (objects) are mixed with each other.
In order to allow reasoning about the transformation, we must consider that
during execution, the transformation may be located at multiple places in
the focus of execution, stack and heap. This also applies to the answer of
the program.
It would be too restrictive to require that a transformed program produce
the exact same output value as the original program since the output value
may be an object that may contain the transformed code. To facilitate this,
we define each transformation using a local relation which relates two terms
that differ only locally, and the framework provides lifting operators, which
allow this transformation to occur anywhere in a program or in a machine
configuration.

115

• The locations of objects on the heap are chosen non-deterministically, there-
fore the framework must deal with the fact that in the answer and in inter-
mediate states of two executions, location names can different.

• Otherwise the execution is deterministic. Programs in DOT and roDOT do
not read any input and do not make non-deterministic choices. This makes
the situation easier, as we can assume that all possible executions of one
program will reach answers that are similar to each other. Therefore, the
differences in executions of the original and the transformed program are
only caused by the transformation of the initial program.

The general approach in the framework is to define a transformation that
applies to an initial program, and prove it safe by showing that if the original
and transformed program are executed side-by-side, they will either eventually
reach the “same” answer, or both not terminate.

The general safety Theorem 48 is based on executing the two programs and
observing that the intermediate states are also related by the transformation
(lifted to whole configuration and allowed to occur at multiple places), except
the moments when the directly affected part of the program is executing. When
the two answers are reached, they will be similar except that bodies of methods
on the heap may differ as the transformation permits.

The transformation framework consists of the following parts:

• Definition of transformations of syntactic elements such as terms and con-
figurations

• Definition of lifting transformations from local term transformations to
transformations of whole programs and run-time machine configurations

• Definition of a similarity transformation, which uses similarity defined in
Section 4.4.4 to deal with differences in variable names.

• Definition of important properties of local transformations, which are rele-
vant to showing that those transformations are safe.

• Lemmas about lifting such properties from local transformations to whole
programs.

• Definition of a safe transformation – that does not change the result of
execution of a program.

• Theorem 48, about safety of transformations which have the required prop-
erties and are lifted to whole programs.

Theorem 48 states that if a local term transformation does not change typ-
ing of the term, is compatible with properties such as weakening, narrowing and
substitution, does not change whether the term is an answer or not, and if exe-
cution of just the transformed term will eventually reach similar configurations,
then transforming a program by this transformation anywhere will not change its
result.

116

Transformations of roDOT Programs in General

The purpose of the transformation framework is to provide a means to show that
certain transformations of a roDOT program do not affect the behavior of the
program. For that, we need to define what a transformation is and what is the
precise meaning of “not affecting the behavior”.

A transformation of a program is defined as a binary relation on terms –
the original program and the transformed one. For example, the call-swapping
transformation is defined as a relation that relates a program containing two
method calls with a program that only differs in the order of those calls.

Because the safety of the transformation depends on typing information, the
transformation will actually be a relation between tuples, containing not only the
term, but also its type and a typing context.

This can be generalized from terms to other syntactic elements – stacks, heaps
and machine configurations, though for each kind of element, the meaning of
“typing context” and “type” differs slightly. For terms, the typing context is
actually paired with a runtime environment Γ; ρ.

Definition 14 (Transformation). A transformation τ is a relation between triples
consisting of typing contexts Γ1,2, types T1,2 and typeable elements X1,2. We write
⟨Γ1 ⊢ X1 : T1⟩ →τ ⟨Γ2 ⊢ X2 : T2⟩ and say that X1 is transformed into X2.

• A term transformation is a transformation ⟨Γ1; ρ1 ⊢ t1 : T1⟩ →τ ⟨Γ2; ρ2 ⊢
t2 : T2⟩, where t1,2 are terms, T1,2 are types, Γ1,2 are typing contexts (map-
ping variables to types) and ρ1,2 are environments mapping object references
to heap locations.

• A stack transformation is a transformation ⟨Γ1; ρ1 ⊢ σ1 : T1, T3⟩ →τ

⟨Γ2; ρ2 ⊢ σ2 : T2, T4⟩, where σ1,2 are stacks, T1,2 are types of the holes
in the top frame of σ1,2 respectively, T3,4 are types of the bottom frame
of σ1,2, Γ1,2 are typing contexts (mapping variables to types) and ρ1,2 are
environments mapping object references to heap locations.

• A heap transformation is a transformation ⟨ρ1 ⊢ σ1 : Γ1⟩ →τ ⟨ρ2 ⊢ σ2 : Γ2⟩,
where Σ1,2 are heaps, Γ1,2 are typing contexts (mapping variables to types)
and ρ1,2 are environments mapping object references to heap locations. In
this definition, the typing context take the position of a type, because the
types of variables in Gamma1,2 correspond to types in Sigma1,2.

• A configuration transformation is a transformation ⟨Γ1 ⊢ c1 : T1⟩ →τ ⟨Γ2 ⊢
c2 : T2⟩, where c1,2 are configurations, T1,2 are types, and Γ1,2 are typing
contexts (mapping variables to types).

Like any binary relation, transformations can be symmetric, reflexive or tran-
sitive, and we can construct transformations using iteration, composition, union
and inversion.

Additionally, a transformation is type-safe, if the syntactic elements on both
sides are correctly typed under the respective contexts. Another useful property of
a transformation is being type-identical, where both the types and typing contexts
are the same on both sides.

117

Definition 15 (Type-identical transformation). A transformation τ is type-
identical, if ⟨Γ1 ⊢ X1 : T1⟩ →τ ⟨Γ2 ⊢ X2 : T2⟩ implies Γ1 = Γ2 and T1 = T2.

Definition 16 (Type-safe transformation). A transformation τ is type-safe, if
⟨Γ1 ⊢ X1 : T1⟩ →τ ⟨Γ2 ⊢ X2 : T2⟩ implies Γ1 ⊢ X1 : T1 and Γ2 ⊢ X2 : T2.

The Similarity Transformation

In Section 4.4.4, we defined similarity of configurations as a relation with a list
of pairs of variables, to deal with location names in the SEF guarantee. We can
treat similarity as an instance of a configuration transformation.

Definition 17 (Similarity transformation). The similarity transformation ≈ is
a transformation of configurations that relates ⟨Γ1 ⊢ c1 : T1⟩ →≈ ⟨Γ2 ⊢ c2 : T2⟩
when Γ1 ⊢ c1 : T1, Γ2 ⊢ c2 : T2 and c1

xs≈ c2, where xs is a one-to-one mapping of
variables from fv c1 and fv c2.

In this definition, both sides must be correctly typed, which enables easier
reasoning. The typing contexts may differ, because they do not affect the execu-
tion.

Therefore, the similarity transformation is not type-identical, but is trivially
type-safe, reflexive, transitive and symmetric.

Lifting Local Transformations

The safe swapping of calls will be defined as a transformation of terms that
transforms one program containing two successive calls into another program in
which the calls are swapped.

Due to the A-normal form of terms, two successive calls in the program have
the form let xc1 = xo1.m1xa1 in let xc2 = xo2.m2xa2 in t, where m1 and m2 are
methods and t is the continuation of the program.

The swapped calls can be located anywhere in the program, for example inside
a method of an object literal such as let x = ν(r : R){m(r, z) = tm} in t2.

To facilitate the possibility of the transformation being located anywhere in
a term, it is useful to define the transformation in two steps: (1) A local trans-
formation, which only allows swapping calls at the root of the term. (2) A lifting
operator lift τ which takes a local transformation τ and allows it to be located at
one place anywhere in a term.

Such a local transformation τ of a term can be further lifted by cfg τ to a
whole run-time configuration, where τ applies at exactly one place in the focus
of execution, in the stack or on the heap.

To allow multiple occurrences, we can apply the iteration operator to the
lifted transformation. Having a definition that only allows one occurrence is
useful in the proof of Theorem 48 in Section 4.5.1, where we want to look at
each occurrence individually. The definitions of the lifting operators are shown
in Figure 4.13 and Figure 4.14.

The operator cfg τ lifts τ to anywhere in the configuration, while foc τ only
lifts to the root of the focus of execution.

Term, stack, heap and configuration transformations can be defined by lifting
a local term transformation, as defined in Figure 4.13 and Figure 4.14. This lifting

118

contain premises that ensure that both sides of the transformation are well typed.
The rules in these definition mimic the typing rules and heap correspondence
rules, but applying to two terms, stacks, heap or configurations at the same time.

The lifting to configurations is used to relate intermediate states of execu-
tion of the original program with execution of the transformed program. During
execution, which is defined using small-step semantics, the place where a trans-
formation is located will move around as the machine state evolves. For example,
when an object is instantiated, if the transformation was applied within a method
of that literal, then after instantiation, the transformation will apply in the heap.
Example 11. Let’s consider two configurations related by a lifted transformation τ :
⟨Γ ⊢ ⟨let x = ν(r : R){m1(r, z) = t1} in t2; σ; Σ; ρ⟩ : T ⟩ →cfg τ ⟨Γ ⊢ ⟨let x = ν(r :
R){m1(r, z) = t2} in t2; σ; Σ; ρ⟩ : T ⟩, where the bodies of the method are related
by τ : ⟨Γ, r : R, z : Tz ⊢ t1 : Tt⟩ →τ ⟨Γ, r : R, z : Tz ⊢ t2 : Tt⟩. After one reduction
step, the next configurations will still be related by the lifted transformation.
⟨Γ ⊢ ⟨[t2/x2]w; σ; Σ, y ∼ ν(r : R){m(r, z) = t12}; ρ, w ∼ y⟩ : T ⟩ →cfg τ ⟨Γ ⊢
⟨[t2/x2]w; σ; Σ, y ∼ ν(r : R){m(r, z) = t21}; ρ, w ∼ y⟩ : T ⟩

Safe Transformations

As pointed out in the list at the beginning of Section 4.5.1, the definition of a
safe transformation must allow for different variable names and for the fact that
in the program answer, the transformation can still occur at multiple places in
the heap. Therefore a local transformation is safe if execution of the transformed
program reaches answers related by an iteration of this transformation in union
with similarity.
Definition 18 (Safe transformation). A transformation τ is safe if ⟨Γ1 ⊢ c1 :
T ⟩ →τ ⟨Γ2 ⊢ c2 : T ⟩ and ⊢ ⟨t1; ·; ·; ·⟩ : T and c1 −→k c3, where c3 is an answer
typed as Γ3 ⊢ c3 : T , implies that there exists c4, Γ4 and j such that c2 −→j c4,
Γ4 ⊢ c4 : T and ⟨Γ3 ⊢ c3 : T ⟩ →(τ∪≈)∗ ⟨Γ4 ⊢ c4 : T ⟩ .

Thanks to being able to define a transformation by applying a general lifting
to a local transformation, the safety proof of such a transformation can be also
divided into a theorem that will apply to any local transformation with certain
local properties, and then proving those local properties for the particular local
transformation.

This approach makes it possible to state the call-swapping guarantee presented
here (Theorem 52), or analogous guarantees for other local transformations.

Such transformation guarantees can be proven by looking at executions of
the two programs (original and transformed) in parallel, and showing that the
intermediate states are still related by the iterated lifted transformation (plus
similarity), until both executions reach answer states. The answers will therefore
also be related by that transformation, and so the two programs will have the
same result in the sense of Definition 18.

As the two programs execute, the transformation will be moved around in
the configuration. The ability to apply the transformation anywhere is ensured
by the lifting operator, but in order for the transformation to still apply, the
typing conditions need to be preserved as well as the configuration and typing
context changes. For that reason, the local transformation has to have additional
properties: weakening, narrowing and substitution.

119

⟨Γ; ρ ⊢ t1 : T ⟩ τ−→ ⟨Γ; ρ ⊢ t2 : T ⟩
Γ; ρ ⊢ T <: S

⟨Γ; ρ ⊢ t1 : S⟩ lift τ−−→ ⟨Γ; ρ ⊢ t2 : S⟩
(TRFL-Local)

⟨Γ; ρ ⊢ t1 : T1⟩
lift τ−−→ ⟨Γ; ρ ⊢ t2 : T1⟩

Γ, z : T1; ρ ⊢ t3 : T2 Γ; ρ ⊢ T2 <: S

⟨Γ; ρ ⊢ let z = t1 in t3 : S⟩ lift τ−−→ ⟨Γ; ρ ⊢ let z = t2 in t3 : S⟩
(TRFL-Let1)

⟨Γ, z : T1; ρ ⊢ t1 : T2⟩
lift τ−−→ ⟨Γ, z : T1; ρ ⊢ t2 : T2⟩

Γ; ρ ⊢ t3 : T1 Γ; ρ ⊢ T2 <: S

⟨Γ; ρ ⊢ let z = t3 in t1 : S⟩ lift τ−−→ ⟨Γ; ρ ⊢ let z = t3 in t2 : S⟩
(TRFL-Let2)

⟨Γ, s : R; ρ ⊢ d1 : R⟩ lift τ−−→ ⟨Γ, s : R; ρ ⊢ d2 : R⟩
Γ, z : µ(s : R) ∧ M⊥; ρ ⊢ t : T
Γ; ρ ⊢ T <: S R indep s

⟨Γ; ρ ⊢ let z = ν(s : R)d1 in t : S⟩ lift τ−−→ ⟨Γ; ρ ⊢ let z = ν(s : R)d2 in t : S⟩

(TRFL-Lit1)

⟨Γ, z : µ(s : R) ∧ M⊥; ρ ⊢ t1 : T ⟩ lift τ−−→ ⟨Γ, z : µ(s : R) ∧ M⊥; ρ ⊢ t2 : T ⟩
Γ, s : R; ρ ⊢ d : R

Γ; ρ ⊢ T <: S R indep s

⟨Γ; ρ ⊢ let z = ν(s : R)d in t1 : S⟩ lift τ−−→ ⟨Γ; ρ ⊢ let z = ν(s : R)d in t2 : S⟩

(TRFL-Lit2)

⟨Γ; ρ ⊢ d1 : T1⟩
lift τ−−→ ⟨Γ; ρ ⊢ d2 : T1⟩

Γ; ρ ⊢ d3 : T2
d1 and d3 have distinct member names
d2 and d3 have distinct member names

⟨Γ; ρ ⊢ d1 ∧ d3 : T1 ∧ T2⟩
lift τ−−→ ⟨Γ; ρ ⊢ d2 ∧ d3 : T1 ∧ T2⟩

(TRFL-And1)

⟨Γ; ρ ⊢ d1 : T1⟩
lift τ−−→ ⟨Γ; ρ ⊢ d2 : T1⟩

Γ; ρ ⊢ d3 : T2
d1 and d3 have distinct member names
d2 and d3 have distinct member names

⟨Γ; ρ ⊢ d3 ∧ d1 : T2 ∧ T1⟩
lift τ−−→ ⟨Γ; ρ ⊢ d3 ∧ d2 : T2 ∧ T1⟩

(TRFL-And2)

Γ′ = Γ, s : T4, !, z : T1, r : T4 ∧ [r/s]T4 ∧ T3
R = {m(z : T1, r : T3) : T2}

⟨Γ′; ρ ⊢ t1 : T2⟩
lift τ−−→ ⟨Γ′; ρ ⊢ t2 : T2⟩

⟨Γ, s : T4; ρ ⊢ {m(z, r) = t1} : R⟩ lift τ−−→ ⟨Γ, s : T4; ρ ⊢ {m(z, r) = t2} : R⟩

(TRFL-Met)

Figure 4.13: Lifting local transformations to terms

120

⟨Γ; ρ ⊢ t1 : T1⟩
τ−→ ⟨Γ; ρ ⊢ t2 : T1⟩

Γ ∼ ρ Γ; ρ ∼ Σ
Γ; ρ ⊢ T1 <: T2 Γ; ρ ⊢ σ : T2, S

⟨Γ ⊢ ⟨t1; σ; Σ; ρ⟩ : S⟩ foc τ−−→ ⟨Γ ⊢ ⟨t2; σ; Σ; ρ⟩ : S⟩
(TRFF-Focus)

⟨Γ; ρ ⊢ t1 : T1⟩
lift τ−−→ ⟨Γ; ρ ⊢ t2 : T1⟩

Γ ∼ ρ Γ; ρ ∼ Σ
Γ; ρ ⊢ T1 <: T2 Γ; ρ ⊢ σ : T2, S

⟨Γ ⊢ ⟨t1; σ; Σ; ρ⟩ : S⟩ cfg τ−−→ ⟨Γ ⊢ ⟨t2; σ; Σ; ρ⟩ : S⟩
(TRFC-Focus)

⟨Γ; ρ ⊢ σ1 : T2, S⟩ stack τ−−−−→ ⟨Γ; ρ ⊢ σ2 : T2, S⟩
Γ ∼ ρ Γ; ρ ∼ Σ

Γ; ρ ⊢ T1 <: T2 Γ; ρ ⊢ t : T1

⟨Γ ⊢ ⟨t; σ1; Σ; ρ⟩ : S⟩ cfg τ−−→ ⟨Γ ⊢ ⟨t; σ2; Σ; ρ⟩ : S⟩
(TRFC-Stack)

⟨ρ ⊢ Σ1 : Γ⟩ heap τ−−−→ ⟨ρ ⊢ Σ2 : Γ⟩
Γ ∼ ρ Γ; ρ ⊢ t : T1

Γ; ρ ⊢ T1 <: T2 Γ; ρ ⊢ σ : T2, S

⟨Γ ⊢ ⟨t; σ; Σ1; ρ⟩ : S⟩ cfg τ−−→ ⟨Γ ⊢ ⟨t; σ; Σ2; ρ⟩ : S⟩
(TRFC-Heap)

Figure 4.14: Lifting local transformations to configurations

121

These properties are analogous to the weakening, narrowing and substitution
lemmas, which are a part of the soundness proof for the roDOT calculus and
were adapted from the soundness proof for DOT [95]. The properties state that
the transformation will relate two terms even if the typing context is extended,
when a type in the typing context is refined, or when a variable is substituted
in the term and its type. As an example, the weakening property is stated in
Definition 19.

Definition 19 (Transformation weakening). A transformation τ is compatible
with weakening, if ⟨Γ1, Γ2 ⊢ t1 : T ⟩ →τ ⟨Γ1, Γ2 ⊢ t2 : T ⟩ implies ⟨Γ1, Γ3, Γ2 ⊢ t1 :
T ⟩ →τ ⟨Γ1, Γ3, Γ2 ⊢ t2 : T ⟩.

If a local transformation has these properties, then so does the lifted trans-
formation. The weakening property can also be lifted to stacks and heaps.

Lemma 45 (Transformation weakening lifting). If a transformation τ is com-
patible with weakening, then lift τ is compatible with weakening.

Another important property of a transformation is that it preserves answers,
meaning that it only relates answers with answers and non-answers with non-
answers.

With these properties, we can show that as the programs both execute a single
step, the transformation will relate the next states, with exceptions stated below.
First, the transformation may occur at more than one location after the step. For
example, suppose that before a method call, the transformation occurred in the
body on the heap of the method to be called. After the call, the transformation
occurs both in the heap and in the focus of execution. For that reason, the
transformation is iterated in the conclusion of Lemma 46. Second, when the
execution has reached an answer, there are no more steps. This case is handled
separately. Third, when the transformation occurs in the root of the focus, the
executions may diverge for a while, but converge eventually. This case is also
handled separately, and will be resolved later in the proof of Theorem 48 using
Definition 20.

Lemma 46 (Transformation execution step). Let τ be a transformation that is
type-identical, type-safe, compatible with weakening, narrowing and substitution,
and preserves answers.

If ⟨Γ ⊢ c1 : T ⟩ →cfg τ ⟨Γ ⊢ c2 : T ⟩, then one of these holds:

• Both c1 and c2 are answers.

• ⟨Γ ⊢ c1 : T ⟩ →foc τ ⟨Γ ⊢ c2 : T ⟩

• There exist c3 and c4, such that c1 −→ c3, c2 −→ c4, and ⟨Γ ⊢ c3 :
T ⟩ →(cfg τ∪≈)∗ ⟨Γ ⊢ c4 : T ⟩.

Proof. By the progress lemma, which is a part of the safety proof [43], the con-
figurations c1 and c2 can each be an answer or reduce to another configuration.
Because τ preserves answers, either both are answers, and the first case applies,
or both are not answers, so both can progress. In that case, we do case analysis
for the reduction step and the location where the transformation occurs.

122

• If in the root of the focus, then the second case applies.

• If in a first part of a let-term, then it moves up as the let term is split. If
it applies in a first part of a let-lit-term, then it moves to the heap as part
of a newly instantiated object. If it applies in a second part of a let-term,
then moves to the stack.

• If in the stack, then in case of steps that change the stack, it either moves
up the stack, down the stack or into the focus. In other cases, it applies
the same way in the same stack, but weakening and similarity is needed in
steps that create new variables.

• If in the heap, then it always stays in the heap, where weakening may be
applied. In the case of a method call, it will be additionally copied to the
focus, while applying substitution.

The case when the transformation applies in the root of the focus represents
the instant when the two programs start to go in different ways, but the trans-
formation is safe because the programs will still eventually reach similar states.

In the case of call swapping, this means that in one program, the call to m1 is
executed first, then the call to m2. In the transformed program, it is vice versa.
During this time, the intermediate states may differ arbitrarily, but when they
return from both of the calls, the results are the same regardless of the order.

Definition 20 (Eventual similarity). A transformation τ eventually reduces to
similarity, if for ⟨Γ1 ⊢ c1 : T ⟩ →foc τ ⟨Γ2 ⊢ c2 : T ⟩ where c1 terminates, there
exists n ≥ m and c3, c4, Γ3, Γ4, such that

c1 −→n c3, c2 −→m c4, Γ3 ⊢ c3 : T , Γ4 ⊢ c4 : T , and ⟨Γ3 ⊢ c3 : T ⟩ →≈ ⟨Γ4 ⊢
c4 : T ⟩.

With swapping calls, both executions reach similarity in the same number
steps, but in general, the numbers of steps n and m may differ. The condition
n ≥ m is needed in order to avoid the case where the execution of the program on
the right side would be indefinitely prolonged by increasing the number of steps
of the execution over and over.

Additionally, we will use the fact that the ≈ transformation is also preserved
as the program executes.

Lemma 47 (Similarity compatible with reduction).
If ⟨Γ1 ⊢ c1 : T1⟩ →≈ ⟨Γ2 ⊢ c2 : T2⟩ If c1 is similar to c2,

and c1 −→ c3, c2 −→ c4, and these configurations reduce in one
step,

then ⟨Γ1 ⊢ c3 : T1⟩ →≈ ⟨Γ2 ⊢ c4 : T2⟩. then the result is also similar.

The property Definition 20 is only concerned with what happens if the trans-
formation occurs once, in the root of the focus. But with Lemma 46 and
Lemma 47, we can show that for a local transformation with the properties above,
if this transformation occurs anywhere in the configuration, any number of times,
the answers will also differ only by occurrences of this transformation and by sim-
ilarity.

123

c1 c2
cA

1 cA
2 cB

1 cB
2 cC

1 cC
2

cB
3 cB

4

cC
3 cC

4

cA
3 cA

4 cB
5 cB

6 cC
5 cC

6
c3 c4

Case 3 in
Lemma 46

By induction
with remaining

n steps

τ eventually
reduces to
similarity

Apply
Lemma 47
to n steps

Apply
Lemma 47

to remaining
steps

cfg τ∗

≈

≈

foc τ

≈

≈

cfg τ

cfg τ∗

cfg τ∗
cfg τ∗

∗ ∗

∗∗

∗ ∗ ∗ ∗

Figure 4.15: Proof of transformation execution theorem, showing three different
cases for n + 1 steps

Theorem 48 (Transformation execution). If τ is a transformation that is type-
identical, type-safe, compatible with weakening, narrowing and substitution, pre-
serves answers, and eventually reduces to similarity, then (cfg τ∪ ≈)∗ is safe.

Proof. The conclusion of this theorem is ⟨Γ1 ⊢ c1 : T ⟩ →(cfg τ∪≈)∗ ⟨Γ2 ⊢ c2 : T ⟩
and Γ1 ⊢ c1 : T1 and c1 −→k c3 where c3 is an answer and Γ3 ⊢ c3 : T ,
implies there exists c4, Γ4 and j such that ⟨t2; ·; ·; ·⟩ −→j c4, Γ4 ⊢ c4 : T , and
⟨Γ3 ⊢ c3 : T ⟩ →(cfg τ∪≈)∗ ⟨Γ4 ⊢ c4 : T ⟩.

First, do induction on j, the number of execution steps to reach the answer.
For 0 steps, the conclusion trivially holds. For n+1 execution steps, do induction
on the iteration of the transformation (cfg τ∪ ≈)∗ between c1 and c2. Each step of
this iteration is either similarity, or application of cfg τ . We will show that every
such step of the transformation reduces to answers related by (cfg τ∪ ≈)∗, using
different cases which are shown in Figure 4.15. Then the final transformation
between c3 and c4 will be a concatenation of the transformation produced all
transformation steps.

The case when the transformation step is similarity, is shown in Figure 4.15
as the transformation between cA

1 and cA
2 on the left. We can use Lemma 47 on

all steps of the execution until the answers are reached. Because similarity is
compatible with reduction, such answers are also similar.

For a transformation step that is cfg τ , we apply Lemma 46 and do case
analysis:

• In the case where c1 and c2 are answers, there cannot be any more steps,
which contradicts the assumption that there are n + 1 steps.

• The case where the transformation applies in the focus is shown in Fig-
ure 4.15 as cB

1 and cB
2 . First we use the fact that τ eventually reduces to

similarity, to get intermediate configurations cB
3 and cB

4 which are similar.
Then, we use Lemma 47 to apply the similarity to the answers.

• The case where an execution step is made and the transformation is pre-
served (Case 3 in Lemma 46), is shown in Figure 4.15 as cC

1 and cC
2 reducing

124

to cC
3 and cC

3 in one step. We apply the first inductive hypothesis of this
theorem (with n execution steps) to the rest of the execution.

4.5.2 The Call-swapping Transformation
The specific transformation guarantee that we want to achieve should state that
swapping two calls will not change the outcome of the program, in the sense of
Definition 18.

The call-swapping is defined as a local transformation, where, due to the A-
normal form of terms, the calls are in let-in terms. The two calls xo1.m1xa1 and
xo2.m2xa2 appear in a different order, but the continuation t is the same.

The transformation is only safe if both the methods are side-effect free. For
that reason, the transformation requires several typing conditions analogous to
the premises of Theorem 37 in Section 4.4.2.

Definition 21 (Local call swapping). The local call-swapping transformation
csw is a transformation of terms that relates ⟨Γ ⊢ let xc1 = xo1.m1xa1 in let xc2 =
xo2.m2xa2 in t : T ⟩ →csw ⟨Γ ⊢ let xc2 = xo2.m2xa2 in let xc1 = xo1.m1xa1 in t : T ⟩
when

• xc1,2 are distinct from xa1,2 and xo1,2,

• Γ ⊢ xo1.m1xa1 : T ,

• Γ ⊢ xo2.m2xa2 : T ,

• Γ ⊢ xo1 : {m1(r1 : N, z1 : Ta1) : ⊤},

• Γ ⊢ xo2 : {m2(r2 : N, z2 : Ta2) : ⊤},

• Γ ⊢ xa1 : Ta1,

• Γ ⊢ xa2 : Ta2,

• Γ ⊢ N <: Ta1, and

• Γ ⊢ N <: Ta2.

4.5.3 The Call-swapping Transformation Guarantee
To state the transformation guarantee, we first apply Definition 18 to Defini-
tion 21:

Lemma 49 (Call swapping is safe). The transformation cfg csw is safe.

Thanks to using a local transformation csw lifted to configurations, we can
prove this lemma using Theorem 48.

First, we need to to prove the premises of Theorem 48, which are local prop-
erties of the local transformation csw defined in Definition 21.

125

⟨let xa1 = wr1.m1 wz1 in
let xa2 = wr2.m2 wz2 in

t(xa1, xa2)
; σ; Σ; ρ⟩

⟨let xb2 = wr2.m2 wz2 in
let xb1 = wr1.m1 wz1 in

t(xb1, xb2)
; σ; Σ; ρ⟩

⟨wr1.m1 wz1
; · · · :: σ; Σ; ρ⟩

⟨wr2.m2 wz2
; · · · :: σ; Σ; ρ⟩

⟨vwa1
; · · · :: σ; ΣΣa1; ρρa1⟩

⟨vwb2
; · · · :: σ; ΣΣb2; ρρb2⟩

⟨let xa2 = wr2.m2 wz2 in
. . .

; σ; ΣΣa1; ρρa1⟩

⟨let xb1 = wr1.m1 wz1 in
. . .

; σ; ΣΣb2; ρρb2⟩

⟨wr2.m2 wz2
; · · · :: σ; ΣΣa1; ρρa1⟩

⟨wr1.m1 wz1
; · · · :: σ; ΣΣb2; ρρb2⟩

⟨vwa2
; · · · :: σ; ΣΣa1Σa2; ρρa1ρa2⟩

⟨vwb1
; · · · :: σ; ΣΣb2Σb1; ρρb2ρb1⟩

⟨t(wa1, wa2)
; σ; ΣΣa1Σa2; ρρa1ρa2⟩

⟨t(wb1, wb2)
; σ; ΣΣb2Σb1; ρρb2ρb1⟩

k1 k2

k2 k1

foc csw

≈

≈

≈

≈

≈

Figure 4.16: Reduction and transformation of call swapping in focus

The local transformation csw is trivially symmetric and type-identical, and
it preserves answers, because it only applies to let-terms, which are never in the
focus of an answer.

It is also type-safe and compatible with weakening, narrowing and substitu-
tion, which can be proved by applying weakening, narrowing or substitution to
each of the typing and subtyping conditions in the definition of csw.

Lemma 50 (Call-swap weakening). The transformation csw is compatible with
weakening.

The crucial property that ensures safety of the transformation is that csw
satisfies Definition 20.

Lemma 51 (Call swapping eventual similarity). The transformation csw even-
tually reduces to similarity.

Proof. The proof is based on looking at the execution of let-terms and the method
calls in the two programs, using the SEF guarantee to relate intermediate states
by similarity, and combining the information obtained from that to relate the
states after the calls by similarity. This is captured in Figure 4.16.

126

We have two configurations ca = ⟨let xa1 = wr1.m1 wz1 in let xa2 =
wr2.m2 wz2 in t(xa1, xa2); σ; ρ; Σ⟩ and cb = ⟨let xb2 = wr2.m2 wz2 in let xb1 =
wr1.m1 wz1 in t(xb1, xb2); σ; ρ; Σ⟩. Assuming that they both terminate, we need to
show that they reduce to similar configurations.

ca reduces to method call begin ⟨wr1.m1 wz1; σa1σ; ρ; Σ⟩, where σa1 = let xa1 =
□ in (let xa2 = wr2.m2 wz2 in t(xa1, xa2)). Assuming termination, there must exist
a method call end ⟨vwa1; σa1σ; ρρa1; ΣΣa1⟩. By the SEF guarantee, in the method
call end, the heap has a prefix Σ. The stack does not affect the result, so we can
also say that ⟨wr1.m1 wz1; ·; ρ; Σ⟩ ↦−→k1 ⟨vwa1; ·; ρρa1; ΣΣa1⟩.

The execution continues by reducing to ⟨let xa2 = wr2.m2 wz2 in t(wa1, xa2); σ;
ρρa1; ΣΣa1⟩, then to ca2 = ⟨wr2.m2 wz2; σa2σ; ρρa1; ΣΣa1⟩, where σa2 = let xa2 =
□ in t(wa1, xa2).

This is a method call begin which will reduce to a method call end ⟨vwa2;
σa2σ; ρρa1ρa2; ΣΣa1Σa2⟩. Again, by the SEF guarantee, the heap in the end has
a prefix ΣΣa1. And again, the stack does not affect the execution, so we also
have ⟨wr2.m2 wz2; ·; ρρa1; ΣΣa1⟩ ↦−→k2 ⟨vwa2; ·; ρρa1ρa2; ΣΣa1Σa2⟩. With the stack
removed, the method call begin does not have any references to the objects created
in the previous call, so it is similar to ⟨wr2.m2 wz2; ·; ρ; Σ⟩ and the method call
end is similar to ⟨vwa2; ·; ρρa2; ΣΣa2⟩.

The execution continues by reducing to ca3 = ⟨t(wa1, wa2); σ; ρρa1ρa2;
ΣΣa1Σa2⟩. Now, we will show that cb reduces to a similar configuration.

cb reduces to method call begin ⟨wr2.m2 wz2; σb2σ; ρ; Σ⟩, where σb2 = let xb2 =
□ in (let xb1 = wr1.m1 wz1 in t(xb1, xb2)).

If we remove the stack, we get a configuration ⟨wr2.m2 wz2; ·; ρ; Σ⟩ for which
we already know that it reduces in k2 steps to something similar to ⟨vwa2; ·;
ρρa2; ΣΣa2⟩. That means there are wb2, Σb2, ρb2 similar to wa2, Σa2, ρa2, such that
⟨wr2.m2 wz2; ·; ρ; Σ⟩ ↦−→k2 ⟨vwb2; ·; ρρb2; ΣΣb2⟩.

Adding back the stack, we have ⟨wr2.m2 wz2; σb2σ; ρ; Σ⟩ ↦−→k2 ⟨vwb2; σb2σ;
ρρb2; ΣΣb2⟩.

The execution continues by reducing to ⟨let xb1 = wr1.m1 wz1 in t(xb1, wb2); σ;
ρρb2; ΣΣb2⟩, then to cb1 = ⟨wr1.m1 wz1; σb1σ; ρρb2; ΣΣb2⟩, where σb1 = let xb1 =
□ in t(xb1, wb2).

If we remove the stack, we get a configuration ⟨wr1.m1 wz1; ·; ρρb2; ΣΣb2⟩. With
the stack removed, this method call begin does not have any references to the
objects created in the previous call, so it is similar to ⟨wr1.m1 wz1; ·; ρ; Σ⟩, for
which we already know that it reduces in k1 steps to something similar to ⟨vwa1;
·; ρρa1; ΣΣa1⟩. That means there are wb1, Σb1, ρb1 similar to wa1, Σa1, ρa1, such
that ⟨wr1.m1 wz1; ·; ρ; Σ⟩ ↦−→k1 ⟨vwb1; ·; ρρb1; ΣΣb1⟩.

Adding back the stack and heap, we have ⟨wr1.m1 wz1; σb1σ; ρρb2; ΣΣb2⟩ ↦−→k1

⟨vwb1; σb1σ; ρρb2ρb1; ΣΣb2Σb1⟩.
The execution continues by reducing to cb3 = ⟨t(wb1, wb2); σ; ρρb1ρb2;

ΣΣb2Σb1⟩. Because the variables and heaps in cb3 were chosen to be similar
to the variables and heaps in ca3, we get ca3 ≈ cb3.

Applying Theorem 48 on csw gives us that (cfg csw∪ ≈)∗ is safe. That means
cfg csw is safe as well, because cfg csw ⊂ (cfg csw∪ ≈)∗ = ((cfg csw∪ ≈)∗∪ ≈)∗.
This concludes the proof of Lemma 49.

127

Type soundness
theorems

Layered typing
Section 4.3.3

Immutability guarantee
Theorem 11

Read-only
Weakening
Lemma 43

Reference
Elimination
Lemma 42

SEF Guarantee
Theorem 37

Similarity
Section 4.4.4

Transformations
Section 4.5.1

Transformation
Guarantee

Theorem 52

Figure 4.17: Main theorems and lemmata related to Chapter 4 and their depen-
dencies.

As the the final form of the transformation guarantee, we unfold the definitions
used in Lemma 49, and specialize the theorem to initial programs:

Theorem 52 (Transformation guarantee).
If ⟨⊢ t1 : T ⟩ →lift csw ⟨⊢ t2 : T ⟩ For two programs that differ by swapping

call to SEF methods

and ⟨t1; ·; ·; ·⟩ −→k c3,
where answer c3 and Γ3 ⊢ c3 : T , if one of the programs produces an answer,

then there exists c4, Γ4 and j
such that ⟨t2; ·; ·; ·⟩ −→j c4, then the other program also produces

answer c4, Γ4 ⊢ c4 : T an answer of the same type

⟨Γ3 ⊢ c3 : T ⟩ →(cfg csw∪≈)∗ ⟨Γ4 ⊢ c4 : T ⟩. and the answer only differs in variable
names and swapped method calls (in meth-
ods of objects on the heap).

4.6 Mechanization
We added the guarantees defined in this chapter to the mechanization of roDOT
(Attachment A.1). The main theorems and lemmata relevant to this chapter
are summarized in Figure 4.17. We also incorporated the changes described
in Section 4.3.2. The mechanization was done in collaboration with Yufeng Li
from University of Waterloo.

4.6.1 Typing Modes
As described in Section 4.3.2, we changed a few typing rules in roDOT. The
changes work together to achieve the immutability guarantee, but the individual
changes are not necessarily dependent on each other. In order to keep the possi-
bility to experiment with various features of the type system, we did not simply
update the definitions, but we use the typing mode mechanism introduced in Sec-
tion 3.6. This allows us to use a single codebase and share most of the definitions

128

and proofs between both variants. Using the typing_mode parameter, which is
added to all the definitions and theorems related to typing, it is possible to switch
between the original and updated definitions and proofs.

We use additional modes to use the variant rules shown in Figure 4.12.

• rodot is the original roDOT as described in Chapter 3

• rodot_top_nm is roDOT extended with ST-NM.

• rodot_sef is roDOT extended as in Figure 4.1.

• rodot_nm_compl is extended with ST-NMC-Top and ST-NMC-Bot from
Figure 4.12.

• rodot_nm_muttop is extended with ST-M-Top from Figure 4.12.

• rodot_nm_compl_muttop is extended with all from Figure 4.12.

4.6.2 Mapping of Definitions and Theorems
The following table shows which definition or lemma in the mechanization repre-
sents each lemma and definition in this thesis.

Definition 1 Notation is_ro_type
in file Mutability/SefGuarantee.v

Lemma 22 Lemma reference_nocap_type
in file CanonicalForms/ReferenceTypes.v

Definition 2 Used unfolded in the premises of Theorem 37 and Definition 21.

Figure 4.1

Rules ty_incap_nocap
and subtyp_nocap_mut_top_boundless
and subtyp_met
and ty_trm_call
in file GeneralTyping/GeneralTyping.v

Lemma 23 Rule ty_incap_nocap, Lemma ty_incap_diag_nocap_sup
in file GeneralTyping/GeneralTyping.v

Lemma 24 Lemma invertible_flat_typing_closure_tight
in file CanonicalForms/FlatInvertibleTyping.v

Lemma 25 Lemma invertible_flat_typing_or_inv
in file CanonicalForms/FlatInvertibleTyping.v

Figure 4.3
Inductive definitions orctx
in file Syntax/Orctx.v
and logctx
in file Syntax/Logctx.v

Figure 4.4 Inductive definition ty_inv_atomic
in file CanonicalForms/LayeredTyping/LayeredTypingAtomic.v

Figure 4.5 Inductive definition ty_inv_basic
in file CanonicalForms/LayeredTyping/LayeredTypingBasic.v

Figure 4.6 Definition ty_inv_basic_closure
in file CanonicalForms/LayeredTyping/LayeredTypingBasicClosure.v

Figure 4.7 Inductive definition ty_inv_logic
in file CanonicalForms/LayeredTyping/LayeredTypingLogic.v

Figure 4.8 Inductive definition ty_inv_main
in file CanonicalForms/LayeredTyping/LayeredTypingMain.v

Figure 4.9 Inductive definition subtyp_atomic
in file CanonicalForms/LayeredTyping/LayeredSubtypingAtomic.v

Figure 4.10 Inductive definition ty_has_N_atomic, ty_has_M
in file CanonicalForms/LayeredTyping/LayeredCapabilityBasic.v

Figure 4.11 Definition ty_has_N_closure, ty_has_M_closure
in file CanonicalForms/LayeredTyping/LayeredCapabilityBasicClosure.v

129

Lemma 26 Lemma invertible_main_to_precise_typ_dec
in file CanonicalForms/LayeredTyping/LayeredTypingMainHard.v

Lemma 27 Lemma invertible_main_to_precise_fld_dec
in file CanonicalForms/InvertibleTyping.v

Lemma 28 Lemma invertible_main_to_precise_met_dec
in file CanonicalForms/LayeredTyping/LayeredTypingMainHard.v

Lemma 29 Lemma tight_to_invertible_main
in file CanonicalForms/LayeredTyping/LayeredTypingMainHard.v

Lemma 30 Lemma invertible_main_typing_closure_tight
in file CanonicalForms/LayeredTyping/LayeredTypingMainHard.v

Lemma 31 Lemma ty_inv_main_lc_and
in file CanonicalForms/LayeredTyping/LayeredTypingMainHard.v

Lemma 32 Lemma ty_inv_main_lc_and_invl, ty_inv_main_lc_and_invr
in file CanonicalForms/LayeredTyping/LayeredTypingMain.v

Lemma 33 Lemma ty_inv_main_lc_or_diag
in file CanonicalForms/LayeredTyping/LayeredTypingMainHard.v

Lemma 34 Lemma ty_inv_main_lc_nocap_main_replace
in file CanonicalForms/LayeredTyping/LayeredTypingMain.v

Lemma 35 Lemma ty_inv_main_tight
in file CanonicalForms/LayeredTyping/LayeredTypingMainCount.v

Lemma 36 Lemma ty_inv_main_lc_N_cases
in file CanonicalForms/LayeredTyping/LayeredTypingMainHard.v

Figure 4.12
Rules subtyp_nocap_mut_top_complement
and subtyp_nocap_mut_bot
and subtyp_mut_top
in file GeneralTyping/GeneralTyping.v

Definition 7 Used unfolded in the conclusion of Theorem 37.

Definition 9 Notation subheap_unchanged
in file Syntax/Heap.v

Theorem 37 Theorem SefG_I
in file Mutability/SefGuarantee.v

Definition 10 We use a pair of lists of variables (list var).

Definition 11
Definitions similar_trm, similar_avar,
similar_item, similar_stack
in file Similarity/SyntaxSimilarity.v

Definition 12 Definition similar_conf_sef
in file Similarity/ConfigSefSimilarity.v

Lemma 38 Lemma conf_sim_red_append
in file Similarity/ConfigSefSimilarity.v

Lemma 39 Lemma conf_sim_red_create
in file Similarity/ConfigSefSimilarity.v

Definition 13 Definition heap_item_flds_sim
in file Mutability/SefGuarantee.v

Lemma 40 Lemma red_heap_flds_sim
in file Mutability/SefGuarantee.v

Lemma 41 Lemma imm_transport
in file Mutability/SefGuarantee.v

Lemma 42 Lemma sef_neq_elim_ty_hole, sef_neq_elim_heap_corr
in file Mutability/SefGuarantee.v

Lemma 43 Lemma sef_neq_ro_ty_config
in file Mutability/SefGuarantee.v

Lemma 44 Lemma ref_elim_similar_conf_sef
in file Similarity/ConfigSefSimilarity.v

Definition 14 Definition Transform
in file Transformation/Transformation.v

Definition 15
Definition TransformCondTypeIdentical
in file Transformation/Transformation.v
applied using TransformEnsures

Definition 16
Definition TransformCondTyping
in file Transformation/TransformationTerm.v
applied using TransformRequires

130

Definition 17 Inductive definition trf_similarity
in file Transformation/TransformationSimilarity.v

Figure 4.13

Mutually inductive definitions trf_local_idtyp_trm
and trf_local_idtyp_lit
and trf_local_idtyp_def
and trf_local_idtyp_defs
in file Transformation/TransformationLifting.v

Figure 4.14 Inductive definitions trf_focus_idtyp_conf, trf_lift_idtyp_conf
in file Transformation/TransformationConfig.v

Definition 18 Used unfolded in the conclusions of Theorem 48 and Lemma 49

Definition 19 Notation TransformWeakeningCompat
in file Transformation/TransformationTerm.v

Lemma 45 Class instance WeakeningCompatTransformationTrm
in file Transformation/TransformationLifting.v

Lemma 46 Theorem transformation_preserved
in file Transformation/TransformationLiftingPreservation.v

Definition 20
Class definition TransformConfigReducesToShortIfTerminates
in file Transformation/TransformationConfig.v
applied to trf_similarity in file Transformation/TransformationSimilarity.v

Lemma 47 Class instance TransformConfigReducesTo1Similarity
in file Transformation/TransformationSimilarity.v

Theorem 48 Theorem transformation_preserved_if_terminates
in file Transformation/TransformationLiftingPreservation.v

Definition 21 Inductive definition trf_swap_calls_local
in file Transformation/TransformationSwapCalls.v

Lemma 49 Theorem swap_calls_transformation_preservation
in file Transformation/TransformationSwapCallsGuarantee.v

Lemma 50 Class instance TransformSwapCallsWeakening
in file Transformation/TransformationSwapCalls.v

Lemma 51 Lemma transformation_swap_calls_reduces_to_similarity
in file Transformation/TransformationSwapCallsPreservation.v

Theorem 52 Theorem swap_calls_transformation_guarantee
in file Transformation/TransformationSwapCallsGuarantee.v

4.7 Related Work
As far as we know, our work is the first one to consider the issue of purity within
a DOT calculus with mutable fields. Other program calculi and programming
languages have a diverse approach to purity. We can broadly classify into the
following categories:

• Pure languages do not allow mutation of objects or the global state, so
all functions are pure by default. This approach is typically associated
with functional programming, but an object-oriented system can also be
pure [12], when the objects are immutable.
Examples of pure languages are Haskell, Coq. Examples of pure calculi are
lambda calculi, or DOT calculi without mutable fields.

• Pure sub-languages. Multi-paradigm languages can combine imperative
and functional styles in different contexts. For example, C++ has been
described as containing multiple sub-languages, such as template meta-
programming and the constexpr keyword, which do not allow mutation.
Notably, these sub-languages are used for compile-time evaluation.

• Purity annotations. Several programming languages allow programmers
to state that a piece of code is pure, as an easy way to enable optimizations

131

or aid analysis. The disadvantage is that such annotations can be incorrectly
applied, leading to errors.

• Purity analysis. To avoid imposing an annotation burden on the program-
mer, purity can be inferred by automatic program analysis and side-effect
analysis can be used for program optimization.

Additionally, the programming language differ in the properties required for
code to be considered pure – what is considered a side effect, and whether deter-
minism and termination is required.

With respect to termination, many languages do not have a way to specify
that a method or a function terminates, but allow the opposite – stating that a
method does not terminate. In addition to entering an infinite loop, other possible
outcomes may include terminating the program, or throwing an exception. In
languages with rich type systems, this is achieved by using the bottom type as
the return type of the method. Such method cannot return, because it would
need to produce a value of the bottom type and the bottom type has no values.

4.7.1 Pure Calculi and Programming Languages
Purity in programming is such an important concept that in many languages,
functions are pure by default, thanks to lack of side effects in the semantics and
also thanks to referential transparency.

In pure functional languages, effects must typically be explicitly declared in
the program using monadic types. This style of programming has been shown to
be as powerful as other styles and lies behind practical programming languages.

Lambda calculi Lambda calculi are at the root of theoretical development of
functional languages. Although not practical, they inspired practical languages
such as Haskell and showed that encoding of many common programming pat-
terns in pure function is possible.

In most lambda calculi, termination is not guaranteed. Simply typed lambda
calculus guarantees termination by the strict normalization property.

Object calculi Many theoretical aspects of object calculi do not model object
mutation [12], as that is often not relevant, and modeling mutable state compli-
cates the definitions significantly.

A pure object calculus may include a field update operation, which produces
a new object value by a shallow copy of the original object except the one update
field.

DOT calculi (most of those mentioned in Section 2.3) also usually do not
model mutation of objects when it is not relevant to the main feature of the
calculus.

Pure functional languages In pure functional languages, such as
Haskell, code is primarily organized into pure functions, which are by construc-
tion SEF and deterministic.

Implementing actions that are typically considered side-effects (such as input
and output), is achieved with monadic return types.

132

Haskell functions, however, are not guaranteed to terminate. Because of lazy
evaluation, results of non-terminating computations can be manipulated as longs
as they do not need to be actually evaluated. An expression that is known to be
non-terminating has the the bottom type _|_.

Coq Coq is also a pure functional programming language, though it is not
typically used for general programming, It is, however, possible to execute Coq
programs and even translate Coq programs to Scala programs that are verifiably
correct [20, 21].

Unlike Haskell, Coq requires that all functions terminate. That is because all
recursion in Coq has to be guided by an inductive type, so the depth of recursion
is limited by a value of finite size.

4.7.2 Imperative Calculi and Languages
Object oriented languages with mutable fields are currently the most popular
languages for programming. Many publications [99, 97, 100, 109, 25, 49, 88]
focus on Java and languages with similar type systems.

When approached from a practical standpoint, the definition of purity in these
languages has to include considerations other than modification of object fields,
such as accessing global variables, or synchronization.

This leads to different definitions of purity. The term "pure" is sometimes
used to mean the same as "side-effect-free", without requiring determinism.

Java In Java, there are no purity related features in the language and its library,
but several tools have been implemented.

Java has been used as a base due to its relatively simple and conservative type
system.

ReIm [59] provides both a type system for reference mutability and a way
to automatically infer mutability types. It can therefore automatically find pure
methods, which have all parameters read-only. We adopted this way of recogniz-
ing pure methods by parameter types for roDOT in this work. While in ReIm,
mutability is attached to parameter types as a qualifier in the style of the Checker
Framework, roDOT uses the special member type M to include the mutability
in the parameter type using intersection types. In ReIm, mutability qualifiers
are subjected to qualifier polymorphism and viewpoint adaptation. roDOT can
express the equivalent of polymorphic qualifiers using dependent types and im-
plements viewpoint adaptation using union and intersection types [43].

To avoid imposing an annotation burden on the programmer, purity can be
inferred by automatic program analysis [77, 97], and side-effect analysis can be
used for program optimization [36].

Purity is of great use to program verification and specification frameworks,
where it enables inserting run-time checks without changing behavior, and allows
more precise analysis. JML [11] and Checker Framework [45] allow annotating
a method as pure. JML and Checker Framework use simple checks, where pure
methods are not allowed to call impure methods. Checker Framework uses the
fact that side-effect free methods do not invalidate flow-sensitive types of local
variables.

133

// This method is deterministic, because given the same

// state of the heap and the arguments, it returns the same value.

// It is not SEF, because it modifies the containg object.

@Deterministic

int increaseFld(int value) {

return this.fld += value;

}

// This method is side−effect free, but not deterministic, because

// even called with the exact same arguments,

// it may return a different, newly allocated string each time.

@SideEffectFree

String parenthesized(String a) {

return "(" + a + ")";

}

// A pure method is both @Deterministic and @SideEffectFree

@Pure

int getValue(int limit) {

return this.fld > limit ? limit : this.fld;

}

The Determinism Checker [75] for Checker Framework checks whether col-
lection operations produce deterministic results, with focus on determinism of
iteration order (for example, for hash maps the order of iteration is not speci-
fied).

Observational purity [76, 24] is a weaker property that allows side effects as
long as they are not observable from certain parts of the code. This definition
is based on classes and access control, features which are not modeled in DOT
calculi.

Scala For Scala, a type system for purity was developed, but not based on the
DOT calculus [98].

This type system only SEF property, and uses method annotations to express
which parameters a method can modify.

class A {

// A mutable field

private var b: Int

// This method can only modfiy this object and its owned objects

def setB(int i) @mod(this) = {

this.b = i;

}

// A field holding an owned object

@local private var a : StringBuilder = new StringBuilder

// A method returning an owned object

def getA() @loc(this) = a

}

134

// This method is SEF (pure), because it only modifies new objects

def m(): A @mod() = {

val a = new A()

// Ok − modifies a new object

a.setB(3)

// Ok − modifies an object owned by a new object

a.getA().append("end")

return a

}

C/C++ The GCC provides attributes that can be used to allow the compiler
to apply optimizations.

A function annotated with a pure attribute does not change the observable
state. It allows elimination of successive calls to such method, when no mutation
happens between such calls.

size_t strlen (const char *s) __attribute__((pure));

A stronger attribute, const, states that the result does not depend on any
state.

int abs (int x) __attribute__ ((__const__));

In C++, templates and constexpr may be considered pure sub-languages,
which allow guaranteed compile-time evaluation.

.NET Framework In the .NET framework and languages on top of it such as
C#, purity can be specified by a [Pure] method attribute, which is part of the
framework library. It is used by Code Contracts [48], which requires contracts
to be pure, but Code Contracts do not check that this annotation is correctly
applied [47, 1].

The following example shows how a pure method can be used in a CodeCon-
tracts precondition, which may or may not be evaluated at run-time based on
compilation settings.

[Pure]

bool IsEven(int index){

return (i & 1) == 0;

}

void Process(int index){

Contract.Requires(IsEven(index));

...

}

Dafny An interesting approach is taken in Dafny [69], where pure functions
(pure) and methods (with possible effects) are separate language constructs. Ter-
mination is ensured by supplying a termination metric.

135

4.7.3 Capability and Effect Systems
There are other ways to express the permitted side-effects of functions using
types, which have been developed in recent work on formal type systems.

The principle of capabilities [85, 84] is to require every operation that can
have a side effect to take an extra value, called a capability, as a parameter. Then,
if some function or method does not have the capability value corresponding to a
particular effect, we can conclude that it does not perform that effect. Capabili-
ties are well suited for coarse-grained effects, such as performing input/output in
general or accessing some specific file, where a single capability value can guard
a set of related operations. To apply such an approach to reasoning about a
fine-grained effect such as writing to a field of a specific object, we would need
large numbers of such capability values, one new capability value for each ex-
isting object. For each reference passed to a parameter or stored in a field, a
corresponding capability would need to be passed or stored, thus multiplying the
number of parameters and fields.

Wyvern’s effect system [74] expresses possible effects by type members of
objects. That is syntactically similar to how roDOT represents mutability, but
the meaning of the type members is different. In roDOT, the type member of
an object reference defines the bounds on the mutability of the reference, the
knowledge about whether a reference may be used for mutation, in the type of
that reference. In contrast, in Wyvern, the effect member represents a permission
to perform an effect, such as file.Write, where the effect can be independent
of the object that contains the effect member. Thus, Wyvern effect members are
more similar to the capability-based approach.

Another successful direction is to use types to express sets of possible variables
captured or aliased by values in the program. Capture Types [28] follow from
a capability based approach, and enable reasoning about where capability values
may be stored in the heap or captured in closures, in order to more precisely reason
about where effects may occur. Reachability Types [22] annotate the type of
an expression with a set of variables, which are values that are possibly reachable
from the result of that expression. This can be used in conjunction with effect
qualifiers as in Graph IR [29], where a function type declares a set of variables that
can be read or written, describing the possible effects in a fine-grained way. The
types can also be extended to support qualifier polymorphism [108]. This work is
defined in the context of a higher order functional formalism, whereas roDOT is
an object-oriented calculus. Also, both Wyvern and Reachability Types express
effects using new constructs added to the type system, while roDOT aims to
encode mutability using the existing DOT constructs of dependent types, unions
and intersections.

136

5. Implementation Experience
In this chapter, we describe our experience with experimental implementation a
reference mutability type system within the Dotty compiler for Scala.

With the release of the version 3 of the Scala programming language and the
Dotty compiler, we explored the idea of implementing mutability checking within
the compiler’s type checker, using as much of the existing language features as
possible.

This prototyping work both helped identify specific problems related to read-
only references in Scala, and in a simplified version serves as a limited demon-
stration of a reference mutability type system in Scala.

5.1 Background – The Dotty Compiler
The prototyping was done in the Dotty compiler, which is the primary compiler
for Scala 3.

One of the goals of the authors of Scala 3 was to eliminate soundness issues
that were discovered in the type system of Scala 2, by using the concepts from
the DOT calculus at its core, which also gave the name to the new compiler –
Dotty.

The Dotty compiler was developed alongside with Scala 3, and was used to
prototype many other changes, which were then accepted to the language, such
as new syntax for existing features, advanced types (higher-kinded types, match
types), or significant re-working of the system of implicit values.

One of the changes to the type system was a more regular treatment of inter-
section and union types. This led to the idea of using these types to implement
advanced features such as read-only references, and made us wonder if we could
implement a reference mutability system in Dotty.

Support for Explicit Nullable Types

As an example of another type system extension that was prototyped in Dotty at
the same time a demonstrated the possibility to express advanced type features
using Scala types, is expressing explicitly nullable references with union types
[81].

Normally, any reference type includes the null value – the Null type is a
subtype of all reference types. With explicit nullable types enabled, Null is
detached from the rest of the reference types. With that change, String is not
nullable, and the corresponding nullable type has to be String | Null.

Other languages achieved similar results using special type features (nullable
reference types in C#) or external checkers (nullable annotations in Java).

This is now an experimental feature included in the mainline Dotty compiler.

Phases of the Dotty Compiler

In order to implement reference mutability feature, we need to understand the
internal workings of the compiler and decide the proper places where to insert the

137

necessary checks, add supporting types and symbols, process additional informa-
tion provided in the form of annotations, or modify the type system, so that we
can use the existing infrastructure in the compiler.

The Dotty compiler processes code in several phases, starting from the source
code and resulting in a class file for the JVM. In the following text, we briefly
describe selected important phases.

The Frontend phase comprises both a parser and a typer.
The Parser processes the text input into an internal representation in the

form of a abstract syntax tree. The trees are represented by a immutable structure
of object from a class hierarchy, and are carried over to the subsequent phases,
which can analyze, transform or annotate the tree.

The Typer takes the trees, assigns a type to each node and check type cor-
rectness. The types are either taken from the source or inferred.

The processing of classes and methods is lazy – the element is type checked
only at the moment when it’s type is required. This allows heavily relying on type
inference while allowing arbitrary ordering of definitions and circular references.

The RefChecks phase checks whether overloading and overriding is used
correctly.

The Pickler serializes typed trees into a TASTY format, which can be em-
bedded within a .class file, retaining all type information, which then can be
read back by the compiler during separate compilation.

The Erasure phase erases most type information, and reduces it to a simple
form that can be understood by the JVM. Finally a Bytecode Generation
generates executable instructions for the JVM.

The phases in Dotty do not execute in a linear order. Rather, each symbol in
the program is compiled lazily, as demanded by other symbols referencing it.

Representation of Scala 3 types in Dotty

In order to properly integrate the new special types into Scala’s type system, we
need to understand the type hierarchy in Scala 3 and the internal representation
of programs and types in the compiler.

The program is represented in Dotty by a typed abstract syntax tree. This
tree is passed through the phases, and each phase can analyze or modify the tree,

In the typer phase, a type is assigned to each definition, identifier and expres-
sion in the tree.

As seen from the language, the types in Scala 3 form a lattice with the special
class scala.Any at the top and scala.Nothing at the bottom. The classes are
organized into two groups, based on reference or value semantics, according to
the hierarchy shown in Figure 5.1.

Because of the possibility to use dependent and singleton types in Scala, the
internal representation of types is more complicated than in Java or C#. For
example, for a variable declared as val s:String = "x", the most precise type
of s is not String, but x.type. The type of the string literal "x" is also "x".

The types are internally organized into a hierarchy shown in Figure 5.2.
The ground types correspond to DOT types – declarations (class or method),

intersections and unions. AndType(A,B) and OrType(A,B) represent intersections
and unions, ClassInfo represents the definition of a class, and MethodOrPoly
represents parameterized types – methods and generics.

138

Any

AnyRef AnyVal

class types
(String, ...)

value types
(Int, Boolean, ...)

Null

Nothing

Figure 5.1: Class hierarchy in Scala.

Type

GroundType ProxyType

AndType

OrType

ClassInfo

MethodOrPoly
NamedType SingletonType

AnnotatedType TypeParamRef

TypeRef TermRef ThisType

SuperType

ConstantType

Figure 5.2: Hierarchy of internal representation of Scala types in Dotty (only
selected types shown).

Proxy types are such types that have an underlying type, to which they add
more information. For example, if a variable is declared as val s:"x" = "x",
then the underlying type of the singleton type s.type is the constant type "x"
specified in the declaration of s. This constant type has the type scala.String
An example chain of proxies and underlying types is shown in Figure 5.3.

TermRef(name, owner) is a singleton type of variables, method parameters
and object fields, the underlying type is the declared or inferred type of the vari-
able. It is also used to refer to packages, which are viewed as objects containing
class definitions.

TypeRef(name, owner) is used to refer to classes by their name. The under-
lying type is the declaration of the class.

ThisType(Cls) is the type of this or Cls.this within a definition of a class
Cls.

5.2 Explicit Mutable References
The idea of expressing explicitly mutable references is analogous to the explicit
nullable references. While with nullable references, the non-nullable type is weak-

139

s.type
TermRef(s, NoPrefix)

"x"
Singleton("x")

String
TypeRef(String, TermRef(scala, root))

String
TypeRef(String, TermRef(lang, TermRef(java, root)))

class String{...}
ClassInfo(String, ...)

Figure 5.3: Underlying types of variable val s:"x" = "x" in Dotty.

Any

read-only types Mutable

RONothing
mutable types

(read-only types & Mutable)

Nothing

Figure 5.4: Scala type hierarchy with added mutability.

ened by a union with the Null type, a read-only type could be made mutable –
strengthened – by an intersection with a mutable trait.

This leads to the basic idea that for a class C, the type C is read-only and C &
Mutable is mutable. Mutable is a special trait defined in the compiler. Figure 5.4
shows the subtyping relationship between read-only and mutable types formed in
this way, analogous to Figure 3.3 in roDOT.

When an field assignment is type-checked by the typer, it is checked that the
receiver is of type Mutable.

This design allows distinguishing mutable and read-only parameters of a
method:

// Method which mutates the argument

def mutating(arg: C & Mut): Unit = {

arg.fld = 1

}

// Method not allowed to mutate the argument

def reading(arg: C): Int = {

arg.fld

// arg.fld = 1 would be a type error

140

// (cannot mutate a read−only reference)

// mutating(arg) would be a type mismatch

// (incompatible argument type)

}

// A mutable argument passed through

def mutpass(arg: C & Mut): C & Mut = arg

// A read−only argument passed through

def ropass(arg: C): C = arg

We also attempted a system, where references would be by default mutable,
with the idea that under such system, all existing code should be able to compile
without changes. This could be achieved by making the syntax tree of a type
reference such as C refer to the type C & Mutable, and this operation could be
reversed by applying a @ReadOnly annotation. There were, however, significant
drawback to this approach:

• In a few context, a type must refer to a simple class reference. An example
is the extends clause of classes, where any type can be written, but must
resolve to a class that will be used as a base for the class being defined.
Changing the interpretation of type syntax requires stripping the mutability
to get back to the basic class type.

• Later phases of the compiler, such as the TASTY pickler, also assumed
that syntax trees which represent a class will be typed with a TypeRef to
that class. Breaking such unwritten assumptions leads to internal compiler
errors, such as a crash with a run-time type error, trying to cast the type
to a TypeRef. When accessing the typed abstract syntax tree, the Dotty
compiler often uses pattern matching, which is prone to fail if the structure
matched on does not follow the expected patterns.

• Making types be mutable by default means that even immutable types
such as String or Int would end up in the mutable intersections String
& Mutable. While in theory this is not a problem, it is also not any use-
ful, clutters the internal representation, and necessitates dealing with the
Mutable trait in many places that are not relevant to mutability. For ex-
ample string literals would have to have type String & Mutable in order
for var x: String = "s" to type-check.

Type of this

A special consideration must be given to the type of the this keyword, which
in the scope of a class refers the containing object, being the analogue of the
self-variable s and the receiver parameter r in roDOT.

A method of a class can be allowed or disallowed to mutate the containing
object, which means that it must be possible to change the type of this to be
either mutable or read-only within that method.

Unlike Java, Scala does not allow explicitly writing the this parameter, so
the mutability has to be written in a different way. We used the @ReadOnly
annotation on the method.

This corresponds to the type of this in class C having type C or C & Mutable
within the method. However, the type of this is a ThisType with TypeRef(C) as

141

its underlying type. This lead the underlying type of ThisType changing based
on the context it appears in.

class C{

var fld: Int

// Method which mutates the receiver

@Mutating

def mutating(): Unit = {

fld = 1

}

// Method not allowed to mutate the receiver

@ReadOnly

def reading: Int = {

fld

// fld = 1 would be a type error

// (cannot mutate a read−only reference)

// mutating() would be a type mismatch

// (cannot call a mutating method

// on a read−only reference)

}

}

Overloading and Overriding Methods

In Scala, method calls are resolved in the typer phase using the full available
typing information, including mutability. However, when the code is compiled
into JVM bytecode, for compatibility with Java code, the Scala types get erased
into Java types, and the overload resolution at run-time follows the Java rules.

In the erasure phase, intersection types are erased to either the more precise
component, if the two components are in a subtype relationship, otherwise to the
first component.

Therefore, it is not possible to have a method overloaded with variants differ-
ing in just mutability.

Polymorphism

In order to preserve mutability information throughout the program, it is impor-
tant to express mutability polymorphism – the ability of a method to be typed
both with read-only and mutable types.

A form of this can be directly achieved in Scala using a singleton type referring
to a parameter.

def methodPoly1(par: C): par.type = par

In such case, the method’s return type is a reference to its argument. A call
methodPoly1(arg) would have the same type as arg, including mutability. It
is, however necessary, that the method always returns its argument and not any
other value of the same type.

A more common scenario is when the return type is the same class as the
argument, but not necessarily the same value. In such case, we would want to

142

express that the result has the same mutability as the argument. This leads to
the idea of using a special type member, which can be selected in order to refer
to the mutability of the parameter.

def methodPoly2(par: C): C & par.Mut = ...

Mutabilities of multiple arguments can be combined using union types, the
same way as with viewpoint adaptation:

def methodPoly2(par1: C, par2: C):

C & (par1.Mut | par2.Mut) = ...

Another possibility is to express the mutability explicitly as a type argument.
def method3[AM >: Mutable](arg: C & AM): C & AM

While this works, we observed that applying this pattern leads to unbearable
syntactic overhead. The situation is even worse in the presence of higher-kinded
types (type lambdas).

In an attempt to reduce this overhead, we implemented annotations, which
would transform the code by generating the mutability type parameters. The
equivalent of the code above would be:

def method3(arg: C @Tag("AM")): C @Tag("AM")

The problem of this solution was that the type parameters did not have syn-
tactic representation in the code, which breaks the way type parameters are han-
dled, such as when typing calls to the methods, and fixing this would required
adjusting many places in the compiler.

Inference

Scala programs can rely heavily on type inference. While in Java and C# have
type inference for local variables and lambda expressions, method parameters
and return types must always be specified. In Scala, the return type can also be
inferred.

Type inference reduces Annotation overhead when the type is obvious or hard
to type. Because mutability integrated into the types, when a type is not specified,
it will be inferred including its mutability. However, if the type of a method is
explicitly stated, then the mutability also must be included.

External Code

Scala code typically relies on classes from the Scala library, Java library, and other
libraries, which were not compiled with explicit mutability support. In order to
maintain soundness, such code would have to be annotated to specify mutability
of the parameters and return types.

5.3 Demonstration Implementation in Dotty
Attached to this thesis as Attachment A.2 is a simplified demonstration imple-
mentation. The implementation showcases the following features:

• The special type member MUT, representing reference mutability.

143

• Checking reference mutability at field assignment sites.

• Viewpoint-adaptation of the types of field at field access sites.

• Setting the mutability of the receiver in methods using the @Mutating an-
notation.

• Adjustment of the type of this in methods to the mutability of the receiver.

• Checking the mutability of the receiver at call sites of @Mutating methods.

The following snippets are part of the demonstration code, which can be
processed by the provided implementation. How to access the demonstration
code is described in Attachment A.2.

The implementation represents roDOT’s mutability declaration {M(r) : ⊥..⊥}
with a refinement type Any {type MUT <: Nothing}. In order to simplify the
syntax, we use a type alias Mutable defined as follows:
type Mutable = Any {type MUT <: Nothing}

5.3.1 Examples
The following pieces of code shows the basic checking of reference mutability and
convertibility of reference types.
class A{

var fld: Int // Mutable field

}

// This method takes a read−only reference to A

def m_ro(a: A) = {

a.fld = 1 // error, a is not mutable

}

// This method takes a mutable reference to A

def m_mut(a: A & Mutable) = {

a.fld = 1 // ok, a is mutable

m_ro(a) // ok, mutable is convertible to read−only
}

// This method takes a read−only reference to A

def m_ro2(a: A) = {

m_mut(a) // error, type mismatch

}

The following class demonstrates how mutating and read-only methods are
defined, and how mutation is prevented by the type of this being either a mutable
or a read-only reference.
class B{

var i: Int

// This method can access the containing object as read−only
def m_ro_this() = {

i = 1 // error

144

}

// This method can access the containing object as mutable

@Mutating

def m_mut_this() = {

i = 1 // ok

m_ro_this(); // ok, calling a read−only method

}

// This method can access the containing object as read−only
def m_ro_this2() = {

m_mut_this(); // error, calling a mutating method

// on a read−only receiver

}

}

The next example shows how viewpoint adaptation changes the type of a field
access expression, so that the read-only-ness of a reference applies transitively.
class C{

// Mutable reference field

var fld_mu: A & Mutable

// Read−only reference field

var fld_ro: A

// This method can access the containing object as read−only
def m_ro_this() = {

fld_mu.fld = 1 // Error, type of fld_mu is view−point adapted

// to read−only
fld_ro.fld = 1 // Error, read−only reference

}

// This method can access the containing object as mutable

@Mutating

def m_mut_this() = {

fld_mu.fld = 1 // ok

fld_ro.fld = 1 // Error, read−only reference

}

}

5.3.2 Overview of Changes
Implementing the features described above entailed the following changes to the
compiler:

• The special type member MUT, the special type RONothing and the annota-
tion @Mutating are predefined in the compiler.

• The special type RONothing is added to the hierarchy as a subtype of all
classes except RONothing and refinement types defining members other than
MUT.

• The underlying type of TermRef is viewpoint-adapted to combine the mu-
tability of the prefix and the field type.

145

• The underlying type of ThisType is changed to mutable in the context of
methods annotated with @Mutating.

• The Typer checks that a method receiver is mutable when the methods is
annotated with @Mutating.

• The Typer checks that the receiver of field assignment has a mutable type.

• The Typer assigns a mutable type to invocations of a class constructor.

• In the Typer phase, it is checked that classes do not override the special
MUT type member.

• In the RefChecks phase, it is checked that methods annotated with the
@Mutating annotation cannot override methods that do not have such an-
notation.

5.4 Obstacles Encountered
We started the implementation with the expectation that Although we did not
achieve full implementation of reference mutability in Dotty, we identified several
key ares that would need to improve in order to fully implement this feature.

• Formalization. The need to formally specify and validate type system de-
sign. This led us to the development of roDOT.

• Receiver variables. Reference mutability heavily relies on the ability to
specify and refer to the mutability of the receiver. This is possible in Java,
but not in Scala. Adding this feature to Scala would not only improve
reference mutability, but also allow other uses such as those implemented
for Java in the Checker Framework.

• Specify internal interfaces. The Dotty compiler is a complex software which
implements many language features with different design goals, and pro-
cessing input from different sources, which leads to complex dependencies
between code in various stages of the compiler. It would help development
of language extensions if the phases of the compiler had clearly defined in-
terfaces with explicitly stated constraints on the input and produced struc-
tures.

• Type system regularity: Despite Scala being already influenced by formal
designs such as DOT, Scala still contains several irregular features such as
functions with variable arguments, which are internally represented as a
special type that can only be used in specific places.

• Separation of syntax, symbols and types. Although it is possible to modify
the typer to give syntax trees and symbols different type, in the internal
data structures of Dotty, the trees, symbols and types are tied together. It
is for example not easy to add a new symbol defined by the syntax.

146

5.5 Case Study: Scala Collections
In order to gain insight into the impact of reference mutability is Scala, we started
a cases study on the collection library.

The Scala library comes with an extensive set of collections, including mutable
and immutable collections, and a detailed hierarchy of traits which allow writing
collection-handling code which is not dependent on a concrete implementation.
Note that an immutable collection are immutable in the shallow sense and their
elements can be potentially mutated.

Near the top of the collection hierarchy is the SeqOps trait, which provides
several methods that demonstrate different behaviors with respect to mutability.

The SeqOps trait The trait has three type parameters: the type of elements
A, the collection type C, and the collection constructor CC.

trait SeqOps[+A, +CC, +C] { ... }

As SeqOps is a parent to both mutable and immutable collections, it does not
provide operations that would mutate the collection object itself. Therefore, all
these methods can be defined with a read-only receiver type. What is of concern
is the mutability of the elements, and ensuring transitivity of read-only references.

We categorized the methods of SeqOps according to their behavior with re-
spect to mutability.

In the following code excerpts, we show the signatures of methods with added
mutability annotations. These annotations, which are highlighted by shading,
express what the mutability of a type within the methods signature should be.
They are, with the exception of making a mutable version of a type, outside of
the abilities of the provided demonstration implementation.

• The type T & Mutable represents a mutable version of type T.

• The type ro |> T represents a read-only version of type T.

• The type this |> T represents the type T viewpoint-adapted to the receiver
this.

• The type this |» T represents a higher-kinded type T viewpoint-adapted
to the receiver this.

Read-Only Methods The simplest case are methods that do not access ele-
ments at all:
def length: Int

def nonEmpty: Boolean

def knownSize: Int

def sizeCompare(otherSize: Int): Int

Methods that access elements in read-only manner, such as by calling equals
or toString, and do not return any object, can be handled similarly.

Here we assume that toString is declared as read-only.
def addString(b: mutable.StringBuilder & Mutable):

mutable.StringBuilder & Mutable

147

Element Access Methods In the case of methods that return an element of
the collection, the result type must be viewpoint-adapted to ensure that a read-
only reference to an element is returned when the collection is read-only, even
though the type of elements A might be mutable.

// Returns the first element

def head: this |> A

// Returns the last element

def last: this |> A

// Returns the element at the given position

def apply(i: Int): this |> A

When the returned element is wrapped in another object, such as Option, the
element type is viewpoint-adapted in the same way. It is, however also beneficial
to viewpoint adapt the wrapper object, because on that will allow an implemen-
tation where the wrapper object is permanently stored in a field of the collection.

// Optionally returns the first element

def headOption: this |> Option[this |> A]

// Optionally returns the last element

def lastOption: this |> Option[this |> A]

Subsequences and Permutations Methods for filtering elements, which re-
turn the same type of collection. The resulting collection has the same type as
the receiver. However, the collection type C is defined at the top level of the trait
and therefore does not have access to the receiver reference. This is equivalent to
the difference between s and r in roDOT methods.

Therefore, the type of elements of C must be viewpoint-adapted by this.
We denote this operation by an operator this |», to highlight a difference form
the viewpoint-adaptation operator this |>. A possible implementation of this
operator would be to modify the definition of C to be parameterized by a type
that viewpoint-adapts the element type, then this |» would designate C[this].

// Elements of the collection without duplicates

def distinct: this |» C

// Elements of the collection in reverse order

def reverse: this |» C

// Elements of the collection until the given index

def take(n: Int): this |» C

// Elements of the collection starting from the given index

def drop(n: Int): this |» C

def takeRight(n: Int): this |» C

def dropRight(n: Int): this |» C

def slice(from: Int, until: Int): this |» C

def combinations(n: Int): this |> Iterator[this |» C]

def sliding(size: Int, step: Int): this |> Iterator[this |» C]

148

Predicates Methods, which take a function objects that is applied to elements
of the collection a and return a collection containing some of the elements.

The predicates are typically assumed to not modify the elements.
def exists(p: (ro |> A) => Boolean): Boolean

def filter(pred: (ro |> A) => Boolean): this |» C

def sortWith(lt: (ro |> A, ro |> A) => Boolean): this |» C

def takeWhile(p: (ro |> A) => Boolean): this |» C

def span(p: (ro |> A) => Boolean): (this |» C, this |» C)

def partition(p: (ro |> A) => Boolean): (this |» C, this |» C)

def find(p: (ro |> A) => Boolean): Option[ro |> A]

def findLast(p: (ro |> A) => Boolean): Option[ro |> A]

Collection type conversion Conversion to a different collection type. If it
was guaranteed to return a new object, then the result could be declared mutable.
However, as a memory efficient implementation, the method can return this if the
actual collection type is compatible with the desired collection type. Therefore
the resulting, collection must be of the same mutability – viewpoint adapted by
the receiver. The element type is also viewpoint adapted in the same way as in
other methods that access elements of the collection.
def toSeq: this |> Seq[this |> A]

def view: this |> SeqView[this |> A]

def toList: this |> immutable.List[this |> A]

def toSeq: this |> immutable.Seq[this |> A]

def reverseIterator: this |> Iterator[this |> A]

def iterator: this |> Iterator[this |> A]

def toIterable: this |> Iterable[this |> A]

Comparison Methods that compare elements of the collection with supplied
objects. We can assume that there is no mutation involved and the argument has
a read-only type.
def indexOf[B >: ro |> A](elem: B): Int

def contains[A1 >: ro |> A](elem: A1): Boolean

def diff[B >: ro |> A](that: Seq[B]): this |» C

Element transformation Methods that transform elements into a different
type, which can be either mutable or read-only without restriction.
def map[B](f: (ro |> A) => B): this |> CC[B]

def flatMap[B](f: (ro |> A) => IterableOnce[B]): this |> CC[B]

def flatten[B](implicit asIterable:

(ro |> A) => IterableOnce[B]): this |> CC[B]

149

Adding elements Methods which add elements to the collection (return a
larger collection). In order to allow efficient implementation by returning one of
the collections if the other one is empty, the result is viewpoint-adapted not only
by the receiver, but also by the other collection.
def concat[B >: this |> A](suffix: IterableOnce[B]):

suffix |> this |> CC[B]

Mutable collections The collection library provides immutable and mutable
versions of collections. The mutable versions have the same non-mutating op-
erations, as the immutable ones, where changed collections are by copying the
content of the original collection. All the properties of these methods listed above
equally apply to both immutable and mutable versions of the collections.

Additionally, mutable collections provide mutating operations, which change
the contents of the collection in-place. In this case, the receiver reference needs
to be checked to be mutable. These methods would not be declared ReadOnly.

Because the type of this in these methods is mutable, there is no need to
viewpoint-adapt the types involved.

Some of the mutating methods return this to allow call chaining. In that
case, the return type is this.type, which in a mutating method is a mutable
type.

The following code shows the difference between a mutating and a read-only
method from the mutable collection ArrayBuffer:

@Mutating

def append(elem: A): Buffer.this.type

@ReadOnly

def appended[B >: ro |> A](elem: B): ro |> CC[B]

Summary

In summary, this case study showed that for annotating Scala collections with
reference mutability, the far most common pattern is a read-only method which
has the return type viewpoint-adapted by the receiver.

In some cases, this viewpoint-adaptation is necessary to express the possibil-
ity of an efficient implementation returning the receiver. This shows complexity
emerging from the field-based reference mutability with transitivity and the com-
bination of mutable and immutable collections under one API.

The use of the type parameter C poses a complication for annotating methods
which need to return a version of the collection type with viewpoint-adapted
element type.

150

6. Conclusion
Our work has demonstrated that the type system features of Scala, formalized
in the DOT calculus, can be used to encode reference mutability, with a small
amount of necessary type system extensions. As such, it provides an alternative
to existing reference mutability systems, which are based on dedicated type con-
structs, or capability and effect annotations that are defined separately from the
basic type system.

In this thesis, we presented this encoding in the form of the roDOT calculus,
which uses a typing judgment to recognize mutable references, and is able to
provide a guarantee that objects can only be mutated by using mutable references
– the Immutability Guarantee.

With a further extension to roDOT that improves the ability to also recognize
read-only types, roDOT can additionally identify methods that are side-effect free
(SEF), because they have read-only parameters. We stated this in the roDOT
calculus in the form of the SEF Guarantee.

Moreover, this guarantee can be used to justify safe transformations of pro-
grams, which can provide a formal background for program optimization or code
editing – we prove that in roDOT, changing the order of calls to SEF methods
does not change the result of execution of the program.

We mechanized all the definitions and theorems of the roDOT calculus in Coq,
which entailed adapting an existing proof of type safety of DOT with mutable
fields to use a new approach based on layered type judgments, and designing
original proofs for the mutability and SEF guarantees. The safe transformations
and the Transformation guarantee are constructed within a general framework
for defining transformations of roDOT programs.

Finally, we provide a simplified implementation of roDOT’s ideas for the Dotty
compiler, and a brief analysis of patterns that would emerge from adopting ref-
erence mutability types in the context of the Scala collection library.

6.1 Future Work
We outlined one possible approach to reference mutability in object-oriented lan-
guages and calculi. As the treatment of read-only references in programming
languages and of type systems continues to evolve, our work could be used as a
base for continued development in this direction in several ways, which we briefly
envision below.

Implementation We provide only a rudimentary implementation of the ideas
of roDOT for the Dotty compiler. This implementation could be extended and
enable more practical evaluation of the approach, but would require solving the
problems described in Section 5.4.

Encoding Multiple Reference Capabilities In roDOT, we introduced a
single mutability type member M, to encode reference mutability. We believe that
other reference capabilities could be also encoded in the form of type members.

151

For example, a similarly formed uniqueness marker {U : ⊥..⊥} could designate
that a reference is unique (there are no other references pointing to the same
object). This would be a step towards implementing a system analogous to that
of Pony.

Tracking uniqueness of references is not possible in roDOT, because the type
system does not put any restrictions on how many times a field of an object is
read, or in how many places a variable is used. In order to make this possible, a
calculus would need to be designed, which would integrate roDOT’s features with
a linear calculus. In such a calculus, reading fields of objects would be destructive
– in order to get a value of a field, either a new value needs to be written at the
same time, or the field needs to be removed. Each variable could be used only
once, unless an explicit construct is used to duplicate the reference, which would
remove the uniqueness marker from its type.

Type Bounds In roDOT, the mutability tags have a fixed form {M(r) : ⊥..T},
where the lower bound is limited to always be ⊥, and the upper bound determines
the mutability. The upper bound is typically either ⊤, ⊥, a type selection, or a
logical combination thereof, and is compared with ⊥ to check if the reference is
mutable.

It could be interesting to see if the bounds could be used to express and check
multiple levels of mutability (or other capabilities), by using more complex types
to represent those levels in the bounds.

One possible direction could be to encode borrowing and fractional permis-
sions, where a mutable reference x1 could be split into two references x2, x3,
which cannot be both mutable at the same time, which would be expressed in
its mutability bounds as subtraction of the mutability of the other references:
x2 : {M(r) : ⊥..(x1.M − x3.M)},

Recursive Types and Self References One of the points where the DOT
calculi and roDOT differ from the Scala language, is the representation of objects
and their types by a recursive constructor ν(s : R) and recursive types µ(s : R).
In these constructs, the variable s allows self-references within the object, by
designating the object itself.

This does not closely correspond to how objects and classes are represented
in the Scala language, and introduces accidental complexity to the calculus. For
example, in roDOT subtyping is not defined for recursive types, which posed
hurdles for the definitions and proofs of our layered typing.

More fundamentally, in order to reference mutability to work as intended in
roDOT, we had to put restrictions on the usage of s.M within recursive types.
Also, methods require an additional receiver parameter r, which designates the
reference that was used to call the method, and is not identifiable with the variable
s despite pointing to the same object.

Possibly, a re-imagination of the approach to recursive types in the DOT
calculus. where the self-variable s would designate the reference rather than the
object itself, could improve this situation, and more closely model Scala. An
inspiration for that could be jDOT [58] or the calculi of Abadi and Cardelli [12]

152

Bibliography
[1] CodeContracts. https://github.com/microsoft/CodeContracts.

[2] The Coq proof assistant. https://coq.inria.fr/. Accessed: 2023-10-24.

[3] const(FAQ) - D Programming Language. https://dlang.org/articles/
const-faq.html.

[4] Iris project. https://iris-project.org/.

[5] C# language design. https://github.com/dotnet/csharplang. Ac-
cessed: 2022-10-05.

[6] PEP 8000 – Python language governance proposal overview. https://
peps.python.org/pep-8000/, . Accessed: 2022-10-05.

[7] Rust RFCs. https://github.com/rust-lang/rfcs, . Accessed: 2022-10-
05.

[8] ECMA-334, C# language specification. https://www.ecma-
international.org/publications-and-standards/standards/ecma-
334/. Accessed: 2022-10-05.

[9] The Checker Framework Manual: Custom pluggable types for Java. https:
//checkerframework.org/manual/#initialization-checker, 2022. Ac-
cessed: 2022-10-05.

[10] The Checker Framework Manual: Custom pluggable types for Java.
https://checkerframework.org/manual/#purity-checker, 2022. Ac-
cessed: 2022-10-05.

[11] JML reference manual: Class and interface member declarations. https://
www.cs.ucf.edu/~leavens/JML/jmlrefman/jmlrefman_7.html#SEC60,
2022. Accessed: 2022-10-12.

[12] Martín Abadi and Luca Cardelli. A Theory of Objects. Monographs in Com-
puter Science. Springer, 1996. ISBN 978-0-387-94775-4. doi:10.1007/978-1-
4419-8598-9. URL https://doi.org/10.1007/978-1-4419-8598-9.

[13] Andrei Alexandrescu. The D programming language. Addison-Wesley, Up-
per Saddle River, N.J, 2009. ISBN 978-0-321-63536-5.

[14] Nada Amin and Tiark Rompf. Type soundness proofs with definitional
interpreters. In Giuseppe Castagna and Andrew D. Gordon, editors, Pro-
ceedings of the 44th ACM SIGPLAN Symposium on Principles of Pro-
gramming Languages, POPL 2017, Paris, France, January 18-20, 2017,
pages 666–679. ACM, 2017. doi:10.1145/3009837.3009866. URL https:
//doi.org/10.1145/3009837.3009866.

153

https://github.com/microsoft/CodeContracts
https://coq.inria.fr/
https://dlang.org/articles/const-faq.html
https://dlang.org/articles/const-faq.html
https://iris-project.org/
https://github.com/dotnet/csharplang
https://peps.python.org/pep-8000/
https://peps.python.org/pep-8000/
https://github.com/rust-lang/rfcs
https://www.ecma-international.org/publications-and-standards/standards/ecma-334/
https://www.ecma-international.org/publications-and-standards/standards/ecma-334/
https://www.ecma-international.org/publications-and-standards/standards/ecma-334/
https://checkerframework.org/manual/#initialization-checker
https://checkerframework.org/manual/#initialization-checker
https://checkerframework.org/manual/#purity-checker
https://www.cs.ucf.edu/~leavens/JML/jmlrefman/jmlrefman_7.html#SEC60
https://www.cs.ucf.edu/~leavens/JML/jmlrefman/jmlrefman_7.html#SEC60
https://doi.org/10.1007/978-1-4419-8598-9
https://doi.org/10.1007/978-1-4419-8598-9
https://doi.org/10.1007/978-1-4419-8598-9
https://doi.org/10.1145/3009837.3009866
https://doi.org/10.1145/3009837.3009866
https://doi.org/10.1145/3009837.3009866

[15] Nada Amin and Ross Tate. Java and Scala’s type systems are unsound: The
existential crisis of null pointers. In Proceedings of the 2016 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, OOPSLA 2016, page 838–848, New York, NY,
USA, 2016. Association for Computing Machinery. ISBN 9781450344449.
doi:10.1145/2983990.2984004. URL https://doi.org/10.1145/2983990.
2984004.

[16] Nada Amin, Adriaan Moors, and Martin Odersky. Dependent object types.
In 19th International Workshop on Foundations of Object-Oriented Lan-
guages, 2012.

[17] Nada Amin, Tiark Rompf, and Martin Odersky. Foundations of path-
dependent types. In Andrew P. Black and Todd D. Millstein, ed-
itors, Proceedings of the 2014 ACM International Conference on Ob-
ject Oriented Programming Systems Languages & Applications, OOPSLA
2014, part of SPLASH 2014, Portland, OR, USA, October 20-24, 2014,
OOPSLA ’14, pages 233–249. ACM, 2014. ISBN 978-1-4503-2585-1.
doi:10.1145/2660193.2660216.

[18] Nada Amin, Samuel Grütter, Martin Odersky, Tiark Rompf, and Sandro
Stucki. The essence of dependent object types. In Sam Lindley, Conor
McBride, Philip W. Trinder, and Donald Sannella, editors, A List of Suc-
cesses That Can Change the World - Essays Dedicated to Philip Wadler
on the Occasion of His 60th Birthday, volume 9600 of Lecture Notes in
Computer Science, pages 249–272. Springer, 2016. doi:10.1007/978-3-319-
30936-1_14. URL https://doi.org/10.1007/978-3-319-30936-1_14.

[19] Ellen Arvidsson, Elias Castegren, Sylvan Clebsch, Sophia Drossopoulou,
James Noble, Matthew J. Parkinson, and Tobias Wrigstad. Reference ca-
pabilities for flexible memory management. Proc. ACM Program. Lang., 7
(OOPSLA2), oct 2023. doi:10.1145/3622846. URL https://doi.org/10.
1145/3622846.

[20] Youssef El Bakouny and Dani Mezher. Scallina: Translating veri-
fied programs from Coq to Scala. In Sukyoung Ryu, editor, Program-
ming Languages and Systems - 16th Asian Symposium, APLAS 2018,
Wellington, New Zealand, December 2-6, 2018, Proceedings, volume 11275
of Lecture Notes in Computer Science, pages 131–145. Springer, 2018.
doi:10.1007/978-3-030-02768-1_7. URL https://doi.org/10.1007/978-
3-030-02768-1_7.

[21] Youssef El Bakouny, Tristan Crolard, and Dani Mezher. A Coq-based
synthesis of Scala programs which are correct-by-construction. In Pro-
ceedings of the 19th Workshop on Formal Techniques for Java-like Pro-
grams, Barcelona, Spain, June 20, 2017, pages 4:1–4:2. ACM, 2017.
doi:10.1145/3103111.3104041. URL https://doi.org/10.1145/3103111.
3104041.

[22] Yuyan Bao, Guannan Wei, Oliver Bračevac, Yuxuan Jiang, Qiyang He,
and Tiark Rompf. Reachability types: Tracking aliasing and separa-

154

https://doi.org/10.1145/2983990.2984004
https://doi.org/10.1145/2983990.2984004
https://doi.org/10.1145/2983990.2984004
https://doi.org/10.1145/2660193.2660216
https://doi.org/10.1007/978-3-319-30936-1_14
https://doi.org/10.1007/978-3-319-30936-1_14
https://doi.org/10.1007/978-3-319-30936-1_14
https://doi.org/10.1145/3622846
https://doi.org/10.1145/3622846
https://doi.org/10.1145/3622846
https://doi.org/10.1007/978-3-030-02768-1_7
https://doi.org/10.1007/978-3-030-02768-1_7
https://doi.org/10.1007/978-3-030-02768-1_7
https://doi.org/10.1145/3103111.3104041
https://doi.org/10.1145/3103111.3104041
https://doi.org/10.1145/3103111.3104041

tion in higher-order functional programs. Proc. ACM Program. Lang., 5
(OOPSLA), oct 2021. doi:10.1145/3485516. URL https://doi.org/10.
1145/3485516.

[23] Hendrik Pieter Barendregt. The lambda calculus - its syntax and semantics,
volume 103 of Studies in logic and the foundations of mathematics. North-
Holland, 1985. ISBN 978-0-444-86748-3.

[24] Mike Barnett, David A Naumann, Wolfram Schulte, and Qi Sun. 99.44%
pure: Useful abstractions in specifications. In ECOOP workshop on formal
techniques for Java-like programs (FTfJP), 2004.

[25] William C. Benton and Charles N. Fischer. Mostly-functional behav-
ior in Java programs. In Neil D. Jones and Markus Müller-Olm, edi-
tors, Verification, Model Checking, and Abstract Interpretation, 10th In-
ternational Conference, VMCAI 2009, Savannah, GA, USA, January 18-
20, 2009. Proceedings, volume 5403 of Lecture Notes in Computer Sci-
ence, pages 29–43. Springer, 2009. doi:10.1007/978-3-540-93900-9_7. URL
https://doi.org/10.1007/978-3-540-93900-9_7.

[26] Yves Bertot and Pierre Castéran. Interactive theorem proving and program
development: Coq’Art: the calculus of inductive constructions. Springer
Science & Business Media, 2013.

[27] Gavin M. Bierman, Martín Abadi, and Mads Torgersen. Understanding
TypeScript. In Richard E. Jones, editor, ECOOP 2014 - Object-Oriented
Programming - 28th European Conference, Uppsala, Sweden, July 28 - Au-
gust 1, 2014. Proceedings, volume 8586 of Lecture Notes in Computer Sci-
ence, pages 257–281. Springer, 2014. doi:10.1007/978-3-662-44202-9_11.
URL https://doi.org/10.1007/978-3-662-44202-9_11.

[28] Aleksander Boruch-Gruszecki, Martin Odersky, Edward Lee, Ondřej
Lhoták, and Jonathan Brachthäuser. Capturing types. ACM Trans. Pro-
gram. Lang. Syst., 45(4), nov 2023. ISSN 0164-0925. doi:10.1145/3618003.
URL https://doi.org/10.1145/3618003.

[29] Oliver Bračevac, Guannan Wei, Songlin Jia, Supun Abeysinghe, Yuxuan
Jiang, Yuyan Bao, and Tiark Rompf. Graph IRs for impure higher-order
languages: Making aggressive optimizations affordable with precise ef-
fect dependencies. Proc. ACM Program. Lang., 7(OOPSLA2), oct 2023.
doi:10.1145/3622813. URL https://doi.org/10.1145/3622813.

[30] Luca Cardelli. Bad engineering properties of object-oriented languages.
ACM Comput. Surv., 28(4es):150, 1996. doi:10.1145/242224.242415. URL
https://doi.org/10.1145/242224.242415.

[31] Luca Cardelli, Simone Martini, John C. Mitchell, and Andre Scedrov.
An extension of system F with subtyping. Inf. Comput., 109(1/2):4–56,
1994. doi:10.1006/INCO.1994.1013. URL https://doi.org/10.1006/
inco.1994.1013.

155

https://doi.org/10.1145/3485516
https://doi.org/10.1145/3485516
https://doi.org/10.1145/3485516
https://doi.org/10.1007/978-3-540-93900-9_7
https://doi.org/10.1007/978-3-540-93900-9_7
https://doi.org/10.1007/978-3-662-44202-9_11
https://doi.org/10.1007/978-3-662-44202-9_11
https://doi.org/10.1145/3618003
https://doi.org/10.1145/3618003
https://doi.org/10.1145/3622813
https://doi.org/10.1145/3622813
https://doi.org/10.1145/242224.242415
https://doi.org/10.1145/242224.242415
https://doi.org/10.1006/INCO.1994.1013
https://doi.org/10.1006/inco.1994.1013
https://doi.org/10.1006/inco.1994.1013

[32] David Cassel. Why are so many developers hating on object-oriented pro-
gramming? https://thenewstack.io/why-are-so-many-developers-
hating-on-object-oriented-programming/. Accessed: 2024-05-20.

[33] Arthur Charguéraud. The locally nameless representation. J. Autom. Rea-
son., 49(3):363–408, 2012. doi:10.1007/S10817-011-9225-2. URL https:
//doi.org/10.1007/s10817-011-9225-2.

[34] Arthur Charguéraud. TLC: a non-constructive library for Coq. https:
//www.chargueraud.org/softs/tlc/. Accessed: 2024-05-20.

[35] Alonzo Church. The calculi of lambda-conversion. Bull. Amer. Math. Soc,
50:169–172, 1944.

[36] Lars Ræder Clausen. A Java bytecode optimizer using side-
effect analysis. Concurrency: Practice and Experience, 9(11):
1031–1045, 1997. doi:10.1002/(SICI)1096-9128(199711)9:11<1031::AID-
CPE354>3.0.CO;2-O.

[37] Sylvan Clebsch, Sophia Drossopoulou, Sebastian Blessing, and Andy Mc-
Neil. Deny capabilities for safe, fast actors. In Elisa Gonzalez Boix, Philipp
Haller, Alessandro Ricci, and Carlos Varela, editors, Proceedings of the
5th International Workshop on Programming Based on Actors, Agents,
and Decentralized Control, AGERE! 2015, Pittsburgh, PA, USA, October
26, 2015, pages 1–12. ACM, 2015. doi:10.1145/2824815.2824816. URL
https://doi.org/10.1145/2824815.2824816.

[38] Michael J. Coblenz, Whitney Nelson, Jonathan Aldrich, Brad A. Myers,
and Joshua Sunshine. Glacier: transitive class immutability for Java.
In Sebastián Uchitel, Alessandro Orso, and Martin P. Robillard, edi-
tors, Proceedings of the 39th International Conference on Software Engi-
neering, ICSE 2017, Buenos Aires, Argentina, May 20-28, 2017, pages
496–506. IEEE / ACM, 2017. doi:10.1109/ICSE.2017.52. URL https:
//doi.org/10.1109/ICSE.2017.52.

[39] Joshua M. Cohen and Philip Johnson-Freyd. A formalization of Core
Why3 in Coq. Proc. ACM Program. Lang., 8(POPL):1789–1818, 2024.
doi:10.1145/3632902. URL https://doi.org/10.1145/3632902.

[40] Vincent Cremet, François Garillot, Sergueï Lenglet, and Martin Odersky.
A core calculus for Scala type checking. In Rastislav Kralovic and Pawel
Urzyczyn, editors, Mathematical Foundations of Computer Science 2006,
31st International Symposium, MFCS 2006, Stará Lesná, Slovakia, August
28-September 1, 2006, Proceedings, volume 4162 of Lecture Notes in Com-
puter Science, pages 1–23. Springer, 2006. doi:10.1007/11821069_1. URL
https://doi.org/10.1007/11821069_1.

[41] N.G de Bruijn. Lambda calculus notation with nameless dummies,
a tool for automatic formula manipulation, with application to the
Church-Rosser theorem. Indagationes Mathematicae (Proceedings), 75

156

https://thenewstack.io/why-are-so-many-developers-hating-on-object-oriented-programming/
https://thenewstack.io/why-are-so-many-developers-hating-on-object-oriented-programming/
https://doi.org/10.1007/S10817-011-9225-2
https://doi.org/10.1007/s10817-011-9225-2
https://doi.org/10.1007/s10817-011-9225-2
https://www.chargueraud.org/softs/tlc/
https://www.chargueraud.org/softs/tlc/
https://doi.org/10.1002/(SICI)1096-9128(199711)9:11%3C1031::AID-CPE354%3E3.0.CO;2-O
https://doi.org/10.1002/(SICI)1096-9128(199711)9:11%3C1031::AID-CPE354%3E3.0.CO;2-O
https://doi.org/10.1145/2824815.2824816
https://doi.org/10.1145/2824815.2824816
https://doi.org/10.1109/ICSE.2017.52
https://doi.org/10.1109/ICSE.2017.52
https://doi.org/10.1109/ICSE.2017.52
https://doi.org/10.1145/3632902
https://doi.org/10.1145/3632902
https://doi.org/10.1007/11821069_1
https://doi.org/10.1007/11821069_1

(5):381–392, 1972. ISSN 1385-7258. doi:https://doi.org/10.1016/1385-
7258(72)90034-0. URL https://www.sciencedirect.com/science/
article/pii/1385725872900340.

[42] Werner Dietl, Stephanie Dietzel, Michael D. Ernst, Kivanç Muslu, and
Todd W. Schiller. Building and using pluggable type-checkers. In
Richard N. Taylor, Harald C. Gall, and Nenad Medvidovic, editors, Pro-
ceedings of the 33rd International Conference on Software Engineering,
ICSE 2011, Waikiki, Honolulu , HI, USA, May 21-28, 2011, pages 681–
690. ACM, 2011. doi:10.1145/1985793.1985889. URL https://doi.org/
10.1145/1985793.1985889.

[43] Vlastimil Dort and Ondřej Lhoták. Reference mutability for DOT. In
Robert Hirschfeld and Tobias Pape, editors, 34th European Conference
on Object-Oriented Programming, ECOOP 2020, November 15-17, 2020,
Berlin, Germany (Virtual Conference), volume 166 of LIPIcs, pages
18:1–18:28. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.
doi:10.4230/LIPIcs.ECOOP.2020.18. URL https://doi.org/10.4230/
LIPIcs.ECOOP.2020.18.

[44] Vlastimil Dort, Yufeng Li, Ondřej Lhoták, and Pavel Parízek. Pure methods
for roDOT. In ECOOP 2024, LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2024 (forthcoming).

[45] Michael D. Ernst. Annotation type Pure. https://checkerframework.
org/api/org/checkerframework/dataflow/qual/Pure.html, 2022. Ac-
cessed: 2022-10-05.

[46] Michael D. Ernst, Alberto Lovato, Damiano Macedonio, Fausto Spoto, and
Javier Thaine. Locking discipline inference and checking. In Laura K.
Dillon, Willem Visser, and Laurie A. Williams, editors, Proceedings of
the 38th International Conference on Software Engineering, ICSE 2016,
Austin, TX, USA, May 14-22, 2016, pages 1133–1144. ACM, 2016.
doi:10.1145/2884781.2884882. URL https://doi.org/10.1145/2884781.
2884882.

[47] Manuel Fähndrich and Francesco Logozzo. Static contract checking with
abstract interpretation. In Bernhard Beckert and Claude Marché, editors,
Formal Verification of Object-Oriented Software - International Conference,
FoVeOOS 2010, Paris, France, June 28-30, 2010, Revised Selected Papers,
volume 6528 of Lecture Notes in Computer Science, pages 10–30. Springer,
2010. doi:10.1007/978-3-642-18070-5_2. URL https://doi.org/10.1007/
978-3-642-18070-5_2.

[48] Manuel Fähndrich, Michael Barnett, and Francesco Logozzo. Embedded
contract languages. In Sung Y. Shin, Sascha Ossowski, Michael Schumacher,
Mathew J. Palakal, and Chih-Cheng Hung, editors, Proceedings of the 2010
ACM Symposium on Applied Computing (SAC), Sierre, Switzerland, March
22-26, 2010, pages 2103–2110. ACM, 2010. doi:10.1145/1774088.1774531.
URL https://doi.org/10.1145/1774088.1774531.

157

https://doi.org/https://doi.org/10.1016/1385-7258(72)90034-0
https://doi.org/https://doi.org/10.1016/1385-7258(72)90034-0
https://www.sciencedirect.com/science/article/pii/1385725872900340
https://www.sciencedirect.com/science/article/pii/1385725872900340
https://doi.org/10.1145/1985793.1985889
https://doi.org/10.1145/1985793.1985889
https://doi.org/10.1145/1985793.1985889
https://doi.org/10.4230/LIPIcs.ECOOP.2020.18
https://doi.org/10.4230/LIPIcs.ECOOP.2020.18
https://doi.org/10.4230/LIPIcs.ECOOP.2020.18
https://checkerframework.org/api/org/checkerframework/dataflow/qual/Pure.html
https://checkerframework.org/api/org/checkerframework/dataflow/qual/Pure.html
https://doi.org/10.1145/2884781.2884882
https://doi.org/10.1145/2884781.2884882
https://doi.org/10.1145/2884781.2884882
https://doi.org/10.1007/978-3-642-18070-5_2
https://doi.org/10.1007/978-3-642-18070-5_2
https://doi.org/10.1007/978-3-642-18070-5_2
https://doi.org/10.1145/1774088.1774531
https://doi.org/10.1145/1774088.1774531

[49] Matthew Finifter, Adrian Mettler, Naveen Sastry, and David A. Wagner.
Verifiable functional purity in Java. In Peng Ning, Paul F. Syverson, and
Somesh Jha, editors, Proceedings of the 2008 ACM Conference on Computer
and Communications Security, CCS 2008, Alexandria, Virginia, USA, Oc-
tober 27-31, 2008, pages 161–174. ACM, 2008. ISBN 978-1-59593-810-7.
doi:10.1145/1455770.1455793. URL https://doi.org/10.1145/1455770.
1455793.

[50] Paolo G. Giarrusso, Léo Stefanesco, Amin Timany, Lars Birkedal, and Rob-
bert Krebbers. Scala step-by-step: soundness for DOT with step-indexed
logical relations in Iris. Proc. ACM Program. Lang., 4(ICFP):114:1–114:29,
2020. doi:10.1145/3408996. URL https://doi.org/10.1145/3408996.

[51] J. A. Goguen. Semantics of computation. In Ernest Gene Manes, ed-
itor, Category Theory Applied to Computation and Control, pages 151–
163, Berlin, Heidelberg, 1975. Springer Berlin Heidelberg. ISBN 978-3-540-
37426-8.

[52] Colin S. Gordon, Matthew J. Parkinson, Jared Parsons, Aleks Bromfield,
and Joe Duffy. Uniqueness and reference immutability for safe parallelism.
In Proceedings of the 27th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA
2012, part of SPLASH 2012, Tucson, AZ, USA, October 21-25, 2012, pages
21–40, 2012. doi:10.1145/2384616.2384619. URL https://doi.org/10.
1145/2384616.2384619.

[53] James Gosling, Bill Joy, Guy Steele, Gilad Bracha, and Alex Buckley. The
Java® language specification, Java SE 8 edition. https://docs.oracle.
com/javase/specs/jls/se8/html/jls-8.html#jls-8.4.1, 2022. Ac-
cessed: 2022-10-05.

[54] Robert Griesemer, Raymond Hu, Wen Kokke, Julien Lange, Ian Lance
Taylor, Bernardo Toninho, Philip Wadler, and Nobuko Yoshida. Feath-
erweight Go. Proc. ACM Program. Lang., 4(OOPSLA), nov 2020.
doi:10.1145/3428217. URL https://doi.org/10.1145/3428217.

[55] Philipp Haller and Ludvig Axelsson. Quantifying and explaining im-
mutability in Scala. In Proceedings Tenth Workshop on Programming Lan-
guage Approaches to Concurrency- and Communication-cEntric Software,
PLACES@ETAPS 2017, Uppsala, Sweden, 29th April 2017, pages 21–27,
2017. doi:10.4204/EPTCS.246.5. URL https://doi.org/10.4204/EPTCS.
246.5.

[56] Allan Heydon, Roy Levin, and Yuan Yu. Caching function calls using
precise dependencies. In Monica S. Lam, editor, Proceedings of the 2000
ACM SIGPLAN Conference on Programming Language Design and Im-
plementation (PLDI), Vancouver, Britith Columbia, Canada, June 18-
21, 2000, pages 311–320. ACM, 2000. doi:10.1145/349299.349341. URL
https://doi.org/10.1145/349299.349341.

158

https://doi.org/10.1145/1455770.1455793
https://doi.org/10.1145/1455770.1455793
https://doi.org/10.1145/1455770.1455793
https://doi.org/10.1145/3408996
https://doi.org/10.1145/3408996
https://doi.org/10.1145/2384616.2384619
https://doi.org/10.1145/2384616.2384619
https://doi.org/10.1145/2384616.2384619
https://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.4.1
https://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.4.1
https://doi.org/10.1145/3428217
https://doi.org/10.1145/3428217
https://doi.org/10.4204/EPTCS.246.5
https://doi.org/10.4204/EPTCS.246.5
https://doi.org/10.4204/EPTCS.246.5
https://doi.org/10.1145/349299.349341
https://doi.org/10.1145/349299.349341

[57] Jason Z. S. Hu and Ondřej Lhoták. Undecidability of D<: and its decidable
fragments. PACMPL, 4(POPL):9:1–9:30, 2020. doi:10.1145/3371077. URL
https://doi.org/10.1145/3371077.

[58] Hu, Zhong Sheng. Decidability and algorithmic analysis of dependent object
types (dot). Master’s thesis, 2019. URL http://hdl.handle.net/10012/
14964.

[59] Wei Huang, Ana Milanova, Werner Dietl, and Michael D. Ernst. ReIm &
ReImInfer: checking and inference of reference immutability and method
purity. In Proceedings of the 27th Annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2012, part of SPLASH 2012, Tucson, AZ, USA, October 21-25,
2012, OOPSLA ’12, pages 879–896. Association for Computing Machin-
ery, 2012. ISBN 978-1-4503-1561-6. doi:10.1145/2384616.2384680. URL
https://doi.org/10.1145/2384616.2384680.

[60] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight
Java: a minimal core calculus for Java and GJ. ACM Trans. Program.
Lang. Syst., 23(3):396–450, 2001. doi:10.1145/503502.503505. URL https:
//doi.org/10.1145/503502.503505.

[61] Alex Jeffery. Dependent object types with implicit functions. In
Jonathan Immanuel Brachthäuser, Sukyoung Ryu, and Nathaniel Nys-
trom, editors, Proceedings of the Tenth ACM SIGPLAN Symposium on
Scala, Scala@ECOOP 2019, London, UK, July 17, 2019, pages 1–11.
ACM, 2019. ISBN 978-1-4503-6824-7. doi:10.1145/3337932.3338811. URL
https://doi.org/10.1145/3337932.3338811.

[62] Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron
Turon, Lars Birkedal, and Derek Dreyer. Iris: Monoids and invariants as
an orthogonal basis for concurrent reasoning. In Sriram K. Rajamani and
David Walker, editors, Proceedings of the 42nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
2015, Mumbai, India, January 15-17, 2015, pages 637–650. ACM, 2015.
doi:10.1145/2676726.2676980. URL https://doi.org/10.1145/2676726.
2676980.

[63] Ifaz Kabir. themaplelab / dot-public: A simpler syntactic soundness proof
for dependent object types. https://github.com/themaplelab/dot-
public/tree/master/dot-simpler, 2022. Accessed: 2022-10-10.

[64] Ifaz Kabir and Ondřej Lhoták. κDOT: scaling DOT with mutation and
constructors. In Proceedings of the 9th ACM SIGPLAN International
Symposium on Scala, SCALA@ICFP 2018, St. Louis, MO, USA, Septem-
ber 28, 2018, pages 40–50, 2018. doi:10.1145/3241653.3241659. URL
https://doi.org/10.1145/3241653.3241659.

[65] Ifaz Kabir, Yufeng Li, and Ondřej Lhoták. ιDOT: a DOT calculus with ob-
ject initialization. Proc. ACM Program. Lang., 4(OOPSLA):208:1–208:28,
2020. doi:10.1145/3428276. URL https://doi.org/10.1145/3428276.

159

https://doi.org/10.1145/3371077
https://doi.org/10.1145/3371077
http://hdl.handle.net/10012/14964
http://hdl.handle.net/10012/14964
https://doi.org/10.1145/2384616.2384680
https://doi.org/10.1145/2384616.2384680
https://doi.org/10.1145/503502.503505
https://doi.org/10.1145/503502.503505
https://doi.org/10.1145/503502.503505
https://doi.org/10.1145/3337932.3338811
https://doi.org/10.1145/3337932.3338811
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/2676726.2676980
https://github.com/themaplelab/dot-public/tree/master/dot-simpler
https://github.com/themaplelab/dot-public/tree/master/dot-simpler
https://doi.org/10.1145/3241653.3241659
https://doi.org/10.1145/3241653.3241659
https://doi.org/10.1145/3428276
https://doi.org/10.1145/3428276

[66] Martin Kellogg, Vlastimil Dort, Suzanne Millstein, and Michael D.
Ernst. Lightweight verification of array indexing. In Frank Tip and
Eric Bodden, editors, Proceedings of the 27th ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis, ISSTA 2018, Am-
sterdam, The Netherlands, July 16-21, 2018, pages 3–14. ACM, 2018.
doi:10.1145/3213846.3213849. URL https://doi.org/10.1145/3213846.
3213849.

[67] Anatole Le, Ondřej Lhoták, and Laurie J. Hendren. Using inter-procedural
side-effect information in JIT optimizations. In Rastislav Bodík, editor,
Compiler Construction, 14th International Conference, CC 2005, Held as
Part of the Joint European Conferences on Theory and Practice of Soft-
ware, ETAPS 2005, Edinburgh, UK, April 4-8, 2005, Proceedings, volume
3443 of Lecture Notes in Computer Science, pages 287–304. Springer, 2005.
doi:10.1007/11406921_22. URL https://doi.org/10.1007/11406921_
22.

[68] Edward Lee and Ondřej Lhoták. Simple reference immutability for
System F<:. Proc. ACM Program. Lang., 7(OOPSLA2), oct 2023.
doi:10.1145/3622828. URL https://doi.org/10.1145/3622828.

[69] K. Rustan M. Leino. Dafny: An automatic program verifier for func-
tional correctness. In Edmund M. Clarke and Andrei Voronkov, editors,
Logic for Programming, Artificial Intelligence, and Reasoning - 16th In-
ternational Conference, LPAR-16, Dakar, Senegal, April 25-May 1, 2010,
Revised Selected Papers, volume 6355 of Lecture Notes in Computer Sci-
ence, pages 348–370. Springer, 2010. doi:10.1007/978-3-642-17511-4_20.
URL https://doi.org/10.1007/978-3-642-17511-4_20.

[70] Julian Mackay, Hannes Mehnert, Alex Potanin, Lindsay Groves, and
Nicholas Cameron. Encoding featherweight Java with assignment and im-
mutability using the coq proof assistant. In Wei-Ngan Chin and Aquinas
Hobor, editors, Proceedings of the 14th Workshop on Formal Techniques
for Java-like Programs, FTfJP 2012, Beijing, China, June 12, 2012, pages
11–19. ACM, 2012. doi:10.1145/2318202.2318206. URL https://doi.org/
10.1145/2318202.2318206.

[71] Christopher A. Mackie. Preventing signedness errors in numerical com-
putations in Java. In Thomas Zimmermann, Jane Cleland-Huang, and
Zhendong Su, editors, Proceedings of the 24th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, FSE 2016,
Seattle, WA, USA, November 13-18, 2016, pages 1148–1150. ACM, 2016.
doi:10.1145/2950290.2983978. URL https://doi.org/10.1145/2950290.
2983978.

[72] André Murbach Maidl, Fabio Mascarenhas, and Roberto Ierusalimschy.
Typed Lua: An optional type system for Lua. In Proceedings of the
Workshop on Dynamic Languages and Applications, Dyla’14, page 1–10,
New York, NY, USA, 2014. Association for Computing Machinery. ISBN
9781450329163. doi:10.1145/2617548.2617553. URL https://doi.org/
10.1145/2617548.2617553.

160

https://doi.org/10.1145/3213846.3213849
https://doi.org/10.1145/3213846.3213849
https://doi.org/10.1145/3213846.3213849
https://doi.org/10.1007/11406921_22
https://doi.org/10.1007/11406921_22
https://doi.org/10.1007/11406921_22
https://doi.org/10.1145/3622828
https://doi.org/10.1145/3622828
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1145/2318202.2318206
https://doi.org/10.1145/2318202.2318206
https://doi.org/10.1145/2318202.2318206
https://doi.org/10.1145/2950290.2983978
https://doi.org/10.1145/2950290.2983978
https://doi.org/10.1145/2950290.2983978
https://doi.org/10.1145/2617548.2617553
https://doi.org/10.1145/2617548.2617553
https://doi.org/10.1145/2617548.2617553

[73] Dennis Mancl and William Havanas. A study of the impact of C++
on software maintenance. In Proceedings of the Conference on Software
Maintenance, ICSM 1990, San Diego, CA, USA, 26-29 November, 1990,
pages 63–69. IEEE, 1990. doi:10.1109/ICSM.1990.131325. URL https:
//doi.org/10.1109/ICSM.1990.131325.

[74] Darya Melicher, Anlun Xu, Valerie Zhao, Alex Potanin, and Jonathan
Aldrich. Bounded abstract effects. ACM Trans. Program. Lang. Syst.,
44(1), jan 2022. ISSN 0164-0925. doi:10.1145/3492427. URL https:
//doi.org/10.1145/3492427.

[75] Rashmi Mudduluru, Jason Waataja, Suzanne Millstein, and Michael D.
Ernst. Verifying determinism in sequential programs. In 43rd
IEEE/ACM International Conference on Software Engineering, ICSE
2021, Madrid, Spain, 22-30 May 2021, pages 37–49. IEEE, 2021.
doi:10.1109/ICSE43902.2021.00017. URL https://doi.org/10.1109/
ICSE43902.2021.00017.

[76] David A. Naumann. Observational purity and encapsulation. In Maura
Cerioli, editor, Fundamental Approaches to Software Engineering, 8th In-
ternational Conference, FASE 2005, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2005, Edin-
burgh, UK, April 4-8, 2005, Proceedings, volume 3442 of Lecture Notes in
Computer Science, pages 190–204. Springer, 2005. ISBN 978-3-540-25420-
1 978-3-540-31984-9. doi:10.1007/978-3-540-31984-9_15. URL https:
//doi.org/10.1007/978-3-540-31984-9_15.

[77] Jens Nicolay, Quentin Stiévenart, Wolfgang De Meuter, and Coen De
Roover. Purity analysis for JavaScript through abstract interpretation.
Journal of Software: Evolution and Process, 29(12), 2017. ISSN 20477473.
doi:10.1002/smr.1889. URL https://doi.org/10.1002/smr.1889.

[78] Flemming Nielson and Hanne Riis Nielson. Type and effect systems. In
Ernst-Rüdiger Olderog and Bernhard Steffen, editors, Correct System De-
sign, Recent Insight and Advances, (to Hans Langmaack on the occasion
of his retirement from his professorship at the University of Kiel), vol-
ume 1710 of Lecture Notes in Computer Science, pages 114–136. Springer,
1999. doi:10.1007/3-540-48092-7_6. URL https://doi.org/10.1007/3-
540-48092-7_6.

[79] Abel Nieto. Towards algorithmic typing for DOT (short paper). In Pro-
ceedings of the 8th ACM SIGPLAN International Symposium on Scala -
SCALA 2017, SCALA ’17, pages 2–7. ACM Press. ISBN 978-1-4503-5529-2.
doi:10.1145/3136000.3136003. URL http://dl.acm.org/citation.cfm?
doid=3136000.3136003.

[80] Abel Nieto. Towards algorithmic typing for d<:. CoRR, abs/1708.05437,
2017. URL http://arxiv.org/abs/1708.05437.

[81] Abel Nieto, Yaoyu Zhao, Ondřej Lhoták, Angela Chang, and Justin
Pu. Scala with Explicit Nulls. In Robert Hirschfeld and Tobias

161

https://doi.org/10.1109/ICSM.1990.131325
https://doi.org/10.1109/ICSM.1990.131325
https://doi.org/10.1109/ICSM.1990.131325
https://doi.org/10.1145/3492427
https://doi.org/10.1145/3492427
https://doi.org/10.1145/3492427
https://doi.org/10.1109/ICSE43902.2021.00017
https://doi.org/10.1109/ICSE43902.2021.00017
https://doi.org/10.1109/ICSE43902.2021.00017
https://doi.org/10.1007/978-3-540-31984-9_15
https://doi.org/10.1007/978-3-540-31984-9_15
https://doi.org/10.1007/978-3-540-31984-9_15
https://doi.org/10.1002/smr.1889
https://doi.org/10.1002/smr.1889
https://doi.org/10.1007/3-540-48092-7_6
https://doi.org/10.1007/3-540-48092-7_6
https://doi.org/10.1007/3-540-48092-7_6
https://doi.org/10.1145/3136000.3136003
http://dl.acm.org/citation.cfm?doid=3136000.3136003
http://dl.acm.org/citation.cfm?doid=3136000.3136003
http://arxiv.org/abs/1708.05437

Pape, editors, 34th European Conference on Object-Oriented Program-
ming (ECOOP 2020), volume 166 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 25:1–25:26, Dagstuhl, Germany, 2020.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. ISBN 978-3-95977-
154-2. doi:10.4230/LIPIcs.ECOOP.2020.25. URL https://drops-dev.
dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2020.25.

[82] Martin Odersky and Tiark Rompf. Unifying functional and object-
oriented programming with Scala. Commun. ACM, 57(4):76–86, 2014.
doi:10.1145/2591013. URL https://doi.org/10.1145/2591013.

[83] Martin Odersky, Olivier Blanvillain, Fengyun Liu, Aggelos Biboudis,
Heather Miller, and Sandro Stucki. Simplicitly: foundations and appli-
cations of implicit function types. Proc. ACM Program. Lang., 2(POPL):
42:1–42:29, 2018. doi:10.1145/3158130. URL https://doi.org/10.1145/
3158130.

[84] Martin Odersky, Aleksander Boruch-Gruszecki, Jonathan Immanuel
Brachthäuser, Edward Lee, and Ondřej Lhoták. Safer exceptions for
Scala. In Proceedings of the 12th ACM SIGPLAN International Sym-
posium on Scala, SCALA 2021, page 1–11, New York, NY, USA,
2021. Association for Computing Machinery. ISBN 9781450391139.
doi:10.1145/3486610.3486893. URL https://doi.org/10.1145/3486610.
3486893.

[85] Martin Odersky, Aleksander Boruch-Gruszecki, Edward Lee, Jonathan
Brachthäuser, and Ondřej Lhoták. Scoped capabilities for polymorphic
effects, 2022.

[86] Bruno C. d. S. Oliveira, Zhiyuan Shi, and João Alpuim. Disjoint intersection
types. In Proceedings of the 21st ACM SIGPLAN International Conference
on Functional Programming, ICFP 2016, page 364–377, New York, NY,
USA, 2016. Association for Computing Machinery. ISBN 9781450342193.
doi:10.1145/2951913.2951945. URL https://doi.org/10.1145/2951913.
2951945.

[87] Matthew M. Papi, Mahmood Ali, Telmo Luis Correa Jr., Jeff H. Perkins,
and Michael D. Ernst. Practical pluggable types for Java. In Bar-
bara G. Ryder and Andreas Zeller, editors, Proceedings of the ACM/SIG-
SOFT International Symposium on Software Testing and Analysis, ISSTA
2008, Seattle, WA, USA, July 20-24, 2008, pages 201–212. ACM, 2008.
doi:10.1145/1390630.1390656. URL https://doi.org/10.1145/1390630.
1390656.

[88] David J. Pearce. JPure: A modular purity system for Java. In Jens Knoop,
editor, Compiler Construction - 20th International Conference, CC 2011,
Held as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2011, Saarbrücken, Germany, March 26-April 3, 2011.
Proceedings, volume 6601 of Lecture Notes in Computer Science, pages 104–
123. Springer, 2011. doi:10.1007/978-3-642-19861-8_7. URL https://doi.
org/10.1007/978-3-642-19861-8_7.

162

https://doi.org/10.4230/LIPIcs.ECOOP.2020.25
https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2020.25
https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2020.25
https://doi.org/10.1145/2591013
https://doi.org/10.1145/2591013
https://doi.org/10.1145/3158130
https://doi.org/10.1145/3158130
https://doi.org/10.1145/3158130
https://doi.org/10.1145/3486610.3486893
https://doi.org/10.1145/3486610.3486893
https://doi.org/10.1145/3486610.3486893
https://doi.org/10.1145/2951913.2951945
https://doi.org/10.1145/2951913.2951945
https://doi.org/10.1145/2951913.2951945
https://doi.org/10.1145/1390630.1390656
https://doi.org/10.1145/1390630.1390656
https://doi.org/10.1145/1390630.1390656
https://doi.org/10.1007/978-3-642-19861-8_7
https://doi.org/10.1007/978-3-642-19861-8_7
https://doi.org/10.1007/978-3-642-19861-8_7

[89] David J. Pearce. A lightweight formalism for reference lifetimes and bor-
rowing in Rust. ACM Trans. Program. Lang. Syst., 43(1):3:1–3:73, 2021.
doi:10.1145/3443420. URL https://doi.org/10.1145/3443420.

[90] Benjamin C. Pierce. Types and Programming Languages. The MIT Press,
1st edition, 2002. ISBN 0262162091.

[91] Benjamin C. Pierce. Advanced Topics in Types and Programming Lan-
guages. The MIT Press, 2004. ISBN 0262162288.

[92] Dimitri Racordon and Didier Buchs. Featherweight Swift: a core calcu-
lus for Swift’s type system. In Proceedings of the 13th ACM SIGPLAN
International Conference on Software Language Engineering, SLE 2020,
page 140–154, New York, NY, USA, 2020. Association for Computing
Machinery. ISBN 9781450381765. doi:10.1145/3426425.3426939. URL
https://doi.org/10.1145/3426425.3426939.

[93] Marianna Rapoport and Ondřej Lhoták. Mutable WadlerFest DOT. In
Proceedings of the 19th Workshop on Formal Techniques for Java-like Pro-
grams, Barcelona , Spain, June 20, 2017, pages 7:1–7:6. ACM Press,
2017. ISBN 978-1-4503-5098-3. doi:10.1145/3103111.3104036. URL https:
//doi.org/10.1145/3103111.3104036.

[94] Marianna Rapoport and Ondřej Lhoták. A path to DOT: formalizing fully
path-dependent types. Proc. ACM Program. Lang., 3(OOPSLA):145:1–
145:29, 2019. doi:10.1145/3360571. URL https://doi.org/10.1145/
3360571.

[95] Marianna Rapoport, Ifaz Kabir, Paul He, and Ondřej Lhoták. A simple
soundness proof for dependent object types. Proc. ACM Program. Lang.,
1(OOPSLA):46:1–46:27, 2017. doi:10.1145/3133870. URL https://doi.
org/10.1145/3133870.

[96] Tiark Rompf and Nada Amin. Type soundness for dependent object types
(DOT). In Eelco Visser and Yannis Smaragdakis, editors, Proceedings of the
2016 ACM SIGPLAN International Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, OOPSLA 2016, part of
SPLASH 2016, Amsterdam, The Netherlands, October 30 - November 4,
2016, OOPSLA ’16, pages 624–641. ACM, 2016. ISBN 978-1-4503-4444-9.
doi:10.1145/2983990.2984008. URL https://doi.org/10.1145/2983990.
2984008.

[97] Atanas Rountev. Precise identification of side-effect-free methods in Java.
In 20th International Conference on Software Maintenance (ICSM 2004),
11-17 September 2004, Chicago, IL, USA, pages 82–91. IEEE Computer
Society, 2004. ISBN 978-0-7695-2213-5. doi:10.1109/ICSM.2004.1357793.
URL https://doi.org/10.1109/ICSM.2004.1357793.

[98] Lukas Rytz, Nada Amin, and Martin Odersky. A flow-insensitive, mod-
ular effect system for purity. In Werner Dietl, editor, Proceedings of
the 15th Workshop on Formal Techniques for Java-like Programs, FT-
fJP 2013, Montpellier, France, July 1, 2013, FTfJP ’13, pages 4:1–4:7.

163

https://doi.org/10.1145/3443420
https://doi.org/10.1145/3443420
https://doi.org/10.1145/3426425.3426939
https://doi.org/10.1145/3426425.3426939
https://doi.org/10.1145/3103111.3104036
https://doi.org/10.1145/3103111.3104036
https://doi.org/10.1145/3103111.3104036
https://doi.org/10.1145/3360571
https://doi.org/10.1145/3360571
https://doi.org/10.1145/3360571
https://doi.org/10.1145/3133870
https://doi.org/10.1145/3133870
https://doi.org/10.1145/3133870
https://doi.org/10.1145/2983990.2984008
https://doi.org/10.1145/2983990.2984008
https://doi.org/10.1145/2983990.2984008
https://doi.org/10.1109/ICSM.2004.1357793
https://doi.org/10.1109/ICSM.2004.1357793

ACM, 2013. ISBN 978-1-4503-2042-9. doi:10.1145/2489804.2489808. URL
https://doi.org/10.1145/2489804.2489808.

[99] Alexandru Salcianu and Martin Rinard. A combined pointer and purity
analysis for Java programs. Technical report, Massachusetts Institute of
Technology Computer Science and Artificial Intelligence Laboratory, 2004.
URL https://dspace.mit.edu/handle/1721.1/30470.

[100] Alexandru Salcianu and Martin C. Rinard. Purity and side effect analysis
for Java programs. In Radhia Cousot, editor, Verification, Model Checking,
and Abstract Interpretation, 6th International Conference, VMCAI 2005,
Paris, France, January 17-19, 2005, Proceedings, volume 3385 of Lecture
Notes in Computer Science, pages 199–215. Springer, 2005. ISBN 978-3-
540-24297-0 978-3-540-30579-8. doi:10.1007/978-3-540-30579-8_14. URL
https://doi.org/10.1007/978-3-540-30579-8_14.

[101] Noé De Santo, Aurèle Barrière, and Clément Pit-Claudel. A Coq mecha-
nization of JavaScript regular expression semantics. CoRR, abs/2403.11919,
2024. doi:10.48550/ARXIV.2403.11919. URL https://doi.org/10.
48550/arXiv.2403.11919.

[102] Ulrich Schöpp and Chuangjie Xu. A generic type system for feather-
weight Java. In David R. Cok, editor, FTfJP 2021: Proceedings of the
23rd ACM International Workshop on Formal Techniques for Java-like Pro-
grams, Virtual Event, Denmark, 13 July 2021, pages 9–15. ACM, 2021.
doi:10.1145/3464971.3468419. URL https://doi.org/10.1145/3464971.
3468419.

[103] George Steed. A principled design of capabilities in Pony.
https://www.ponylang.io/media/papers/a_prinicipled_design_
of_capabilities_in_pony.pdf.

[104] Bjarne Stroustrup. The C++ programming language. Addison-Wesley, Up-
per Saddle River, NJ, 2013. ISBN 978-0-321-56384-2.

[105] Elliot Suzdalnitski. Object-oriented programming – the trillion dollar disas-
ter. https://betterprogramming.pub/object-oriented-programming-
the-trillion-dollar-disaster-92a4b666c7c7. Accessed: 2024-05-20.

[106] Matthew S. Tschantz and Michael D. Ernst. Javari: adding reference
immutability to Java. In Proceedings of the 20th Annual ACM SIG-
PLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2005, October 16-20, 2005, San Diego, CA,
USA, pages 211–230, 2005. doi:10.1145/1094811.1094828. URL https:
//doi.org/10.1145/1094811.1094828.

[107] Fei Wang and Tiark Rompf. Towards strong normalization for dependent
object types (DOT). page 25 pages. doi:10.4230/LIPICS.ECOOP.2017.27.
URL http://drops.dagstuhl.de/opus/volltexte/2017/7276/. Art-
work Size: 25 pages Medium: application/pdf Publisher: Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik GmbH, Wadern/Saarbruecken, Germany.

164

https://doi.org/10.1145/2489804.2489808
https://doi.org/10.1145/2489804.2489808
https://dspace.mit.edu/handle/1721.1/30470
https://doi.org/10.1007/978-3-540-30579-8_14
https://doi.org/10.1007/978-3-540-30579-8_14
https://doi.org/10.48550/ARXIV.2403.11919
https://doi.org/10.48550/arXiv.2403.11919
https://doi.org/10.48550/arXiv.2403.11919
https://doi.org/10.1145/3464971.3468419
https://doi.org/10.1145/3464971.3468419
https://doi.org/10.1145/3464971.3468419
https://www.ponylang.io/media/papers/a_prinicipled_design_of_capabilities_in_pony.pdf
https://www.ponylang.io/media/papers/a_prinicipled_design_of_capabilities_in_pony.pdf
https://betterprogramming.pub/object-oriented-programming-the-trillion-dollar-disaster-92a4b666c7c7
https://betterprogramming.pub/object-oriented-programming-the-trillion-dollar-disaster-92a4b666c7c7
https://doi.org/10.1145/1094811.1094828
https://doi.org/10.1145/1094811.1094828
https://doi.org/10.1145/1094811.1094828
https://doi.org/10.4230/LIPICS.ECOOP.2017.27
http://drops.dagstuhl.de/opus/volltexte/2017/7276/

[108] Guannan Wei, Oliver Bračevac, Songlin Jia, Yuyan Bao, and Tiark Rompf.
Polymorphic reachability types: Tracking freshness, aliasing, and sepa-
ration in higher-order generic programs. Proc. ACM Program. Lang., 8
(POPL), jan 2024. doi:10.1145/3632856. URL https://doi.org/10.1145/
3632856.

[109] Haiying Xu, Christopher J. F. Pickett, and Clark Verbrugge. Dynamic
purity analysis for Java programs. In Manuvir Das and Dan Grossman, ed-
itors, Proceedings of the 7th ACM SIGPLAN-SIGSOFT Workshop on Pro-
gram Analysis for Software Tools and Engineering, PASTE’07, San Diego,
California, USA, June 13-14, 2007, pages 75–82. ACM, 2007. ISBN 978-
1-59593-595-3. doi:10.1145/1251535.1251548. URL https://doi.org/10.
1145/1251535.1251548.

[110] Yoav Zibin, Alex Potanin, Mahmood Ali, Shay Artzi, Adam Kiezun, and
Michael D. Ernst. Object and reference immutability using Java generics.
In Proceedings of the 6th joint meeting of the European Software Engi-
neering Conference and the ACM SIGSOFT International Symposium on
Foundations of Software Engineering, 2007, Dubrovnik, Croatia, Septem-
ber 3-7, 2007, pages 75–84, 2007. doi:10.1145/1287624.1287637. URL
https://doi.org/10.1145/1287624.1287637.

165

https://doi.org/10.1145/3632856
https://doi.org/10.1145/3632856
https://doi.org/10.1145/3632856
https://doi.org/10.1145/1251535.1251548
https://doi.org/10.1145/1251535.1251548
https://doi.org/10.1145/1251535.1251548
https://doi.org/10.1145/1287624.1287637
https://doi.org/10.1145/1287624.1287637

166

List of Figures

1.1 Example of dependent types in Scala 9
1.2 Example of run-time type errors in Java and Scala 10

2.1 Baseline DOT syntax . 23
2.2 Baseline DOT run-time syntax . 23
2.3 Baseline DOT typing rules . 24
2.4 Baseline DOT subtyping rules . 25
2.5 Baseline DOT definition typing rules 26
2.6 Baseline DOT reduction (operational semantics) 27
2.7 Baseline DOT configuration typing rules 28
2.8 Dependencies (→) and equivalence (⇔) between definitions of typ-

ing in DOT . 29
2.9 Example rules of invertible typing 30
2.10 Structure of the Coq definitions and soundness proof for DOT . . 31

3.1 Hierarchy of reference mutability qualifiers in D 38
3.2 roDOT syntax . 45
3.3 Type hierarchy in roDOT . 49
3.4 roDOT subtyping rules . 50
3.5 roDOT variable typing rules . 51
3.6 roDOT term typing rules . 52
3.7 roDOT type splitting relations . 54
3.8 roDOT definition typing rules . 55
3.9 roDOT run-time configuration syntax 55
3.10 roDOT inert contexts . 56
3.11 roDOT configuration typing rules 57
3.12 roDOT heap definition typing rules 58
3.13 roDOT reduction (operational semantics) 59
3.14 Dependencies (→) and equivalence (⇔) between definitions of typ-

ing in roDOT . 60
3.15 Overview of properties and dependencies within proofs of the main

theorems . 60
3.16 roDOT typed reduction . 62
3.17 Mutably reachable objects . 64
3.18 Type approximation . 68
3.19 Restricted subtyping . 69
3.20 Diagram of the progression of the proof for Lemma 19 70

4.1 Updated typing rules for roDOT 93
4.2 Example derivation of a type by invertible typing and layered typing 95
4.3 Syntactic context . 98
4.4 Rules of atomic typing . 99
4.5 Rules of basic typing . 99
4.6 Rules of union layer typing . 99
4.7 Rules of logic typing . 99
4.8 Rules of main typing . 99

167

4.9 Rules of atomic subtyping . 101
4.10 N and M supertypes . 101
4.11 N and M supertypes union layer 102
4.12 Variant of subtyping rules for roDOT 105
4.13 Lifting local transformations to terms 120
4.14 Lifting local transformations to configurations 121
4.15 Proof of transformation execution theorem, showing three different

cases for n + 1 steps . 124
4.16 Reduction and transformation of call swapping in focus 126
4.17 Main theorems and lemmata related to Chapter 4 and their de-

pendencies. 128

5.1 Class hierarchy in Scala. 139
5.2 Hierarchy of internal representation of Scala types in Dotty (only

selected types shown). 139
5.3 Underlying types of variable val s:"x" = "x" in Dotty. 140
5.4 Scala type hierarchy with added mutability. 140

168

List of Tables

4.1 Layers of new invertible typing 101

169

170

List of Abbreviations
CNF Conjunctive Normal Form

DOT Dependent Object Types

JVM Java Virtual Machine

SEF Side-Effect Free

171

172

List of Publications
Published paper at peer-reviewed conferences

• Martin Kellogg, Vlastimil Dort, Suzanne Millstein, and Michael D. Ernst.
Lightweight verification of array indexing. In Frank Tip and Eric Bodden,
editors, Proceedings of the 27th ACM SIGSOFT International Symposium
on Software Testing and Analysis, ISSTA 2018, Amsterdam, The Nether-
lands, July 16-21, 2018, pages 3–14. ACM, 2018.

• Vlastimil Dort and Ondřej Lhoták. Reference mutability for DOT. In
Robert Hirschfeld and Tobias Pape, editors, 34th European Conference
on Object-Oriented Programming, ECOOP 2020, November 15-17, 2020,
Berlin, Germany (Virtual Conference), volume 166 of LIPIcs, pages 18:1–
18:28. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

Papers accepted at peer-reviewed conferences The following paper is on
the track to appear at the 38th European Conference on Object-Oriented Pro-
gramming (ECOOP 2024) in September 2024.

• Vlastimil Dort, Yufeng Li, Ondřej Lhoták, and Pavel Parízek. Pure meth-
ods for roDOT. In ECOOP 2024, LIPIcs. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2024 (forthcoming).

Other (non-peer-reviewed)

• Vlastimil Dort and Ondřej Lhoták. Reference mutability for DOT - roDOT
definitions and proofs. Technical Report D3S-TR-2020-01, Dep. of Dis-
tributed and Dependable Systems, Charles University, 2020.

173

174

A. Attachments

A.1 Mechanization of roDOT in Coq
The first attachment to is the full mechanization of roDOT, its soundness proof
and proofs of the guarantees from this thesis, as explained in Section 3.6 and
Section 4.6.

The source code is provided directly in the attached directory rodot, or, for
convenience, as a Docker image containing the necessary software to verify the
proofs.

The code is based on the mechanization of Field mutable DOT by Ifaz
Kabir [63], and roDOT features were implemented in collaboration with Yufeng
Li.

A.1.1 Using the Attached Source Code
Compiling the code requires Coq1 version 8.10.2, and the TLC library[34] version
20181116.

The following commands can be used to install Coq and TLC using the OCaml
Package Manager 2[63]:
opam init −−compiler=4.09.1 −−disable−sandboxing −a

opam pin add coq 8.10.2 −y

opam repo add coq−released http://coq.inria.fr/opam/released

opam pin add coq−tlc 20181116 −y

A.1.2 Using the Docker Image
The Docker image is available on DockerHub as rodotcalculus/rodot-thesis3.
Running the image requires a x86_64 machine with the Linux operating system.

To download and run the docker image on your machine, execute the following
command:
sudo docker run −it −−rm rodotcalculus/rodot−thesis

When you run the docker image, a shell will start in the directory /root.
Enter the directory rodot with the command:
cd rodot

The *.v files in this directory and its subdirectories constitute the source code.

A.1.3 Verifying the Proofs
To build the project and verify the correctness of the proof, run:
make −j4

1https://coq.inria.fr/
2https://opam.ocaml.org/, https://coq.inria.fr/opam-using.html
3https://hub.docker.com/r/rodotcalculus/rodot-thesis

175

https://coq.inria.fr/
https://opam.ocaml.org/
https://coq.inria.fr/opam-using.html
https://hub.docker.com/r/rodotcalculus/rodot-thesis

You can omit the -j4 option or use a different number to control the level of
parallelism of the build. During the checking process, names of individual source
files will be printed. On successfully verifying all the files, the text make[1]:
Leaving directory ’/root/rodot’ is printed.

Checking theorem assumptions Coq code can use additional axioms, which
are assumed true, so the correctness of the evaluation depends on correctness of
the used axioms.

The proof use the following axioms of classical logic:

LibAxioms.prop_ext (from TLC library)

LibAxioms.indefinite_description (from TLC library)

LibAxioms.fun_ext_dep (from TLC library)

Classical_Prop.classic

In order to check what axioms are used (and that no additional axioms are
used), we provide the script print-assumptions.sh. The first argument names
a module, the second argument names a theorem to check.

To check the axioms used by the main theorems, run the following commands
after building the project:

./print−assumptions.sh Safety soundness_initial

./print−assumptions.sh \

Mutability.ImmutabilityGuarantee immutability_guarantee

./print−assumptions.sh Mutability.SefGuarantee SefG_I

./print−assumptions.sh \

Transformation.TransformationSwapCallsGuarantee \

swap_calls_transformation_guarantee

A.2 Demonstration of Reference Mutability
Checking in Dotty

The second attachment is a patch for the source code of the Dotty compiler, which
shows a simplified implementation of reference mutability checking for Scala as
explained in Section 5.3.

To use the patched compiler, either apply the patch attached to this thesis
to a copy of the source code of Dotty4, or use the Docker image available for
convenience.

A.2.1 Using the Attached Source Patch

The patch must be applied to the source code of the Dotty compiler at Git commit
cdfc76e2e5093dd8f70e1d582e38d2537494c0bb 5.

4https://github.com/scala/scala3
5https://github.com/scala/scala3/tree/cdfc76e2e5093dd8f70e1d582e38d2537494c0bb

176

https://github.com/scala/scala3
https://github.com/scala/scala3/tree/cdfc76e2e5093dd8f70e1d582e38d2537494c0bb

Running the compiler requires Java SE JDK version 8 6 (versions newer than
8 are not supported). and SBT 7.

The source code can be downloaded and the patch applied using the following
commands:

git clone https://github.com/scala/scala3

cd scala3

git checkout cdfc76e2e5093dd8f70e1d582e38d2537494c0bb

git switch −c reference−mutability−demo
git am < reference−mutability−demo.patch

A.2.2 Using the Docker Image
The Docker image is available on DockerHub as rodotcalculus/rodot-thesis8.
Running the image requires a x86_64 machine with the Linux operating system.

To run the docker image on your machine, execute the following command.

sudo docker run −it −−rm rodotcalculus/thesis

When you run the docker image, a shell will start in the directory /root.
Enter the dotty directory by the command:

cd dotty

This is the root directory of the Dotty compiler, with the patch already ap-
plied.

Using the Reference Mutability Demo

To run the compiler with the reference mutability checker, first start SBT with
the command sbt, which will enter an interactive prompt.

Running tests To run the checker on a set of tests that show the implemented
features, use the command testMutCompilation. On a successful run, the tests
will print:

[info] Test dotty.tools.dotc.mut.MutCompilationTests.negAll started

[=======================================] completed (4/4, 0 failed, 3s)

[info] Test dotty.tools.dotc.mut.MutCompilationTests.pos started

[=======================================] completed (2/2, 0 failed, 0s)

[info] Test run finished: 0 failed, 0 ignored, 2 total, 3.976s

[info] Passed: Total 2, Failed 0, Errors 0, Passed 2

The test source codes can be found under the directory tests/pos-mut (files
that should type-check without errors), and tests/neg-mut (files that should
type-check with errors, on lines indicated by comments),

6https://www.oracle.com/cz/java/technologies/javase/javase8u211-later-
archive-downloads.html

7https://www.scala-sbt.org/download/
8https://hub.docker.com/r/rodotcalculus/rodot-thesis

177

https://www.oracle.com/cz/java/technologies/javase/javase8u211-later-archive-downloads.html
https://www.oracle.com/cz/java/technologies/javase/javase8u211-later-archive-downloads.html
https://www.scala-sbt.org/download/
https://hub.docker.com/r/rodotcalculus/rodot-thesis

Type-checking a Scala file To type-check a Scala file, type the command
dotc -Ym -Ystop-after:refchecks SourceFile.scala. The option -Ym turns
on the mutability checks (options prefixed with -Y generally enable experimen-
tal features), while -Ystop-after:refchecks stops compilation early to avoid
entering later stages of compilation that are not adjusted to the changes.

The code examples shown in Section 5.3 are provided in the directory
reference-mutability-demo-examples.

178

	Introduction
	Object-Oriented Programming
	Type Systems
	Formalization of Scala
	Mechanization
	Goals and Contribution
	Outline

	Background
	Type Systems
	Advanced Type System Features
	Type System Formalization

	Basic Concepts and Terminology
	DOT Calculi
	Formalization and Soundness
	Extensions with Additional Scala Features
	Theoretical Grounding

	Baseline DOT
	Structure of a DOT calculus
	Syntax and Semantics of the Baseline DOT
	Type Soundness
	Invertible Typing

	Mechanization of DOT Calculi
	Baseline DOT mechanization

	The roDOT Calculus
	Introduction
	Type Systems for Reference Mutability

	Design of roDOT
	Requirements
	Example
	Representing Mutability Types
	Additional Changes to the Calculus

	Full Description of the roDOT Calculus
	Syntax
	Typing
	Runtime Configuration
	Reduction
	Example

	Type Soundness
	Immutability Guarantee
	Proof of the Immutability Guarantee
	Context Shortening Lemmata
	Finishing the Immutability Guarantee Proof

	Mechanization
	Related Work
	Read-only References in Programming Languages
	Reference Mutability Type Systems
	Mutability in DOT Calculi

	Method Purity for roDOT
	Side-effect Freedom and Purity in Programming Languages
	Method Purity for roDOT
	Components of Purity
	Viewing Purity from Three Perspectives
	Run-time SEF Condition (Perspective 2)
	Static SEF Condition (Perspective 1)
	SEF Guarantee
	Using Pure Methods in roDOT (Perspective 3)
	Determinism in DOT and roDOT
	Termination in DOT and roDOT

	Recognizing Read-only Types
	Static SEF Condition for roDOT
	The Updated roDOT Calculus
	Layered Typing
	Typing Layers
	Properties of Layered Typing
	Variants of Subtyping Rules

	The SEF Guarantee
	The Runtime SEF Condition
	The SEF Guarantee
	Overview of the Proof
	Similarity
	Proof of the SEF Guarantee

	Transformations
	Transformation Framework
	The Call-swapping Transformation
	The Call-swapping Transformation Guarantee

	Mechanization
	Typing Modes
	Mapping of Definitions and Theorems

	Related Work
	Pure Calculi and Programming Languages
	Imperative Calculi and Languages
	Capability and Effect Systems

	Implementation Experience
	Background – The Dotty Compiler
	Explicit Mutable References
	Demonstration Implementation in Dotty
	Examples
	Overview of Changes

	Obstacles Encountered
	Case Study: Scala Collections

	Conclusion
	Future Work

	Bibliography
	List of Figures
	List of Tables
	List of Abbreviations
	List of Publications
	Attachments
	Mechanization of roDOT in Coq
	Using the Attached Source Code
	Using the Docker Image
	Verifying the Proofs

	Demonstration of Reference Mutability Checking in Dotty
	Using the Attached Source Patch
	Using the Docker Image

