
Mainstream object-oriented programming languages, such as Java or Scala, typically
allow objects to be mutated by assigning new values to their fields, but it is also common
to write code that only accesses objects in a read-only way. Reference mutability is a tech-
nique for controlling mutation by distinguishing read-only and mutable references with
types. It has been thoroughly studied in Java, and implemented as compiler extensions.
Scala is an evolving programming language which integrates many advanced type system
features, most notably path-dependent types. To address questions about soundness, the
formal Dependent Object Types (DOT) calculus has been developed, which provides a
formal proof of soundness for the core of Scala’s type system.

In this thesis, we explore the possibility of using DOT’s features to integrate reference
mutability. We define the roDOT calculus, which is based on a version of DOT with mu-
table fields, and encodes the mutability of object references using a special type member.
This encoding makes it possible to use path dependent types to refer to mutability of a
reference, and use intersection and union types to combine mutabilities and implement
viewpoint adaptation, ensuring the transitive property of read-only references. In addi-
tion to updating the type soundness proof of DOT to this extension, we state and prove
the Immutability guarantee, which formally states that objects in roDOT can be only
mutated through the use of mutable references.

Modern code also often makes use of pure methods, which have properties of mathe-
matical functions. The ReIm type extension for Java showed the connection of reference
mutability to purity of methods, in particular, the side-effect-free property. We explore
purity conditions in roDOT and pose the SEF guarantee, by which the type system guar-
antees that methods that can be typed with read-only parameters are side-effect free.
Applying the ideas of ReIm to roDOT required just a few changes to the type system,
but necessitated re-working a significant part of the soundness proof. We proved the SEF
guarantee by applying the previously stated Immutability guarantee.

In addition to the SEF guarantee, we state a transformation guarantee, which ensures
that in a roDOT program, calls to SEF methods can be safely reordered without changing
the outcome of the program. The transformation guarantee is proven by applying the
SEF guarantee within a framework for reasoning about safe transformations of roDOT
programs.

We mechanized the definition of roDOT, the soundness proof and all the guarantees
using the Coq proof assistant. As a demonstration of the possibility of bringing the ideas
of roDOT to Scala, we provide a patch to the Dotty compiler, which implements basic
reference mutability checking.

1


