
Doctoral Thesis

Daria Denisova
Electroproduction of Hypernuclei

Institute of Particle and Nuclear Physics
Prague 2024

:



Bibliographic Entry

Title: Electroproduction of Hypernuclei
Author: Daria Denisova
University: Charles University, Faculty of Mathematics and Physics,

Institute of Particle and Nuclear Physics
Supervisor: RNDr. Petr Bydžovský, CSc.,

Nuclear Physics Institute, Czech Academy of Sciences.
Keywords: Hypernucleus, electroproduction of kaons, distorted wave impulse
approximation, optimal factorization approximation, effective proton momentum,
hyperon-nucleon interaction, shell model, Tamm-Dancoff approximation, one-body
density matrix element, Fermi motion.

2



Abstract

In this work we explore various effects involved in the computation of the
cross sections for electroproduction of hypernuclei. The model calculations are
performed in the Impulse Approximation (IA) further assumed in the Optimal
Factorization Approach (OFA) where the elementary amplitude is evaluated
for an effective proton momentum. Our analysis introduces a general two-
component form of the elementary amplitude facilitating inclusion of arbitrary
effective momentum, thus accounting for Fermi motion effects. At this point,
our calculations develop previous calculations performed with the zero value
of the proton momentum, i.e., in the so called frozen-proton approximation.
Distortion of the final-state kaon wave function is addressed via the eikonal
approximation, employing an optical potential for the kaon re-scattering on the
nucleus, which can be adjusted using diverse forms of nuclear density.

Furthermore, our formalism for the calculations in Distorted Wave Im-
pulse Approximation (DWIA) accommodates a sufficiently large model space of
single-particle states, which is crucial for electroproduction of the medium- and
heavy-mass hypernuclei. The single-particle transition densities, represented by
the One-Body Density Matrix Elements (OBDME), are obtained from various
many-body calculations utilizing different forms of the effective hyperon-nucleon
(YN) interactions.

This developed advanced formalism enables a comprehensive examination of
predicted cross sections for the electroproduction reaction across a wide range
of hypernuclei. In particular, we investigate the impact of the Fermi motion,
various kinematical assumptions, the kaon distortion, as well as various many-
body approaches and forms of the effective YN interactions. In our analysis we
explore effects in the angular and energy dependent cross sections for various
hypernuclear states, including the p-shell hypernuclei 12

ΛB and 16
ΛN, and the

sd-shell hypernuclei 40
ΛK and 48

ΛK. Comparisons with experimental data for 12
ΛB

and 16
ΛN highlight sensitivity of the cross sections to different computational

schemes, emphasizing importance of selecting the optimum proton momentum.
Moreover, the analysis reveals systematic variations in the Fermi motion

effects among groups of the hypernuclear states with a specific spin and parity,
allowing to formulate a “dynamical selection rule”. It was also shown that the
kaon distortion significantly suppresses the cross sections, particularly for deeply
Λ bound states. These effects are more pronounced in heavier hypernuclei. The
predicted spectra for medium-mass hypernuclei, 48

ΛK and 40
ΛK, show a potential

of the Tamm-Dancoff approach and provide insights into preparation and data
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analysis of the experiments planned at the Jefferson Laboratory (JLab).
In conclusion, our comprehensive theoretical framework offers valuable in-

sights into the complex dynamics of hypernuclear electroproduction, facilitating
deeper understanding of it. It can be also utilized in preparing future experi-
ments in hypernuclear physics.
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Preface

Production of hypernuclei, multibaryonic systems with nonzero strangeness, provides
an opportunity to investigate various aspects of the strong and weak interactions
in nuclei, mainly the hyperon-nucleon (YN) interaction [1]. Since very limited in-
formation can currently be obtained from the free-space YN scattering experiments,
especially on the spin-dependent component of the YN interaction, hypernuclei are
unique laboratories for studying this interaction [2]. Among possible hypernuclei the
well established Λ-hypernuclei, atomic nuclei where one nucleon is replaced by the
Λ hyperon, are the most frequently observed and studied objects [3]. In this work,
therefore, the hypernucleus stands for the Λ-hypernucleus unless stated otherwise.

The reaction spectra in electroproduction of hypernuclei allow to study various
forms of the YN interaction as well as other components involved in the reaction
dynamics, such as the elementary-production amplitude, many-particle approach, and
kaon distortion. In this work, we performed a comprehensive exploration of computing
the cross sections in electroproduction of light and medium-mass hypernuclei. Our
aim was to demonstrate theoretical uncertainty in predicting the cross sections, which
is needed in data analysis as well as in preparation of experiments. Selected results
of this study were already published in Physical Review C: “Fermi motion effects in
electroproduction of hypernuclei” [4] and “Self-consistent many-body approach to the
electroproduction of hypernuclei” [5] and presented at the international conferences
MESON2021 [6] , HYP2022 [7], and MESON2023 [8].

Our advanced theoretical framework relies on the impulse approximation con-
sidered in the optimal factorization approximation, where the elementary amplitude
is evaluated for an effective, i.e., generally non-zero, proton momentum. Therefore,
central to our analysis is the development and utilization of a two-component (CGLN-
like) form of the elementary amplitude for a general reference frame, which is needed
to evaluate the many-body matrix element. This general form enables to incorporate
an arbitrary value of the effective proton momentum wherewith effects of the proton
Fermi motion in the target nucleus can be included. We aim at capturing the dynamic
interplay between the values of the particle momenta and their response in behaviour
of the cross sections. The effects are studied using two elementary amplitudes with
different energy-momentum dependence [4].

Considering a sufficiently large model space of the single-particle states in our
DWIA calculations allowed to study sensitivity of the cross sections, and herewith
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the excitation spectra in the reaction, to applied many-body approaches and different
forms of the effective YN interaction. We showed that the excitation spectra are
considerably sensitive to the form of the YN interaction. We also provided predictions
for the electroproduction on the 40Ca and 48Ca targets that are planned to be measured
at Jefferson Laboratory [5].

Moreover, our study addresses important aspects of distortion of the final-state
kaon wave function included via the framework of the eikonal approximation. This
involves using an optical potential that describes the kaon re-scattering on the nucleus.
This first-order optical potential is constructed assuming the kaon-nucleon scattering
amplitude and diverse forms of the nucleus density.

The thesis is divided into the following parts:
In Introduction, we delve into the current knowledge of models and experiments

on photo- and electroproduction of hypernuclei, providing an overview of existing
knowledge in the field. We also briefly mention other hadron-induced reactions used
to study hypernuclei and outline properties of interactions with strange particles.

The second chapter outlines a theoretical framework used in computing the cross
sections in electroproduction of hypernuclei. Here we detail the main ingredients
needed to calculate the reduced amplitudes, particularly the elementary amplitude,
the radial integrals and the OBDME providing information about the nucleus and
hypernucleus structure.

Results and their discussion is given in the third chapter focusing on effects from
the proton Fermi motion, the kaon distortion, and various approaches and YN inter-
actions used to determine the nuclear structure, i.e. OBDME. Here, I would also like
to note a fruitful collaboration with my colleagues Dalibor Skoupil and Petr Veselý.
Dalibor helped me in implementing the BS3 model for the elementary amplitude.
Petr taught me the shell model and Tamm-Dancoff Λ approach and provided me with
the numerical values of OBDME. I also appreciate numerous discussions with the
colleagues on the results.

In the fourth chapter, we present a summary of our findings and draw conclusions
from our study.

Technical details on derivation of the production amplitude, the two-component
form of the elementary amplitude (CGLN-like), the spherical amplitudes, and further
details on the numeric calculations are given in the appendices A – D.
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1 Introduction

In the realm of nuclear physics, hypernuclei constitute a compelling field of study as
they include another quantum number, the strangeness. The persisting interest in
investigating the hypernuclei can be attributed to advancements in both theoretical
and experimental methodologies. Moreover, presence of the open strangeness in the
nucleus can also shed more light on dynamics of the nucleus, particularly it reports
on relevance of the hadronic degrees of freedom in the nucleus.

When approaching the nucleus from the perspective of a system comprised of
hadrons, baryons and mesons, rather than quarks and gluons, it becomes possible to
introduce Λ particles into various energy states. Remarkably, this encompasses even
the deeply bound states, as the Pauli exclusion principle does not act as a barrier. The
relatively long lifetime of the Λ hyperon (10−10s) in comparison with the typical time-
scale of the strong and electromagnetic reactions enables the formation of relatively
stable systems such as Λ-hypernuclei. These properties of the Λ hyperon open the
door to studying nuclear structure. Researchers are now investigating a wide spectrum
of hypernuclear systems, spanning from lighter to heavier elements along the periodic
table. The obtained results broaden our understanding of atomic nuclei and their
complex interactions.

1.1 Description and history of hypernuclei

The first hypernucleus, consisting of a Λ hyperon bound to a nuclear fragment, was
observed in an emulsion exposed to cosmic rays. This groundbreaking discovery was
made by Danysz and Pniewski in 1953 [9]. Over the following two decades, the
hypernuclei have been studied using emulsion detectors, initially with cosmic rays
and later with beams from existing accelerators.

In the later years, the field of hypernuclear physics has experienced a significant
advancement due to the availability of modern particle accelerators and electronic
instrumentation. These technological developments have considerably increased the
rate and scope of experimental investigations concerning strangeness in nuclei. The
hypernuclei have started to be studied on the hadron (π+ and K−) beams and in
recent years also on the electron beams.

In 1972, the existence of a particle-unstable state of 12
ΛC with the Λ hyperon in

the p orbit was confirmed [10]. The reaction K− + 12C → π− + p +11
Λ B, observed in
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the emulsion, was employed to study excited states of 12
ΛC.

From the mid-1970s onward, investigation of the p-shell hypernuclei continued
utilizing the (K−, π−) reaction and the magnetic spectrometers. The binding energies
of heavier hypernuclear systems were extracted by analyzing the spectra obtained in
the (π+, K+) reaction, which has a higher probability of populating interior states
within the hypernucleus. However, there were challenges in determining the mass
or binding energy scale for most of the data. The normalization of the data to the
binding energy value of 12

Λ C in the emulsion, which was determined from only a few
events, contributed to uncertainties in the binding energies. Additionally, resolution
issues in the reaction spectra added further complexity to the measurements.

To address some of these uncertainties, recent progress has been made by com-
paring the experimental data with (e, e′K+) electroproduction measurements which
provides independent information on the binding energies [3]. This comparison has
helped to refine the determination of binding energies and improved our understanding
of hypernuclear structure.

Figure 1: Schematic diagram of three strangeness producing reactions used to study
hypernuclei. The figure is adopted from Ref. [11].

In Fig. 1 we show characteristic features of the elementary processes (K−, π−),
(π+, K+), and (e, e′K+), used to produce hypernuclei. On the quark level, the inter-
actions exhibit distinct features. In the (K−, π−) reaction, the s quark in the initial
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anti-kaon exchanges with the d quark in the neutron forming the Λ hyperon. On the
other hand, both in the (π+, K+) and (e, e′K+) reaction, a pair of the strange quarks,
s̄s, is created associated in both final-state hadrons, leading to the simultaneous pro-
duction of a Λ hyperon and kaon. Therefore, as illustrated in Fig. 1, the (π+, K+)
and (K−, π−) reactions convert a neutron in the target nucleus into Λ. In contrast,
the (e, e′K+) reaction converts a proton to Λ. Additionally, since the spin-flip ampli-
tudes in the n(π+, K+)Λ and n(K−, π−)Λ reactions are typically small unless specific
kinematic conditions are met, these reactions predominantly populate non-spin-flip
states of hypernuclei. On the other hand, the (e, e′K+) reaction can populate spin-
flip hypernuclear states with unnatural parities. Note that hypernuclei can be also
produced in collisions of heavy ions [3].

The hypernuclear reactions are significantly influenced by the momentum transfer
between the beam particle and the Λ hyperon which is a crucial factor in forming the
hypernuclear states. A larger momentum transfer typically results in a smaller hyper-
nuclear cross section. Different reactions offer distinct advantages in a hypernuclear
spectroscopy. The (K−, π−) reaction tends to preferentially populate substitutional
states, where a nucleon is converted to a Λ in the same orbit without an orbital
momentum transfer. On the contrary, in the (π+, K+) and (e, e′K+) reactions a
substantial momentum is transferred to the hypernucleus as these reactions are en-
dothermic. This characteristic allows them to excite high-spin hypernuclear states
with the nucleon hole possessing a large angular momentum and the Λ with a small
angular momentum. This makes these reactions advantageous for the Λ-hypernucleus
spectroscopy.

Naturally, theoretical interest has closely followed the experimental progress. Re-
searchers in the field have developed theoretical models and frameworks to explain and
understand the behavior of hypernuclei and the interactions involving strange parti-
cles within nuclei. The close interplay between experimental and theoretical efforts
has been instrumental in advancing our understanding of hypernuclear physics.

The behavior of the Λ hyperon in a nuclear system possesses a nuclear many-body
problem due to the predominant hadronic forces between the baryons. The timescale
of the strong interaction is of the order of 10−23 seconds, which is much shorter com-
pared to the weak-interaction lifetime of a Λ hyperon in the nuclear medium, approx-
imately 10−10 seconds [12]. As a result, the hypernuclear system can be effectively
treated using well-established nuclear theory models, such as shell or mean-field mod-
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els, incorporating in medium effective Λ-nucleon interaction. The Λ hyperon serves as
a unique and selective probe of the nuclear medium, offering valuable insights into nu-
clear properties that are not easily accessible through other experimental techniques.

Numerous prior investigations have delved into the study of the electroproduc-
tion of hypernuclei. Here, we highlight notable references and authors who have
contributed to these analyses.

Sotona and Žofka [13] have demonstrated that photoproduction reactions signif-
icantly polarize hypernuclear (HY) states that are strongly populated, distinct from
those polarized in the (π+, K+) reactions. To fully unveil the rich spectroscopic in-
formation of HY states, hypernuclear productions involving (K−, π−), (π+, K+), and
(γ, K+) should be combined in corresponding kinematic regimes and on neighboring
targets. This approach allows access to all parts of the hypernuclei spectra, enabling
quantitative distinctions among well-defined configurations. Sotona and Žofka stud-
ied the targets with a simple structure like 12C and 16O considering the HY states
with the pronounced particle-hole configurations.

Sotona and Frullani [14] reviewed the formalism for electroproduction processes
in the one-photon exchange approximation, along with the models of elementary pro-
duction based on the tree-level Feynman diagrams. Contributions of the nucleon and
hyperon resonances with spin 1/2, as well as the kaon resonances with spins 0 and 1, to
the amplitude were outlined in both covariant and two-component forms. While these
models reasonably match available data on photoproduction cross-sections and polar-
izations, understanding the process remains incomplete. They highlighted discrep-
ancies among the model predictions for the higher-energy real photons and medium-
energy virtual photons. Precision measurements with both real and virtual photons
could refine the elementary amplitudes, addressing theoretical uncertainties like cou-
pling constants and the electromagnetic form factor of the kaon. They summarized
the DWIA formalism for electroproduction of Λ hypernuclei, demonstrating its general
features on the case of 16O target. They showed that the model uncertainties strongly
influence estimated cross sections and that the predicted triple differential cross sec-
tion decreases rapidly with increasing virtual photon “mass" q2. By employing more
complex targets like 7Li, 9Be, and 12C, they also showed that the electroproduction
reaction is a unique tool for studying the spectroscopy of light hypernuclei.

Motivated by successful predictions of the production spectra in the first high-
resolution (e, e′K+) experiments at Jefferson Laboratory on the p-shell nuclear targets,
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Bydžovský, Sotona, Motoba, Itonaga, Ogawa and Hashimoto [15, 16] extended the
DWIA calculations to the sd- and fp-shell regions for the first time. First, they care-
fully assessed available models describing the elementary process γp → K+Λ which
is a crucial input in the DWIA calculations. They found a good agreement between
four selected elementary amplitudes and the experimental data on the elementary
process, particularly at energies relevant to the hypernuclear calculations in DWIA.
Then their focus turned to examining the excitation spectra of 28Si(γ, K+)28

ΛAl, re-
vealing unique features such as the selective population of unnatural-parity states
attributed to the spin-flip dominance. They presented realistic excitation functions
for the 28Si(γ, K+)28

ΛAl reaction, taking into account fragmentation effects and core-
excited configurations. Additionally, for the 40Ca and 52Cr targets, they observed
distinct peak series corresponding to natural and unnatural parity states, respectively.

Bennhold and Wright [17] showed that the theoretical and calculation groundwork
for investigating hypernuclear states through kaon photoproduction is well estab-
lished. Their conclusions underscored the importance of additional photoproduction
experiments to confirm the validity of the basic operator, particularly for photon en-
ergies up to about 2 GeV. Unlike previous results showing discrepancies with hadronic
analyses, they observed relatively modest relativistic effects in the cross sections, es-
pecially for high-spin transitions. Their examination of nonlocalities arising from
Fermi motion and the elementary-transition operator revealed notable changes in the
cross sections, particularly for relativistic wave functions. Furthermore, they discov-
ered the importance of retaining all terms in the production operator, as neglecting
certain terms could lead to significant variations in the cross sections, especially for
high-spin states.

Lee, Ma, Saghai, and Toki [18] investigated the 12C(γ, K+)12
ΛB reaction by utilizing

the recently developed Saclay-Lyon amplitudes of the γp → K+Λ reaction [19, 20] and
the wave functions from the relativistic mean-field model of nuclei and hypernuclei.
With the nuclear transition matrix elements taken from a shell-model calculation,
they found that the predicted bound-Λ production cross section is close to the data.
However, in a quasifree calculation based on a simple three-body model, they observed
that the predicted unbound-Λ production is about a factor of 2 larger than the data.
This discrepancy cannot be fully understood in terms of the medium effects on the
incoming photons and outgoing kaons. Their results suggest that the medium effects
on the Λ propagation need to be included in future investigations.
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Cohen [21] discussed the importance of the (e, e′K+) reaction in hypernuclear
physics, comparing it with the (K−, π−) reaction and suggesting specific problems
that could be studied preferentially with the (e, e′K+) reaction. He provided the
cross sections for both exclusive and inclusive processes across a wide range of nuclear
masses. However, he noted that the elementary process p(e, e′K+)Λ was not well un-
derstood and rised questions about coupling constants and electromagnetic moments
that called for a further discussion.

Hsiano and Cotanch [22] noted that kaon photoproduction, being the weakest
nuclear interaction involving a hadron, is an ideal probe for analysis of both the
nuclear and hypernuclear structure, especially for studying transition spin densities
and unnatural parity states. They highlighted that the reaction mechanism is rea-
sonably understood and amenable to an accurate theoretical description, with un-
certainties primarily concerning the energy and off-shell behavior of the elementary
amplitudes. For energies above 1.2 GeV, they suggested the inclusion of contributions
from baryon resonances and emphasized the need for a phenomenological analysis of
the γ + p → K+ + Λ reaction for energies between 1.2 GeV and 3.0 GeV. Due to
the large momentum transfer associated with the (γ, K) process, they suggested that
off-shell effects may be significant and planned further detailed study. Additionally,
they expressed intentions to investigate other topics such as Σ hypernuclei and kaon
photoproduction through strange quark pair creation. They suggested that a compar-
ison of a quark versus a meson-baryon exchange picture might provide useful insight,
owing to the weak absorption associated with kaon photoproduction.

Shyam, Lenske, and Mosel [23] have discovered that hypernuclear production
via the (γ, K+) reaction on 16O involves the excitation of N∗(1710), N∗(1650), and
N∗(1720) baryonic resonances, leading to the subsequent decay into the Λ hyperon
and K+. Although distortion effects in the K+ channel were not considered, their
impact is noted to be weak for reactions on p-shell nuclei but potentially more sig-
nificant for heavier systems. The absence of nucleon intermediate states introduces
some uncertainty in the total cross section magnitudes, approximately up to 10%. It
was found that the excitation of N∗(1710) resonance predominantly drives the hy-
pernuclear production process, consistently with previous studies. Additionally, they
observed that total production cross sections peak at photon energies slightly above
the corresponding production threshold.

Shyam, Tsushima and Thomas [24] found that hypernuclear production through
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the (γ, K+) reaction on 12C involves the excitation and subsequent decay of N∗(1710),
N∗(1650), and N∗(1720) baryonic resonances, leading to the capture of the Λ hyperon
in a nuclear orbit while emitting the K+ particle. By incorporating hyperon bound
state spinors derived from the latest quark-meson coupling model, they introduced
quark degrees of freedom into the description for the first time. Fixing the cou-
pling constants based on the total and differential cross sections of the elementary
γp → ΛK+ reaction improved parameter constraints. Their study confirmed that
the (γ, K+) reaction is a suitable tool for investigating the spin-flip transitions offer-
ing insights into the hypernuclear spectra, albeit with uncertainties due to excluded
nucleon intermediate states.

Mart, Tiator, Drechsel, Bennhold, and Ventel focused on the electromagnetic pro-
duction of the hypertriton, studying the effects of Fermi motion. They derived the
two-component form of the elementary production amplitude in a general reference
frame [25, 26]. Utilizing the Kaon-MAID [27, 28] model for the elementary amplitude,
Mart and Ventel [26] highlighted the significance of Fermi motion effects in describ-
ing the cross sections for hypertriton electroproduction. They emphasized that the
frozen-proton assumption yields notably different results, particularly at lower ener-
gies.

These researchers and their respective works have contributed to advancing our
understanding of electromagnetic production of hypernuclei, providing insights into
the underlying dynamics and properties of these unique nuclear systems.

1.2 Approaches used to study electroproduction
of hypernuclei

In recent times, the study of Λ hypernuclei using spectroscopy has emerged as a valu-
able tool for exploring the field of strangeness nuclear physics through experimental
investigation. The pioneering spectroscopy experiments, conducted in the 1970s using
the (π+, K+) reaction at the Brookhaven National Laboratory Alternating Gradient
Synchrotron (BNL AGS) [29, 30], paved the way for the measurement of excitation
spectra of a diverse range of Λ hypernuclei. The experiments were further conducted
using the superconducting kaon spectrometer (SKS) at the KEK [31, 32, 33] 12 GeV
Proton Synchrotron (PS).

The (e, e′K+) reaction was used for the first time to study Λ hypernuclear spec-
troscopy at the Thomas Jefferson National Accelerator Facility (Jefferson Lab) using
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the continuous electron beam [34]. This reaction has been further explored through
the use of a new high-resolution kaon spectrometer (HKS) installed at Jefferson Lab.
At the same time, precision γ-ray spectroscopy has been successfully performed for
p-shell Λ hypernuclei at both the KEK 12 GeV PS and the BNL AGS using the ger-
manium detector array known as Hyperball [11]. The results obtained from these
experiments have provided quantitative information on the structure of Λ hypernuclei
and enabled determination of the strengths of the spin-dependent Λ-nucleon interac-
tion in the p-shell region [35].

In the field of hypernuclear reaction spectroscopy, significant efforts have been
made to improve the energy resolution of analyses and find new ways to produce
hypernuclei. In recent years, one of the most exciting developments in hypernuclear
reaction spectroscopy has been driven by the availability of high-energy and high-
intensity electron beams at the Jefferson Lab.

In fact, the first successful experiment on the nuclear target, 12C(e, e′K+)12
ΛB

[34, 36], was carried out using these beams. The energy resolution achieved in these
experiments, close to 0.5 MeV, is a significant improvement over the best energy res-
olution achieved so far in the (π+, K+) reactions. Following the Hall C experiments
with 12C, experimental data at higher virtual-photon energies from Hall A was re-
ported [37, 38, 39].

Before these experiments were completed, theoretical (γ, K+) spectra were pre-
dicted for the 10B, 12C, and 16O targets, and (e, e′K+) spectra were predicted for the
7Li, 9Be, 12C, and 16O targets. Among these, the prediction for the 12C target was
remarkably confirmed by the pioneering experiment. The good agreement between
theory and experiment encourages researchers to extend the theoretical framework to
the production of heavier hypernuclei beyond the p-shell [15].

In this stage of new developments in hypernuclear spectroscopy it is worth empha-
sising pioneering experimental proposals made many years ago. One of the priorities
was to establish a status of the theoretical attempts to describe the elementary process
of the γp → K+Λ reaction and identify appropriate amplitudes to estimate the hyper-
nuclear production cross sections [19, 20, 27, 40]. The comparison to other reactions
such as (K+, π+) and (K−, π−) is important for further investigation of hypernuclei.
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1.3 Properties of interactions with strange particles

The models of kaon and hyperon production that are closely connected to Quantum
Chromodynamics (QCD) rely on the quark degrees of freedom. These quark models
require a relatively small number of parameters and explicitly consider the spatially-
extended structure of baryons, which has been found to be crucial for a reasonable
description of photoproduction data [41, 42]. In these models, contributions from
baryon resonances in the intermediate state naturally arise from the effects of excited
states of the quark system.

Alternatively, other approaches aim to describe the production process at low
energies by treating hadrons as effective degrees of freedom. Calculations based on
effective Lagrangians, which incorporate interactions among mesons, baryons, and
electromagnetic fields, provide a valuable tool for analyzing experimental data. Unlike
the quark models, these approaches do not have an explicit connection to QCD.
Consequently, the number of parameters in these models is related to the number
of resonances considered in the calculations, leading to a relatively large number of
parameters in kaon production studies [43, 44, 45].

Certain models incorporate the concept of chiral symmetry to account for the
pseudoscalar mesons, which are the Goldstone bosons, in the context of kaon-hyperon
photoproduction processes. In the chiral quark model [46], pseudoscalar mesons are
included as essential components, utilizing chiral symmetry. Another approach is the
gauge-invariant chiral unitary model [47], which constructs a chiral effective meson-
baryon Lagrangian to describe the interactions. This model also considers the chiral
symmetry. Additionally, attempts have been made to calculate kaon-hyperon pho-
toproduction processes near the threshold using the chiral perturbation theory [48].
In this framework, the interactions are described by an expansion based on chiral
symmetry. These different models and approaches involving chiral symmetry pro-
vide valuable insights into the dynamics of kaon-hyperon photoproduction and its
connection to fundamental symmetries in particle physics.

In the hadrodynamical approach, it is important to consider the coupling between
different production channels, which occurs through the meson-baryon interaction
in the final state. Therefore, treating these channels simultaneously is necessary to
preserve unitarity.

A significant simplification is achieved by neglecting the rescattering effects in the
formalism, assuming that their impact on the results is partially accounted for through
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effective values of the coupling constants that are fitted to experimental data. This
simplifying assumption is commonly adopted in single-channel isobar models, such as
the Saclay-Lyon (SL) [19, 20], Kaon-MAID (KM) [27], and Gent-Isobar [43, 44, 45]
models. In the single-channel approach, unitarity corrections can be incorporated by
introducing energy-dependent widths in the resonance propagators [27, 28].

The isobar models [49] were among the first models capable of accurately describ-
ing kaon photoproduction in the resonance region. These models have played a crucial
role in understanding the dynamics of kaon production and have achieved good agree-
ment with experimental data by considering the contributions from resonant states.
The neglect of rescattering effects simplifies the calculations while maintaining rea-
sonable agreement with experimental observations, highlighting the importance of the
effective values of coupling constants and the inclusion of unitarity corrections in the
form of energy-dependent widths.

The Regge-plus-resonance (RPR) model, developed by the Gent group [50, 51],
offers a description of kaon-hyperon photo- and electroproduction from the threshold
up to energies above the resonance region (Eγ ≈ 16 GeV).

In this RPR model, the amplitude is divided into two parts: the Regge-based part
and the resonance part. The Regge-based part, characterized by a smooth energy
dependence, contributes predominantly to the background in the resonance region.
This part of the amplitude provides a systematic and model-independent description
of the non-resonant contributions.

The resonance part of the amplitude is responsible for modeling the contributions
from nucleon resonances. These resonances are represented by s-channel exchanges,
where the intermediate particles are considered as excited states of the nucleon. In
the RPR model, these resonant contributions are modified by strong hadron form
factors. These form factors ensure that the resonant contributions diminish rapidly
above the resonance region, where the Regge-based part dominates.

The advantage of the RPR model is that it reduces the number of background
parameters compared to traditional isobar models. This is achieved by utilizing the
Regge-based form to describe the smooth background which eliminates the need for
introducing a set of the u-channel exchanges. This simplification enhances the model’s
interpretability and reduces potential uncertainties associated with background pa-
rameterization.

Recently new isobar models were developed for the photoproduction [40] and elec-
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troproduction [52] of KΛ. These models employed a consistent and new formalism
for describing higher-spin baryon resonances, as introduced by Pascalutsa [53, 54].
This formalism also facilitated the inclusion of hyperon resonances with spin 3/2.
Special attention was given to the properties of the model at very forward kaon-angle
production, a crucial aspect for calculating cross sections in hypernucleus photo- and
electroproduction [16, 55].

1.4 Jefferson Lab Hall A and Hall C experiments

A substantial amount of data has been obtained through two hypernuclear spec-
troscopy techniques: the reaction-based spectroscopy using the hadron and electron
beams and the γ-ray spectroscopy [3, 11].

The reaction spectroscopy directly populates hypernuclear states allowing to ex-
plore the level structure of the bound Λ within the bound region. This technique
can even investigate the excited states between the nucleon and hyperon emission
thresholds. It provides valuable insights into the hypernuclear structure, the bind-
ing energies, and the reaction cross sections. Additionally, precise measurements of
the production cross sections offer information about the hypernuclear production
mechanism and the dynamics of the elementary production reaction.

On the other hand, the γ-ray spectroscopy achieves a very high resolution, typically
a few keV, making it a powerful tool for studying the spin-dependent aspects of the
effective ΛN interaction. This technique provides precise information on the level
structure of hypernuclei and is particularly useful for investigating small spin-flip
amplitudes associated with the baryon-baryon interaction. However, the γ-ray spectra
can be obtained only up to the nucleon-emission threshold.

Jefferson Lab’s Hall A provides an ideal setting for conducting the (e, e′K+) exper-
iments [56]. The setup involves detecting scattered electrons using the high-resolution
spectrometer (HRS) in the electron arm, while coincident kaons are identified in the
HRS hadron arm [57]. Although the electromagnetic cross sections are relatively small
compared to the hadron-induced reactions, the high beam current, duty cycle, and
energy-resolution capabilities help compensate for this drawback. In the experiment
E94-107 [56], a coplanar configuration was chosen with the angle between the scat-
tering (leptonic) and reaction (hadronic) planes, which equals to the kaon azimuthal
angle, set at ϕK = 180◦. Subsequently, the kaon laboratory angle relative to the
photon momentum is given by θK = θKe − θγe. The cross sections were measured at

21



the virtual photon energy 2.2 GeV and the kaon angle relative to the beam direction
θKe = 6◦.

In the Hall C hypernuclear spectroscopy program [58], the experiments aimed at
a high resolution, targeting at the full width at the half of the maximum (FWHM)
as low as 300-400 keV, while also prioritizing hypernuclear yield rates comparable to
those in the (π+, K+) reaction. This dual focus is crucial for the success of intensive
hypernuclear spectroscopy programs. Across three generations of Hall C experiments,
E89-009, E01-011, and E05-115, a virtual photon energy around 1.5 GeV was selected,
with the kaon central momentum set at 1.2 GeV/c. The experimental setup evolved
from using the superconducting kaon spectrometer in the first generation to the high-
resolution large-solid angle QQD spectrometer (HKS) in the subsequent generations.

Progress in the experimental study of bare YN and YY interactions, as well as
elementary strangeness production through electromagnetic interaction, forms the
foundation of the hypernuclear program at the Jefferson Laboratory.
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2 Theoretical background

In this section, we present an essential formalism used in description of the electro-
production of hypernuclei. This formalism was used in our works [5] and [4].

2.1 Cross section

Based on that the electromagnetic interaction is well known and weak, with the cou-
pling constant α ≈ 1/137, therefore the electroproduction of hypernuclei

e(k) + A(PA) −→ e′(k′) + H(PH) + K+(PK) , (1)

can be treated in the one-photon exchange approximation (OPEA) as depicted in
Fig. 2. The production is mediated by a virtual photon γv with the momentum
Pγ = k − k′, where k and k′ represent the momenta of the incident electron and the
scattered electron, respectively.

Figure 2: Electroproduction of a hypernucleus in the one-photon exchange approx-
imation. The external particles are on their mass shells but the virtual photon is
off-mass-shell, P 2

γ < 0.

The formula for the S matrix of the process shown in Fig. 2 and considering the
case when the nucleus (A) and hypernucleus (H) are bosons, i.e. they have integer
spins is

Sfi = δfi + i(2π)4 δ(4)(Pf − Pi)
me√︂

8EeEAEHEKE ′
e

Mfi , (2)

where Pi = k + PA and Pf = k′ + PK + PH. The case with half-integer nuclear spins
means the additional factor

√
4MAMH. It’s important to note that while we describe
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the process in the formalism of quantum field theory, the ultimate description of
the nuclear and hypernuclear structure will be in a non-relativistic framework using
quantum-mechanical wave functions. Consequently, a renormalization of the nuclear
current will be necessary.

The invariant amplitude is

Mfi = (−ie) ūe(k′)γµue(k) −i

Pγ
2 Iµ(PA, Pγ, PH, PK)(−ie) . (3)

Here, the lepton and hadron (Iµ) currents are gauge invariant. After averaging over
the electron and nucleus spins and summing over the final spins we obtain

1
2(2JA + 1)

∑︂
spin

|Mfi|2 = 1
2(2JA + 1)

e4

Pγ
4m2

e

LµνW νµ , (4)

where the lepton and nuclear tensors are, respectively

Lµν = 1
2 P 2

γ gµν + kµk′
ν + kνk′

µ and W νµ =
∑︂

JAJH

IνIµ+ . (5)

The nucleus and hypernucleus spins are denoted as JA and JH, respectively, me is the
electron mass, and e the charge unit with e2/(4π) = α ≈ 1/137.

In the laboratory frame (see Fig. 4), we explicitly express the lepton tensor and
evaluate the tensor product

Lµν W νµ = Q2

2(1 − ε)

[︄
W xx + W yy + ε (W xx − W yy) + 2ε

Q2

ω2 W zz−

−
√︂

2ε(1 + ε)
√︄

Q2

ω2 (W xz + W zx)
⎤⎦ , (6)

where Q2 = −P 2
γ , ω is the photon energy and its transverse polarization is character-

ized by the parameter

ε ≡ Lxx − Lyy

Lxx + Lyy

=
⎡⎣1 + 2 Pγ⃗

2

Q2

(︄
tanθe

2

)︄2
⎤⎦−1

. (7)

The cross section, still for specific spin states and A and H as bosons, is

dσ = 1
F

(2π)4 δ(4)(Pf − Pi) |Mfi|2
m2

e

2E ′
eEKEH

d3k′

(2π)3
d3PK

(2π)3
d3PH

(2π)3 , (8)

where the initial flux factor in the laboratory frame (lab) reads F = 4
√︂

(k · PA)2 − m2
eM

2
A =

4MA|k⃗|. Then the lab cross section for A(e, e′K+)H is

dσ = m2
e

(2π)5MA|k⃗|
δ(4)(Pf − Pi) |Mfi|2

d3k′

2E ′
e

d3PK

2EK

d3PH

2EH
. (9)
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In Eqs. (4), (6), and (9) we see that the lepton part of the electroproduction process
is described explicitly in the OPEA and the non trivial, yet unknown, dynamics is
included in the nuclear tensor which describes a binary process A(γv, K+)H with
Pf − Pi = PH + PK − PA − Pγ. The δ-function in Eq. (9) then allows a decomposition

δ(4)(PH + PK − PA − Pγ) =
∫︂

d4pp d4pΛ δ(4)(PK + pΛ − Pγ − pp)

δ(4)(pp + pc − PA) δ(4)(PH − pc − pΛ) , (10)

representing a factorization of kinematics in the impulse approximation (see next
subsection). The first δ-function in the integral corresponds to the elementary vertex,
while the other two account for the energy-momentum conservation in the nucleus
and hypernucleus vertex functions. This decomposition ensures that the elementary
amplitude is on its energy-momentum shell.

In equation (9), integration over d3PH can be performed using the δ-function,
leaving δ(1)(EH + EK − MA − ω). This is then employed to determine the kaon energy
by integrating over d|P⃗ K | using the identity |P⃗ K | d|P⃗ K | = EKdEK . The remaining
differentials dE ′

e, dΩ′
e, and dΩK are utilized to express the 3-fold differential cross

section.
d3σ

dE ′
e dΩ′

E dΩK

= 1
(2π)5

m2
e|P⃗ K ||k⃗

′
|

8MAEH|k⃗|
|Mfi|2 , (11)

where d3PK = P⃗
2
K d|P⃗ K | dΩK = |P⃗ K |EKdEKdΩK and d3k′ = |k⃗

′
|E ′

edE ′
edΩ′

e. It also
holds PA + Pγ = PH + PK .

After summing and averaging over the spins

d3σ

dE ′
e dΩ′

E dΩK

= α2

(2π)3
1

2JA + 1
1

Q2(1 − ε)
|P⃗ K ||k⃗

′
|

2MAEH|k⃗|

[︃
W xx + W yy

+ε (W xx − W yy) +2ε
Q2

ω2 W zz −
√︂

2ε(1 + ε)
√︄

Q2

ω2 (W xz + W zx)
⎤⎦ . (12)

The virtual-photon flux factor can be introduced into the formula, considering the
ultra-relativistic limit where electron energies are above 1 GeV and the electron mass
can be neglected leading to Ee ≈ |k⃗|. Defining

Γ = α

2π2
|P⃗ γ|

Q2(1 − ε)
E ′

e

Ee

= α

2π2
|Pγ⃗ |

Q2(1 − ε)
|k⃗

′
|

|k⃗|
, (13)

we get the expression where a non trivial contribution is given only by the nuclear

25



tensor

d3σ

dE ′
e dΩ′

E dΩK

= Γ 1
2JA + 1

α

4π

|P⃗ K |
4MAEH|P⃗ γ |

1
2

[︃
W xx + W yy + ε (W xx − W yy)

+2ε
Q2

ω2 W zz −
√︂

2ε(1 + ε)
√︄

Q2

ω2 (W xz + W zx)
⎤⎦ . (14)

Now we can re-write the 3-fold differential cross section for electroproduction of
an unpolarized hypernucleus induced by an unpolarized electron beam and target in
terms of following contributions

d3σ

dE ′dΩ′dΩK

= Γ
(︄

dσT

dΩK

+ εL
dσL

dΩK

+ ε
dσTT

dΩK

+
√︂

εL(ε + 1) dσTL

dΩK

)︄
, (15)

where ε and εL are the transverse and longitudinal photon polarization parameters,
respectively. The relation between them is εL = ε Q2/ω2.

Functions dσT and dσL describe the cross sections in A(γv, K+)H for transversally
and longitudinally polarized photon beam, respectively. On the other hand, dσTT

represents the asymmetry for a transversally polarized photon beam. The final term
dσTL accounts for interference effects between the longitudinal and transverse com-
ponents of the photon beam. It is worth noting that dσT and dσTT are related to the
cross section and beam asymmetry, respectively, observed in the production with real
photons (photoproduction).

The terms in Eq. (15) are expressed via reduced amplitudes Aλ
Jm as follows:

dσT

dΩK

= β

2 (2JA + 1)
∑︂
Jm

1
2J + 1

[︂
(A+1

Jm + A−1
Jm)

]︂
, (16)

dσL

dΩK

= β

2JA + 1
∑︂
Jm

1
2J + 1

⃓⃓⃓
A0

Jm

⃓⃓⃓2
, (17)

dσTT

dΩK

= β

2JA + 1
∑︂
Jm

1
2J + 1Re

[︂
A+1

JmA−1∗
Jm

]︂
, (18)

dσTL

dΩK

= β

2JA + 1
∑︂
Jm

1
2J + 1Re

[︂
A0∗

Jm

(︂
A+1

Jm − A−1
Jm

)︂]︂
. (19)

The kinematic factor β [14] is reliant on the kaon momentum. In the kinematic regime
under consideration, as observed in previous experiments [56], the dominant compo-
nent of the cross section is the transverse part dσT. Although the longitudinal part
dσL, makes minor contributions, we will demonstrate its sensitivity to kinematic effects
and elementary amplitudes. The interference between the transverse and longitudinal
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components dσTL, constitutes a significant contribution to the overall cross section,
even when dealing with relatively low photon virtualities, such as Q2 ≈ 0.01(GeV/c)2.
In the next subsection we will show how the reduced amplitude Aλ

Jm is calculated.

2.2 Reduced amplitude

Figure 3: A simplified depiction of the amplitude for the photoproduction (electro-
production) of a hypernucleus (H) caused by real(virtual) photons in the plane-wave
impulse approximation (PWIA).

Production of hypernuclei by a virtual photon associated with a kaon in the final
state

γv(Pγ) + A(PA) −→ H(PH) + K+(PK) , (20)

can be described in the impulse approximation (IA) where the elementary reaction
takes place on individual protons bound in the nucleus. This approach, shown in
Fig. 3 is justified for kinematics of the experiments performed at JLab [56] because
both photon and kaon momenta are reasonably high, specifically more than 1 GeV.
In the IA the total amplitude of the process can be separated into the two-body part,
represented by the shaded circle in Fig. 3, and the many-body one, represented by
the lower part of the diagram.

The cross section for the production of the ground and excited states of a hyper-
nucleus depends on the many-particle matrix element Mµ between the non-relativistic
wave functions of the target nucleus ΨA and the hypernucleus ΨH

Mµ = ⟨ΨH|⟨χK |
Z∑︂

j=1
Ĵµ(j) |χγ⟩|ΨA⟩ , (21)
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where χK is the wave function of the kaon that can be described as a plane wave in
PWIA or a distorted wave in DWIA. The wave function χγ of a virtual photon, without
Coulomb distortion of initial and final electrons, is assumed as a plane wave. Ĵµ(j)
is an elementary operator for the Λ particle production on the jth nucleon. Utilizing
symmetry of the nuclear wave function ΨA we can consider that the target proton is
the Ath particle in the nucleus and replace the sum over the protons with the product
ZĴµ, where Z is the atomic number of the target nucleus. The Λ particle is also
taken as the Ath particle in the hypernucleus ΨH. Then the nucleus and hypernucleus
can be taken for particle-core systems where the (A−1) core nucleons are spectators
in the production process with no dynamical response i.e., the structure of the core
nucleus is not changed during the process (a weak-coupling scheme). More details on
derivation of the matrix element (21) using the Jacobian coordinates ξi can be found
in the Appendix A. Here we give only basic assumptions.

Assuming translation invariance in the two-body part in Fig. 3, the elementary
amplitude can be introduced as Jµ(P⃗ K , Pγ⃗, p⃗p)

⟨P⃗ K , p⃗Λ |Ĵµ| Pγ̃, p̃p⟩ = (2π)3 δ(3)(p̃Λ − p̃p − ∆̃) Jµ, (22)

where ∆⃗ = P⃗ γ −P⃗ K is the momentum transfer in the process. This amplitude must be
expressed in the two-component form to correspond with the non-relativistic nuclear
and hypernuclear wave functions in the many-particle matrix element. Furthermore,
this form have to be written for a general two-body reference frame defined by a
specific value of the proton momentum. In previous calculations, e.g. in Ref. [56], a
special form of the amplitude was used assuming that the target proton is at rest in
the laboratory frame (p⃗p = 0). A more general form of the amplitude is constructed
in section 2.4.

The matrix element (21) is written in terms of a hypernucleus production ampli-
tude as

Mµ = (2π)3δ(3)(P⃗ A − P⃗ H + ∆⃗) Tµ , (23)

where the amplitude reads in the laboratory frame, P⃗ A = 0 and P⃗ H = ∆⃗

Tµ =Z Tr

[︄ ∫︂ d3pp

(2π)3 Jµ(P⃗ K , P⃗ γ, p⃗p) (24)

×
∫︂

d3rΛ d3ξp exp
{︄

i

[︄
A − 1

A − 1 + γ
∆⃗ · ξ⃗Λ + p⃗p · (ξ⃗Λ − ξ⃗p)

]︄}︄

×
∫︂

d3ξ1 ... d3 ξA−2 ΦA(ξ⃗1, ... ξ⃗A−2, ξ⃗p) Φ∗
H(ξ⃗1, ... ξ⃗A−2, ξ⃗Λ)

]︃
.
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The integral over d3pp includes averaging over the Fermi momentum of the target
proton since the nucleons are not at rest in nuclei. This averaging makes the cal-
culation quite complicated. However, if dependence of the elementary amplitude on
p⃗p is smooth one can consider some specific effective value of the proton momentum,
replace Jµ(P⃗ K , P⃗ γ, p⃗p) with Jµ(P⃗ K , P⃗ γ, p⃗eff) and take the amplitude out of the inte-
gral. Then the integration over p⃗p is trivial giving a δ-function which further allows
integration over ξ⃗p. From all above we obtain the expression for the hypernucleus pro-
duction amplitude in the optimum-factorization approximation, which also includes
the kaon distortion and which in the lab frame reads

Tµ = Z ·
∫︁

d3ξ χ∗
K

(︂
p⃗K , Bξ⃗

)︂
eiBξ⃗·(Pγ⃗−PK⃗)

×
∫︁

d3ξ1...d
3ξA−2Φ∗

H

(︂
ξ1⃗...ξ⃗A−2, ξ⃗

)︂
Jµ(P⃗ K , P⃗ γ, p⃗eff)ΦA

(︂
ξ1⃗...ξ⃗A−2, ξ⃗

)︂
(25)

or

Tµ = Z Tr
[︃
Jµ(P⃗ K , P⃗ γ, p⃗eff)

∫︂
d3ξ eiB ∆⃗·ξ⃗ χ∗

K(p⃗K , Bξ⃗ )

×
∫︂

d3ξ1...d
3 ξA−2ΦA(ξ⃗1, ... ξ⃗A−2, ξ⃗ ) Φ∗

H(ξ⃗1, ... ξ⃗A−2, ξ⃗ )
]︃

,

(26)

where B = (A − 1)/(A − 1 + γ), γ = mΛ/mp, χ∗
K is the kaon distorted wave function,

p⃗K is the kaon-hypernucleus relative momentum, and ξ⃗ = ξ⃗p = ξ⃗Λ.
Due to gauge invariance of the amplitudes we can set up Tµ εµ → T⃗ · ϵ⃗ =∑︁

λ T (1)
λ ϵ−λ and Jµ εµ → J⃗ · ϵ⃗ = ∑︁

λ J (1)
λ ϵ−λ with a new polarization vector ϵµ =

εµ − ε0(Pγ)µ/(Pγ)0 = ( 0, ϵ⃗ ), where λ = ±1, 0.
Using partial wave decomposition of the product of the photon and kaon wave

functions we can separate its orbital dependence

χ∗
K

(︂
p⃗K , Bξ⃗

)︂
eiBξ⃗·(P⃗ γ−P⃗ K) =

∑︂
LM

FLM

(︂
∆B|ξ⃗ |

)︂
YLM

(︂ˆ︁ξ)︂ , (27)

where YLM is the spherical harmonic function.
The elementary amplitude in the spherical coordinates J (1)

λ can be written in the
form

J (1)
λ =

∑︂
Sη

FS
λη σS

η , (28)

where S = 0, 1, σ1
η are the spherical components of Pauli matrices with η = ±1, 0 and

σ0
0 is the unit matrix. The spherical amplitudes F0

λ0 and F1
λη are for the spin non-flip

and spin flip transitions, respectively.
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The partial wave decomposition and the form of the spherical amplitude (28),
enables us to employ the algebra of spherical-tensor operators

YLM(ˆ︁ξ) σS
η =

∑︂
Jm

CJm
LMSη[YL(ˆ︁ξ) ⊗ σS]Jm (29)

so that Eq. (25) acquires the form

Tλ = Z
∑︂
LM

∑︂
Sζ

∑︂
Jm

CJm
LMSζFS

λζ

∫︂
d3ξFLM(B|ξ⃗|) (30)

×
∫︂

d3ξ1...d
3ξA−2Φ∗

H

(︂
ξ⃗1...ξ⃗A−2, ξ⃗

)︂ [︂
YL(ˆ︁ξ) ⊗ σS

]︂J
m

ΦA(ξ⃗1...ξ⃗A−2, ξ⃗)

where FS
λζ represents the elementary production amplitudes. A more compact form

of the hypernuclear production amplitude is:

Tλ = Z
∑︂
LM

∑︂
Sζ

∑︂
Jm

CJm
LMSζFS

λζ

⟨︃
ΦH

⃓⃓⃓⃓
FLM

[︂
YL ⊗ σS

]︂J
m

⃓⃓⃓⃓
ΦA

⟩︃
. (31)

Then, using the Wigner-Eckart theorem for the nuclear (A) and hypernuclear (H)
states we introduce the reduced matrix elements

Tλ = Z
∑︂
Jm

CJHMH
JAMAJm

1
[JH]

∑︂
Sζ

∑︂
LM

CJm
LMSζFS

λζ

(︃
JH

⃦⃦⃦⃦
FLM

[︂
YL ⊗ σS

]︂J ⃦⃦⃦⃦
JA

)︃
. (32)

We introduce single-particle states characterized by quantum numbers | α ⟩ =
| n l 1

2 j µ ⟩ generated by the creation operators |α⟩ = a+
α | 0 ⟩ for a nucleon and |α′⟩ =

b+
α′ | 0 ⟩ for the Λ. Assuming completeness of the single-particle states, we can express

the single-particle operator

FLM [YL ⊗ σS]Jm = 1
Z

∑︂
αα′

⟨ α′ | FLM [YL ⊗ σS]Jm | α ⟩ b+
α′ aα. (33)

The normalization condition is given as ∑︁ b+
α′aα = Z, where Z represents the

number of protons since only protons can be converted to Λ particles. It is important
to note that we have introduced separate spaces for single-particle states correspond-
ing to the target proton and the final Λ particle. By employing the Wigner-Eckart
theorem, we can express the above operator in a specific form.

1
Z[J ]

∑︂
aa′

( α′ || FLM

[︂
YL ⊗ σS

]︂
|| α ) [b+

α′ ⊗ aα]Jm , (34)

where [J ] =
√

2J + 1.
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In the summation, we are using notations α = (n, l, j) and α′ = (n′, l′, j′), and
the reduced matrix element depends solely on these quantum numbers. This decom-
position of the one-particle operator enables separation of the reduced many-particle
matrix element into the basis of α, α′ states.

( JH|| FLM

[︂
YL ⊗ σS

]︂
|| JA ) = 1

Z[J ]
∑︂
aa′

( α′ || FLM

[︂
YL ⊗ σS

]︂
|| α )

× ( ΦH || [b+
α′ ⊗ aα]J || ΦA ) .

(35)

The second term in the equation represents the one-body density matrix element
(OBDME) in the jj coupling scheme. In our actual calculations, the OBDMEs, along
with the spherical elementary amplitudes FS

λζ , serve as inputs.
To calculate the reduced matrix element of the one-particle operator (35) we em-

ploy an explicit form of single-particle wave functions in coordinate space

⟨ r⃗ | α ⟩ = ⟨ r⃗ | n l
1
2 j µ ⟩ = Rα(r)

∑︂
νη

Cjµ

lν 1
2 η

Ylν(r̂) X
1
2
η . (36)

Here Rα(r) is the radial part of the wave function and X
1
2
η is the Pauli spin tensor.

It is important to note that in this context, the vector r⃗ represents the relative
particle-core coordinate which is equivalent to the Jacobi coordinate ξ⃗. After some
certain manipulations, we obtain the following expression

( α′ || FLM

[︂
YL ⊗ σS

]︂
|| α ) = 1√

2π
[L][S][J ][l][l′][j][j′]

⎛⎝ l′ L l

0 0 0

⎞⎠
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2

1
2 S

j′ j J

l′ l L

⎫⎪⎪⎪⎬⎪⎪⎪⎭
× (−1)−l′

∫︂ ∞

0
dr r2 [Rα′(r)]∗ FLM(Br) Rα(r) ≡ HLSJ

l′j′lj RLM
α′α , (37)

where HLSJ
l′j′lj is a Racah structure. The radial integral RLM

α′α comprises the radial
components of the single-particle wave functions. Regarding these radial wave func-
tions, we have the flexibility to opt for either a standard harmonic oscillator form or
a Woods-Saxon form. The Woods-Saxon form is more realistic as it incorporates a
binding energy of the particle, which is obtained from experimental data.

An expression for the spherical component of the complete electroproduction am-
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plitude is

T
(1)
λ =

∑︂
Jm

CJHMH
JAMAJm

1
[JHJ ]

∑︂
Sη

FS
λη

∑︂
LM

CJm
LMSη

×
∑︂
α′α

RLM
α′α HLSJ

l′j′lj ( ΦH || [b+
α′ ⊗ aα]J || ΦA ).

(38)

This equation represents the complete production amplitude, expressed in terms of
the spherical elementary amplitudes FS

λη, the radial integrals RLM
α′α and the OBDME

which are essential inputs for the calculations. The radial integral is computed using
a selected form of the radial one-particle wave functions for the bound proton and
Λ, along with the radial component FLM derived from the decomposed product of
the photon and kaon wave functions. The kaon distorted wave function χ∗

K(p⃗K , Bξ⃗ )
used in the DWIA calculations can be obtained through various methods. One ap-
proach is to solve the scattering problem for the kaon-hypernucleus system, typically
in the eikonal approximation as the momenta are high, see Eq. (70). Another method
involves solving the Klein-Gordon equation to calculate the distorted wave function
numerically. These approaches provide a suitable description of a kaon wave function
distorted by the interaction between the kaon and hypernucleus. More details on the
radial integrals will be given in subsection 2.5.

The reduced amplitude used in Eqs. (16)-(19) then reads

Aλ
Jm = 1

[J ]
∑︂
Sη

FS
λη

∑︂
LM

CJm
LMSη

∑︂
α′α

RLM
α′α HLSJ

l′j′lj

×( ΦH || [b+
α′ ⊗ aα]J || ΦA ) . (39)

2.3 Kinematics

The electroproduction of hypernuclei is experimentally investigated in lab frame with
the target nucleus at rest, P⃗ A = 0, as it is depicted in Fig. 4. The ẑ axis of the
right-handed coordinate system is oriented along the photon momentum P⃗ γ, which
lies in the “Scattering plane”, and the ŷ axis is perpendicular to this plane. The
kaon momentum, which lies in the “Reaction plane” is determined by its polar, θK ,
and azimuthal, ΦK , angle. Our convention is such that in the case of the coplanar
kinematics, ΦK = 0, the kaon momentum lies in between the momenta of the beam
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(k⃗) and photon (P⃗ γ). See also Fig. 5 for the analogous coplanar case with ΦK = 180◦.
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Figure 4: Kinematics in electroproduction of hypernuclei in lab frame. The reaction
is considered in the one-photon exchange approximation.

An experiment on electroproduction can be described with kinematical quantities
such as the energy of the initial electron Ee(the beam energy), the energy and angle of
the scattered electron, E ′

e and θe, and the polar, θK , and azimuthal, ΦK , angle of the
kaon, see Fig. 4. In the one-photon exchange approximation, the hypernucleus pro-
duction is mediated by a virtual photon with the energy and momentum determined
by the electron kinematics. As this photon is off its mass shell, it has a non-zero
“mass" defined as Q2 = −P 2

γ = P⃗
2
γ − E 2

γ and Q2 > 0. The other participating
particles are assumed on their mass shells.

In the impulse approximation the elementary-production process proceeds in the
nuclear medium where the Λ and initial proton are not free particles anymore. In fact,
they are indeed intermediate (virtual) particles as depicted in Fig. 3, but within the
framework of the non-relativistic nuclear physics used here, we assume that they are
still on their mass shells. We also require the translational invariance of the elementary
and total amplitudes, as well as of the nuclear and hypernuclear wave functions. These
wave functions are taken as a product of the plane wave for the center of inertia and
the internal part expressed as a function of relative (Jacobi) coordinates.

The 3-momentum conservation in each vertex in Fig. 3 is

P⃗ γ + p⃗p = P⃗ K + p⃗Λ , P⃗ A = p⃗c + p⃗p , P⃗ H = p⃗c + p⃗Λ , (40)

where p⃗c is a momentum of the “core" nucleus. These relations provide the 3-
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Figure 5: Coplanar kinematics (ΦK = 180◦) for a non zero proton momentum with
θ∆p = 180◦. In the bottom panel, the kaon momentum in the lab frame is depicted.

momentum conservation in the entire many-body system

P⃗ γ + P⃗ A = P⃗ K + P⃗ H . (41)

The energy conservation in the elementary vertex is

Eγ +
√︂

m2
p + p⃗2

p = EK +
√︂

m2
Λ + p⃗2

Λ , (42)

which together with the 3-momentum conservation means that the elementary am-
plitude is on energy-momentum shell and that the amplitude constructed in the free
space can be used in the calculation. Energy conservation in the many-body vertices
are

EA =
√︃

M2
c + (P⃗ A − p⃗p)2 +

√︂
m2

p + p⃗2
p + ϵp , (43)

EH =
√︃

M2
c + (P⃗ A − p⃗p)2 +

√︂
m2

Λ + p⃗2
Λ + ϵΛ , (44)

where Mc is the mass of the core nucleus and the binding energies ϵp and ϵΛ are
introduced because the proton and Λ are bound in the nucleus and hypernucleus,
respectively. Unfortunately, these binding energies together with the energy conser-
vation in the elementary vertex lead to a violation of the energy conservation in the
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reaction
Eγ + EA = EK + EH + (ϵp − ϵΛ) . (45)

Note however, that the additional factor is relatively small, (ϵp − ϵΛ) ≈ 10 MeV, in
comparison with the total energy, Eγ +EA ≈ 10 GeV, and therefore an effect of energy
violation is expected to be quite small, typically below 1%.

As we require that the total energy conservation has the ordinary form,

Eγ + EA = EK + EH , (46)

there are two possibilities how to solve the situation. The first one is to neglect the
difference of binding energies at all, assuming ϵp − ϵΛ = 0 and use the on-shell elemen-
tary amplitude. The other choice is to permit an energy violation in the elementary
vertex

Eγ +
√︂

m2
p + p⃗2

p = EK +
√︂

m2
Λ + p⃗2

Λ + (ϵΛ − ϵp) , (47)

which requires that the amplitude is calculated off energy shell. However, as this
off shell extension of the elementary amplitude would require additional assumptions
which are not unique, we do not consider this possibility. In the calculations we
therefore consider the standard energy conservation both in the elementary and many-
body systems. Note that in the previous calculations [56], the binding effects due to
ϵp − ϵΛ were also neglected.

The magnitude of the kaon momentum |P⃗ K | needs to be established from the
energy conservation either in the elementary (two-body) system

Eγ +
√︂

m2
p + p⃗ 2

p =
√︃

m2
K + P⃗

2
K +

√︃
m2

Λ + (P⃗ γ + p⃗p − P⃗ K)2 , (48)

or in the many-body system, written in the lab frame as

Eγ + MA =
√︃

m2
K + P⃗

2
K +

√︂
M2

H + (P⃗ γ − P⃗ K)2 . (49)

It is evident that due to the proton-momentum dependence in Eq. 48, these equations
cannot be solved simultaneously for a general value of the proton momentum. The
previous calculations, e.g. in Ref. [56] done in the frozen-proton approximation with
p⃗p = 0, were performed with two different values of |P⃗ K | calculated from Eqs. (48)
and (49). However, these equations can provide the same solution for |P⃗ K | assuming
a special value of the proton momentum which we denote as the optimum momentum
p⃗opt. This momentum is obtained from Eq. (48) using |P⃗ K | calculated from Eq. (49)

Eγ −
√︃

m2
K + P⃗

2
K =

√︃
m2

Λ + (∆⃗ + p⃗opt)2 −
√︂

m2
p + p⃗2

opt =
√︃

M2
H + ∆⃗

2
− MA , (50)
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where ∆⃗ is the momentum transfer in the reaction, ∆⃗ = P⃗ γ − P⃗ K . One can see that
the value of |p⃗opt| is not uniquely determined as Eq. (50) depends also on the proton
angle with respect to ∆⃗ which can be chosen in the calculation, see Fig. 5 for the
choice θ∆p = 180◦.

For a given angle θ∆p the proton polar angle with respect to the photon (see Fig. 5)
can be calculated using

Pγ⃗ · pp⃗ = ∆⃗ · pp⃗ + P⃗ K · pp⃗ (51)

and
P⃗ K · pp⃗ = |P⃗ K ||pp⃗|(sin θp sin θK cos(Φp − ΦK) + cos θp cos θK) , (52)

which give the expression for the proton polar angle

cos θp =
[︂
|∆⃗| cos θ∆p

(︂
|Pγ⃗| − |P⃗ K | cos θK

)︂
±
(︂
|P⃗ K | sin θK cos(Φp − ΦK)

)︂
×
√︂

(|Pγ⃗| − |P⃗ K | cos θK)2 − (|∆⃗| cos θ∆p)2 + (|P⃗ K | sin θK cos(Φp − ΦK))2
]︃

×
(︂
(|Pγ⃗| − |P⃗ K | cos θK)2 + (|P⃗ K | sin θK cos(Φp − ΦK))2

)︂−1
. (53)

The negative sign is used for θ∆p > 60◦ where we will get a physical value of the proton
momentum. The angle θp still depends on the proton azimuthal angle Φp which can
be chosen. In our calculations we chose θ∆p = 180◦ and Φp = 180◦, but we will also
show the dependence of the cross sections on θ∆p.

2.4 Elementary amplitude

In this subsection we present a two-component form of the elementary amplitude for
the electrodroduction of K+ on a proton induced by a virtual photon. This formalism
can be also used for electroproduction of other pseudo-scalar mesons. The invariant
amplitude of the process

γν(Pγ, ε) + p(pp, ξp) → Λ(pΛ, ξΛ) + K+(PK) , (54)

where the momenta, spin-projections and polarizations of involved particles are given
in the parentheses, can be expressed using six Lorentz and gauge invariant operators
Mµ

j multiplied by the Dirac bispinors u(p, ξ) for the baryon fields

Mµεµ =
6∑︂

j=1
ū(pΛ, ξΛ) γ5 Mµ

j εµu(pp, ξp) Aj(s, t) . (55)
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In the one-photon exchange approximation, the electron part enters as the four-vector
εµ = −e ū(p′

e) γµu(pe) /Q2 where u(pe) is the Dirac bispinor for the electron. The
scalar amplitudes Aj in (55) are functions of the Mandelstam variables s = (Pγ + pp)2

and t = (Pγ − PK)2 and describe dynamics of the production. They can be obtained
e.g., from the decomposition of Feynamm diagrams contributing to the process [52].

The gauge invariant operators can be rewritten as

Mµ
1 = 1

2[(γ · Pγ) γµ − γµ(γ · Pγ)] ,

Mµ
2 = pµ

p − 1
P 2

γ

(Pγ · pp) P µ
γ ,

Mµ
3 = pµ

Λ − 1
P 2

γ

(Pγ · pΛ) P µ
γ ,

Mµ
4 = γµ(Pγ · pp) − (γ · Pγ) pµ

p ,

Mµ
5 = γµ(Pγ · pΛ) − (γ · Pγ) pµ

Λ ,

Mµ
6 = (γ · Pγ) P µ

γ − γµP 2
γ . (56)

and they fulfill the Ward identity Mµ
j · (Pγ)µ = 0.

The invariant amplitude (55) can be used to calculate observable quantities of the
elementary process in any reference frame but this form of the Mµ cannot be directly
used to calculate the many-particle matrix element (21), which is considered in the non
relativistic formalism. For computing this matrix element, we need to construct a one-
body transition operator on the non relativistic proton-hyperon Hilbert space. This
transition operator is written in the two-component formalism using Pauli matrices
which can fold with the Pauli spinors in the non relativistic wave functions of the
nucleus and hypernucleus.

A special case of the two-component form of the amplitude, written in the labora-
tory and centre-of-mass frame in terms of the so called Chew-Goldberger-Low-Nambu
(CGLN) amplitudes, can be found in Ref. [14]. This CGLN form in the laboratory
frame was used in previous calculations [56] assuming the frozen proton approxima-
tion, i.e. the effective proton momentum was zero in Eqs. (25) and (26) (p⃗eff = 0). A
novel feature of our approach is that we have constructed the elementary amplitude
which can be used with a non-zero proton momentum p⃗eff . This more general ampli-
tude allows to go beyond the frozen proton approximation and, partially, to account
for the Fermi motion effects due to the proton motion in the nucleus.

The gauge invariance enables re-writing the invariant amplitude into a form that is
still covariant but includes non relativistic structures composed of Pauli matrices and

37



three-vectors – the photon polarization vector and the momenta of the photon, proton
and kaon. Particularly, the gauge invariance facilitates using a new polarization vector
ϵµ = εµ − ε0 (Pγ)µ/(Pγ)0 = ( 0, ϵ⃗ ) which sets the time component to zero. Note that
the Ward identity, with the new polarization vector remains valid as guaranteed by
the definition of ϵµ which becomes zero after the formal replacement εµ → (Pγ)µ.
Then it allows to write the amplitude in a non-relativistic-like two-component form

M · ε = uΛγ5

⎛⎝ 6∑︂
j=1

Mj · ε Aj

⎞⎠up = X+
Λ (J⃗ · ϵ⃗ ) Xp , (57)

where XΛ
+ and Xp are Pauli spinors and uΛ and up are Dirac bispinors for the Λ and

proton particles, respectively.
The invariant amplitude on the left-hand part of Eq. (57) includes covariant struc-

tures composed of Dirac bispinors and γ matrices

M · ε = uΛγ5 up

[︄(︄
(pp · ε) − (Pγ · pp)(Pγ · ε)

P 2
γ

)︄
A2

+
(︄

(pΛ · ε) − (Pγ · pΛ)(Pγ · ε)
P 2

γ

)︄
A3 − (Pγ · ε)A1

]︄

+ uΛγ5(γ · ε) up

[︂
(Pγ · pp)A4 + (Pγ · pΛ)A5 − P 2

γ A6
]︂

− uΛγ5(γ · Pγ) up [(pp · ε)A4 + (pΛ · ε)A5 − (Pγ · ε)A6]

+ uΛγ5(γ · Pγ)(γ · ε) up A1 , (58)

that can be expressed via Pauli matrices. Here the photon polarization appears only
via gauge-invariant combinations εµ − Pγµ(Pγ · ε)/P 2

γ , Pγµεν − εµPγν , and Pγ⃗ × ε⃗.
The structure of the first term in Eq. (58) is

uΛ(pΛ, ξΛ) γ5 up(pp, ξp) =

⌜⃓⃓⎷(EΛ + mΛ)(Ep + mp)
4mΛmp

× X+
Λ

(︄
1,

σ⃗ · p⃗Λ
EΛ + mΛ

)︄⎛⎝ 0 1
−1 0

⎞⎠⎛⎝ 1
1

Ep+mp
σ⃗ · p⃗p

⎞⎠Xp =

=

⌜⃓⃓⎷(EΛ + mΛ)(Ep + mp)
4mΛmp

X+
Λ

(︄
σ⃗ · p⃗p

Ep + mp

− σ⃗ · p⃗Λ
EΛ + mΛ

)︄
Xp . (59)

The second and third term in (58) with the notation aµ = εµ and (Pγ)µ, respectively,
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give us

uΛ(pΛ, ξΛ) γ5(γ · a) up(pp, ξp) =

=

⌜⃓⃓⎷(EΛ + mΛ)(Ep + mp)
4mΛmp

X+
Λ

{︄
−a0

(︄
σ⃗ · p⃗p

Ep + mp

+ σ⃗ · p⃗Λ
EΛ + mΛ

)︄
+ σ⃗ · a⃗ +

1
(EΛ + mΛ)(Ep + mp)

[︃
(σ⃗ · p⃗Λ)(p⃗p · a⃗) + (σ⃗ · p⃗p)(p⃗Λ · a⃗) − (σ⃗ · a⃗)(p⃗Λ · p⃗p) −

i p⃗Λ × p⃗p · a⃗
]︃}︃

Xp , (60)

For practical calculations, it is more convenient to express the amplitude using the
photon Pγ, proton pp, and kaon momenta PK instead of the Λ momentum pΛ because
the kaon momentum is measured in experiment. From momentum conservation, we
have pΛ = Pγ + pp − PK . So, we can obtain the elementary production amplitude in
the two-component form with an arbitrary value of the proton momentum

J⃗ · ϵ⃗ = G1 (σ⃗ · ϵ⃗ ) + G2 i(p⃗p × P⃗ γ · ϵ⃗ ) + G3 i(P⃗ K × P⃗ γ · ϵ⃗ )+

+ G4 i(p⃗p × PK⃗ · ϵ⃗ ) + i(p⃗p × P⃗ K · P⃗ γ )
[︂

G5 (P⃗ γ · ϵ⃗ ) + G6 (p⃗p · ϵ⃗ )+

+G7 (P⃗ K · ϵ⃗ )
]︂

+ G8 (σ⃗ · P⃗ γ )(P⃗ γ · ϵ⃗ ) + G9 (σ⃗ · P⃗ γ )(p⃗p · ϵ⃗ )+

+ G10 (σ⃗ · P⃗ γ )(P⃗ K · ϵ⃗ ) + G11 (σ⃗ · p⃗p)(P⃗ γ · ϵ⃗ ) + G12 (σ⃗ · p⃗p)(p⃗p · ϵ⃗ )+

+ G13 (σ⃗ · p⃗p)(P⃗ K · ϵ⃗ ) + G14 (σ⃗ · P⃗ K)(P⃗ γ · ϵ⃗ ) + G15 (σ⃗ · P⃗ K)(p⃗p · ϵ⃗ )+

+G16 (σ⃗ · P⃗ K)(P⃗ K · ϵ⃗ ) . (61)

Formulas for the CGLN-like amplitudes Gj expressed in terms of scalar amplitudes Aj

and kinematical variables are given in Appendix B. There are 16 amplitudes Gj but
not all of them are independent. These CGLN-like amplitudes are suitable to specify
the entire elementary amplitude in a non relativistic calculations. One can check the
general formula (61) comparing it for a special case with that in Ref. [14]. Indeed, in
lab frame (p⃗p = 0) the general form (61) reduces to only six terms

J⃗LAB · ϵ⃗ = G1 (σ⃗ · ϵ⃗ ) + G3 i(P⃗ K × P⃗ γ · ϵ⃗ ) + G8 (σ⃗ · P⃗ γ )(P⃗ γ · ϵ⃗ ) +

G10 (σ⃗ · P⃗ γ )(P⃗ K · ϵ⃗ ) + G14 (σ⃗ · P⃗ K)(P⃗ γ · ϵ⃗ ) +

G16 (σ⃗ · P⃗ K)(P⃗ K · ϵ⃗ ) , (62)

which coincides with the expression in Ref. [14]. Also the formulas for Gj agree with
the corresponding formulas for Fi (i = 1, ..., 6) in [14]. Similarly for the case of the
center-of-mass frame (p⃗p = −P⃗ γ), the expression and the corresponding CGLN-like
amplitudes in Appendix B (61) can be compared with those in Ref. [14] .
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In some calculations, especially in our case of evaluating the matrix element in
Eq. (21), it is convenient to use the amplitude in the spherical coordinates. Then the
scalar product can be expressed as:

J⃗ · ϵ⃗ = −
√

3 [ J (1) ⊗ ϵ(1) ]0 = −
√

3 C00
1λ1−λJ

(1)
λ ϵ

(1)
−λ =

∑︂
λ=±1,0

(−1)−λ J
(1)
λ ϵ

(1)
−λ . (63)

The spherical components of J (1) can be defined via 12 spherical amplitudes F S
λξ with

S = 0, 1 and λ, ξ = ±1, 0.
J

(1)
λ =

∑︂
λ,ξ

FS
λξ σS

ξ , (64)

where σ1
η are the spherical components of the Pauli matrices and σ0 is the unit matrix

(see Appendix). Inserting Eq. (64) into (63) we get the following decomposition of
the elementary amplitude

J⃗ · ϵ⃗ = − ϵ 1
1 ( F 0

−10 + σ1
1 F 1

−11 + σ1
0 F 1

−10 + σ1
−1 F 1

−1−1 ) +

+ ϵ 1
0 ( F 0

00 + σ1
1 F 1

01 + σ1
0 F 1

00 + σ1
−1 F 1

0−1 ) −

− ϵ 1
−1 ( F 0

10 + σ1
1 F 1

11 + σ1
0 F 1

10 + σ1
−1 F 1

1−1 ) . (65)

The formulas for F S
λξ expressed through the spherical components of the momenta

and the CGLN-like amplitudes Gj are given in Appendix C.

2.5 Radial integral

In this subsection we discuss in detail the radial integral used in Eq. (39). It is
calculated in the plane wave impulse approximation and the distorted wave impulse
approximation.

Neglecting the kaon re-scattering on the hypernucleus in the PWIA, the product
of the initial photon and final kaon plane waves can be decomposed into the partial
waves as

χγ (r⃗ ) χ
(−)
k (r⃗ ) = eiB

−→
∆ ·−→r

= 4π
∑︂
LM

iLjL (∆Br) Y ∗
LM

(︂ ˆ︁∆)︂YLM (ˆ︁r)

=
∑︂
LM

FLM (∆Br) YLM (ˆ︁r) (66)

where B = (A − 1)/(A − 1 + γ) and γ = mΛ/mp with the Λ and proton masses.
YLM are the spherical harmonic functions and FLM is a projected wave that can be
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expressed as

FLM (∆Br) =
∫︂

dˆ︁r Y ∗
LM (ˆ︁r ) eiB

−→
∆ ·−→r

=
∫︂

dˆ︁r Y ∗
LM (ˆ︁r) · 4π

∑︂
L′ M ′

iL
′

jL′ (∆Br) Y ∗
L′ M ′

(︂ ˆ︁∆)︂YL′ M ′ (ˆ︁r)

= 4π iLjL (∆Br) Y ∗
LM

(︂ ˆ︁∆)︂ , (67)

where jL (∆Br) is the spherical Bessel function. Then the radial integral in PWIA
that can be used in calculations of the reduced amplitude (39) is

RLM
α′α =

∫︂ ∞

0
drr2R∗

α′ (r) FLM (∆Br) Rα (r) , (68)

where R∗
α′(r) and Rα(r) are the radial wave functions of the Λ and proton, respectively.

The function FLM is given in Eq. (67).
A more interesting and realistic case is when we include the kaon distortion in the

radial integral in DWIA. Then the projected wave FLM(∆Bξ) is determined from

eiB∆⃗·ξ⃗ χ
(−)∗
K (p⃗K , Bξ⃗ ) =

∑︂
LM

FLM(∆Bξ) YLM(ξ̂) , (69)

where χ∗
K stands for the kaon distorted wave which is not present in PWIA as χ∗

K = 1
in this case. In the case of DWIA, χ∗

K is calculated in eikonal approximation [64]
assuming the first-order optical potential

χ
(−)∗
K

(︂−→pK , B
−→
ξ
)︂

= exp
{︃

−aσtot
1 − iα

2

∫︂ ∞

0
dtρ

(︂
B

−→
ξ + ˆ︂pKt

)︂}︃
, (70)

where α = Ref(0)/Imf(0) and f(0) is the forward-angle amplitude of the kaon-
nucleon scattering. σtot is the kaon-nucleon total cross section, p⃗K is the kaon mo-
mentum with respect to the hypernucleus, and a is a kinematical factor

a =

⃓⃓⃓−→
kK

⃓⃓⃓
|−→pK |

εK (pK) + p2
K

2MA

εK (pK) · εN (pK/A)

⎡⎢⎢⎣ s(︃
1 + εK

MA
+ p2

K

4M2
A

)︃ (︂
1 + εK

MA

)︂
+ p2

k

2M2
A

⎤⎥⎥⎦
1
2

. (71)

In this equation, εx (y) =
√︂

m2
x + y2 with x = K and N , are the kaon and nucleon

energies calculated with the momenta y = p⃗K and p⃗K/A, respectively. The kaon
momentum k⃗K is computed with respect to the nucleon and the invariant kaon-nucleon
energy is

√
s = εK (kK) + εN (kK). It is important to note here that we construct the

optical potential replacing the hypernucleus density ρ in Eq. (70) with the density
of the initial nucleus. The reason for this approximation is that we do not know the

41



kaon-Λ scattering amplitude and therefore we replace it with the kaon-nucleon one.
Consequently, the final-state kaon scatters on the potential of the initial nucleus with
kinematics of the final hypernucleus.

The nuclear density used in Eq. (70) can be parameterised in the harmonic oscil-
lator representation

ρ(r) = (a0 + a1α
2
nr2) e−α2

nr2
, (72)

with the parameters

a0 = 3 A

A − 1

(︃
αn

π

)︃ 3
2

, a1 = 2
9 (A − 4) a0 , α2

n = A

A − 1α2
HO ,

where αHO is a harmonic oscillator parameter.
The nuclear density can be also described in a Hartree-Fock model or using a

Woods-Saxon potential. These approaches are more realistic, especially for a descrip-
tion of weakly bound particles and for heavy hypernuclei.

The nuclear density in the Wood-Saxon representation is

ρ(r) = ρ0

1 + exp( r−R
a

)
, (73)

where ρ0 is a central density, R = r0A1/3 is the radius of half density, A is the mass
number of a nucleus, r0 is the Fermi radius, and a is the diffuseness parameter, that
represents the surface thickness of the nucleus. These parameters where compared
with the calculation and data from [68]. The parameter ρ0 is determined by the
normalization condition

4π
∫︂ ∞

0
drr2ρ(r) = A . (74)

The nuclear density in the Hartree-Fock method can be calculated using formula

ρ(r) = 1
4π

∑︂
k

|Rnklk(r, b)|2 (2jk + 1) v2
k , (75)

where vk is the occupation number of a single-particle state k in j-scheme, b is the
harmonic oscillator parameter and Rnklk(r, b) are the radial parts of the Hartree-Fock
single-particle wave functions.

2.6 Nucleus and hypernucleus structures

We describe a nucleus as a many-body system of interacting nucleons. Dynamics of
this system is governed by Hamiltonian

Ĥ = −
A∑︂

i=1

ℏ2

2MN

∆i +
A∑︂

i<j

V (r⃗i, r⃗j), (76)
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where MN is the nucleon mass and V (r⃗i, r⃗j) is the nucleon-nucleon (NN) interaction.
In this work we solve the nuclear many-body problem within methods based on

the self-consistent mean field, namely the Hartree-Fock (HF) method and the Tamm-
Dancoff (TD) Approximation [65]. The HF approach is based on minimization of
nuclear the ground state energy to satisfy the variation condition

δ⟨Ψ |Ĥ |Ψ⟩ = 0, (77)

where Ψ is the many-body wave function in the form of Slater determinant

Ψα1,α2,...,αA
(r⃗1, r⃗2, ..., r⃗A) = 1√

A!

⎛⎜⎜⎜⎜⎜⎜⎜⎝

ϕα1(r⃗1)ϕα2(r⃗1) . . . ϕαA
(r⃗1)

ϕα1(r⃗2)ϕα2(r⃗2) . . . ϕαA
(r⃗2)

...
ϕα1(r⃗A)ϕα2(r⃗A) . . . ϕαA

(r⃗A)

⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (78)

The variation condition (77) leads to Hartree-Fock equation

− ℏ2

2MN

∆ϕi(r⃗) + U(r⃗)ϕi(r⃗) −
∫︂

d3r′ W (r⃗, r⃗′)ϕi(r⃗′) = ϵiϕi(r⃗) (79)

where ϕi(r⃗) and ϵi are the single-particle wave functions and energies, respectively.
U(r⃗) and W (r⃗, r⃗′) are the direct and exchange potentials defined as follows

U(r⃗) ≡
∑︂

i−occ

∫︂
d3r′ ϕ∗

i (r⃗′)V (r⃗, r⃗′)ϕi(r⃗′), (80)

W (r⃗, r⃗′) ≡
∑︂

i−occ
ϕ∗

i (r⃗′)V (r⃗, r⃗′)ϕi(r⃗) , (81)

where the summations run over occupied states only.
The HF method can be also formulated in the second quantization formalism

where the nuclear Hamiltonian (76) is expressed as

Ĥ =
∑︂
kl

tkla
†
kal + 1

4
∑︂

klmn

V NN
klmna†

ka†
l anam. (82)

Here a†
k (al) are the creation (annihilation) operators, tkl =< k|(− ℏ2

2MN
∆)|l > repre-

sents the kinetic operator, and V NN
klmn =< kl|V̂ (r⃗, r⃗′)|mn − nm > are antisymmetric

NN interaction elements.
In the second quantization, the Slater determinant (78) which satisfies the HF

variation condition (77) is represented as

|HF⟩ =
A∏︂
h

a†
h|0⟩. (83)
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In Eq. (83), particle vacuum is denoted as |0⟩, and the index h denotes hole states,
i.e. the single particle levels below the Fermi energy. If we reserve the index p for the
single-particle states above the Fermi energy, the following conditions hold

a†
h|HF⟩ = 0 ⇐⇒ ⟨HF|ah = 0, (84)

ap|HF⟩ = 0 ⇐⇒ ⟨HF|a†
p = 0. (85)

Note that the nuclear Hamiltonian (82) as well as HF method itself can be gener-
alized also for the case of three-body NNN interactions (for more details see [60]).

Since the HF method describes only properties of the nucleus ground state we need
to introduce a many-body approach suitable to compute also the nuclear excitations.
A very simple method which starts from the self-consistent single-particle basis is the
Tamm-Dancoff (TD) approximation. Within this method we solve an equation of
motion

⟨HF|Qν′ [Ĥ, Q†
ν ]|HF⟩ = (Eν − EHF)δνν′ , (86)

where Ĥ is the nuclear Hamiltonian, EHF = ⟨HF|Ĥ|HF⟩ is the energy of the HF
ground state, and Qν is the phonon operator defined as general linear superposition
of particle-hole excitations on the ground state

Q†
ν =

∑︂
ph

Cν
pha†

pah. (87)

By using the phonon operators (87) in the equation of motion (86) we obtain the
TD equation

∑︂
p′h′

[(ϵp − ϵh)δpp′δhh′ + V NN
ph′hp′ ]Cν

p′h′ = (Eν − EHF )Cν
ph. (88)

Eq. (88) is an eigenvalue equation where Eν (Cν
ph) are eigen-energies (eigen-vectors),

respectively.
The HF and TD methods are suitable for the description of nuclei which enter the

electroproduction reaction. But we also need to describe the structure of hypernuclei
produced in this reaction. To this end we use the proton-neutron-Λ Hartree-Fock
method (p-n-Λ HF) and the Tamm-Dancoff Λ (TDΛ) approximation. Both these
approaches were introduced in Refs. [60, 66], where one can found more details.

In p-n-Λ HF we construct a self-consistent single-particle basis for protons, neu-
trons, and Λ particles by using the nucleon-nucleon and nucleon-Λ (NΛ) interactions.
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In the TDΛ approximation we start from the equation of motion in analogy to
Eq. (86) but we use Λ-nucleon phonons defined as follows

R†
ν =

∑︂
ph

Rν
phc†

pah. (89)

In this equation c†
p creates Λ in a particle state p and ah annihilates nucleon (in the

case of electroproduction proton) in the hole state h. If the phonon operator R†
ν acts

on the HF ground state, the resulting many-body state describes the hypernucleus
with one Λ particle bound in an even-odd nuclear core. The corresponding TDΛ

equation has the form
∑︂
p′h′

[(ϵΛ
p − ϵh)δpp′δhh′ − V NΛ

h′php′ ]Rν
p′h′ = (Eν − EHF )Rν

ph, (90)

where ϵΛ
p is the single-particle energy of Λ and V NΛ

h′php′ is the interaction matrix element
of the NΛ potential.

The OBDME, used in computing the reduced amplitude of hypernucleus electro-
production, is defined within the TDΛ approximation as follows

Rν
ph = 1

[Jν ]
⟨︂
ν||(c†

p × ah)Jν ||0
⟩︂

, (91)

where Rν
ph is the solution of Eq. (90).

Another many-body method applied in our calculations of hypernuclear electro-
production is shell model which uses the effective ΛN interactions fitted to γ-ray
spectroscopic data of p-shell hypernuclei [35]. This effective ΛN interaction is

VΛN(r) = V0(r) + Vσ(r)sNsΛ + VΛ(r)lNΛsΛ + VN(r)lNΛsN + VT (r)S12, (92)

where the tensor interaction is defined as

S12 = 3 (σN · r) (σΛ · r) − σNσΛ =
√

6C2 (r) · [σN , σΛ]2 . (93)

In Eq. (92), lNΛ ≃ lN when Λ is in the s orbit.
In our analysis we use the shell-model OBDME calculated by John Millener which

were already used in previous calculations, e.g. in Ref. [56].
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3 Results

In this section we present selected results of our calculations of the cross sections in
electroproduction of hypernuclei. Predominantly, we will show results for 12

ΛB but in
some cases we also present results for 16

ΛN, 40
ΛK, and 48

ΛK.
In subsection 3.1 we discuss the effects from the Fermi motion of the initial proton,

i.e. we compare the electroproduction cross sections calculated using different values of
the proton momentum such as p⃗p = 0 (“the frozen proton approximation"), p⃗p = −∆⃗
(“the frozen Λ approximation" as p⃗Λ = 0) and the optimum proton momentum. The
results are presented on the angular and energy distributions of the cross sections for
various excited states of the hypernucleus and the “selection rule" is discussed. In the
calculations we utilize the BS3 model [52] for the elementary amplitude and in some
cases also the SLA [19] model. The nucleus and hypernucleus structure (OBDME) is
described in the frame of the shell model [35] and TDΛ approximation [5].

In computing the kaon momentum we have introduced the following three schemes [4].
(1) The 2-Body scheme where the kaon momentum is calculated from the energy con-
servation in the two-body system, but the many-body system energy conservation is
violated. This value is then used for the elementary amplitude, the radial integral,
and the kinematical factor β in the cross section, see Eqs. (16)–(19).
(2) The Many-Body scheme where the kaon momentum is calculated from the energy
conservation in the many-body system and in the two-body system the energy is not
conserved. This makes that the elementary amplitude is off-energy-shell which causes
additional uncertainty in the calculations. This Many-Body value is then used for the
elementary amplitude, the radial integral, and kinematical factor in the cross section.
(3) The 2-Body Hybrid, scheme where we use two different kaon momenta in the
calculation. One of them is calculated from the energy conservation in the two-body
system and it is used for the elementary amplitude. The other momentum is calcu-
lated from the many-body system energy conservation and it is used for the radial
integral, and kinematical factor in the cross section.

In subsection 3.2 we explore a significance of the contributions from the radial
integral in the cross section, particularly focusing on the kaon distortion and mod-
els that can be used for computing the nuclear density present in the kaon-nucleus
optical potential, namely the Woods-Saxon (WS), Hartree-Fock (HF) and Harmonic
Oscillator (HO) approach.

In subsection 3.3, we delve into the importance of the One-Body Density Matrix
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Elements (OBDME) in calculating the cross sections. We discuss the results obtained
with the shell model and the TDΛ approach mostly for 12

ΛB and 16
ΛN and compare them

with experimental data [56]. We also provide predictions of the excitation spectra in
electroproduction of 40

ΛK and 48
ΛK, which will be measured at the JLab experiment

E12-15-008.

3.1 Fermi motion effect

As demonstrated in Eq. (26), in the optimal factorization approximation the elemen-
tary amplitude is calculated for an effective value of the proton momentum (p⃗eff)
which has not been specified yet and, therefore, it is interesting to show a dependence
of the cross sections on this momentum. In previous calculations [14, 56, 16, 15] the
zero value of the proton momentum was used assuming that the proton is “frozen” in
the nucleus whereas a non zero value of p⃗eff partially accounts for the proton Fermi
motion in the nucleus.

In this subsection, we will demonstrate variations in the electroproduction cross
section using three different values of the proton effective momentum: p⃗eff = 0, p⃗eff =
−∆⃗, and p⃗eff = p⃗opt (the optimal value given in Eq. (50)). The calculations are based
on the elementary BS3 amplitude [52] within the 2-body-hybrid scheme, which means
that the amplitude is on-energy-shell. The nuclear structure is included using the shell
model approach [35] and the results are shown for the photon energy Eγ = 2.2 GeV.

In Figs. 6 and 7 we show angular distrubution of the cross section in electropro-
duction of 12

Λ B for the ground state doublet and three states in the 11 MeV multiplet,
respectively. The states are denoted with the spin-parity and the excitation energy in
MeV as (JP ; E) and, from here on we denote the effective proton momentum as p⃗p. In
these figures the black solid line represents the frozen proton approximation (p⃗p = 0),
the blue doted line represents the frozen Λ approximation (p⃗Λ = 0 but p⃗p = −∆⃗)
and the pink dashed line represents the optimum proton momentum approximation
(p⃗p = p⃗opt) calculated with cos(θp∆) = −1. It should be noted, that Fig. 6 depicts the
first doublet of excited states, whereas the data from the experiment E94-107 [56] is
only available for the sum of those cross sections, particularly at the θKe = 6o.

One can see in these figures that the difference of the differential cross sections
calculated with p⃗p = 0 and p⃗Λ = 0 is quite large, especially at small kaon angles.
On the other hand the optimum proton momentum, being about 100 MeV/c in this
case, makes the results quite close to those with the zero proton momentum. From
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Figure 6: Fermi motion effects are shown in angular distribution of the cross section
for the ground and first excited state of 12

ΛB. The results are for the frozen-proton
(p⃗p = 0), frozen-Λ (p⃗Λ = 0), and optimum (p⃗opt) approximations. The states are
denoted with their spin-parity and energy in MeV as (JP ; E).

comparison of the results for various hypernuclear states it is evident that the Fermi
effects depend on the quantum numbers of the states (JP ). This pattern is clearly seen
comparing the results for the frozen proton approximation and the optimum proton
momentum. For example, it is apparent in Fig. 7 that the cross section at very small
kaon angles calculated with p⃗opt is more suppressed in the 1+ and 3+ states than in
the 2+ state. A similar behavior is observed for the 2− and 1− states. This pattern
can be explained formulating the so-called dynamical selection rule.

In the case of the target nucleus 12C, with the spin and parity of the ground
state 0+, the Clebsh-Gordan coefficients in Eq. (39) allow contributions from the spin
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Figure 7: The same as in Fig. 6 but for the 1+, 2+, and 3+ states in the multiplet at
about 11 MeV.

non-flip part of the elementary amplitude (S = 0) to be only for the negative-parity
states with odd spin and positive-parity states with even spin, i.e., for the states 1−

(L = 1) and 2+ (L = 2). In the other states, 2−, 1+, and 3+, the spin non-flip part
does not contribute. However, it is important to emphasize that in the kinematical
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region characterized by small kaon-photon angles θKγ, the strength of the spin non-flip
spherical amplitudes is negligibly small and the process is dominated by the spin-flip
(S = 1) part. Therefore, this simple straightforward selection rule cannot explain the
effects observed in Figs. 6 and 7.

In the numerical analysis of contributions to the reduced amplitude in Eq. (39)
we found that significantly large contributions in the given kinematical region are
from the radial integrals with M = 0 and the spin-flip elementary amplitude with
λ = 0 and ν = 0. One can therefore conclude that the dominant contributions to
the reduced amplitude are controlled by the Clebsch-Gordan coefficient CJ0

L010 which
provides a simple “dynamical” selection rule for the longitudinal component of the
reduced amplitude (λ = 0). In particular, the longitudinal amplitude A0

J0 notably
contributes only for the states 2−, 1+, and 3+ but it does not for the states 1− and
2+. This results in a substantial enhancement of the longitudinal dσL and interference
dσT L cross sections. This effect is also shown in Table 1 where the amplitude |A0

J0| is
zero for the state 1− but non zero for 2−. Note that in the considered kinematics with
a very small value of Q2 the longitudinal component of the amplitude is generally
quite small. However, this dynamical selection rule can explain the different order of
the curves for the two groups of states presented in Figs. 6 and 7.

Differences of the Fermi motion effects in separate contributions to the full cross
section, the transverse (T), longitudinal (L), and interference (TL) parts, are shown
in Figs. 8 and 9 for the states 1− and 3+ of 12

ΛB. We can observe the differences mainly
in behaviour of the L and TL parts, where in the case of the 3+ state the former adds
quite an important contribution to the full cross section at small kaon angles rising
the full cross section with respect to the transverse part. However, we see that this
effect depends on the value of the proton effective momentum, p⃗p = 0 or p⃗opt.

Numerical results for the full and separate cross sections and the longitudinal
component (λ = 0) of the reduced amplitude are shown in Table 1 for the states 1−

and 2−. The values are calculated at the angle θKe = 6◦ for different values of the
proton momentum using the 2-body-hybrid scheme, where the elementary amplitude
is on-energy-shell. One can observe a significant enhancement of dσL and dσTL for
the 2− state attributed to contributions from |A0

20|. Similarly, the longitudinal cross
section is enhanced in the states 1+ and 3+. The calculations in Table 1 show that
the contribution of the longitudinal component |A0

20| to the cross section is more
pronounced in the frozen proton and the optimum proton momentum approximation.
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Figure 8: Separate contributions to the electroproduction cross section, namely the
transverse (T), longitudinal (L) and interference parts (TT, TL), for the ground and
an excited state of 12

ΛB. The results are for the zero proton momentum, p⃗p = 0 (the
frozen proton approximation).

Note that even if the virtuality of the photon is small (Q2 = 0.06 (GeV/c)2) the
contributions of the longitudinal modes, dσL and dσTL to the full cross section are
quite important.

It is also important to note a distinction between the electroproduction and photo-
production calculations. In the considered kinematical region, characterized by small
values of θKγ and Q2, the transverse part of the full cross section is dominant. How-
ever, contributions from the longitudinal (L) and interference (TL) parts are also
important as we have shown it in Figs. 8 and 9 and in Table 1. Recall that these lon-
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Figure 9: The same as in Fig. 8 but with the optimum proton momentum, p⃗p = p⃗opt.

gitudinal components play a significant role, especially for the 2−, 1+ and 3+ states.
The comparison of the excitation spectrum for 12

ΛB calculated with the full differential
cross section dσ (the electroproduction) and only with the transverse part dσT (ap-
proximately equivalent to the photoproduction) is shown in Fig. 10. The difference
is not too big, which is due to a relatively small value of Q2 in the considered kine-
matics. The results in the region of the two main peaks show that the longitudinal
components tend to reduce a bit the full cross section. In Figs. 8 and 9 one can see
that at θKe = 6◦, except for the state 3+, the negative TL component is important,
which results in a reduction of the full cross section observed in Fig. 10.

As the optimum proton momentum depends also on the angle with respect to the
momentum transfer ∆⃗ (see Fig. 5), it is desirable and interesting to show how much
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Table 1: The full differential cross section and its components, such as the transverse
(T), longitudinal (L), and interference (TL) are shown for the ground-state doublet
of 12

ΛB and for various proton momenta. In the last column, the reduced amplitudes
with λ = 0 are also presented. The calculations were carried out within the two-body
hybrid scheme and kinematics Q2 = 0.06 (GeV/c)2, Eγ = 2.2 GeV, ϵ = 0.7, θKe = 6◦,
and ΦK = 180◦. The cross sections are in nb/sr.

(Jp; Ex) proton momentum dσ dσT dσL dσTL |A0
J0|

(1−; 0.0) p⃗p = 0 34.4 39.72 0.82 -5.88 0.0
p⃗p = −∆⃗ 56.43 58.69 0.07 -1.46 0.0
p⃗p = p⃗opt 41.74 46.04 0.11 -3.92 0.0

(2−; 0.116) p⃗p = 0 142.47 135.35 25.91 -19.6 0.1806
p⃗p = −∆⃗ 215.11 197.7 23.35 -6.83 0.0299
p⃗p = p⃗opt 150.53 156.09 8.69 -15.03 0.0709
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Figure 10: The full electroproduction cross section (dσ) and its transverse part (dσT)
are compared for 12

ΛB. The results are calculated using OBDME from the shell model
and the elementary amplitude BS3 with the optimum proton momentum (p⃗p = p⃗opt).

the cross sections depend on this angle θ∆p. This dependence is shown in Figs. 11 and
12 for the values of cos(θ∆p) in the range from −1 to 0.26. Note that the previous
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Figure 11: Angular dependence of the electroproduction cross section for the ground
and first excited state of 12

ΛB calculated in the optimum on-shell approximation with
different values of cos(θ∆p) .

calculations in this work and in Refs. [4, 5, 56] were done with the value cos(θ∆p) = −1
and that this value provides the minimum value of the Λ momentum.

In Table 2 we present values of the proton and Λ momentum in electroproduction
of 12

ΛB for different values of the angle θ∆p. For the values smaller than θ∆p = 90◦ we
observe a notable increase in the proton and Λ momentum. However, such large par-
ticle momenta can be considered as non-physical because both proton and Λ bound in
a nucleus and hypernucleus, respectively, cannot have momenta exceeding reasonable
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Figure 12: The same as in Fig. 11 but for the 1+, 2+, and 3+ states in the multiplet
at about 11 MeV.
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Table 2: The optimum proton momentum in electroproduction of 12
ΛB is shown for

different values of cos(θ∆p), similarly as in Fig. 5, in kinematics Q2 = 0.06 (GeV/c)2,
Eγ = 2.2 GeV, ϵ = 0.7, θKe = 6◦, and ΦK = 180◦. The momentum of Λ is also shown
for comparison.

cos(θ∆p) −1.0 −0.85 −0.52 −0.19 0 0.26
pp (GeV/c) 0.099 0.115 0.175 0.331 0.548 1.24
pΛ (GeV/c) 0.17 0.182 0.232 0.385 0.61 1.33

limits allowed by the nuclear structure, i.e. to remain bound particles. A possible
characteristic of the motion of a particle bound in the nucleus is its mean momentum
calculated for a particular single-particle state. In 12C the mean momentum of the
proton in the p shell is about 180 MeV/c. Therefore, only the values of the proton
momentum for cos θ∆p ≤ 0 given in Table 2 seem to be reasonable. In Figs. 11 and
12 we see that the results with cos θ∆p = 0.26 markedly deviate from the others. One
can also observe a difference in the dependence of the cross sections on θ∆p for var-
ious hypernucleus states. This difference for the group of states 1− and 2+ and for
the other group 1+, 3+, and 2− can be again attributed to the dynamical selection
rule and, particularly, to the contributions from the longitudinal modes of the virtual
photon. This is also consistent with the observations in Figs. 8 and 9.

The effects in the excitation spectrum of 12
ΛB from various values of cos(θ∆p) are

shown in Fig. 13. We see that the values of θ∆p smaller than 180◦ give quite a signif-
icant enhancement of the cross section. It seems that the value adopted in previous
calculations, cos(θ∆p) = −1 with the minimum magnitude of the Λ momentum is
quite good in view of experimental data. Note that magnitudes of the peaks depend
on the width used in calculating the excitation spectrum.

Alternatively, one can consider averaging of the elementary amplitude over the
angle θ∆p with a cut-off on the angle, θ∆p < 100◦, to prevent excessively high proton
momenta. This averaging can effectively be interpreted as averaging over various
values of the optimum proton momentum, where the elementary amplitude remains
on its energy shell. It is important to recall that in our calculations, we operate
within the optimal factorization approximation, which means that we do not average
over the proton motion, i.e., we do not perform the so called Fermi averaging or the
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Figure 13: The excitation spectrum of 12
ΛB calculated for different values of cos θ∆p.

The results were obtained using the OBDME from the empirical shell model and the
BS3 elementary amplitude in the optimum on-shell approximation. Distortion of the
final kaon was included. The experimental data on the 3-fold differential cross section
were taken from Ref. [56] and divided by the virtual-photon flux factor Γ in Eq. (15).

full-folding integration.
As we already mentioned, we can perform the calculations in various schemes of

determining the magnitude of the kaon momentum. It is therefore interesting to
show the kinematic effects resulting from the utilization of various kaon momenta
obtained in these schemes. In Figs. 14 and 15 we show comparison of the differential
cross sections calculated in the 2-body, 2-body-hybrid, and many-body schemes. The
calculations were done with the BS3 elementary amplitude in the frozen-proton ap-
proximation (p⃗p = 0). The energy of the virtual-photon is Eγ = 2.2 GeV. Note that in
the many-body scheme the energy in the 2-body vertex is not conserved and therefore
the elementary amplitude is off its energy shell, i.e., in the region where the ampli-
tude is not well under control because it was constructed on-shell assuming the data
in the elementary reaction. The impact of employing the off-energy-shell elementary
amplitude is evident from the comparison between the 2-body-hybrid (on-shell) and
many-body (off-shell) schemes.
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Figure 14: The electroproduction cross section for the ground-state doublet of 12
ΛB

calculated in the frozen-proton approximation (p⃗p = 0) using the BS3 elementary
amplitude and various schemes of computing the kaon momentum: 2-body, many-
body, and 2-body hybrid.

The effects arising from different values of the kaon momentum |pK⃗ | are signif-
icant in the whole displayed angular region in Figs. 14 and 15. Even though the
discrepancy between the values of |pK⃗(2b)| and |pK⃗(mb)| in the considered kinematics
with θKe = 6◦ is relatively small, the corresponding momentum transfer |∆⃗| expe-
riences an approximately 10% difference, thereby elevating the values of the radial
integrals. Indeed, the comparative analysis of the results in the 2-body and 2-body-
hybrid schemes reveals influences from the radial integrals and the normalization of
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Figure 15: Same as Fig. 14 but for the 1+, 2+, and 3+ states of 12
ΛB in the multiplet

at about 11 MeV.
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Figure 16: The excitation spectrum of 12
ΛB calculated using various computation

schemes, incorporating the OBDME from the empirical shell model and the BS3
elementary amplitude in the optimum on-shell approximation, along with the inclusion
of final kaon distortion. The experimental data are the same as in Fig. 13.

cross sections controlled by the parameter β, see Eqs. (16)–(19).
If we compare the cross sections for many-body and hybrid schemes in Figs. 14

and 15 their behaviour differs for the group of states the 2−, 1+, and 3+ and for the
other group of the states, namely 1− and 2+. Interestingly, the curves for the two
groups of states, for example those of the states 1− and 2−, exhibit distinct ordering.
This feature can be understood through a numerical analysis of contributions to the
reduced amplitude Aλ

Jm in Eq. (39). Indeed, from the analysis, one can conclude that
the radial integrals with M = 0 acquire the largest values, particularly their imaginary
components, and that the radial integrals are rising functions of |pK⃗ |. Then because
|pK⃗(mb)| > |pK⃗(2b)|, the cross section in the many-body scheme is larger than that
in the 2-body scheme.

We can compare cross-section calculations with the same kinematics Eγ = 2.2
GeV, θKe = 6◦, and ΦK = 180◦ but using different calculation schemes for the kaon
momentum. In Fig. 16 we can see that a small violation (≈ 1%) from many-body
energy conservation in the 2-body scheme leads to a reduction in cross sections by
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approximately 10–20% compared to the 2-body-hybrid scheme. In all calculations,
both prior and subsequent, we prefer to utilize the 2-body-hybrid scheme with the
on-energy-shell amplitude. This preference arises from the fact that it is quite a
challenging task to effectively control an extension of the elementary amplitude off its
energy shell.
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Figure 17: Energy dependence of the cross section in electroproduction of 12
ΛB at

the kaon angle θKe = 6◦ is compared for different values of the proton momentum.
The results for the ground and first excited state were obtained with the elementary
amplitude BS3 and the OBDME from the shell model.

So far we presented the Fermi motion effects in the case of angular distribution of
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Figure 18: The same as in Fig. 17 but for the states in the multiplet at 11 MeV.
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the cross sections at energy 2.2 GeV. It is also interesting to show the effects on the en-
ergy dependence of the cross sections. Here one can expect a distinct behaviour of the
effects for different elementary amplitudes due to their different energy dependence.

The energy-dependent effects from using various proton momenta are shown in
Figs. 17 and 18 for the elementary amplitude BS3. The cross sections were calculated
using the 2-body hybrid scheme in the fixed kinematic Q2 = 0.06 (GeV/c)2, ϵ = 0.7,
ΦK = 180◦, and θKe = 6◦ where the electron kinematics was adjusted accordingly.
Note also that using the 2-body hybrid scheme in all cases assures that the elementary
amplitude in on-shell.
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Figure 19: Energy dependence of the cross section in electroproduction of 12
ΛB at the

kaon angle θKe = 6◦ with different values of the proton momentum for the ground
state. Contributions from longitudinal (L), and transverse-longitudinal interference
(TL) parts to the full cross section are presented.
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While character of the results with the given elementary amplitude is largely the
same for all states, see for example the order of the curves above 2 GeV, the magnitude
of the effect from the proton motion depends on the energy. Note that the particular
shape of the curves depends also on the elementary amplitude. The cross sections
differ significantly more for the photon energies above about 2 GeV. where the cross
sections are rising for all proton momenta. On the other hand the results with different
proton momentum do not differ too much below 2 GeV. In the region of 1.7–2 GeV one
observes a resonant structure which can be attributed to the longitudinal contributions
in the reduced amplitude controlled by the dynamical selection rule. This is therefore
the reason why the resonant structure is more pronounced in the group of the states
2−, 1+, and 3+ than in the other group of 1− and 2+ states.
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Figure 20: Same as in Fig. 19 but for the 3+ state.
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Contributions from the longitudinal and transverse-longitudinal interference parts
of the differential cross section for the ground and 3+ excited states are shown in
Figs. 19 and 20, respectively. One can observe the resonant pattern in the energy
region 1.7–2 GeV for both states but with a different strength. The relative importance
of these longitudinal contributions (L and TL) in the full cross section is about a factor
five larger for the 3+ state than for the 1− ground state. This phenomenon can be

attributed to a significant contribution from the elementary amplitude F 1
00 in the

longitudinal part for the 3+ state (where A0
30 ̸= 0), which is absent in the 1− state
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Figure 21: Energy dependence of the cross section in electroproduction of 12
ΛB at the

kaon angle θKe = 6◦ calculated using the elementary amplitude SLA with different
values of the proton momentum. The ground and first excited states are shown.
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(where A0
10 = 0). The relatively large contribution from the longitudinal part at

2 GeV further emphasizes the importance of electroproduction calculations even in
kinematics with a photon that is almost real (Q2 = 0.06 (GeV/c)2).

As the nature of the Fermi motion effects depends also on the elementary amplitude
we depict in Figs. 21 and 22 the energy dependence of the cross sections calculated
with the elementary amplitude SLA. We see a smooth energy dependence of the cross
sections in the whole considered energy region which is due to a moderate energy
dependence in the SLA amplitude. This is especially apparent at energies above 2.2
GeV where the results with SLA did not tend to diverge so much as the results with the
BS3 amplitude. The Fermi motion effects observed in Figs. 21 and 22 remain moderate
also in the other energy region suggesting that the contribution from the longitudinal
mode of the virtual photon is not so much important in the SLA as in BS3 amplitude
where it forms the resonant structure. It is the wealthy energy dependence in the BS3
amplitude that makes more pronounced structures in the energy dependence of the
hypernucleus cross sections in comparison with the SLA amplitude.

3.2 Effects from kaon distortion

In electroproduction of hypernuclei the distortion of the kaon wave function in the
final state is an important effect in computing the production cross sections. Including
the kaon distortion in DWIA reduces the cross section by several tens of per cent in
comparison with the results obtained in PWIA. Therefore, it is useful to discuss the
kaon distortion in more detail.

In Fig. 23 we compare the cross sections for several states of 12
ΛB calculated in

PWIA and DWIA. The comparison is done for (a) the frozen proton approximation,
(b) frozen Λ approximation, and (c) the optimum proton momentum. We can confirm
that the kaon distortion makes the cross sections smaller by about 30% and that these
effects do not depend too much on the kaon angle. Note that at very small angles
the Fermi motion effect also amounts about 35%, see for example the difference of the
DWIA cross section in the p = 0 and pΛ = 0 cases for the 3+ state.

The cross sections calculated in PWIA and DWIA at Eγ = 2.2 GeV and θKe = 6◦

are compared in Table 3. We see that the relative suppression of the cross section in
DWIA in not the same for all states. It is clearly visible that the difference between
PWIA and DWIA is steadily decreasing with rising energy of the excited state: it
varies from 45% for the ground state (JP ; E) = (1−; 0.0) to 35% for the excited state
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Table 3: Comparison of the cross sections for selected states of 12
ΛB calculated in

PWIA and DWIA. The results are for three different values of the proton momentum
calculated in kinematics Q2 = 0.06 (GeV/c)2, Eγ = 2.2 GeV, ϵ = 0.7, θKe = 6◦, and
ΦK = 180◦. The virtual-photon flux factor is Γ = 0.0174 (GeV sr)−1 and the cross
sections are in nb/sr.

proton momentum (JP ; Ex) PWIA DWIA
p⃗p = 0 (1−; 0.0) 61.9 34.4

(2−; 0.116) 250.61 142.47
sum 312.52 177.1
(1+; 10.525) 11.04 6.78
(2+; 11.059) 82.15 54.21
(3+; 11.132) 195.39 135.39
sum 288.85 196.38

p⃗p = −∆⃗ (1−; 0.0) 99.17 56.43
(2−; 0.116) 388.49 215.11
sum 487.66 271.54
(1+; 10.525) 16.4 11.24
(2+; 11.059) 131.53 88.76
(3+; 11.132) 301.88 197.9
sum 449.81 297.9

p⃗p = p⃗opt (1−; 0.0) 74.14 41.74
(2−; 0.116) 268.97 150.53
sum 343.11 192.27
(1+; 10.525) 10.06 6.6
(2+; 11.059) 98.38 65.79
(3+; 11.132) 207.18 138.85
sum 315.62 211.24
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Figure 22: The same as in Fig. 21 but for states in the multiplet at 11 MeV.

68



5 6 7 8 9 10 11 12 13
q

Ke
 [deg}

0

30

60

90

120

150

180

210

240

ds
/d

W
K
 [

n
b

/s
r]

(1
+
; 10.525) DWIA

(2
+
; 11.059) DWIA

(3
+
; 11.132) DWIA

(1
+
; 10.525) PWIA

(2
+
; 11.059) PWIA

(3
+
; 11.132) PWIA

p=0(a)

5 6 7 8 9 10 11 12 13
q

Ke
 [deg]

0

40

80

120

160

200

240

280

320

ds
/d

W
K
 [

n
b

/s
r]

(1
+
; 10.525) DWIA

(2
+
; 11.059) DWIA

(3
+
; 11.132) DWIA

(1
+
; 10.525) PWIA

(2
+
; 11.059) PWIA

(3
+
; 11.132) PWIA

p
L
=0(b)

5 6 7 8 9 10 11 12 13
q

Ke
 [deg]

0

30

60

90

120

150

180

210

240

ds
/d

W
K
 [

n
b

/s
r]

(1
+
; 10.525) DWIA

(2
+
; 11.059) DWIA

(3
+
; 11.132) DWIA

(1
+
; 10.525) PWIA

(2
+
; 11.059) PWIA

(3
+
; 11.132) PWIA

p
opt(c)

Figure 23: Angular distribution of the cross section in electroproduction of 12
Λ B

with (a) frozen proton momentum peff = 0, (b) frozen Λ momentum pΛ = 0, and
(c) optimum proton momentum peff = popt. Different colors are used for various
states with the spin-parity and energy (JP ; E). The solid and the dashed lines are for
calculations in PWIA and DWIA, respectively.
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(JP ; E) = (3+; 11.132). In the ground state, the Λ particle is more deeply bound
leading to a stronger distortion of the kaon wave function. From previous comparison
we know that the suppression of the cross sections in DWIA improves agreement with
the experimental data and therefore using DWIA is necessary.

In Table 3 we also present the sum of the cross sections for the given multiplet
which can be compared with the experimental data [56] taken in the same kinematics
(Eγ = 2.2 GeV, θKe = 6◦, and ΦK = 180◦). The experimental value of the triple-
differential cross section for the (1−; 0.0) and (2−; 0.116) states is ≃ 3.61 - 5.41
nb/(sr2GeV) and that for the (1+; 10.525), (2+; 11.059) and (3+; 11.132) states is ≃
3.84 - 5.52 nb/(sr2GeV). Dividing these values by the virtual-photon flux factor Γ =
0.0174 (GeV sr)−1 we obtain values of the differential cross section 207.47 − 310.92
nb/sr and 220.69 − 317.24 nb/sr, respectively. These values can be compared with
the calculations from Table 3. It is evident that the experimental cross sections align
more closely with the DWIA results where the non-zero effective proton momentum
is assumed.
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Figure 24: Calculations in PWIA and DWIA are compared with the experimental
data on the excitation spectrum in electroproduction of 12

Λ B [56]. The theoretical
results were obtained using the OBDME from the shell model [4] and the elementary
amplitude BS3.
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In Fig. 24 we compare the excitation spectrum of 12
ΛB calculated in PWIA and

DWIA with experimental data [56]. The theoretical predictions were obtained using
the OBDME from the shell model calculations [35] and the elementary amplitude
BS3. This comparison clearly demonstrates that considering the kaon distorted wave
brings the result much closer to the experimental data than the result with the kaon
plane wave. One can also see that the difference between the PWIA and DWIA
results is bigger for the ground-state doublet than for the multiplet at 11 MeV. This
discrepancy arises because the Λ hyperon is located in the s shell for the ground-state
doublet of 12

ΛB and in the p shell in the 11-MeV multiplet. This makes larger overlap
of the wave functions in the radial integral rising the effect of kaon distortion in the
former case.

As we showed in Eq. (70) the kaon distorted wave function depends (in our approx-
imation) on the nucleus density ρ(r) used in constructing the kaon-nucleus first-order
optical potential. This density can be calculated assuming various approaches. It is
therefore interesting to show how much various forms of the nucleus density influence
the hypernucleus production cross sections.

In Fig. 25 we show various forms of the nuclear density for 12C, 16O and 48Ca ob-
tained in different approaches. The densities were calculated employing the parametriza-
tion in the harmonic oscillator model (HO), the Hartree-Fock (HF) method, and the
Wood-Saxon (WS) potential. The densities differ mainly in the central region of the
nucleus and the case of 48Ca the HO density provides a very bad description.

In Fig. 26, we present predictions of the excitation-energy spectrum of 48
Λ K in the

planned experiment E12-15-008 at JLab. The cross sections were calculated with
the elementary amplitude BS3 in the optimum on-shell approximation. The nucleus-
hypernucleus structure was described using the NΛ TDA formalism with the effective
Nijmegen interaction and kF = 1.5 fm−1. The experiment is planned in kinematics:
Ei = 2.24 GeV, Ef = 0.74 GeV, θe = 8.0◦, θKe = 11◦, and ΦK = 180◦. In accounting
for the kaon distortion we used the HO parametrization and the HF method. It is
evident from the results that including of the kaon distortion in DWIA significantly
suppresses the cross sections (by 50-60%) in both cases. However, the difference be-
tween the HF and HO results is very small even if the HO density provides unrealistic
description of 48Ca as we can see in Fig. 25.

In Fig. 26 we also see that the effects from the kaon distortion are more pronounced
for the medium-mass hypernuclei than for lighter (p-shell) hypernuclei. This is be-
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Figure 25: Nuclear density of 12C, 16O and 48Ca calculated using the harmonic os-
cillator parametrization (HO), the Hartree-Fock method (HF), and the Woods-Saxon
potential (WS).

cause the kaon-nucleus optical potential is, in general, deeper and with longer range
for heavier nuclei and the mean free path of the kaon moving inside a hypernucleus
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Figure 26: Predictions of the excitation spectrum for electroproduction of 48
ΛK calcu-

lated in kinematics of the upcoming experiment E12-15-008 at Jefferson Laboratory.
The results obtained in PWIA are compared with the DWIA results calculated with
two different forms of the nuclear density (HF and HO) in the kaon-nucleus optical
potential.

is larger.
In Table 4 we demonstrate differences of the differential cross sections for 48

Λ K
calculated using the HO and HF densities in the DWIA. It is evident that the difference
strongly depends on the particular hypernucleus state. For some states, such as 1+ and
2−, the calculations exhibit even substantial discrepancies, 17–25%. Note, however
that this is still smaller effect than the difference of the cross sections calculated in
DWIA and PWIA. Conversely, for the higher-energy (Eexc > 19 MeV) states, the
differences between the HO and HF cross sections are smaller, approximately 2–6%,
suggesting that both forms of nuclear densities are quite suitable for these states. This
variance observed in Table 4 can be attributed to a different overlap of the proton
and Λ radial wave functions and the function FLM as given in Eq. (68).
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Eexc [MeV] JP dσ with HO dσ with HF percentage diff
0.148 1+ 16.8035 21.4916 24.5%
6.359 3+ 15.6061 18.0227 14.4%
9.657 2− 23.0594 27.3040 16.9%
11.068 2− 20.6302 22.3071 7.8%
11.117 3− 35.0237 36.6657 4.6%
18.671 1+ 18.8498 22.8882 19.3%
16.217 4− 53.6477 56.7453 5.6%
19.941 3+ 30.5433 30.0982 1.5%
20.067 4+ 51.1163 49.8918 2.4%
24.980 4+ 28.9620 28.4601 1.7%
25.155 5+ 82.9344 81.2487 2.1%
28.013 4− 40.0661 37.6276 6.3%
28.129 5− 52.9324 49.5265 6.6%

Table 4: The differential cross sections for selected hypernucleus states in electro-
production of 48

ΛK. The DWIA results are obtained in the TDΛ formalism using the
Nijmegen F YNG interaction with kF = 1.25 fm−1 and the elementary amplitude BS3
in the optimum on-shell approximation. Two different forms of the nuclear density
are considered: the Harmonic Oscillator (HO) and the Hartree-Fock (HF). The per-
centage difference between the results with HO and HF is shown.

3.3 Nuclear structure effects

Calculations of the hypernucleus wave functions were performed within the HF and
TDΛ methods with the Hamiltonian

H = Tintr + V = TN + TΛ − Tc.m. + Vsat + VΛN . (94)

The intrinsic kinetic term Tintr is derived by subtracting the center of mass en-
ergy term, Tc.m., from the kinetic energies of nucleons (TN) and Λ (TΛ). The chiral
NNLOsat potential, Vsat, consists of NN + NNN parts [62]. This interaction was op-
timized in order to reproduce the low-energy NN scattering data as well as binding
energies and radii of selected nuclei up to oxygen and carbon isotopes [62]. While the
NNN component is considered explicitly when constructing the HF basis, the TDΛ

calculations are solved with two-body NN interaction corrected by NNN term within
normal-order approximation [66]. Let us notice that residual NNN interaction would
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not affect TDΛ, anyway. We used the effective NΛ potential in the form of G-matrix
derived from the Nijmegen-F YN interaction [63] parameterized by a sum of Gaussian
functions,

VΛN(r) =
3∑︂

i=1
(ai + bikF + cik

2
F )exp(−r2/β2), (95)

where ai, bi, ci coefficients are given in [63]. This potential depends on Fermi momen-
tum kF which plays a role of physical parameter.

The shell model calculations were performed assuming the nucleons in the p shell
and Λ in the s and p shells. The effective YN interaction was constructed in frame of
this shell model approach fitting the free parameters to γ-ray spectroscopic data of the
p-shell hypernuclei [35]. This effective YN interaction is therefore fully consistent with
the shell model formalism and can describe well the γ-ray spectroscopic data of the
p-shell hypernuclei. Note also that the Λ−Σ mixing is included in this calculation. In
computing the OBDME within this approach the Woods-Saxon single-particle basis
was adopted and therefore we also use this basis in calculating the radial integrals.

In Figs. 27 and 28 we present a comparison of the excitation spectra in electro-
production of 12

ΛB and 16
ΛN calculated within the TDΛ and shell model approaches.

The theoretical results are also compared with experimental data from Ref. [56]. Note
that the theoretical results presented in Ref. [56] there obtained in the frozen-proton
approximation whereas our new results presented here and in Ref. [4] were obtained
in the optimum on-shell approximation which, together with other tiny modifications,
significantly enhances agreement with the experimental data.

As one can see in Fig. 27, the result obtained within the TDΛ approach is well
consistent with the data and the SM result in the region of the main peaks at 0
and 11 MeV which correspond to Λ bound in the s and p orbit, respectively. The
central energy of these peaks therefore agree quite well with the experiment. The
TDΛ calculations were executed with the HF basis and are parameter-free, except
for the Fermi momentum kF . This parameter was chosen to reproduce the empirical
energy gap between the (0p3/2)Λ and (0s1/2)Λ states, resulting in kF = 1.1 fm−1.

However, the TDΛ method lacks the observed small excitations in between the
two main peaks in Fig. 27 generated by excitations of the core nucleus 11C [56]. This
discrepancy suggests that the production strength is more concentrated in these states
in the TDΛ calculation compared to the shell model one, where the strength is also
distributed across the core-excited region in a better agreement with the data. This is
also why the peaks in TDΛ are so high in comparison with those in SM. To accurately

75



-2 0 2 4 6 8 10 12 14
E

exc
 [MeV]

0

1

2

3

4

5

6

7

ds
/(

dW
edW

K
d

E
ed

E
e

xc
) 

[n
b

/(
sr

2 G
e

V
 M

e
V

)]

Exp. data
SM
NL TDA

Figure 27: The excitation spectra of 12
ΛB calculated in the TDΛ method (the blue line)

and the empirical shell model (the dashed red line) are compared with experimental
data from Ref. [56]. The calculations were performed using the BS3 elementary am-
plitude in the optimum on-shell approximation with kaon distortion included.

describe the core-excited peaks, an approach beyond the mean-field description is
needed, for example the equation of motion phonon method (EMPMΛ) [5], which is
an extension of EMPM used in ordinary nuclear physics. Indeed, in the EMPMΛ

description, the magnitudes of the main peaks are reduced redistributing the strength
into a new structure in the region of core-excited states. However, in this approach,
the second peak at 11 MeV is slightly shifted to lower energy and the structure in
the core-excited region differs from that observed in the data. These new features
observed in the EMPMΛ approach are attributed to a more complex structure of
the hypernuclear wave function, which is correlated by complex configurations of the
NΛ TDA states coupled to the phonon excitations of the core. For more detailed
information on the EMPMΛ method, its description and calculations, see Ref. [5].

The excitation spectrum in electroproduction of 16
ΛN is shown in Fig. 28. The

result obtained from the NΛ TDA approach with the Nijmegen YN interaction and
kF = 1.1 fm−1 (solid blue line) does not accurately depict the positions of the second
and fourth peaks. These peaks are associated with the proton p3/2 hole state and with
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Figure 28: The same as in Fig. 27 but for 16
Λ N.

the Λ hyperon occupying the s and p orbit, respectively. The discrepancy suggests a
problem with accurate description of the energy gap between the proton p3/2 and p1/2

levels, where the latter is represented by the first and third peaks in the excitation
spectrum. Varying the value of kF , which alters the effective YN interaction, typically
changes the gap between the states with Λ in the s and p orbits, corresponding to
the first and third peaks, and between the second and fourth peaks. However, this
modification is unnecessary in this context. Instead, adjusting the energy gap between
the first and second peaks can be achieved by modifying the three-nucleon interaction
(NNN). For further discussion, we refer to [5].

The excitation-energy spectrum of 40
ΛK is illustrated in Fig. 29. The calculations

were performed with the BS3 amplitude in the frozen-proton approximation and in
kinematics of the planned JLab experiment E12-15-008 set at Eγ = 1.3 GeV and
θK = 5◦. The theoretical predictions shown for various values of the parameter
kF differ not only in the position of the peaks but also in their magnitudes which
illustrates a distinct nature of the employed forms of the YNG interaction given by
its dependence on kF . One can conclude that the larger value of kF shifts the peaks
to lower energies, resulting in a more bound Λ in the hypernucleus.
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Figure 29: The excitation spectrum for electroproduction of 40
ΛK calculated using the

TDΛ method with different values of the parameter kF in the G-matrix parametrisa-
tion of the Nijmegen-F YN interaction. The results were obtained in kinematics of
the upcoming experiment E12-15-008 at Jefferson Laboratory.
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4 Conclusion

We investigated in detail various effects in computing the cross sections in electropro-
duction of hypernuclei. The model calculations are based on the impulse approxima-
tion assumed in the optimal factorization where the elementary amplitude is evaluated
for an effective proton momentum. The general two-component (CGLN-like) form of
the elementary amplitude, developed in this work, allows assuming arbitrary value
of the effective momentum wherewith a motion of the initial proton in the nucleus
can be included (the Fermi motion effect). Distortion of the final-state kaon wave
function is included via the eikonal approximation using the first-order optical poten-
tial for the kaon re-scattering on the nucleus. The optical potential can be modified
using various forms of the nuclear density. Moreover, our formalism for the DWIA
calculations enables accounting for sufficiently large model space of the single-particle
states which is important in production of medium- and heavy-mass hypernuclei. The
transition densities represented by OBDME can be taken from different many-body
calculations which utilize various effective NN and NY interactions. In the calcula-
tions we can also use different elementary amplitudes and the single-particle wave
functions in computing the radial integrals.

This advanced formalism made it possible to study various effects in predicted
cross sections for electroproduction of a wide range of hypernuclei. Particularly, we
studied the effects from Fermi motion, kinematics, and kaon distortion as well as from
various many-body approaches and forms of the effective YN interactions. The effects
were investigated on the angle and energy dependence of the differential cross sections
for various hypernuclear states in electroproduction of the p-shell hypernuclei 12

ΛB and
16
ΛN and the sd-shell hypernuclei 40

ΛK and 48
ΛK. In the case of the p-shell hypernuclei

the excitation spectra were also compared with experimental data whereas in the
latter case we provided predictions of the spectra for the experiments prepared at the
Thomas Jefferson National Laboratory (JLab) in the U.S.A..

In the case of the cross sections for 12
ΛB and 16

ΛN we carefully examined the impact
of different approaches in computing the kaon momentum (kinematical effects) and
different choices of the effective proton momentum (Fermi motion effect). We found
that the Fermi motion effects vary significantly in dependence on kinematics and the
elementary amplitude. These effects are more noticeable at higher photon energies,
specifically above 2 GeV in the laboratory frame, and at small kaon angles. The
magnitude and nature of the effects depend strongly on the elementary amplitude
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where more pronounced effects were observed for the more modern amplitude BS3
than for the older amplitude Saclay-Lyon A. We also studied the separate compo-
nents of the full differential cross section and found that both the longitudinal and
the transverse-longitudinal interference components are considerably sensitive to the
specific value of the proton momentum, mainly at small kaon angles. Generally, the
largest differences in the cross sections were observed for the two extreme cases of the
proton momentum, particularly with the frozen proton and the frozen Λ hyperon.

We have shown that the results obtained from various approaches in computing the
kaon momentum (the computational scheme) reveal quite large differences, especially
when the kaon momentum is determined from the energy conservation in the many-
body system and therefore the elementary amplitude is off-its-energy shell. However,
the uncertainty due to a choice of the computational scheme can be avoided when the
optimum value of the effective proton momentum is chosen. In this case the energy
conservation is fulfilled both in the many-body and two-body systems and therefore
the elementary amplitude is on-shell. Moreover this optimum proton momentum
acquires values which are quite close to the mean momentum of the proton in the
target nucleus. As the optimum proton momentum depends on the angle with respect
to the momentum transfer in the reaction we also investigated a sensitivity of the
cross sections to this angle. We can conclude that the choice where the proton moves
opposite to the momentum transfer, wherewith the momentum of Λ is minimal, is a
reasonable choice. The choice with the optimum proton momentum and the on-shell
elementary amplitude we denote as the optimum on-shell approximation.

In the earlier calculations [14, 56, 16] we considered the frozen-proton approxima-
tion and utilized a hybrid computational scheme with two different kaon momenta
incorporating both the on-energy-shell elementary amplitude and the kaon momen-
tum calculated from the many-body energy conservation. However, with the elabo-
rated formalism and the newly developed form of the elementary amplitude we can
employ the optimum on-shell approximation which improves an agreement with the
experimental data.

The Fermi motion effects also exhibit apparent systematic variations among hy-
pernuclear states with different spin and parity due to the selective contribution from
the longitudinal component of the reduced amplitude A0

J0. These distinctions of the
results for two sets of hypernuclear states can be characterized by a “dynamical se-
lection rule." This selection rule significantly influences behaviour of the longitudinal
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and transverse-longitudinal components of the cross section in dependence on the spin
and parity of the states.

From our analysis of the kaon distortion we can confirm that the distortion sup-
presses the cross section by several tens of per cent (30–40% for 12

ΛB and 16
ΛN) where

the effect is larger for the more deeply bound Λ hyperon. The effect is stronger for
heavier hypernuclei (e.g. 40

ΛK), where it amounts up to 50%, and it significantly im-
proves an agreement with the experimental data. The relative size of the effect from
kaon distortion is basically uniform in the angular dependence. Tiny effects in the
excitation spectrum were observed when different forms of the nuclear density in the
kaon-nucleus optical potential were used even if the densities markedly differ in the
central part of the nucleus. A dependence of the distortion on the quantum numbers
of a hypernucleus state and on the proton momentum was also observed.

We demonstrated that the TDΛ approach, employed for calculating the one-body
density matrix element (OBDME) and the single-particle wave functions, can effec-
tively describe experimental data for the p-shell hypernuclei, yielding results similar
to those obtained from the shell-model calculations [5]. Hence, the TDΛ approach can
be applied to predicting the excitation spectra of medium-mass hypernuclei, slated
for investigation in an upcoming experiment at JLab. Specifically, we have predicted
spectra for the 48

ΛK and 40
ΛK hypernuclei, which will be a part of the planned ex-

periment at JLab. In these spectra we have observed appreciable dependence on a
form of the effective YN interaction given by its dependence on the Fermi momentum
kF . However, to obtain a better agreement with the data for the 12

ΛB hypernucleus,
describing also the core-excited states, an elaborated method of computing OBDME
must be considered, for example using the equation of motion phonon method.
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A Evaluation of the production amplitude

To evaluate the matrix element (21) we introduce the coordinates of the baryons

r⃗1, r⃗2, ..., r⃗A−1, r⃗p for the nucleus and

r⃗ ′
1, r⃗ ′

2, ..., r⃗ ′
A−1, r⃗Λ for the hypernucleus.

The coordinates of the photon and kaon are r⃗γ and r⃗K , respectively.
We use the following normalization of the states and relation between the coordinate
and momentum spaces

⟨r⃗ ′|r⃗ ⟩ = δ(3)(r⃗ ′ − r⃗ ) ,

⟨r⃗ | p⃗ ⟩ = eip⃗·r⃗ ,

⟨p⃗ ′| p⃗ ⟩ = (2π)3 δ(3)(p⃗ ′ − p⃗ ) .

The corresponding relations of the completeness are∫︂
d3r | r⃗ ⟩⟨ r⃗ | = 1 ,

∫︂ d3p

(2π)3 | p⃗ ⟩⟨ p⃗ | = 1 .

Inserting these multiple relations into the matrix element in Eq. (21) we obtain the
following bra-ket scalar product form

Mµ =
∫︂

d3r ′
1 ... d3r ′

A−1 d3rΛ d3r1 ... d3rA−1 d3rp d3rK d3rγ
d3pK d3pΛ d3pp d3pγ

(2π)12

× ⟨ΨH | r⃗ ′
1 ... r⃗ ′

A−1r⃗Λ⟩ ⟨χK | r⃗K ⟩ exp[ i(p⃗K · r⃗K + p⃗Λ · r⃗Λ) ]

× ⟨ p⃗K p⃗Λ | Z Ĵµ(A) | p̃γ p̃p ⟩ exp[−i(p̃γ · r̃γ + p̃p · r̃p) ]

× ⟨ r⃗γ | χγ⟩ ⟨r⃗1 ... r⃗A−1r⃗p |ΨA⟩ ⟨ r⃗ ′
1 ... r⃗ ′

A−1 | r⃗1 ... r⃗A−1 ⟩ . (96)

The last term in (96) expresses a passivity of the core particles in the reaction (see
Fig. 3) and allows to integrate over the variables r⃗ ′

1, ... r⃗ ′
A−1 using the corresponding

δ-functions. Then, as a consequence, the coordinates of the nucleus and hypernucleus
cores are equal R⃗c = 1

A−1(r⃗1 + ...r⃗A−1) = R⃗
′
c.

It is convenient to introduce the standard Jacobi coordinates to separate the nu-
cleus and hypernucleus center of mass degrees of freedom

ξ⃗1 = r⃗2 − r⃗1, ξ⃗2 = r⃗3 − 1
2(r⃗1 + r⃗2), . . . ξ⃗A−2 = r⃗A−1 − 1

A − 2(r⃗1 + ... r⃗A−2)
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ξ⃗p = r⃗p − 1
A − 1(r⃗1 + ... r⃗A−1)

ξ⃗Λ = r⃗Λ − 1
A − 1(r⃗1 + ... r⃗A−1)

R⃗A = 1
A(r⃗1 + ... r⃗A−1 + r⃗p)

R⃗H = 1
A − 1 + γ

(r⃗1 + ... r⃗A−1 + γr⃗Λ)

with γ = mΛ/mp. Note that we have used expressions for the masses MA = A mp and
MH = (A − 1)mp + mΛ neglecting any binding effects in the compound systems. It is
also obvious that ξ⃗Λ − ξ⃗p = r⃗Λ − r⃗p. Moreover it holds

R⃗A = 1
A r⃗p + A − 1

A R⃗c = r⃗p − A − 1
A ξ⃗p = r⃗Λ − ξ⃗Λ + 1

A ξ⃗p , (97)

R⃗H = γ

A − 1 + γ
r⃗Λ + A − 1

A − 1 + γ
R⃗c = r⃗Λ − A − 1

A − 1 + γ
ξ⃗Λ (98)

= R⃗A − 1
A ξ⃗p + γ

A − 1 + γ
ξ⃗Λ .

The Jacobian of the transformation equals to the unity and therefore we can replace
the integrating variables as

d3r1 ... d3rA−1 d3rp → d3ξ1 ... d3ξA−2 d3ξp d3RA.

The wave functions in the coordinate representation are

⟨ΨH(P⃗ H) | r⃗1 ... r⃗A−1 r⃗Λ⟩ = e−iR⃗H·P⃗ H Φ∗
H(ξ⃗1, ... ξ⃗A−2, ξ⃗Λ) ,

⟨χK(P⃗ K) | r⃗K ⟩ = e−ir⃗K ·P⃗ K χ∗
K(p⃗ ′

K , r⃗K − R⃗H) ,

⟨r⃗1 ... r⃗A−1r⃗p |ΨA(P⃗ A)⟩ = eiR⃗A·P⃗ A ΦA(ξ⃗1, ... ξ⃗A−2, ξ⃗p) ,

⟨ r⃗γ |χγ(P⃗ γ)⟩ = eir⃗γ ·P⃗ γ .

Note that the wave function of the initial photon is not distorted, it is the plane wave,
and that a distortion of the kaon wave function is described by χK(p⃗ ′

K , r⃗K −R⃗H) which
equals to the unity in PWIA. This kaon distorted wave depends on the momentum
p⃗ ′

K which is the kaon-hypernucleus relative momentum associated with the relative
coordinate r⃗K − R⃗H. The distorted wave χK is obtained as a solution of the kaon-
hypernucleus scattering problem. However, due to insufficient knowledge on the KΛ
scattering we assume that the kaon re-scatters off the nucleus.

We also assume the translational invariance in the two-body elementary-production
vertex

⟨p⃗K p⃗Λ | Ĵµ(A) | p̃γ p̃p ⟩ = (2π)3 δ(3)(p̃K + p̃Λ − p̃γ − p̃p) Jµ(p̃K, p̃γ, p̃p) , (99)
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where the amplitude Jµ(p⃗K , p⃗γ, p⃗p) have to be expressed in the two-component form
(CGLN-like) to match it with the nonrelativistic nucleus and hypernucleus wave func-
tions. Moreover this form have to be written for a general two-body reference frame
defined by an arbitrary value of the proton momentum. Special cases, commonly
used in the literature, are the laboratory frame with the proton in rest p⃗p = 0 and
the photon-proton c. m. frame with p⃗p = −P⃗ γ. Note also that in ordinary nuclear
physics the baryons are considered on their mass shell and therefore the two-body
energy conservation is violated if the baryons are considered as the bound particles
in the compound systems, see Fig. 3.

Using the elementary amplitude, the Jacobi coordinates, and the forms of the wave
functions we get for the matrix element in Eq. (96) the expression

Mµ = Z
∫︂

d3rΛ d3ξ1 ... d3 ξA−2 d3ξp d3RA d3rK
d3pp d3pK

(2π)6 exp[i(p⃗K − P⃗ K)(r⃗K − r⃗Λ)]

× Φ∗
H(ξ⃗1, ... ξ⃗A−2, ξ⃗Λ) χ∗

K(p⃗ ′
K , r⃗K − R⃗H) Jµ(p⃗K , P⃗ γ, p⃗p) ΦA(ξ⃗1, ... ξ⃗A−2, ξ⃗p)

× exp{ i [ (P⃗ γ − P⃗ K + p⃗p) · r⃗Λ − R⃗H · P⃗ H − p⃗p · r⃗p + R⃗A · P⃗ A]} , (100)

where the δ-function in Eq. (99) allowed to integrate over dpΛ assuming that p⃗Λ = p⃗p+
p⃗γ − p⃗K in Jµ and the phase factor. Moreover, as the only dependence on the photon
coordinate r⃗γ was in the phase factor (no distortion in the initial state) we could easily
integrate over d3rγ giving the δ-function

∫︁
d3rγ exp[ir⃗γ(P⃗ γ − p⃗γ)] = (2π)3δ(3)(P⃗ γ − p⃗γ)

which was used to integrate over d3pγ. Recall that p⃗ ′
K is the given relative kaon-

hypernucleus momentum but due to a distortion in the final state the kaon wave χ∗
K

depends on the kaon coordinate r⃗K . Therefore we consider the so called eikonal-like
approximation, that is, we factorize the integral
∫︂ d3pK

(2π)3 Jµ(p⃗K , P⃗ γ, p⃗p) exp[i(p⃗K − P⃗ K)(r⃗K − r⃗Λ)] ≈ δ(3)(r⃗K − r⃗Λ) Jµ(P⃗ K , P⃗ γ, p⃗p)

supposing that the phase factor is changing more rapidly than is the dependence of
Jµ on p⃗K and that p⃗K ≈ P⃗ K in Jµ. The δ-function then allows to integrate over
the kaon coordinate and the elementary amplitude depends on the kaon asymptotic
momentum.
The phase factor on the last line of Eq. (100) can be rewritten in terms of the Jacobi
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coordinates and the coordinate of the nucleus R⃗A which is independent of ξ′s

(P⃗ γ − P⃗ K) · r⃗Λ + p⃗p · (r⃗Λ − r⃗p) + P⃗ A · R⃗A − P⃗ H · R⃗H =

(P⃗ γ − P⃗ K) · (R⃗A + ξ⃗Λ − 1
A ξ⃗p) + p⃗p · (ξ⃗Λ − ξ⃗p) + P⃗ A · R⃗A −

P⃗ H · (R⃗A − 1
A ξ⃗p + γ

A − 1 + γ
ξ⃗Λ) = R⃗A · (P⃗ γ + P⃗ A − P⃗ K − P⃗ H) +

ξ⃗Λ · (P⃗ γ − P⃗ K + p⃗p − P⃗ H
γ

A − 1 + γ
) − 1

A ξ⃗p · (P⃗ γ − P⃗ K + Ap⃗p − P⃗ H) .

After integrating over d3RA we get the δ-function which is needed to introduce the
overall amplitude

Mµ = (2π)3 δ(3)(P⃗ γ + P⃗ A − P⃗ K − P⃗ H) Tµ .

This δ-function expresses the translational invariance in the overall system and the
amplitude reads as

Tµ = Z Tr
∫︂ d3pp

(2π)3 d3ξ1...d
3ξA−2 d3ξp d3rΛ χ∗

K(p⃗ ′
K , r⃗Λ − R⃗H) Jµ(P⃗ K , P⃗ γ, p⃗p)

× ΦA(ξ⃗1, ...ξ⃗A−2, ξ⃗p) Φ∗
H(ξ⃗1, ...ξ⃗A−2, ξ⃗Λ) exp

[︃
−i ξ⃗p · (p⃗p − 1

A P⃗ A)
]︃

× exp
{︄

i ξ⃗Λ ·
[︄

A − 1
A − 1 + γ

(P⃗ γ − P⃗ K) + p⃗p − γ

A − 1 + γ
P⃗ A

]︄}︄
, (101)

where we have introduced the trace operation (Tr) as the elementary amplitude is a
2 × 2 matrix on the spin space and the wave functions ΦA and Φ∗

H are taken as the
corresponding spinors. The amplitude in Eq. (101) is written in the ful-folding form,
i.e. there is still the integral over the proton momentum which represents averaging
over a motion of the initial proton in the nucleus. As the nucleus momentum P⃗ A was
not specified yet the amplitude is computed in a general reference frame.

Considering the laboratory frame, P⃗ A = 0, and assuming that the elementary
amplitude is a sufficiently smooth function of the proton momentum and therefore it
can be taken outside the integral for some effective value p⃗p = p⃗eff we can consider
the overall amplitude (101) in the factorized form

Tµ = Z Tr Jµ(P⃗ K , P⃗ γ, p⃗eff)
∫︂ d3pp

(2π)3 d3ξ1...d
3ξA−2 d3ξp d3rΛ χ∗

K(p⃗ ′
K , r⃗Λ − R⃗H)

× ΦA(ξ⃗1, ...ξ⃗A−2, ξ⃗p) Φ∗
H(ξ⃗1, ...ξ⃗A−2, ξ⃗Λ) exp

[︂
−i p⃗p · (ξ⃗p − ξ⃗Λ)

]︂
× exp

{︄
i ξ⃗Λ ·

[︄
A − 1

A − 1 + γ
(P⃗ γ − P⃗ K)

]︄}︄
. (102)
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We see that the integral over d3pp is trivial and the resulting δ-function allows to
integrate also over d3ξp giving ξ⃗p = ξ⃗Λ ≡ ξ⃗. Introducing B = (A − 1)/(A − 1 + γ) and
∆⃗ = P⃗ γ − P⃗ K and realizing that r⃗Λ − R⃗H = Bξ⃗ we obtain the expression

Tµ = Z Tr
[︃

Jµ(P⃗ K , P⃗ γ, p⃗eff)
∫︂

d3ξ1...d
3ξA−2 d3ξ exp

(︂
i B ξ⃗ · ∆⃗

)︂
× χ∗

K(p⃗ ′
K , Bξ⃗ ) ΦA(ξ⃗1, ...ξ⃗A−2, ξ⃗ ) Φ∗

H(ξ⃗1, ...ξ⃗A−2, ξ⃗ )
]︃

, (103)

which is consistent with Eq. (26).
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B CGLN-like amplitudes in a general reference frame

The CGLN-like amplitudes, Gj with j = 1, 2, ...16 in Eq. (61), depend on the six scalar
amplitudes Aj defined in Eq. (55), which can be calculated using a particular model
for electroproduction of K+ on the proton [52], and on four-momenta of the initial and
final particles denoted here as Pγ = (Eγ, P⃗ γ ), pp = (Ep, p⃗p), and pΛ = (EΛ, p⃗Λ). For
the scalar product we use the notation (a · b) = a0b0 − a⃗ b⃗. The CGLN-like amplitudes
are normalised with N = 1/

√︂
4mΛmp(EΛ + mΛ)(Ep + mp) where mp and mΛ are the

proton and Λ masses, respectively. Except for the virtual photon in electroproduction
the particles are on the mass shell, m2 = E2 − p⃗ 2. The CGLN-like amplitudes in
terms of the scalar amplitudes and kinematical variables read as

G1 = N
{︃ [︃

(pΛ · pp) Eγ − mΛmp Eγ − (Pγ · pΛ)(Ep + mp)−

− (Pγ · pp)(EΛ + mΛ)
]︃

A1 + [(pΛ · pp) + mΛmp + EΛmp + EpmΛ]

×
[︂
(Pγ · pp)A4 + (Pγ · pΛ)A5 − P 2

γ A6
]︂}︃

,

G2 = N
[︂

(Eγ + Ep + mp − EΛ − mΛ)A1 + (Pγ · pp)A4 + (Pγ · pΛ)A5 − p2
γA6

]︂
,

G3 = N [−(Ep + mp)A1 ] ,

G4 = N
[︂
−Eγ A1 − (Pγ · pp)A4 − (Pγ · pΛ)A5 + P 2

γ A6
]︂

,

G5 = N [−A5 + A6 ] ,

G6 = N [−A4 − A5 ] ,

G7 = N [ A5 ] ,

G8 = N

{︄
− (Ep + mp)A1 − Ep + mp

P 2
γ

[︂
(Pγ · pp) A2 + ((Pγ · pΛ) − P 2

γ ) A3
]︂

+

+ [(pΛ · pp) − (Pγ · pp) + mp(EΛ + mΛ − Pγ0) + Ep mΛ] (A5 − A6)
}︃

,

G9 = N
{︃

(Eγ − Ep − mp − EΛ − mΛ)A1 + (Ep + mp)(A2 + A3)+

+
[︃

(pp · pΛ) + mp(EΛ + mΛ − Eγ) + Ep mΛ

]︃
A4+

+
[︃

(Pγ · pΛ) − (Pγ · pp) + (pp · pΛ) + mp(EΛ + mΛ − Eγ) + EpmΛ

]︃
A5−

− P 2
γ A6

}︃
,
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G10 = N
{︃

(Ep + mp)(A1 − A3) +
[︃
( Pγ · pp) − (pp · pΛ) − mp(EΛ + mΛ − Pγ0)−

−Ep mΛ

]︃
A5

}︃
,

G11 = N

{︄
Eγ A1 + EΛ + mΛ − Ep − mp

P 2
γ

[︃
(Pγ · pp) A2 + ((Pγ · pΛ) − P 2

γ ) A3

]︃
+

+ (Pγ · pp)A4 −
[︃

(Pγ · pp) + Eγ(mΛ + mp)
]︃

A5+

+
[︃

(Pγ · pp) + (Pγ · pΛ) − P 2
γ + Eγ(mΛ + mp)

]︃
A6

}︃
,

G12 = N
{︃

2 Eγ A1 + (Ep + mp − EΛ − mΛ)(A2 + A3) − Eγ(mΛ + mp)(A4 + A5)−

− [(Pγ · pΛ) − (Pγ · pp)] (A4 − A5) − 2 P 2
γ A6

}︃
,

G13 = N
{︃
− Eγ A1 + (EΛ + mΛ − Ep − mp)A3 − (Pγ · pp)A4+

+ [ (Pγ · pp) + Eγ(mΛ + mp) ] A5 + P 2
γ A6

}︃
,

G14 = N

{︄
Ep + mp

p2
γ

[︂
(Pγ · pp)A2 + ((Pγ · pΛ) − P 2

γ )A3
]︂

+ [(Pγ · pp) + Eγmp] (A5 − A6)
}︄

,

G15 = N
{︃
− Eγ A1 − (Ep + mp)(A2 + A3) + Eγ mp A4+

+ [ (Pγ · pp) + Eγ mp − (Pγ · pΛ) ] A5 + P 2
γ A6

}︃
,

G16 = N
{︃
(Ep + mp)A3 − [(Pγ · pp) + Eγ mp] A5

}︃
.
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C Spherical amplitudes in a general reference frame

The non spin-flip (S = 0) spherical amplitudes FS
λη introduced in Eq. (64) can be

written in terms of the CGLN-like amplitudes and the spherical components of the
photon (p⃗γ ), proton (p⃗p) and kaon (p⃗K) momenta

F0
−10 = −|p⃗γ | [ (pp) 1

−1 G2 + (pK) 1
−1 G3 ] + [ (pp)1

0 (pK) 1
−1 − (pp) 1

−1 (pK)1
0 ] G4 +

+D [ (pp) 1
−1 G6 + (pK) 1

−1 G7 ]

F0
00 = −[ (pp) 1

−1 (pK)1
1 − (pp)1

1 (pK) 1
−1 ] G4 + D [ |p⃗γ | G5 + (pp)1

0 G6 + (pK)1
0 G7 ]

F0
10 = |p⃗γ | [ (pp)1

1 G2 + (pK)1
1 G3 ] − [ (pp)1

0 (pK)1
1 − (pp)1

1 (pK)1
0 ] G4 +

+D [ (pp)1
1 G6 + (pK)1

1 G7 ]

Similarly we can write down the spin flip (S = 1) spherical amplitudes

F1
11 = G1 − (pp) 1

−1 [ (pp)1
1 G12 + (pK)1

1 G13 ] − (pK) 1
−1 [ (pp)1

1 G15 + (pK)1
1 G16 ]

F1
10 = |p⃗γ | [ (pp)1

1 G9 + (pK)1
1 G10 ] + (pp)1

0 [ (pp)1
1 G12 + (pK)1

1 G13 ] +

+(pK)1
0 [ (pp)1

1 G15 + (pK)1
1 G16 ]

F1
1−1 = −(pp)1

1 [ (pp)1
1 G12 + (pK)1

1 G13 ] − (pK)1
1 [ (pp)1

1 G15 + (pK)1
1 G16 ]

F1
01 = −|p⃗γ | [ (pp) 1

−1 G11 + (pK) 1
−1 G14 ] − (pp)1

0 [ (pp) 1
−1 G12 + (pK) 1

−1 G15 ] −

−(pK)1
0 [ (pp) 1

−1 G13 + (pK) 1
−1 G16 ]

F1
00 = G1 + |p⃗γ | [ |p⃗γ | G8 + (pp)1

0 G9 + (pK)1
0 G10 + (pp)1

0 G11 + (pK)1
0 G14 ] +

+(pp)1
0 (pp)1

0 G12 + (pp)1
0 (pK)1

0 (G13 + G15) + (pK)1
0 (pK)1

0 G16

F1
0−1 = −|p⃗γ | [ (pp)1

1 G11 + (pK)1
1 G14 ] − (pp)1

1 [ (pp)1
0 G12 + (pK)1

0 G13 ] −

−(pK)1
1 [ (pp)1

0 G15 + (pK)1
0 G16 ]

F1
−11 = −[(pp) 1

−1 (pp) 1
−1 G12 + (pp) 1

−1 (pK) 1
−1 (G13 + G15) + (pK) 1

−1 (pK) 1
−1 G16]

F1
−10 = |p⃗γ | [ (pp) 1

−1 G9 + (pK) 1
−1 G10 ] + (pp)1

0 [ (pp) 1
−1 G12 + (pK) 1

−1 G13 ] +

+(pK)1
0 [ (pp) 1

−1 G15 + (pK) 1
−1 G16 ]

F1
−1−1 = G1 − (pp)1

1 [ (pp) 1
−1 G12 + (pK) 1

−1 G13 ] − (pK)1
1 [ (pp) 1

−1 G15 + (pK) 1
−1 G16 ]
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The spherical components of the momenta and the parameter D are

(pK)1
0 = |p⃗K | cos θK , (pK) 1

±1 = ∓|p⃗K |√
2

sin θK exp(±iΦK)

(pp)1
0 = |p⃗p| cos θp, (pp) 1

±1 = ∓
|p⃗p|√

2
sin θp exp(±iΦp)

D = i |p⃗γ | |p⃗p| |p⃗K | sin θp sin θK(cos Φp sin ΦK − sin Φp cos ΦK) .

The polar angles θK and θp are determined with respect to the photon momentum
and the azimuthal angles ΦK and Φp are defined with respect to the leptonic plane as
shown in Fig. 4.
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D Details on the model calculations of the cross
sections
in photo- and electroproduction of hypernuclei

The cross sections in photo- and electroproduction of hypernuclei in various excited
states are calculated in the model which utilize the impulse approximation and the
many-body matrix element is assumed in the optimum factorization approximation
(OFA) where the elementary production amplitude is evaluated at an effective proton
momentum. The full unpolarized differential cross section and its separated contri-
butions (T, L, TL, and TT) are computed in the Laboratory frame where the initial
nucleus is at rest. The results are obtained in dependence on the kaon angle or the
virtual-photon energy for given kinematics which allows to draw different distribu-
tions of the cross sections and study various effects resulting from the optional input
data and model assumptions.

The hypernucleus production cross sections are directly calculated from the re-
duced amplitudes which include three main ingredients: the elementary amplitude
(EA), the nucleus-hypernucleus transition matrix elements expressed in terms of the
so called One Body Density Matrix elements (OBDME), and the radial integrals.

The elementary production is calculated for an arbitrary value of the effective
proton momentum in OFA which is specified in the input file of the computer program.
If the special cases, the optimum momentum on-shell approximation and the case
with frozen Lambda, are required the numerical value of the proton momentum is
calculated by the computer program. Various isobar models for EA can be used as
the model parameters are taken from a file which name is provided in the input file.
These possible choices allow to study the effects from the Fermi motion of the initial
proton and from considering different EA.

The OBDME are also given in an input file and these data are results of the
calculations which use various many-body approaches (SM, HF, TDA) and accessible
NN and YN effective interactions. Changing the input file with OBDME allows
to study effects from the many-body approaches as well as from different effective
interactions.

The radial integrals (RI) are calculated using the proton and Λ single-particle wave
functions provided in the files with tables of values of the wave functions. The names of
these files are given in the input file and various forms of the wave functions (HO, HF,
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WS) can be used. The other ingredient in computing RI is the kaon distorted wave
which is included in the eikonal approximation. The kaon-nucleus optical potential is
constructed from the kaon-nucleon (KN) scattering amplitude and the nuclear density.
Both these components are specified in the input and one can change them to study
effects which stem from using various input data. The KN amplitude is given in the
isospin formalism, for I= 0 and 1, and the proper isospin averaging of the amplitude
is performed in computing the parameter α and σtot.

In the calculation of the reduced amplitudes one can include a sufficiently large
model space of the single-particle (s-p) states, denoted with the quantum numbers
[n, l, j]. This means that it is possible to sum up all relevant s-p transitions, i.e. those
for which the OBDME are significantly big. This is especially important in extending
the model calculations to production of the medium- and heavy-mass hypernuclei
where big model spaces are needed. Note, however, that usually one (or two) OBDME
with a specific s-p transition dominates in the amplitude for a given hypernucleus
state.

The computer code is organized as follows:
The main program first reads an input file which includes essential information for the
calculation such as parameters of the reaction, kinematics, parameters and switches
specifying the model calculation, and the names of the other files with required data.
Once the input data is read the program proceeds with preparing the parameters and
other data for the angle and radial integrations (Gaussian mesh points and weights),
the elementary amplitude (model parameters), kaon distortion (kaon-nucleon am-
plitudes and nucleus density), and more detailed kinematics (of the virtual-photon,
proton, kaon, hypernucleus).

The code continues with further steps, utilizing the prepared data and functions to
complete the calculation of the electroproduction cross section. The program runs in
the loops over the considered multiplets and hypernucleus final states. Data from the
file containing the OBDME is read to obtain selected single-particle states for Λ [n′l′j′]
and the proton [nlj] and the corresponding nucleus-hypernucleus matrix elements
of the single-particle transition operator. Using this data the nucleus-hypernucleus
structure coefficients HLSJ

n′l′j′nlj are computed for the given transitions and stored in
the field "HLSJ".

For each hypernucleus state in a multiplet, the program initiates the loop over kaon
angles, including polar and azimuthal angles, and the kaon momentum is determined
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in dependence on the chosen computational scheme (2-body, many-body, hybrid).
Then, the spherical elementary amplitudes are computed for the given momenta of
the photon, proton, and kaon. Next, the single-particle radial wave functions for
the selected quantum numbers of the proton and Λ are prepared. These radial wave
functions are crucial for calculating the radial integrals, including their phase factors
due to the rotation for a given angle ΦK .

In the subsequent step, the reduced amplitudes Aλ
Jm are computed as the sum

over all considered single-particle quantum numbers of the products of the radial
integrals and the nucleus-hypernucleus structure coefficients stored in HLSJ. After
the Clebsch-Gordan coefficient is added to the sum further summing is performed
over the quantum numbers L and M from the partial-wave decomposition. The result
is then multiplied by the elementary amplitude and summed over the spin. Finally, the
reduced amplitudes are summed over J and m to obtain the separated cross sections
for the specific hypernucleus final state and kaon angles.

The process described above is repeated for different hypernuclear states and kaon
angles, allowing for calculations of the cross sections for various final states and dif-
ferent angular dependence. This enables researchers to study the angular and energy
distributions of the cross sections for various hypernucleus states by providing the
output in the form of tables of the kaon angle or energy and the separated cross
sections for a list of the hypernucleus states given in the input file.

The proton and Λ hyperon single-particle radial wave functions are computed for
the Woods-Saxon and harmonic-oscillator potentials. However, other forms of the
wave functions, such as Hartree-Fock, must be supplied by other programs and are
read by the program as input data.

The kaon-nucleon scattering amplitude can be computed using various models,
e.g. by the separable model for the KN scattering. This flexibility allows to explore
different theoretical approaches and select the most suitable one for specific studies
of hypernuclear electroproduction.
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