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Introduction
The diploma thesis loosely follows on the long-standing cooperation between the
Institute of Physics CU and the IOCB ASCR in the area of targeted interventions
in the expression of genetic information [1, 2]. This area has undergone rapid
development in recent decades.

First, it was a simple blocking of the expression of genetic information at
the DNA or mRNA level by means of so-called antisense or antigene oligonu-
cleotides [3]. They usually have a length of approx. 20 nucleotides and carry
various chemical modifications in the sugar phosphate backbone, which make the
oligonucleotides resistant to cellular nucleases and which increase their affinity
to the target mRNA or DNA. At the same time, chemical modifications should
not disrupt the binding of the cellular enzyme RNase H, which in DNA:mRNA
complexes degrades the mRNA strand and thus releases the antisense deoxy-
oligonucleotide, which can then bind to the next copy of the mRNA and the
whole cycle can be repeated. At the end of the 1990s, it was discovered that
cellular micro-RNAs work similarly to antisense oligonucleotides. Micro-RNAs
stimulate the degradation of the target mRNA via the Argonaute enzyme. An-
drew Fire and Craig C. Mello won the 2006 Nobel Prize in Physiology or Medicine
for the discovery of this RNA interference mechanism. Today there are already
many approved oligonucleotide therapeutics [3].

In the course of time, it was also possible to obtain several molecular tools
(ZFN, TALEN, CRISPR) that allow for targeted interventions in DNA [4]. In par-
ticular, the elucidation of the molecular mechanism of CRISPR in 2012 led to the
acquisition of a tool that allows editing of the human genome to be performed
essentially routinely in a number of laboratories around the world. Thanks to
this, Emmanuelle Charpentier and Jennifer Doudna won the 2020 Nobel Prize
in Chemistry. Currently, many clinical trials for therapeutics based not only on
CRISPR, but also on TALENs or ZFNs, are underway [4].

In order to make interventions in the expression of genetic information effec-
tive, computer modeling tools are widely used [2, 5, 6]. These make it possible to
examine and optimize the structure of antisense oligonucleotides or key enzymes
used for genome editing so that their action is as specific as possible and no
unwanted off-target effects occur. The so-called molecular dynamics (MD) simu-
lations, which enable the binding free energy of complexes to be quantified, are
particularly useful for this. However, in the case of large complexes of enzymes
and DNA, the given methodology is in the phase of active research, when opti-
mal algorithms are sought and existing versions of the main software packages
are modified to give consistent results [6].
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1. Aims
• To acquaint readers with the most used tools for editing of the human

genome (ZFN, TALEN, CRISPR).

• To describe the methodology of MD simulations and free energy calcula-
tions.

• To prepare scripts that will make it possible to perform calculations of
hydration and binding free energy in the MetaCentrum supercomputer en-
vironment as efficiently as possible using massive parallelization.

• Test the selected algorithms on model systems (nucleic acid components,
amino acids).

• Apply the debugged procedures to the ZF-DNA complex. To verify that us-
ing the NAMD program and the algorithms implemented in it, it is possible
to obtain results comparable with those given by other software packages.

• The obtained binding free energy values should be interpreted in detail at
the atomic level based on the evolution of the structures of the ZF-DNA
complexes during the alchemical MD transformations.
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2. Biological Motivation – Gene
Editing
The fundamental step that gave rise to the field of genetic engineering was the dis-
covery of genetic information, first identified in the late 1860s by Swiss chemist
Friedrich Miescher [7], and with it the idea of inserting, deleting, or modifying
genes within an organism’s genome. By introducing specific genetic changes,
one could enhance crop resistance to pests and diseases, develop new therapies
for genetic disorders, or even engineer microbes to produce valuable pharmaceu-
ticals or biofuels. It holds the promise of personalized treatments, where tailored
therapies can target the genetic basis of diseases. Furthermore, genetic engineer-
ing enables us to delve deeper into the mysteries of life, unlocking the potential
for new discoveries and innovations that could reshape our understanding of bi-
ology and the world of nature. However, it also raises important ethical, environ-
mental, and safety concerns that necessitate careful consideration and regulation
as the field continues to evolve. It indeed is a double-edged sword.

2.1 Wide Range of Possibilities
In the field of genetic engineering there are various different ways and tools for
targeted genetic modifications of not only cultured cells, but also whole living an-
imals and plants. One of the (comparatively) well established classes of molecular
tools consists of programmable nucleases, including zinc-finger nucleases (ZFNs),
transcription activator-like effector nucleases (TALENs), and RNA-guided engi-
neered nucleases (RGENs) derived from the publicly well-known bacterial clus-
tered regularly interspaced short palindromic repeat (CRISPR)–Cas system. The
value of these enzymes in research, medicine and biotechnology arises from their
ability to induce site-specific DNA cleavage in the genome, the repair (through
endogenous mechanisms) of which allows high-precision genome editing [8].

Each one of these nucleases are characterized by their size, chemical compo-
sition, targetable sites and related specificities, mutation signatures, and other
important aspects at play. Study of these features pose an essential part of re-
search, allowing us to assign the most suitable machinery for a given range of ap-
plications. Experimental measurements can give only so much detail, lacking
deeper understanding of the underlying mechanisms, often missing the timescale
and resolution on which these events operate. Theoretical and computational ap-
proaches can provide the necessary atomistic insight, unlocking the full potential
of these molecular machines.
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2.2 Zinc-finger Nucleases (ZFN)
Zinc-finger nucleases (ZFNs) have a modular composition consisting of two main
domains – DNA-binding zinc-finger protein (ZFP) and the nuclease derived from
the FokI restriction enzyme [9]. One such machinery is shown in Fig. 2.1.
The wild-type FokI has a structurally separated DNA-binding domain, that can

Figure 2.1: Example of a zinc-finger recombinase (ZFR) dimer bound to DNA. (A) Molecular
model. Each monomer (blue or orange) consists of an activated serine recombinase catalytic
domain linked to a custom-designed, DNA-binding zinc finger protein (ZFP). (B) Sketch of the
dimer bound to DNA. Target sites consist of two-inverted ZFBS surrounding a central 20-bp
core recognized by the catalytic domain. ZFPs can be designed to recognize distinct ‘left’ or
‘right’ half-sites (blue and orange boxes, respectively). Symbols: N represents A, T, C or G; R
marks G or A; and Y indicates C or T. Image taken from [10].

be replaced with ZFPs to forge the ZFNs. This artificial structure is made out of
two complementary parts, which have to dimerize in order to cleave DNA [11].
For that it is by some referred to as the zinc-finger recombinase (ZFR). Each
monomer has to bind to adjacent half-sites, separated by spacers of 5 − 7 bp.
This forms a core of up to 20 bp on which the nuclease can operate. Typi-
cal ZFP, made out of 3 interconnected finger domains, recognizes 9 bp (3 bp per
zinc-finger). Dimerization effectively doubles the length of recognition sites, lead-
ing to a considerable increase in specificity of ZFNs as opposed to the wild-type
FokI. This requirement ultimately leads to substantial reduction in off-target ef-
fects and cytotoxicity of the complex. Such heterodimeric structure is sometimes
paired with many ZFPs (by some referred to as a ’train’ of ZFPs) specific to
different sites near by the taget core, in order to minimize unwanted off-targets
even more.
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In contrast with other programmable nucleases, ZFNs suffer poor targeting
density, limiting its application range. Even though each zinc-finger recognizes
3 bp, there is no open-source collection of 64 zinc-fingers that covers all possi-
ble combinations of triplet sites [12]. Another issue stems from the fact that
not all ZFNs, especially with three-fingered ZFPs, can cleave chromosomal DNA
efficiently [8]. So far it has been used to modify endogenous genes in organ-
isms ranging from viruses, bacteria and cultured cells, to plants, insects, fish,
and mammals such as mice or pigs.
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2.3 Transcription Activator-like Effector Nucle-
ases (TALEN)

Structure of TALENs is akin to that of ZFNs, see Fig. 2.2. Similarly, they
utilize FokI catalytic domain, but for binding to specific DNA sites the so-called
transcription activator-like effectors (TALEs) are applied. This category of DNA-
binding domains is based on proteins from Xanthomonas bacterium, pathogenic
to plants [13]. TALEs are made out of tandem arrays of 33 − 35 amino acid
repeats (units) [14]. Sequence recognition is provided by amino acids at positions
12 and 13 [15], which detect a single base pair in the major groove. Following the
steps of ZFNs, TALENs have to dimerize in order to make any changes to DNA.

Figure 2.2: Cartoon representation of transcription activator-like effector nuclease (TALEN)
bound to DNA sequence. TALENs are composed of transcription activator-like effectors
(TALEs) at the amino terminus and the FokI catalytic domain at the carboxyl terminus. Each
TALE unit is formed by 33− 35 amino acids and recognizes a single base pair by amino acids
at positions 12 and 13. This small region is called the repeat variable diresidue (RVD). Target
sequences of TALEN dimers are typically 30 − 40 bp in length, excluding spacers. Picture
adapted from [8].

Major advantage of TALENs is that they can be designed to target pretty
much any given DNA sequence. On the other hand, their limitation lies in the
requirement of thymine (T) at the 5’ end of the target sequence, recognized by 2
amino-terminal cryptic repeat folds [14]. Although relatively recently there have
been developed TALEs recognizing other bases at the target’s 5’ end [16], broad-
ening the range of applications. Also conventional TALEs have issues cleaving
sequences with methylated cytosines (C) [17]. In order to eliminate this restric-
tion, additional modifications to TALEs have to be done.

Same as ZFNs, TALENs have been successfully used to modify endogenous
genes in a wide range of organisms, including viruses and yeast, cultured cells,
plants, insects, frogs, fish, and mammals such as mice and pigs.
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2.4 RNA-guided Nucleases (CRISPR)
In the recent years, probably the most notoriously known class of tools for genetic
engineering belongs to the RNA-guided systems, or RNA-guided engineered nu-
cleases (RGENs). Various RGENs have been successfully used on bacteria, mam-
malian cells, embryos, plants, nematodes, fruitflies, mice, non-human primates,
human pluripotent stem cells, and the list goes on. It is the technology publicly
known as CRISPR – the ’hero’ of genetic engineering.

It has been discovered [18, 19] that in bacteria and archaea RNA-guided sys-
tems for DNA cleavage serve as an adaptive immunity against invading phages
and plasmids. The base idea is rather simple. Small (∼ 20 bp) fragments of for-
eign DNA is captured by the organism and inserted into its very own genome
to form a clustered regularly interspaced short palindromic repeat (CRISPR). Such
repeats are then transcribed and processed to form target-specific CRISPR RNA
(crRNA). Invariable target-independent trans-activating crRNA (tracrRNA) is
transcribed as well and contributes to the crRNA creation [8]. Both crRNA
and tracrRNA then complex with CRISPR-asociated protein 9 (Cas9). Mount-
ing RNA on induces conformational changes in Cas9 forming a central channel
the target DNA can slip in. This complex is the endonuclease serving as a newly
adapted, active immunity against the foreign genetic information.

A connection between crRNA and tracrRNA can be established via a tetraloop
to form a single-chain guide RNA (sgRNA) [20]; this simplified RGEN is depicted
in Fig. 2.3 alongside the cleavage it performs. The whole endonuclease mounts

Figure 2.3: Cartoon representation of RNA-guided engineered nuclease (RGEN). (A) RGEN
can contain Cas9 protein and a single-chain guide RNA (sgRNA), complementary to a 20-bp
target DNA sequence (protospacer). Target sequence is next to the protospacer adjacent motif
(PAM) 5’-NGG-3’, where N marks any nucleotide. Weak bonding is shown as gray dots. (B)
Target DNA sequence is cleaved by the RGEN producing blunt ends. Image adapted from [8].

onto the foreign DNA and slides along, unwinding a little loop, until it finds
the target sequence for cleavage. As is shown in the pictures, the RNA-Cas9
complex cleaves a target DNA sequence of 23 bp, composed of 20-bp guide (pro-
tospacer) and 5’-NGG-3’ sequence called the protospacer adjacent motif (PAM).
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This little clip is a region which Cas9 protein recognizes itself.
There are of course different variations of RGENs recognizing different PAMs

(e.g. 5’-NAG-3’), or involving Cas proteins with modified domains which enhance
specific activities of the complex. Their availability in terms of the design and
preparation make them a high-stake competitor to systems like ZFNs or TAL-
ENs. Once the appropriate (native or modified) Cas protein is chosen for a given
application, it remains the same. The only thing that has to be specifically pre-
pared is either the crRNA or sgRNA. Their preparation is done by cloning 20-bp
guide DNA sequences in a suitable vector that encodes the given RNA [8].

As is indicated in Fig. 2.3, one of the disadvantages of RGENs derived from
Cas proteins is their size which can make it more difficult to deliver them into
living cells. This can sometimes be the deciding factor weather to use this or some
other, less bulky tool. On the other hand, as opposed to ZFNs and TALENs,
RGENs allow for cleaving methylated DNA [21], though with less efficiency inside
living cells [22].
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3. Theoretical Background

3.1 Force Fields
In the context of molecular dynamics we talk about the combination of a math-
ematical formula and associated atomic parameters. These force fields are used
to describe the energy of a given molecular system as a function of its atomic
coordinates and atomic types assigned to each species based on their immediate
surroundings. It takes an important role in various computational methods to
calculate molecular conformations based on the system’s potential energy. Every
well-behaved force field contains its own formula describing system’s potential
energy using variety of different terms based on all approximations the given
method was derived with. What we generally end up with is a description where
all atomic nuclei in the ground state are moving on the same potential energy
hypersurface (PES). This enables us to disentangle the calculation of potential
energy from the computation of motion of atomic nuclei. An advantage of this
approach lies in elimination of the large number of atoms in exchange for the
search of energy hypersurface minimum. This technique requires substantially
less computational effort even for systems containing enormous (up to ∼ 106)
number of particles. On the contrary, apart from special ab intio MD and hybrid
QM/MM methods, we are unable to simulate chemical reactions.

Accuracy of the given method is determined by the number and complexity
of mathematical terms describing potential energy of the system. We distinguish
between 1. and 2. generation force fields. First generation fields are known
for their use of less sophisticated potentials, with parameters obtained empir-
ically from experimental measurements. An example could be AMBER force
field [23], constructed for nucleic acid and protein modeling. Second generation
fields make a use of more complex potentials and their parameters are acquired
via ab initio calculations, borrowed from quantum chemistry, e.g. CFF [24, 25]
or COMPASS [26].

Potential terms are categorized based on whether they describe bonding or
non-bonding interactions. Potential energy thus reads

E = EB + ENB. (3.1)

Bonding interactions affecting atoms include atomic bond lengths, angles they
form, dihedral angles, or planarity of the surroundings

EB = Ebon + Eang + Edih + Epla. (3.2)

Non-bonding component usually relates to atoms separated by at least 3 covalent
bonds. It is divided into electrostatic (Coulomb) interactions, Van der Waals
interactions, and interactions via hydrogen bonds

ENB = EC + EVdW + EHB. (3.3)

Such terms can be of numerous forms. Some force fields may use different guise
of similar terms or their modified versions to improve performance for specific
types of molecular structures. Nevertheless, the foundation remains largely con-
sistent for practical reasons.
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3.1.1 Bond Term
This term models covalent bond between 2 atoms using harmonic oscillator with
atomic bond stiffness kr

Ebon(r) = kr

2 (r − r0)2 , (3.4)

where r represents an immediate and r0 the equilibrium radial distance between
both atoms. Harmonic model does not allow for proper behavior far from equi-
librium point, e.g. high temperature simulations. In such a case it is useful to
employ Morse potential [27] instead

EM(r) = De
(︂
1− e−a(r−r0)2)︂2

. (3.5)

Compared to parabolic approximation, Morse’s approach offers an additional
parameter, see Fig. 3.1. Though this allows for higher temperature modeling1,
Morse potential fails for larger values of r where the curvature changes too slowly.
This can cause a lot of trouble during initial optimization process. In practise, 2.
generation force fields use higher-order (usually 3. or 4. order) Taylor expansion
of harmonic potential instead.

Figure 3.1: Comparison of Morse potential to harmonic oscillator model, as functions of
internuclear separation r. Unlike the energy levels of the harmonic oscillator potential, which
are evenly spaced by ℏω, the Morse potential level spacing decreases as the energy approaches
the dissociation energy. The dissociation energy De is larger than the true energy required for
dissociation D0 due to the zero point energy of the lowest (ν = 0) vibrational level. Image
taken from [28].

1For systems with significant anharmonicity (non-negligible deviations from the harmonic
approximation) such as in the study of higher-energy vibrational modes, or systems with weak
bonds that are more prone to breaking, the Morse potential can provide a more accurate
representation of the potential energy surface and is preferred. Nevertheless, modeling such
systems and their behavior is a subject of ab initio MD, or even quantum chemistry without
the use of force fields in the first place.
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3.1.2 Bond Angle Term
Angular term characterizes interaction between 2 nuclei connected to the same
atom. For this purpose we usually employ harmonic description

Eang(θ) = kθ

2 (θ − θ0)2 , (3.6)

where kθ is the angular stiffness, θ represents an immediate and θ0 the equilibrium
angle they form.

Another approach is to use Urey-Bradley potential [29], utilizing the distance
between the first and the third atom instead of the angle

EUB(r13) = k

2
(︂
r13 − r0

13

)︂2
. (3.7)

Such a model brings not only manipulation with angle θ123, but also variations of
the bond lengths r12 and r23. Urey-Bradley term is a cross-term accounting for
1, 3 non-bonded interactions not included in the bond and angle terms. Due to
its nature, it is used in combination with both the bond and angle terms, if one
wants to incorporate its effects into the calculation.

3.1.3 Dihedral Term
This is a torsion term scanning angle ϕ between atomic planes. Each plane is
defined by 3 atoms, while 2 out of these triads form a common axis, see Fig. 3.2.
The associated dihedral term renders

Edih(ϕ) = νn

2 [1 + cos (nϕ− γ)] , (3.8)

where parameter νn shows the energy difference between energetically most and
least favourable configuration with respect to angle ϕ, n is multiplicity (number
of minima in the range from 0 to 2π), and γ is dihedral phase.

Figure 3.2: Dihedral angle – an angle between two half-planes (α, β) in a third plane (red)
which cuts the line of intersection at right angles. The axis common to both planes is formed
by 2 atoms, shared between 2 interconnected atomic triads. Image taken from [30].
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3.1.4 Electrostatic Term
Notoriously known classical Coulomb [31], [32] term brings the electrostatic in-
teraction as one of the non-bonding component of the potential energy [33]

EC = 1
4πϵ0

qiqj

rij

. (3.9)

Electric charges q are usually placed at the positions of individual atoms, but can
be implemented differently according to specific purposes.

3.1.5 Van der Waals Term
As a Van der Waals (VdW) term we usually choose empirical Lennard-Jones
potential [34]

ELJ(r) = 4ε

⎡⎣(︄ σ

rij

)︄12

−
(︄

σ

rij

)︄6
⎤⎦ , (3.10)

where ε is the depth of the potential well (or dispersion energy), σ the distance
at which the particle-particle potential energy is zero (or size of the particle),
and rij is the mutual distance between 2 atoms in the system.

Figure 3.3: Sketch of Lennard-Jones potential side by side with its attractive and repulsive
components. Picture taken from [35].

Shape of Lennard-Jones potential (3.10) is depicted in Fig. 3.3. Attractive
VdW component is mediated by dipole-dipole interaction, divided into London
dispersion forces [36] (induced and induced dipole), Debye forces [36, 37] (induced
and permanent dipole), and Keesom forces [36, 38] (permanent and permanent
dipole). This component is represented by the second term in Eq. 3.10, inversely
proportional to the 6. power of the mutual distance between 2 atoms in the sys-
tem. Repulsive VdW component is based on repulsion of fully occupied orbitals,
the so-called Pauli repulsion [39]. In Eq. 3.10 it is represented by the first term,
inversely proportional to the 12. power of the distance between 2 given atoms.
This component operates on very small scales, and its 12. power was chosen
manually in order to be easily squared from the already calculated power-6 term.

15



3.1.6 CHARMM Force Field
Computations done for the purpose of this thesis use exclusively CHARMM36
force field [40]. CHARMM (Chemistry at HARvard Molecular Mechanics) is a
widely-used force field in the field of molecular dynamics simulations. Developed
and maintained by Martin Karplus and his collaborators, CHARMM is renowned
for its accuracy in modeling the behavior of biomolecules, such as nucleic acids,
proteins, and lipids.

It is a 2nd-generation force field belonging to the class of semi-empirical force
fields. As such, it combines empirical data with quantum chemical calculations
to derive the necessary parameters for simulating molecular systems. The use
of quantum mechanical principles allows for significant improvement in accuracy
of the force field compared to its strictly empirical predecessors.

Key features of CHARMM FF include a comprehensive parameterization for
a wide range of biomolecular interactions, including bonded and non-bonded
terms, dihedral angles, and electrostatic forces. It is particularly valued for its
ability to capture the complex interactions and conformational changes that
occur in biological and biochemical systems, though its versatility extends be-
yond biomolecules, as it has also been adapted for simulations of small organic
molecules, liquids, and various materials. This growing width of possible appli-
cations secures its place among well-respected force fields of today.

The name CHARMM also stands for the molecular dynamics and analysis
software [41, 42] associated with the force fields. Nevertheless, CHARMM FF
can easily be used in conjunction with numerous molecular dynamics programs,
the most popular of which may be GROMACS [43] or NAMD [44]. Its availability
allows for exploration of the dynamics and thermodynamics of molecular systems,
making it a valuable tool in areas of biophysics, biochemistry, and drug discovery.

CHARMM36 force field has the following potential energy function [45, 46]

U =
∑︂
bon

kr (r − r0)2 +
∑︂
ang

kθ (θ − θ0)2 +
∑︂
dih

kϕ [1 + cos (nϕ− δ)]

+
∑︂
imp

kφ (φ− φ0)2 +
∑︂
UB

ku (u− u0)2

+
∑︂
non

⎛⎝εij

⎡⎣(︄Rmin
ij

rij

)︄12

− 2
(︄

Rmin
ij

rij

)︄6⎤⎦+ qiqj

εrrij

⎞⎠ ,

(3.11)

where we identify sum over bond terms (3.4), angular terms (3.6), dihedral terms
(3.8), Urey-Bradley potentials (3.7), and non-bonded part formed by sum over
LJ potentials (3.10) and Coulomb interactions (3.9). All of these are similar to
those found in other force fields such as AMBER [23].

Attentive reader might have noticed that CHARMM36 (3.11) features also
an improper term accounting for out-of-plane bending, which applies to any set
of 4 atoms that are not successively bonded. This term, similarly as other angular
parts, is modeled harmonically with kφ being the force constant, and φ − φ0
the out-of-plane angle.
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3.2 Energy Minimization
In molecular simulations, potential minimization is a technique used to find the
most stable arrangement of atoms in a molecular system. This stable arrange-
ment corresponds to the lowest potential energy state. Potential energy states
are often visualized by potential energy hypersurfaces (PES) – landscapes with
valleys and peaks. Searching through these hypersurfaces can be a challenging
task. This process, also known as conformation analysis, benefits from a wide
range of mathematical algorithms, allowing for systematic scanning of molecular
structures. One can imagine them as tiny explorers navigating this landscape of
valleys and peaks, until they settle at the lowest valley of all.

Potential minimization always starts from an initial conformation for which
an energy calculation is performed. This initial guess can be random or based on
some prior knowledge of the system, e.g. crystal structure obtained through x-ray
analysis or other experimental method. The molecular structure is then system-
atically varied according to the given algorithm in terms of bond lengths, angles,
and other aspects defining the system’s conformation state. Energy calculation
is repeated, and the whole procedure is reiterated until the optimal structure,
satisfying a given condition (e.g. maximum force acting on system’s particles),
is successfully reached.

For small enough models it is possible to find the global minimum. To verify its
validity we optimize multiple different initial conformations, ultimately leading
us to the same final minimal state. Larger systems like proteins are usually
optimized into variety of plausible conformations, which can likely be found in
nature under specific conditions.

3.2.1 Steepest Descent Method
The Steepest Descent (SD) algorithm [47] iteratively updates atomic positions
by following the negative gradient of the PES. This intuitive approach directly
steers the system towards lower energy regions. However, its simplicity comes at
a cost. SD struggles to navigate narrow valleys on the PES, potentially becoming
trapped in local minima.

3.2.2 Conjugate Gradient Method
For enhanced efficiency, the Conjugate Gradient (CG) algorithm [48] incorporates
information from previous steps. By employing conjugate directions, it avoids
revisiting past minimization paths and exhibits superior convergence compared
to SD. This method is particularly advantageous for investigating large molecular
systems where computational cost becomes a significant factor.

3.2.3 Newton-Raphson Method
The Newton-Raphson (NR) algorithm [49] stands out for its rapid convergence
properties. It leverages the curvature of the PES, incorporating the Hessian
matrix [50], second derivative of the potential energy

(Hf )ij = ∂2f

∂xi∂xj

(3.12)
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for a more informed update of atomic positions. Here f : Rn → R is a general
function taking a vector x ∈ Rn as an input and producing a scalar f(x) ∈ R.
Given that all second-order partial derivatives of f exist, elements (3.12) are to be
arranged into the n × n Hessian matrix Hf . In our case, f(x) is the system’s
potential energy and x the atomic coordinates.

Hessian matrices serve as coefficient of the quadratic term of the function’s
local Taylor expansion

f (x + ∆x) ≈ f(x) + ∇f(x)T∆x + 1
2∆xTHf (x)∆x, (3.13)

where ∇ ≡
(︂

∂
∂x1

, . . . , ∂
∂xn

)︂
. If Hf (x) is positive semi-definite, the quadratic

approximation is a convex function of ∆x, and its minimum is then localized by

0 = ∇f (x + ∆x) = ∇f (x) + Hf (x) ∆x +O
(︂⃦⃦⃦

∆x2
⃦⃦⃦)︂

, (3.14)

with minimum achieved for

∆x = −Hf (x)−1 ∇f (x) . (3.15)

Putting all together, NR method performs an iteration scheme2

xk+1 = xk + ∆x = xk −Hf (xk)−1 ∇f (xk) , for k ≥ 0, (3.16)

constructing a sequence {xk} from an initial guess x0 ∈ Rn that converges towards
minimizer xmin of f .

While this translates to faster minimization, the NR method comes with some
caveats. The computational cost associated with calculating the Hessian can be
substantial, and the method is far more sensitive to the initial conformation guess
compared to its alternatives. Comparison to gradient descent is shown in Fig. 3.4
using a simple contour graph for illustration.

Figure 3.4: A comparison of gradient descent (green) and Newton-Raphson method (red) for
minimizing a function (with small step sizes). Function sketched using its contours. NR uses
curvature information (i.e. the second derivative) to take a more direct route. Picture taken
from [49].

2NR is sometimes modified to include a small step size with 0 < γ ≤ 1 instead of γ = 1:
xk+1 = xk + γ∆x = xk − γHf (xk)−1 ∇f (xk).
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3.3 Molecular Dynamics (MD) Simulations
Everybody’s talking about this molecular dynamics, but actually . . . what is it?
Molecular dynamics (or MD) is a branch of computational physics allowing us
to study the behavior of physical, chemical, and biological systems made out
of atoms, molecules, and their complexes. It is a body of algorithms (such as
numerical integration, thermostats, barostats etc.) using the laws of motion
to simulate such systems and provide us with their time evolution as a result. It is
a direct product of the 1950’s endeavor to solve the N -body problem, which (as we
all surely know by now) is analytically unsolvable. For this reason, MD is purely
numerical and hence often called the numerical form of statistical mechanics,
or Laplace’s vision of Newtonian mechanics.

MD comes in many ’shapes and colors’, some of them even closely tied to quan-
tum mechanics (ab initio MD, hybrid QM/MM simulations). No matter the form,
each of them have to obey the given equations of motion (EOM) and deal with
particle interaction potentials. Here we turn our focus to the solely classical ver-
sion of MD which utilizes Hamiltonian mechanics and its equations of motion to
rule over the simulated systems. These are the ones utilizing the so-called force
fields3 to deal with interatomic interactions.

3.3.1 Hamiltonian Mechanics
Let us now briefly refresh our brains with what Hamiltonian mechanics [51] is to
set ourselves the notation we will be using and some little ground to stand on.
In a 1D case a general Hamiltonian could be written as

H(p, q) = p2

2m
+ U(q), (3.17)

where mass m serves as a parameter, p is the momentum, q the position, and U(q)
a potential (conservative in the simplest case). Hamiltionian equations of motion
(HEOM) now appear as

q̇ = ∂H

∂p
= p

m
,

ṗ = −∂H

∂q
= −∂U

∂q
≡ F (q).

(3.18)

In the case of N particles in 3D (3N degrees of freedom) the Hamiltonian
reads

H (p, q) =
N∑︂

i=1

p 2
i

2mi

+ U
(︂
{qi}N

i=1

)︂
, (3.19)

with HEOM taking the form

q̇i = ∂H

∂pi

≡ ∇pi
H,

ṗi = −∂H

∂qi

≡ Fi.

(3.20)

3The mathematical models of molecular potentials with associated sets of parameters for
every particle of the system studied, dependant on the specific environment each particle is in.
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For the sake of simplicity, we will for the most part use the 1D version which (if
needed) can be converted into the N -particle 3D case with ease. For our future
use we also introduce x ≡ {pi, qi}N

i=1 as the set of all positions and momenta
of an N -particle system.

3.3.2 Poisson Bracket Formulation
The approach could be summarized by several very important words – Pois-
son bracket formulation of Hamiltonian mechanics, classical Liouville operator,
and Trotter expansion leading us to the Trotter version of velocity Verlet com-
putation [52]. Lemme explain . . .

Consider general functions f(p, q), g(p, q) on phase space. Poisson bracket [53]
of these is

{f, g} = ∂f

∂q

∂g

∂p
− ∂f

∂p

∂g

∂q
. (3.21)

If we chose g(p, q) = H(p, q) and f to be either simply q or p, the corresponding
Poisson brackets are

{q, H} = ∂q

∂q

∂H

∂p
− ∂q

∂p

∂H

∂q
= q̇ (3.22)

and
{p, H} = ∂p

∂q

∂H

∂p
− ∂p

∂p

∂H

∂q
= ṗ (3.23)

when taking account for the independence of phase space coordinates p and q, and
inserting HEOM. Based on equations (3.22) and (3.23) we can express HEOM
using the Poisson bracket formulation, i.e.

q̇ = ∂H

∂p
= {q, H},

ṗ = −∂H

∂q
= {p, H}.

(3.24)

The full set of HEOM can also be written in a compact format4

ẋ = {x, H}, (3.25)

where x is the set of all p’s and q’s introduced at the beginning of this section.

3.3.3 Classical Liouville Operator
Now, based on equations (3.25) we can introduce a classical Liouville superoper-
ator as

iL := {■, H}, (3.26)
4As one could remember, equations (3.25) are a powerful tool for uncovering quantities

conserved in the system, i.e. the so-called integrals of motion. If a certain quantity y Poisson-
commutes with the Hamiltonian, meaning that {y, H} = 0, the time derivative of that quantity
vanishes leaving a constant solution to the given equation. This quantity is therefore one
of the requisite integrals. For more detail you can check out Chapter 2 and Appendix B of my
bachelor’s thesis [54].
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where ■ marks a position in which we place the quantity the superoperator acts
upon. An example of such an operation would be

iLx = {x, H} = ẋ, (3.27)

of which the solution happens to be

x(t) = x (t0) eiL(t−t0) (3.28)

. . . sort of. You see, to be really exact, this actually isn’t the solution of the dif-
ferential equation (3.27). What we did (strictly speaking) is that we just hid all
the p’s and q’s inside some exponential time evolution of the Liouville superoper-
ator. The exponential in (3.28) is thus a time-evolution propagator and we will
denote it as U(t). It is an analogy to the QM propagator exp

(︂
− i

ℏĤt
)︂

given there
by the Schrödinger equation [39].

The Liouville superoperator can be separated into 2 distinct parts according
to the phase space coordinates p and q as

iL = q̇
∂

∂q
+ ṗ

∂

∂p
= p

m

∂

∂q
+ F (q) ∂

∂p
. (3.29)

We will label both of the constituent parts as iLq and iLp which leads us to

exp(iLqt + iLpt) ̸= exp(iLqt) exp(iLpt) ̸= exp(iLpt) exp(iLqt), (3.30)

where we emphasise that the constituent parts do not commute with each other,
and hence the exponential form cannot be separated as a simple product. This is
the case since the parts iLq and iLp both have a prefactor dependent on the other
variable, see separation (3.29). If you don’t believe me, just try applying these
superoperators on some function of p’s and q’s one after the other, and vice versa.
The results will not match.

3.3.4 Trotter Expansion
In order to create a chain of operations for a computer to work with, we need these
exponentials to be separated. So what do we do? To separate the exponential
from the left side of (3.30) we can apply the so-called Trotter expansion [55, 56]

exp(A + B) = lim
P→∞

[︃
exp

(︃
A

2P

)︃
exp

(︃
B

P

)︃
exp

(︃
A

2P

)︃]︃P

= lim
P→∞

[︃
exp

(︃
A

P

)︃
exp

(︃
B

P

)︃]︃P

.

(3.31)

Both of the possible forms of Trotter expansion are valid. They approach the limit
differently but ultimately they end up the same. Trotter expansion uses the fact
that we can chop up exp(A + B) into incremental pieces with a factor P , mak-
ing an infinite ordered product of progressively smaller and smaller constituent
exponentials. In limit where P →∞ such an expansion converges to the desired
exp(A + B).
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The result of applying the first version of Trotter expansion (3.31) to the left
side of (3.30) is [57, 58]

U(∆t) = exp
(︄

iLp
∆t

2

)︄
exp(iLq∆t) exp

(︄
iLp

∆t

2

)︄
, (3.32)

where ∆t = t
P

is a discrete time step defining our resolution in time. Equa-
tion (3.32) shows the propagation by one singular time step ∆t in our simulation.
Every such a time-step propagation is then part of the whole iteration process
represented by the [. . . ]P in the Trotter expansion. To simplify this for our further
(less mathematical) explanation we introduce the following notation

U(∆t) = Up

(︄
∆t

2

)︄
Uq(∆t)Up

(︄
∆t

2

)︄
, (3.33)

where Ui are partial propagators with respect to the given phase space coordi-
nate i. It is worth noting that this is a sequential operation in which the order
of the partial propagations is important!

3.3.5 Velocity Verlet Algorithm
So how does this actually work in the computer? Without much need of any
advanced math, please. We can write one such iteration (by one simulation time
step ∆t) as a 6-step sequential updating suitable for a computer:

1. Initial conditions: q(0), p(0); F (q(0)),

2. Up

(︂
∆t
2

)︂
: p

(︂
∆t
2

)︂
= p(0) + F (q(0)) ∆t

2 ,

3. Uq (∆t): q (∆t) = q(0) + 1
m

p
(︂

∆t
2

)︂
∆t,

4. Updating the forces: F (q(0))→ F (q (∆t)),

5. Up

(︂
∆t
2

)︂
: p (∆t) = p

(︂
∆t
2

)︂
+ F (q (∆t)) ∆t

2 ,

6. Output: q (∆t), p (∆t), F (q (∆t)).

This can be simplified to a pseudocode using Python notation as:

1. Input q, p, F ,

2. p += F ∆t
2 ,

3. q += p
m

∆t,

4. Update F ,

5. p += F ∆t
2 ,

6. q (∆t) , p (∆t) , F (q (∆t)).

Here symbol += means that we simply add the right-hand expression to the
old (non-updated) value on the left side. To help us visualize such a process,
the single iteration is depicted in Figure 3.5.
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Figure 3.5: Diagram of one iteration (by single time step ∆t) in the Trotter version of velocity
Verlet computation [52]. Numbers mark the corresponding steps of the sequential updating we
presented above. Red arrows represent the transfer of information which serves as the necessary
input for each step. This little sequence of operations is then repeated over and over (several
million times) in the whole iteration process.

3.3.6 Thermostats
As the name suggests, the goal of a thermostat is to maintain temperature T
of the system we are trying to simulate. In molecular dynamics thermostat is
a sort of digital heat bath which not only maintains but also creates the temper-
ature of our simulated system in the first place. As we all know, temperature is
a collective result of all particles in the system moving around with some kinetic
energy given by a certain statistical distribution. Simulations in molecular dy-
namics introduce this heat bath as a new part of the time dependent side of our
problem by taking advantage of the equipartition theorem. This theorem assigns
the value 1

2kBT to every degree of freedom, leaving the average (expectation)
value of kinetic energy

⟨K⟩ = 1
2kBT. (3.34)

By this relation we are able to connect the temperature T with kinetic energies
K in our system – T is directly generated via K’s assigned to every each one
of the constituent atoms in the system.

Introduction of a good thermostat, suitable for the given problem, is crucial
in order for the system to behave as it should – mathematically speaking, so that
the system has the right probability distribution describing it. If the thermostat
isn’t right the overall T might still be correct but the equipartition principle is
violated and the resulting probability distribution is therefore wrong.
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Thermostats can be classified into 3 standard categories according to the way
they operate:

1. Velocity re-scaling,

2. Extended system (explicitly adding degrees of freedom),

3. Stochastic (adding randomness).

The fist one, as its name suggests, simply re-scales the velocities of individual
particles in the system after a given period of time. Extended system thermostats
relate particles of our NVT system to some extra particles from an artificial heat
bath. It is basically a way of exchanging the energy with an outside reservoir
represented by extra degrees of freedom explicitly added to our system. The last
one, stochastic, adds random perturbations and/or dissipations to the simulated
system by adopting some random function, e.g. the white noise.

3.3.7 Nosé-Hoover Thermostat
This is a standard example of an extended ensemble thermostat. Nosé-Hoover
thermostat [59, 60] adds 1 or more degrees of freedom (DOF) for the physical
system to exchange its E with. As a result, we are left with non-Hamiltonian
EOM, but that is no problem since we can still use the same framework for the
propagation. For 1 DOF the EOM read

q̇ = p

m
,

ṗ = F − pη

M
p,

(3.35)

where pη and M are the momentum and mass of the extra DOF. The mass M is
not specified which means that we ourselves need to define how heavy the added
DOF is by presenting

η̇ = pη

M
,

pη̇ = p2

m
− kBT = Fη.

(3.36)

Here η is a parameter of the added DOF, and the force Fη represents an instan-
taneous deviation.

For the case of N particles in 3D (3N DOF) the full set of EOM resembles

q̇i = pi

mi

,

pi̇ = Fi −
pη

M
pi,

η̇ = pη

M
,

pη̇ =
N∑︂

j=1

p2
j

mj

− 3NkBT.

(3.37)
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The last equation uses additional factor 3N for the thermal element kBT to adjust
for all DOF of the system. Since a well-defined conserved quantity

H
′ (q, η, p, pη) = H (q, p) +

p2
η

2M
+ 3NkBTη (3.38)

exists, it is ’just’ NVE dynamics of the extended system we are dealing with.
In the propagation framework, this all can be thought of as attaching a partial
(thermostat) propagator UT

(︂
∆t
2

)︂
from both sides to the already existing NVE

1-time-step propagation (3.33) as [57]

U (∆t) = UT

(︄
∆t

2

)︄
UNVE (∆t) UT

(︄
∆t

2

)︄
. (3.39)

If we want to add more DOF for the system to interact with, we can simply
couple these small 1-DOF thermostats in a chain one after the other as is illus-
trated in Figure 3.6. This is the reason why Nosé-Hoover thermostat is sometimes
referred to as the chain thermostat.

Figure 3.6: Schematic depiction of chaining in Nosé-Hoover thermostat. The box represents
our simulated system while the dots in the chain portray individual extra DOF for the system
to exchange E with.

Why would we want to chain them? Addition of only 1 DOF as an extended
system thermostat is simply not enough for the simulated system to behave cor-
rectly. Chaining them like this allows the system with such a ’whole’ thermostat
to function as it naturally should in a more realistic (non-simulated) scenario.
The more extra DOF we chain, the more accurate the results get (to the degree
our method’s approximations allow) – but at a certain cost of a more resource-
demanding computation. In a fairly usual case, 3 additional DOF are enough
for the system to start behaving reasonably well.

3.3.8 Langevin Thermostat (NAMD)
Langevin thermostat is a standard example of a stochastic thermostat which
combines both dissipation and perturbation so that the T of the particles stays
the same throughout the whole simulation. It perturbs and dissipates momenta
p by introducing 2 new force components to the system’s EOM as [57]

q̇ = p

m
,

ṗ = F−γp +
√︂

2kBTγmR(t),
(3.40)

where γ is a dissipation factor, and R(t) a Gaussian white (uncorrelated in time)
noise term such that ⟨R(t)⟩ = 0 and ⟨R(t1)R(t2)⟩ = δ(t2 − t1). For this reason it
is sometimes referred to as the White Noise Langevin Dynamics [61].
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The truly interesting part is the additional forces this method imposes on our
system – the stochastic part

ṗ = −γp +
√︂

2kBTγmR(t) (3.41)

of which the solution is

p(t) = p(0)e−γt +
√︂

kBTm (1− e−2γt)R(t). (3.42)

This solution samples the canonical ensemble. To imagine this in practise, this
is how a colloidal particle moves in its environment.

3.3.9 Periodic Boundary Conditions
How do we put our system in proper boundary conditions such that in the end
our simulation correctly represents the real-world system we are trying to calcu-
late? For bulk simulations of a system in its natural environment, one of the most
used approaches is to utilize periodic boundary conditions [62, 63]. This means
we create a box (cell) containing the system of interest (e.g. DNA-protein com-
plex) immersed in its natural environment (water with suitable ions). Periodic
boundary conditions then generate infinitely many copies of this box side by side
in every possible direction, see Fig. 3.7. By this we do not create any new atoms.
We are only producing replicas of the very same atoms and molecules (and their
behavior) in the form of repeating boxes filling the whole space.

Figure 3.7: Schematic depiction of periodic boundary condition, simplified in 2D. Center
square forms the boundary of the initial simulation cell, repeating in both dimensions of the
plane. Black arrows indicate evolution of one of the particles (green) crossing the cell’s bound-
ary, red arrow highlights one of the copies of the original particle. As the green particle leaves
the initial cell it immediately reappears on the opposite side. In that, the initial box is topo-
logically analogous to a 4D torus. Picture taken from [64].

The cell boundaries are no special place. Particles can move through them
but symmetrically appear on the other side of the box. However, this is no
teleportation. Remember there is the same box (containing replicas of the same
atoms and molecules) on every side of the box we are currently looking at.
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There are plenty of other methods that can be used for different purposes.
For example slab simulations, which make replicas in juts 2 out of 3 dimensions.
They form sort of ’2D slabs’ with both surfaces touching their respective envi-
ronments – e.g. water slab with air molecules below and above, which can be
for instance used to simulate the surface of a droplet of water in the air. We
can also go down the dimensions to the so-called chain simulations, which repli-
cate the given system in just a single dimension. This is helpful for calculations
of polymer chains that are rigid enough (e.g. carbon nano tubes).
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3.4 Thermodynamics of Free Energy
Free energy quantifies the portion of a system’s internal energy available to per-
form useful work. Understanding its variations allows one to predict the spon-
taneity of processes and the maximum achievable work by a system at hand.
In thermodynamics, there are different types of free energy defined. In our thesis
we denote a general free energy A, unless deliberately specified. Thermodynamics
of free energy is based on the fundamental concepts of internal energy (U) and
entropy (S), both of which are subjects of the laws of thermodynamics.

3.4.1 First Law of Thermodynamics
The first law of thermodynamics [65] dictates the conservation of energy through

∆U = Q−W, (3.43)

where ∆U is the change in internal energy, Q is the heat transferred to (from)
the system, and W the work done by (on) the system. When a system expands
in a quasistatic process, the thermodynamic work done by the system on the sur-
roundings is δW = pdV , i.e. a product of pressure p and infinitesimal change
in volume dV . If the thermodynamic work is done on the system by the sur-
roundings, the sign changes δW = −pdV . An infinitesimal change in internal
energy of the system is thus

dU = δQ− pdV, (3.44)

where δQ marks the so-called inexact differential [66] of an infinitesimal amount
of heat supplied to the system from its surroundings. Inexact differential is a dif-
ferential whose integral is path dependent, i.e.

∫︁
γ1

δu ̸=
∫︁

γ2
δu, for 2 different

integrable paths γ1, γ2 : [0, 1]→ R such that γ1(0) = γ2(0), γ1(1) = γ2(1).

3.4.2 Second Law of Thermodynamics
Entropy, the measure of a system’s disorder, plays a crucial role in the second
law of thermodynamics [67]

dS ≥ δQ

T
, (3.45)

which holds equality for (a) quasistatic irreversible processes without a change in
composition, (b) idealized reversible processes in closed systems, and inequality
for irreversible processes in closed systems. The notation for infinitesimal amount
of heat (δQ) and infinitesimal change in entropy (dS) differ since entropy is
a function of state while heat, like work, is not.

Second law of thermodynamics (3.45) states that in an isolated system, en-
tropy always increases over time. Another, more traditional, interpretation states
that heat always flows spontaneously from hotter to colder regions of matter,
i.e. downhill in term of the temperature gradient.
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3.4.3 Third Law of Thermodynamics
Third law of thermodynamics [68] states that the entropy of a closed system
at thermodynamic equilibrium approaches a constant value when its tempera-
ture approaches absolute zero (T = 0 K). At absolute zero the system must be
in a state with the minimum possible energy. It is equivalent to the claim that it is
impossible by any procedure, no matter how idealized, to reduce the temperature
of any closed system to 0 K in a finite number of finite operations [69].

3.4.4 Particle Changes in Closed Systems
For a closed system of different types of particles in which chemical reactions may
occur, one has to account for the changes in the respective numbers of particles
the system has. The fundamental relation for an infinitesimal change in system’s
internal energy becomes

dU = TdS − pdV +
∑︂

i

µidNi, (3.46)

where dNi is a small change in number of type-i particles, and µi the so-called
chemical potential of the respective particles. Since S, V , and Ni are extensive5

variables, an Euler relation [70] allows for simple integration yielding

U = TS − pV +
∑︂

i

µiNi. (3.47)

3.4.5 Helmholtz Free Energy
Helmholtz free energy (F ) [71] is a thermodynamic potential that measures
the useful work obtainable from a closed thermodynamic system at a constant
temperature (isothermal work). It is defined as

F ≡ U − TS, (3.48)

where U is the internal energy of the system, T the temperature, and S represents
the entropy. It comes from the Legendre transformation [72] of internal energy
U , in which T replaces S as the independent variable. From the first law of ther-
modynamics (3.44) and the second law of thermodynamics (3.45) for a reversible
process, i.e. δQ = TdS, we get

dU = TdS − pdV. (3.49)

Applying d (TS) = TdS + SdT and rearranging yields

d (U − TS) = −SdT − pdV. (3.50)

Definition (3.48) allows for

dF = −SdT − pdV, (3.51)
5Extensive properties depend on the amount of matter in a system – their magnitude is

additive for subsystems. Examples include m, N , V , and S.
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which is valid even for non-reversible processes, since F is a thermodynamic
function of state (i.e. its integral does not depend on the integration path).

In case of chemical reactions, one must allow for changes in the numbers of
particles Ni of each type i. Differential Helmholtz free energy then takes a form

dF = −SdT − pdV +
∑︂

i

µidNi, (3.52)

where µi are chemical potentials of the corresponding particles. Such relation is
again valid for both reversible and non-reversible changes.

3.4.6 Gibbs Free Energy
In contrast, Gibbs free energy (G) [73] is a thermodynamic potential that can
be used to calculate the maximum amount of work, other than pressure-volume
work, that may be performed by a thermodynamically closed system at constant
temperature and pressure. Gibbs free energy is expressed as

G = U + pV − TS = H − TS, (3.53)

where U is internal energy of the system, p and V are pressure6 and volume,
T is the system’s temperature, S the entropy, and H ≡ U + pV denotes the
enthalpy [74] of the system (i.e. the total energy content of the system at constant
pressure). It also provides a necessary condition for chemical reactions and similar
processes that may occur under these conditions. From (3.48) and (3.53) it is clear
that Gibbs free energy relates to Helmholtz free energy through

G = F + pV. (3.54)

Analogically, an infinitesimal change in Gibbs free energy can be written as

dG = dU + pdV − TdS. (3.55)

Taking into account infinitesimal change in internal energy (3.46) alongside
G’s total derivative

dG = dU + pdV + V dp− TdS − SdT, (3.56)

one arrives at
dG = V dp− SdT +

∑︂
i

µidNi, (3.57)

which is the Gibbs free energy total differential with respect to its natural vari-
ables p, T , and {Ni}. Because p and T are intensive7 variables, dG cannot be
integrated using Euler relations. Instead, one can simply substitute (3.47) into
the definition (3.53) to arrive at [73]

G =
(︄

TS − pV +
∑︂

i

µiNi

)︄
+ pV − TS =

∑︂
i

µiNi, (3.58)

which shows that the chemical potential of a substance i is its (partial) mol(ecul)ar
Gibbs free energy. This applies to homogeneous, macroscopic systems only [75].

6For mechanical equilibrium, p in the system has to be equal to that of the surroundings.
7Their magnitude is independent of the system’s size.
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3.5 Free Energy Calculations
Unveiling the free energy landscapes of molecular systems is crucial for under-
standing their thermodynamic properties. Free energy calculations allow us to
gain the necessary theoretical insight which could not be acquired through ex-
perimental methods. Let us now delve into the computational toolbox for free
energy calculations, covering methods such as Thermodynamic Integration (TI)
and Free Energy Perturbation (FEP), as well as some crucial equalities of statis-
tical thermodynamics unlocking valuable non-equilibrium approaches.

3.5.1 Free Energy in (Bio)chemistry and Biology
One of the most valuable forms of free energy in biochemistry and biology is the
free energy of solvation for a given molecular system of interest. For carbon-
based life as we know it water plays the role of natural solvent. To emphasise
the importance of this substance in biological processes we refer to such property
as hydration free energy instead. Though from know on some of the things will
be colored in terms related to water, almost anything we cover can naturally be
extended for any given solvent of choice.

The solvation (hydration) free energy of a molecular system provides insights
into several important properties:

• Solubility: It is an indication of whether the molecule is likely to dissolve
in a solvent or not. A lower solvation free energy suggests higher solubility.

• Stability: It helps assess the stability of the molecular system in a specific
environment. More negative solvation free energy implies greater stability.

• Chemical Reactivity: Solvation free energy can influence the rate and ther-
modynamics of chemical reactions, as it affects the accessibility of reactants
and transition states.

• Hydrophobicity/Hydrophilicity: Providing information about the molecule’s
affinity for water. More negative values indicate hydrophilic behavior, while
positive values suggest hydrophobic behavior.

• Protein-Ligand Binding: In the context of drug discovery, it aids in predict-
ing the binding affinity between a ligand and a target protein in a biological
environment.

• Conformational Changes: Solvation free energy can influence the preferred
conformations of molecules, especially in biological macromolecules like pro-
teins and nucleic acids.

Since most of the biological processes occur at approximately constant tem-
perature and pressure, the more relevant form of free energy for us is the Gibbs
free energy G and its change ∆G during the thermodynamical transformations
describing these events.
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3.5.2 Geometrical vs. Alchemical Methods
In order to calculate free energies in a given thermodynamic system one can
employ variety of different computational methods. The well established ones
can generally be classified into 2 categories according to their strategies for free-
energy estimation. One of them uses a geometrical transformation while the other
is a class of the so-called alchemical transformations. Fig. 3.8 portrays their main
differences using an example of methane molecule in water environment.

(a) (b)

Figure 3.8: Exemplary case of hydration free energy calculation of methane molecule. (a)
displays principles of the geometrical transformation, (b) shows the alchemical counterpart.
Pictures adapted from [76].

In simulations based on geometrical transformations, the free energy is esti-
mated by directly changing the system’s geometry or environment and calculating
the free energy difference from the potential of mean force (PMF) along the re-
action coordinate. As can be seen from Fig. 3.8a, the molecule of interest is
artificially pushed from reference environment (in this case air) to the relevant
medium (here water). Since the investigated molecule is subjected to an influence
of artificial forces, one has to treat the resulting data for their considerable effect.

Alchemical transformations involve gradually changing one molecule or state
into another. For example, transforming a ligand in a binding site from one
chemical species to another. Coming back to our example of hydrated methane,
see Fig. 3.8b, there are no artificial forces present. What is being done is that
the molecule of interest is gradually decoupled (force-wise) from the environment.
At the beginning of the simulation the molecule does fully ’feel’ its environment,
while at the end it is completely decoupled and behaves like in a vacuum8.

Due to the obvious advantages over geometrical transformations, alchemical
methods gained a bit of traction in the field lately. Keeping that in mind, we chose
to explore the nature of proteins and nucleic acids via one of those techniques.
The rest of this theoretical section is thus reserved to alchemical methods only.

8As we will see later, this process can also go in reverse.
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3.5.3 Thermodynamic Cycles
For large and complex systems the scale of proteins and nucleic acids, it is conve-
nient to utilize suitable thermodynamic cycles in order to find and choose the best
possible transformation path. Let us take a look at this issue through the scope
of an example, illustrated in Fig. 3.9. Here, we are trying to assess the most
desirable path towards calculating the binding affinity difference of 2 distinct lig-
ands, a and b, to a given protein. Thermodynamic cycle in Fig. 3.9 yields 2
possible ways of computing the binding affinity difference

∆∆Abind = ∆Ab
bind −∆Aa

bind = ∆AB
a→b −∆AUN

a→b. (3.59)

This means that we could either directly remove each ligand from the binding site
by gradual decoupling from the protein environment, or perform a transformation
of one molecule into the other both inside the protein’s cavity and without the
protein’s presence (i.e. in the solvent itself).

Figure 3.9: Example of applying a thermodynamic cycle to find which molecule, a or b, has
a stronger binding affinity to a given protein. One could either remove both molecules from
the protein’s pocket, or simply transform one molecule to another both inside the protein and
without it to find the same value.

Now, which path is more favourable, and why? First equality in Eq. (3.59)
would generally lead to a potentially larger disturbance of the system, that is
if molecules a and b are significant in size. Imagine that a sizable molecule sim-
ply disappears (interaction-wise) from the system. In that case it leaves a consid-
erable vacancy, which is non-negligible and inherently nonphysical, leaving our
results negatively affected. On the other hand, second equality in Eq. (3.59) offers
a potential alleviation from such undesirable effects, since molecules a and b might
share some common motif from which a hybrid topology could be constructed.
This way, we would just mutate one molecule into the other inside the protein and
then without it to land at the desired free energy differences with less negative
impact on the systems overall behavior.

This is juts a single example of many, which could be put to use in prac-
tise. One could for instance explore other aspects of a given simulation, such
as calculation efficiency of each path. Exploration of alternative thermodynamic
pathways, their efficiency and possible effects on the system at hand, can readily
be used to study binding properties of protein-DNA complexes, drugs in target
sites, or other possibly macromolecular chemical systems.
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3.5.4 Free Energy and Statistical Partition Function
Most free energy calculation methods start from a single core equation derived
from statistical mechanics, i.e. the relation between free energy and the statistical
partititon function

A = −β−1 lnZ, (3.60)
where β ≡ (kBT )−1, and Z marks an appropriate partition function, based on
the statistical ensemble at play.

For the canonical (NVT) ensemble, corresponding to the Helmholtz free en-
ergy F , the partition function takes on a shape [77, 78]

ZNV T ∝
∫︂

Γ
exp(−βH(x, px)) dxdpx, (3.61)

where Γ is the phase space volume over which we sample, and H(x, px) is the
Hamiltonian of the system featuring canonical positions x and momenta px.
Related to the Gibbs free energy G is the isothermal-isobaric (NpT) ensemble,
to which a partition function [78, 79]

ZNpT ∝
∫︂

dV exp(−βpV )ZNV T (3.62)

can be assigned.
Relation (3.60) can be utilized to describe free energy differences

∆A = Ab − Aa = −β−1 (lnZb − lnZa) = −β−1 ln
(︃Zb

Za

)︃
(3.63)

between 2 thermodynamic states a and b of a given system.

3.5.5 Alchemical Transformations
Let us have a transformation a → b of a chemical object between 2 thermody-
namic states a and b. Considering generic reaction coordinate of the system,
one can characterize every point along the coordinate path by a parameter λ,
with λ = 0 and λ = 1 corresponding to 2 ensembles of microstates for which
the reaction coordinate is constrained to different values. Transformation a→ b
is referred to as the alchemical transformation with perturbation parameter λ.
Forward transformation is thus externally driven process λ : 0 → 1, while its
time reversal path λ : 1→ 0 is referred to as backward transformation. As such,
states a and b are represented by the distributions of microstates having λ = 0
and λ = 1, respectively.

Using alchemical parameter λ, one could construct hybrid Hamiltonian of the
system as a linear combination

H(x, px; λ) = H0(x, px) + λHb(x, px) + (1− λ)Ha(x, px), (3.64)

where x and px are the canonical positions and momenta of the particles. H0 is
the Hamiltonian describing the unperturbed part of the system, i.e. atoms that
do not undergo any transformation. Interactions of atomic groups of the initial
and the final state with the rest of the system are represented using corresponding
subscripts a, b.
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3.5.6 Thermodynamic Integration (TI)
One of the well-known alchemical methods, and probably the most common one,
is the so-called Thermodynamic Integration (TI). For simplicity, let us work within
the canonical (NVT) framework. The starting point is Eq. (3.60) which we take
a partial derivative of with respect to the parameter λ

∂A

∂λ
= −β−1 ∂

∂λ
ln
∫︂

e−βH(x,px;λ) dxdpx = −β−1
∂

∂λ

∫︁
e−βH(x,px;λ) dxdpx

Z
. (3.65)

This can be written as

∂A

∂λ
= −β−1−β

∫︁ ∂H(x,px;λ)
∂λ

e−βH(x,px;λ) dxdpx

Z
=
⟨︄

∂H(x, px; λ)
∂λ

⟩︄
λ

. (3.66)

Finally, one can do integration over the whole range of λ to arrive at the final TI
equation [80, 81]

∆A =
∫︂ 1

0

⟨︄
∂H(x, px; λ)

∂λ

⟩︄
λ

dλ. (3.67)

It is a comparison of free energy levels between 2 given states a and b, whose po-
tential energies have generally different dependencies on the spatial coordinates.
Since the free energy of a system is not simply a function of the system’s phase
space coordinates, but rather a function of Boltzmann-weighted integral over the
phase space (i.e. partition function) [82], ∆A cannot be calculated directly from
potential energies of just 2 coordinate sets for states a and b. The free energy
difference is thus computed using a defined thermodynamic path9 connecting the
states, and integrating ensemble-averaged changes in enthalpy along this path.

The above derivation points to a rather simple way of estimating free ener-
gies. The inside of the integral (3.67), the derivative, can be calculated from
information of just a single state. However, since we can only perform simula-
tions at a finite number of λ states, numeric integration schemes are required.
In practise, integral (3.67) is performed as [83, 84]

∆A ≈
N∑︂

i=1
wi

⟨︄
∂H(x, px; λ)

∂λ

⟩︄
i

, (3.68)

where the weights {wi} will depend on which numeric integration style is chosen
(e.g. trapezoid rule).

3.5.7 Free Energy Perturbation (FEP)
An alternative approach is the so-called Free Energy Perturbation (FEP), or al-
ternatively Exponential Averaging (EXP). It is one of the earliest free energy
methods available in this field. Let us again, for simplicity, work within the
canonical (NVT) ensemble. Starting from free energy difference (3.63), adding
and subtracting βHa(x, px) inside the exponential of the upper partition function
Zb, and rearranging the exponentials, we get

∆Aa→b = −β−1 ln
[︄∫︁

e−β(Hb(x,px)−Ha(x,px))e−βHa(x,px) dxdpx

Za

]︄
. (3.69)

9Such paths can either be alchemical or real chemical processes.
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Following the statistical definition of an average value, the free energy difference
is governed by the Zwanzig equation [85, 62]

∆Aa→b = − 1
β

ln ⟨exp{−β [Hb(x, px)−Ha(x, px)]}⟩a , (3.70)

where β ≡ (kBT )−1, and the angular brackets denote an ensemble average over
configurations representing the initial (reference) state a, i.e. averaging over
the simulation run for state a.

Zwanzig relation (3.70) reveals a two state method, estimating free energies
straightforwardly from 2 endpoints a and b we are trying to calculate the free
energy difference for. Although this is an exact solution and probably the sim-
plest free energy method to understand, it is also one of the poorest methods in
terms of efficiency. Convergence of Eq. (3.70) relies on low-energy configurations
of the target state b forming a subset of configurations corresponding to the ref-
erence state a. If the ensembles are too disparate, Eq. (3.70) will not converge.
This issue is depicted in Fig. 3.10. Difficulties reflected in Fig. 3.10a can be al-
leviated by constructing a thermodynamic path which takes the system through
a set of intermediate states, improving the phase space overlap.

(a) (b) (c)

Figure 3.10: Convergence of FEP calculations. (a) ensembles are too separated, Eq. (3.70)
will not converge. (b) ideal scenario, where configurations of state b form a subset of the
ensemble belonging to state a – the simulation is expected to converge. (c) helping convergence
using an overlap of non-physical intermediate states i connecting ensembles a and b. Pictures
adapted from [76].

3.5.8 Pathway of Intermediate States
The phase space overlap of two states of interest a and b can be almost non-
existent. As a result, free energy calculations for the two states alone will either
suffer significant errors or end up not converging at all, recall Fig.3.10a. Such
an issue is even more pronounced for more complicated molecules and trans-
formations between them. That being said, Zwanzig relation (3.70) converges
relatively good only if the unsampled target state b is a subset of the reference
state a, see Fig. 3.10b (e.g. inserting a rigid molecule into a dense fluid).

Since free energy is a state function, one can construct a thermodynamic path
taking our system through series of intermediate states connecting both endpoints
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of interest. Putting this into a mathematical perspective, we can improve the con-
vergence of our calculations by creating high phase space overlap intermediates
and calculate the free energy difference as

∆Aa→b =
N∑︂

i=1
∆Ai→i+1. (3.71)

This is illustrated in Fig. 3.10c. Note that our intermediate states do not have to
be real, experimentally observable states. In fact, due to the actions of parameter
λ, recall Hamiltonian (3.64), the vast majority of cases feature non-physical inter-
mediate states. They are a mere computational tool to aid a proper convergence.

Let us immerse this into the FEP framework completely. System subjected
to FEP transformation, whether forward or backward, goes from a to b (or vice
versa) through series of non-physical intermediate states along a well-defined
pathway connecting a and b. This path is characterized by the alchemical param-
eter λ, introduced in Hamiltonian (3.64). The free energy is thus a continuous
function of parameter λ on the pathway connecting a to b, and the free energy
difference reads

∆Aa→b = − 1
β

N∑︂
i=1

ln ⟨exp{−β [H(x, px; λi+1)−H(x, px; λi)]}⟩i , (3.72)

where N represents the number of intermediate stages (or λ windows) between
the initial and the final state.

Practically speaking, in each one of the independent10 windows, equally sepa-
rated by increment λ, the system undergoes FEP calculation procedure to evalu-
ate the free energy difference up until that particular point of the transformation.
This is done in an open simulation setup (similar to random walker), averaging
the values out for each λ window. Collected non-physical intermediate states i
then form an ensemble mutually overlapping generally disparate ensembles be-
longing to states a and b – see Fig. 3.10c. This allows for successful convergence
to the free energy difference we seek.

Now, simple application of Eq. (3.72) searches for the desired free energy
value directly. This means that through 2 possible paths, forward or backward
with respect to parameter λ (i.e. a ⇄ b), the calculation is set up to land exactly
at the equilibrium free energy value, within the error of the method used. Such
an approach is not always an easy piece of cake, especially for larger structures
like nucleic acids and proteins. Computational efficiency of Eq. (3.72) drops
dramatically with increasing size of the simulated system. Running calculations
in a simple setup like this can cost a lot of valuable resources and time.

10The process can be trivially parallelized by executing each window on a separate CPU,
as there is no need for communication between the simulation of one window and the next.
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3.6 Non-equilibrium Approach
There are many different routes towards the estimation of ∆A, which are in their
core computationally more effective in comparison to brute-force application
of TI (3.68) or FEP (3.72) formulae. An example could be the Bennett Accep-
tance Ratio (BAR) [86], which benefits from both forward and backward trans-
formations. Unlike BAR, which draws upon equilibrium simulations, we intend
to tap into the power of non-equilibrium thermodynamics. Since the method we
are about to present is not well established, compared to techniques the likes
of BAR, we intend to call it the Non-equilibrium Overlap Sampling (NOS).

3.6.1 Free Enegy and Work
Consider a finite classical system in contact with a heat reservoir. When some
external parameters11 of the system are made to change with time, a work W is
performed on the system. The external parameters are switched along some path
γ in phase space from a to b at a finite rate ts. The work will on average exceed
the equilibrium free energy difference ∆A ≡ Ab−Aa between the initial and final
states a and b [87], i.e.

W =
∫︂

dWρ(W ; ts)W ≥ ∆A, (3.73)

where the overline denotes an average over an ensemble of measurements of W ,
each made after the other allowing the system and the heat bath to equilibrate
at temperature T . Individual values of W depend on the microscopic initial
conditions of the system and the reservoir. Difference W − ∆A ≡ WD is known as
the dissipated work associated with the increase of entropy during an irreversible
process. Equality of (3.73) holds only in the case of quasistatic process, i.e. taking
the system from a to b infinitely slowly such that all intermediate states are in
thermodynamic equilibrium. For quasistatic processes WD vanishes.

Figure 3.11: Distribution ρ(W ; ts) of work values acquired through independent switching
measurements at a set switching time ts. Dashed line represents a δ function at W = ∆A ,
corresponding to ts →∞. Note that ensemble average W exceeds ∆A due to energy dissipated
in a finite-time, irreversible process.

11For example volume V within which the system is confined, strength of an external field,
or some particle-particle interactions modulated throughout an MD simulation.
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A simple illustration of Eq. (3.73) can be made, see Fig. 3.11. Let us have
many independent processes switching between 2 states a and b during a given
switching time ts. Performing measurements of work W for each transformation
results in work distribution ρ(W ; ts), parametrically modulated by ts. For a fi-
nite value of ts, ensemble average W will always exceed equilibrium free energy
difference ∆A due to energy dissipated during such irreversible transformations.
Increasing ts shifts W closer to ∆A. Only in a limit case ts →∞, W = ∆A.

In practise, one would perform a number of simulations of slow switching
a→ b, and the work W obtained from each simulation would then be treated as
an estimate of the free energy difference ∆A. Such an estimate contains not only
statistical errors (W differs from one simulation to another), but also systematic
errors (as per the above inequality, any finite-rate simulation has a bias) [87].
Averaging over many simulations eliminates statistical errors, however the sys-
tematic error remains. W thus represents an upper bound of ∆A.

3.6.2 Jarzynski Identity
It was not until the very end of the last century that new expressions, relating
non-equilibrium work and free energy, were discovered. The first of which relates
an ensemble average over an exponential Boltzmann distribution of work with
free energy, the so-called Jarzynski equation [87, 88]

e−βW = e−β∆A. (3.74)

Here again β ≡ (kBT )−1, and ∆A ≡ Ab−Aa is the equilibrium free energy differ-
ence between 2 thermodynamic states a and b of a given system. This equality
remains valid for all paths γ connecting a to b, independent of the rate at which
the external parameters (mentioned above) are switched along the path. Jarzyn-
ski derived this relation under the usual assumption of weak coupling between
the system and its heat bath, but otherwise it follows directly from Hamilton’s
equations [87]. At its core, the equality highlights that fluctuations in the work
adhere to specific constraints separately from the average work, recall Eq. (3.73).

Left-hand side of Eq. (3.74) averages over all possible realizations of an ex-
ternal process that takes the system from the equilibrium state a to a generally
non-equilibrium state under the same external conditions as that of the equilib-
rium state b. In other words, it is an average over different fluctuations that
could occur during the process, each of which will result in a slightly different
value of the work W done on the system at hand. The work is done on the
system through inequality W ≥ ∆A, which immediately falls out of (3.74) when
considering mathematical identity exp(x) ≥ exp(x) [89]. Unlike this inequality,
Jarzynski holds no matter how fast the process happens.

Jarzynski (3.74) implies that using e−βW as an estimate for e−β∆A (instead
of W for ∆A) is an unbiased estimate – there are only statistical errors [87].
One can therefore use an exponential average W x ≡ −β−1 ln exp(−βW ), rather
than the standard average W , as an estimate for ∆A. The overline now marks
an average over a finite number of simulations Ns. It can be shown [88] that
the systematic error in W x is smaller than the one of W , and vanishes for Ns →∞.
Using W x, rather than W , therefore provides a tighter upper bound of ∆A.
Reversing the direction (a← b) establishes the lower bound as well.
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Relation (3.74) provides a statistical mechanics framework to compute equi-
librium free energy differences between 2 states from measurements of irreversible
work along an ensemble of trajectories joining these states, i.e. as

∆A = −β−1 ln
∫︂

dWρ(W, ts)e−βW , (3.75)

valid for any switching time ts and any path γ joining both states, cf. Eq. (3.73).
In principle, Eq. (3.75) is exact for any path between equilibrium states. How-

ever, in practise it is highly computationally demanding to evaluate exponential
averages. Additionally, since we take an exponential of work, rare, negative work
events may have devastating effects on the resulting free energy value. For that
reason, Jarzynski averaging needs a vast number of simulations in order to yield
statistically significant results.

3.6.3 Crooks Fluctuation Theorem (CFT)
An alternative way to bypass the systematic error of inequality (3.73) is to com-
bine the information from both forward and backward transformations. We again
consider a finite classical system coupled to large, equilibrium, thermodynamic
baths (e.g. T , p). The system is driven by a (possibly time-dependent) process
out of equilibrium. The utilization of both transformation directions is allowed
through the so-called Crooks Fluctuation Theorem (CFT) [90], which in its most
general form reads

Pf(+ω)
Pb(−ω) = e+ω, (3.76)

where ω is an entropy production of the driven system measured over some time
interval, Pf(ω) is the probability distribution of the entropy production, and Pb(ω)
corresponds to the system driven in a time-reversed manner.

Relation (3.76) was derived as a somewhat generalized version of an entropy
production fluctuation theorem (EPFT) [90, 91], for stochastic, microscopically
reversible dynamics. Unlike most relations of non-equilibrium statistical dynam-
ics, valid only in the near-equilibrium (linear) regime, EPFTs present a group
of exceptions valid for systems perturbed arbitrarily far from equilibrium. In that
sense, CFT follows their applicability.

Let us define a particular work process by the phase-space distribution ρ(x−τ )
at time −τ . Here, for the purpose of simple notation, we consider x ≡ {pi, qi}N

i=1
to be the set of all positions and momenta of an N -particle system. Each and ev-
ery realization of this process is thus given by the path x(t) ≡ γ the system
follows through phase space. Entropy production ω must be a functional of this
path [90]. Associated with this process there must be a change in entropy ∆S due
to interactions of our system with the baths. The form of ∆S depends on con-
ditions the system with the heat bath is in, i.e. whether it can be described by
canonical, NpT, or some other ensemble. One should also consider the change
in entropy associated with the change in the microscopic state of the system,
the so-called information entropy. Entropy of a microscopic state of a system is
given as s(x) = − ln ρ(x) [92], and is a measure of information required to describe
the state occurring with probability ρ(x). Thus the (non-equilibrium) ensemble
of microstates describing the system has entropy S = −∑︁x ρ(x) ln ρ(x).
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Assuming a single realization of such process taking the system from ρ(x−τ )
at time−τ to a final state described by ρ(x+τ ) at some future time +τ , the general
shape of ω would be [90]

ω = ln ρ(x−τ )− ln ρ(x+τ ) + ∆S, (3.77)

which describes the change in the amount of information necessary to characterize
the microstate of the system plus the change in entropy due to system-bath
interactions. In the following we will explore different forms of ∆S based on
distinct possible scenarios, and its consequences on the shape of CFT formula.

Entropy change due to system-bath interactions, ∆S, depends on how many
and what kinds of baths our system is coupled to. As we mentioned earlier, all
baths are considered to be large, equilibrium, thermodynamic systems. The most
commonly considered one would be the heat bath. In such a case ∆S = −βQ
is the change in the entropy of the bath, where Q is the amount of energy that
flows out of the heat reservoir and into the system. The system would then be
described by the canonical ensemble, and the free energy difference associated
with the transformation would be of the Helmholtz free energy, i.e. ∆F . If one
were to consider an isothermal-isobaric system, the system would have to be
coupled to a volume bath as well, and ∆S = −βQ−βp∆V . Here p is the pressure
and ∆V the change in volume of our system. The free energy difference would
then be of the Gibbs free energy instead, i.e. ∆G. It is possible to extend
the application of CFT formula (3.76) for systems with any standard set of baths,
so long as the microscopic reversibility holds true and the definition of the entropy
production ω is consistent. We can thus happily continue using the general ∆A.

Tying it back to our previous sections, transformation a → b of the system,
driven from equilibrium state a to a generally non-equilibrium state under the
same external conditions as that of the equilibrium state b, is called the forward
transformation12. Such a transition is carried out by a controlled change in al-
chemical parameter λ(t), recall Section 3.5.5. The system is in the equilibrium
state a in t ∈ (−∞,−τ ]. From t = −τ the system is actively perturbed up to
t = +τ . In t ∈ [+τ, +∞) the system is allowed to relax and reach equilibrium.
The perturbation is thus executed in a finite amount of time. For λ : 0 → 1,
ensembles of states a and b correspond to λ = 0 and λ = 1, respectively. It can
be shown [90] that the entropy production of such forward transformation, a→ b,
reads

ωf = −β∆A + βWa→b, (3.78)
where ∆A = Ab − Aa is the free energy difference between the states, and Wa→b

is the work done on the system during the forward transformation.
For the case of a single transformation between 2 microstates a and b, plugging

entropy production (3.78) into CFT relation (3.76), leads to

P (a→ b)
P (a← b) = exp[β (Wa→b −∆A)], (3.79)

where P (a→ b) is the joint probability of taking equilibrium microstate a from
the ensemble corresponding to λ = 0 and performing the forward transformation

12Remember that the process, driving our system out of equilibrium, can possibly be time-
dependent. For that reason alone it is important to generally distinguish between the forward
and the backward route.
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to the microstate b corresponding to λ = 1. Similarly P (a← b) is its counterpart
reversing the process via the backward route. Difference Wa→b−∆A in Eq. (3.79)
can be interpreted as the work WD dissipated during the forward transforma-
tion. If the transformation is performed infinitely slowly, P (a→ b) ≡ P (a← b),
and thus Wa→b = ∆A. In other words, for equilibrium transformations the dissi-
pated work WD vanishes.

For systems, satisfying that ω is odd under time reversal, one can enter-
tain a relation Wa→b = −Wa←b, and group together all the trajectories yielding
the same work W in the forward and the backward transformation to arrive at

Pf (W )
Pb (−W ) = eβ(W−∆A), (3.80)

which is the work-formulated CFT we intend to use in our calculations. As such,
we are rewriting Eq. (3.79) in terms of probability distribution Pf (W ) of work W
exerted by a random forward trajectory a → b, and Pb (−W ) taking a random
backward route.

Formulation (3.80) implies that the 2 work distributions cross at W = ∆A,
meaning that the non-equilibrium forward and backward runs yield the equi-
librium free energy difference ∆A right at this very intersection. Illustration is
provided in Fig. 3.12. This phenomenon has been experimentally verified [93]
using optical tweezers for the process of unfolding and refolding of a small RNA
hairpin. Practical implications related to the finding of these equilibrium values
in real non-equilibrium simulation data will be covered in the following chapter,
featuring our methodology.

Figure 3.12: Demonstration of CFT, Eq. (3.80). Pf (W ) is the probability distribution of work
W exerted by a random forward trajectory a → b. Pb (−W ) is its time-reversed counterpart
taking a random backward route, a← b.

Before we move onto the next section, note that whenever Eq. (3.76) holds,
the relation

e−ω =
∫︂ +∞

−∞
Pf(+ω)e−ωdω =

∫︂ +∞

−∞
Pb(−ω)dω = 1 (3.81)

remains true [90]. If one considers systems that start in equilibrium, of which
ω = −β∆A+βW , Jarzynski equality (3.74) readily falls out. An important move
here is to acknowledge that ∆A is a state function and can thus be taken outside
the average. CFT therefore implies Jarzynski relation.
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3.6.4 Mounting CFT on FEP Framework
Our approach (NOS) mounts the principles of CFT equality (3.80) onto the FEP
framework given by the modified Zwanzig formula (3.72). We launch a series of
many short-lasting non-equilibrium FEP simulations (runs), the results of which
have no reporting value on their own whatsoever. However, when grouped to-
gether and plotted as probability distributions the form of histograms, the equi-
librium free energy value starts surfacing up. This allows us to achieve a great
level of parallelization since all the non-equilibrium FEP runs can run in parallel
to each other, given sufficient amount of computational resources.

In practise, alchemical parameter λ(t) : 0 → 1 has to be varied in a discrete
manner throughout each FEP simulation. Partition into λ windows is provided
by the user, and is in the vast majority of cases done equidistantly by some inte-
ger N . An example of a forward transformation a→ b is illustrated in Fig. 3.13;
backward shift would just reverse the course of parameter λ. In each window
the value of parameter λ is fixed, and the system is evolving under the Hamilto-
nian (3.64) in an open MD simulation for # number of (FEP) steps. Individual
free energy differences (samples) between the current (i + 1) and the preced-
ing (i) intermediate state are computed according to Zwanzig equation (3.70).
The protocol samples different possible microstates of the system as the simula-
tion progresses (sampling through the underlying MD simulation) and averages
the free energy differences acquired from Zwanzig relation ’on the fly’ to arrive
at a single ∆Ai→i+1 for each window. Grouping all the sampled states from all
the windows together effectively creates the ensemble of non-physical, intermedi-
ate states forging the overlap between generally disparate ensembles of endpoint
states a and b, recall convergence issue of FEP calculations in Fig. 3.10.

Figure 3.13: Sketch representing a single forward FEP run, transforming a given system
between states a and b. Alchemical parameter λ is varied between 0 and 1, creating N inter-
mediate windows. In each window the value of λ is fixed, and the system is evolving in an open
MD simulation for # number of FEP steps, in parallel to all the other λ windows. This allows
us to sample the ensemble of intermediate states, facilitating a successful convergence of the
transformation.

The final (non-equilibrium) free energy difference ∆Aa→b of a single realization
of a→ b is acquired through accumulation, Eq. (3.71) , of these partial differences
∆Ai→i+1. As such, we utilize the FEP formula (3.72), but for a non-equilibrium
transformation instead (i.e. running FEP for ’insufficient’ amount of time).
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We run many such short-lasting, non-equilibrium FEP runs in both direc-
tions (we are talking about 102 − 103 simulations per direction). An illustration
of NOS simulation scheme is shown in Fig. 3.14. First, we perform energy
minimization and equilibration of the given system, to reach the desired equi-
librium state a. The reference state a is then fed into each and every forward
run as an initial configuration. To ensure unique starting points for each run,
we perform an additional short equilibration prior to each FEP simulation. After
forward transformations are completed, final states b are fed into backaward runs,
and the whole process is reversed. Collected data is processed, and the resulting
values of non-equilibrium work, done one the system throughout each transfor-
mation, then form probability distributions ρ(W ; ts), where Wf and Wb represent
the upper and lower bounds on equilibrium free energy difference ∆A = Ab−Aa

respectively, as per Eq. (3.73). Following CFT (3.80), the equilibrium free energy
difference ∆A is then extracted from the intersection of the forward and the back-
ward distributions. Technical details of the data processing and analysis will be
covered in the following chapter, featuring our methodology.

Figure 3.14: Sketch of NOS simulation scheme. First, minimization and equilibration of the
system are performed. The equilibrium state a is then fed into each and every forward run.
Prior to FEP simulation, a short equilibration is carried out to ensure different starting points
for each run. Final states b are then fed into backaward runs, and the whole process is reversed.
Data is collected, processed, and plotted as work probability distributions, overlapping around
∆A = Ab −Aa.

As we explored earlier, switching time ts affects the upper and lower bounds
of equilibrium difference ∆A, generated by distributions ρ(W ; ts). Switching time
ts amounts to the total simulation time per run, and is thus represented by
the number of FEP steps performed, i.e.

ts ∝
N∑︂

i=1
#i = N ·#, (3.82)

where N is the number of λ windows, in which #i number of FEP steps were
performed. Typically, the number of FEP steps is the same for every λ window
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(i.e. #i = #), hence the sum in Eq. (3.82) simplifies to a mere multiplication.
Raising switching time ts forces W closer to ∆A, and for ts →∞ we get W = ∆A;
recall quasistatic limit of relation (3.73). One can thus modulate the degree of
systematic error (made through estimating ∆A with W ) simply by changing #.
In other words, by raising # of each run the overlap of both distributions will
increase, improving the precision of NOS.

It is important to note that for large # FEP simulations are approaching
equilibrium simulations, eventually rendering NOS counterproductive. In order
for NOS to be truly effective, a balanced tuning of # alongside N and the number
of non-equilibrium runs has to be made.
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4. Methodology
Every well-behaved diploma thesis ought to have its methods adequately de-
scribed and explained. This chapter does exactly that. We cover our sources of
computational power alongside general simulation setup and analysis technique
to cultivate a solid ground to stand on later throughout the rest of the thesis.
Common simulation setup and methods of analysis are shared among all of our
(bio)chemical systems of interest. Every following chapter thus contains only a
light section further specifying features unique to the systems at hand.

4.1 Building of Simulated Systems
Setting up our calculations is a tedious and time consuming task, requiring many
consecutive steps. Same as any experimentalist has to prepare his samples before
any measurement can be performed, we need to create an initial structure of
the chemical system we are trying to simulate. This can go one of two ways,
depending on the complexity of our system – using experimentally determined
structures, or by manual labor.

4.1.1 Protein Data Bank (PDB)
For macromolecules (proteins, nucleic acids etc.) manual modeling is practically
impossible. In that case we have to turn our sight to experimentally determined1

structures provided in RCSB Protein Data Bank (PDB) [94]. There is an enor-
mous amount of crystallized molecular structures stored here, each coded by its
unique alphanumeric PDB ID, ready do be downloaded for free by any researcher
who might deem them to be useful. Every molecular asset is accompanied by its
own database page filled with important information like chemical composition,
symmetries, biological function, bound ligands, related structures etc.

Since some of these experimental methods cannot detect majority of hydrogen
atoms, the following compulsory procedure on the downloaded structure is its
neutralization by addition of necessary hydrogen atoms. This can be achieved
via hydrogen addition routine implemented in UCSF Chimera [95], which uses
well-known (bio)chemical rules for carbon-based systems to correctly attach every
missing particle. If necessary, we can further modify this structure manually
according to our needs.

4.1.2 VMD – Molefacture
If we are dealing with a simple-enough molecular structure, the straight for-
ward path is to model the system manually atom-to-atom, group-by-group inside
VMD’s Molefacture module [96]. Inerface of VMD’s Molefacture module is shown
in Fig. 4.1. Such an approach is pretty easy, unless the molecule is substantially
bigger, potentially taking many possible intricate conformations.

1Experimental methods to determine macromolecular assembly include X-ray crystallogra-
phy, NMR spectroscopy, and (cryo)electron microscopy.
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Figure 4.1: Interface of VMD’s Molfacture module [96]. Any molecule can be created here
atom-by-atom, group-by-group using varieties of convenient tools. One can also load in already
existing structures for modifications.

4.1.3 VMD – AutoPSF
Every such a molecular system needs to be aptly parametrized by the force
field we intend to use. For that we need the system’s coordinates and topology.
CHARMM FF [45, 46] offers 2 possibilities to parametrize the system. Smaller
molecules (up to ∼ 100 atoms) can be automatically topologized promptly via
CGenFF web application [97]. Coordinates alongside topology then have to be
driven through VMD’s (or equivalent) parametrization process using CGenFF’s
parametric file. For this we utilize the so-called Automatic PSF Builder imple-
mented in VMD. Interface of the AutoPSF module can be seen in Fig. 4.2.

Larger structures (proteins, nucleic acids, lipids) have to be treated differ-
ently. Due to the ’LEGO-like’ nature of these macromolecular structures it is
possible to create general topologies based on their individual building blocks
and standard chemical connections between them. Extensive general topology
files intended specifically for such macromolecular systems are pre-made by the
authors of CHARMM FF [98, 99], and are available for download together with
force field’s parametric files. System’s coordinates and general topologies are
again to be ran through AutoPSF module to form the parametrized structure.

47



Figure 4.2: Interface of VMD’s AutoPSF module [96]. This tool allows for automatic
parametrization of molecular systems based on provided topology and force field files. The
outcome is a formatted coordinate file (pdb) and protein structure file (psf), both required as
the input to NAMD [44] program.

Among our various interests, mutations of specific residues are a focal point,
and in the context of FEP we thus also deal with non-physical hybrid structures.
These unnatural hybrids need special care. To successfully parametrize them we
have to manufacture hybrid topologies, cautiously in accordance with the inner
workings of the simulations and the underlying force field. We crafted topologies
for all possible DNA base mutants and inscribed them into the general nucleic acid
topologies of CHARMM FF [45], hybrid topolgies are provided in Appendix ??.
Problematics of non-physical hybrid structures is to be covered in the following
Section 4.2. Modified topologies can readily substitute the original CHARMM
files in the AutoPSF module. The same had to be done separately for every
amino acid mutation performed, though we did not explore every possible amino
acid mutation – that would be another very long story.

Fully parametrized system is sufficiently described by its coordinate (pdb) and
structure (psf) files. Translated version of topology (top) is included in the struc-
ture file, for it was used to generate the structure in the first place. As an input,
NAMD simulations therefore require only coordinates and structure, alongside
force field’s parameter files.
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4.1.4 VMD – Solvate
Since we are investigating biochemical structures naturally occurring in physi-
ological environment, the next step is to immerse them in water, possibly (if
necessary) alongside native ions that might be of importance to their function.
For that we wrap our system in adequately sized box2 of TIP3 water molecules
and employ appropriate periodic boundary conditions. This can be done inside
the Solvate module of VMD, see interface in Fig. 4.3. One has to provide the
coordinates (pdb) and the parametrized structure (psf) from the previous step.

Figure 4.3: Interface of VMD’s Solvate module [96]. This tool allows for automatic solvation
of the system. The default solvent is water, but other solvents can be chosen given that the
appropriate files are provided.

Parametrization as described above has to be done explicitly to vacuo struc-
tures prior to their immersion in water. Aqua systems inherently possess these
parameters, and the extra TIP3 water is automatically included. The choice of
TIP3 water model is based on its implementation in CHARMM. Although the
default solvent in this module is water, the user can specify a different one given
that the appropriate files are provided.

2By adequately the author tactfully evades explanation of common practise involving careful
selection of suitable water cell. The box has to be big enough for our structure to not interact
with its periodic copies in near by cells, but we don’t need to simulate unnecessary amount
of water. A healthy balance is needed. It takes some experience and intuition to build, but
eventually it becomes almost automatic. Usually ∼ 10 Å distance from the edge of the box to
the molecule(s) of interest is safely enough, though the size and shape of the system play an
important and non-negligible role. Also, one might need to take into account the cutoff and
related parameters embedded in the simulation itself.
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4.1.5 VMD – Autoionize
One can also add ions in an automatic manner using VMD’s Autoionize module,
interface is given in Fig. 4.4. This tool allows the user to add varieties of ions,
naturally present in aqueous systems. It can be done for mimicking the real
solvent with a given salt concentration or just to neutralize the system at hand.
The only thing we do is to make sure our systems are charge neutral.

Figure 4.4: Interface of VMD’s Autoionize module [96]. It allows for automatic addition
of ions in a random seed manner, replacing the already existing solvent molecules in a given
system.

Autoionize replaces individual solvent molecules of an already solvated system
with specified ionic species in a randomized manner. For that it again needs the
coordinate file (pdb) and parametrized structure (psf) of the solvated system.
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4.2 Hybrid Molecular Topologies
In a typical alchemical transformation setup, involving the alteration of one chem-
ical species into another, one must somehow construct the alchemical path be-
tween the chemical states of interest. This is done using hybrid molecular topolo-
gies. Atoms of any hybrid molecular topology can be classified into three groups:

• atoms of the unperturbed part of the system (e.g. environment),

• atoms describing the reference state a,

• atoms belonging to the target state b.

Atoms of state a should never interact with those of state b throughout the course
of the simulation. Such interactions are thus turned completely off.

4.2.1 Single vs. Dual Topology
There are two widely used hybrid topologies – single and dual topology. An ex-
ample comparing both approaches is depicted in Fig. 4.5. Single topology has
only one largest common motif shared between the end states, and then dummy
atoms to make up for any unique sites. During the transformation, the dummy

Figure 4.5: Single topology (A, top) and dual topology (B, bottom) techniques to construct
an alchemical path between ethane and ethanol. D represents non-interacting dummy atoms,
while M correspond to nonphysical intermediates. Image taken from [100].

atoms are transformed into fully interacting atoms, and the shared site atom is
transformed directly to a new atom. Dual topology tackles the problem differ-
ently. Shared sites between states do not share atoms. No atoms change type,
only their interactions are gradually turned on/off from the rest of the system.
However, more atoms need to be altered in order to mutate from the initial to
the final state of the system. On the other hand, dual topologies have a strong
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advantage in that their dummies can simultaneously explore considerably larger
space while decoupled.

It is important to note that even though the dummies may have nonbonded
interactions turned off at some point of the simulation, they still are bound to the
rest of the molecule. This in fact renders the end states a and b slightly nonphysi-
cal. Such undesirable interactions can be treated for by simulating in both molec-
ular medium (e.g. natural solvent) and in vacuum. In the rigid rotor approxima-
tion with bond lengths fixed, the impact of these dummies on the free energy is
eliminated [101]. Nevertheless, even without the bond constraints, the difference
is usually negligible (∼ 0.01 kcal/mol).

4.2.2 Dual Topology Paradigm
In our simulations we will use exclusively dual topologies. Take a look at yet
another example featured in Fig. 4.6, a point mutation of an alanine side chain
into that of serine. Both side chains coexist with one another, both connected to
the central carbon Cα, yet without actually ’seeing’ each other.

Figure 4.6: Example of a simple dual-topology amino acid mutation Ala → Ser. Currently
non-interacting side chains are depicted in cyan. Image taken from [76].

As we discussed earlier within Section 3.5.5, such systems are described by
the hybrid Hamiltonian (3.64). The energy and forces are thus defined as a func-
tion of alchemical parameter λ. In the case of our simple Ala → Ser example,
interactions of the methyl side chain of alanine with the rest of the system (ex-
cept for the other side chain) are fully effective at the beginning of the simulation
(λ = 0), while the serine side chain feels nothing. Conversely, at the other
end of the simulation (λ = 1) their roles are reversed. For intermediate values
of λ, both the side chains participate in nonbonded interactions with the rest
of the system, scaled appropriately by the current value of λ.

4.2.3 Preventing End-point Catastrophes
Endpoints of alchemical transformations carried out in the framework of the
dual–topology paradigm have been shown to be prone to numerical instabilities
from MD simulations [76]. These instabilities usually occur for λ approaching
0 or 1, when incoming atoms instantly appear where other particles are already
present, resulting in practically infinite potential as the interatomic distance tends
towards zero. This is referred to as the end-point catastrophes.
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One can alleviate these effects and prevent such scenarios to happen by intro-
duction of a so-called soft-core potential [102, 103]

UNB (rij) = λLJεij

⎡⎣(︄ Rmin 2
ij

r2
ij + δ (1− λLJ)

)︄6

−
(︄

Rmin 2
ij

r2
ij + δ (1− λLJ)

)︄3⎤⎦+ λelec
qiqj

ε1rij

,

(4.1)
performing a gradual scaling of the short-range nonbonded interactions of in-
coming atoms with their environment. As the simulation progresses, the grad-
ual decoupling is done through parameters λLJ and λelec, modulating VdW and
electrostatic interactions respectively. Two examples of possible linear coupling
of nonbonded interactions though parameters λLJ and λelec, and their relation
to user-defined alchemical parameter λ, are shown in Fig. 4.7. Any bonded
potentials (e.g. valence angle, bond stretch, torsions) are not altered at all.

Figure 4.7: Two examples of typical coupling parameters λLJ and λelec during a FEP simula-
tion (as implemented in NAMD [99]), and their relationship to user-defined alchemical param-
eter λ. Image taken from [76].
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4.3 Non-equilibrium Free Energy Calculations
Our simulation process generally consists of 2 subsequent segments:

1. Minimization & Equilibration,

2. Free Energy Perturbation (FEP).

The first one takes the system we created in its initial conditions, minimizes
it in terms of energy via the conjugate gradient method [48], recall Section 3.2,
to find a conformation close to optimum, and performs a standard thermalization
molecular dynamics to sample multiple conformations bearing similar energies.
Throughout the whole simulation process the temperature is maintained at 300 K
using Langevine thermostat [61].

Normally, the following would be to perform FEP simulation by austere ap-
plication of the FEP formula (3.72), and if one felt productive enough, he would
have performed the simulation in both the forward and the backward direction
with respect to perturbation parameter λ to check if the results came out in
agreement. As was discussed earlier in Section 3.5.8, brute-force approach such
as this searches directly for an equilibrium result via the 2 possible routes, both
ideally landing exactly at the desired free energy value (within the error of the
method used). Running calculations in this simple, yet inefficient setup would
cost us a lot of valuable resources and time, none of which can we spare. Large
structures like proteins and nucleic acids are tremendously more expensive. In
such setting it would take us days or even weeks to simulate a single mutation
inside a DNA-protein complex, and with no guaranteed success of convergence to
the desired value with the required precision.

To enhance convergence and accuracy of our calculations we employ a non-
equilibrium approach governed by the CFT [90], recall Section 3.6. This allows
us to achieve a great level of parallelization by launching a series of many short-
lasting, non-equilibrium FEP simulations simultaneously. Each non-equilibrium
simulation consists of a forward and a backward run. Forward run utilizes the
last configuration of the preceding equilibration process as one of its initial condi-
tions. Backward run directly follows taking the final conformation of the forward
transformation, running the simulation literally (and independently) backwards.

As the name of this fairly unconventional technique suggests, the results of
such runs have no reporting value on their own whatsoever. This is where the
CFT relation, Eq. (3.80), steps in. The free energy value we seek lies right at the
intersection of the forward and the backward distributions of work done on the
system throughout the non-equilibrium transformations. In order to sufficiently
sample both the requisite distributions, it is appropriate to carry out from hun-
dreds up to thousands non-equilibrium runs. In most of our cases, 100 forward,
each followed by their backward counterpart, is enough to achieve desirable pre-
cision, though individual systems may require specialized treatment. Separate
minor methodology sections, tailored to each system at hand, will unveil the
specific details.

Efficiency of this method highly relies on available computational resources,
since it involves potentially hundreds or even thousands of simulations running in
parallel. With cluster system and well-made allocation order the likes of Meta-
Centrum [104], this method is not only with its precision but also in its efficiency
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comparable to techniques like BAR [86]. As such, what would normally take us
days or even weeks is now a matter of hours, for mutations of small molecules
like amino acids even minutes.
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4.4 Hardware – MetaCentrum
First and foremost we would like to express our sincere gratitude to MetaCen-
trum [104] for allowing us to use their valuable resources in order to conduct all
of our calculations, playing a crucial and necessary part of this thesis. Without
an access to such computational power and titanic data storage we would not be
able to carry out simulations of these scales.

MetaCentrum [104] is a state-of-the-art cluster system located in the heart
of Czechia, serving as a critical tool for scientific research and innovation in
the region. The map of Czechia as seen through eyes of MetaCentrum is shown
in Fig. 4.8. The infrastructure comprises a vast network of high-performance
computing (HPC) clusters, data storage facilities, and specialized computing re-
sources. Equipped with thousands of CPU cores and GPU accelerators, it boasts
a substantial computational capacity, enabling researchers to tackle complex and
computationally intensive problems efficiently with clever parallelization schemes
or sheer brute-force power. The cluster system also integrates with cloud com-
puting resources, offering users a flexible and scalable environment to meet their
computational needs.

Figure 4.8: Home sweet home as seen through eyes of MetaCentrum [104]. The land of
Czechia is interwoven by many internet lines connecting various HPC clusters and storage
facilities, accessible to research groups and individuals from all over the country.

One of the defining features of MetaCentrum is its accessibility and relatively
userfriendly approach. It caters to a diverse user base, ranging from individual re-
searchers and small research teams to large scientific institutions and universities.
Researchers from across the Czech Republic and Central Europe can gain remote
access to any MetaCentrum cluster through SSH client of their choice. A well-
defined allocation process ensures that computational resources are distributed
fairly and transparently between all its users.
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4.5 Software – NAMD
NAMD [44], short for Nanoscale Molecular Dynamics, is a powerful and widely
used program for conducting molecular dynamics simulations of large biomolec-
ular systems. Developed and maintained by the Theoretical and Computational
Biophysics Group at the University of Illinois at Urbana-Champaign, NAMD has
become an indispensable tool for researchers in the field of computational biology,
chemistry, and related disciplines.

NAMD’s primary strength lies in its ability to simulate the dynamic behavior
of complex biological macromolecules at the atomic and molecular level. It em-
ploys highly efficient parallel algorithms that leverage the capabilities of modern
supercomputers and high-performance computing clusters. This allows scien-
tists to investigate a wide range of biological processes, including protein folding,
molecular binding, and membrane dynamics, with remarkable accuracy and com-
putational efficiency.

One of the standout features of NAMD is its scalability. It can effectively
harness the computational power of multi-core processors and GPU accelerators,
making it suitable for simulating systems ranging from thousands to millions
of atoms. This scalability enables to explore increasingly larger and more complex
biological structures, providing valuable insights into the function and behavior
of biomolecules. Furthermore, NAMD is supported by an active user community
and a wealth of documentation. It also integrates seamlessly with visualization
and analysis tools, facilitating the interpretation of simulation results and the
generation of meaningful insights into biological processes.
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4.6 Data Extraction and Analysis

4.6.1 Bash Scripting
In order to properly monitor the behavior of our simulated systems we store
a lot of outcoming data, including dcd trajectories, extended system information,
and FEP data. The latter is in a single fepout file separately for the forward and
the backward run, written down for every non-equilibrium simulation performed.
Fepout files contain many different columns of data. Since the scope of our
interest aims mainly on final free-energy differences, it would be a madness to go
through every single simulation output manually. For us to dig through such a pile
of information effectively we have written a few bash scripts that do the necessary
extraction automatically. The data we acquired via our extraction scripts form
2 (one for each FEP direction) one-column files of final free-energy differences.
These files are the subjects of our main analysis.

4.6.2 Custom Python Analysis
For we desire to have a total control over the analysis process alongside its possible
modulation and flexibility, we have written a short program in Python that does
an automatic FEP analysis tailored to exactly fit our needs. Our program takes
the extracted files (forward and backward), formats them in order to be easily
processable by the packages of our choice3, and rearranges the loaded data into
suitable Python arrays. Such constructs are then subjected to our histogram
distribution analysis.

4.6.3 Scott’s Normal Reference Rule
There are many formulas providing a wide range of rules to estimate a suitable
number of bins a histogram should have, based on the type of data one might
apply it on. An example can be the Scott’s normal reference rule [105]

bW = 3.49 σ
3
√

n
, (4.2)

where σ is the sample standard deviation (STD), and n is the number of ob-
servations in the sample. Scott’s estimation of bin width is optimal for random
samples of data governed by an ideal normal distribution.

4.6.4 Freedman-Diaconis Rule
In our analysis we implement the so-called Freedman-Diaconis rule [106] which
replaces 3.5σ of Scott’s rule (4.2) with 2IQR, i.e.

bW = 2IQR(x)
3
√

n
, (4.3)

where the IQR(x) is an interquartile range of the data, and n is the number
of observations in the sample x. In our case x = W .

3Our code operates within the boundaries of Scipy, Numpy, and Matplotlib.
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Interquartile range can be understood as the midspread or middle 50 %, de-
fined by the difference between the 75th and 25th percentiles of the data, see
Fig. 4.9. Practically speaking, the data set is divided into quartiles, denoted
as Q1 (lower quartile), Q2 (median), and Q3 (upper quartile). Since lower quar-
tile corresponds to the 25th percentile and upper quartile to the 75th percentile,
IQR = Q3 −Q1 [107]. IQR’s can also be used to build box plots – simple graph-
ical representations of probability distributions, see Fig. 4.9. Using IQR instead
of STD makes the histogram less sensitive to outliers in data.

Figure 4.9: Box plot with an interquartile range (IQR) and a probability density function of a
normal N

(︁
0, σ2)︁ population. Graph is divided into quartiles Q1 (25th percentile), Q2 (median),

and Q3 (75th percentile). Image taken from [107].

Our choice of this rule instead of the Scott’s normal reference rule is based
on the fact that it is more versatile and robust for a wide range of distributions,
making it a good choice whenever we are uncertain about the exact nature of
the data behavior. That includes possible presence of outliers or slight devi-
ations from normality. However, if the sample is indeed normally distributed,
Freedman-Diaconis rule should still provide a good histogram distribution with-
out any pronounced issues.

4.6.5 Unified Bin Width
Bin widths provided by Eq. (4.3) and length of the data interval allow us to
determine the corresponding number of bins for each histogram. Though the bin
widths of forward and backward runs are generally not the same, they are not
that far apart from each other. Our code takes an average of these 2 to create
a new, common bin width. This allows for unification of forward and backward
data into single data set W , which comes quite handy for certain parts of our
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implementation and also gives our data unified appearance to avoid any possible
confusion. Nevertheless, for the most part we still treat both samples separately.

A curious reader might have an objection – averaging 2 bin widths into a single
common one to use for both merged data sets inevitably leads to literal shifting of
histograms away from their form estimated by Freedman-Diaconis rule. That is
correct. However, unless the 2 widths dramatically differ from each other, shifting
(though still present) is negligible and thus contributes to the analysis error very
faintly. The only possible cause of any significant difference in bin widths of
forward and backward runs would be caused either by insufficient conformation
sampling, or by an extreme case of mutation where states a and b occupy regions
of conformation space that are radically different in size. An example of such an
extremum could be mutation of hydrogen atom into a much larger and highly
flexible side chain.

Another fact that supports not only our choice of histogram rule but also the
bin width averaging is that there is no ideal number of bins a histogram should
have. As was hinted earlier, there exists a whole mathematical branch studying
the problematics of histogram distributions and the related statistics of discrete
values. Our averaging thus constitutes only a slight modification to one of the
possible choices, the Freedman-Diaconis rule, and should faithfully work unless
we enter the realm of extreme cases.

4.6.6 Plotting Histogram Distributions
The final histogram features bars representing the probability of work values W
calculated during the non-equilibrium FEP transformations, an exemplary graph
is shown in Fig. 4.10. Both distributions are separately normalized such that
the sum of all their bins yield 1. Similarly as in the provided example, all of
our distributions exhibit normal behavior, though we occasionally report outliers
in data and slight deviations from normality. Since these minor deviations are
a natural result of statistical errors present in real data, we assume our histograms
can indeed be faithfully represented by Gaussian distributions.

Figure 4.10: An example of histograms produced by our program up until now, analyzing 100
forward and 100 backward non-equilibrium FEP runs.
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4.6.7 Crooks-Gauss Intersection (CGI)
According to the Crooks fluctuation theorem [90], recall Section 3.6, the free
energy value we seek lies right at the intersection of the forward and the backward
distribution. But how exactly do we determine the exact point of intersection
between two histograms? Since our distributions follow normal behavior, the next
step is to fit our histograms with Gaussian curves

g(x) = A exp
[︄
−(x− x0)2

2σ2

]︄
, (4.4)

where A is the height of the curve’s peak, x0 the central expected value, and σ
the standard deviation (FWHM = 2σ

√
2 ln 2). These curves were fitted onto our

data using the method of least squares.
The choice of general Gaussian models (4.4) without the standard normaliza-

tion factor σ−1(2π)−1/2 lies in the fact that they inherit the normalization from
the histograms they were fitted on. Using the standard prefactor here would
mean applying 2 norms at the same time, resulting in curves that are too narrow
in width to correctly fit the underlying histograms.

After the fitting procedure the intersections can be readily computed as

∆GCGI =
Wf
σ2

f
− −Wb

σ2
b
±
√︄

1
σfσb

(Wf + Wb)2 + 2
(︃

1
σ2

f
− 1

σ2
b

)︃
ln σb

σf

1
σ2

f
− 1

σ2
b

(4.5)

where Wf,b are the work values of the forward and the backward runs, and σf,b
are the standard deviations of the respective distributions. This method of find-
ing the intersection between normal forward and backward distributions of non-
equilibrium work is known as the Crooks-Gauss intersection [108] (CGI).

Formula (4.5) yields 2 distinct intersection points, unless the distributions are
exactly the same. Which one do we choose? For that we implemented a simple
criterion, taking the one closer to the midpoint of the interval W . Final graph,
featuring Gaussian fits and the relevant intersection, is shown in Fig. 4.11.

Figure 4.11: Histograms completed with Gaussian fits and pinpointed relevant intersection,
providing us with the free energy difference ∆G.
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5. Hydration Free Energies
of Amino Acids
In this chapter we explore the nature of the very building blocks of proteins,
the so-called amino acids. For an amino acid (AA), as for any other naturally
condensed-state molecule, one of the most valuable chemical properties is its
solvation (hydration) free energy. Study of amino acids plays a pivotal role in the
field of genetic engineering, as their behavior dictates the proteins’ features and
abilities. Rationally designed modifications to protein structures can promote
the reliability of their actions, possibly altering genes inside any living organism
according to our needs.

Since in proteins the only part of amino acids sticking outwards from the
peptide chain to the surroundings are the side chains, the reasonable way to study
the behavior of these small molecules is to introduce their side chain analogues,
see Tab. 5.1. This is what our reference studies [109, 110] do, including [111]
providing us with invaluable experimental results. Models of these molecular
mimetics are shown in Fig. 5.1.

Table 5.1: Amino acid side-chain molecular mimetics, and their hydration free energies ac-
cording to experiments [111]. Values listed in kcal/mol.

Res. Side chain analogue ∆Gexp
Ala Methane 1.94
Val Propane 1.99
Leu Isobutane 2.28
Ile Butane 2.15
Ser Methanol −5.06
Thr Ethanol −4.88
Phe Toluene −0.76
Tyr p-Cresol −6.11
Cys Methanethiol −1.24
Met Ethylmethylsulfide −1.48
Asn Acetamide −9.68
Gln Propionamide −9.38
Trp Indole −5.88
His 4-Methylimidazole −10.27

Simplification through side-chain mimetics also serves to eliminate the need
to simulate the amino-acid head, which would normally get charged at physio-
logical pH, posing possible complications. We are not really interested in simu-
lating whole charged amino acids, but rather in the behavior of the side chains
themselves. They will be the ones directly interacting with DNA bases inside
protein-DNA complexes.
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(a) Ala (b) Val (c) Leu

(d) Ile (e) Ser (f) Thr

(g) Phe (h) Tyr (i) Cys

(j) Met (k) Asn (l) Gln

(m) Trp (n) His

Figure 5.1: Models of all 14 amino acid side-chain molecular mimetics studied in this chapter.
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5.1 Simulation Setup
We have built each one of the 14 amino acid side chain analogues (listed in
Tab. 5.1 and displayed in Fig. 5.1) manually inside the environment of VMD [96]
using the Molefacture module. Each system was immersed in an aqueous box of
TIP3 water approx. 153 Å3 in volume.

MD simulations were carried out in NAMD [44] software package using the
CHARMM36 [45, 46] force field. Throughout the whole simulation, temperature
was maintained at 300 K by Langevin thermostat [61] while Langevin piston
targeted pressure at 1.0 bar. Systems were simulated using RESPA algorithm [58]
with 1.0 fs time step, and PME inside periodic boundary conditions. Inside the
NAMD’s FEP module the parameter alchDecouple was turned on.

In contrast, the reference study [109] uses thermodynamic integration (TI)
in a standard equilibrium setting using Folding@Home distributed computing
infrastructure [112] with MBER(ff 94), CHARMM22, and OPLS-AA force fields.
Our results therefore serve as an addition to their collection of results, with
different method used and an updated version of the CHARMM FF.

First, we performed a minimization and equilibration procedure (500 ps), after
which followed non-equilibrium FEP calculations (recall Section 4.3) consisting
of swarms of 100 independent MD runs, each composed of forward and backward
stages. Each independent MD run included an additional short 10 ps thermal-
ization to ensure slightly different starting conformations of forward MD runs.
Backward MD runs used the final conformations of forward MD runs as a start-
ing point. Each of the 20 λ windows consisted of 5 · 103 FEP steps. The final
work values from non-equilibrium forward and backward MD runs were analyzed
via our Python program (mentioned above in Section 4.6) that determines CGI
of histograms pinpointing out the equilibrium binding free energy.
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5.2 Absolute Hydration Free Energies
Histogram depicted in Fig. 5.2 reveals the absolute hydration free energy values

Figure 5.2: Absolute hydration free energies of 14 amino acid side chain analogues in com-
parison to reference simulation data [109] and experimental values provided in [111]. All values
shown in kcal/mol. Our data are a result of non-equilibrium CGI FEP in CHARMM36 force
field, reference done by TI in AMBER(ff 94), CHARMM22, and OPLS-AA.

we obtained for each of the 14 amino acid side chain analogues studied. We
contrast our free energy values with reference MD simulations [109] as well as with
experimental data [111]. Reference calculations simulated all the given molecular
systems using 3 force fields (AMBER, CHARMM22, and OPLS-AA) different
from the one we used in our approach (CHARMM36).

Our MD simulations were able to achieve similar performance as that of ref-
erence calculations. We provide the reader with graph of differences from the ex-
perimental values [111] to inspect the necessary details, see Fig. 5.3. Apart from

Figure 5.3: Differences from experiment [111] for absolute hydration free energies of 14 amino
acid side chain analogues, presented in Fig. 5.2 We contrast our free energy values with [109].
All values shown in kcal/mol.
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one singular case (Leu), our calculations are in better or at least similar accor-
dance with experimental results compared to our reference counterpart. This is
a fair success since some of our results (Phe, Tyr, Gln, Trp, and His) are far
closer than any of their reference competitors. Though such achievement gives
no surprise taking account for our use of refined version of CHARMM force field.
Nevertheless, FEP method with our non-equilibrium approach is clearly sufficient
enough to yield satisfactory results.
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5.3 Discussion
Overall our absolute hydration free energies (shown in Fig. 5.2) report differences
from the experiment [111] within a standard chemical accuracy of ±1 kcal/mol,
recall Fig. 5.3 for details. The performance of our non-equilibrium scheme is
comparable to that of the reference MD simulations [109], and thus yielding
satisfactory outcomes. The only results at issue could be those of Met and Asn,
with little over double the desirable difference from experiment. Though such
differences were also recorded by the reference calculations [109].

The slight deviation from experimental data (observed for Met and Asn) might
stem from one particular choice we made at the beginning of our simulations,
based on the official documentation of NAMD [76]. As the manual suggested,
in each of our simulations performed the so-called alchDecouple parameter was
turned on. The reason behind their discrepancies may lie in the fact that these
are a bit larger and more flexible side chains, potentially taking slightly different
conformations in vacuum compared to their hydrated liquid form.

We can conclude that it is not an incorrect choice to simplify the calculation
process of absolute hydration free energies with alchDecouple on for the case of
small rigid molecules like the amino acid side chain analogues. For more flexible
moieties the likes of Met and Asn such an option could be debatable. A further
investigation is needed.
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6. Hydration Free Energies
of DNA Bases
Before we dive into the study of protein-DNA complexes, let us examine the very
building blocks of nucleic acids. We will use very the same approach but this
time to explore the nature of DNA bases via their N-methylated forms, listed in
Tab. 6.1. Same as for amino acids, we will study their hydration energies.

Table 6.1: N-methylated DNA bases and our labels. Their hydration free energies according
to experiments are taken from Ref. [113]. Values are listed in kcal/mol.

Base Methylated structure Tag ∆Gexp
A 9-Methyladenine 9MA −13.60
G 9-Methylguanine 9MG
T 1-Methylthymine 1MT −(9.1− 12.7)
C 1-Methylcytosine 1MC

In the filed of genetic engineering mutations in DNA sequence are one of the
main focal points allowing for assessment of features related to DNA sequence
recognition by various proteins, e.g. their ability to successfully bind to the right
region of a given DNA double helix. Before we perform any mutation inside a
protein-DNA complex we need to perfect our methodology on simple systems.
We will start by exploring all possible base mutations using N-methylated DNA
base hybrids, one of which is shown in Fig. 6.1. All hybrids used are made out of

(a) 9MA-1MC (b) 9MA-1MC: beta

Figure 6.1: Hybrid molecular structure for 9MA → 1MC mutation (dual topology). Model
(a) is colored by atomic species, beta coloring in (b) shows disappearing (initial) 9MA in red
and appearing (final, target) 1MC in blue; the untouched methyl moiety is bleached.

methylated bases presented in Tab. 6.1, sharing a conjoint terminal methyl group.
Mutations of DNA bases will provide us with valuable relative free energies, which
will be compared to results of a reference study [114] done on systems similar1

1Some of the systems featured in [114] are mutated using a single-topology frame instead.
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to our own. Later on during our future studies of protein-DNA complexes these
simulations can serve as a reference frame for evaluating the behavior of mutants
inside a DNA double helix. At the end of this chapter we will also try our
methodology on an ATT trinucleotide to see how well it performs in a slightly
more complicated environment.
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6.1 Simulation Setup and Method of Analysis
We have built each one of the methylated DNA bases listed in Tab. 6.1 and
their respective hybrid structures (10 unique systems in total2) manually inside
the environment of VMD [96] using the Molefacture module. Each system was
immersed in an aqueous box of TIP3 water approximately 153 Å3 in volume.
Depending on specifics of the given simulation process, some of the systems were
simulated also in gas phase without any water molecules present.

MD simulations were carried out in NAMD [44] software package using the
CHARMM36 [45, 46] force field. Throughout the whole simulation, temperature
was maintained at 300 K by Langevin thermostat [61] while Langevin piston
targeted pressure at 1.0 bar. Systems were simulated using RESPA algorithm [58]
with 1.0 fs time step, and PME inside periodic boundary conditions. Inside the
NAMD’s FEP module the parameter alchDecouple was turned on.

In contrast our reference MD simulations [114] run equilibrium thermody-
namic integration (TI) transformations with AMBER 4.1. Our results therefore
serve as an addition to their collection of results, with different method and soft-
ware package used together with different force field.

First, we performed a minimization and equilibration procedure (500 ps), after
which followed non-equilibrium FEP calculations (recall Section 4.3) consisting
of swarms of 100 independent MD runs, each composed of forward and backward
stages. Each independent MD run included an additional short 10 ps thermal-
ization to ensure slightly different starting conformations of forward MD runs.
Backward MD runs used the final conformations of forward MD runs as a start-
ing point. Each of the 20 λ windows consisted of 5 · 103 FEP steps. The final
work values from non-equilibrium forward and backward MD runs were analyzed
via our Python program (mentioned above in Section 4.6) that determines CGI
of histograms pinpointing out the equilibrium binding free energy.

24 methylated DNA bases, and all 6 possible hybrids – 10 systems in total. As will be shown
later, we also explored some mutations in trinucleotides.
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6.2 Absolute Hydration Free Energies
Let us first probe absolute hydration free energies of DNA bases via MD simula-
tions of their methylated forms. Due to the lack of experimental data we mostly
limit ourselves to reference simulations. The resulting hydration free energies are
listed in Tab. 6.2. The reference study [114] simulated the N-methylated bases

Table 6.2: Calculated absolute free energies of hydration for all 4 N-methylated DNA bases.
∆Gref are results of reference MD simulations [114], experimental data [113] were available only
for some of the bases studied. All values listed in kcal/mol.

Base ∆G ∆Gref ∆Gexp
9MA −12.35 −12.00 −13.60
9MG −21.71 −22.44
1MT −10.28 −12.44 − (9.1− 12.7)
1MC −14.85 −18.40

via TI using AMBER 4.1. Wherever it was available we used reference experi-
mental values from [113]. As is shown in Tab. 6.2, apart from 1MC none other of
our calculated values differ from experiment or reference simulation data by any
significant extent, taking account for standard chemical accuracy of ±1 kcal/mol.

6.3 Relative Hydration Free Energies
Relative free energy calculations were done on every possible mutation of N-
methylated DNA bases. The resulting free energy differences ∆∆Galch are listed
in Tab. 6.3. We compare them with values ∆∆Ghyd obtained through our previous

Table 6.3: Calculated differences in hydration free energy for mutations of N-methylated DNA
bases. Subscript alch marks results of our relative calculations, hyd label values we obtained
through absolute hydration free energies. References [114] with superscript s correspond to MD
simulations performed with perturbations in single topology systems. Values listed in kcal/mol.

Mutation ∆∆Galch ∆∆Ghyd ∆∆Gref ∆∆G s
ref ∆∆G hyd

ref
1MC → 1MT 4.58 4.57 5.51 5.96
1MC → 9MG −4.98 −6.86 −4.04
9MG → 1MT 12.60 11.43 10.07 10.00
9MA → 1MC −4.49 −2.50 −6.43 −6.40
9MA → 1MT 1.25 2.07 −0.44
9MA → 9MG −10.41 −9.36 −11.00 −10.44

absolute calculations, cf. Tab. 6.2. Due to the lack of reference experimental data
we put our results against reference MD simulations [114] only.
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6.4 Mutations in Trinucleotides
Let us now step a bit further and investigate mutations of DNA bases in a slightly
larger system. For that we chose trinucleotide ATT. An example of such mutation
can be seen in Fig. 6.2. As a demonstration we performed 2 different base

(a) Trinucleotide hybrid (b) Trinucleotide hybrid: beta

Figure 6.2: Hybrid molecular structure for Ade → Gua mutation inside ATT trinucleotide.
Model (a) is standardly colored by atomic species. Beta coloring in (b) features disappearing
(red) and appearing (blue) residues while the untouched remains are bleached.

mutations (A→G and T→C) in 2 different positions inside the ATT sequence.
tThe results can be seen in Tab. 6.4. Due to the lack of references we decided
to compare our results to values obtained from our previous N-methylated DNA
bases. This will allow us to at least capture a hint of the influence the rest of the
trinucleotide has on the final free energy values we observe.

Table 6.4: Calculated differences in hydration free energy of ATT trinucleotide after a single
base mutation occurred. Subscript alch marks values obtained through relative calculations
of trinucleotides, base label our results of corresponding methylated DNA base mutations.
Reference values acquired from methylated base calculations of [114]. Values listed in kcal/mol.

Mutation ∆∆Galch ∆∆Gbase ∆∆Gref
ATT → GTT −9.63 −9.36 −11.00
ATT → ACT −6.41 −4.57 −5.51
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6.5 Discussion

6.5.1 Absolute Free Energies
Overall the results of our absolute calculations (listed in Tab. 6.2) are in a
good agreement with reference MD simulations [114] and available experimen-
tal data [113]. Apart from base 1MC, all of our hydration free energies of N-
methylated DNA bases lie within the standard chemical accuracy of ±1 kcal/mol
with respect to the reference values. This means that the performance of our
non-equilibrium approach is comparable to that of the reference MD simulations.
Our protocol produces satisfactory outcomes.

The base at issue (1MC) resulted in approx. 3.5 kcal/mol higher hydration
free energy as compared to the reference calculation. This might be due to the
outdated force field of Ref. [114] and (or) due to different computational method
used. Due to the lack of experimental data, we are unable to further assess the
roots causing 1MC to bear such inconsistency.

6.5.2 Relative Free Energies
Our results of DNA base mutations show strong conformity with our previous
absolute calculations, cf. ∆∆Galch and ∆∆Ghyd in Tab. 6.3. Apart from muta-
tions involving 1MC, the agreement lies within the standard chemical accuracy
of ±1 kcal/mol. The same applies to comparison with reference MD simula-
tions [114]. The fact that only the 2 mutations involving 1MC are having trouble
connecting to any reference within the chemical accuracy lets us assume that
base 1MC is on fault. Though the difference is not more than ±2 kcal/mol. On
the other hand, mutation 1MC → 1MT lies perfectly within the chemical accu-
racy with respect to all reference values. With our current data it is hard to
tell whether this single agreement is a matter of errors cancelling each other out.
Due to the lack of any experimental data on this issue, we are unable to further
assess the roots causing mutations of 1MC to bear these inconsistencies. Further
investigation of 1MC base is needed. Nonetheless, the overall agreement suggests
that our non-equilibrium approach is able to yield satisfactory results.

6.5.3 Mutations in Trinucleotides
The effects of additional molecular structure in the solvation envelope are cap-
tured in Tab. 6.4. The final change in free energy we observe during a mutation
shifts based on the immediate surroundings of the mutated residue. Differences
among various yet similar systems vary from approximately 0.3 to 2.1 kcal/mol.
The sugar-phosphate backbone along with non-mutated bases are now part of
the solvation envelope of the mutated residues. Presence of additional molecular
structures changes the system, possibly leading to markedly different behaviors
of the mutated bases. The differences in relative free energies we captured are
traces of this influence.
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7. Zif268-DNA Complex
In this chapter we explore the nature of DNA-binding proteins through investi-
gation of zinc-finger transcription factor Zif268 bound to a short, CG-rich DNA
double helix. We have covered the importance of zinc finger proteins (ZFPs) in
Section 2.2 regarding zinc-finger nucleases (ZFNs), promising for genetic modifi-
cations and enhancements in various medical and industrial fields. The structure
of Zif268-DNA complex (PDB: 1AAY) is shown in Fig. 7.1. It is a three-fingered

Figure 7.1: ZF-DNA complex (PDB: 1AAY, modified in mutation site) with detail zoomed
in on one of the possible mutations T=A → G≡C. Transcription factor Zif268 (darker cyan) is
displayed in 2 mutually overlayed representations – ribbons demonstrate the underlying protein
structure while the transparent surface showcases its outer shape. Inside the protein there are
3 Zn+2 ions (black spheres). The orange DNA double helix harbors sequence GCGTGGGCG,
recognized by the transcription factor. Mutated residues are shown in beta coloring – red
disappearing (initial) and blue appearing (final) base pair, while the untouched sugar-phosphate
moieties are bleached.

variant from the class of ZFPs. Each zinc finger domain comprises of one β-turn
connected to an α-helix, between which a single Zn+2 ion is non-covalently bound.
Zif268 is known to recognize DNA sequence GCGTGGGCG. Detection of nucle-
obases is done via specific amino acid side chains pointing inwards into the major
groove of DNA, see Fig. 7.2 for schematic depiction of all binding sites.

As is introduced in Fig. 7.2, we will distinguish between the main (1S) and
the complementary (2S) DNA strands in the following text. Individual positions
of base pairs in the DNA double helix will be referred to according to the red
numbers in Fig. 7.2. Given these rules, position 4 (or equivalently mutation site 4)
features nucleobases 1ST and 2SA. Direct interaction with proximate amino acid
side chains is depicted by arrows pointing to the bases. Position 4 thus harbors
2SA base directly interacting with Asp76. Close by Arg74 influences the site only
indirectly through interactions with its neighbour Asp76. 1ST base does not have
any amino acid in its immediate vicinity. The rest of the sites 2 − 9 follow this
example.
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Figure 7.2: Base pairs of short DNA double helix (sequence GCGTGGGCG) recognized by
transcription factor Zif268, and proximate amino acid side chains forming the protein’s binding
sites. We introduce numbering of base pair positions in red, and abbreviations (1S and 2S) for
each strand of the DNA double helix. Individual bases in each site will be marked by these
prefixes, e.g. position 4 hosts bases 1ST and 2SA. Image adapted from [??].

Even though the Zif268 protein ought to recognize the given DNA sequence,
binding to slightly different sequences is not completely ruled out. The most
likely candidates for unwanted off-target binding are DNA sequences carrying
single base pair mutations, some of which may still disrupt Zif268-DNA binding
substantially. Impact of single base pair mutations on the stability of the Zif268-
DNA complex will be quantified using MD simulations in this chapter.

As we have discussed earlier within Section 3.5.3, thermodynamic cycles are
an efficient way to gain relative binding free energies. Fig. 7.3 presents such
a thermodynamic cycle for our Zif268-DNA complex. In principle, it yields 2
alternative pathways for acquiring differences in binding free energies for original
and mutated DNA double helix. Speaking the language of thermodynamics

∆∆Gbind = ∆G1 −∆G2 = ∆G3 −∆G4 (7.1)

is the change in binding free energy of the complex due to a single base pair mu-
tation inside the DNA double helix. One of the possibilities features alchemical
transformation of decoupling the whole protein from its environment, i.e. com-
puting separately ∆G3 and ∆G4. Such a dramatic change would require a lot
of computer time. Therefore, the only reasonable pathway is by performing the
mutation in DNA bound to the protein (∆G1) and separately in water without
the protein’s presence (∆G2).
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Figure 7.3: Thermodynamic cycle for a single DNA base pair mutation inside the Zif268-DNA
complex. Values ∆Gi represent changes in free energy of the system after a given alchemical
transformation has occurred. Symbol * marks structures with the final (target) DNA base pair,
i.e. product of the mutation.

Relative binding free energy calculations for protein-DNA complexes emerged
relatively recently [115, 116]. It is a subject of an ongoing research. Not so long
ago, different software packages yielded different results [117]. Specifically, the
AMBER software package vastly overestimated the magnitude of binding free
energy changes and often with incorrect signs. A very recent study has provided
consistent results for different software packages [6]. By chance one of the leading
MD software packages, NAMD, escaped the scope of this study. This chapter of
the present thesis should fill this gap.
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7.1 Simulation Setup
Following the literature [115], we use non-equilibrium MD calculations to gain
free-energy differences for the Zif268-DNA complexes with different single base
pair mutations. The reference study [115] applied two fundamentally different
approaches: non-equilibrium Crooks-Gaussian intersection (CGI) [108] coupled
with Thermodynamic Integration (TI) [82] and equilibrium Hamiltonian Replica
Exchange [118, 119] with Multistate Bennet’s Acceptance Ratio (RE/MBAR)
method [86]. Further, they used a linear soft core potentials. All of their MD
simulations were carried out employing the Gromacs software package [43] with
the AMBER99SB force field [23].

In contrast, we used the CHARMM36/CgenFF force fields [45], free energy
perturbation (FEP) implemented in the NAMD software package [44] together
with our version of the CGI protocol (described in Chapter 4). Unlike the refer-
ence study [115], we do not utilize any constraints that would artificially stabilize
Watson-Crick hydrogen bonding in mutated base pairs.

The temperature was maintained at 300 K by the Langevin thermostat [61]
while the Langevin piston barostat targeted pressure at 1.0 bar. Simulated sys-
tems were propagated in time using the RESPA algorithm [58] with a 1.0 fs time
step. PBC and PME were applied.

First, we performed a minimization and equilibration procedure (500 ps), after
which followed non-equilibrium FEP calculations (recall Section 4.3) consisting
of swarms of 100 independent MD runs, each composed of forward and backward
stages. Each independent MD run included an additional short 10 ps thermal-
ization to ensure slightly different starting conformations of forward MD runs.
Backward MD runs used the final conformations of forward MD runs as a start-
ing point. Each of the 20 λ windows consisted of 5 · 104 FEP steps. The final
work values from non-equilibrium forward and backward MD runs were analyzed
via our Python program (mentioned above in Section 4.6) that determines CGI
of histograms pinpointing out the equilibrium binding free energy.
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7.2 Initial Equilibration
First, we examine the initial equilibration MD trajectories. More specifically, we
are interested in whether the Watson-Crick hydrogen bonding was preserved in
mutated base pairs. Since equilibration MD runs were produced with λ = 0, mu-
tated (final, target) base pairs were detached from their environment. Of course,
they were still covalently bound to the sugar-phosphate backbone of DNA and
felt each other.

7.2.1 Watson-Crick Hydrogen Bonding
In each mutation site, the length of the central Watson-Crick hydrogen bond was
measured for each MD run. Gathered data were plotted against the recorded
trajectory frames. The average values and standard deviations (STD) were com-
puted as well. Let us describe general patterns observed in all equilibration MD
runs. Example snapshots of DNA base pairs taken from our MD trajectories are
shown in Fig. 7.4. Their structures differ only slightly due to thermal fluctuations

(a) T=A (b) G≡C

Figure 7.4: Hydrogen bonding (purple lines) in selected DNA base pairs. The rest of the DNA
double helix as well as the whole protein structure are hidden for clarity. We monitored the
central Watson-Crick hydrogen bond to assess the base pair stability within initial equilibration
MD runs with λ = 0 when the mutated base pairs were decoupled from their environment.

in the simulated systems. The average length of the central Watson-Crick hydro-
gen bond is always approx. 2.0 Åwith STD ranging from 0.1 to 0.3 Å. This applies
to both in aqua and in protein cases, no matter whether it is the initial (coupled)
or the final (decoupled) base pair. An example of typical sampled distances is
given in Fig. 7.5. Thermal fluctuations yield no more than a 0.6 Ådifference from
the average value.

Overall, the hydrogen bonding of mutated bases was stable. All plots closely
resembled the example in Fig. 7.5. However, there is one particular exception,
where the mutated base pair was for a brief moment broken. It occurred for the
decoupled (final) A=T base pair within the in protein C8A equilibration MD run,
see Fig. 7.6. Nevertheless, after about 80 frames the base pair was re-established
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again and remained stable for the rest of the MD run. This was the only transient
instability in mutated base pairs we encountered in equilibration MD runs.

(a) In aqua (b) In protein

Figure 7.5: Time evolution of lengths of typical central hydrogen bonds in mutated DNA base
pairs within equilibration MD runs: (a) in aqua i.e. DNA double helix in water; (b) in protein
i.e. solvated complex of DNA double helix bound to the ZF protein. In all cases, average values
fall close to 2.0 Å with STD ranging from 0.1 to 0.3 Å.

(a) In aqua (b) In protein

Figure 7.6: Time evolution of central hydrogen bond length in mutated DNA base pair during
initial equilibration C8A MD run: (a) in aqua i.e. just DNA double helix in water; (b) in protein
i.e. solvated complex of DNA double helix bound to the ZF protein. The latter chart reveals
a brief transient disconnection of the final (i.e. mutated and from its environment decoupled)
A=T base pair.

Summarized, we did not observe any differences in base pairing among in
aqua and in protein simulated systems, nor between original (to its environment
coupled) and mutated (from its environment decoupled) base pairs. Therefore, we
concluded that it would not be necessary to apply any artificial constraints that
would additionally stabilize the mutated base pairs (as they did in the reference
study [115]).

7.2.2 Amino Acid Side Chains
We also studied interactions between spatially close amino acids – mostly attrac-
tion to each other. Generally, the strongest interactions were observed between
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side chains of amino acids with opposite charges that form the so-called salt
bridges. Fig. 7.7 shows the Arg46-Asp48 salt bridge from the G7C equilibration
MD run. Similar salt bridges were found in many other binding sites (3, 4, 6, 9).

Figure 7.7: Attraction between neighboring Arg46 and Asp48 side chains during the G7C
equilibration MD run. The average mutual distance of (1.7± 0.1) Å is even a little bit shorter
than the typical average hydrogen bond length in DNA base pairs.

Moreover, we monitored interactions between amino acids and mutated base
pairs. Fig. 7.8 captures the switch between two oxygen atoms of the Asp76
carboxyl group as regards their binding to the −NH2 group of Adenine base.

Figure 7.8: Switch between two oxygen atoms of the Asp76 side chain as regards binding to
the −NH2 group of an Adenine base, captured in mutation site 4 during the T4C equilibration
MD run.
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7.3 Relative Binding Free Energies
We performed 14 different mutations in positions 2− 9 of the DNA double helix
recognized by the Zif268 transcription factor, recall Fig. 7.2 for the schematic
depiction of binding sites. In positions 2, 4, and 8 we performed all possible
mutations starting from the original original base pairs. Positions 2 and 8 do
not directly interact with any AA side chains. Mutation site 4 represents a
typical binding site of Zif268, and serves us as an exemplary case to test most
of the effects of base pair mutations. In the rest of the binding sites (3, 5, 6,
7, and 9) we performed transformations G≡C → C≡G, switching the positions
of original bases from one DNA strand to another in very similar environments
of proximate amino acids. The resulting differences in binding affinity of the
complex are plotted in Fig. 7.9. Mutations G6C and G7C tend to decrease the

Figure 7.9: Binding affinity differences for Zif268-DNA complex, featuring 14 different bp
mutations. Results of our MD simulations are shown in blue, against reference simulations [115]
(CGI in red, RE/MBAR in orange). Experimental results [120] are colored in black, with lighter
shades indicating binding affinity decrease of more than 3.15 kcal/mol where exact values could
not be extracted.

binding affinity by the largest amount, approx. 9.8 and 5.6 kcal/mol respectively.
Certain mutations performed in positions 2 (C2A, C2T) and 8 (C8A, C8T) have
only a small effect, yielding values around 1 kcal/mol and less. A special case
of mutation, T4G, has de facto zero effect on the binding affinity. The rest of
mutations leads to free energy differences of moderate values from little above 2
to around 3.5 kcal/mol.

Overall, our results are in a good agreement with the reference MD simula-
tions [115] as well as with experimental data provided in [120]. Though certain
mutations lead to discrepancies with some of the reference values; namely C2G,
C2T, C8G, and C8T. In order to get an idea of what is actually happening due
to all of these mutations we have to look into each one of the mutation sites in
detail.

We investigate stability of base pairs in the ZF-DNA system in regards to
the alchemical transformations performed. In sites where amino acid side chains
are present the effort is put towards finding traces of their possible influence on
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the free energy difference ∆∆G we observe during base pair mutations. In the
following we will show and discuss examples of repeating patterns we observe
throughout all of the mutations performed as well as some of the individual cases
pointing us to the explanation of the protein’s sequence detection mechanism.

As was mentioned times and times again, FEP transformations vary interac-
tions between chosen (mutated) residues and their surroundings via alchemical
parameter λ : 0 ⇆ 1. If one does not wish to study the alchemical transforma-
tion itself, the only relevant conformations holding true physical meaning are the
endpoints of those transformations. This leads us to an analysis of mere pseudo-
trajectories created by snapshots with base pairs that are fully coupled to their
environment, i.e. in alchemical windows where λ is either exactly 0 or 1. Other
windows offer structures where the mutated residues ’feel’ their environment only
partially, which is inherently non-physical. Such conformations would provide us
with no relevant information to draw any meaningful conclusions from. Our
analysis is thus closer to that of Monte Carlo data instead of standard molecular
dynamics trajectories.
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7.4 Mutation Site 2
Here we performed all possible mutations from the initial C≡G pair none of
which resulted in a major disruption of binding affinity of the complex; recall
Fig. 7.9, mutations C2A, C2G, and C2T. Snapshots of all the base pairs from our
simulations can be seen in Fig. 7.10. Since there are no amino acid side chains in
the vicinity of this site, the most important information we can extract from the
sampled conformations is their overall structure and base pair stability.

(a) Original C≡G (b) C2A: A=T

(c) C2G: G≡C (d) C2T: T=A

Figure 7.10: Detail of mutation site 2 – recall Fig. 7.2. For clarity, the remaining parts of
the DNA double helix and the protein are hidden. We show the original C≡G base pair in (a),
the rest feature snapshots of the site after a base pair mutation has occurred, in our notation
(b) C2A, (c) C2G, and (d) C2T. In the vicinity of this site there are no amino acid side chains
for the nucleobases to directly interact with. Purple lines mark hydrogen bonding.

Structure can be investigated visually from the snapshots of base pairs that are
fully coupled to their environment, i.e. in alchemical windows where λ is either
exactly 0 or 1. Other windows offer structures that are inherently non-physical,
hence providing us with no relevant information to draw any conclusions from.
As is demonstrated in Fig. 7.10, DNA bases are overall planar though they are
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not completely rigid. Base pairs twist and bend a bit in thermal fluctuations
and due to stacking interactions with surrounding bases. Nothing abnormal was
observed for any of the studied base pairs. Similar limitations as those mentioned
above apply to the study of hydrogen bonding between bases – the only relevant
structures are the endpoints of our FEP transformations.

7.4.1 Mutation C2A
As a measure of base pair stability we chose the central hydrogen bond length.
Fig. 7.11 shows lengths measured for mutation C2A. In water without the protein

(a) Forward runs in aqua (b) Backward runs in aqua

(c) Forward runs in protein (d) Backward runs in protein

Figure 7.11: Analysis of mutation C2A – central hydrogen bond length between DNA bases
against the number of the corresponding FEP run (final frame). Blue color is used for the
initial base pair, i.e. before the mutation (λ = 0), and red color indicates the final base pair,
i.e. after the mutation (λ = 1). Horizontal lines mark the sample average values of the central
hydrogen bond length.

we encountered 3 disconnections for the final A=T pair (Fig. 7.11a), backward
transformation was able to reconnect one of them back but the rest remained
broken all through (Fig. 7.11b). The separation of disconnected bases lies within
a range of 6.5 and 7.5 Å. Sample average value of central hydrogen bond lengths
of both pairs (excluding the disconnections) is approx. (2.0 ± 0.2) Å no matter
the coupling to environment. When the protein is present no broken base pairs
are recorded and the sample average value of central hydrogen bond lengths is
approx. (2.0± 0.1) Å in all cases, see Fig. 7.11c and 7.11d.
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7.4.2 Mutation C2G
When performing mutation C2G no base pair disconnections were recorded, see
Fig. 7.12 for the results. In the case where the double helix is floating in wa-
ter without the ZF protein forward runs lead to average central hydrogen bond
lengths to be (2.0± 0.1) Å, backward runs feature (2.0± 0.2) Å. Both alchemical
transformation directions in the MD simulation with the protein present give av-
erage central hydrogen bong lengths of (2.0±0.2) Å. In all cases coupling of base
pairs to their environment makes no significant difference in hydrogen bonding.

(a) Forward runs in aqua (b) Backward runs in aqua

(c) Forward runs in protein (d) Backward runs in protein

Figure 7.12: Analysis of mutation C2G – central hydrogen bond length between DNA bases
against the number of the corresponding FEP run (final frame). Blue color is used for the
initial base pair, i.e. before the mutation (λ = 0), and red color indicates the final base pair,
i.e. after the mutation (λ = 1). Horizontal lines mark the sample average values of the central
hydrogen bond length

7.4.3 Mutation C2T
The last possible mutation in this site, C2T, gives base pair hydrogen bonding
shown in Fig. 7.13. Here breaking of hydrogen bonds happened only for final T=A
pair in the case of the whole protein complex. Both disconnections formed during
forward transformations and persisted even through the following backward runs,
cf. Fig. 7.13c and 7.13d. Magnitudes of these mutual distances range from
around 7.0 and 9.0 Å. Sample average values of the central hydrogen bonds
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are (2.0 ± 0.2) Å no matter the protein’s presence or coupling of bases to their
environment.

(a) Forward runs in aqua (b) Backward runs in aqua

(c) Forward runs in protein (d) Backward runs in protein

Figure 7.13: Analysis of mutation C2T – central hydrogen bond length between DNA bases
against the number of the corresponding FEP run (final frame). Blue color is used for the
initial base pair, i.e. before the mutation (λ = 0), and red color indicates the final base pair,
i.e. after the mutation (λ = 1). Horizontal lines mark the sample average value of the central
hydrogen bond length.
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7.5 Mutation Site 8
The second mutation site without any amino acid side chains in its vicinity is
mutation site 8, originally with C≡G base pair; cf. Fig. 7.2. Performing all possi-
ble mutations also resulted in only minor disruptions towards the binding affinity
of the complex, recall mutations C8A, C8G, and C8T in Fig. 7.9. This makes it
a complete analogy to mutation site 2. Snapshots of all base pair structures are
given in Fig. 7.14. Due to the almost identical nature of these mutations to those
discussed earlier we will cover this section briefly in an analogy to its twin above.

(a) Original C≡G (b) C8A: A=T

(c) C8G: G≡C (d) C8T: T=A

Figure 7.14: Detail of mutation site 8 – recall Fig. 7.2. For clarity, the remaining parts of
the DNA double helix and the protein are hidden. We show the original C≡G base pair in (a),
the rest feature snapshots of the site after a base pair mutation has occurred, in our notation
(b) C8A, (c) C8G, and (d) C8T. In the vicinity of this site there are no amino acid side chains
for the nucleobases to directly interact with. Purple lines mark hydrogen bonding.
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7.5.1 Mutation C8A
Mutation C8A causes disconnections only during transformations with DNA
bound to the ZF protein. Forward runs broke 3/100 final A=T pairs, the sub-
sequent backward transformations reconnected one of them back. This makes it
again around 2 to 3 % disconnection rate. The disconnected bases were sepa-
rated by a distance of 4.5 to 6.0 Å. C8A base pair mutations of DNA duplex in
water (i.e. without bound protein) led to only a single final A=T pair being on
a verge of being disconnected with around 3.5 Å mutual distance. In all cases,
whether the protein was present or not, the average central hydrogen bond length
is (2.0± 0.2) Å (broken base pairs were excluded).

7.5.2 Mutation C8G
Performing mutations C8G leave no base pairs divided. Both alchemical transfor-
mation directions in water without the protein give an average central hydrogen
bond bond length between bases (2.0±0.2) Å. Forward MD runs with ZF protein
present in the simulated system yield the central hydrogen bond of (2.0± 0.1) Å,
backward runs give (2.0± 0.2) Å.

7.5.3 Mutation C8T
Mutations C8T disconnected only a single final T=A base pair during a forward
transformation without the protein’s presence, backward run was able to recon-
nect it afterwards. Another base pair split appeared during one of the forward
transformations in the context of the protein complex and remained disconnected
all through. In water the sample average central hydrogen bond linking any base
pair is always (2.0 ± 0.1) Å. With the transcription factor the bond reads an
average of (2.0 ± 0.2) Å for the final T=A pairs while initial C≡G pairs give
(2.0± 0.1) Å (broken pairs excluded).
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7.6 Mutation Site 4
This position features the 2 most common AA residues (Asp, Arg) appearing in
binding sites of transcription factor Zif268, rendering this to be the ideal case
for studying general traits we observe in any of our mutation sites. Here we
performed all possible base pair mutations (T4A, T4C, and T4G), see Fig. 7.15.
Asp76 directly interacts with the 2S base while Arg74 resides one level above
the mutation site, interacting with these bases only indirectly via pulling on its
closest neighbour Asp76. By looking at distances between spatially close chemical
groups of DNA bases and amino acids, and the charges at play, we can get an
insight into why certain mutations are disruptive and others rather benign as
regards the binding affinity of the complex.

(a) Original T=A (b) T4A: A=T

(c) T4C: C≡G (d) T4G: G≡C

Figure 7.15: Detail of mutation site 4 – recall Fig. 7.2. For clarity, the remaining parts of
the DNA double helix and the protein are hidden. We show the original T=A base pair in (a),
the rest feature snapshots of the site after a base pair mutation has occurred, in our notation
(b) T4A, (c) T4C, and (d) T4G. Nearby amino acids Asp76 and Arg74 affect these base pairs.
Note that Arg74 resides one level above the present site, i.e. on the level of the 3rd position
in the DNA double helix. It influences the base pairs only indirectly by pulling on its closest
neighbour Asp76. Purple lines mark hydrogen bonding.
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7.6.1 Mutation T4A
Switching the original base pair through T=A→ A=T results in a non-negligible
disruption towards the binding affinity of the complex, recall T4A in Fig. 7.9.
Comparing the site before and after the mutation, i.e. 7.15a with 7.15b, reveals
that Asp76 tends to prefer binding to Arg74 fully after the base pair switch as
opposed to the original sharing of hydrogen bonding with −NH2 group of 2SA.

Using our simulation setup we sampled 100 different final conformations for
both forward and backward transformation (T=A ⇆ A=T) and measured the
distances between proximate chemical groups of fully coupled 2S bases and the
side chain of Asp76; results can be seen in Fig. 7.16. The initial 2SA base interacts

Figure 7.16: Mutation T4A – interactions between 2S bases and nearby Asp76. Reference
point is represented by the carbon of −COO− side chain. For 2SA the distance is measured
to the nitrogen of its −NH2, for 2ST to its =O. Keep in mind that these are relative distances
measured in the endpoint conformations (λ = 1) with bases fully coupled to the environment.

with its environment fully during the final λ = 1 window of the backward run.
The sample average distance between the nitrogen of its −NH2 group and the
carbon of the −COO− side chain is approx. (3.6±0.8) Å. Final conformations of
the forward runs have the target 2ST base fully coupled, with the sample average
distance (4.3± 0.4) Å between 2ST =O group and the −COO− carbon of Asp76.

Looking at the distances in Fig. 7.16 one can spot a hint of repulsion between
target 2ST base and Asp76 in a form of a 0.7 Å gap among the averages marked
by dashed lines. This is a proof of preference towards the original base pair as
opposed to the mutation performed.

Visual inspection of the sampled interaction sites, recall snapshots in Fig. 7.15,
confirms that 2SA indeed tends to form hydrogen bond with the carboxylic side
chain via the proximate −NH2 group. The average hydrogen bond length is ap-
prox. 3.6 Å, though individual sampled values vary greatly. This is due to switch-
ing (recall Fig. 7.8) between different donor and acceptor atoms of these groups,
which makes it rather complicated to capture with reasonable STD. Nearby Arg74
competes for the hydrogen bonding with Asp76. When the mutation to 2ST base
is performed Asp76 side chain commits to Arg74 all the more, since there is no
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proximate positive partial charge offered by the 2ST base.
Another point of interest is the pairing of DNA bases. For probing the stability

of base pairs we again make a use of the central hydrogen bond lengths between
the given bases. Each of the lengths measured in the final conformations are
plotted against the number of the corresponding run, see Fig. 7.17.

(a) T4A: forward in aqua (b) T4A: backward in aqua

(c) T4A: forward in protein (d) T4A: backward in protein

Figure 7.17: Mutation T4A – central hydrogen bonds of DNA bases. Forward runs (a) show
2 disconnected final A=T pairs, each separated by 7.0 to 7.5 Å. The following backward runs
(b) disconnected an additional initial T=A pair. Forward runs (c) feature 9 broken final A=T
pairs, each separated by approx. 7.5 Å. Backward runs (d) drove them apart even a bit more
(approx. 8 to 10 Å), and added 4 more disconnections from the pool of initial T=A pairs.

Base pairs during this particular mutation are overall stable, though there are
some simulations which resulted in disconnected pairs. Central hydrogen bond
breaking is more pronounced for final A=T pairs, and especially while bound to
the protein where the disconnection rate goes up to 10 %. The sample average
value of the central hydrogen bond length between DNA bases is (2.0± 0.2) Å in
water, with the protein present it reads (2.0± 0.1) Å – excluding defective pairs.

7.6.2 Mutation T4C
Mutating through T=A → C≡G, cf. Fig. 7.15 for structures, has disruptive
effects of the same magnitude as mutation T4A, recall Fig. 7.9. Similarly as in
the previous case, the target 2SG base has no positive partial charge in the vicinity
of Asp76 side chain to offer for hydrogen bonding as opposed to the initial 2SA
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base. The result is Asp76 preferring non-covalent bonding with nearby Arg74,
leaving the base pair without a direct link to the protein.

We again sampled 100 different final conformations for both transformation
directions (T=A ⇆ C≡G) and measured the distances between proximate chem-
ical groups of fully coupled 2S bases and the side chain of Asp76, see Fig. 7.18.
The initial 2SA base interacts with its environment fully during the final λ = 1

Figure 7.18: Mutation T4C – interactions between 2S bases and nearby Asp76. Reference
point is represented by the carbon of −COO− side chain. For 2SA the distance is measured
to the nitrogen of its −NH2, for 2SG to its =O. Keep in mind that these are relative distances
measured in the endpoint conformations (λ = 1) with bases fully coupled to the environment.

window of the backward run. The sample average distance between the nitrogen
of its −NH2 group and the carbon of the −COO− side chain is (3.7 ± 0.4) Å.
Final conformations of the forward runs have the target 2SG base fully coupled,
with the sample average distance (4.1 ± 0.5) Å between 2SG =O group and the
−COO− carbon of Asp76.

Looking at the distances in Fig. 7.18 one can spot a hint of repulsion between
target 2SG base and Asp76 in a form of a 0.4 Å gap among the averages marked
by dashed lines. This is a proof of preference towards the original base pair as
opposed to the mutation performed.

Visual inspection of the sampled interaction sites, recall snapshots in Fig. 7.15,
confirms that 2SA indeed tends to form hydrogen bond with the carboxylic side
chain via the proximate −NH2 group. The average hydrogen bond length is
approx. 3.3 Å, though individual sampled values vary greatly. This is due to
switching between different donor and acceptor atoms of these groups (recall
Fig. 7.8), which makes it rather complicated to capture with reasonable STD.
Nearby Arg74 competes for the hydrogen bonding with Asp76. Similarly as in
mutation T4A, when the mutation to 2SG base is performed Asp76 side chain
commits to Arg74 all the more, since there is no proximate positive partial charge
offered by the 2SG base.

Examination of base pair stability via central hydrogen bonding, Fig. 7.19,
reveals that almost none of the pairs ended up disconnected. The only case of a
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broken base pair was recorded for an initial T=A pair during a backward trans-
formation with the double helix bound to the transcription factor, see the single
spike of approx. 5.5 Å in Fig. 7.19d. Another outlier, close to being discon-
nected, was a case of another initial T=A pair separated by approx. 3.5 Å during
a forward transformation without the protein’s presence, see Fig. 7.19a. Forward
structures in protein feature T=A pairs with (2.0±0.2) Å central hydrogen bonds,
identical results are captured for both base pairs during backward runs without
the protein’s presence. Remaining cases give hydrogen bonding of (2.0± 0.1) Å.

(a) T4C: forward in aqua (b) T4C: backward in aqua

(c) T4C: forward in protein (d) T4C: backward in protein

Figure 7.19: Mutation T4C – central hydrogen bonds between DNA bases. Forward runs (a)
show single outlier initial T=A pair, separated by approx. 3.5 Å. The following backward runs
(b) features no outliers at all. Forward runs (c) feature well connected pairs. Backward runs
(d) remain well connected apart from a single broken initial T=A pair separated by ∼ 5.5 Å.

7.6.3 Mutation T4G
Last possible mutation in this site is T=A → G≡C, cf. structures in Fig. 7.15.
This is a special case of mutation which is completely non-disruptive towards
the binding affinity of Zif268-DNA, recall T4G in Fig. 7.9. The fact that this
particular mutation has negligible effects on the binding affinity of the complex
can be seen in our computed relative distances, plotted in Fig. 7.20.

We again sampled 100 different final conformations for both transformation
directions (T=A ⇆ G≡C) and measured the distances between proximate chem-
ical groups of fully coupled 2S bases and the side chain of Asp76. The reference
point is again the carbon of the −COO− side chain. Initial 2SA base interacts
with its environment fully during the final λ = 1 window of the backward run.
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The sample average distance to the nitrogen of its −NH2 group is (3.8± 0.4) Å.
Final conformations of the forward runs have the target 2SC base fully coupled,
and the sample average distance to its nitrogen of −NH2 group is (3.5± 0.2) Å

Figure 7.20: Mutation T4G – interactions between 2S bases and nearby Asp76. Reference
point is represented by the carbon of −COO− side chain. For both 2SA and 2SC the distance
is measured to the nitrogen of their −NH2 exposed to the side chain. Keep in mind that these
are relative distances measured in the endpoint conformations (λ = 1) with bases fully coupled
to the environment.

Comparison of the averages in Fig. 7.18 reveals an attraction gap of 0.3 Å.
This shows that unlike all other mutations performed in this site, T4G creates
target 2SC base which is ’accepted’ by the Zif268 transcription factor. The aver-
age hydrogen bond length between the bases and Asp76 is approx. 3.3 and 2.9 Å
for 2SA and 2SC respectively. Again, individual sampled values vary greatly,
which is due to switching (recall Fig. 7.8) between different donor and acceptor
atoms of these groups. This makes it rather complicated to capture the average
hydrogen bond lengths with reasonable STDs.

Visual inspection of the site before and after the mutation has occurred, recall
snapshots in Fig. 7.15, reveals that both 2S bases expose their −NH2 group to
nearby Asp76, leaving it available for hydrogen bonding with the carboxyl side
chain. Final 2SC base simply fits in well. Any other mutation in this site (T4A,
T4C) produced final 2S base which repelled the carboxyl side chain, making it
instead preferable for Asp76 to bind with Arg74 only.

Pairing of bases features defects only during backward transformations of the
double helix bound to the ZF protein, see Fig. 7.21. In that case, we encounter a
disconnection rate of 9 % for initial T=A pairs, separated by up to 8.5 Å distance.
Preceding forward transformations capture 2 of those defects forming, see spikes
around 80th and 100th conformation. These 2 initial base pairs did not fully
separate (distance around 4.0 Å) during the forward run, but were driven further
away by the following backward transformation. Without the protein’s presence
the sample average central hydrogen bond lengths between nucleobases are in all
cases approx. (2.0 ± 0.2) Å. Systems with the protein present feature hydrogen
bonds of (2.0± 0.1) Å, defective pairs were excluded out.
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(a) T4G: forward in aqua (b) T4G: backward in aqua

(c) T4G: forward in protein (d) T4G: backward in protein

Figure 7.21: Mutation T4G – central hydrogen bonds between DNA bases. All pairs of
both forward (a) and backward (b) transformations in vacuo remain well connected. Forward
transformations in protein (c) feature 2 initial T=A pairs close to being disconnected with
around 4.0 Å separation, backward runs in (d) drove a total of 9 initial T=A pairs up to 8.5 Å
apart.

7.6.4 Summary
To summarize the analysis of mutation site 4, in Tab. 7.1 we provide the reader
with all the sampled average values of distances between the −COO− carbon
of proximate Asp76 and heavy atoms of DNA bases exposed to it. This shall
facilitate the comparison between performed base pair mutations

Table 7.1: Mutation site 4 – sample average distances between −COO− carbon atom of Asp76
and heavy atoms of donors of 2S DNA bases exposed to it. Distances are measured in final sam-
pled conformations of both FEP transformation directions (forward and backward). Dimmed
(gray) values correspond to the structures with the bases decoupled from their environment.
Values are given in Å with the appropriate sample STD.

Mut. Base Dist. Forward Backward

T4A 2SA N–C 4.6± 0.7 3.6± 0.8
2ST O–C 4.3± 0.4 4.1± 0.7

T4C 2SA N–C 4.1± 0.5 3.7± 0.4
2SG O–C 4.1± 0.5 4.0± 0.5

T4G 2SA N–C 4.2± 0.3 3.8± 0.4
2SC N–C 3.5± 0.2 3.4± 0.5
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7.7 Mutation Site 3 – G3C
This position hosts side chains of Arg74 and Asp76 in a similar manner as was
observed in mutation site 4, see Fig. 7.22. The only difference here is that the roles

(a) Original G≡C (b) G3C: C≡G

Figure 7.22: Detail of mutation site 3 – recall Fig. 7.2. For clarity, the remaining parts of
the DNA double helix and the protein are hidden. (a) shows the original G≡C base pair, (b)
features the final C≡G pair. Note that Asp76 resides one level below the present site, i.e. on
the level of the 4th position in the DNA double helix. It influences the base pairs only indirectly
by pulling on its closest neighbour Arg74. Purple lines mark hydrogen bonding.

of amino acids have switched, cf. Fig. 7.15. Arg74 is now the one in direct contact
with the 1S base while Asp76 resides one level below, influencing the mutation
site only indirectly. We performed mutation G3C (G≡C→ C≡G) which resulted
in a moderate disruption towards the binding affinity of the complex, see Fig. 7.9.

The original 1SG base interacts with proximate Arg74 via formation of 2
hydrogen bonds. 1SG =O group links with the closest −NH2 hydrogen of guani-
dinium side chain via an average hydrogen bond of 3.3 Å, second hydrogen bond-
ing (connecting 1SG nitrogen with side chain’s hydrogen) is done on average at
a relative distance of 3.1 Å. Asp76 competes for the hydrogen bonding and pulls
Arg74 a little below the level of the mutation site. The distance between their
donor and acceptor atoms is on average 2.5 Å, in value comparable to our typical
hydrogen bonding between DNA base pairs.

In contrary, target 1SC base offers no acceptor atoms exposed to Arg74 to offer
for hydrogen bonding. The result is the guanidinium group tilting away in favor
of non-covalent bonding with nearby Asp76 only, see snapshot in Fig. 7.22b. This
leaves the target base pair without a direct link to the protein, lowering binding
affinity of the protein complex. After the mutation the distances between amino
acids are on average approx. 2.4 Å, which presents de facto no change at all
keeping in mind our typical sample STD for hydrogen bonds.

We report no base pair disconnections in all of our final conformations sam-
pled, no matter the protein’s presence. In water without the transcription factor
average central hydrogen bond lengths are always approx. (2.0 ± 0.2) Å, when
protein is introduced to the system central hydrogen bonding reads (2.0±0.1) Å.
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7.8 Mutation Site 5 – G5C
Mutation site 5 has a single amino acid (His49) side chain close enough to affect
the binding of ZF protein to the given DNA sequence, see Fig. 7.23. This is the

(a) Original G≡C (b) G5C: C≡G

Figure 7.23: Detail of mutation site 5 – recall Fig. 7.2. For clarity, the remaining parts of the
DNA double helix and the protein are hidden. Picture (a) shows the original G≡C pair with
His49 aligned in the plane of the base pair, (b) features the final C≡G pair forcing the side
chain to tilt out of the plane. The tilt was observed to be always between 60◦ and 80◦ with
respect to the base pair plane. Purple lines mark hydrogen bonding.

only case of a binding site in Zif268 transcription factor having a different amino
acid other than Asp or Arg, cf. Fig. 7.2.

Visually we observed that His49 tends to be more aligned in the plane of the
original G≡C pair, hydrogen bonding to the exposed 1SG nitrogen acceptor via
its proximate hydrogen atom (see Fig. 7.23a). The sample average value of this
non-covalent link is approx. 2.3 Å. Conformations with the original G≡C pair
fully coupled to the environment display a preference of His49 to stay oriented
towards the 1SG base with out-of-plane angle no more than 30◦.

After mutation G5C (G≡C→ C≡G) His49 ends up tilted away from the 1SC
base in all 100 sampled conformations with the target C≡G pair fully coupled to
its environment, see snapshot in Fig. 7.23b. Unlike for original 1SG base, there
is no way for the side chain to hydrogen bond with mutant 1SC base. As a result
the DNA duplex looses a direct link to the ZF protein in this binding site, and
His49 is left to wiggle around freely in thermal fluctuations. These effects explain
the moderate decrease in binding affinity of the Zif268-DNA complex due to
mutation G5C, observed in Fig. 7.9.

Both of the base pairs are stable in all of the sampled conformations whether
the ZF protein is present or not, no matter their coupling to the environment.
In water without the protein average central hydrogen bond lengths are always
approx. (2.0 ± 0.2) Å. Inside the whole protein complex the central hydrogen
bonding reads again (2.0± 0.1) Å.
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7.9 Mutation Site 6 – G6C
Mutation site 6 represents a similar environment to that of mutation site 3. Here
the directly interacting amino acid is Arg46 while Asp48 competes for its hydrogen
bonding from one level below the site, see Fig. 7.24. Keep in mind that this site is

(a) Original G≡C (b) G6C: C≡G

Figure 7.24: Detail of mutation site 6 – recall Fig. 7.2. For clarity, the remaining parts of
the DNA double helix and the protein are hidden. (a) shows the original G≡C base pair, (b)
features the final C≡G pair. Note that Asp48 resides one level below the present site, i.e. on
the level of the 7th position in the DNA double helix. It influences the base pairs only indirectly
by pulling on its closest neighbour Arg46. Purple lines mark hydrogen bonding.

inside the most amino-acid-rich region of all the binding sites of Zif268; cf. Fig. 7.2,
base pair position 7 and its surroundings. This will become more apparent once
we reach the following mutation site.

Same as in mutation site 3, Arg46 links to initial 1SG base via 2 hydrogen
bonds, see structure in Fig. 7.24a. Hydrogen bond to 1SG oxygen is on average
3.1 Å long while the second one towards the nitrogen acceptor reads an average
of 3.4 Å. Asp48 again pulls the guanidinium group with 2 non-covalent bonds
of an average length of 2.1 Å, this time a little below the level of the base pair.
These salt bridges are in value comparable to our typical Watson-Crick hydrogen
bonding between paired DNA bases.

When mutation G6C is performed (switching G≡C → C≡G) Arg46 is tilted
away above the plane of the final base pair while its bonding to Asp48 is pre-
served with the sample average relative distances between the donor and acceptor
atoms unchanged, see snapshot in Fig. 7.24b. This created the largest decrease
in binding affinity of the Zif268-DNA complex among all of the performed mu-
tations, recall Fig. 7.9. Such a major disruption may be due to amino-acid-rich
nature of the protein region this mutation site is part of. The intricate network
of amino acids surrounding it is most likely behind its heightened sensitivity to
changes, since this is the only difference we observe as compared to otherwise
very similar mutation site 3, cf. Fig. 7.22. Note that the very same mutation
(G3C) performed there led to only a moderate disruption, in value roughly 1/3
that of the present mutation G6C.
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Concerning pairing of nucleobases, none of the sampled cases ended up dis-
connected. Same as in previous sites, the average central hydrogen bond lengths
in water without the protein’s presence are (2.0±0.2) Å. When the transcription
factor is bound to the double helix, central hydrogen bonds read (2.0 ± 0.2) Å
for the initial G≡C pair and (2.1 ± 0.3) Å for the final C≡G pair fully coupled
to the environment, featuring a wider spread of measured distances as compared
to all previous mutations analyzed.
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7.10 Mutation Site 7 – G7C
Mutation site 7 is the most complicated environment recorded in Zif268 tran-
scription factor. It hosts Arg24 directly interacting with 1S bases, Asp48 directly
interacting with 2S bases, and Arg46 influencing both of these amino acids from
one level above the site, see Fig. 7.25. Arg46 can compete for hydrogen bonding

(a) Original G≡C (b) G7C: C≡G

Figure 7.25: Detail of mutation site 7 – recall Fig. 7.2. For clarity, the remaining parts of
the DNA double helix and the protein are hidden. (a) shows the original G≡C base pair, (b)
features the final C≡G pair. Note that Arg46 resides one level above the present site, i.e. on
the level of the 6th position in the DNA double helix. It influences the base pairs only indirectly
by pulling on its closest neighbour Asp48. Purple lines mark hydrogen bonding.

with Asp48 while repelling nearby Arg24. Note that Arg46 and Asp48 are also
shared between this site and the site above (i.e. mutation site 6), see Fig. 7.24.
Changes in one mutation site could thus influence the other more easily.

Initial G≡C pair is held by 2 hydrogen bonds formed with nearby amino acids.
1SG base shares hydrogen bonds with nearby Arg24. In most of the cases, only
a single hydrogen bond is formed – either with the oxygen or nitrogen acceptor
atom of 1SG, see structure in Fig. 7.25a. The length of such bonds is on average
approx. 3.3 Å. The reason for the second bond not to be formed lies behind
the presence of Arg46, residing one level above the mutation site. Guanidinium
groups are known to possess special stacking properties despite their positive
charge [121], the so-called Arginine Magic. The like-charge ion pairing forces
Arg24 closer to Arg46, the result of which is breaking of one of the hydrogen
bonds with initial 1SG base. This is demonstrated in Fig. 7.25a where Arg24
is tilted towards Arg46. Similar patterns of attraction are observed all through
our sampled structures. Initial 2SC base pulls in Asp48 via hydrogen bonding
between its −NH2 hydrogen and the closest oxygen of the carboxyl side chain.
The average distance between them is approx. 2.9 Å. Similarly as before, Arg46
competes for the hydrogen bonding with Asp48, the average relative distance
between the donor and acceptor atoms being approx. 2.6 Å.

After the mutation G7C, again switching G≡C → C≡G, all hydrogen bonds
between nucleobases and proximate amino acids are broken, see Fig. 7.25b. Asp48
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fully commits to Arg46 with hydrogen bonds of approx. 2.5 Å on average. Arg24
is floating little below the mutation site, repelled by the −NH2 hydrogen atoms
of the final 1SC base. The resulting relative free energy difference (recall Fig. 7.9)
reports highly disruptive nature of mutation G7C, which can be assigned to the
complicated network of amino acids surrounding the mutation site. The amino-
acid-rich character of this region is most likely behind the increased sensitivity
to mutations. Furthermore, changes made in this site can readily propagate to
mutation site 6 (Fig. 7.24) due to their sharing of proximate amino acid residues,
rendering them both susceptible to base pair alterations.

Pairing of nucleobases is overall stable with no disconnections detected in any
of our sampled conformations. The average central hydrogen bond lengths in
water without the protein are reported to be (2.0 ± 0.2) Å. Inside the protein
pairing of bases depends on the specific case. For the initial G≡C pair the central
hydrogen bond is always (2.0±0.2) Å. After the mutation fully coupled final C≡G
pair is linked via an average (2.2 ± 0.2) Å long hydrogen bond, fully decoupled
reads (2.0± 0.2) Å.
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7.11 Mutation Site 9 – G9C
Mutation site 9 is the last one explored in our study. Its composition is exactly
the same as that of mutation site 3, cf. Fig. 7.22 and Fig. 7.26. Arg18 directly

(a) Original G≡C (b) G9C: C≡G

Figure 7.26: Detail of mutation site 9 – recall Fig. 7.2. For clarity, the remaining parts of
the DNA double helix and the protein are hidden. (a) shows the original G≡C base pair, (b)
features the final C≡G pair. Note that Asp20 resides one level below the present site, i.e. on the
level of the 10th position in the DNA double helix. It influences the base pairs only indirectly
by pulling on its closest neighbour Arg18. Purple lines mark hydrogen bonding.

interacts with 1S bases while Asp20 lies one level below this site. In this sense
Asp20 competes for hydrogen bonding with Arg18, indirectly influencing the
mutation site at hand.

Same as in mutation site 3 we observe 2 hydrogen bonds between the original
1SG base and the guanidinium side chain, see structure in Fig. 7.26a. Each of
these bonds are on average approx. 3.2 Å. Asp20 pulls Arg18 little below the
plane of the present site. The links between their donor and acceptor atoms are on
average around 2.7 Å, which is in value comparable to the typical Watson-Crick
hydrogen bonding we observe between paired DNA bases.

After the mutation G9C (i.e. G≡C→ C≡G) the presence of 1SC base causes
Arg18 to tilt away from the base pair plane, attached to Asp20 via hydrogen
bonds of approx. 2.6 Å, see Fig. 7.26b. 1SC base simply repels the positively
charged guanidinium side chain via its −NH2 hydrogens (+δ). This results in
a moderate decrease in binding free energy of the Zif268-DNA complex, recall
Fig. 7.9. The disruptivity of the present mutation G9C is comparable to that of
mutation G3C. Both of them represent the same mutation in exactly the same
amino-acid environment, the only difference being the position in the DNA duplex
(see Fig. 7.2). This further confirms the consistency of our MD simulations.

Base pair stability remains the same as in previous cases, no disconnections
reported in any of the sampled conformations. In water without the protein we
encounter average central hydrogen bonds of (2.0± 0.2) Å, systems with the ZF
protein present give an average of (2.0± 0.1) Å.
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7.12 Discussion

7.12.1 Stability of Mutated Base Pairs
The sample average value of the central hydrogen bond length is in almost all cases
approx. 2.0 Å with STD ranging from 0.1 to 0.3 Å, no matter the base pair and
its coupling to the environment. This applies to both initial equilibrations and
FEP transformations. The only 2 instances of slightly different average hydrogen
bonding are mutations G6C (Fig. 7.24) and G7C (Fig. 7.25) with (2.1 ± 0.3) Å
and (2.2 ± 0.2) Å respectively. Both of these mutations happen inside the most
side-chain rich region of Zif268; cf. Fig. 7.2, positions 6 and 7. According to
experimental data provided in Ref. [122, 123] the distance between the donor
and acceptor atoms in the hydrogen bond between paired DNA bases typically
falls within a range of 2.8 to 3.4 Å. In our MD simulations we measure distances
between the hydrogen and acceptor atoms. Reference experiments do not detect
hydroges. The mutual distances they report are thus measured between the heavy
atom of the donor and the heavy acceptor, rendering the values inherently longer
by length of the omitted covalent bonds.

Naturally, hydrogen bond lengths in DNA can vary due to factors such as base
pair stacking, base pair mismatches, and local structural variations. Additionally,
different studies and experimental conditions may report slightly different values
within the general range mentioned above. Because our system works with a
DNA double helix of just 11 pairs, and not with the whole stable DNA, it is
reasonable to assume that this may also have an effect on base pair stacking
– ergo our hydrogen bond lengths could be affected.

Overall, base pairs of our systems are stable. There are a few cases in which
some of the simulations resulted in disconnected pairs. Breaking of base pairs
happens no matter the protein’s presence and is an issue of A=T pairs only.
The fact that we never see this happen to any C≡G pair can be assigned to
their stronger connection through 3 hydrogen bonds compared to the A=T pairs
which are formed via 2 bonds only. The latter thus require less energy to break.
Typically the disconnection rate ranges between 2 and 3 % (e.g mutation C2A
in Fig. 7.11) and the separation lies within 5 to 10 Å, measured between the
central donor and acceptor atoms. The typical 2 to 3 % is regarded by us to
be acceptable. Additionally we report 2 specific instances (T4A, T4G) in which
the rate is as high as 10 % – cf. Fig. 7.17 and 7.21. Mutation site 4 seems
to be no special place among binding sites of Zif268, see Fig. 7.2. It features
the 2 most common amino acid side chains, Arg and Asp. On top of that,
mutation T4A poses only a moderate disruption towards the binding affinity of
the complex and T4G does not influence the complex at all, recall Fig. 7.9. These
facts are strong indicators that the observed disconnections have nothing to do
with the disruptivity of the mutations. They are a mere statistical matter of our
simulations getting stuck in conformations where Ade and Thy are too separated
to link. Though 10 % is far from an ideal rate, cutting these disconnections out
of the sampled ensembles leaves still a reasonable statistics to work with.
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7.12.2 Influence of Proximate Amino Acids
Generally, the presence of amino acids does not appear to influence hydrogen
bonding between paired DNA bases, since the sample average value of the cen-
tral hydrogen bond length between bases does not change with their coupling
to the environment. Visible from spreads in distances recorded, cf. Fig. 7.18
and 7.19, interactions between amino acids and nucleobases tend to fluctuate
more compared to nucleobase pairing. When a DNA base interacts with some
amino acid attractively, the hydrogen bonds tend to switch the participating
donor and acceptor atoms. An example of a typical time evolution of these
bonds, sampled through one of the equilibration MD runs is given in Fig. 7.8.
This does not happen in Watson-Crick pairing of DNA bases. The switching
makes it rather complicated to capture mutual distances with reasonable STD
using donor and acceptor atoms directly. This made our decision to measure the
distances between amino acid side chains and proximate chemical groups of DNA
bases through heavy atoms (O, N, C), e.g. Fig. 7.18. Indeed we were readily
able to capture the lengths with acceptable STDs, see values listed in Tab. 7.1
in the case of mutations inside position 4.

Individual mutation sites can host multiple amino acids. Their influence over
the binding site depends on how far away from the DNA bases they are. Side
chains close enough to form hydrogen bonds with the bases (up to ∼ 4 Å) inter-
act directly with the binding site. More distant ones tend to interact with the
proximate one, influencing the binding site only indirectly. The more side chains
are present, the more sensitive to changes the binding site tends to be. The most
amino-acid-rich binding region of Zif268 contains sites 6 and 7, cf. Fig. 7.2. Mu-
tations inside these 2 binding sites resulted in the largest free energy differences
(G6C with 9.8 kcal/mol and G7C with 5.6 kcal/mol, see Fig. 7.9).

Binding sites are also interlinked. A lot of the positions share amino acid
residues, e.g. structures in Fig. 7.24 and 7.25 sharing Arg46 and Asp48. When
a mutation happens and the proximate amino acid gets repelled by the target
DNA base, its preference for hydrogen bonding is shifted towards the neigh-
bouring side chain instead. If this neighbour resides on a level above/below the
site, such mutation can possibly propagate its effects onto the surrounding sites.
Change in one of the sites can facilitate changes in others also through base pair
stacking. Base pairs can wobble up and down, left to right under the influence
of nearby amino acids and in thermal fluctuations. These changes can propagate
through the whole structure by pushing and pulling, effects of which will fade
away with increasing distance from the epicenter. The effects we observe and
study are thus mere fragments of a complex interplay of amino acid regions and
DNA bases, possibly playing out on multiple levels at the same time. Such issues
are a matter of debate and a more sophisticated analysis is needed.

7.12.3 DNA Sequence Detection by Zif268
We were able to capture potential hints to the sequence detection mechanism
of Zif268 transcription factor. Individual binding sites of the ZF protein host
positively (Arg, His) or negatively (Asp) charged side chains and their combina-
tions, see Fig. 7.2. Patterns repeating throughout all of the performed mutations
are exemplified and thoroughly investigated in mutation site 4, Section 7.6. This
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site has been chosen specifically for its environment featuring Arg and Asp, typ-
ical for most of the protein’s binding sites, and also for the fact that one of the
mutations performed here (T4G) caused de facto zero change in the binding free
energy of the complex, cf. Fig. 7.9.

Interactions between mutated bases and nearby amino acids are carried out
based on charges at play. DNA bases tend to interact with charged AA side
chains via partially charged groups, −NH2 (+δ at H) or =O (−δ), in their im-
mediate vicinity. As expected, if the signs of both species differ the interaction is
attractive, and vice versa. Examples of such interactions are explored in Fig. 7.16,
7.18 and 7.20. It is important to note that interactions with initial pairs have
always been reported by us to be attractive. Since the DNA double helix we use
as initial structure before the mutations is actually the one exactly recognized
by the Zif268, it leads us to suspicion that these attractive treatments by AA
side chains are precisely the way by which the transcription factor recognizes the
correct DNA sequence. Repulsive effects should thus hurt the consequent binding
affinity of the complex. Based on our observations we can safely say that if such
±δ group of a DNA base is on the opposite side to where the charged AA side
chain is, there is no such repulsion or attraction. The distance is simply enough
for the base not to get influenced by the presence of this charge.

Arg tends to form 2 hydrogen bonds with Gua, Asp prefers Cyt and Ade to
which it binds via a single hydrogen bond. Examples of these repeating patterns
can be seen in Fig. 7.15. In all of the performed mutations we did not report
any attractive treatments towards Thy. This might simply be due to lack of
cases that would allow for such interaction to happen. Even though Zif268 is a
transcription factor recognizing sequence GCGTGGGCG, Thy in 4th position is
preferred indirectly via detection (Asp76) of Ade at the complementary strand.
Since there is in principle no reason for Thy not to be attached to these amino
acid side chains, we do not rule out the existence of a binding site with Thy as
a preference for a given position in DNA sequence. Based on our observations,
a criterion for such detection to happen would be one of the =O groups of Thy
being exposed to a guanidinium side chain (or similar species featuring −NH2)
in its immediate vicinity. In this way Thy would be added to the collection
of preferences for amino acids such as Arg.

These preferences may also depend on the overall shape of the given protein.
Zif268 wraps around the DNA double helix such that these AA side chains are
exposed to the nucleobases in a particular way. We oriented all of the structure
snapshots of sites in an aligned way such that they can be easily comparable.
From the perspective of our alignment, 1S bases are always at the bottom of the
snapshots which are taken from the top of the helix down, i.e. with accordance
to our site ordering (Fig. 7.2). We then observe all of the amino acid side chains
reside to the right of any base pair. If a different protein were to interact with
this DNA segment, exposing the same side chains from the opposite side, the
preferences of amino acids towards the bases would have to change accordingly.
This can be seen by comparison of exposed base chemical groups (−NH2 vs. =O)
to the proximate AA side chains, cf. Fig. 7.15. Sequence detection thus appears
to be a complex mechanism involving higher order protein structures.
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7.12.4 Impact of Mutations on Binding Free Energies
When a base pair mutation happens the free energy content of the protein-DNA
complex may change. Whether a mutation is disruptive towards the binding affin-
ity of the complex is determined by the immediate surroundings of the mutated
base pair. Since the sequence detection mechanism involves attraction between
amino acid side chains and specific chemical groups of DNA bases directly ex-
posed to them, the disruptivity of mutations is given by their mutual repulsion
(or simply by the lack of attraction).

Typical binding sites of Zif268 involve a combination of a single Arg and a sin-
gle Asp side chain (cf. Fig. 7.2, positions 3, 4, 6, and 9) and a vast majority
of the mutations performed in these sites resulted in a moderate binding affinity
disruption ranging between 2.8 and 3.5 kcal/mol, recall Fig. 7.9. These values are
also confirmed by reference simulations [115] and experiments [120]. Looking at
the local structures of each of the mutation sites, such disruptions correspond to
at least one final (target) nucleobase repelling the proximate AA side chain which
was previously linked with the original base through hydrogen bonding. If at least
one target nucleobase forms a hydrogen bond with the amino acid in site, the mu-
tation process should be a non-disruptive one towards the binding affinity of the
complex. An example of such a case is mutation T4G, cf. Fig. 7.9. The net zero
change in binding free energy is confirmed on all fronts of our references [115, 120].
The final G≡C pair fits in the binding site well, see structures in Fig. 7.15. Both
2S bases (before and after mutation T4G) expose their −NH2 group to the nearby
Asp side chain, forming a hydrogen bond. All other mutations in this site (T4A,
T4C) repulse Asp such that it prefers binding to its neighbouring Arg side chain
only. Since there is virtually no free energy difference, mutations the likes of T4G
pose a danger of high off-target binding of the Zif268 protein.

Mutations highly disruptive towards the binding affinity take place inside
the most amino-acid-rich regions. The largest decrease in binding affinity was
recorded during mutation G6C with the value of 9.8 kcal/mol, see Fig. 7.9. Re-
sults given by reference simulations [115] are slightly lower, though still represent-
ing a major disruption. Experiments [120] give an undeclared decrease in a range
going as high as 10 kcal/mol. Although position 6 hosts the typical Arg and Asp,
see Fig. 7.24, the site is localized in the most side-chain-rich region of Zif268,
cf. Fig. 7.2. This is most probably the reason behind its heightened sensitivity
to mutations. The Arg46 and Asp48 residues are also shared between this site
and the following position 7, see Fig. 7.25. Site 7 is the most complicated bind-
ing environment of Zif268; featuring Arg24, Arg46, and Asp48. Mutation G7C
scores the second highest disruption, 5.6 kcal/mol, of all mutations we performed.
Similar values are reported by Ref. [115, 120].

Whenever there is a site which does not directly interact with any amino acids,
its mutations have only a small effect on the binding affinity of the complex. This
is demonstrated in Fig. 7.9, cf. structures in Fig. 7.10 and 7.14. Corresponding
mutations in both of the sites give very similar ∆∆G, with 4 out of 6 mutations
(C2A, C2T, C8A, C8T) yielding values around 1 kcal/mol or less. These binding
affinity differences are in value comparable to the standard chemical accuracy.
Mutations C2T and C8T both give ∆∆G < 0, which is in contradiction with
our references [115, 120]. Negative values mean that after these mutations the
complex gets more stable. Even though this is the case, magnitudes of their dif-
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ferences still lie within the chemical accuracy of ±1 kcal/mol. Since there are no
amino acids to directly interact with, no strong preference of base pairs should
be present. It can be that the differences in values we observe may fluctuate
from case to case based on events happening in sites close by. In order to resolve
this question, larger statistics of mutations in these sites is needed. Nevertheless,
Zif268 should still with high-enough efficiency be able to recognize DNA sequence
altered through any of these mutations. The remaining 2 (C2G and C8G) give
approx. 2.2 and 3.5 kcal/mol respectively. These values significantly differ from
most of the references, including simulations [115] and experiments [120]. Since
we did not observe any major structural deficiencies, such disparity could pos-
sibly be a result of insufficiently sampled ensemble of conformations. A further
investigation is needed.
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Conclusion
In the introductory chapter, the diploma thesis introduces the reader to the most
used tools for editing of the human genome (ZFN, TALEN, CRISPR). The fol-
lowing chapters describe in detail the methodology of MD simulations and calcu-
lations of hydration and binding free energy.

Scripts were prepared that made it possible to perform a large number of
hydration and binding free energy calculations in the environment of the super-
computing MetaCentrum. In order to be able to perform the calculations in a
massively parallel way, an approach was chosen where a large number of short
non-equilibrium FEP MD runs are produced in parallel. From these, a large
number of work values are obtained, from which the value of the equilibrium
hydration or binding free energy is then determined using the CGI method.

The chosen methodology was first tested in the calculations of hydration free
energies of nucleic acid components and amino acid side chains, as a large amount
of historical reference data was available.

In the key results chapter, the complex of the transcription factor Zif268 and
a short DNA double helix was investigated, in which mutations of individual
base pairs were carried out. At the same time, calculations of changes in bind-
ing free energy were performed. A comparison with the literature showed that
using the NAMD software package, the algorithms implemented in it and the
chosen methodology for calculating binding free energies using non-equilibrium
MD simulations, results comparable to those that can be obtained using other es-
tablished software packages (Gromacs, AMBER) can be obtained. In the future,
it will be interesting to debug our methodology also for the alternative value of
the alchDecouple parameter — off. In that case, the mutual interaction of the
mutated bases will be also scaled during alchemical transformations. This will al-
low to remove potential artifacts that can occur with the alchDecouple on option,
where mutated bases that are decoupled (as regards non-covalent interactions)
from the rest of the simulated system, however, still interact with it somehow due
to their covalent bonding to the sugar phosphate backbone of the DNA and due
to retained mutual non-covalent interaction between mutated bases. It means
that these mutated/decoupled bases still affect the geometry of the Zif268-DNA
complex, which could affect resulting values of binding free energies.

Last but not least, the detailed interpretation of the obtained binding free
energy values at the atomic level provides the basis for the rational design of
ZFNs (design of point mutations of amino acids) so that they can be applied to
any DNA sequence and without the risk of off-target effects.
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