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Supervisor: doc. Ing. Michal Malinský, Ph.D., Institute of Particle and Nuclear
Physics

Abstract: We investigate whether successful leptogenesis driven by heavy right-
handed neutrino decays can be compatible with flavour fits within the minimal
and potentially realistic non-supersymmetric SO(10)-based model with Yukawa
sector composed of 10H and 126H , and with additionally imposed Peccei-Quinn
symmetry. To this end, we solve density matrix equations and renormalization
group equations for effectively direct symmetry breaking of SO(10) down to the
Standard Model. We scan over the parameter space and generate a number of
configurations compatible with flavour fits. One of the most striking results of
this analysis is that we obtain configurations that give the value of the baryon
asymmetry of the Universe within an order of magnitude of the measured value,
despite the fitting procedure independent of the leptogenesis yield. Moreover,
leptogenesis in this region of parameter space is predominantly driven by decays
of the second lightest right-handed neutrino. Furthermore, the analysis shows
that the fitted B−L breaking scale is consistent with previous studies, despite not
explicitly incorporating gauge coupling unification and full renormalization group
equations with B −L breaking. We also provide the best flavour fit for the model
without additionally imposed Peccei-Quinn symmetry that shows preserving of
characteristics and some predictions of the first model.

Keywords: baryogenesis, leptogenesis, matter-antimatter asymmetry, grand uni-
fication

iii



Contents

Introduction 3

1 Origin of neutrino masses 5
1.1 Seesaw mechanism type I . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Seesaw mechanism type II . . . . . . . . . . . . . . . . . . . . . . 6

2 Leptogenesis 7
2.1 Baryon asymmetry of the Universe . . . . . . . . . . . . . . . . . 7
2.2 Electroweak baryogenesis . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Decays of right-handed neutrinos and a scalar triplet . . . . . . . 8
2.4 Evolution equations for leptogenesis . . . . . . . . . . . . . . . . . 10
2.5 Boltzmann equations . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5.1 Flavour effects and density matrix equations . . . . . . . . 12

3 Flavour structure of Grand Unified Theories 15
3.1 Motivation for Grand Unified Theories . . . . . . . . . . . . . . . 15
3.2 Brief introduction to Grand Unified Theories . . . . . . . . . . . . 15
3.3 Non-SUSY SO(10) . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Yukawa sector of non-SUSY SO(10) . . . . . . . . . . . . . . . . . 16

4 Methodology and numerical analysis 19
4.1 Fitting procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1.1 Minimization of χ2 . . . . . . . . . . . . . . . . . . . . . . 19
4.1.2 Low-energy data . . . . . . . . . . . . . . . . . . . . . . . 20
4.1.3 Model prediction . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Strategy of the fitting procedure . . . . . . . . . . . . . . . . . . . 24
4.3 Parameter space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3.1 Gauge couplings . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3.2 Fitted parameters . . . . . . . . . . . . . . . . . . . . . . . 26

5 Results 29
5.1 Two-Yukawa model . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.1.1 Flavour fits . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.1.2 Leptogenesis . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2 Three-Yukawa model . . . . . . . . . . . . . . . . . . . . . . . . . 37

Conclusion 42

Bibliography 44

List of Figures 48

List of Tables 49

List of Abbreviations 50

1



A Seesaw extension of the Standard Model as an effective field
theory 51
A.1 The effective dimension-five operator . . . . . . . . . . . . . . . . 51
A.2 Running neutrino masses . . . . . . . . . . . . . . . . . . . . . . . 51

B REAP 53
B.1 Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
B.2 One-loop renormalization group equations . . . . . . . . . . . . . 53
B.3 Two-loop renormalization group equations . . . . . . . . . . . . . 54

2



Introduction
Since the discovery of the Higgs boson in 2012, the Standard Model (SM) has
been regarded as a complete and realistic framework for describing particles and
their interactions that is in excellent agreement with the outcomes of the vast
majority of experimental observations.

However, despite its remarkable success, the SM as formulated by S. L. Gla-
show [1], S. Weinberg [2] and A. Salam [3] suffers from a fundamental flaw (leaving
aside the fact that it does not involve gravity) – it describes neutrinos as mass-
less particles, which is in direct contradiction with the experimental evidence of
neutrino flavour oscillations from measurements by the Super-Kamiokande [4, 5]
and KamLAND [6] collaborations. These results imply that at least two of the
three neutrino states are massive, providing a clear signal of physics beyond the
SM.

Another equally interesting, though rather cosmetic, shortcoming of the SM
is its inability to provide a satisfactory answer to some of the most profound
mysteries in modern cosmology, namely the particle nature of dark matter and the
origin of the observed matter-antimatter asymmetry of the Universe (also known
as the baryon asymmetry of the Universe, BAU). By the ‘cosmetic shortcoming’,
we point to a certain loophole in the ΛCDM model.Despite extensive searches
for dark matter particles that could explain its observed gravitational effects, no
signals of their interaction have yet been detected. Regarding the BAU, although
observations of the Cosmic Microwave Background (CMB) radiation [7] and the
abundance of light elements produced in Big Bang Nucleosynthesis [8] provide
compelling evidence that the asymmetry is significantly larger than what the SM
can reproduce, this discrepancy could potentially be a matter of initial conditions.
On the other hand, such a Universe would have to be precisely fine-tuned.

Remarkably, the simple extension of the SM in the form of adding three right-
handed neutrinos (RHNs), i.e., the first thing that comes to mind in attempt to
incorporate neutrino masses in the SM, resulting in the seesaw mechanism [9–12],
also provides an interesting explanation of the BAU via the so-called leptogene-
sis [13] – a mechanism of dynamical generation of lepton asymmetry through CP-
violating out-of-equilibrium (OOE) decays of these new particles in the hot early
Universe. According to this scenario, the produced lepton asymmetry was subse-
quently partially converted into baryon asymmetry by non-perturbative sphaleron
processes [13–17] – instanton-like processes that violate B +L, the sum of baryon
and lepton numbers, and conserve B − L.

In fact, this extension is not the only way how to introduce neutrino masses
and leptogenesis. At the tree level, one is also allowed to add a left-handed scalar
triplet [11, 18–20], or a left-handed fermionic triplet [21, 22].

However, with any such extension, additional free parameters are introduced
into the model.And the more free parameters a theory has, the less predictive
it becomes, because it is more flexible to accommodate the observations. The
SM itself contains 19 free parameters – 3 gauge couplings corresponding to the
SM gauge group SU(3)c × SU(2)L × U(1)Y , 6 quark masses, 3 charged-lepton
masses, 3 quark mixing angles, the quark CP phase, the Higgs boson mass, the
Higgs vacuum expectation value, and the strong CP phase. For instance, in the
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seesaw extension with three RHNs, another 18 parameters have to be added.
These parametrize the neutrino Yukawa matrix, which is also crucial for the
computation of the lepton asymmetry. One can express the neutrino Yukawa
matrix in the Casas-Ibarra parametrization [23] in terms of observables, of which
only 3 lepton mixing angles and the light neutrino mass squared differences have
been determined from experiments so far. Consequently, the neutrino Yukawa
matrix is largely undetermined.

Here, decades of research on Grand Unified Theories (GUTs) [24, 25] come in
handy, since GUTs exhibit baryon and lepton number violation (BLNV) already
at perturbative level, and greater predictability than the SM, typically manifested
by additional constraints on the Yukawa couplings.

Both supersymmetric (SUSY) and non-SUSY GUT models have been thor-
oughly investigated – among the other things, their potential capabilities to ac-
commodate the experimental measurements have been explored. Among the most
promising models so far are those based on the gauge group SO(10), which has
several attractive properties: it accommodates all fermions of a given generation,
including RHNs, in a single 16-dimensional multiplet; it naturally provides the
seesaw mechanism mediated by both RHNs and the left-handed scalar triplet; it
restores left-right symmetry at high energies [11]; and it is anomaly-free.

Many previous studies have focused on flavour fits in different setups of SO(10)
models. They have examined, e.g., the impact of specific symmetry-breaking
chains and intermediate scales [26–28], normal and inverted neutrino mass hier-
archies [28], types of seesaw mechanism [29], and different Yukawa sectors [28, 30].

In this work, we focus on non-SUSY renormalizable SO(10) models both with-
out and with an additional global Peccei-Quinn symmetry [30–32], and with
a minimal Yukawa sector containing a complexified scalar representation 10H

and a complex scalar representation 126H . At the same time, we consider the
field content extended by both RHNs and the left-handed scalar triplet.

The purpose of this thesis is to investigate the possibility of successful lep-
togenesis while maintaining consistent flavour fits within the framework of these
models, thus building naturally upon previous works [33, 34].

This thesis is organized as follows. In Chapter 1, we introduce minimal exten-
sions of the SM leading to seesaw mechanism types I and II. Chapter 2 provides
a condensed review of the formalism of leptogenesis, including Boltzmann equa-
tions that govern its dynamics. In Chapter 3, we introduce the basic concepts
of GUTs as an attractive framework for studying leptogenesis, with a particular
focus on non-SUSY SO(10)-based models that we consider throughout this the-
sis. Chapter 4 details our methodological approach and numerical analysis – the
fitting procedure, the implementation of the tools used to solve the Boltzmann
equations (BEs) and renormalization group equations (RGEs), and the parame-
ter space exploration. Last chapters presents and summarizes our main results,
findings and conclusions, and outline some possible directions for future research.
In Appendix B, one can find a list of used RGEs and conventions.
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1. Origin of neutrino masses

1.1 Seesaw mechanism type I
In the SM, charged-fermion masses are generated via the famous Higgs mecha-
nism [35, 36]. The interaction with the Higgs field is described by a Yukawa-type
interaction whose structure involves an SU(2)L left-handed doublet and a right-
handed singlet, both of which represent the fermion fields. Since neutrinos in the
SM lack their right-handed counterparts, they are inherently massless.

This observation suggests a remedy to address the non-zero neutrino masses
in the form of a simple and intuitive extension: filling the vacancy in the lepton
sector by adding three RHNs, i.e., one per generation, which are singlets under the
SM gauge group. In addition, in this extension, neutrinos are commonly assumed
to be Majorana, reflecting their electric neutrality. Despite its simplicity, however,
such an extension leads to profound implications.

Let us denote the newly introduced fields by NR. To incorporate them, we
equip the SM Lagrangian with the following structure (adopting the convention
from [37])

LRHN = iNR /∂NR − YνNRΦ̃†
LL − 1

2NRMRN c
R + h.c., (1.1)

which consists of a kinetic term, a Yukawa interaction term, and a Majorana mass
term, respectively. Here, Yν is a Dirac-type neutrino Yukawa matrix, Φ̃ = iσ2Φ∗

with Φ = (1, 2, +1/2) being the Higgs doublet, LL = (L1
L, L2

L, L3
L) represents the

SU(2)L lepton doublets, and MR is a complex symmetric Majorana mass matrix.
With the Lagrangian (1.1) at hand, one can proceed to find the neutrino

mass eigenstates and eigenvalues. In the broken phase, the corresponding non-
derivative part of (1.1) then yields a key formula that describes the mechanism
by which the SM-like neutrinos acquire their small but non-zero masses in this
setup. The formula for the mass matrix Mν of physical active neutrinos is as
follows

Mν = −v2Y T
ν M−1

R Yν ≡ M I
ν , (1.2)

where v = 246 GeV/
√

2 .= 174 GeV is the vacuum expectation value (VEV) of
the SM Higgs field. The reason for renaming Mν to M I

ν will become clear soon.
Eq. (1.2) implies that for the SM-like neutrino masses to be in the sub-eV range
(as indicated by the results of the tritium β decay experiment [38] or cosmological
limits [39, 40]), the RHNs should be extremely heavy unless the Yukawa matrix
Yν is suppressed. For instance, if |Yν | ∼ 0.1, the order of magnitude estimate for
the Majorana mass gives 1011−12 GeV. Due to the inverse proportionality of the
SM-like neutrino masses to the large-scale masses of the RHNs, this mechanism
is called the seesaw, or more precisely the type-I seesaw mechanism [9–12] (hence
the superscript ‘I’ in Eq. (1.2)). ‘Type I’ refers to the fact that this is only one of
the three canonical realisations of the seesaw mechanism. We will come to that
in the next section. See also Appendix A.

At least two remarks are worth mentioning here. First, the introduced ex-
tension exhibits perturbative lepton number violation (LNV). Second, once the
lepton sector is supplemented by three RHNs, a quark-like flavour structure is
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recovered. This enables leptonic mixings and neutrino flavour oscillations [4–6].
The lepton-sector counterpart of the CKM matrix, connecting flavour eigenstates
to mass eigenstates, is the so-called Pontecorvo-Maki-Nakagawa-Sakata (PMNS)
matrix. This matrix – let us denote it by VPMNS – is parametrised by three mixing
angles, θPMNS

12 , θPMNS
13 , θPMNS

23 , and three CP-violating phases, δCP, ϕ1 and ϕ2:

VPMNS =

⎛⎜⎝ c12c13 s12c13 s13e
−iδCP

−s12c23 − c12s23s13e
iδCP c12c23 − s12s23s13e

iδCP s23c13
s12s23 − c12c23s13e

iδCP −c12s23 − s12c23s13e
iδCP c23c13

⎞⎟⎠ ·

· diag
(︂
e−iϕ1/2, e−iϕ2/2, 1

)︂
, (1.3)

where sij = sin θPMNS
ij and cij = cos θPMNS

ij .

1.2 Seesaw mechanism type II
The extension of the SM by RHNs is the first thing that comes to mind when
trying to introduce neutrino masses. However, it is far from the only way. Another
extension we will consider in our analysis is the addition of a massive scalar [11, 18]
∆L transforming as (1,3,+1) under the SM gauge group SU(3)c ×SU(2)L ×U(1)Y ,

∆L =
(︄ 1√

2∆+
L ∆++

L

∆0
L − 1√

2∆+
L

)︄
, (1.4)

where ∆0
L, ∆+

L , and ∆++
L are the components of the triplet. This extension is

referred to as the type-II seesaw.
The relevant part of Lagrangian involving the triplet is given by [20]

L∆ ∋ −M2
∆Tr

(︂
∆†

L∆L

)︂
− Y∆Lc

Liσ2∆LLL + µΦT iσ2∆LΦ + h.c., (1.5)

where M∆ is the mass of ∆L and Y∆ and µ are its couplings to the pair of lepton
doublets and the pair of Higgs doublets, respectively.

The neutrino mass matrix generated by ∆L is then given by

M II
ν = v∆Y∆ ≡ ML, (1.6)

where v∆ is an induced VEV that the neutral component of ∆L acquires,

v∆ ≡ ⟨∆0
L⟩ = µ∗v2

M2
∆

. (1.7)

Thus, the light neutrino masses are again inversely proportional to the mass of
the added particle.

The combination of both type-I and type-II seesaw extensions yields a com-
bined seesaw formula:

Mν = M II
ν + M I

ν = ML − v2Y T
ν M−1

R Yν . (1.8)

The introduced seesaw extensions of the SM provides an elegant explanation
for the smallness of neutrino masses. Nevertheless, this is not the end of the
story, as the extension has interesting implications for a completely different
phenomenon, which at first glance has nothing to do with its original purpose.
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2. Leptogenesis
In the previous chapter, we presented a SM extension that exhibits lepton number
violation. Let us now turn to another phenomenon that the SM cannot explain
– the observed baryon asymmetry of the Universe, which, on the contrary, may
be related to the baryon number violation. Surprisingly, it turns out that in the
seesaw extension it is possible to generate a sufficiently high baryon asymmetry
by means of a different mechanism – leptogenesis [13].

2.1 Baryon asymmetry of the Universe
In the present Universe, baryonic matter obviously dominates over rarely occur-
ring antimatter (antibaryons). At first glance, this asymmetric distribution of
matter and antimatter seems to contradict the reasonable assumption that the
Universe evolved from a state with zero net baryon number.

The BAU may be quantified by a baryon-to-photon number density ratio ηB,
which is defined as

ηB = nB − nB̄

nγ

, (2.1)

where nB, nB̄, and nγ are the number densities of baryons, anti-baryons, and
photons, respectively, at present time. The ΛCDM model of the cosmic evolu-
tion suggests a way to measure this quantity, since the spectrum of the CMB
radiation [7] is sensitive to the value of ηB. The latest results of the Planck
collaboration [7] establish the following value of ηB based on CMB data

ηCMB
B = (6.125 ± 0.027) × 10−10. (2.2)

However, this value is about ten orders of magnitude above the estimate, which
one can obtain from the SM.

The conundrum lies in the following: if the current Universe is not a de-
scendant of precisely fine-tuned asymmetric initial conditions1, how did it evolve
from a state, where matter and antimatter were created in equal amounts, to its
current matter-dominated state? This calls for a mechanism of generating the
asymmetry dynamically. Such a process is referred to as baryogenesis.

In order for baryogenesis to be possible, processes have to take place in the
primordial plasma that fulfill three Sakharov’s conditions [41]:

1. These processes violate baryon number.

2. They violate C and CP.

3. The Universe has to undergo out-of-thermal-equilibrium phase.
1Moreover, there is a well-founded suspicion that the early universe underwent a phase of

inflation, which would have exponentially diluted any initial asymmetry.
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2.2 Electroweak baryogenesis
Surprisingly, the SM contains all the necessary means for baryogenesis, including
BNV processes (albeit only at the non-perturbative level) such as sphaleron pro-
cesses [14] –instanton-like processes at finite temperature that violate B + L and
conserve B − L.

The SM thus offers the following picture of baryogenesis. If the electroweak
phase transition (EWPT) was first-order, it would lead to the formation of ex-
panding bubbles with broken phase inside, while outside the bubbles the phase
would still be symmetric. As the bubbles would expand, the passing bubble
walls would separate fermions due to CP-violating processes taking place in the
plasma. However, sphaleron processes that are in thermal equilibrium above the
EWPT [16] would wash out the asymmetry outside the bubbles. In contrast,
inside the bubbles, they would be suppressed and the asymmetry would survive.

The mechanism just described is referred to as electroweak baryogenesis [17].
Unfortunately, the situation with the second and third Sakharov’s conditions
turns out to be problematic in the SM. CP-violating processes are screened in the
hot and dense plasma [42], and regarding the EWPT, it was likely second-order
(with respect to the measured value of the Higgs boson mass mH ≈ 125 GeV),
not first-order as required.

2.3 Decays of right-handed neutrinos and a sca-
lar triplet

Returning to the type-I and type-II seesaw extensions, with the new fields NR’s
and ∆L at hand, we can explore an alternative approach to baryogenesis. Namely,
one may try to calculate the CP asymmetry of the decays of the i-th heavy
neutrino mass eigenstate N i

R or of the heavy scalar triplet ∆L into leptons and
antileptons, i.e.

ϵN i
R

=
∑︂

α

Γ(N i
R → LαΦ∗) − Γ(N i

R → LαΦ)
Γ(N i

R → LαΦ∗) + Γ(N i
R → LαΦ)

(2.3)

in the case of the RHN decays, and similarly,

ϵ∆ = 2Γ(∆∗
L → LL) − Γ(∆L → LL)

Γ(∆∗
L → LL) + Γ(∆L → LL)

(2.4)

in the case of the ∆L decays. Here Γ denotes the decay rates of the corresponding
processes. At the tree level, these asymmetries vanish, but they yield a non-zero
contribution at the one-loop level. The leading order contribution comes from
the interference between the tree-level diagrams shown in Figs. 2.1(a) and 2.2(a)
and one-loop diagrams shown in Figs. 2.1(b)–(d) and 2.2(b). RHN decays then
contribute by [20, 43]

ϵN i
R

= − 1
8π

1
(YνY †

ν )ii

∑︂
j

Im
[︂
(YνY †

ν )2
ij

]︂
f

(︄
M2

j

M2
i

)︄
−

− 1
2πMi

1
(YνY †

ν )ii

Im [(Yν)ij(Yν)ik(Y ∗
∆)jkµ] gi, (2.5)
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(a)
(b)

(c) (d)

Figure 2.1: Feynman diagrams of RHN decays up to one-loop level that contribute
to the CP asymmetry.

(a)
(b)

Figure 2.2: Feynman diagrams of ∆L decays up to one-loop level that contribute
to the CP asymmetry.

9



where Mi are RHN masses, the function f(x) is defined as

f(x) =
√

x
[︃
−2 − x

1 − x
+ (1 + x) log 1 + x

x

]︃
, (2.6)

the factor gi is defined as

gi =
[︄
1 − M2

∆
M2

i

log
(︄

1 + M2
i

M2
∆

)︄]︄
, (2.7)

and the summation over the indices j and k is performed in the second term.
The first term in the formula (2.5) represents a well-known result, which

can be commonly found in the literature, and it comes from the pure type-I
seesaw extension. However, in the combination of seesaw types I and II, the
CP asymmetry of the RHN decays also receives a contribution from the loop
diagram shown in Fig. 2.1(d), which involves ∆L in the loop. This contribution
is represented by the second term in the formula (2.5).

The decay of ∆L itself contributes by [20]

ϵ∆ = 1
8π

∑︂
i

Mi
Im [(Y ∗

ν )ij(Y ∗
ν )ik(Y∆)jkµ∗]∑︁

lm |(Yν)lm|2 M2
∆ + |µ|2

log
[︄
1 + M2

∆
M2

i

]︄
, (2.8)

again with the summation over the indices j and k.
Leptogenesis as formulated by Fukugita and Yanagida2 [13] takes the ad-

vantages (in terms of Sakharov’s conditions) arising from the seesaw extension
– namely, that it entails LNV and CP violation – and provides an explanation
for the baryon asymmetry. Leptogenesis is a mechanism that generates a net lep-
ton number in the C and CP-violating OOE decays of RHNs and ∆L in the hot
early Universe. The net lepton number is subsequently partially converted into
a baryon asymmetry by the non-perturbative sphaleron processes that violate
B + L and conserve B − L.

2.4 Evolution equations for leptogenesis

2.5 Boltzmann equations
In the hot primordial plasma, which is simultaneously subjected to cooling and
dilution due to the Hubble expansion, there are continuous creation, annihilation,
decay and scattering of particles, until some of these processes stop once the
plasma reaches the energy threshold for a given process, or the expansion rate
becomes comparable to the rate of the process. Therefore, it is necessary to carry
out the statistics of processes over the whole primordial plasma.

As for leptogenesis, in addition to the above CP-violating decays of RHNs
and ∆L, other processes that RHNs and ∆L may undergo need to be taken
into account, since they may consequently affect the final asymmetry. One thus
needs to solve appropriate Boltzmann equations (BEs) governing the evolution
of the number densities and asymmetries of interest. To this end, we employ
ULYSSES [44, 45], the numerical solver of BEs, which however to date solves

2They formulated the leptogenesis for RHNs only.
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BEs for RHN-driven leptogenesis only and does not account for effects from ∆L.
This means that our approach is valid in the regime of dominant RHN-driven
leptogenesis. We discuss the implications of this below. Technical details about
the use of the ULYSSES are the subject of Section 4.1.3.

As an illustrative example, let us take the classical BEs for three decaying
RHNs in the single flavour approximation [44]:

dNN i
R

dz
= −Di

(︃
NN i

R
− N eq

N i
R

)︃
,

dNB−L

dz
=

3∑︂
i=1

[︃
ϵN i

R
Di

(︃
NN i

R
− N eq

N i
R

)︃
− WiNB−L

]︃
,

(2.9)

where z = M1/T is a dimensionless evolution parameter with T being the tem-
perature of the plasma, NN i

R
is the number density of the i-th heavy neutrino

mass eigenstate N i
R with i = 1, 2, 3, and N eq

N i
R

then denotes the corresponding
equilibrium value, with all number densities normalised to a comoving volume
containing one photon [33, 44],

N eq
N i

R
≡ N eq

N i
R
(z) = 3

8xiz
2K2(zi), (2.10)

where
xi = M2

i

M2
1

, zi = √
xiz (2.11)

and Kα(zi) are modified Bessel functions of the second kind, so that N eq
N i

R
(z ≪

1) = 3/4. NB−L is the B − L asymmetry. The final B − L asymmetry is then
N f

B−L ≡ NB−L(z ≫ 1). ϵN i
R

is defined by Eq. (2.5) ignoring the contribution from
∆L. Di is the decay term – the decay rate rescaled in the following way [33]

Di ≡ Di(z) = Kixiz
K1(zi)
K2(zi)

, (2.12)

where Ki is the decay parameter defined as the ratio of the N i
R decay width

Γ(N i
R) to the Hubble expansion rate H(T = Mi) [34, 46]. With the Hubble rate

given by [33]

H(z) ≈ 1.66√
g∗

M2
1

MP l

1
z2 , (2.13)

where g∗ = 106.75 is the number of relativistic degrees of freedom, and MP l =
1.22 × 1019 GeV is the Planck mass; Ki can be expressed as follows [34, 46]

Ki ≡ Γ(N i
R)

H(T = Mi)
= v2

m∗Mi

(YνY †
ν )ii = m̃1

m∗
, (2.14)

where m∗ ≈ 10−3 eV [46] is the equilibrium neutrino mass and m̃1 is the effective
neutrino mass3. Wi is the washout term given by [33]

Wi ≡ Wi(z) = 1
4Ki

√
xiz

3
i K1(zi). (2.15)

3In the literature, two regimes are usually distinguished: weak (m̃1 < m∗) and strong
(m̃1 > m∗) washout regimes [46]. The larger the decay parameter the stronger the washout.
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The right-hand side of BEs represents the reactions the RHNs undergo. In
the hot plasma, at temperatures above the mass of the heaviest RHN, RHNs are
created and their decays, represented by Di in BEs, produce lepton asymmetry.
Any lepton asymmetry is subsequently washed out by inverse decays (and other
effects), represented by Wi (scattering, e.g., would contribute by another term,
see Ref. [46]). As the Universe expands, the plasma cools down. Once the temper-
ature drops below M3, OOE decays of the heaviest RHNs start to produce a net
asymmetry, because the thermal bath does not have enough energy for inverse
decays. However, the asymmetry is still partially washed out by inverse decays
of lighter RHNs. The scheme repeats until the mass threshold M1 is reached.

In this sense, ignoring ∆L means that we are in a specific regime, where ∆L

decays early enough, i.e. the mass M∆ is large enough, that any asymmetry
produced by it (cf. Eq. (2.8)) is washed out by RHNs and its loop contribution
to the RHN decays (the second term in Eq. (2.5)) is negligible. Thus at least
one RHN have to be much lighter than ∆L. This means, in other words, that
the decay rate of ∆L have to be way bigger than the decay rate of N i

R, i.e.
Γ(∆L) ≫ Γ(N i

R), where [20, 47]

Γ(∆L) = 1
8π

M∆

⎛⎝ |µ|2

M2
∆

+
∑︂
ij

|(Y∆)ij|2
⎞⎠ , (2.16)

and
Γ(N i

R) = 1
8π

Mi(YνY †
ν )ii. (2.17)

This leads to the following constraints on the parameter space [47]

M∆

⎛⎝ |µ|2

M2
∆

+
∑︂
ij

|(Y∆)ij|2
⎞⎠ ≫ Mi(YνY †

ν )ii. (2.18)

2.5.1 Flavour effects and density matrix equations
When considering the simplest case of N1

R dominated leptogenesis, the classical
BEs provide a suitable description [46]. However, in SO(10)-inspired models, e.g.,
leptogenesis is dominated by N2

R [33, 48, 49]. Consideration of heavier RHNs re-
quires different sets of BEs specific to different RHN mass patterns [50]. Moreover,
BEs fail in the transition regimes for Mi ∼ 109 GeV and Mi ∼ 1012 GeV [50].

Furthermore, the CP asymmetry can be significantly modified by flavour ef-
fects [50].Consider the decoherence effects. The lepton and antilepton states |Li⟩
and |Lα⟩, respectively, originating from the N i

R decays can be expressed as a linear
combination of flavour eigenstates Lα (Lα) with α = e, µ, τ ,

|Li⟩ =
∑︂

α

Ciα|Lα⟩, |Li⟩ =
∑︂

α

Ciα|Lα⟩, (2.19)

where the amplitudes Ciα and Ciα, although in general Ciα ̸= Ciα [33, 50], are
given at tree level by [33, 50]

Ciα = Ciα = Y ∗
αi√︂

(Y Y †)ii

. (2.20)
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For M1 ≫ 1012 GeV, the states |Li⟩ and |Lα⟩ evolve coherently [33], i.e. there is
a coherence between their production and inverse decays. For M1 < 1012 GeV,
the coherent evolution breaks down due to the interactions with electroweak
bosons [33, 34] and the states |Li⟩ and |Lα⟩ transform into a pure flavor states.

To account for flavour effects, instead of classical BEs such as (2.9), more
general density matrix equations (DME) need to be employed. BEs (2.9) then
need to be replaced by [33, 44, 50]

dNN i
R

dz
= −Di

(︃
NN i

R
− N eq

N i
R

)︃
,

d(NB−L)αβ

dz
=

3∑︂
i=1

[︃
(ϵN i

R
)αβDi

(︃
NN i

R
− N eq

N i
R

)︃
− 1

2Wi{P 0(i), NB−L}αβ

]︃

− Γτ

2Hz

⎡⎢⎣
⎛⎜⎝1 0 0

0 0 0
0 0 0

⎞⎟⎠ ,

⎡⎢⎣
⎛⎜⎝1 0 0

0 0 0
0 0 0

⎞⎟⎠ , NB−L

⎤⎥⎦
⎤⎥⎦

αβ

− Γµ

2Hz

⎡⎢⎣
⎛⎜⎝0 0 0

0 1 0
0 0 0

⎞⎟⎠ ,

⎡⎢⎣
⎛⎜⎝0 0 0

0 1 0
0 0 0

⎞⎟⎠ , NB−L

⎤⎥⎦
⎤⎥⎦

αβ

,

where the second line now represents the equation for the B − L asymmetry
matrix in the charged lepton flavour basis. The CP asymmetry of the decays of
N i

R is unlike the previous case described by the matrix (ϵN i
R
)αβ [33],

(ϵN i
R
)αβ = 3i

32π(YνY †
ν )ii

∑︂
j ̸=i

⎡⎣ξ(xj/xi)√︂
xj/xi

(Y ∗
iαYjβ(YνY †

ν )ji − YiβY ∗
jα(YνY †

ν )ij) +

+ 2
3(xj/xi − 1)(Y ∗

iαYjβ(YνY †
ν )ij − YiβY ∗

jα(YνY †
ν )ji)

]︄
(2.21)

where ξ(x) as defined in Ref. [33] can be expressed using Eq. (2.6) as follows

ξ(x) = 2
3

√
xf(x). (2.22)

P
0(i)
αβ is the projection matrix [33],

P
0(i)
αβ = CiαC∗

iβ = Y ∗
iαYiβ

(YνY †
ν )ii

, (2.23)

and terms proportional to [33]

Γα

2Hz
= 8 × 10−3y2

αT

Hz
(2.24)

are related to the charged lepton interactions.
The baryon asymmetry is then given by [34, 44, 46]

ηB = asph

f
Tr N f

B−L ≃ 0.013 Tr N f
B−L, (2.25)

where asph = 28/79 [44] is the SM sphaleron factor, the fraction of N f
B−L converted

into a baryon asymmetry by sphaleron processes, and f = N rec
γ /N0

γ = 27 [44, 46] is
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the dilution factor caused by the photon production from the onset of leptogenesis
until recombination. In the literature [46], one may encounter an expression using
the efficiency factor κf which is independent of CP asymmetry. If we also assume
that leptogenesis is dominated by decays of one of the RHNs, then

ηB ∼ 3
4

asph

f
ϵN i

R
κf ≃ 0.96 × 10−2ϵN i

R
κf ≲ 0.013

2ϵN i
R

Ki

, (2.26)

However, even DME (2.21) are not the most general possible evolution equa-
tions for leptognesis, there are many other effects that could potentially influence
the final asymmetry. E.g., research by Hahn-Woernle et al. [51] has shown, among
other things, that dropping assumption of kinetic equilibrium4 has minimal im-
pact on the evolution of number densities and lepton asymmetry, and that the
inclusion of quantum statistics can enhance the final asymmetry by up to 50 %
in the weak washout regime, while it can suppress the final asymmetry by up to
20 % in the strong washout regime (the stronger washout the milder effect). It is
important to note that these results are based on single RHN decay approxima-
tion.

Despite what has been said, BEs provide a solid foundation for modeling
leptogenesis, but one has to keep in mind possible uncertainties within few tens
of percent.

4This assumption allows the BEs to be integrated over momentum space, and reaction rates
to be thermally averaged, resulting in simpler equations that track only the number densities
of particles rather than their full phase space distributions.
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3. Flavour structure of Grand
Unified Theories

3.1 Motivation for Grand Unified Theories
Attempts to provide a full-fledged description of phenomena that are (or could
be) manifestations of physics beyond the SM (by which we particularly mean
non-zero neutrino masses and the BAU) have led to mechanisms such as the
seesaw mechanism (Chap. 1), baryogenesis, and leptogenesis (Chap. 2), that entail
baryon and lepton number violating (BLNV) processes or the emergence of high-
energy scales like Mi (In Sec. 4.3, we will mention that leptogenesis provide a lower
bound for M1, which is 109 GeV).

Interestingly enough, a hint of high-energy dynamics is already visible at
the pure SM level, namely, in the convergence of the running gauge couplings.
These findings pave the way towards extensions, embedding the SM gauge group
SU(3)c ×SU(2)L ×U(1)Y into larger symmetry groups, and the concept of Grand
Unified Theories (GUTs) [25].

From this perspective, GUTs, due to the fact that they incorporate BLNV [25],
appear to be a natural framework for leptogenesis1. Note that, based on Eqs. (2.5)
and (2.21), in order to solve BEs (2.9) and (2.21), the neutrino Yukawa coupling
Yν is required. However, it is largely undetermined – when expressed in the phys-
ical Casas-Ibarra parametrization [23], one finds out that out of 18 parameters,
only 5 have been determined from experiments so far (3 lepton mixing angles and
the light neutrino mass squared differences). Consequently, the neutrino Yukawa
matrix is largely undetermined. However, a defining feature of GUTs is that the
corresponding symmetry group is larger compared to the SM one, and thus more
predictive, which is manifested by correlations between different types of Yukawa
couplings or their symmetricity. This has profound implications, especially if the
Yukawa couplings are fitted to the known values of the low-energy data, thereby
strictly constraining the parameter space for Yν and, consequently, leptogenesis.

Let us now briefly describe the concept of GUTs and the version we investi-
gated in our research.

3.2 Brief introduction to Grand Unified Theo-
ries

As mentioned above, the GUTs are an attempt for unified description of particles
and their interactions. Within the GUT framework, this means merging all the
SM gauge couplings at a high-energy scale MGUT into a single coupling associ-
ated with a simple non-Abelian group and, subsequently, breaking this symmetry
group down to the SM.

To achieve gauge coupling unification, one must solve the renormalization
group equations (RGEs) in order to link values of the running gauge couplings

1Note that leptogenesis is not a unique prediction of a single theory, but rather a generic
consequence of various extensions of the SM that incorporate LNV processes.
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at different energy scales – the values we know [52] at the electroweak scale
MZ = 91.1876 GeV,

gs(MZ) = 1.2104 ± 0.0051, (3.1)
g(MZ) = 0.65100 ± 0.00028, (3.2)
g′(MZ) = 0.357254 ± 0.000069, (3.3)

and those at the GUT scale MGUT determined from the unification condition.
The couplings gs, g and g′ correspond, respectively, to the factors of the SM
gauge group SU(3)c × SU(2)L × U(1)Y .

It is important to note that this procedure does not guarantee successful
unification within any simple non-Abelian group into which the SM is embedded.
For instance, let us consider the simplest SM extension in terms of the GUT,
the Georgi-Glashow model based on the symmetry group SU(5) [24]. In this
model, gauge couplings do not unify without the inclusion of further intermediate-
scale dynamics such as supersymmetry (SUSY). Despite the appealing features of
SUSY, it is not favored by experimental observations. Then it is natural to search
for a larger non-SUSY group. These typically exhibit complicated spontaneous
symmetry breaking (SSB) through multiple intermediate stages.2

3.3 Non-SUSY SO(10)
In this work, we focus on the models based on the non-SUSY SO(10), as these
are the most promising candidates for a realistic GUT. The SO(10) gauge group
not only possesses both the aforementioned properties – it contains the SM as
a subgroup and provides a framework for gauge couplings unification – but also
accommodates all fermions of a given generation, including RHNs, into a single
multiplet, the 16-dimensional irreducible spinor representation 16F .

Regarding the SSB, it is realized, as in the SM, by Higgs scalars. SO(10)
can be spontaneously broken down to the SM through various breaking chains
(cf. e.g., [26, 53]), necessitating the construction of an appropriate scalar sector to
achieve the desired symmetry breaking pattern while remaining consistent with
experimental observations.

3.4 Yukawa sector of non-SUSY SO(10)
The allowed content of the Yukawa sector of non-SUSY SO(10) stems from the
following decomposition of the direct product 16F × 16F ,

16F × 16F = 10 + 126 + 120. (3.4)

Thus, the most general Yukawa Lagrangian is given by

Lgeneral
Y ukawa = 16F (Y1010H + Y126126H + Y120120H)16F , (3.5)

2Above the lowest intermediate breaking scale, it no longer makes sense to talk about the
couplings gs, g and g′ as the physics there is effectively governed by a different symmetry group
with its own couplings.
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where 10H , 126H , and 120H are 10-, 126-, and 120-dimensional scalar represen-
tations.

For the purposes of this work, we require the model to be realistic and min-
imal in terms of the number of free parameters (as each scalar enters the model
with at least one Yukawa coupling structure). We would also like to somehow
implement the seesaw mechanism for generating non-zero neutrino masses (1.8).
Such a minimal and potentially realistic Yukawa sector typically contains the
scalar representations 10H and 126H (cf. Ref. [30], which provides a compre-
hensive analysis of the scalar sector of non-SUSY renormalisable SO(10)). In the
following lines we only briefly motivate the proposed construction of the Yukawa
sector:

1. Since one cannot write down the Majorana mass term as in Eq. (1.1) above
the scale of the B − L symmetry breaking, 126H is essential, as it breaks
SU(2)R, thereby enabling the implementation of the seesaw mechanism.

2. For the fermionic mixing, at least one additional multiplet is needed. We
have chosen 10H , although an alternative in the form of 120H is also viable,
cf. [30].

3. To obtain a realistic fermionic spectrum, both the 126H and the 10H rep-
resentations have to be complex. This means that 10H , which is originally
real, needs to be complexified.

The Yukawa Lagrangian of such a minimal potentially realistic model is thus
given by:

LY ukawa = 16F (Y1010H + Y126126H + Ỹ 1010∗
H)16F , (3.6)

with the Yukawa couplings Y10, Y126 and Ỹ 10 being 3 × 3 complex symmetric
matrices in the flavour space. One can choose a basis where, e.g., Y10 is real and
diagonal, thereby ending up with 27 parameters in total.

The Yukawa couplings from the above Lagrangian (3.6) can be matched to
those of the EFT valid below MGUT. In this work, we effectively consider a direct
breaking of SO(10) to the SM

SO(10) MGUT−−−→ SU(3)c × SU(2)L × U(1)Y
MZ−−→ SU(3)c × U(1)Q, (3.7)

without any intermediate stages3. Consequently, the Yukawa couplings of the
GUT model (3.6) are to be matched directly to those of the SM (cf. the con-
struction in [33, 53, 54]):

vYu = v10
u Y10 + v10∗

d Ỹ 10 + v126
u Y126, (3.8)

vYd = v10
d Y10 + v10∗

u Ỹ 10 + v126
d Y126, (3.9)

vYν = v10
u Y10 + v10∗

d Ỹ 10 − 3v126
u Y126, (3.10)

vYe = v10
d Y10 + v10∗

u Ỹ 10 − 3v126
d Y126, (3.11)

MR = v126
R Y126, (3.12)

ML = v126
L Y126, (3.13)

3One can look at it also in such a way that possible intermediate symmetry-breaking scales
are effectively placed at MGUT (cf. [26]).
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where Yu, Yd, and Ye are the Yukawa matrices for the up- and down-type quarks,
and the charged leptons, respectively. Yν and MR are the neutrino Yukawa ma-
trix and the Majorana mass matrix for RHNs, respectively, from the type-I see-
saw (1.2), and ML is the mass matrix of the left-handed scalar triplet from the
type-II seesaw (1.6). At the same time, adhering to the so-called extended survival
hypothesis [26, 55], we assume that only those scalars are present that acquire
a VEV in the current or later stage of the SSB. In the above Eqs. (3.8)–(3.13)
these VEVs are represented by complex weights v10

u , v10
d , v126

u , v126
d , v126

R and v126
L ,

v10,126
u = ⟨(1, 2, −1/2)10,126⟩, v10,126

d = ⟨(1, 2, +1/2)10,126⟩
v126

R = ⟨(1, 1, 0)126⟩, v126
L = ⟨(1, 3, +1)126⟩

(3.14)

where the superscripts refer to associated scalar representation and the num-
bers in parentheses stem from the decomposition of the representations 10H and
126H [33] with respect to the SM gauge group SU(3)c × SU(2)L × U(1)Y .

The SM Higgs field is encompassed in a mixture of 10H and 126H , VEVs then
have to fulfill the following normalization√︂

|v10
u |2 + |v10

d |2 + |v126
u |2 + |v126

d |2 + 2 |v126
L |2 =

√
2v = 246 GeV. (3.15)

In the literature, one can commonly encounter the subsequent step of imposing
a global Peccei-Quinn symmetry U(1)P Q [29, 30, 32]:

16F → eiα16F , 10H → e−2iα10H , 126H → e−2iα126H , (3.16)

where α is a real parameter. Reasons for doing this are that it solves the strong
CP problem, it may provide the axionic dark matter [31] and it further simplifies
the Yukawa Lagrangian (3.6) to:

L+P Q
Y ukawa = 16F (Y1010H + Y126126H)16F (3.17)

thereby enhancing the predictive power and resulting in the following relations:

vYu = v10
u Y10 + v126

u Y126, (3.18)
vYd = v10

d Y10 + v126
d Y126, (3.19)

vYν = v10
u Y10 − 3v126

u Y126, (3.20)
vYe = v10

d Y10 − 3v126
d Y126, (3.21)

MR = v126
R Y126, (3.22)

ML = v126
L Y126. (3.23)

It is important to note that correlations (3.8)–(3.13) and (3.18)–(3.23) are valid
only at the GUT scale. Below the GUT scale, Yu, Yd, Ye, Yν , MR, and ML evolve
according to RGEs of the SM extended by RHNs and ∆L, see Appendix B.

18



4. Methodology and numerical
analysis
Now with all the theoretical ingredients at hand, we can proceed to the main
task of this work: to verify whether non-SUSY SO(10), specifically models (3.6)
and (3.17) described in previous chapter, are able to reproduce the experimen-
tally measured low-energy data while simultaneously generate a sufficiently large
baryon asymmetry (2.2). Given the high complexity of the problem, we resort to
solving it numerically.

4.1 Fitting procedure

4.1.1 Minimization of χ2

We need to compare a model prediction Xpred.
i (µ) for an i-th observable with

the observation X i(µ), where µ is the energy scale. To quantify the discrepancy
between Xpred.

i (µ) and X i(µ) we compute the χ2 function

χ2 =
N∑︂
i

(︄
Xpred.

i (µ) − X i(µ)
σi(µ)

)︄2

=
N∑︂
i

p2
i , (4.1)

where σi are the errors of experimental measurements and pi are the correspond-
ing pulls. By minimizing χ2, the model parameters are fitted to the observations.

For the minimization of χ2, we employ a differential evolution (DE) algo-
rithm [56, 57], which is capable to find the global minimum and it is well-suited
for optimization of complex problems. This optimization method consists of sam-
pling a set of points in the parameter space and iteratively improving it by the
following procedure:

1. The function we want to minimize is χ2 : Rd → R. Initialization consists
in randomly generating a population of candidate solutions x ∈ Rd in the
searched parameter space (or part of it). The population size is kd, where
k denotes the number of points per dimension. In the case of models (3.6)
and (3.17), the dimension is d = 35 and d = 23, respectively. It is rec-
ommended to choose k = 20 or k = 30 for tricky functions, but smaller
k is also possible for minimization of χ2 [57]. It is important to keep in
mind that the larger the population size, the more time-consuming it is to
evaluate the function.

2. For each x in the population, the algorithm does the following steps:

(a) Three other distinctive candidates a, b and c are chosen randomly
from the population.

(b) A random index I is chosen from the set {1, ..., d}.
(c) For each component of a given x, a number ri = rand(0, 1) is chosen.
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(d) If ri < Cr or i = I, the i-th component of a new candidate solution yi

is computed as follows:

yi = ai + F (bi − ci), (4.2)

otherwise yi = xi. Here Cr ∈ (0, 1) is the cross-over rate and F is the
differential weight. In our case, F = rand(0.5, 1.0).

(e) If χ2(y) ≤ χ2(x), x is replaced by y.

Step 2. is repeated until a satisfactory result is achieved.

4.1.2 Low-energy data
We compare the predictions Xpred.

i (µ) of the SO(10) models against the low-
energy data of the SM observables and the baryon-to-photon number density
ratio (2.1), which are listed in Tab. 4.1. Actually, when comparing Xpred.

ηB
and

XηB
, we do not need to adhere strictly to the precision within 1σ error. At the

end of Sec. 2.4, we briefly discussed that including other effects may modify ηB

within a few tens of percent. So, we allow for these possible uncertainties. In
particular, we would like to get at least close to the correct order of magnitude of
ηB, since the estimate from the SM is ten orders of magnitude smaller. However,
in this way, predictions of much smaller orders of magnitude (such as 10−20)
are not adequately penalized in χ2 compared to predictions that are, let say, by
only one or two orders of magnitude smaller than the experimental value (2.2).
Therefore we fit the decimal logarithm of the value (2.2) (cf. Tab. 4.1) in order
the algorithm to be sensitive to order of magnitude of ηB. At the same time we
estimate the corresponding 1σ error to be roughly log 2.

Regarding the remaining quantities in Tab. 4.1, the quark and charged-lepton
masses, along with the Higgs quartic coupling, are taken from [52], and the CKM
parameters from [58]. Concerning the neutrino mass ordering, we consider only
the normal ordering. The corresponding mass squared differences, along with
lepton mixing angles, are adopted from NuFIT 5.2 [59] results from November
2022, available on http://www.nu-fit.org. The adopted values are based on mea-
surements withnout Super-Kamiokande atmospheric neutrino data. For reader’s
interest, the same for inverted neutrino mass ordering can be found therein, and
for an examination of the effect of mass ordering within the framework of SO(10),
we refer to [28].

Particular attention should be paid to uncertainties of these quantities. First,
comprehensive analysis (cf. [59, 60]) shows that the one-dimensional χ2 projection
for sin2 θPMNS

23 has two local minima around the global χ2 minimum. Although
only the best fit from NuFIT is listed in Tab. 4.1, we reflect this fact in our
analysis by involving the proper one-dimensional χ2 projection for sin2 θPMNS

23
(depicted in Figure 4.1, the corresponding dataset is available on http://www.nu-
fit.org). Then we interpret the pull of sin2 θPMNS

23 as the square root of the relevant
contribution to χ2 and we determine the sign with respect to the best fit:

psin2 θPMNS
23

= sgn
[︃
Xpred.

sin2 θPMNS
23

(µ) − Xsin2 θPMNS
23

(µ)
]︃

.
√︂

∆χ2 (4.3)

Second, the uncertainties of some quantities in Tab. 4.1 (denoted by an asterisk)
are enlarged so that they are not less than 1 % of the corresponding central values.

20

http://www.nu-fit.org
http://www.nu-fit.org
http://www.nu-fit.org


Observable X i σi

mu [MeV] 1.23 0.21
mc [GeV] 0.620 0.017
mt [GeV] 168.3 1.7∗

md [MeV] 2.67 0.19
ms [MeV] 53.16 4.61
mb [GeV] 2.839 0.028∗

sin θCKM
12 0.2251 0.0023∗

sin θCKM
13 /10−3 3.71 0.14

sin θCKM
23 /10−2 4.180 0.067

δCKM 1.143 0.011∗

∆m2
21 [10−5eV2] 7.41 0.21

∆m2
31 [10−3eV2] 2.511 0.028

me [MeV] 0.4831 0.0048∗

mµ [GeV] 0.1018 0.0010∗

mτ [GeV] 1.729 0.017∗

sin2 θPMNS
12 0.303 0.012

sin2 θPMNS
13 /10−2 2.203 0.059

sin2 θPMNS
23 0.572 0.023†

λ 0.5579 0.0056∗

log ηB −9.21 0.30
∗ Errors that have been enlarged so that they are not less than
1 % of the corresponding central values.
† The best fit from NuFIT, but sin2 θPMNS

23 has two local minima.

Table 4.1: Overview of measured SM observables with their central values and
corresponding 1σ errors at the electroweak scale MZ along with ηB.
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Figure 4.1: One-dimensional χ2 projection for sin2 θPMNS
23 with two local minima.

The reason for this is that according to Eq. (4.1), the greater the precision with
which a quantity is measured, the larger its weight in the χ2. This means that, e.g.
charged-lepton masses would have a dominant influence as they are measured with
significantly greater precision than the other quantities. By enlarging the errors,
we ensure a more balanced contribution of all observables to the χ2. Moreover,
it can be assumed that the χ2 minimum for the original σ’s can be found in the
vicinity of the points obtained in this way.

4.1.3 Model prediction
Role of renormalization group running

We have not yet looked at how to make the model prediction Xpred.
i (µ). As

already mentioned in Section 3.2 and tacitly reflected in Eq. (4.1), one has to
deal with running parameters. The physics above the GUT scale is expressed in
terms of Y10, Y126 and possibly Ỹ 10. The SM extended with RHNs and ∆L governs
the physics after SSB, i.e. below the GUT scale, and it is expressed in terms of
Yu, Yd, Ye, Yν , MR, and ML. These Yukawa matrices of different models can
be translated into each other using the matching relations (3.8)–(3.13) or (3.18)–
(3.23), which are valid at the GUT scale. These relations are thus crucial both for
transitioning between the high- and low-energy parameters and for constraining
the parameter space of the SO(10).

Once a specific set of Y10, Y126 (and Ỹ 10) of SO(10) is selected, one can trans-
late them into Yukawa matrices of extended SM and then extract the SM ob-
servables as usual. However, their values are thus obtained at the GUT scale,
let us say at MGUT ∼ 1016 GeV, whereas they are to be compared with values
in Tab. 4.1, which are at the MZ scale, i.e. at scale fourteen orders of magni-
tude lower. This requires solving a set of coupled RGEs for the EFT valid below
the GUT scale, i.e. in our case the SM with RHNs and ∆L. These RGEs are
listed in Appendix B. For solving RGEs and for extracting the SM observables
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from Yukawa matrices, we use the available REAP/MixingParameterTools pack-
age [61] for Mathematica. At the same time, we work in a scheme in which the
running of VEVs can be ignored.

The form of RGEs reflects the sequence of sub-GUT EFTs, and is influenced
also by the field content. One can choose from various setups – regarding the
particular symmetry-breaking chain, the position of intermediate breaking scales
that may be other free parameters, position of MGUT, and a type of the seesaw
mechanism.

Further, we consider both contributions to neutrino masses, i.e. the combi-
nation of seesaw types I and II (1.8). Consequently, regarding the field content,
in addition to the fields already present in the pure SM, we have to take into
account the heavy RHNs and the heavy ∆L. Here comes a limitation of REAP.
Although REAP includes a package of RGEs for SM with 3 heavy RHNs, it does
not include the effects of ∆L – neither the running of Y∆ nor the type-II seesaw
mechanism are included. Nevertheless, the effect of ∆L on the running seems to
be small across different fits [29, 62], and seesaw type II can be imitated using
a non-zero κ at MGUT, see Eqs. (A.5) and (A.6).

Once the RGEs are defined, we can proceed to the fitting procedure of model
parameters. There are two opposing approaches to fitting the model to low-
energy data: bottom-up and top-down approach. In the bottom-up approach, we
start from low-energy data, evolve them through RGEs up to high energies and
there we minimize χ2. The advantage is that we start from well-known values.
On the other hand, there is an ambiguity in reconstruction of Yukawa matrices
from these values (e.g., we have to ensure the Yukawa matrices Y10 and Y126 to
be symmetric). And there are other disadvantages. We do not know how the
uncertainties evolve to high energies. This would require employment of Monte-
Carlo sampling of points into 1σ intervals of low-energy data and to evolve these
points, thereby mapping the 1σ errors to the high-energy scale. Further, we do
not know at which scales to add the heavy fields. And finally, this approach is
useless for symmetry breaking with intermediate breaking stages.

In the top-down approach, we start from a high-energy theory, evolve the
parameters down to low energies and there we minimize χ2. Thus, we do not
know what values to start from. Then one has to sample points randomly at high
energies, for each of them compute RGEs and repeat this procedure iteratively
until a satisfactory fit is achieved. On the other hand, this approach properly
takes into account the thresholds at which heavy fields are integrated out and it
is applicable to general symmetry breaking chains. In our analysis, we perform
the top-down approach.

Prediction for the baryon asymmetry

In Sec. 2.4, we introduced the formalism for leptogenesis in terms of BEs (2.9) or
DME (2.21) for evolution of number densities NN i

R
and B − L asymmetry NB−L.

These equations have to be solved in order to obtain the yield of leptogenesis.
The relation between ηB and N f

B−L is given by Eq. (2.25).
As already mentioned above, for numerical solution of BEs, we employ python

package ULYSSES [44, 45]. In our analysis, we use the model in ULYSSES labeled
as 3DME [44, 50] together with the default settings for initial conditions, which
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means that we set the initial abundances of RHNs and lepton asymmetry number
densities to zero. The 3DME model provides DME (2.21).

Inputs for ULYSSES are the Yukawa matrix Yν at B−L breaking scale MB−L ∼
M3 and RHN masses Mi. It is important to note here that Yν evolves like
other parameters according to RGEs, but this running is not incorporated in
ULYSSES. Nevertheless, the evolution is solved over z ∈ ⟨10−1, 102⟩, i.e. T ∈
⟨10M1, 10−2M1⟩. At leading order, we can neglect such a short running of three
orders.

4.2 Strategy of the fitting procedure
Let us summarize schematically our strategy of the fitting the model parameters
to low-energy data:

1. We sample points in the parameter space of the SO(10) models (3.6) and
(3.17) at MGUT = 2 × 1016 GeV. This part is described in detail in the next
Sec. 4.3.

2. Using the matching conditions (3.8)–(3.13) or (3.18)–(3.23) and Eqs. (A.5)
and (A.6), we construct the SM Yukawa matrices and Yν , MR, and κ at
MGUT.

3. For all sampled points, we solve RGEs from MGUT to MZ, numerically using
the REAP package. In particular, we solve two-loop RGEs of Yu, Yd, Ye, and
λ, and one-loop RGEs of Yν , MR, and κ (since the two-loop version is not
yet available). The list of RGEs is in Appendix B.

4. We send Yukawa matrices Yν at the seesaw scale MB−L ∼ M3 and RHN
masses Mi as inputs to ULYSSES and compute ηB.
It is important to consider at this step whether BEs needs to be solved for
every point and during the whole fitting procedure, as the evolution of BEs
is more time demanding than the RGE evolution. One may choose from
two options:

(a) ηB is included in the computation of χ2. This means that the points
are pushing to a region of the parameter space with both good flavour
fits and good ηB. In this case, we have no choice but to compute ηB

in every iteration. Nevertheless, for wrong flavour fits, we do not need
to have precise ηB. Instead, it would be more efficient to estimate ηB

e.g. from Eq. (2.26) without turning on ULYSSES and start to compute
full-fledged BEs or DME after achieving good enough χ2.

(b) ηB is not included in the computation of χ2. This means that the points
are pushing to a region of the parameter space with good flavour fits
independent of ηB. In this case, it is most efficient to compute ηB after
the fitting procedure. This approach reveals ηB in the region of the
best flavour fit.

5. At the MZ scale, we construct the SM observables using the MixingPara-
meterTools package. Apart from that listed in Tab. 4.1, we can construct
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observables which have not yet been measured (such as δCP or light neutrino
masses) and thus make a prediction for future experiments.

6. The predictions for quark and charged-lepton masses, quark and leptonic
mixing angles, CKM phase, neutrino mass squared differences, Higgs quartic
coupling, and possibly log10 ηB are then compared with values in Tab. 4.1
by computing the χ2 function.

7. To find the parameter values that provide the best fit to the measured
data, we employ the optimization algorithm of differential evolution. It
finds a new better generation of points. The procedure is then repeated
from point 1. until a satisfactory fit is achieved. We use χ2/n ≤ 1 as the
condition for satisfactory fit, where n is the number of observables.

8. We scan the region of the parameter space around the minimum of χ2.
To this end, we iterate the above procedure further and track all sampled
points, thus collecting a set of satisfactory configurations. We add another
step: once a point achieves a certain threshold, it is stored and substituted
by a random configuration with perturbed inputs.

4.3 Parameter space

4.3.1 Gauge couplings
An integral part of the procedure described above is to define the parameter space
and how to explore it efficiently.

Regarding the SM gauge couplings, we perform a bottom-up approach to
evolve their values (3.1), (3.2) and (3.3) at MZ = 91.1876 GeV up to MGUT =
2 × 1016 GeV using two-loop RGEs (B.2), (B.3), and (B.11) together with an ap-
proximation that the leading Yukawa-sector contribution to the gauge β-functions
at the two-loop level comes from the top Yukawa coupling (cf. Eq. (B.11)), i.e.,

Yu ∼ 1
v

⎛⎜⎝0 0 0
0 0 0
0 0 mt

⎞⎟⎠ , Yd ∼ Ye ∼ Yν ∼

⎛⎜⎝0 0 0
0 0 0
0 0 0

⎞⎟⎠ . (4.4)

The seesaw parameters can be estimated in this very crude approximation as
follows:

κ ∼

⎛⎜⎝0 0 0
0 0 0
0 0 0

⎞⎟⎠ , MR ∼ MGUT

⎛⎜⎝1 0 0
0 1 0
0 0 1

⎞⎟⎠ (4.5)

And we use the low-energy value of λ, see below.
In this way, we obtain very accurate values of the gauge couplings at MGUT,

the variations of which and impact of these variations on other parameters caused
by the evolution of full-fledged RGEs back to MZ would be next-to-leading-order
effect. Thus we can fix the following high-energy values of gauge couplings (in
the convention (B.1)) obtained by just described bottom-up approach

g3(MGUT) = 0.5237, g2(MGUT) = 0.5226, g1(MGUT) = 0.5803, (4.6)
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and use them as fixed initial conditions for the subsequent top-down evolution of
full-fledged RGEs. Otherwise they should properly be part of the fitting proce-
dure.

Moreover, as a by-product one gets a naive guess on the top Yukawa coupling
and λ at MGUT

yt(MGUT) ≈ 0.417, λ(MGUT) ≈ −0.044. (4.7)
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Figure 4.2: Two-loop running of the SM gauge couplings.

4.3.2 Fitted parameters
The main inputs are the Yukawa matrices Y10, Y126 and possibly Ỹ 10 at MGUT,
VEVs, and λ. For the Yukawa matrices, we decompose each of their elements
into an absolute value and a phase. We sample the latter uniformly from ⟨0, 2π⟩,
but instead of absolute values, we sample uniformly their logarithmic values. At
the same time, we work in the basis where Y10 is a real and positive diagonal
matrix and Y126 and Ỹ 10 are complex symmetric matrices.

Generally complex VEVs v10
u , v10

d , v126
u , and v126

d can be chosen such that v10
u

and v10
d are real and v126

u and v126
d are complex. We decompose the complex ones

into an absolute value and a phase. The remaining VEVs v126
R and v126

L are real.
Except for v126

R , these VEVs have to be sampled so as to satisfy the normaliza-
tion (3.15). So, we fix one of these VEVs, namely v10

u (we have this freedom thanks
to the normalization condition), generate the remaining ones and normalize them
according to the Eq. (3.15). At the same time the normalization (3.15) implies
that absolute values of these VEVs lie in the interval ⟨0, 246⟩ GeV. However, based
on previous research [29], v126

L seems to be very small, so its upper bound can be
set much lower. On the other hand, v126

R is assumed to be extremely large, since
it corresponds to the seesaw scale. Thus, we sample v126

R and v126
L from the log-

arithmic distribution: log (v126
R /GeV) ∈ ⟨11, 15⟩ and log (v126

L /GeV) ∈ ⟨−16, −6⟩.
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The absolute values and phases of the remaining VEVs are sampled uniformly
from ⟨0, 246⟩ GeV and ⟨0, 2π⟩, respectively.

Further, we assume, that Y10 is hierarchical,

(Y10)11 ≲ (Y10)22 ≲ (Y10)33, (4.8)

which in combination with the assumption that the SM Higgs projection is pre-
dominantly in v10

u and concerning our guess for top-quark Yukawa coupling (4.7)
give

(Y10)33 ∼ yt(MGUT). (4.9)
Thus Y10 can be sampled as follows:

−8 ≲ log (Y10)11 ≲ log (Y10)22 ≲ log (Y10)33, −1 ≲ log (Y10)33 ≲ 0. (4.10)

In the case of Y126, we do not have such straightforward constraints. First,
the perturbativity has to be maintained. Second, based on Eq. (3.12), Y126 says
something about the mass spectrum of RHNs. One can do the Takagi decompo-
sition of the Yukawa matrix Y126, Y diag.

126 = UT Y126U ; then v126
R Y diag.

126 corresponds
to the mass spectrum of the RHNs. We assume hierarchical RHNs1,

M1 < M2 < M3 ≲ v126
R ↔ (Y diag.

126 )11 < (Y diag.
126 )22 < (Y diag.

126 )33 ≲ 1. (4.11)

Moreover, in this case, leptogenesis suggests a lower bound on the mass of the
lightest of the RHNs – the Davidson-Ibarra limit [43]:

M1 ≳ 109 GeV. (4.12)

When sampling Y126, we shall take into account constraints (4.11) and (4.12).
In the case of Ỹ 10, we have just the perturbativity condition. We have no

constraints on phases of elements of Y126 and Ỹ 10.
Last but not least, we can make the following estimate. In the model (3.17),

one gets from Eqs. (3.19) and (3.21) the following relation

Tr
(︂
YdY †

d

)︂
+ 1

3Tr
(︂
YeY

†
e

)︂
= 4

3Tr
(︂
Y10Y

†
10

)︂ ⃓⃓⃓⃓⃓v10
d

v

⃓⃓⃓⃓
⃓
2

+ 4Tr
(︂
Y126Y

†
126

)︂ ⃓⃓⃓⃓⃓v126
d

v

⃓⃓⃓⃓
⃓
2

. (4.13)

Evaluating the traces, one gets using Eq. (3.22)

∑︂
i={d,s,b}

y2
i + 1

3
∑︂

i={e,µ,τ}
y2

i = 4
3Tr

(︂
Y10Y

†
10

)︂ ⃓⃓⃓⃓⃓v10
d

v

⃓⃓⃓⃓
⃓
2

+ 4
(v126

R )2

3∑︂
i=1

M2
i

⃓⃓⃓⃓
⃓v126

d

v

⃓⃓⃓⃓
⃓
2

, (4.14)

which in the leading order gives

r2
1m2

b(MZ) + r2
2
3 m2

τ (MZ) ≃ 4
3y2

t (MGUT)
⃓⃓⃓
v10

d

⃓⃓⃓2
+ 4

⃓⃓⃓
v126

d

⃓⃓⃓2
, (4.15)

where we expressed the relation in terms of known values – masses of bottom
and τ at MZ, and yt at MGUT from the estimate (4.7). We introduced rescaling
factors r1 ≈ 0.4 and r2 ≈ 0.9 coming from the running of bottom and τ Yukawa

1In resonant leptogenesis, RHNs are quasi-degenerate.
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couplings, respectively, from MZ to MGUT. Since all terms in Eq. (4.15) are
quadratic, one thus gets ⃓⃓⃓

v10
d

⃓⃓⃓
≲ 3.0 GeV, (4.16)⃓⃓⃓

v126
d

⃓⃓⃓
≲ 0.7 GeV. (4.17)

These results should not be taken as constraints for |v10
d | and |v126

d |, since we
made some approximations. Nevertheless, they indicate that down-type VEVs
may prefer small values. For potentially more efficient exploration, we can sample
these VEVs in intervals (4.16) and (4.17).

The last remaining parameter is λ. We sample this parameter uniformly across
the interval ⟨−0.5, 0.5⟩.
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5. Results
Before proceeding to the main results of our research, we would like to make
a consistency check and test the ability of our code to reproduce earlier results.
Our setup shares several features with that examined by Ohlsson and Pernow [29].
These include approximate breaking chain (3.7), the value of MGUT, neutrino
mass generation via the combination of seesaw types I and II, normal neutrino
mass ordering, and the top-down approach employed for fitting. On the other
hand, as far as only the flavour fits are concerned, the main differences are that we
use low-energy data that has been updated since the article [29] was written and
we impose more stringent threshold than Ohlsson and Pernow on their relative
errors (1 % instead of 5 %). Further, for most of the parameters, we employ two-
loop instead of one-loop RGEs and at the same time, we do not include the proper
running of ∆L. However, in the results of [29], ∆L is integrated out right at the
beginning of the RGE evolution, which is consistent with our approach.

In case of pure type-I seesaw mechanism and for the resulting high-energy pa-
rameters provided in the article, our code, despite the aforementioned differences,
yields predictions that differ from those reported therein within 4 %, except for
CKM phase δCKM, which seems to deviate by π. The situation is worse in case of
the combined seesaw, where we are unable to reproduce reasonable χ2.

5.1 Two-Yukawa model

5.1.1 Flavour fits
One of the main results of our research is the scan of the 23-dimensional parameter
space of the model (3.17), a set of configurations consistent with the low-energy
data listed in Tab. 4.1. This is also one of the main contributions of this thesis,
as scientific papers usually report only the best fit (see, e.g., [28, 29, 62]).

In this sense, our research closely aligns with the research of Mummidi and
Patel [33]. So, we will compare our results particularly with Ref. [33] throughout
the subsequent discussion.

Yet there are some differences in both approaches. The authors of Ref. [33]
consider the model (3.17) with the seesaw mechanism type I only and with the
two-Higgs-doublet model (2HDM) as the sub-GUT EFT. At the same time, they
employ the bottom-up approach using one-loop RGEs. The leptogenesis dynamics
is described there by both numerical and analytical solutions of DME (2.21), the
latter of which was derived under the assumption of N2

R dominated leptogenesis.
Figs. 5.1 and 5.2 show the set of approximately 63, 000 viable configurations

projected onto the log (M1/GeV)-log (M2/GeV) plane and the log (M2/GeV)-
log (M3/GeV) plane, respectively. From these flavour fits, ηB was excluded and
those points were accepted that satisfy χ2/n ≤ 1, where n = 19 and χ2 is color-
coded in the graphs. Although the dataset includes over 63, 000 points, it is not
enough to fully cover the entire area where χ2 ≤ 19, so the scan says nothing
about bounds on the allowed ranges of parameters and predictions. Nevertheless,
it indicates, e.g., the flavour fits to prefer hierarchical spectra of RHN masses,
consistent with previous fits [29, 33]. However, our results suggest a preference
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Figure 5.1: Configurations with χ2 ≤ 19 in the 23-dimensional parameter space
of the model (3.17) projected onto the log (M1/GeV)-log (M2/GeV) plane where
χ2 is color-coded. For these flavour fits, ηB is not included in χ2. The dataset
shown contains approximately 63, 000 configurations.
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Figure 5.2: The same set of configurations as in Fig. 5.1 projected onto the
log (M2/GeV)-log (M3/GeV) plane where χ2 is color-coded.
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for heavier N1
R compared to [33].

In Tab. 5.1, we present the obtained ranges for the inputs in the used parame-

Parameter Mean σ

log10 (Y10)11 −3.7113 0.0098
log10 (Y10)22 −2.4555 0.0051
log10 (Y10)33 −0.5003 0.0032
log10 |(Y126)11| −3.028 0.016
arg (Y126)11 5.848 0.024
log10 |(Y126)12| −2.5148 0.0099
arg (Y126)12 4.679 0.020
log10 |(Y126)13| −1.473 0.011
arg (Y126)13 2.7931 0.0078
log10 |(Y126)22| −1.4403 0.0093
arg (Y126)22 0.0022 0.0016
log10 |(Y126)23| −1.0391 0.0096
arg (Y126)23 3.8649 0.0085
log10 |(Y126)33| −0.774 0.010
arg (Y126)33 0.286 0.034
v10

u 244.397 0.062
v10

d 3.635 0.024
|v126

u | 27.79 0.55
arg v126

u 2.9491 0.0073
|v126

d | 0.876 0.018
arg v126

d 2.8605 0.0090
log10 v126

R 12.728 0.032
log10 v126

L −11.153 0.030
λ −0.042 0.019

Table 5.1: Ranges for the inputs in the two-Yukawa model (3.17) obtained from
the scan and reproducing satisfactory flavour fits. The inputs correspond to the
used parametrization and VEVs are normalized according to Eq. (3.15).

trization (with VEVs normalized according to Eq. (3.15)) reproducing satisfactory
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flavour fits with the best flavour fit being reproduced for

Y10 =

⎛⎜⎝1.998 × 10−4 0 0
0 3.487 × 10−3 0
0 0 0.3183

⎞⎟⎠ ,

Y126 =

⎛⎜⎝ (8.65 − i4.45) × 10−3 6.3 × 10−4 − i2.940 × 10−2

6.3 × 10−4 − i2.940 × 10−2 0.3509 + i2.5 × 10−4

−0.3174 + i0.1205 −0.675 − i0.615
−0.3174 + i0.1205
−0.675 − i0.615
1.592 + i0.410

⎞⎟⎠× 10−1,

v10
u = 244.255 GeV, v10

d = 3.609 GeV,

v126
u = (−28.59 + 4.95i) GeV, v126

d = (−0.862 + 0.2261i) GeV,

v126
R = 4.69 × 1012 GeV, v126

L = 2.98 × 10−9 GeV,

(5.1)

where numbers of decimal digits stem from standard deviations of parameters in
the dataset of obtained configurations.

Note, that there are 24 parameters in Tab. 5.1, but only 23 parameters were
fitted. This is correct, because we used also normalization condition (3.15) re-
ducing the number of free parameters by 1.

The predictions corresponding to the best fit are summarized in Tab. 5.2. It
includes predictions and pulls for the SM observables and ηB. It also includes
predictions for light and heavy neutrino masses and remaining parameters of
PMNS matrix.

Based on Fig. 5.3, the dominant contributions to χ2 come from the lepton
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Figure 5.3: Pulls of the SM observables in the set of configurations from Figs.
5.1 and 5.2.

mixing angles and the down quark mass. In particular, it is worth mentioning
the case of sin2 θPMNS

23 . Fig. 5.4, when comparing with Fig. 4.1, shows a strong
preference for the second local minimum. This preference is indicated also by
the best fit reported in Ref. [29], although the approach employed therein does
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Observable Prediction Pull

mu [MeV] 1.23 −7.24 × 10−3

mc [GeV] 0.632 0.686
mt [GeV] 167.3 −0.593
md [MeV] 2.46 −1.08
ms [MeV] 54.92 0.381
mb [GeV] 2.841 0.0851
sin θCKM

12 0.2250 −0.0363
sin θCKM

13 /10−3 3.69 −0.148
sin θCKM

23 /10−2 4.161 −0.276
δCKM 1.147 0.379
∆m2

21 [10−5eV2] 7.54 0.613
∆m2

31 [10−3eV2] 2.502 −0.315
me [MeV] 0.4843 0.253
mµ [GeV] 0.1021 0.285
mτ [GeV] 1.727 −0.117
sin2 θPMNS

12 0.311 0.696
sin2 θPMNS

13 /10−2 2.138 −1.10
sin2 θPMNS

23 0.432 −1.48
λ 0.5573 −0.102

χ2 − 6.93
log ηB −10.47 −4.19
m1 [meV] 4.21 −
m2 [meV] 9.65 −
m3 [meV] 50.2 −
M1 [GeV] 1.01 × 1010 −
M2 [GeV] 2.12 × 1011 −
M3 [GeV] 9.68 × 1011 −
δCP 4.64 −
ϕ1 5.16 −
ϕ2 1.77 −

Table 5.2: Predictions obtained for the best fit of the two-Yukawa model (3.17)
with χ2 = 6.93. In addition to the SM observables, several other predictions are
also listed.
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Figure 5.4: Histogram of sin2 θPMNS
23 in the set of configurations from Figs. 5.1

and 5.2.

not account for the second local minimum. In contrast, Mummidi and Patel [33]
report the best fit preferring the global minimum. This may be due to the fact
that they not only do not take into account the shape of the one-dimensional
χ2 projection for sin2 θPMNS

23 (Fig. 4.1), properly reflecting experimental measure-
ments, but that they also use a different approach to RGE evolution than ours
and [29].

Let us also provide here the histogram of log10 (v126
R /GeV), see Fig. 5.5. When
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Figure 5.5: Histogram of log10 (v126
R /GeV) in the set of configurations from

Figs. 5.1 and 5.2. It is consistent with earlier results,

comparing it with histogram of log10 (v126
L /GeV) in Fig. 5.6, one may notice, that

both histograms complement each other as expected, in order to reproduce given
light neutrino masses or, more precisely, mass-squared differences.
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Figure 5.6: Histogram of log10 (v126
L /GeV) in the set of configurations from

Figs. 5.1 and 5.2.

On the contrary, it is surprising that without explicitly solving full RGEs
(considering full-fledged symmetry breaking pattern) taking into account correct
running and unification of gauge couplings, i.e. without incorporation of B − L
breaking, we obtain the B − L breaking scale consistent with earlier results that
take into account proper running (cf. [26]).

Furthermore, based on the ranges of inputs in Tab. 5.1 (see also the in-
puts (5.1)), not only is matrix Y10 hierarchical, but matrix Y126 also shows some
hierarchical structure. Regarding the VEVs, their values align with our guess on
their hierarchy made in the previous chapter (cf. (4.16) and (4.17)).

5.1.2 Leptogenesis
When investigating successful leptogenesis, we focused on the case of pure flavour
fits and glossed over why we did not pay attention to fits incorporating the yield
of leptogenesis. Both of these approaches bring valuable information. The former
case says something about the success of leptogenesis in the region of around the
best flavour fit.

Figures 5.7 and 5.8 provide a complementary view to Figures 5.1 and 5.2,
color-coding ηB of the viable configurations. Now, it is clear, why we did not
pay attention to the fitting incorporating leptogenesis. Independently on the
result of leptogenesis, pure flavour fits pushed the sampled points to the region
with satisfactory ηB. Given the complexity of the studied problem, this seems
like a miracle. It is important to remind that we only care about an order of
magnitude agreement as used approximations may change the result by tens of
percent.

When comparing Figs. 5.7 and 5.8 with the previously presented Figs. 5.1
and 5.2, one may notice that there are missing points, particularly in the bottom
left corner in Figs. 5.7 and 5.8. Figs. 5.7 and 5.8 contain approximately 55, 000
configurations from the original dataset. The missing points are problematic,
because ηB for these configurations is not reproducible on different computers
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Figure 5.7: The same as in Fig. 5.1 with color-coded ηB. From the previous
dataset, configurations in the unstable region are excluded. The dataset shown
contains approximately 55, 000 configurations.

11.25 11.30 11.35 11.40 11.45

11.95

12.00

12.05

12.10

log10(M2/GeV)

lo
g
1
0
(M

3
/G
e
V
)

log10ηB

-10.1

-10.0

-9.9

-9.8

-9.7

-9.6

Figure 5.8: The same as in Fig. 5.7 with projection onto the log (M2/GeV)-
log (M3/GeV) plane.
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(unlike RGE evolution). The results may differ by several orders of magnitude.
This is a fundamental flaw of the employed procedure and it shows that there
is a procedure in the code that depends on machine precision. If ULYSSES is
unstable in this region of the parameter space, this would lead to the observed
differences. Despite this complication, we have an extensive dataset.

As expected, Figs. 5.7 and 5.8 reveal trends opposite to that one in Figs. 5.1
and 5.2, since higher ηB requires heavier RHNs.

Fig. 5.9 then shows the evolution of B −L asymmetries and ηB for the largest
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Figure 5.9: Solution of DME (2.21) for the largest ηB achieved in the set of
configurations shown in Figs. 5.7 and 5.8.

final ηB achieved in the set of configurations shown in Figs. 5.7 and 5.8. It shows
the dominant contribution from decays of the second lightest RHN as assumed
by Mummidi and Patel [33]. The dominance of N2

R decays is also shown by
Figs. 5.10, 5.11, 5.12, and 5.13. Figs. 5.10 and 5.12 show the CP asymmetries
from N1

R and N2
R decays, respectively, computed from Eq. (2.5) for the original

set of configurations shown in Figs. 5.1 and 5.2. For the same dataset, Figs. 5.11
and 5.13 show the washout for N1

R and N2
R decays, respectively. The decay

parameter is computed from Eq. (2.14). Figs. 5.10 and 5.11 imply, based on
Eq. (2.26), that N1

R decays themselves are unable to reproduce sufficiently high
ηB and that their contribution to the total ηB is sub-dominant compared to N2

R

decays (cf. Figs. 5.12 and 5.13).

5.2 Three-Yukawa model
It is already clear from previous results for two-Yukawa fits that the three-Yukawa
model (3.6) has a solution – the previous one which can be reproduced for Ỹ 10
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Figure 5.10: The CP asymmetry from N1
R decays for the set of configurations

shown in Figs. 5.1 and 5.2.
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Figure 5.11: Washout in N1
R decays.
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Figure 5.12: The CP asymmetry from N2
R decays for the set of configurations

shown in Figs. 5.1 and 5.2.
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Figure 5.13: Washout in N2
R decays.
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going to zero matrix.
The three-Yukawa model is more flexible to accommodate low-energy data

than the two-Yukawa one, as we parametrize it by 35 free parameters. This
enables to fit the model to the low-energy data practically with zero χ2 with
its minimum being likely wider than in the previous case. Given the previous
results and the fact that we would definitely get the desired result of successful
leptogenesis compatible with flavour fits, we do not repeat the previous analysis.

Nevertheless, as far as we know, no one has dealt with this model yet and we
are interested in what influence the perturbation in the form of Ỹ 10 could have
on the characteristics of two-Yukawa model. So instead of scans, we provide the
best flavour fit only. In Tab. 5.3, we provide predictions for the best flavour fit
of this model corresponding to the following inputs

Y10 =

⎛⎜⎝2.75 × 10−6 0 0
0 6.70 × 10−6 0
0 0 0.494

⎞⎟⎠ ,

Ỹ 10 =

⎛⎜⎝(−2.65 − i2.82) × 10−3 0.190 − i0.269 0.244 − i0.278
0.190 − i0.269 −0.422 + i0.281 −1.35 + i0.273
0.244 − i0.278 −1.35 + i0.273 (−1.55 + i0.352) × 10−6

⎞⎟⎠
× 10−4,

Y126 =

⎛⎜⎝(−1.58 + i1.47) × 10−8 (3.25 + i3.05) × 10−8 0.162 − i0.320
(3.25 + i3.05) × 10−8 −0.733 + i1.01 0.932 − i0.698

0.162 − i0.320 0.932 − i0.698 6.53 − i2.45

⎞⎟⎠
× 10−3,

v10
u = 151 GeV, v10

d = 2.35 GeV,

v126
u = (−187 + 45.6i) GeV, v126

d = (−18.8 − 14.6i) GeV,

v126
R = 3.17 × 1014 GeV, v126

L = 3.03 × 10−8 GeV.
(5.2)

The value of χ2 in Tab. 5.3 is computed from pulls according to (4.1), i.e. χ2 ̸=
2.98 × 10−2.

In this case, Ỹ 10 is not negligible, but it is still sub-dominant compared to
Y10. It is interesting, that Ỹ 10 significantly changes some of the parameters, but
it leaves the hierarchies intact. Now, Y10 has comparable values for the first and
second generation and they are smaller by two and three orders, respectively.
On the other hand, the third generation changed just a little. Y126 still has
hierarchical structure and it is still sub-dominant, now it is even much smaller,
by two to seven orders. Down-type VEVs are still sub-dominant, but VEVs
associated with 126H are amplified at the expense of v10

u . v126
R and v126

L are larger
as expected, since they have to compensate smaller Y126.

Regarding the predictions, light neutrino masses are almost unchanged and
RHN masses remain hierarchical with lightest RHN mass being smaller by one or-
der. Remarkably enough, ηB is worse than in the two-Yukawa model (cf. Figs. 5.7
and 5.8), but only by two orders, although ηB was not fitted.
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Observable Prediction Pull/10−3

mu [MeV] 1.23 −0.975
mc [GeV] 0.620 1.23
mt [GeV] 168.3 1.20
md [MeV] 2.67 0.750
ms [MeV] 53.15 −1.81
mb [GeV] 2.839 −2.41
sin θCKM

12 0.2251 1.12
sin θCKM

13 /10−3 3.71 −1.02
sin θCKM

23 /10−2 4.180 0.480
δCKM 1.143 0.798
∆m2

21 [10−5eV2] 7.41 2.02
∆m2

31 [10−3eV2] 2.511 0.717
me [MeV] 0.4831 −1.28
mµ [GeV] 0.1018 2.31
mτ [GeV] 1.729 −0.571
sin2 θPMNS

12 0.303 −0.225
sin2 θPMNS

13 /10−2 2.203 0.241
sin2 θPMNS

23 0.572 0
λ 0.5579 −1.03

χ2 − 29.8
log ηB −11.74 −8.43
m1 [meV] 3.70 −
m2 [meV] 9.37 −
m3 [meV] 50.2 −
M1 [GeV] 5.04 × 109 −
M2 [GeV] 4.46 × 1011 −
M3 [GeV] 2.22 × 1012 −
δCP 1.21 −
ϕ1 1.12 −
ϕ2 4.52 −

Table 5.3: Predictions obtained for the best fit of the three-Yukawa model (3.6)
with χ2 = 2.98×10−5. In addition to the SM observables, several other predictions
are also listed.
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Conclusion
This thesis provides a comprehensive analysis of leptogenesis in minimal and
potentially realistic grand unified models based on non-SUSY SO(10). Leptoge-
nesis as a natural consequence of the seesaw extension of the SM provides and
elegant explanation for the baryon asymmetry of the Universe. On the con-
trary, SO(10) models provide an attractive and more predictive framework for
leptogenesis, since it enables quark-lepton unification, it encompasses the seesaw
mechanism, and it is able to reproduce experimental measurements. We focus on
the Yukawa sector composed of complex scalar representations 10H and 126H ,
thereby enabling to express the sub-GUT effective field theory in terms of three
complex symmetric Yukawa matrices Y10, Y126 and Ỹ 10. By imposing additional
global Peccei-Quinn symmetry, one can further reduce the parameter space. We
consider both two- and three-Yukawa models with effectively direct symmetry
breaking of SO(10) down to the SM and with seesaw mechanism types I and II
for generating non-zero light neutrino masses.

We investigate the possibility of successful leptogenesis compatible with fla-
vour fits of these models to updated low-energy data, thereby strictly constraining
the parameter space. To this end, we employ the top-down RGE evolution (in
order to correctly account for mass thresholds) and evolution of density matrix
equations. At the same time, we imitate the seesaw type II as a perturbation of
initial condition for effective dimension-five operator and we assume RHN-driven
leptogenesis only.

The unique and the most valuable outcomes of our research are parameter
scans in the region around the best flavour fit in the two-Yukawa model. Perhaps
one of the most striking results of this analysis is that although the fitting proce-
dure was performed independently of the yield of leptogenesis, we get significant
set of configurations with the value of BAU within an order of magnitude of the
measured value. This remarkable outcome, given the complexity of the problem,
provides strong support for the viability of the two-Yukawa SO(10) model. In
addition, leptogenesis in this region appears to be dominated by decays of the
second lightest RHN as assumed by Mummidi and Patel [33]. However, our study
also reveales some limitations. In certain regions of the parameter space, we en-
countered issues when reproducing ηB on different computers, highlighting the
need for more stable methods.

A detailed analysis of the obtained set of configurations reveales several other
interesting features. The resulting scan shows preference for hierarchical spectra
of RHN masses, aligning with previous studies [29, 33]. However, it prefers heav-
ier N1

R compared to [33] considering a similar setup. In the observed region of the
parameter space, the scan shows opposing trends in terms of flavour fits and lepto-
genesis – trend towards lower values of RHN masses in the former case and trend
towards larger values in the latter case. The analysis of χ2 shows dominant pulls
from down-quark mass and lepton mixing angles. In particular, it reveales that
sin2 θPMNS

23 prefers the second local minimum, aligning with [29], while contrasting
with [33] that favors the global minimum. This finding highlights the importance
of considering the full shape of χ2 that reflects the experimental measurements.

A surprising finding of our research is obtaining a B −L breaking scale consis-
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tent with earlier results [26], although unlike those studies we do not incorporate
the unification of running gauge couplings and explicitly solving full RGEs with
B − L breaking. This consistency confirms the robustness of the model and sug-
gests that certain key features may be relatively insensitive to the details of the
RGE evolution.

Last but not least, we found out that not only Y10 is hierarchical, but also Y126
prefers a certain hierarchical structure, aligning with best fit parameters reported
in [29, 33]. Regarding the VEVs, v10

u is totally dominant and down-type VEVs
are sub-dominant as expected from our preliminary discussion.

These results are reproducible in the case of the three-Yukawa model for
suppressed Ỹ 10. The three-Yukawa model is more flexible to accommodate low-
energy data and ηB, so the minimum of χ2 is expected to be wider. Nevertheless,
as far as we know, no one has dealt with this model yet. Therefore, we provide
its best flavour fit. This shows that perturbation in the form of non-negligible
Ỹ 10 preserves characteristics and some predictions (like light neutrino masses) of
the two-Yukawa model. On the other hand, Ỹ 10 makes Y126 smaller and amplifies
down-type VEVs at the expense of v10

u . Remarkably, ηB is only about two orders
of magnitude worse than in the two-Yukawa model, although ηB was not fitted
as in the two-Yukawa model.

In conclusion, this thesis provides results supporting the viability and predic-
tive power of two- and three-Yukawa SO(10) models and robustness of the applied
approach. Nevertheless, future research should focus on solving full RGEs incor-
porating running of ∆L and more complicated symmetry breaking along with
gauge coupling unification. It should focus on leptogensis driven by both RHNs
and ∆L and on numerical stability. It could also explore an even wider regions in
the parameter space to potentially uncover other viable regions and/or refine the
bounds on model parameters. Investigating the model’s implications for other
areas of particle physics and cosmology, such as proton decay, could provide fur-
ther tests of its validity and predictive power. This has to do with the fact that
as we continue to push the boundaries of our understanding of the universe, mod-
els like those based on SO(10) will play a crucial role for making predictions for
upcoming experiments like Hyper-Kamiokande.
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A. Seesaw extension of the
Standard Model as an effective
field theory

A.1 The effective dimension-five operator
One can understand the SM extensions with the RHNs and/or the scalar triplet as
examples of renormalizable models governing the high-energy dynamics and the
original SM as a low-energy effective field theory (EFT). In the low-energy regime,
the manifestation of such high-energy dynamics can be viewed as d-dimensional
effective operators with d > 4.

From the scheme of higher-dimensional effective operators of the SM, the
lowest-dimensional one that can generate neutrino masses is the dimension-five
LNV Weinberg operator [63], cf. [61]:

Leff = 1
4κ(Lc

L · Φ)(LL · Φ) + h.c., (A.1)

where κ ≡ − 2
v2 Mν .

Type-I and type-II seesaw dynamics can then be viewed through two1 of the
possible renormalizable tree-level ‘openings’2 of the Weinberg operator (A.1).

A.2 Running neutrino masses
The REAP package we use for solving RGEs (see Appendix B) incorporates only
type-I seesaw mechanism – via Eq. (1.2), in a basis in which MR is diagonal.

When evolving RGEs from the GUT scale to the MZ scale, sooner or later
the energy scale µ will reach the mass scale M3. At that scale, the heaviest RHN
is integrated out and

κ → 2
(︂
Y T

ν

)︂
g3

M−1
3 (Yν)3f ≡ (3)

κgf , (A.2)

where we adopted the notation of Ref. [61]. Below M3, the effective neutrino
mass matrix is then given by

Mν = −v2

2

(︃
(3)
κ + 2

(3)

Y T
ν

(3)

M−1
R

(3)

Y ν

)︃
, (A.3)

where
(3)

Y ν is the 2×3 matrix obtained from Yν by removing the last row, and
(3)

MR

is the 2 × 2 matrix obtained from MR by removing both the last row and the last
column.

1There is one more possible realisation, related to the propagation of an SU(2)L fermion
triplet, corresponding to the seesaw type III.

2This is similar to the case of the Fermi theory, which can be understood as a low-energy
approximation of the SM. In Fermi theory, one can draw a Feynman diagram of the β decay as
a direct four-fermion interaction and open it, when going from Fermi theory towards the SM,
thereby reconstructing the W boson propagation.
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The situation is repeated up to the last threshold M1. At each threshold, κ is
updated as follows:

κgf → κgf + 2
(︂
Y T

ν

)︂
gn

M−1
n (Yν)nf ≡ (n)

κgf . (A.4)

Below M1, all RHNs are integrated out. We thus get a sequence of sub-GUT
EFTs up to the SM. In the whole sequence of EFTs, the effective neutrino mass
matrix is thus given by the running of two contributions [61],

Mν = −v2

2

(︃
(n)
κ + 2

(n)

Y T
ν

(n)

M−1
R

(n)

Y ν

)︃
, (A.5)

where n labels the EFTs with
(2)

Y ν being the 1 × 3 matrix obtained from Yν by
removing the last two rows (

(1)

MR is just M1).
κ in Eq. (A.5) is initially zero. However, by non-zero initial κ, one can imitate

type-II seesaw mechanism,
κ = − 2

v2 ML. (A.6)
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B. REAP

B.1 Conventions
The REAP package contains both one-loop and two-loop RGEs for SM with
3 RHNs (with a few exceptions, which we will come back to). Before we summa-
rize the list of used equations, two remarks are in order here concerning conven-
tions of REAP. First, REAP uses the RL instead of the LR convention. One can
translate between them by transposition (and eventually complex conjugation).
However, since Y10, Y126 and Ỹ 10 are symmetric and because of the matching con-
ditions (3.8)–(3.13) and (3.18)–(3.23), the Yukawa matrices are also symmetric.

Second, REAP uses the following convention with the unification normalization:

gs = g3, g = g2,

√︄
5
3g′ = g1. (B.1)

B.2 One-loop renormalization group equations
A general form of β function up to two-loop corrections is

(n)

βX = µ
d

(n)

X

dµ
=

(n)

β
(1)
X +

(n)

β
(2)
X , (B.2)

where X is the running parameter and
(n)

β
(1)
X and

(n)

β
(2)
X are the corresponding one-

and two-loop corrections, respectively.
One-loop RGEs for gauge couplings are

16π2β(1)
gi

= big
3
i , (b1, b2, b3) =

(︃41
10 , −19

6 , −7
)︃

. (B.3)

One-loop RGEs for SM Yukawa matrices, Yν , MR, κ, and λ are

16π2
(n)

β
(1)
Yu

= Yu

[︃3
2Y †

u Yu − 3
2Y †

d Yd − 17
20g2

1 − 9
4g2

2 − 8g2
3 +

+ Tr
(︃

3Y †
u Yu + 3Y †

d Yd + Y †
e Ye +

(n)

Y †
ν

(n)

Y ν

)︃]︃
, (B.4)

16π2
(n)

β
(1)
Yd

= Yd

[︃3
2Y †

d Yd − 3
2Y †

u Yu − 1
4g2

1 − 9
4g2

2 − 8g2
3 +

+ Tr
(︃

3Y †
u Yu + 3Y †

d Yd + Y †
e Ye +

(n)

Y †
ν

(n)

Y ν

)︃]︃
, (B.5)

16π2
(n)

β
(1)
Ye

= Ye

[︃3
2Y †

e Ye − 3
2

(n)

Y †
ν

(n)

Y ν − 9
4g2

1 − 9
4g2

2 +

+ Tr
(︃

3Y †
u Yu + 3Y †

d Yd + Y †
e Ye +

(n)

Y †
ν

(n)

Y ν

)︃]︃
, (B.6)

16π2
(n)

β
(1)
Yν

=
(n)

Y ν

[︃3
2

(n)

Y †
ν

(n)

Y ν − 3
2Y †

e Ye − 9
20g2

1 − 9
4g2

2 +

+ Tr
(︃

3Y †
u Yu + 3Y †

d Yd + Y †
e Ye +

(n)

Y †
ν

(n)

Y ν

)︃]︃
, (B.7)
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16π2
(n)

β(1)
κ = (n)

κ
(︃

−3
2Y †

e Ye + 1
2

(n)

Y †
ν

(n)

Y ν

)︃
+
(︃

−3
2Y †

e Ye + 1
2

(n)

Y †
ν

(n)

Y ν

)︃T
(n)
κ +

+
[︃
2Tr

(︃
3Y †

u Yu + 3Y †
d Yd + Y †

e Ye +
(n)

Y †
ν

(n)

Y ν

)︃
− 3g2

2 + λ
]︃

(n)
κ, (B.8)

16π2
(n)

β
(1)
MR

=
(n)

Y ν

(n)

Y †
ν

(n)

MR +
(n)

MR

(︃(n)

Y ν

(n)

Y †
ν

)︃T

, (B.9)

16π2
(n)

β
(1)
λ = 6λ2 − 9

5g2
1λ − 9g2

2λ + 27
50g4

1 + 18
10g2

1g2
2 + 9

2g4
2 + 4λTr

(︂
3Y †

u Yu +

+ 3Y †
d Yd + Y †

e Ye +
(n)

Y †
ν

(n)

Y ν

)︃
− 8Tr

(︂
3Y †

u YuY †
u Yu + 3Y †

d YdY †
d Yd +

+ Y †
e YeY

†
e Ye +

(n)

Y †
ν

(n)

Y ν

(n)

Y †
ν

(n)

Y ν

)︃
. (B.10)

It is worth recall here that matching relations (3.8)–(3.13) and (3.18)–(3.23)
are valid only at the unification scale. We mention it this time because of the
property of symmetricity of Yukawa matrices Y10, Y126 and Ỹ 10, which is trans-
lated into the symmetricity of matrices Yu, Yd, Ye, Yν , MR, and κ thanks to
these relations. However, the cross terms of the type YXY †

Y YY are symmetry non-
conserving, thus Yu, Yd, Ye, and Yν do not have to be symmetric below MGUT.

B.3 Two-loop renormalization group equations
Two-loop RGEs for gauge couplings are

(4π)4β(2)
gi

= −
3∑︂

j=1
(bjig

2
j + cijTj)g3

i , (B.11)

T =
(︂
Tr(YuY †

u ), Tr(YdY †
d ), Tr(YeY

†
e )
)︂

,

b =

⎛⎜⎝−199/50 −9/10 −11/10
−27/10 −35/6 −9/2
−44/5 −12 26

⎞⎟⎠ ,

c =

⎛⎜⎝17/10 1/2 3/2
3/2 3/2 1/2
2 2 0

⎞⎟⎠ .

Two-loop RGEs for SM Yukawa matrices and λ are

(4π)4β
(2)
Yu

= Yu

[︃3
2Y †

u YuY †
u Yu − Y †

u YuY †
d Yd − 1

4Y †
d YdY †

u Yu + 11
4 Y †

d YdY †
d Yd + Y2 ·

·
(︃5

4Y †
d Yd − 9

4Y †
u Yu

)︃
− 6

2λY †
u Yu +

(︃223
80 g2

1 + 135
16 g2

2 + 16g2
3

)︃
Y †

u Yu −

−
(︃43

80g2
1 − 9

16g2
2 + 16g2

3

)︃
Y †

d Yd − χ4 + 3
8λ2 + 5

2Y4 +
(︃ 9

200 + 29
45ng

)︃
·

· g4
1 − 9

20g2
1g2

2 + 19
15g2

1g2
3 −

(︃35
4 − ng

)︃
g4

2 + 9g2
2g2

3 −

−
(︃404

3 − 80
9 ng

)︃
g4

3

]︃
(B.12)
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(4π)4β
(2)
Yd

= Yd

[︃3
2Y †

d YdY †
d Yd − Y †

d YdY †
u Yu − 1

4Y †
u YuY †

d Yd + 11
4 Y †

u YuY †
u Yu + Y2 ·

·
(︃5

4Y †
u Yu − 9

4Y †
d Yd

)︃
− 6

2λY †
d Yd +

(︃187
80 g2

1 + 135
16 g2

2 + 16g2
3

)︃
Y †

d Yd −

−
(︃79

80g2
1 − 9

16g2
2 + 16g2

3

)︃
Y †

u Yu − χ4 + 3
8λ2 + 5

2Y4 −
(︃ 29

200 + 1
45ng

)︃
·

· g4
1 − 27

20g2
1g2

2 + 31
15g2

1g2
3 −

(︃35
4 − ng

)︃
g4

2 + 9g2
2g2

3 −

−
(︃404

3 − 80
9 ng

)︃
g4

3

]︃
(B.13)

(4π)4β
(2)
Ye

= Ye

[︃3
2Y †

e YeY
†

e Ye − 9
4Y2Y

†
e Ye − 6

2λY †
e Ye +

(︃387
80 g2

1 + 135
16 g2

2

)︃
Y †

e Ye −

− χ4 + 3
8λ2 + 5

2Y4 +
(︃ 51

200 + 11
5 ng

)︃
g4

1 + 27
20g2

1g2
2 −

−
(︃35

4 − ng

)︃
g2

2

]︃
(B.14)

(4π)4β
(2)
λ = 2

{︄
−78

8 λ3 +
(︃

54g2
2 + 54

5 g2
1

)︃
λ2

4 −
[︃(︃313

8 − 10ng

)︃
g4

2 − 117
20 g2

2g2
1 −

−
(︃687

200 + 2ng

)︃
g4

1

]︃
λ

2 +
(︃497

8 − 8ng

)︃
g6

2 −
(︃97

40 + 8
5ng

)︃
g4

2g2
1 −

−
(︃717

200 + 8
5ng

)︃
g2

2g4
1 −

(︃ 531
1000 + 24

25ng

)︃
g6

1 − 64g2
3Tr

(︂
Y †

u YuY †
u Yu +

+ Y †
d YdY †

d Yd

)︂
− 8

5g2
1Tr

(︂
2Y †

u YuY †
u Yu − Y †

d YdY †
d Yd + 3Y †

e YeY
†

e Ye

)︂
−

− 3
2g4

2Y2 + g2
1

[︃(︃63
5 g2

2 − 171
50 g2

1

)︃
Tr
(︂
Y †

u Yu

)︂
+
(︃27

5 g2
2 + 9

10g2
1

)︃
·

· Tr
(︂
Y †

d Yd

)︂
+
(︃33

5 g2
2 − 9

2g2
1

)︃
Tr
(︂
Y †

e Ye

)︂]︃
+ 5λY4 − 6λ2Y2 − λ

2 H −

− 21λTr(Y †
u YuY †

d Yd) + 20Tr
(︂
3Y †

u YuY †
u YuY †

u Yu + 3Y †
d YdY †

d YdY †
d Yd +

+ Y †
e YeY

†
e YeY

†
e Ye

)︂
− 12Tr

[︂
Y †

u Yu

(︂
Y †

u Yu + Y †
d Yd

)︂
Y †

d Yd

]︂}︂
, (B.15)

where

ng = 3, (B.16)
Y2 = Tr

(︂
3Y †

u Yu + 3Y †
d Yd + Y †

e Ye

)︂
, (B.17)

H = Tr
(︂
3Y †

u YuY †
u Yu + 3Y †

d YdY †
d Yd + Y †

e YeY
†

e Ye

)︂
, (B.18)

Y4 =
(︃17

20g2
1 + 9

4g2
2 + 8g2

3

)︃
Tr
(︂
Y †

u Yu

)︂
+
(︃1

4g2
1 + 9

4g2
2 + 8g2

3

)︃
Tr
(︂
Y †

d Yd

)︂
+

+ 3
4(g2

1 + g2
2)Tr

(︂
Y †

e Ye

)︂
, (B.19)

χ4 = 9
4Tr

(︃
3Y †

u YuY †
u Yu + 3Y †

d YdY †
d Yd + Y †

e YeY
†

e Ye − 1
3Y †

u YuY †
d Yd +

+ Y †
d YdY †

u Yu

)︂
. (B.20)

Two-loop RGEs of Yν , MR and κ are not implemented in REAP package yet.
Nevertheless, they have a mild running already at one-loop level.
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