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Introduction
Operadic categories were introduced in [1] as a generalisation of various

“operad-like” structures, including classical operads and their variants – cyclic,
modular, etc. – as well as various forms of PROPs and other similar structures.
We refer to [2] for an overview of these objects. These categories formalize the
information determining an operad-like structure of a given type along with its
algebras. Morphisms in operadic categories possess fibers, whose properties are
modeled by the preimages of maps between finite sets. Each operadic category O
has a corresponding category of its operads. An archetypal example of an operadic
category is the skeletal category sFSet of finite sets, whose operads are classical
single-coloured symmetric operads.

This thesis introduces the concept of the wreath product of operadic categories.
For operadic categories A and B, their wreath product, denoted by A ≀ B, is a
category with objects determined by an object a ∈ A and a suitable sequence
of objects b1, ..., bk ∈ B. The definition of this product was outlined by Michael
Batanin during his tenure at the Mathematical Institute of the CAS in Prague,
motivated by an apparent connection to the Boardman-Vogt product of symmetric
operads [3].

Plan. In Chapter 1, we provide a number of auxiliary definitions for the
category sFSet and recall the definitions of operadic categories and related notions.
Some definitions have been revised to reflect minor corrections of the original
sources, which are duly noted.

In Chapter 2, we define the wreath product of an operadic category A and a
connected operadic category B and prove that the resulting category is also an
operadic category. We discuss the necessity of the connectivity requirement for B
and explore potential relaxations. We demonstrate that A ≀ B is a non-commutative
associative operation and that for the categories of k-trees Ωk and l-trees Ωl,

Ωk ≀ Ωl
∼= Ωk+l.

The main objective of Chapter 3 is to establish a relationship between the
wreath product of operadic categories and the Boardman-Vogt tensor product of
single-coloured symmetric operads with a unit. We do this in Proposition 39 by
stating that for single-coloured operads X ,Y there exists an epimorphism from
X ⊗BV Y to an operad constructed from the wreath product of suitable categories.

Conventions. Operadic categories will be denoted by typewriter letters
A, B, O, etc. We denote by sFSet be the skeletal category of finite sets. The objects
of this category are linearly ordered sets n̄ = {1, . . . , n}, n ∈ N, when it causes no
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confusion, we use n instead of n̄. Morphisms are arbitrary maps between these
sets. We use V to denote a complete, cocomplete closed symmetric monoidal
category. Operads in V will be denoted by the calligraphic letters X ,Y , etc.

In this context, the term ‘classical’ (colored) operad X refers to a symmetric
(colored) operad with a unit. Let X be a classical single-colored operad in V , we
denote its composition maps by

γX : X (n) ⊗ X (k1) ⊗ ...⊗ X (kn) → X (k1 + ...+ kn),

for n ≥ 1, k1, ..., kn ≥ 0, or simply by γ if there is no confusion, and its unit maps
by ηY : I → Y(1). If we wish to emphasize that X is a sFSet-operad, we denote
by

µX (f) : X (f̄ 1) ⊗ ...⊗ X (f̄m) ⊗ X (m̄) → X (n̄),

for a morphism f : n̄ → m̄ with respective fibers f̄ 1, ..., f̄m in sFSet, the structure
maps of X (or simply µ).

The monoidal structure on the category Set of sets and set maps is given by
the Cartesian product and a one-point set 1 = {∗} as a monoidal unit.
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1 Preliminaries
1.1 Category sFSet

Let sFSet be the skeletal category of finite sets. The objects of this category
are linearly ordered sets n̄ = {1, . . . , n}, n ∈ N. Morphisms are arbitrary maps
between these sets.

For n̄1 = {1, ..., n1}, n̄2 = {1, ..., n2} ∈ sFSet, we introduce notation

n1̄ ⊕ n2̄ = {1, ..., n1 + n2}. (1.1)

Let n̄1, ..., n̄k ∈ sFSet, then we define several auxiliary maps.

1. An inclusion map, for each 1 ≤ j ≤ k,

ij : n̄j −→
k⨁︂
q=1

n̄q

x ↦−→ x+
j−1∑︂
q=1

nq.

(1.2)

2. A projection map

p :
k⨁︂
q=1

n̄q → k̄ (1.3)

by the assignment

p(x) = j if and only if x ∈ ij(āj).

3. A renumbering partial map

r;
k⨁︂
q=1

n̄q −→ n̄j

x ↦−→ i−1
j (x).

(1.4)

Example 1. Let n̄1 = 2̄, n̄2 = 1̄, n̄3 = 3̄, then

i3 : n̄3 →
3⨁︂
q=1

n̄q

1 ↦→ 4
2 ↦→ 5
3 ↦→ 6

, p :
3⨁︂
q=1

n̄q → 3̄

1 ↦→ 1
2 ↦→ 1
3 ↦→ 2
4 ↦→ 3
5 ↦→ 3
6 ↦→ 3

, r;
3⨁︂
q=1

n̄q → n̄3

4 ↦→ 1
5 ↦→ 2
6 ↦→ 3

.
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Let moreover φ : k̄ → l̄ be a map in sFSet and
{︂
φi,j : n̄i → m̄j

⃓⃓⃓
i ∈ k̄, j = φ(i)

}︂
a family of morphisms in sFSet. Then we can naturally define

k⨁︂
z=1

φz,φ(z) :
k⨁︂
q=1

n̄q −→
l⨁︂

s=1
m̄s

x ↦−→ iφ(p(x)) ◦ φp(x),φ(p(x)) ◦ r(x),
(1.5)

Remark 2. Denote by ∆alg a category of finite ordinals (including the empty
one) and order-preserving maps, ∆alg is a subcategory of sFSet. Maps introduced
in (1.2), (1.3), (1.4) are well-defined in ∆alg, as well.

Example 3. In the notation of Example 1, let m̄1 = 4̄, m̄2 = 3̄ and φ : 3̄ → 2̄ be
a map given by φ(1) = 2, φ(2) = 1, φ(3) = 2 and

φ1,2 : n̄1 → m̄2
1 ↦→ 1
2 ↦→ 2

φ2,1 : 1̄ → m̄1
1 ↦→ 3

φ3,2 : 3̄ → m̄2
1 ↦→ 1
2 ↦→ 2
3 ↦→ 2

Then
3⨁︂
z=1

φz,φ(z) :
3⨁︂
q=1

n̄q −→
3⨁︂
s=1

m̄s is the map of finite sets given by

1 2 3 4 5 6

1 2 3 4 5 6 7

We define the ith fiber f−1(i) of a morphism f : T → S, i ∈ S, as the pullback
of f along the map ⌜i⌝ : 1̄ → S which picks up the element i,

f−1(i) 1̄

T S

!f

incf

⌟
⌜i⌝

f

so this is an object f−1(i) = n̄i ∈ sFSet which is isomorphic as a linearly ordered
set to the preimage

{︂
j ∈ T | f(j) = i

}︂
. We observe that monomorphisms in sFSet

are precisely injective maps, ⌜i⌝ : 1̄ → S is an injective map and monomorphisms
are stable under pullbacks to conclude that incf : f−1(i) → T is a monomorphism,
as well. For clarity, we drop the index of the maps in the pullback if they are
understood from the context.

Any commutative diagram in sFSet

T S

R

f

h g
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then induces a unique map fi : h−1(i) → g−1(i) of respective pullbacks

T S

R

h−1(i) 1̄ g−1(i)

f

h g

inch

⌟

!h

∃!fi

⌜i⌝

incg

⌟

!g

for any i ∈ R. This assignment is a functor Fibi : sFSet/R → sFSet. Moreover,
the following lemma holds.

Lemma 4. Let a commutative diagram

T S

R

f

h g

in sFSet, n ∈ S and n′ ∈ g−1(g(n)) such that incg(n′) = n. Then

f−1(n) = f−1
g(n)(n

′).

Proof. We have a commutative diagram of pullbacks

T S

R

h−1(g(n)) 1̄ g−1(g(n))

f−1
g(n)(n′) 1̄

f−1(n)

f

h g

inch

⌟

!h
fg(n)

⌜g(n)⌝

incg

⌟

!g

incfg(n)

⌟

!fg(n)

⌜n⌝

⌜n′⌝

incf

⌟

!f

(1.6)

in sFSet. Then (f−1
g(n)(n′); inch ◦ incfg(n) , !fg(n)) forms a cone above the following

diagram and there is a unique map m : f−1
g(n)(n′) → f−1(n) such that it is a

morphism of respective cones.

T S

h−1(g(n)) f−1(n) 1̄

f−1
g(n)(n′)

f

inch
incf

⌟

!f

⌜n⌝

incfg(n) ∃!m

!fg(n)
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Next, we observe that (f−1(n); incf , !g◦⌜n′⌝◦!f ) form a cone above the following
diagram and hence there is a unique k : f−1 → h−1(g(n)) such that it is a morphism
of respective cones.

T R

h−1(g(n)) 1̄

f−1(n) 1̄ g−1(g(n))

h

inch

⌟

!h

⌜g(n)⌝
incf

∃!k

!f ⌜n⌝

!g

This gives rise to a cone (f−1(n); k, !f) above the following diagram and a
unique morphism m̄ : f−1(n) → f−1

g(n)(n′) such that it is a morphism of respective
cones.

h−1(g(n)) g−1(g(n))

f−1
g(n)(n′) 1̄

f−1(n)

fg(n)

incfg(n)

⌟

!fg(n)

⌜n′⌝
k

∃!m̄
!f

To see that (f−1(n); k, !f ) is indeed a cone, it is enough to post-compose both its
legs with a monomorphism incg : g−1(g(n)) → S.

Then we conclude that m◦m̄ = id by observing that both id : f−1(n) → f−1(n)
and m ◦ m̄ : f−1(n) → f−1(n) are morphisms from the same cone to a limiting
cone.

T S

f−1(n) 1̄

f−1(n)

f

incf

⌟

!f

⌜n⌝

id

m◦m̄

Similarly, m̄ ◦m = id, which implies that both m, m̄ are isomorphisms and since
sFSet is skeletal, f−1(n) = f−1

g(n)(n′).

We point out a technical remark that follows from the previous proof. It will
be relevant later in Chapter 2.

Remark 5. In the situation of diagram (1.6), incf = inch ◦ incfg(n) .
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The above structure on the category sFSet motivates the abstract definition
of operadic categories which was introduced by Batanin and Markl in [1].

1.2 Operadic categories

We recall the original definition of an operadic category which was introduced
in [1] with a minor correction in the statement of axioms (iv) and (v). We also
recall several other definitions from the original paper and [4].

Definition 6. A strict operadic category is a category O equipped with a ‘car-
dinality’ functor | - | : O → sFSet having the following properties. We require
that each connected component of O has a chosen terminal object Uc, c ∈ π0(O).
We also assume that for every f : T → S in O and every element i ∈ |S| there
is given an object f−1(i) ∈ O, which we will call the i-th fiber of f , such that
|f−1(i)| = |f |−1(i), denoted f−1(i) ▷ f : T → S.

We also require that

(i) For any c ∈ π0(O), |Uc| = 1.

A trivial morphism f : T → S in O is a morphism such that, for each i ∈ |S|,
f−1(i) = Udi

for some di ∈ π0(O).
The remaining axioms for a strict operadic category are:

(ii) The identity morphism id : T → T is trivial for any T ∈ O;

(iii) For any commutative diagram in O

T S

R

f

h g
(1.7)

and every i ∈ |R|, one is given a map

fi : h−1(i) → g−1(i)

such that |fi| : |h−1(i)| → |g−1(i)| is the map |h|−1(i) → |g|−1(i) of sets
induced by

|T | |S|

|R|

|f |

|h| |g|

We moreover require that this assignment forms a functor Fibi : O/R → O.
If R = Uc, the functor Fib1 is required to be the domain functor O/R → O.
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(iv) In the situation of (1.7), for any i ∈ |S| and i′ such that i = inc(i′) for
inc : |g|−1(|g|(i)) ↪→ |S|, one has the equality

f−1(i) = f−1
|g|(i)(i

′). (1.8)

(v) Let
S

T Q

R

a
g

f

b

h c

be a commutative diagram in O and let i ∈ |Q|, k = |c|(i) and i′ ∈ |c−1(k)|
such that inc(i′) = i for inc : |c−1(k)| ↪→ |Q|. Then by axiom (iii) the
diagram

h−1(k) g−1(k)

c−1(k)

fk

bk
ak

commutes, so it induces a morphism (fk)i′ : b−1
k (i′) → a−1

k (i′). By axiom (iv)
we have

a−1(i) = a−1
k (i′) and b−1(i) = b−1

k (i′).

We then require the equality

fk = (fk)i′ . (1.9)

We will also assume that the set π0(O) of connected components is small with
respect to a sufficiently big ambient universe.

Remark 7. It follows from axiom (iii) that the unique fiber of the canonical
morphism !T : T → Uc is T .

Example 8. The category ∆alg of finite ordinals (including the empty one) and
order-preserving maps has the obvious structure of an operadic category.

Example 9. Let C be a set. A C-bouquet is a map b : X+1 → C, where X ∈ sFSet.
In other words, a C-bouquet is an ordered (k + 1)-tuple (c1, ..., ck; c), X = k̄, of
elements of C. It can also be thought of as a planar corolla whose all edges
(including the root) are colored. The extra color b(1) ∈ C is called the root color .
The finite set X is the underlying set of the bouquet b.

A map of C-bouquets b → c whose root colors coincide is an arbitrary map
f : X → Y of their underlying sets. Otherwise there is no map between C-bouquets.
We denote the resulting category of C-bouquets by Bq(C).
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The cardinality functor | - | : Bq(C) → sFSet assigns to a bouquet b : X+1 → C

its underlying set X. The fiber of a map b → c given by f : X → Y over an
element y ∈ Y is a C-bouquet whose underlying set is f−1(y), the root color
coincides with the color of y and the colors of the elements are inherited from the
colors of the elements of X. It is easy to see that Bq(C) is an operadic category
with C its set of connected components.

The category Bq(C) has the following important property.

Proposition 10. For each operadic category O with its set of connected components
π0(O) = C, there is a canonical operadic ‘arity’ functor Ar : O → Bq(C) giving rise
to the factorization

O sFSet

Bq(C)

| - |

Ar | - |

of the cardinality functor | - | : O → sFSet.

Proof. We cite the construction of the Ar functor presented in [1, Part I, Section
1]. Let the source s(T ) of T ∈ O be the set of fibers of the identity id : T → T . We
define Ar(T ) ∈ Bq(C) as the bouquet b : s(T ) + 1 → C, where b associates to each
fiber Uc ∈ s(T ) the corresponding connected component c ∈ C, and b(1) := π0(T ).
The assignment T ↦→ Ar(T ) extends into an operadic functor.

Definition 11. A strict operadic functor between operadic categories is a functor
F : O → P over sFSet which preserves fibers in the sense that

F
(︂
f−1(i)

)︂
= F (f)−1(i),

for any f : T → S ∈ O and i ∈ |S| = |F (S)|. We also require that F preserves the
chosen local terminal objects, and that F (fi) = F (f)i for f as in (1.7).

1.3 Operads over operadic categories

Let O be an operadic category, V be a complete, cocomplete closed symmetric
monoidal category. We recall a definition of an O-operad in V along with several
examples which we will make use of in Chapter 3. A O-collection in V is a
collection E = {E(T )}T∈O of objects of V indexed by the objects of the category
O. For a O-collection E and a morphism f : T → S in O let

E(f) =
⨂︂
i∈|S|

E(f−1(i)).

The notion of O-collections allows us to introduce O-operads.
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Definition 12. An O-operad is an O-collection P = {P(T )}T∈O in V together
with units

ηc : I → P (Uc), c ∈ π0(O),

and structure maps

µP(f) : P(f) ⊗ P(S) → P(T ), f : T → S,

satisfying the following axioms.

(i) Let T f→ S
g→ R be morphisms in O and h := gf : T → R. Then the

following diagram of structure maps of P combined with the canonical
isomorphisms of products in V commutes:

⨂︂
i∈|R|

P(fi) ⊗ P(g) ⊗ P(R) P(h) ⊗ P(R)

⨂︂
i∈|R|

P(fi) ⊗ P(S) ∼= P(f) ⊗ P(S) P(T )

⨂︁
i
µP (fi)⊗id

id⊗µP (g) µP (h)

µP (f)

(ii) The composition

P(T )
⨂︂
i∈|T |

I ⊗ P(T )
⨂︂
i∈|T |

Uci
⊗ P(T )

P(idT ) ⊗ P(T ) P(T )

=

µP (id)

(1.10)

is the identity for each T ∈ O, as well as the identity is

(iii) the composition

P(T ) ⊗ I P(T ) ⊗ P(Uc) P(!T ) ⊗ P(Uc) P(T ), c = π0T.
= µP (!T )

A morphism φ : P ′ → P ′′ of O-operads in V is a collection {φT}T∈O of V -
morphisms φT : P ′(T ) → P ′′(T ) commuting with the structure operations. We
denote by OpV O the category of O-operads in V . Each operadic functor F : O → P
obviously induces the restriction F ∗ : OpV P → OpV O.

We mention a few examples of operads over various operadic categories.

Example 13. The category of operads over the category sFSet is isomorphic to
the category of classical symmetric operads. Similarly, the category of operads over
the category Bq(C), C ∈ Set is isomorphic to the category of classical symmetric
C-colored operads.

Example 14. For an operadic category O, its terminal operad over Set, ζO ∈ OpSetO
is the collection ζO(T ) = {T}, T ∈ O.
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1.4 The category of k-trees

We briefly recall the category Ωk of k-trees, for k ≥ 0, citing [1]; the details
can be found in [5, Sec. 3, Example 8] or [6]. The category of 0-trees Ω0 is the
terminal category 1. Its unique object is denoted by U0.

The category of 1-trees Ω1 is the category of finite ordinals (n) also de-
noted {1, ..., n}, n ≥ 0, and their order-preserving maps. As usual, we interpret
{1, . . . , n} for n = 0 as the empty set. The terminal object of Ω1 is U1 := (1).
When the meaning is clear from the context, we will simplify the notation and
denote the object (n) ∈ Ω1 simply by n. The category Ω1 is isomorphic to the
operadic category ∆alg in Example 8.

Let k ≥ 2. A k-tree is a chain

T =
(︃
nk nk−1 ... n1

)︃
tk−1 tk−2 t1 (1.11)

of morphisms in Ω1. A morphism

σ : (nk nk−1 ... n1) (mk mk−1 ... m1)
tk−1 tk−2 t1 sk−1 sk−2 s1 (1.12)

of k-trees is a commutative diagram in sFSet1

nk nk−1 ... n1

mk mk−1 ... m1

tk−1

σk

tk−2

σk−1

t1

σ1

sk−1 sk−2 s1

such that

(i) σ1 is order preserving and

(ii) for any p, k > p ≥ 1, and i ∈ np, the restriction of σp+1 to the preimage
t−1
p (i) is order-preserving.

We denote by Ωk the category of k-trees and their morphisms as defined above.
Its terminal object is the k-tree Uk := (1 → 1 → ... → 1).

An s-leaf (or a leaf of height s) of a k-tree T as in (1.11) is, for s = k, by
definition an element of nk. For 1 ≤ s < k an s-leaf is an element i ∈ ns such that
t−1
s (i) = ∅. We denote by Ls(T ) the set of all s-leaves of T .

Let σ : T → S be a map of k-trees as in (1.12) and i ∈ mk = Lk(S) a k-leaf of
S. Let us define the fiber σ−1(i) over i as the chain

(︃
σ−1
k (i) σ−1

k−1(sk−1(i)) ... σ−1
1 (s1...sk−1(i))

)︃
tk−1 tk−2 t1 (1.13)

1in [1], morphisms of k-trees are defined as commutative diagrams in Set. However, the fibers
of the vertical morphisms σi, i ∈ k̄ are computed as pullback in sFSet.
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of the restrictions of the maps in (1.11).
The category Ωk with the cardinality functor |T | := Lk(T ), with the fibers

defined as above and the chosen terminal object the k-tree Uk, is an operadic
category.

17



2 Wreath product of operadic
categories

Throughout the following chapter, A and B will be operadic categories and B
is connected1.

2.1 The construction

In this section, we define the wreath product of operadic categories along with
several supplemental notions.

Definition 15. Wreath product of operadic categories A ≀ B is a category whose:

• objects are strings (a; a1, ··· , ak), where a ∈ A, a1, ··· , ak ∈ B where k = |a|;

• morphisms f : (a; a1, ··· , ak) → (b; b1, ··· , bl), are tuples (φ; Φ), where

φ : a → b

is a morphism in A, and

Φ = {φi,j : ai → bj| 1 ≤ i ≤ |a|, 1 ≤ j ≤ |b|, |φ|(i) = j}

is a family of morphisms in B.

Remark 16. The definition above indeed yields a category, the composition of
morphisms is defined component-wise.

a

a1

a2

a3

b

b1

b2

φ

φ1,2

φ2,1

φ3,2

Figure 2.1: Visualization of objects and morphisms in A ≀ B

Example 17. Let a, b ∈ A such that |a| = 3̄, |b| = 2̄ and a1, a2, a3, b1, b2 ∈ B.
Then (a; a1, a2, a3), (b; b1, b2) ∈ A ≀ B.

1We provide a comment on this requirement in Remark 30.
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Let φ : a → b be a morphism in A such that |φ|(1) = 2, |φ|(2) = 1, |φ|(3) = 2
and let φ1,2 : a1 → b2, φ2,1 : a2 → b1, φ3,2 : a3 → b2 be morphisms in B. Then
(φ; {φ1,2, φ2,1, φ3,2}) is a morphism (a; a1, a2, a3) → (b; b1, b2) in A ≀ B.

Let |a1| = 2̄, |a2| = 1̄, |a3| = 3̄, |b1| = 4̄, |b2| = 3̄. We illustrate objects of A ≀ B
so that the bigger triangle (to the left) represents the object of A, the smaller
triangles represent objects B and the legs pointing out of the triangles represent
the cardinality of the respective objects, see Figure 2.1.

Definition 18. We define the cardinality functor for A ≀ B in the following way.
Let (a; a1, ··· , ak), (b; b1, ··· , bl) be objects and (φ,Φ) : (a; a1, ··· , ak) → (b; b1, ··· , bl)
be a morphism in A ≀ B. Then we put

| − | : A ≀ B −→ sFSet

(a; a1, ··· , ak) ↦−→
k⨁︂
i=1

|ai|

(φ,Φ) ↦−→
k⨁︂
i=1

j=φ(i)

|φi,j|.

a

a1
1
2

a2 3

a3
4
5
6

b

b1

1
2
3
4

b2
5
6
7

Figure 2.2: Visualization of the cardinalities of objects in A ≀ B

Example 19. In the notation of Example 17, |(a; a1, a2, a3)| = 6̄, |(b; b1, b2)| = 7̄.
We identify elements in |(a; a1, a2, a3)|, |(b; b1, b2)| by enumerating legs pointing
out of the smaller triangles, see Figure 2.2.

Definition 20. Let

f = (φ,Φ) : (a; a1, ··· , ak) → (b; b1, ··· , bl)

be a morphism in A ≀ B and x ∈ |(b; b1, ··· , bl)| and p(b;b1,···,bl)(x) = m.
Then the x-th fiber f−1(x) is an object (d; d1, ··· , dn) ∈ A ≀ B, where

• d = φ−1(m),

• n = |φ−1(m)|,

• di = φ−1
inc(i),m(r(b;b1,···,bl),m(x)), for i ∈ |φ−1(m)| and inc : |φ−1(m)| ↪→ |a|.
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d

d1

d2

Figure 2.3: f−1(6) ▷ (φ; {φ1,2, φ2,1, φ3,2})

Example 21. Let (φ,Φ) : (a; a1, a2, a3) → (b; b1, b2) be as in Examples 17, 1, and
i = 6. Then f−1(i) = (d; d1, d1), where d = φ−1(2), |d| = 2, d1 = φ−1

1,2(2), d2 =
φ−1

3,2(2)), see Figure 2.3.

Corollary 22. It is immediate from Definition 20 that the identity morphism
id : (a; a1, ··· , ak) → (a; a1, ··· , ak) is trivial, for any (a; a1, ··· , ak) ∈ A ≀ B.

2.2 The verification

In this section, we verify that the construction of the wreath product of
operadic categories as presented in previous section is well-defined.

Proposition 23. Let A, B be operadic categories and B is connected. Then their
wreath product A ≀ B is indeed an operadic category.

We divide the proof of Proposition 23 into several lemmas.

Lemma 24. Let {Uc ∈ A| c ∈ π0{A}} be a family of local terminal objects of A
and V a terminal object of B. Then π0{A ≀ B} ∼= π0{A} and {(Uc;V )| c ∈ π0{A}}
is a family of local terminal objects. Moreover, |(Uc;V )| = 1̄ for each such local
terminal object.

Proof. Immediate from the construction of A ≀ B.

Lemma 25. Let

(a; a1, ··· , ak) (b; b1, ··· , bl)

(c; c1, ··· , cm)

f=(θ;Θ)

h=(ψ;Ψ) g=(φ;Φ)
(2.1)

be a commutative diagram in A ≀ B. Then the morphism

fn = (δ; ∆) : h−1(n) → g−1(n), (2.2)

where

• δ = θt,

• ∆ =
{︂
(θinc(x),inc(y))r(n)

⃓⃓⃓
x ∈ |ψ−1(t)|, y = |θt|(x)

}︂
.
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is such that |fn| : |h−1(n)| → |g−1(n)| is the respective map of preimages as in
axiom (iii) of Definition 6.

Proof. Let n ∈ |(c;w1, ··· , wm)| and let p(n) = t, we explicitly describe the fibers

h−1(n) =
(︃
ψ−1(t);

{︂
ψ−1
inc(k),t(r(n))

⃓⃓⃓
for k ∈ |ψ−1(t)|

}︂ )︃
,

g−1(n) =
(︃
φ−1(t);

{︂
φ−1
inc(k),t(r(n))

⃓⃓⃓
for k ∈ |φ−1(t)|

}︂ )︃
.

Diagram (2.1) gives rise to a commutative diagram ∈ A,

a b

c

θ

φψ

which in turn induces a morphism θt : ψ−1(t) → φ−1(t) such that |θt| is a map
of respective preimages |ψ−1(t)| → |φ−1(t)| of t ∈ |c| as shown in the following
commutative diagram in sFSet.

|ψ−1|(t) |φ−1|(t)

|a| |b|

|θt|

inc inc

|θ|

In particular, for every x ∈ |ψ−1(t)|, y ∈ |φ−1(t)|, |θt|(x) = y if and only if
|θ|(inc(x)) = inc(y).

Then, for every x ∈ |ψ−1(t)|, y = |θt|(x) ∈ |φ−1(t)|, there exists a component
θinc(x),inc(y) : ainc(x) → binc(y) and the commutative diagram

ainc(x) binc(y)

ct

θinc(x),inc(y)

ψinc(x),t φinc(y),t

in B. Hence, there exists a map

(θinc(x),inc(y))r(n) : ψ−1
inc(x),t(r(n)) → φ−1

inc(y),t(r(n))

such that |(θinc(x),inc(y))r(n)| is a respective map of the preimages

|ψinc(x),t|−1(r(n)) → |φinc(y),t|−1(r(n))

of r(n) ∈ |wt|. Then there exists a morphism fn = (δ; ∆) : h−1(n) → g−1(n),
where

• δ = θt,
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• ∆ =
{︂
(θinc(x),inc(y))r(n)

⃓⃓⃓
x ∈ |ψ−1(t)|, y = |θt|(x)

}︂
.

Moreover,
|fn| =

⨁︂
x∈φ−1(t)

|(θinc(x),inc(y))r(n)|,

so it is exactly the induced map of preimages |h|−1(n) → |g|−1(n) and therefore it
is the desired morphism.

Corollary 26. For any (b; b1, ··· , bl) ∈ A ≀ B, n ∈ |(b; b1, ··· , bl)|, the assignment

Fibn : (A ≀ B)/(b; b1, ··· , bl) −→ A ≀ B

h : (a; a1, ··· , ak) → (b; b1, ··· , bl) ↦−→ h−1(n)

(a; a1, ··· , ak) (b; b1, ··· , bl)

(c; c1, ··· , cm)

f

h g
↦−→ fn

forms a functor. Moreover, if R = (Uc;V ), then Fib1 is the domain functor.

Proof. Straightforward from construction (2.2) in Lemma 25.

Remark 27. In combination, Lemma 25 and Corollary 26 prove that axiom (iii)
from Definition 6 holds in A ≀ B.

Lemma 28. Axiom (iv) holds for A ≀ B.

Proof. In the situation of diagram (2.1), let n ∈ |(b; b1, ··· , bl)| such that p(n) = t,
n′ ∈ g−1(|g|(n)) such that inc(n′) = n and t′ ∈ φ−1(t) such that inc(t′) = t. Then
by Lemma 25 there is a diagram

f−1
|g|(n)(n′) h−1(|g|(n)) g−1(|g|(n))

f−1(n) (a; a1, ··· , ak) (b; b1, ··· , bl)

(c; c1, ··· , cm)

▷
f|g|(n)

▷ ▷

▷
f

h g

(2.3)

in A ≀ B. We write the fibers explicitly following the construction (2.2).

f−1(n) =
(︃
θ−1(t);

{︂
θ−1
inc(k),t(r(n))

⃓⃓⃓
for k ∈ |θ−1(t)|

}︂ )︃
,

f−1
|g|(n)(n

′) =
(︃
θ−1

|φ|(t)(t
′),

{︂
(θinc(inc(k)),inc(t′))−1

r(|g|(n))(r(n
′))

⃓⃓⃓
for k ∈ |θ−1

|φ|(t)(t
′)|

}︂ )︃
.
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Diagram 2.3 induces the following diagram

θ−1
|φ|(t)(t′) ψ−1(|φ|(t)) φ−1(|φ|(t))

θ−1(t) a b

c

▷

=

θ|φ|(t)

▷ ▷

▷ θ

ψ φ

in A. Then by axiom (iv), the equality θ−1
|φ|(t)(t′) = θ−1(t) holds.

Next, we modify the expression of f−1
|g|(n)(n′) using that j(t′) = t and that by

Remark 5
|θ−1
t (t′)| |ψ−1(φ(t))|

|θ−1(t)| |a|

j

=

j

j

commutes in sFSet. Hence,

f−1
|g|(n)(n

′) =
(︃
θ−1

|φ|(t)(t
′),

{︂
(θinc(k),t)−1

r(|g|(n))(r(n
′))

⃓⃓⃓
for k ∈ |θ−1(t)|

}︂ )︃
.

Moreover, for x ∈ |θ−1(t)|, diagram (2.3) induces the following diagram

(θinc(x),t)−1
r(|g|(n))(r(n′)) ψinc(x),|φ|(t)

−1(r(|g|(n))) φt,|φ|(t)
−1(r(|g|(n)))

θinc(x),t
−1(r(n)) ainc(x) bt

c|φ|(t)

▷

=
(θinc(x),t)r(|g|(n))

▷ ▷

▷
θinc(x),t

ψinc(x),|φ|(t) φt,|φ|(t)

in B. Again by axiom (iv) the equality (θinc(x),t)−1
r(|g|(n))(r(n′)) = θinc(x),t

−1(r(n))
holds.

Lemma 29. Axiom (v) holds for A ≀ B.

Proof. Let

(s; s1, ··· , sl)

(t; t1, ··· , tk) (q; q1, ··· , qn)

(w;w1, ··· , wm)

a=(α;{αi,j})
g=(φ;{φi,j})

f=(θ;{θi,j})

b=(β;{βi,j})

h=(ψ;{ψi,j}) c=(γ;{γi,j})
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be a commutative diagram in A ≀ B, let x ∈ |(q; q1, ··· , qn)| such that p(x) = z,
y = |c|(x), then p(y) = |γ|(z).

Then by corollary 26, there is a commutative triangle of fibers

g−1(y)

h−1(y) c−1(y)

ayfy

by

Let x′ ∈ |c−1(y)| be unique such that j(x′) = x, than p(x′) = z′, where
z′ ∈ |γ−1(|γ|(y))| unique such that j(z′) = z.

The objective is to establish equality between the morphisms (fy)x′ and fx.
Lemma 28 indicates that their domains and codomains are equal.

a−1
y (x′)

b−1
y (x′) a−1(x)

b−1(x)

=(fy)x′

=

fx

(2.4)

We carefully expand Definition 20 and apply the construction (2.2), thereby
uncovering that the equality of the morphisms on diagram (2.4) is equivalent to
the equality of the following two expressions

(fy)x′ =
(︃

(θ|γ|(z))z′ ;
{︂
(θj(u),|(θ|γ|(z))z′ |(j(u)))r(y))r(x′)

⃓⃓⃓
for each u ∈ |β−1

|γ|(z)(z
′)|

}︂ )︃
,

fx =
(︃
θ|γ|(z);

{︂
θj(u),j(θ|γ|(z)(u)))r(y)

⃓⃓⃓
for each u ∈ |β−1(z)|

}︂ )︃
.

In both expressions, the two components are equal, given that A and B are operadic
and thus axiom (v) holds in both cases.

This concludes the proof of Proposition 23.

Remark 30. The connectivity of B was necessary for the existance of local terminal
objects in A ≀ B. The remaining axioms of operadic categories are fulfilled without
this assumption. This relaxed version of operadic categories was considered in [7].

2.3 Some properties

In this section, we explore some properties of the wreath product of operadic
categories.

Proposition 31. The wreath product of operadic categories is not commutative.
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Proof. Let A, B be operadic categories and B be connected. In case A is not
connected, the statement is immediate.

Otherwise, let A = 1, i.e., the one-object category, B = 2, i.e., the two-object
category with one morphism between the objects, and equip both A and B with
trivial cardinality functors. Then A ≀ B ∼= A ̸∼= B ∼= B ≀ A.

Proposition 32. The wreath product of operadic categories is associative.

Proof. Let A be an operadic category and B, C be connected operadic categories.
Moreover, let

• a, u ∈ A, |a| = k, |u| = m;

• b1, ··· , bk, v1, ··· , vm ∈ B;

• |(a; b1, ··· , bk)| = |b1| + ··· + |bk| = l, |(u; v1, ··· , vm)| = |v1| + ··· + |vm| = n;

• c1, ··· , cl, w1, ··· , wn ∈ C;

• g : (a; b1, ··· , bk) → (u; v1, ··· , vm) be a morphism in A ≀ B given by a morphism
φ : a → u in A and a family of morphisms {φi,j : bi → vj| i ∈ |a|, |φ|(i) = j}
in B;

• G = {gi,j : ci → wj| i ∈ |(a; b1, ··· , bk)|, |g|(i) = j} be a family of morphisms
in C.

This data defines objects

X = ((a; b1, ··· , bk) ; c1, ··· , cl) , Y = ((u; v1, ··· , vm) ;w1, ··· , wn)

and a morphism
f = (g;G) : X → Y

in (A ≀ B) ≀ C. Define an action on objects F : (A ≀ B) ≀ C → A ≀ (B ≀ C) by

FX =
⎛⎝a;

{︄
(bu;

{︄
cd

⃓⃓⃓⃓
⃓ 1 +

u−1∑︂
d=1

|bd| ≤ d ≤
u∑︂
d=1

|bd|
}︄

)
⃓⃓⃓⃓
⃓ u ∈ |a|

}︄ ⎞⎠.
Next, we define the action on morphisms, which reassembles f into

Ff : FX −→ FY.

Following the previous definition,

FY =
⎛⎝u;

{︄
(vh;

{︄
wd

⃓⃓⃓⃓
⃓ 1 +

h−1∑︂
d=1

|vd| ≤ d ≤
h∑︂
d=1

|vd|
}︄

)
⃓⃓⃓⃓
⃓ h ∈ |u|

}︄ ⎞⎠.
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We set the first component of Ff to be φ and the second component to be a
family of pairs {︃

(φi,j; Φi,j) | i ∈ |a|, |φ|(i) = j
}︃
, where

Φi,j = {gx,y | z ∈ |bi|, q = |φi,j|(z), x = z +
i−1∑︂
d=1

|bd|, y = q +
j−1∑︂
d=1

|bd|}.

We observe that Ff is well-defined in A ≀ (B ≀ C), and that so defined action on
morphisms preserves identities and compositions. Hence, F is a functor.

Next, we show that F is an operadic functor. It is straightforward to see
that F preserves cardinalities of objects and morphisms, as well as chosen local
terminal objects. To verify that F preserves fibers, let

f = (g;G) : ((a; b1, ··· , bk) ; c1, ··· , cl) → ((u; v1, ··· , vm) ;w1, ··· , wn)

as described before, and i ∈ | ((u; v1, ··· , vm) ;w1, ··· , wn) | such that

p(i) = s ∈
l⨁︂

d=1
|wd| and p(s) = t ∈

m⨁︂
d=1

|vd|.

Then

f−1(i) =
(︃
g−1(s); {g−1

inc(e),s(r(i)) | e ∈ |g−1(s)|}
)︃

=
(︃

(φ−1(t); {φ−1
inc(h),t(r(s)) | h ∈ |φ−1(t)|}); {g−1

inc(e),s(r(i)) | e ∈ |g−1(s)|}
)︃
.

and consequently

F (f−1(i)) =
⎛⎝φ−1(t);

{︃
(φ−1

inc(u),t(r(s));Gu) | u ∈ |φ−1(t)|
}︃⎞⎠

= (Ff)−1(i),

where

Gu = {g−1
inc(e),s(r(i)) | 1 +

u−1∑︂
d=1

|φ−1
inc(d),t(r(s))| ≤ e ≤

u∑︂
d=1

|φ−1
inc(d),t(r(s))|}.

Analogously, F preserves induced morphisms between fibers defined in (1.7).
Lastly, F has a clear operadic inverse.

Proposition 33. Let k ∈ N, then Ωk ≀ Ω1 ∼= Ωk+1.

Proof. For an object N = ((nk
tk−1−−→ ··· t1−→ n1); (a1), ··· , (ank

)) of Ωk ≀ Ω1, we define

nk+1 =
nk⨁︂
i=1

(ai)

as in (1.1) and a map
tk : (nk+1) −→ (nk) (2.5)
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by the assignment tk(x) = p(x) as was defined in (1.3). We notice that tk is an
order-preserving morphism, so it is a morphism in Ω1.

Let M = ((mk
sk−1−−→ ··· s1−→ m1); (b1), ··· , (bmk

)) also be an object in Ωk ≀ Ω1 and

(θ,Θ) : N → M

a morphism in Ωk ≀ Ω1, i.e. it is a family of morphisms

{θi : (ni) → (mi)| i ∈ k}

in sFSet satisfying (1.12) together with a family of morphisms

{θi,j : (ai) → (bj)| i ∈ nk, j = θk(i)}

in Ω1. For such a morphism (θ,Θ), we define a map

θk+1 =
nk⨁︂
z=1

θz,θk(z)

as in (1.5). We notice that, for z ∈ nk

θk+1 ↾ t−1
k (z) = θk+1 ↾ iz(az)

is order-preserving. We now can define a functor

F : Ωk ≀ Ω1 −→ Ωk+1

N ↦−→ (nk+1
tk−→ nk

tk−1−−→ ··· t1−→ n1)
(θ,Θ) ↦−→ θ ∪ {θk+1}.

The functor F preserves cardinalities since

|N | = Σnk
i=1|ai| = Σnk

i=1ai = |nk+1| = |FN |,

|(θ,Θ)| = θk+1 = |F (θ,Θ)|.

To show that F preserves fibers, let x ∈ |M | = |FM | such that p(x) = y.
Then the x-th fiber (θ,Θ)−1(x) equals(︃(︃

θ−1
k (y) tk−1−−→ ··· t1−→ θ−1

1 (s1 ··· sk−1(y))
)︃

;
{︂
θ−1
inc(k),y(r(x))

⃓⃓⃓
k ∈ |θ−1(y)|

}︂)︃
,

and consequently F ((θ,Θ)−1(x)) is equal to⨁︂
k∈θ−1

k
(y)

θ−1
inc(k),y(r(x)) tk−→ θ−1

k (y) tk−1−−→ ··· t1−→ θ−1
1 (s1 ··· sk−1(y)).

On the other hand, (F (θ,Θ))−1(x) is equal to

θ−1
k+1(x) tk−→ θ−1

k (tk(x)) sk−1−−→ ··· t1−→ θ−1
k (s1 ··· sk(x)),

where we observe that
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• θ−1
k+1(x) is isomorphic (as a linearly ordered set) to the preimage of x under

the map θk+1, which in turn is isomorphic (as a linearly ordered set) to{︂
(k, x′)

⃓⃓⃓
k ∈ θ−1

k (y), x′ ∈ θ−1
inc(k),y(r(x))

}︂
together with lexicographic order. Finally, the last linearly ordered set is
isomorphic to

⨁︂
k∈θ−1

k
(y)

θ−1
inc(k),y(r(x)).

• sk(x) = y by definition.

By construction, the functor F preserves the terminal object. To show that F
preserves induced morphisms between fibers as in (1.7), let

L = ((lk
qk−1−−→ ··· q1−→ l1); (c1), ··· , (clk)) ∈ Ωk ≀ Ω1,

x ∈ |L| such that p(x) = y, and

N M

L

(θ,Θ)

(ψ,Ψ) (φ,Φ)

a commutative diagram in ∈ Ωk ≀ Ω1, we write the induced morphism

(θ,Θ)x : (ψ,Ψ)−1(x) → (φ,Φ)−1(x)

explicitely(︃(︃
ψ−1
k (y) tk−1−−→ ··· t1−→ ψ−1

1 (t1 ··· tk−1(y))
)︃

;
{︂
ψinc(d),y(r(x))

⃓⃓⃓
d ∈ ψ−1

k (y)
}︂)︃

(︂(︂
φ−1
k (y) sk−1−−→ ··· s1−→ φ−1

1 (s1 ··· sk−1(y))
)︂

;
{︂
φinc(e),y(r(x))

⃓⃓⃓
e ∈ φ−1

k (y)
}︂)︂

(︂
θy ;

{︂(︁
θinc(d),inc(e)

)︁
r(x)

⃓⃓⃓
d∈ψ−1

k
(y),e=(θk)y(d)

}︂)︂ ,

where the morphism θy is a commutative diagram

ψ−1
k (y) ψ−1

k−1(qk−1(y)) ··· ψ−1
1 (q1 ··· qk−1(y))

φ−1
k (y) φ−1

k−1(qk−1(y)) ··· φ−1
1 (q1 ··· qk−1(y))

tk−1

(θk)y

tk−2

(θk−1)qk−1(y)

t1

(θ1)q1···qk−1(y)

sk−1 sk−2 s1

in sFSet. The induced morphism between fibers

F (ψ,Ψ)−1(x) F (φ,Φ)−1(x)

FN FM

FL

F (θ,Θ)x

▷ ▷

F (θ,Θ)

F (ψ,Ψ) F (φ,Φ)
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equals

ψ−1
k+1(x) ψ−1

k (y) ··· ψ−1
1 (q1 ··· qk−1(y))

φ−1
k+1(x) φ−1

k (y) ··· φ−1
1 (q1 ··· qk−1(y))

tk

(θk+1)x

tk−1 t1

(θ1)q1···qk−1(y)

sk sk−1 s1

(θk)y .

Showing that the functor F preserves induced morphisms between fibers reduces
to showing that the induced morphism between pullbacks ψ−1

k+1(x) and φ−1
k+1(x)

equals to
⨁︂

d∈ψ−1
k

(y)
e=(θk)y(d)

(θinc(d),inc(e))r(x). Since the diagram

⨁︂
j∈nk

(aj)
⨁︂
j∈mk

(bj)

⨁︂
j∈lk

(cj)

⨁︂
d∈ψ−1

k
(y)

ψinc(d),y(r(x)) 1̄
⨁︂

e∈φ−1
k

(y)

φinc(e),y(r(x))

⨁︂
i∈nk
j=θk(i)

θi,j

⨁︂
i∈nk

j=ψk(i)

ψi,j
⨁︂
i∈mk
j=φk(i)

φi,j

⌟

⨁︂
d∈ψ−1

k
(y)

e=(θk)y(d)

(θinc(d),inc(e))r(x)

⌜x⌝ ⌟

commutes in sFSet, we are done. Lastly, F has a clear operadic inverse.

The next statement follows from Propositions 32 and 33.

Corollary 34. Let l, k ∈ N, then Ωl ≀ Ωk
∼= Ωl+k.
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3 Application to Boardman-Vogt
tensor product of operads
3.1 Operadic Grothendieck construction

We recall the operadic Grothendieck construction [1]. Let O be an operadic
category and an O-operad P ∈ OpSetO. One then has the category

∫︂
O

P whose
objects are t ∈ P(T ) for some T ∈ O. A morphism σ : t → s from t ∈ P(T ) to
s ∈ P(S) is a pair (ε, f) consisting of a morphism f : T → S in O and of some
ε ∈ ×i∈|S|P(f−1(i)), such that

µP(f)(ε, s) = t,

where µP is the structure map of the operad P . Compositions of morphisms are
defined in the obvious manner. The category

∫︂
O

P thus constructed is clearly an

operadic category. We use notation I(P) =
∫︂

O
P .

Lemma 35. Let Y be an sFSet-operad in Set. Then I(Y) has a terminal object
and therefore is a connected operadic category.

Proof. The operad Y is provided with a unit η : 1 → Y(1̄), let y = η(∗) and
x ∈ Y(n̄). We show that there is a unique morphism !x : x → y in I(Y ).

Let !n̄ : n̄ → 1̄ be the unique morphism to the terminal object. By Remark 7,
its unique fiber !−1

n̄ (1) = n̄. From condition (1.10), it immediately follows that
(x) is unique ε such that µY(!n̄)(ε, y) = x. Put !x = (!n̄, (x)). Therefore y is the
terminal object of I(Y ).

3.2 The adjunction between categories of ope-
rads

By Proposition 10, any operadic category O with C = π0(O) comes with a
canonical factorisation of the cardinality functor.

O sFSet

Bq(C)

| - |

Ar | - |

In case Ar : O → Bq(C) is a so-called discrete operadic fibration [1, Defini-
tion 2.1.], it induces an adjoint pair

OpO(Set) OpBq(C)(Set)
Ar!

Ar∗

⊣ .

30



In this section, we do not assume that Ar : O → Bq(C) is a discrete operadic
fibration and build a similar adjoint pair of functors between corresponding
categories of operads.

We will use the following fact from [8].

Theorem 36 (Theorem 20.3.22.). There is a free-forgetful adjunction

V Prof(C)×C OperadΣ(C)(V )
FΣ

UΣ

⊣ ,

where V Prof(C)×C is the category of Prof(C) × C-colored objects [8, Example 9.4.4.]
and OperadΣ(C)(V ) is the category of C-colored symmetric operads.

Let Q ∈ OpO(Set) together with structure maps µQ(f) for every morphism f in
O. We define a Bq(C)-collection in Set and notice that Bq(C)-collections correspond
to Prof(C) × C-colored objects in the notation of [8].

EQ(T ) =
∐︂

Ar(t)=T
Q(t).

Then we construct a free operad

FQ = FΣ(EQ),

this is a C-colored operad, hence a Bq(C)-operad together with structure maps
µF(g) for every morphism g in Bq(C).

For N ∈ Bq(C), we generate an equivalence relation ∼N in the following way.
Let F1, ··· , Fk,M be bouquets in Bq(C) such that |M | = k, and let g : N → M be
a morphism with respective fibers g−1(i) = Fi, 1 ≤ i ≤ k. Then there is structure
map

µF(g) : ×i∈|M |FQ(Fi) × FQ(M) → FQ(N).

Let moreover f1, ··· , fk, n,m ∈ O and a morphism f : n̄ → m̄ with respective
fibers f−1(i) = fi, 1 ≤ i ≤ k such that Ar(f) = g, and elements xi ∈ Q(fi) for
1 ≤ i ≤ k and y ∈ Q(m). Again, there is structure map

µQ(f) : ×i∈|m|Q(fi) × Q(m) → Q(n).

We put
µF(g)(x1, ··· , xm, y) ∼n µQ(f)(x1, ··· , xm, y) ∼N .

This lets us define a functor Ar! : OpO(Set) → OpBq(C)(Set) by its action on
objects

Ar!(Q) = FQ⧸∼ (3.1)

and the induced action on morphisms.
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Lemma 37. The functor Ar! : OpO(Set) → OpBq(C)(Set) is the left adjoint to the
restriction functor Ar∗ : OpBq(C)(Set) → OpO(Set).

Proof. We need to establish, for Q ∈ OpO(Set) and P ∈ OpBq(C)(Set), a natural
isomorphism

OpO(Set)(Q, Ar∗(P)) ∼= OpBq(C)(Set)(Ar!(Q),P). (3.2)

Let φ : Q → Ar∗(P) be a morphism of O-operads. It is a collection of morphisms

φt : Q(t) → Ar∗(P)(t),

for each t ∈ O. By definition, Ar∗(P)(t) = P(Ar(t)). By the universal property of
the coproduct, we then have a map

ψT :
∐︂

Ar(t)=T
Q(t) → P(T ),

for each T ∈ Bq(C). The collection {ψT}T∈Bq(C) is a map of Prof(C) × C-colored
objects

ψ : EQ → UΣ(P),

by adjunction in Theorem 36 there exists a naturally corresponding morphism of
Bq(C)-operads

ψ̄ : FQ → P

and the following diagram commutes,

EQ

UΣFΣ(E(Q)) UΣ(P)

ηE0(Q)
ψ

UΣ(ψ̄)

and therefore,
∼N⊆ Ker(ψN),

for each N ∈ Bq(C). This implies that there exists a unique φ̄ : Ar!(Q) → P such
that the following diagram commutes

FQ P

Ar!(Q)

ψ̄

φ̄
.

We define the isomorphism in (3.2) by the assignment φ ↦→ φ̄. The naturality of
this isomorphism comes from the universality of our constructions.
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Remark 38. In case, Ar : O → Bq(C) is an operadic fibration, the construction
we describe in (3.1) is isomorphic to the one described in [1, Proposition 2.3.].

We introduce notation A(O) = Ar!(ζO), where ζO is the terminal O-operad.
The object Ar!(ζO) is a Bq(C)-operad, hence it can be identified with a C-colored
classical operad.

3.3 Application of the wreath product to mono-
colored classical operads

Let X , Y be classical monocolored operads in Set, we identify them with sFSet-
operads with respective structure maps µX , µY and unit maps ηX , ηY . Applying
the construction in Chapter 2, we obtain the wreath product I(X ) ≀ I(Y). It is a
category consisting of objects

(x ∈ X (n̄); y1 ∈ Y(m̄1), ··· , yn ∈ Y(m̄n)).

Let (z ∈ X (k̄);w1 ∈ Y(l̄1), ··· , wk ∈ Y(l̄k)) be another object in I(X ) ≀ I(Y). A
morphism

(φ,Φ) : (x; y1, ··· , yn) −→ (z;w1, ··· , wk)

is given by

• a morphism f : n̄ → k̄ and a tuple ε = (ε1, ··· , εk) such that µX (f)(ε, z) = x.
The pair (f, ε) determines φ.

• a family of morphisms Φ = {φi,j : yi → wj| i ∈ |x| = n̄, j = |φ|(i) = f(i)}.
Each φi,j is similarly given by a morphism fi,j : m̄i → l̄j and a tuple
σ = (σ1, ··· , σlj ) such that µY(fi,j)(σ,wj) = yi.

The morphisms in I(X ) ≀ I(Y) induce relations in A(I(X ) ≀ I(Y)). We highlight
special types morphisms in I(X ) ≀ I(Y) and derive relations in A(I(X ) ≀ I(Y)).
Using these relations, we will be able to prove the following proposition.

Proposition 39. Let X , Y be classical monocolored operads in Set. Then there
is an epimorphism of operads

φ : X ⊗BV Y −→ A(I(X ) ≀ I(Y)).

Denote by u = ηX(∗) ∈ X (1̄) and v = ηY (∗) ∈ Y(1̄), by Lemma 35, u, v are
the terminal objects of the categories I(X ), I(Y), respectively. We observe that for
any n̄, m̄ ∈ sFSet, x ∈ X (n̄), y ∈ Y(m̄), the objects (u; y) and (x; v, ··· v) belong to
I(X ) ≀ I(Y) and look into three types of morphisms that occur in I(X ) ≀ I(Y).
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Type 1. Let f : n̄ → m̄ be a morphism in sFSet with fibers f̄ i = f−1(i), i ∈ m̄.
Then the operad X is equipped with a structure map

µX (f) : X (f̄ 1) × ··· × X (f̄m) × X (m̄) → X (n̄).

Let εi ∈ X (f̄ i), i ∈ m̄, x ∈ X (n̄), z ∈ X (m̄) be such that

µX (f)(ε1, ··· , εm, z) = x.

Then there is a morphism(︂(︂
(ε1, ··· , εm), f

)︂
; Iv

)︂
: (x; v1, ··· , vn) −→ (z; v1, ··· , vm),

where vi = v, 1 ≤ i ≤ max(n,m) and Iv = {id : vi → vj| i ∈ n̄, j = f(i)},
in I(X ) ≀ I(Y). For i ∈ m̄, the i-th fiber

(︂(︂
(ε1, ··· , εm), f

)︂
; Iv

)︂−1
(i) equals to

(εi; v, ··· , v).
This implies that the equality

γ((z; v, ··· , v), (ε1; v, ··· , v), ··· , (εm; v, ··· , v)) = (x; v, ··· , v) (3.3)

holds in A(I(X ) ≀ I(Y)).
Type 2. For the same morphism f : n̄ → m̄ in sFSet with respective fibers

f̄ i = f−1(i), i ∈ m̄, the operad Y is equipped with a structure map

µY(f) : Y(f̄ 1) × ··· × Y(f̄m) × Y(m̄) → Y(n̄).

Let σi ∈ Y(f̄ i), i ∈ m̄, y ∈ Y(n̄), w ∈ Y(m̄) be such that

µY(f)(σ1, ··· , σm, w) = y.

Then there is a morphism(︂
idu;

(︂
(σ1, ··· , σm), f

)︂)︂
: (u; y) −→ (u;w)

in I(X ) ≀ I(Y). For i ∈ m̄, the i-th fiber
(︂
idu;

(︂
(σ1, ··· , σm), f

)︂)︂−1
(i) equals (u;σi).

This implies that the equality

γ((u;w), (u;σ1), ··· , (u;σm)) = (u; y). (3.4)

holds in A(I(X ) ≀ I(Y)).
Type 3. Let y1 ∈ Y(m̄1), ··· , yn ∈ Y(m̄n), then there is a morphism

(idx; J) : (x; y1, ··· , yn) → (x; v, ··· , v), where J = {!yi
: yi → v| i ∈ n̄}

in I(X ) ≀ I(Y). For i ∈ n̄, i-th fiber (idx; J)−1(i) = (u; yi). This implies that the
equality

γ((x; v, ··· , v), (u; y1), ··· , (u; yn)) = (x; y1, ··· , yn). (3.5)
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holds in A(I(X ) ≀ I(Y)).
In the case m̄1 = ··· = mn¯ = m̄ and y1 = ··· = yn = y, there is also a morphism

(!x; Iy) : (x; y, ··· , y) → (u; y), where Iy = {idy : y → y| i ∈ n̄}

in I(X ) ≀ I(Y). For j ∈ m̄, the j-th fiber (id; I)−1(j) equals (x, v, ··· , v). This
implies that the equality

γ((x; v, ··· , v), (u; y), ··· , (u; y)) = (x; y, ··· , y)
= γ((u; y), (x; v, ··· , v), ··· , (x; v, ··· , v)) (3.6)

holds in A(I(X ) ≀ I(Y)).

Proof of Proposition 39. Denote by γX , γY the composition maps of X , Y , respec-
tively, and by ηX , ηY the units of X , Y, respectively. Let u = ηX(∗), v = ηY (∗).
We define two morphisms of operads

φX : X −→ A(I(X ) ≀ I(Y))
φX (n) : X (n) −→ A(I(X ) ≀ I(Y))(n)

x ↦−→ (x; v, ··· , v),

and
φY : Y −→ A(I(X ) ≀ I(Y))

φY(m) : Y(m) −→ A(I(X ) ≀ I(Y))(m)
y ↦−→ (u; y).

Equalities (3.3) and (3.4) imply that φX , φY are indeed morphisms operads.
Equality (3.6) implies that φX , φY extend to a morphism of operads

φ : X ⊗BV Y −→ A(I(X ) ≀ I(Y)),

which is surjective on each its component

φn : (X ⊗BV Y)(n) −→ (A(I(X ) ≀ I(Y)))(n)

since (3.5) holds.
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Conclusion
The main aim of this thesis was to define the wreath product A ≀ B of an

operadic category A and a connected operadic category B and to define a structure
of an operadic category on A ≀ B. Section 2.2 is devoted to verifying that A ≀ B
fulfills the axioms of operadic categories. Furthermore, it has been demonstrated
that this product is not commutative, but it is associative. In the specific case
where A = Ωk and B = Ωl, A ≀ B is shown to be isomorphic to Ωk+l.

Furthermore, in Chapter 3 we have established in Proposition 39 the existence
of an epimorphism from the Boarman-Vogt tensor product of single-colored operads
X ⊗BV Y to I(X ) ≀ I(Y). In the course of our work, we have demonstrated that

• I(X ), I(Y) have terminal objects, as shown in in Lemma 35, so the wreath
product I(X ) ≀ I(Y) is well-defined. These terminal objects then were crucial
to establish equalities which hold in A(I(X ) ≀ I(Y)).

• For an operadic category O and an O-operad Q, the canonical functor
Ar : O → Bq(π0O) gives rise to a Bq(π0O)-operad Ar!(Q). Moreover, this
action is functorial and is a left adjoint to the restriction Ar∗.

We believe that the wreath product of operadic categories opens a path to future
research. We wish to extend the result stated in Proposition 39 to colored operads,
additionally seeking to ascertain the conditions under which an epimorphism
φ : X ⊗BV Y −→ A(I(X ) ≀ I(Y)) of operads gives rise to an isomorphism.
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