
MASTER THESIS

Bc. Jakub Stacho

Unity UI for real-time plotting of data

Department of Software and Computer Science Education

Supervisor of the master thesis: Dr. Adam Streck
Study programme: Visual Computing and Game

Development

Prague 2024

I declare that I carried out this master thesis on my own, and only with the
cited sources, literature and other professional sources. I understand that my
work relates to the rights and obligations under the Act No. 121/2000 Sb., the
Copyright Act, as amended, in particular the fact that the Charles University has
the right to conclude a license agreement on the use of this work as a school work
pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

I would like to thank my supervisor, Dr. Adam Streck, for being willing to
supervise this thesis, provide me with guidance, and find time to help even with
a tight deadline. I would also like to thank my family, who pushed me to finish
school and this thesis even in times when I didn’t see the light at the end of the
tunnel. I would like to dedicate this thesis and my whole effort to my grandfather,
as he was the main reason for me to finish this master’s degree. I would like to
thank my girlfriend Dominika for supporting me through the rough days and
nights while working on finishing this thesis. I also cannot forget to thank my
friend Mario for his support and great toasts.

Title: Unity UI for real-time plotting of data

Author: Bc. Jakub Stacho

Department: Department of Software and Computer Science Education

Supervisor: Dr. Adam Streck, Department of Software and Computer Science
Education

Abstract: Languages used for data science or scientific computing commonly come
with a de-facto standard library for plotting, such as GGPlot in R, MatPlotLib
in Python, Plotly in Matlab, and others. However, all of these focus on creating
singular images from static datasets. In Unity, however, we often need to display
data in real-time, at a high refresh rate, and only for the currently relevant
subset. Since real-time data typically accumulates by hundreds of data points per
second, we must provide the user with appropriate data without losing the app’s
performance that renders the graphs. This makes rendering graphs in real-time
both a UI/UX and an optimization problem. The project aims to develop a Unity
package to render basic graphs and charts from real-time data.

Keywords: Unity, real-time plotting, graph charts, optimizations, Unity package

Název práce: Uživatelské rozhraní pro zobrazování dat v reálném čase s použitím
Unity

Autor: Bc. Jakub Stacho

Katedra: Katedra softwaru a výuky informatiky

Vedoucí bakalářské práce: Dr. Adam Streck, Katedra softwaru a výuky informatiky

Abstrakt: Jazyky používané pro datovou vědu nebo vědecké výpočty běžně
přicházejí s de-facto standardní knihovnou pro vykreslování, jako je GGPlot v R,
MatPlotLib v Pythonu, Plotly v Matlabu a další. Všechny se však zaměřují na
vytváření singulárních obrazů ze statických datových souborů. V Unity však často
potřebujeme zobrazovat data v reálném čase, s vysokou obnovovací frekvencí a
pouze pro aktuálně relevantní podmnožinu. Vzhledem k tomu, že data v reálném
čase se obvykle kumulují o stovky datových bodů za sekundu, musíme uživateli
poskytnout relevantné data bez stráty výkonu aplikace, která grafy vykresluje, což
z toho činí UI/UX i optimalizační problém. Cílem projektu je vyvinout balíček
Unity pro vykreslování základních grafů z dat v reálném čase.

Klíčová slova: Unity, zobrazování grafů v reálnem čase, grafy, optimalizace, Unity
balíček

Contents

1 Introduction 8
1.1 Motivations . 8
1.2 Goals . 8
1.3 Structure . 9

2 Plotting libraries 10
2.1 Usability . 10

2.1.1 Plotting libraries vs. Excel 11
2.2 Static plotting libraries . 13

2.2.1 Matplotlib . 14
2.2.2 Seaborn . 18
2.2.3 Summary . 20

2.3 Real-time plotting libraries . 21
2.3.1 Interactive plotting libraries 21
2.3.2 Animated plots . 24
2.3.3 Comparison with Static plotting libraries 26

3 Unity package 28
3.1 Games as research tool . 28

3.1.1 Unity engine . 28
3.2 Package parts . 28
3.3 Unity package manager . 29
3.4 Importing Unity package . 31

4 Requirements and analysis 32
4.1 Functional requirements . 32

4.1.1 Drawing plots . 32
4.1.2 Axes . 32
4.1.3 Grid . 33
4.1.4 Borders . 33
4.1.5 Changable data point . 33
4.1.6 Aggregation of data . 33
4.1.7 Testability . 33

4.2 Performance requirements . 34
4.2.1 Garbage collector . 34
4.2.2 Data storage . 34
4.2.3 Rendering . 34

4.3 Solution analysis . 36
4.3.1 System architecture . 36
4.3.2 Rendering . 38
4.3.3 Data management . 39
4.3.4 Data aggregation . 40
4.3.5 Graph components . 41

5

5 Developer documentation 42
5.1 Setting up the project . 42
5.2 System architecture . 42
5.3 Rendering . 43

5.3.1 UIDrawer . 43
5.3.2 GraphView . 43
5.3.3 LineGraphView . 44
5.3.4 BarGraphView . 45

5.4 Data handling . 45
5.4.1 DataPoint . 45
5.4.2 DataCollector . 46
5.4.3 CircularBuffer . 46
5.4.4 DataViewBuffer . 46

5.5 Data aggregation . 47
5.5.1 IAggregator . 47
5.5.2 BaseDataAggregator . 47
5.5.3 Examples . 47

5.6 Graph components . 48
5.6.1 BordersDrawer . 48
5.6.2 GridDrawer . 48
5.6.3 GraphLabel . 48

5.7 Package unity testing . 49

6 User documentation 50
6.1 Importing the package . 50
6.2 Sample scene . 50
6.3 Assemblying plot . 51

6.3.1 Create Canvas . 51
6.4 Components . 54

6.4.1 LineGraphView . 55
6.4.2 BarGraphView . 55
6.4.3 DataCollector . 56
6.4.4 GridDrawer . 56
6.4.5 BordersDrawer . 57
6.4.6 GraphLabel . 58

7 Evaluation 60
7.1 Performance testing . 60
7.2 Limitations . 60

8 Conclusion 62
8.1 Future work . 62

Bibliography 63

List of Figures 66

List of Tables 67

6

List of Abbreviations 68

A Attachments 69
A.1 Creating Unity package . 69

7

1 Introduction
Nowadays, the world is significant due to the amount of data collected through

various methods. A lot of industries are data-driven, and a lot of steps are
executed based on collected data. Data are collected all the time and everywhere.
When you’re crossing a street, you’re captured by cameras, and the image is being
processed. While you are sleeping and wearing a smart device, data about your
sleep, respiration, and other metrics are collected. The most obvious is the case
when you are browsing the internet on one of your smart devices. Each of these
devices collects a large amount of information about you whenever possible. It
was never more important to display data in a form humans can understand in a
short time than now. Since 2000, the attention span 1 has decreased from 12 to 8
seconds with the introduction of the new electronic era[2]. If we cannot provide
valuable information to the user during this period, the message we want to share
might be perceived as unclear or hard to understand.

Programming languages are equipped with robust libraries like GGPlot, Mat-
PlotLib, and Plotly, which are well-known and established for generating static
images from static datasets. These tools are essential for creating detailed plots
in academic papers, presentations, and reports.

1.1 Motivations
The primary use of plotting libraries is to provide straightforward, logical

plots for reports, technical papers, or articles. These plots must be displayed in
one view without zooming or panning to help gain information like you often see
in the dashboard or interactive plot. However, if we try to display live data in
those tools, we will soon realize that it’s necessary to make a noticeable effort
to make these libraries work. The existing plotting libraries cannot handle such
real-time demands as they are not designed for such usage. They are optimized for
producing static plots from datasets that do not change once the plotting process
begins. This creates problems for applications that display data in real-time,
such as those created using the Unity engine. The Unity-developed application
requires a dynamic approach as multiple data points can be provided in a short
period, so visualizations need to be updated without noticeable delay. Also, the
challenge would be to manage system resources effectively to prevent performance
bottlenecks.

To address this gap, we need a tool to render basic graphs and charts from
real-time data sets that handle the computational load with the need for high-
refresh-rate updates, ensuring the visual output remains smooth and responsive.

1.2 Goals
This project aims to develop a Unity package that provides essential real-time

tools for plotting graphs with high refresh rates. This package should be helpful to
researchers and developers who rely on Unity to write applications that demand

1The period during which you can stay interested or listen carefully to something[1].

8

real-time data visualization without compromising performance. It should also
provide a base for eager developers to extend and adjust the package to their uses
without significant problems.

1.3 Structure
In Chapter 2, we first introduce plotting libraries and try to explore their uses.

We divide them into libraries that provide interactive plots where data stays the
same, where the data display is changed to suit the user’s needs, and real-time
plots, where data changes, and the display of the data changes automatically with
them. Then, we introduce packages and explain why we chose Unity while we
show how to work with packages in the Unity engine in Chapter 3. In Chapter
4, we analyze the requirements of the final package and possible solutions to the
problems that might occur during implementation. In the fifth chapter, we present
the reader with the implementation of the package and an explanation of our
implementation. Next, we show how to use the package in Unity and describe the
parameters of the individual components that can be used to expand plots. We
finish this text with a performance evaluation of our package and suggestions for
improving it. Finally, we conclude the thesis by summarizing what we achieved
and suggesting future work.

9

2 Plotting libraries
Plotting libraries are tools that can extract essential data from massive data

sources and provide only the most relevant information we want to share with
the user. This chapter will identify the most popular plotting libraries, examine
their use, compare them to well-known programs like Excel, and discuss why
they became so popular. Try to exploit their shortcomings to evaluate what
will be needed and supported in our final project. We will also show how to
plot different data in those libraries, provide examples of code used, and discuss
possible customization of those plots.

Static and real-time plotting libraries meaning

We will compare static plotting libraries and real-time plotting libraries in this
chapter many times, so it’s essential to understand what those terms mean.

Static plotting libraries are those libraries that can produce plots where data
are static, but the plot is changing to suit the user’s needs. Still, those libraries
provide little to no interaction with plots or data in real time.

By real-time data libraries, we mean those libraries capable of showing data
that changes and the plot is changed with them automatically or that they can
provide some user interaction in real time, either by manipulating interactive plots
or animating data in the plot.

When we discuss some libraries under the static or real-time libraries section,
it doesn’t mean they can represent only one of those categories. We chose those
libraries and divided them into categories primarily because they are a strong
representation of those sections and provide an excellent example to learn what
they do, to provide us with inspiration and understanding to implement our
plotting package.

2.1 Usability
The vast majority of the plotting libraries allow the display of plots in either 2D

or 3D representation. Most of the plots are displayed in 2D. This representation
is sufficient to represent most of the data. However, displaying data in 3D might
also be a helpful representation as some of the data must be shown in a 3D space
because of their nature. For example, those data that require 3D visualization are
terrain data, meaning the height in the specific coordinate, as shown in figure 2.1.
However, our work will focus more on 2D representation as it is the starting point
of most plots.

10

Figure 2.1 Terrain 3D Plot. Source: Matplotlib.org [3]

These plotting libraries are often used in the academic or scientific sphere.
Still, we cannot forget the private sector of companies, where the creation of
good graphs can provide invaluable insight into problems like cash flow or the
company’s stock price over time. I think that the usability of these libraries is,
in fact, unconstrained. Because almost all libraries provide the functionality to
adjust plots to user needs, these plots can be used anywhere they are needed and
provide useful insight.

2.1.1 Plotting libraries vs. Excel
The problem that might be for some people who want to create a representation

of the data in the form of a graph is the steep learning curve of plotting libraries,
which are used within various programming languages such as Python, R, or
JavaScript. Those users might lean towards more straightforward tools like Excel.
In comparison with Excel, we chose Python as a representative because of the
user base, familiarity, and growth in popularity in the last years, based on PYPL
index [4]. We will compare the plotting libraries used with Python programming
language to Excel based on the following criteria:

Ease of Use

- Excel advantage is in the simplicity of use. Users can create data easily or
import them into one of the sheets. They can be organized into tabs that
provide more clarity when sorting data. After that, creating a graph from
data is simple just by clicking the button in UI.

- Learning any programming language might be frightening and hard for
novice users, even though Python might be one of the easier ones compared
to other programming languages such as C++, C#, or Java. It also takes a
while to get familiar with manipulating your data via coding rather than

11

clicking it on Excel’s UI. Python’s steeper learning curve makes it slightly
less mainstream as a data analysis tool for the casual user [5].

Scalability

- Excel can only handle so much data, and the more data and tabs you have
in your workbook, the more difficult it becomes to manage and the slower
the file will be. This often leads the program to crash and lose any unsaved
work. Excel is not meant to be a full data warehouse with many tables and
millions of entries. This gets even slower and more crash-prone when you
share the file on the cloud with your teammates. If you’re working with
millions of rows of data in Excel, it would be tough to go up and down
through all the rows or create formulas across multiple sheets.

- In Python, you can save your data as a separate file and write your code as
another file that interacts with the data. This provides many advantages
in computational speeds and stability as you potentially wrangle millions
of rows of data. In Python, the number of rows or columns doesn’t change
much as the user is not interacting with the data through the UI as in Excel.
You can still check the data and go through it if you want to see some partial
points in the data or correct it. When working across multiple data files,
Python makes it much easier to merge data from different files on specific
fields.

Automation

- Use some sort of automation in Excel is possible. We can create macros to
do some calculations for us. We can also access Visual Basic programming
language to write custom scripts and functions to automate tasks. But let’s
say we need to upload a report every 1st of the month from some data
set and create different charts for it. We must do so manually in Excel,
import new data, and create charts and reports. As small data sets and
not-so-complex analysis might still be a way to go, we already feel a lack of
features in the automation process.

- Using Python in correlation with different libraries makes task automation
much easier. The mentioned use case with reports above can be easily
scheduled in Python. Also, we can integrate with virtually any other system,
API or application. Using Jupyter Notebook package for Python can simplify
automation tasks as simple as clicking the ’Run’ button and running the
entire notebook with multiple data sets and charts as an output. Everything
we needed to make in Excel could be automated in Python

Data connection

Connecting to cloud-based data is possible with Excel, but it is a bit more
difficult as Excel is not meant to stream large amounts of data. Excel has
made strides in this category, making it a better tool. Still, compared
to Python, it doesn’t have the same level of connectivity or integration
capabilities. Excel was created long before big data and cloud data platforms

12

were invented. It was originally designed as a financial reporting tool,
and it cannot handle the amount of data modern companies use to make
business decisions [5]. Excel did improve in the last years to integrate Power
Query, which provides nice graphical UI that allows users to perform data
transformations through step-by-step actions. It can be used for simple
tasks with relatively small data sets. When processing large data sets, it
comes short in performance to Python.

Even though using Excel is much simpler than learning Python programming
language and then using some of the plotting libraries, the possibility of these
libraries is much greater than what Excel provides. There are many things that
Excel can do. It is an excellent tool for fundamental data analysis. But Python
allows you to do more regarding analysis, performance, or automation. It all comes
down to user needs. Excel is an entry-level tool for quickly and easily analyzing
a data set. In recent years, there is also the possibility to integrate Python into
Excel to perform some operations over data in sheets. However, if a user is willing
to learn something new and dive into the waters of entry-level programming, then
they might be rewarded with much more possibilities to process and visualize
data sets.

2.2 Static plotting libraries
Static plotting libraries are primarily used to display a single static image

as the data representation. You can find many of those libraries, as most are
open-source and free. It just depends on your programming language preference,
as each of those libraries either has its language or, in most cases, are implemented
as a package for already existing programming languages such as Python, R, or
JavaScript. The following figure 2.2 presents the most popular plotting libraries
based on their respective user base as stated on their GitHub pages.

Figure 2.2 Plotting Libraries user base (Obtained from their Github repositories)

13

Some libraries, such as Plotly, might be used with multiple programming
languages. In that case, we chose the most used programming language for such a
library. As we can see, the most used ones are Matplotlib for Python and Chart.js
for JavaScript. As we chose Python as a representative language in the previous
section 2.1.1, we will select two of the most used libraries for plotting in Python,
which are Matplotlib, with over 1 million users, and Seaborn, with a little over 400
000.

2.2.1 Matplotlib
Matplotlib is a powerful plotting library in Python used for creating static,

animated, and interactive visualizations. Matplotlib’s primary purpose is to provide
users with the tools and functionality to represent data graphically, making it
easier to analyze and understand. It was originally developed by John D. Hunter
in 2003 and is now maintained by a large community of developers [6]. This
library has a great number of functions that allow us to create different types of
charts or to customize them. For example, the typical representations are line
plots, bar plots, scatter plots, histograms, or pie charts. Users can customize basic
elements for the chart, like line styles, colors, markers, labels, and many more.
Matplotlib is designed to produce high-quality plots to be used in academic or
scientific reports.

Further, we introduce ways to use this library to generate and customize graphs
such as line and bar graphs. We show examples of Python code to do so while
explaining simple functions. This will be useful as we will see how these plotting
libraries are used to be able to design our package in similar ways that users are
used to. For the next examples, we will use PyPlot, which is the Matplotlib module
that provides simple functions for adding plot elements, such as lines, images, or
text, to the axes in the plot.

Figure

Matplotlib’s figure is the top-level container that holds all the elements of a
plot. It represents the entire window or page where the plot is drawn. The parts
of the basic Matplotlib figure are shown in the figure 2.3 below.

14

Figure 2.3 Components of a Matplotlib Figure. Source: Matplotlib.org [7]

The parts of the Matplotlib’s figure:
• Axes are the rectangular areas within the figure where data is plotted.

Each figure can contain one or more axes arranged in rows and columns if
necessary. Axes provide the coordinate system and are where most of the
plotting occurs.

• Axis objects represent the x-axis and y-axis of the plot. They define the
data limits, tick locations, tick labels, and axis labels. Each axis has a scale
and a locator that determines how the tick marks are spaced.

• Markers are symbols used to denote individual data points on a plot. They
can be shapes such as circles, squares, triangles, or custom symbols. Markers
are often used in scatter plots to visually distinguish between different data
points.

• Lines connect data points on a plot and are commonly used in line plots,
scatter plots with connected points, and other types of plots. They represent
the relationship or trend between data points and can be styled with different
colors, widths, and styles to convey additional information.

• Title is a text element that provides a descriptive title for the plot. It
typically appears at the top of the figure and provides context or information
about the data being visualized.

• Axis labels are text elements that provide descriptions for the x-axis and
y-axis. They help identify the data being plotted and provide units or other
relevant information.

15

• Ticks marks are small marks along the axis that indicate specific data
points or intervals. They help users interpret the scale of the plot and locate
specific data values.

• Tick labels are text elements that provide labels for the tick marks. They
usually display the data values corresponding to each tick mark and can be
customized to show specific formatting or units.

• Legend provides the key to the symbols or colors used in the plot to
represent different data series or categories. They help users interpret the
plot and understand the meaning of each element.

• Grid Lines are horizontal and vertical lines that extend across the plot,
corresponding to specific data intervals or divisions. They provide a visual
guide to the data and help users identify patterns or trends.

• Spines are the lines that form the borders of the plot area. They separate
the plot from the surrounding white space and can be customized to change
the appearance of the plot borders.

However, not all of those elements need to be used in each and every graph.
Mathplotlib gives us the ability to choose which of those elements we want to
include or customize. Of course, some of those elements like Lines might not give
a meaning in the bar plot. In the next examples, we will use the same code base
with the same figure setup 1.

Program 1 Base figure setup

import matplotlib.pyplot as plt

Sample data
categories = ['A', 'B', 'C', 'D', 'E']
values = [10, 24, 36, 40, 29]

Create a new figure
plt.figure(figsize=(5, 5))

Line plot

We will build a line graph representation on the figure set in the program 1.
We set categories as the x-axis and values as the y-axis values, setting the marker
type to a small circle. The line would have a classic, uninterrupted style with a
green color. After that, on the next line, we set the title to Line Graph and labels
of the x and y axes. The most important line of code is plt.show(), as it is the
command to show the final plot.

16

Program 2 Line graph setup

plt.plot(categories ,
values ,
marker='o', linestyle='-', color='green')

plt.title('Line Graph')
plt.xlabel('Category')
plt.ylabel('Values')

plt.show()

When we merge program for basic figure setup 1 with line graph representation
2, we get following output: 2.4

Figure 2.4 Basic line graph using Matplotlib.

Bar plot

As well as the line graph we built in the previous section, we will also build a
bar graph representation on the same figure base. We select the x and y axes the
same way as for a line graph with defining bar colors.

Program 3 Bar graph setup

plt.bar(categories , values , color='skyblue')

plt.title('Bar Graph')
plt.xlabel('Category')
plt.ylabel('Values')

plt.show()

17

When we merge this program with the program setup basic figure 1, we get
the following output: 2.5.

Figure 2.5 Basic bar graph using Matplotlib

2.2.2 Seaborn
Seaborn is a Python data visualization library based on Matplotlib. When

it comes to using Seborn, it can act as some kind of wrapper above Matplotlib.
Creating complicated plots might require a lot of work in Matplotlib, while Seborn
might have some workaround that eases up the workload. Seaborn’s plotting
functions operate on arrays containing whole datasets and internally perform
the necessary mapping and aggregation to produce plots. Its dataset-oriented,
declarative API lets you focus on what the different elements of your plots mean
rather than on the details of how to draw them [8]. As the Seaborn is built upon
Matplotlib, behind the scenes uses Matplotlib to draw its plots. In the Seaborn user
can set the theme of the plot to suit their different need, such as switching between
types of plots with different fonts to be able to see them on the presentation, or
just in your academic paper. This uses the Matplotlib rcParam system and will
affect how all Matplotlib plots look, even if you don’t make them with Seaborn.
As mentioned above, Seaborn is dataset-oriented, meaning it can work with data
a little bit more seamlessly as it is designed to work with pandas DataFrame,
making it easier to plot data directly from DataFrame. As it might be frightening
for novice users to use Matplotlib to specify every little thing, Seaborn provides an
easier setup to create more appealing plots right from the start.

As a base function for plotting graphs in Seaborn will be function relplot().
This function is named that way because it is designed to visualize many different
statistical relationships [8]. In the following code snippet 4 using Seaborn, we just
provided the names of the variables and their roles in the plot. Behind the scenes,
Seaborn handled the translation from values in the DataFrame to arguments that

18

Matplotlib understands. This approach lets the user focus more on what they
want to show as a result rather than spending hours writing code.

Program 4 Seaborn replot function call. Source: seaborn.pydata.org [9]

Create a visualization
sns.relplot(

data=tips,
x="total_bill",
y= "tip",
hue= "day",
col= "time",
row= "sex")

This simple function call relplot() will output the following figure 2.6. As we
can see, we just need to specify what represents each column inside of DataFrame
data representing the customer’s tips in the store. We specified that the x and y
axes will be the total amount customers spend and the amount they tip. The hue
of the points on the graph will be represented by different days customers left tip.
Afterward, we will generate more plots using col and row parameters to specify
how we should represent plots. Each row of the plots will represent a different sex
as each column will represent different times customers were in the store.

Figure 2.6 Plot representing data of the customer [9].

19

We showed examples in Matplotlib how to make line 2 and bar 3 plots. We
can show the same in the Seaborn, but it doesn’t make sense as it won’t showcase
Seaborn’s advantage over Matplotlib as the example above 2.6 did. Creation of
simple things like line or bar plots are written similarly using either Matplotlib or
Seaborn.

Comparison with Matplotlib

Where Seaborn really strives against the Matplotlib is just simplicity of the use
when trying to visualize datasets into one or more plots. As we were comparing
plotting libraries with Excel earlier in the chapter 2.1.1, we emphasized the
straightforward use of the Excel over programming languages using libraries for
plotting. I think this advantage is softened up while using Seaborn plotting library
with Python. As we showed earlier in the code snippet 4, we made four plots with
a lot of data displayed on them just by calling one simple function.

Creating nicer-looking plots using Seaborn right away is also easier than going
through a long setup of each element in Matplotlib. However, this might be great
for casual users. Still, the more experienced and demanding ones will have to
write complicated customizations using Matplotlib as it is more flexible in this
way.

Both of the libraries have their strengths and weaknesses. In my opinion, I
would use Seaborn when trying to visualize data in nice-looking plots in a short
period, with no large need for customization. If I need to customize and fine-tune
plots and feel I have more control over the visualization of the data relations, I
would use Matplotlib.

2.2.3 Summary
Pointing out the advantages or disadvantages of static plotting libraries is

possible only from a subjective point of view of what the user needs. When it
comes to generating high-quality plots for scientific or academic purposes with
no interactivity, static plotting libraries are the way to go. These libraries can
be a great fit even in different presentations to create nice-looking plots or while
processing large amounts of data to display on one or multiple plots.

This chapter clarifies what we mean by static plotting libraries. We showed
a couple of plotting libraries for Python and compared them with programs like
Excel 2.1.1. In the basic examples, we showed the fundamental use of those
libraries along with specific code snippets to get particular results. We focused
on using those packages, their functions, or the naming conventions users use to
work with. We compared Matplotlib and Seaborn as plotting libraries for Python.
Seaborn is more beginner-friendly and easier to use for users who need to generate
nice plots in no time or for those who are not willing to spend their time or energy
exploring Matplotlib and its functions more deeply. While designing our package,
we must balance ease of use with the possibility of plotting data meaningfully or
having options to customize plots for more demanding users.

20

2.3 Real-time plotting libraries
Static plotting libraries provide little to no real-time interactions with plots

while visualizing data, as they primarily create unchanging, fixed images. What
we mean by real-time plotting libraries is that they are libraries that can provide
users with tools to do certain operations in real time. Those operations might
be panning, zooming, selecting a specific point in the plot, or viewing data live
on the plot as they come to a database. As this project aims to create a package
for real-time plotting, we will explore existing real-time plotting libraries and
focus on the tools they provide. In this chapter, we will look at those libraries
by dividing them into different categories based on their capabilities in terms of
real-time plotting.

2.3.1 Interactive plotting libraries
As we explored plotting libraries by popularity and their use in the chapter

2.2, the figure 2.2 also shows plotting libraries Plotly and Bokeh as quite popular.
These libraries can perform certain operations over a plot in real-time, like hover,
pan, or zoom. This provides users with much more insight than just reading
simple static images. For example, in figure 2.7, we can see that by hovering over
a specific point on the plot, we can see exact data on that point. This might
be useful if the user needs to read precise data from the plot or make the data
presentation more interactive and entertaining.

Figure 2.7 Example interactive plot with hover over the specific point. Source:
plotly.com [10]

In the figure 2.7, we see an example chart displaying life expectancy in Canada.
By hovering over the line on the chart, we can see the label with specific information
for that point, precisely the x and y values for the point on the chart.

21

Plotly

The Plotly library in Python is an interactive, open-source plotting library
that supports over 40 unique chart types covering a comprehensive range of use
cases, including 3D charts [11]. We choose a branch of Plotly tailored for Python
users called plotly.py.

Plotly is built on top of the JavaScript library plotly.js to enable Python users
to create beautiful interactive web-based visualizations that can be displayed in
Jupyter notebooks, saved to standalone HTML files, or served as part of pure
Python-built web applications [11].

In the section 2.2, we explored plotting libraries based on their user base. We
created a static chart 2.2 using Matplotlib. As this chart shows us the most used
plotting libraries, we can hardly try to read an exact number of users. In the
following figure 2.8, we created the same plot but using Plotly library. We can
see that when we hover the cursor over the bar representing Vega library, it can
show us that the number of users is about 9500. This is impossible to read from a
static Matplotlib chart without providing extra labels in the plot.

Figure 2.8 Plotting Libraries user base (Created using Plotly)

To generate a simple plot as shown in figure 2.7, Plotly required just a little
code. It is done similarly to what users are used to in static libraries. In the
following program 5, you can see how it can be done in Plotly. By writing this
couple of lines, Plotly will generate the interactive plot for us.

Program 5 Line plot setup in Plotly [10]

import plotly.express as px

df = px.data.gapminder().query("country=='Canada'")
fig = px.line(df,

x="year", y="lifeExp",
title='Life expectancy in Canada')

fig.show()

As we can see, after importing Plotly’s express package, we load data and

22

provide line() function with basic data. We specify what should represent axes
and the title or what data to use.

Bokeh

The Bokeh is a Python library for creating visualizations for web browsers.
Bokeh will help the user build beautiful graphics from simple to complex plots
while managing large data sets with ease and speed [12]. It is an open-source
library maintained by different contributors and programmers eager to improve
this library. Bokeh allows to create interactive JavaScript powered visualizations
without writing any JavaScript code. The idea of Bokeh is a process in two steps
[13]:

• Select one of the building blocks of Bokeh to create visualization.

• Customize these building blocks to fit the needs.
It provides features like Plotly in terms of interactiveness with the plot, like zoom,
pan, or hovering over specific data points to uncover more detailed information.
Based on the user’s Python code, Bokeh performs all the necessary steps when
generating HTML and JavaScript for the user.

Creating interactive plots in the Bokeh is also easy and fast. Users require
little effort to create interactive plots. In the following code 6, we can see how we
can make a simple line graph just by writing a couple of lines.

Program 6 Line plot setup in Bokeh [13]

from Bokeh.plotting import figure , show

Prepare some testing data
x = [1, 2, 3, 4, 5]
y = [6, 7, 2, 4, 5]

Create a new plot with a title and axis labels
p = figure(title="Simple line example",

x_axis_label="x", y_axis_label="y")

Add a line renderer with legend and line thickness
p.line(x, y, legend_label="Temp.", line_width=2)

Show the results
show(p)

This might seem familiar to how we created a line plot in Matplotlib by first
setting up the figure as a canvas for the plot and then projecting a line on the
created figure. The code 6 will result in the following result 2.9. We use simple
steps to produce this output [13]:

1. Preparing the data. This can be done by loading some data sets or generating
ones using Python.

2. Calling the figure() function. This call creates a blank canvas (figure)
with common default options. To customize the plot, the user can cast the
atomized figure’s properties, such as title, axes, or labels.

23

3. Adding renderers. By using line() function, Bokeh will add the line renderer
to the created figure. Renderers have various options to allow users to
specify properties like color, legends, or width.

4. Show the results. By calling show() or save() functions, Bokeh will either
save the plot into HTML or open the file in the browser.

Figure 2.9 Line plot created by using Bokeh [13].

2.3.2 Animated plots
Another great possibility that plotting libraries provide is the ability to display

animated plots. Animated plots can give insight into how certain data evolved.
As human beings, we are naturally more attracted to moving things like points or
lines than static images. Animated plots are a great choice to make visualizations
more appealing or exciting. Most of the libraries we mentioned so far support
animated plots either by default or by importing packages for the library. In those
libraries that don’t support animated plots, it’s still possible to make plots move
by wrapping around particular logic to feed data into the plots at different times.

Animated plots in Matplotlib

Even the low-level plotting library Matplotlib can be used this way. Based
on its plotting functionality, Matplotlib also provides an interface to generate
animations using the animation module. Animations can be done in two ways
[14]:

24

• By using FuncAnimation class, we can generate data for the first frame
and then modify it for each frame to create an animated plot.

• By using ArtistAnimation class, where we generate a list of artists 1,
which will be drawn in each animation frame.

Using FuncAnimation class is more efficient in terms of speed and memory as
it draws an artist once and then modifies it. However, by using ArtistAnimation
class, we gain more flexibility, allowing any iterable of artists to be animated in a
sequence. In the following code snippet, we can see how to create an animated
plot using FuncAnimation class. We need to provide a figure on which the plot
is drawn. Specify the function that will be called every frame. This function
would require updating data for different plot elements we want to animate.

Program 7 Animating plot using FuncAnimation class in Matplotlib

Plot animates for 40 frames with 30 milliseconds delay between
ani = animation.FuncAnimation(fig=fig, func=update ,

frames=40, interval=30)

plt.show()

This might seem pretty straightforward, but we must emphasize that creating
a function required by FuncAnimation is a nontrivial task for novice users.
Creating an animated plot using ArtistAnimation is done similarly. Still, instead
of a function called every frame, we provide a list of artists that differentiate one
from the other.

Animated plots in Plotly

Animated plots can be made more easily with Plotly. This doesn’t require
that much programming knowledge as in Matplotlib. On the other hand, it
might lack options to customize plots during animations in the way Matplotlib
provides. It comes down to the balance of library capabilities to ease of use,
as discussed multiple times in this chapter. To create an animated plot in
Plotly, we don’t need to change much to the code 5. Several functions of Plotly
support the creation of animated plots through the animation_frame and
animation_group parameters.

1”Almost all objects you interact with on a Matplotlib plot are called ”Artist” (and are
subclasses of the Artist class). Figure and Axes are Artists, and generally contain Axis Artists
and Artists that contain data or annotation information.” [15]

25

Program 8 Animating bar plot using Plotly [16]

import plotly.express as px

df = px.data.gapminder()

fig = px.bar(df, x="continent", y="pop", color="continent",
animation_frame="year", animation_group="country",
range_y=[0,4000000000])

fig.show()

In the code 8 above, we added animation_frame parameter to tell the Plotly
which parameter should be animated. Also, we provided how the data should be
grouped in animation by setting animation_group parameter. The disadvantage
of this approach is that we always need to set up range_y or range_x if the
plot is also animated on the x-axis. This ensures that the animation will stay
in the current figure and can be seen in all frames. The data animation would
overflow outside the graph if we adjusted range_y in the program 8, for example,
to two billion. It may be a problem if we don’t know the data beforehand. This
code will result in the following plot 2.10.

Figure 2.10 Animated bar plot using Plotly, generated by code 8. Source: plotly.com
[16]

Although Plotly Express package supports animation for many chart and map
types, smooth inter-frame transitions are only possible for scatter plots and bar
plots [16].

2.3.3 Comparison with Static plotting libraries
Comparing libraries, which focus on producing high-quality singular, static

images, with libraries that can easily create interactive plots might be challenging
as the choice should come down to the user’s preference.

26

Use

When choosing a static plotting library like Matplotlib, it can be a good choice
for creating static plotting images with a wide variety of customizations. Matplotlib
offers excellent documentation with a large community and many tutorials as
this library becomes standard in the academic and scientific sphere for static
plotting images. When users must present data more interactively, real-time
plotting libraries like Bokeh might be handy, as creating interactive plots is easy
and straightforward.

Integration

Integrating plots to web-based applications or showing plots online would be a
waste not to use real-time libraries with interactive features like Plotly or Bokeh.
These libraries generate HTML and JavaScript code so that the user can integrate
plots into the web applications. When it comes to exporting interactive plots to
standardize more academic document types like PDF, there is no option to do so,
as PDF is not supporting HTML code with JavaScript. A workaround might be
to export plots in different frames and put them into paper, but it would lose the
interactability.

Performance

It depends on the size of the data sets the user is working with. Matplotlib
is more optimized for large data sets when used correctly to generate plots from
extensive data fast, as real-time data libraries are not as performant as Matplotlib.
They were not designed to handle large data sets like Matplotlib to render in one
static plot. On the other hand, this is mostly not the case for users who need
to process massive data sets into interactive plots. We are not claiming that
real-time plotting libraries are slow, but compared with Matplotlib, creating static
plots might not be as efficient.

Shortcoming

Where both groups might come short is real-time live data processing. For
animated plots you need to provide data before you create the plot. We are
not saying it is impossible to do it, as users would need to develop programs
to load live data and project them onto plots, but this is not a task for novice
users as most of the libraries would not provide such support. There is room for
improvement in this field.

27

3 Unity package
As we explored plotting libraries in the previous chapter, we may notice that

every library comes as a package. Usually, the user needs to download and import
a package to use it. This chapter will focus on how to create and import packages
in the Unity engine and why we chose the game engine to implement our real-time
plotting package.

3.1 Games as research tool
When we first encounter a game engine, we might think that the only purpose

of the engine is to create fun games that can provide a pleasant experience.
However, using games as a research tool is nothing new. Given the social and
economic impact of games, they become essential tools in research. The study
of games and games playing is known as ludology. ”The study of games is the
most popular field of research, which engages approaches from anthropology,
sociology, psychology, and engineering.” [17]. Researchers from multiple fields
started promoting game research training and exploring fields, such as gamer
creativity, role-play, live-action playing, the concept of the magic circle, and game
research methods [18].

We can even find publicly accessible games that a broad audience can play to
provide data for researchers. One web page that allows playing games for research
purposes is citizensciencegames.com [19].

As games are used more for scientific purposes each year, this provides an
excellent opportunity to create a package for one of the well-known game engines
to provide tools for live data plotting to researchers, who might find this tool
helpful when analyzing data.

3.1.1 Unity engine
When choosing game engines, we might consider the two most significant ones

used: Unreal Engine and Unity. Choosing one or the other may, in the end, come
down to user preferences. The choice is clear, as the author is far more experienced
with the Unity game engine when writing this paper.

Unity is a cross-platform game engine developed by Unity Technologies, first
announced and released in 2005. The engine has been improved significantly over
the years to support various platforms, including desktop, mobile, augmented,
and virtual reality. It is considered easy for beginner developers and is famous for
indie game development [20]. From my experience over the years of using either
Unreal Engine or Unity, the learning curve of the Unity game engine is much
less steep than that of the Unreal engine, making Unity an excellent choice for
researchers to implement their games for scientific purposes in this engine.

3.2 Package parts
A package usually contains the implementation of the different functionalities

and additional data. The Unity package might include other models, textures,

28

animations, etc. The package contains not only important functionality but also
additional information, such as:

• README file. This file contains information on what the user must
do to use the package correctly. It might also contain a link to the web
documentation or important notices. Typically, small packages contain only
README file, but complete interactive documentation became standard
for more extensive, primarily commercial packages.

• Dependencies provides information about what other packages are needed
for this package to operate correctly. The package typically has dependencies
when it uses some other package’s functionality, so it becomes dependent
on that package. Some of the programs the package is imported with might
resolve dependencies independently. This means that the application reads
the dependency file, which has different structures for different applications,
and imports or updates the packages mentioned in the dependency file.

• Changelog is a file where the developer writes changes for each package
version. This is standard practice in the field, as users need to know what
changes are in the new versions if they want to update it. Sometimes, it
might contain breaking changes, which means the user needs to change the
implementation when using the package if he decides to update to a newer
version.

For a detailed manual on creating a Unity package, see the attachment of this
paper A.1.

3.3 Unity package manager
Package Manager is a built-in Unity editor tool. This tool provides management

of the packages in the project, as well as the possibility of importing packages or
viewing the version history of the package. When we open up the project in Unity,
the package manager reads the project manifest (1), a file containing information
about what packages are needed in the project. After that, the package manager
sends (2) a request to the package registry server (3) for each package in the
project’s manifest file. The package registry servers then send data back (4), after
which the package manager can install or update packages (5) in the project [21].
The following figure 3.1 represents this process of retrieving packages.

29

Figure 3.1 Proccess of updating packages in Unity. Source: docs.unity3d.com [21]

We can see the package manager window in the following figure 3.2. On the
top left side, there’s a button for importing packages (1), either through the URL
or to select the package from the disk. When choosing a package in the package
list, we can see package detail tabs (2), which display more information about
the selected package. We can scroll through these tabs to see information such
as description, version history, and dependencies or to import samples provided
by the developer. In the top right corner, we can click the button to install or
update the package (3). Next to it is a button to remove the package. If we can’t
see some packages, we can refresh the package list by clicking the reload button
at the bottom part of the package manager (4).

Figure 3.2 Unity package manager window in the editor.

30

3.4 Importing Unity package
Unity offers multiple ways to import packages. We will show you several ways

to import packages through the Unity Package Manager window. Possible ways
on how to import packages are:

1. The easiest way to import packages provided directly by Unity is to click on
the dropdown in the left top corner of the package manager window. The
dropdown in the figure 3.2 states Packages: In Project. We must change
this dropdown to Unity Registry when importing existing Unity packages.
After that, browse the list of available packages and install the desired one.

2. Next way to install the package is to install it from your local disk. When
clicking on the plus button (1) in the figure 3.2, choose ”Add package from
disk” from the dropdown. After that, we must select the package’s root
folder from which we want to import. Then, by double-clicking on the
package.json file, Package Manager will import the local package and
mark it as local. This is the standard way when you download a third-party
package that is not officially supported by Unity or is not possible to get on
their store page.

3. Another popular way to install a package is to install it from .git repository.
The process is the same as the previous way, but from the dropdown, we
choose to import the package from the git URL. We need to enter a valid git
URL pointing to our package’s root folder. After that, the Package Manager
will import the package and mark it as a gift package. This is a popular
way to import packages with an available public git repository, so we don’t
need to download and import packages from disk every time.

4. The last possible but uncommon way is to import a package by its name.
This name is in format com.company-name.package-name A.1. After entering
the package name, Package Manager will search the package in the Unity
registry or the scoped package registry [22]. This is not a used way because
knowing the exact package identifier is unusual.

31

4 Requirements and analysis
As we already explore static and real-time plotting libraries in the chapter 2,

we have an excellent overview of current packages’ capabilities or what conventions
users use. When creating a package in Unity, we need to remember that Unity
requires a dynamic approach that can continuously integrate new data points,
update visualizations without noticeable delay, and manage system resources
effectively to prevent performance bottlenecks. We need to analyze what our
package requires in each part of it.

4.1 Functional requirements
We need to define what functions our package will provide to the user and

prepare a good base for developers to enhance the package without much struggle.

4.1.1 Drawing plots
The package must be able to render various types of plots to make sure the

user can choose how to represent data. The most common ones are line, bar, and
scatter plots. Each plot should be customizable with different options for selecting
the color of the drawing line, grid, borders, etc.

The solution needs to integrate with Unity’s UI system to allow users to render
their plots onto UI canvases. To ensure a user-friendly experience, it should be no
problem to reposition or scale the UI element the plot is drawn onto.

The package must implement drawing so the user can expand drawing capa-
bilities, such as adding new plot types, without struggle. This ensures that the
community can expand the package with ease.

The solution must be capable of updating plots in real-time, which requires
redrawing plots frequently. The plots must be drawn in a relatively efficient and
performant way to ensure users’ seamless experience without any lags.

4.1.2 Axes
The package should display data on the axes with customizable labels, ticks,

and scales. The axes should dynamically adjust to handle large datasets and
changes in data ranges, ensuring that the visual representation remains accurate
and readable. The axes should update in real-time as data changes, maintaining
synchronization with the plotted data. This includes dynamically adjusting axis
ranges and labels to reflect current data. It would be nice to provide users with
customizable axes with various options, like preferred size or scale, with the plot
to ensure excellent readability. The user should also have the possibility of having
no axes, so the best would be to create the axes as a separate component on which
the plot is not dependent.

32

4.1.3 Grid
Grids provide a reference framework that improves the readability and accuracy

of data interpretation in plots. They help users easily connect data points with
their respective values on the axes. This feature must be in the package as it
provides more clarity for plots.

The grid should be customizable in terms of spacing and color, at least to
ensure different user preferences and data visualization needs. Users should be
able to turn grid lines on or off and adjust their density for better clarity. Also,
the grid should be designed so that it is possible not to include it.

4.1.4 Borders
Borders frame the plot area, providing a clear boundary and improving the vi-

sual structure of the plot. They enhance the overall aesthetics and help distinguish
the plot from other UI elements that might be present in the application.

Borders should be resizable and customizable, at least in thickness and color.
This flexibility allows users to match the plot’s appearance with the overall
design of their application. This component should be implemented as a separate
component that can be connected to the plot.

4.1.5 Changable data point
The package must support real-time updates of data points, allowing users

to update the data being visualized dynamically. This is crucial for applications
that require monitoring data in real-time. We need to ensure that the solution
can handle the large amount of data coming in a short period, and plots must
stay responsive and up-to-date with all data updates. This is a crucial feature of
our package, as it might differentiate it from others.

4.1.6 Aggregation of data
When handling large data sets, data aggregation is a must to combine multiple

data points into single data point representations to simplify visualizations and
analysis. Aggregation helps reduce the complexity of data, making it easier to
visualize and interpret trends and patterns. What is essential for our real-time
package is that it massively reduces the number of data points that need to be
visualized.

Our package needs to provide a scalable solution for data aggregation so that
users can choose from more types of aggregation. We need to make sure the
implementation is written so that any data aggregation solution can be added
easily. This flexibility ensures users can tailor the aggregation process to their
needs and data characteristics.

4.1.7 Testability
Testable code ensures reliability, maintainability, and ease of debugging. These

points are important when developing any software. To provide a good testability
of our code, it can reduce our debugging times rapidly. It allows us to verify that

33

each component functions correctly and integrates seamlessly with other system
parts.

To ensure that the package is testable, we should maintain principles such as
modularity and separation of the components. Each package capability should be
in a separate component to ensure we can test its functionality independently. In
Unity, we can write editor or runtime unit tests to ensure our package is bug-free.

4.2 Performance requirements
We can’t forget about performance requirements. The Unity engine creates

applications optimized for real-time interactions, such as games, educational,
research, or embedded applications. Performance is crucial. It would be unpleasant
if the user found the application laggy after importing our package. The package
must be as lightweight as possible, with low memory and rendering requirements.

4.2.1 Garbage collector
One of the problems we might bump into when developing our package in

Unity is garbage collection. The garbage collector serves as an automatic memory
manager. The garbage collector manages the allocation and release of memory
for an application. This means that the developer doesn’t need to manage
memory himself, like allocating and disposing of the memory the application
uses. Automatic memory management can eliminate common problems such as
forgetting to free an object and causing a memory leak or attempting to access
freed memory for an object that’s already been freed [23].

Although it might sound good, when the garbage collector runs and frees up
unused memory, it might cause lags in our application because it might take a
lot of time to process and free all unused memory. We have to ensure that even
if we’re allocating some data, we do not assign them to the critical places of
the application or allocate too much memory. We can prevent frequent garbage
collection by reusing memory or not allocating it too often.

4.2.2 Data storage
The need to create some data storage is obvious. We need to access the data

we’re receiving or aggregate it to fewer data points from particular data storage.
The package should use optimized data structures to handle large volumes of
data without performance degradation and frequent need for garbage collection.
We need to choose such an implementation of data storage to prevent frequent
memory allocation, but at the same time, it must be flexible enough to resize
easily if the user needs to.

4.2.3 Rendering
We need to ensure efficient rendering by either exploring existing rendering

libraries in Unity for lines and data points, which can help improve performance
and reduce development effort, or creating our own rendering of basic lines and
points that might be sufficient. Complex or excessive rendering operations, such as

34

drawing too many data points, applying shaders, or performing frequent redraws,
can be expensive and negatively impact performance. We need to detect these
possible bottlenecks in our application and find workarounds to prevent them
from affecting performance. It would be nice to create general ways of rendering
lines for developers who want to extend our package by other plot types so they
can use it without bothering to fill different buffers or set up vertex indices of
triangles.

35

4.3 Solution analysis
In this section, we must analyze how to approach and implement each part of

the package. We go through the architecture and how to approach each package
component best and examine it from different angles. In the analysis part, we will
try to show more options for implementing the part and explain our choice. Our
package implementation is for the Unity engine using C# programming language.
The reader should have been familiar with Unity concepts and components to
understand this analysis and implementation fully. Even though we try to explain
some parts of the chosen solution, we don’t dive into the details of basic Unity
components.

4.3.1 System architecture
When choosing architecture for our package, we need to think about more

possible ways to create plots and how users might use them. We can choose more
possible ways how to approach this solution:

1. More user base approach, where we would create a window that can be
manipulated in the way users are used to when manipulating tabs and
windows in their operating systems like Windows. This window would offer
UI for manipulating graph components, such as turning them on or off
or customizing each. This window might also be repositioned, closed, or
minimalized like the users are used to.

2. Next possibility is to go with one component for each graph type. We would
have one script for a line plot and another for a bar plot. This script would
also have implemented different graph functionalities and customizations.
Users could interact with it through the Unity inspector window to decide
what parts of the plot they might want to tailor for their use. We would
have to create inspector-friendly components, providing different options for
adjusting this script through the inspector.

3. We can use the more harmonious solution with Unity and its components-
based systems. Typically, in Unity, the user would assign different compo-
nents to game objects with various functionalities. This approach allows
the user to choose what components to assign to the plot. Each of these
components would have its functionality and one purpose. For example,
separate axes, borders, or grid components would exist. Also, the user would
be able to customize that component as well separately through Unity’s
inspector window.

All the proposed solutions are different in some ways, and at the same time,
they are similar in some ways. The first approach is the most user-friendly, giving
us a window with all the functionalities, where the user could click on everything
only by using UI. However, this approach has a significant disadvantage in that it
probably could not be well integrated with Unity UI and, thus, does not provide
other developers with a way to tailor the window for their use. All the functionality
would fall under one window, which is a robust solution. Still, the integration
problem into Unity UI presents a barrier that the package might be unusable

36

for some applications. The second solution provides the user more flexibility
in integrating the package and its components within their application. The
user would have to choose the UI component on which they want to draw the
graph, and the functionality from our package would take care of that. However,
when establishing requirements for this project and sticking to good practice in
programming, we would need the solution to be able to be tested by automatic
test. This solution wouldn’t be easily tested because a lot of functionality would be
in one script. The fact that most functionality would be in one script might seem
a significant obstacle for users who want to write their solutions by expanding
our packaging. However, the third approach combines the benefits of the second
approach and some of the benefits of the first. The first approach retains the idea
of choosing which components the user wants to put in the graph. However, in
this case, it would not be through the window UI but through the unity inspector,
where the user could add a component with its functionality that would take
care of it. The advantage of the individual component approach is not only the
excellent testability of this solution, but it also provides quick debugging because
all parts are separate and well debugable. The second approach brings easy
integration into Unity UI. This solution is also significant from an extendability
point of view because the developer wanting to add their new functions to the
package would just be required to write their separate components and add them
to the appropriate game object.

For our implementation, we have chosen a third solution, which is not as user-
friendly as the first but provides the user with better variability and extensibility
for the future. If the user decides to add additional functionality, it would be
enough to write another component to be added to the Unity object where the
graph is drawn or to reference the Unity UI component where it’s drawn. This
will also simplify the fact that the user will not have to interfere with the base of
this package when expanding or adding new functionalities and providing good
testability for each component separately. In the following figure 4.1, we can
see the game object in Unity with multiple components like Transform, Mesh
Renderer, Collider, or custom script. Each element provides different functionality.

Figure 4.1 Components assigned onto game object in Unity.

37

4.3.2 Rendering
One of the most important parts we need to solve is plotting graphs into Unity

UI. We need to find a way that is both powerful and easy to use with our package.
Also, when expanding the package by other developers, this option should provide
as much variability as possible so that they can add their plotting type to the
chart without too much trouble. There are several options we can use:

1. Unity already contains a component called Line Renderer [24]. This com-
ponent takes an array of two or more points in 3D space and creates a
line between each one of them. This component already provides much
customization, like line width, color, or the ability to assign material to the
rendered line.

2. The Unity community has many tools for extending UI in Unity. The popular
package publicly available on GitHub called Unity-UI-Extensions can
be imported into Unity as a package right away. This package offers much
more than just a possibility to draw lines. It also provides multiple effects,
such as drawing polygons and circles, or comes with many utilities and
extensions like bezier paths, sliders, selection boxes, or additional attributes
for Unity Inspector.

3. Unity offers a low-level graphics library called GL. We can use it to manip-
ulate active transformation matrices or issues rendering commands like in
OpenGL’s immediate mode [25]. This library offers a way to draw lines or
other shapes with much customization and variety.

4. One of the possible solutions could be to draw the lines or shapes we need
by using the Graphics class in Unity [26]. This class serves as a base for
all visual UI components. We can create our solution by inheriting the from
class and overriding method OnPopulateMesh, where we can provide our
raw data regarding vertices and define triangles, which form the mesh to be
rendered.

The first option might seem like the easiest one to do, as it comes with Unity.
However, this component was created for use in the world space. This doesn’t
mean it cannot be adjusted to draw in the Unity UI system. Still, when trying
to implement this drawing solution, we bumped into a couple of problems, like
the possibility of drawing onto canvas in Unity. Also, this solution would be
complicated to extend if we implement other types of graphs that can’t be drawn
using lines. The second solution is using a custom package for Unity, which
provides us with many tools, even the ones we don’t need at all, like extensions
for Unity-specific UI components. When testing this solution for drawing in our
implementation, we bumped into the problem of a simple line drawing generating
garbage due to ineffective data handling. This package offers what we need and
many things we don’t need. It seems like too robust a solution to use in our
package. The third proposed solution to use GL class in Unity can be good for
drawing simple things right away but comes with a couple of problems. As Unity
states in the documentation [25], it’s recommended to draw stuff with GL class
in OnPostRender stage after the camera renders all required. The problem is that
this stage is not supported in the latest render pipelines (HDRP, URP). Also, in

38

the documentation, it is written that this method of drawing is not as efficient as
others in Unity, such as rendering custom meshes. The last proposed solution is
to use Graphic class. This class is tailored for Unity UI components, with the
possibility of drawing custom meshes. This method is also used in the second
proposed solution for drawing custom shapes and lines. The disadvantage of the
drawing with Graphic class might be that the method OnPopulateMesh is called
by Unity when needed, so we must be careful what operations trigger it not to
redraw the whole plot too often.

As a result, we chose the last solution to draw plots with Graphic class. This
offers us a great way to be in control of drawing different lines or custom shapes.
It also provides the best extensibility for the developers or for us to improve the
package in the future. It would be just as easy as override method OnPopulateMesh
and provide new data in terms of vertices that form a mesh. We need to ensure
we’re handling data efficiently, not allocating data we don’t need or allocating it
too often to create a lot of memory to dispose of by the garbage collector.

4.3.3 Data management
We need to think about what we will use data structures for in the first place.

We will store raw, live incoming data and want to aggregate them at some point
and provide that point to the drawing logic to display it on the plot. We also need
to retain a certain number of aggregated points to show some points in the past.
This parameter should be variable as the user might want to adjust how many
points they want to see on the plot in one frame. We have a couple of options to
consider when implementing such data structures:

1. We can use a simple List collection in C#. We would define the data storage
size to display the plot in one frame. Also, we could use it to store raw
incoming data until they aggregate to a single data point. List offers us the
advantage of adding elements dynamically as they come, as well as a couple
of functions from C# that can be performed on collections similar to List.

2. Another option is to use a static array with constant size. Whenever we
need to add a new element, we copy the last array and its contents into a
new one with the new value. The array cannot be resized automatically, so
we would need to create an array with a bigger size each time we change
how many data points we want to store.

3. We can use some implementation for dequeue abstraction. We can use
circular buffer 1implementation that would be able to handle our needs. We
would need to create a fixed-size array in the first place, along with two
variables that point to the head and tail of the buffer. We could add data
as long as there is free space. This could be handy for data management
of viewed points on plots as we need to rewrite the oldest point with the
newest and do this in the circle for a fixed data set while the user doesn’t
want to change the viewed size.

1Circular buffer is a data structure that uses a single, fixed-size buffer as if connected
end-to-end. This structure lends itself easily to buffering data streams [27].

39

We can say right away that the second option is not good. We would need
to copy arrays all the time, which might be a costly operation when the size of
the variety is significant, as this operation has O(n) complexity, where n is the
size of the array. The first option to use dynamic List in C# may seem not so
bad in the first place. However, we cannot enlarge the List indefinitely as it would
potentially take up a lot of memory so that we would need a restriction on the
size anyway. The third option is to allocate a constant memory size for the array
and two variables for head and tail indices in the buffer. It might have some
downsides as the first option if we want to change the number of data points
displayed on the plot. In that case, we would need to copy this array into a new
one. Also, there might be a problem with a limit for storing raw, live data, so
they start to override themselves after the buffer’s capacity is full because of the
implementation of a circular buffer.

We chose the third option, implementing a circular buffer for our primary data
storage. This solution ensures that selecting a reasonable data storage size won’t
take much more memory. The costly operation of copying the array is only if the
user wants to change the number of data points displayed on the plots, which
we think won’t happen so often. Another mentioned downside was that data are
overridden after the buffer is full. As this might seem problematic, users can select
the buffer size to suit their needs and balance it before releasing their application.

4.3.4 Data aggregation
We already decided on the data management structure and how we will manage

data. We need to think about data aggregation. Data aggregation will need to
work with data structures. The question is where we plug the data aggregator in
and how often we want to aggregate data. We have multiple options to do so:

1. As we proposed in the system architecture analysis 4.3.1, we can implement
a data aggregator as a separate plot component. This would allow the user
to choose an aggregation strategy for their needs or implement one just as a
separate script. The interval of aggregation would be an exposed parameter
for the script.

2. We can plug the aggregator into the script, which will connect data points
between our plotting logic and another part of the application. We would
need to provide the user with a selection of aggregation strategies in the
component inspector window.

Either option might be suitable as there are no significant advantages or
disadvantages to either one or the other. The first option seems to fit our system
architecture. However, in most cases, the user would want to aggregate data, so
making it an optional component might not be the right way. When implementing
the second option, we would also need to create some entry points for the data.
This might be useful for users when they set up their plots and use just one entry
point to feed data. We would need to inject a selection of aggregation strategies
in this script to allow users to select some options.

As a result, we chose the second option. Implementing the package as a
separate component for each aggregation strategy seems to be too much of the
overhead. It might be helpful to consider this option again in the future. We

40

chose the second option to demonstrate the package use and provide the user
with a simple entry point to the application. This can be separated in the
future to separate aggregation logic from the entry point script. For the initial
implementation, we would keep it together for simplicity.

4.3.5 Graph components
As we decided in the system architecture section 4.3.1, we would implement

all graph components as a separate Unity component that can be added to game
objects. The graph components like grids, borders, or axes would be enough to
demonstrate this package. We will show that the other graph components can be
implemented similarly and easily integrated into our system. Most of the graph
components would need to be drawn onto a graph, so we have a couple of options
to do so:

1. We can add each component as a separate drawing part that would inherit
from Graphic class as we proposed in the section 4.3.2.

2. Component could depend on the drawing component already used for draw-
ing different types of plots. We must create a way to notify all components
that provide drawing functionalities like borders or grids.

We can merge both options. Unity allows us to tell the script that is dependent
on some other script by using attribute RequireComponent. When we create a
drawing logic that will override the OnPopulateMesh method from Graphic class
as proposed in section 4.3.2, our graph component’s script might depend on the
logic of this drawing script. The attribute RequireComponent will ensure that the
required component is presented on the same game object as our component 1.
This is useful because it provides variability for the user when choosing onto what
game object the graph component will be added. Also, it just might be added
onto the same game object as, for example, a line drawer, which also requires
drawing logic onto the same game object. In this way, the drawing script might
be shared.

1When you add a script which uses RequireComponent to a GameObject, the required
component is automatically added to the GameObject. This is useful to avoid setup errors.
When you use RequireComponent, this is done automatically, so you are unlikely to get the setup
wrong. [28]

41

5 Developer documentation
The package was implemented using Unity version 2022.3.2f1. The package is

available as an electronic attachment inside MasterThesis folder as realtime-
plotting folder. The structure of the package maintains the recommended
structure of the Unity custom packages A.1. In this chapter, we will use different
types of font for game objects, source code, components, or files.

5.1 Setting up the project
The recommended way to test the package is to import it into the Unity

project using Package Manager as proposed in the section 3.3. The package’s
example is in the Editor/Scenes/ folder. This is the best way to test the package
right away. Open the GraphScene.unity and trigger the play mode. You should
be able to see the bar and line plot drawings immediately.

5.2 System architecture
As we discussed in the system architecture section 4.3.1, the options we

can go through in the implementation and why we chose the component-based
architecture. In the following diagram 5.1, we can see the relationships between
the different parts of our package. An arrow from one box to another indicates
that this part of the package needs to use the functionality of the part to which
the arrow is directed to function correctly. We will discuss the different parts in
more detail in the other parts of this chapter.

Figure 5.1 Diagram representing relations between parts of our package architecture.

42

5.3 Rendering
In this section, we will go through the implementation of the rendering of

plots. The following scripts can be located in Runtime/GraphViews and in
Runtime/GraphDrawers folders.

5.3.1 UIDrawer
UIDrawer script is a base script that enables us to draw onto the UI. As we

proposed in the 4.3.2 section, this script inherits from Graphic class and overrides
OnPupalteMesh where we get a reference to VertexHelper class to be able to add
mesh data. In the following code 9, we demonstrate the most important parts of
this script.

Program 9 Important methods and variables inside UIDrawer script.

public Action <VertexHelper > OnDrawGraph;

public void Redraw() => SetAllDirty();

protected override void OnPopulateMesh(VertexHelper vh)
{

base.OnPopulateMesh(vh);
vh.Clear();

OnDrawGraph?.Invoke(vh);
}

In the code above 9, we can see defining Action delegate with one parameter
called OnDrawGraph. This is called whenever OnPopulateMesh is called by Unity
as a process of UI rebuild. This enables us to subscribe to this delegate and
draw practically from every script. By calling method Redraw, we mark this
graphic component of Unity UI as dirty, which forces Unity to call redraw and
so OnPopulateMesh as a result. In the method OnPopulateMesh that we override
from Graphic class, we first let the base method perform drawing with provided
data. After that, we clear this data and call the delegate to allow other scripts to
perform drawing logic.

5.3.2 GraphView
GraphView is an abstract base class designed to be used as a base for different

plot types. This class is designed to work also with other components that
can enhance the visualization of plots. We chose to do so by implementing an
event-based system. GraphView class contains three important delegates:

• OnInspectorValuesChanged is called from MonoBehaviour function called
OnValidate. This is an editor-only function called when the script is loaded
or values exposed to the inspector are changed. We added the parameterless
delegate OnInspectorValuesChanged delegate to allow components to react
to changing different parameters of plots. This enables users to debug or
fine-tune their real-time plots more easily.

43

• As other properties can be changed not only by using the inspector window,
we created OnGraphPropertiesChanged delegate that is called when some
crucial properties of the plot are altered to allow other components to react.

• OnGraphViewSizeChanged is called in two cases. The first one is at the
start of the drawing plot when we don’t fill the desired window because we
have not yet provided enough data points to draw. The second one is called
from function SetGraphViewSize, which changes the number of data points
the user wants to see on the plot in one frame.

• OnGraphDataPointsUpdate is called every time a new data point to draw is
added. By subscribing to this delegate, we can react to data change. Useful
for components like plot axis.

When using this event, it is essential to note that GraphView class also provides
functionality to raise events in the Update loop. This ensures that certain
operations are not performed when Unity is in the UI rebuild loop, as it could
mess up the rebuilding process. We implemented two methods to ensure this. One
is RaiseEventSafe, which adds a delegate to a list and ensures this is called just
once. The second one is RaiseStoredEvents called in the Update loop to ensure
the performance of all operations that cannot be done in the UI rebuild loop.

GraphView has a couple of inspector adjustable values. The most important
is viewDataSize. This indicates how many data points we want to show on the
plot. This is an essential value as it influences data store size. This value can
also be changed while running in the editor’s play mode to adjust the plot more
quickly or programmatically to call SetGraphViewSize. In either case, changing
the viewDataSize causes a copy operation of the data buffer, and a new one
with a different size needs to be created. This was discussed in the 4.3.3 section.
Other adjustable values from the inspector are margins. As the name suggests,
we can define an offset from the sides of the UI element RectTransform we are
drawing onto. It is also essential for all components to know how to adjust their
positioning regarding the plot.

GraphView bsae class is using DataViewBuffer as a data management structure.
The base entry points to add data points onto plots are functions AddDataPoint
for adding a single data point or ADDataPoints to add multiple data points
providing IEnumerable collection.

The essential method that needs to be overridden by child classes is DrawGraph.
We can implement multiple plot visualizations by overriding this method and
providing a suitable implementation for different representations.

5.3.3 LineGraphView
LineGraphView is a simple plot representation that draws lines between data

points. This is done by overriding base class method DrawGraph and filling
VertexHelper class with suitable data. On each DrawGraph call, we go through
all data points to be displayed and draw a line between them. This is done by
using DrawLineSegment function from RealtimePlottingUtils class. This function
creates two triangles for each line, as shown in the following figure 5.2.

44

Figure 5.2 Line segment constructed from two triangles and four vertices.

DrawLineSegment function gets two points, p1 and p2. Calculates four vertices
at a suitable distance to hold the desired width of the line. In the end, two triangles
are constructed, consisting of vertices [v0, v2, v1] and [v0, v3, v2]. Note that the
sequence of vertices in the triangle is important as the normal vector is determined
from this sequence. Constructing triangles in a clockwise direction would cause
the triangles not to be visible as the normal vector would point out away from
the screen.

LineGraphView also ensures no drawing lines outside the designed area. When
a user sets a limiter on the Y axis, some points might be out of bounds of the
displaying area; in that case, lines between those points are not shown in the plot.

5.3.4 BarGraphView
BarGraphView works in the similar manner to LineGraphView. The difference is

that the bar graph is represented by lines that go from the bottom of the plot to
the desired value of the data point on the Y-axis. This script dynamically adjusts
spaces between bars based on the number of data points provided. When too
many data points are provided, or the desired width of the bar is too wide to fit
all bars into the plot, the width is automatically adjusted to preferred displaying
all points rather than a few in the desired width.

5.4 Data handling
In this section, we go through the structures used in our implementation as

proposed in the section 4.3.3.

5.4.1 DataPoint
DataPoint is a structure that serves us as a representation of the single data

point. It implements interface IComparable that compares two data points based
on Y value. Most of the operation or scaling of the plot is based on the data
point Y value. We had to choose one value to be representative while performing
operations on data points. Most of the 2D plots contain sorted values on the
X-axis and representative values on the Y-axis. This is the reason why we chose
this way of implementation. We chose struct implementation over class because

45

we don’t want to involve a garbage collector and create data points on the heap.
This struct size is 8 bytes because it just contains two floats and no reference
types to prevent allocation on the heap.

5.4.2 DataCollector
DataCollector is a component that serves us as an entry point for our plots when

we want to use some data aggregation. We can set a couple of inspector values
such as DataFlushInterval that indicates the time frame after which collected
data are aggregated, and a single data point is displayed on the plot. We can also
select AggregationStrategy. It causes the initialization of the respective data
aggregator at the start of the application.

5.4.3 CircularBuffer
CircularBuffer class represents the implementation of the circular buffer. We

didn’t need to implement it in a dequeue style because adding elements on just
one side is enough. It implements IEnumerable, allowing us to work with it as
with the standard collection in C# like List. CircularBuffer is a generic class with
one parameter representing the data type stored in the buffer. This type has to
implement IComparable interface for us to compare stored values, for example,
when trying to find maximal or minimal value. The implementation consists of a
fixed-size data buffer and two variables head that store the index of the newest
element in the buffer and count variable that stores how much actual data is
stored in the buffer. While implementing this data structure, we tried to keep the
standards developers are used to when working with data structures. We provided
indexing functionality as a couple of valuable methods like Peek that can be used
in the same way as for Queue data structure in C#.

We can use the Add method to add data into the buffer with two overloads.
One is for adding a single element at the position of the head in the buffer, and
the second is for adding a collection of values. We also provide Fill method that
fills up an entire buffer with the provided value. When trying to clear the buffer
by Clear method, all elements will become default values of the data type stored
in the buffer.

5.4.4 DataViewBuffer
DataViewBuffer is a special data structure that is used mainly by GraphView.

We need to devise an implementation tailored for use in the plot visualization.
This data structure allows us to define the size of the viewed data. This site is
in the code referenced as view window. This data collection stores 2n data
points where n is the size of the view window in the buffer variable. This
eases our implementation. The variable viewData is stored in the current view
window of data. This was created due to easy manipulation and to provide API
to get data currently viewed on the plot. To get those values, we provide method
GetViewData, which is implemented to perform as few operations as possible. We
achieved this by marking our data in the view window as dirty whenever the
window needed to be shifted. This ensures that the window values and properties
are calculated only once for the same window.

46

DataViewBuffer also provides min and max values information in the view
window. Those are only calculated once the user requests to view window data,
not to waste performance when we don’t have to. The method for adding values
to this collection is Add with two overloads for adding a single data point or a
collection of data points.

5.5 Data aggregation
To give users and developers some grounding, we implemented simple data

aggregators they can work with or inspire when creating their own.

5.5.1 IAggregator
Each aggregator must implement IAggregator interface. This will ensure some

API across all aggregators. This interface contains three mandatory functions to
implement:

• Aggregate function, which is supposed to be used when performing aggrea-
gation. This function should return the last aggregated value.

• Add function provides entry points for all aggregators.

• GetAggreagatedValue function should implement an aggregation strategy
to obtain an aggregated value.

5.5.2 BaseDataAggregator
To provide a base for simple aggregators using some data structure, we created

DataAggregator abstract class. This class implements IAggregator interface. It
provides a base implementation of the Add and Aggregate functions, as this
might be similar to most of the aggregators. However, we marked these functions
as virtual to allow developers to adjust the behavior of these functions. The
only function we didn’t implement in this class is GetAggregatedValue as this is
specific to each aggregator strategy. This simple base class uses a CircularBuffer
for raw data to be aggregated and List data structure to save aggregated values
to allow the user to get all aggregated values.

5.5.3 Examples
For example, we implemented two simple aggregation strategies for users to

work with some aggregators from the start or for developers to serve as a template
when creating their aggregators. We created DataAggregatorSMA to implement a
simple aggregation strategy by simply performing average on all raw values and
DataAggregatorEMA implementing exponential moving average as an aggregation
strategy.

47

5.6 Graph components
The package has some graph components that help enhance the graphs’

customization.

5.6.1 BordersDrawer
BordersDrawer script uses UIDrawer to be able to draw onto the plots by

subscribing to OnDrawGraph delegate. This component draws four lines to show
where the borders are. It does so concerning the set margins of GraphView
component.

5.6.2 GridDrawer
GridDrawer script allows users to add a grid to the plot. It works similarly to

BordersDrawer and draws a grid by subscribing to OnDrawGraph delegate. Users
can set up how many lines must be drawn horizontally and vertically. After that,
this script calculates offsets between lines and draws them onto the plot.

5.6.3 GraphLabel
GraphLabel is a component representing the axis in the plot. We can choose

from the four types of axes based on their placement. To add an axis, we need to
place a prefab of the axis as a child of the object where the plot is drawn or into
a separate game object. This prefab can be located at Runtime/Prefabs, where
one is for horizontal axes and the other for vertical. This needs to be done because
this functionality requires adding more Unity UI components like LayoutGroup
that ensure alignment. We then instantiate simple text labels as the child of this
object and will update their contents based on the plot data. The plot axis is
resized automatically concerning the data view window size.

GraphLabel can be customized by defining the preferred size to make sure that
labels are seen, or we can set up the preferred count of the labels on the Y axis to
ensure values are always seen.

The core functionality of this component is located inside two methods:
UpdateLabelObjectList and UpdateLabelValues. The more frequent one is
UpdateLabelValues, which is called every time the data point is added to the
plot. It adjusts labels on the axis to be aligned correctly and updates the label’s
contents concerning its position in the plot. UpdateLabelObjectList ensures we
have just the right amount of labels for displaying values. It is adjusted when we
change the number of data points viewed on the graph by creating new labels or
turning on already instantiated ones.

Be aware that the current implementation creates a little garbage with each
update of labels as we need to convert from decimal type of the data point value
to text type using ToString method. Strings are immutable in C#, meaning a
new one is allocated every time we update a string.

48

5.7 Package unity testing
This package includes editor tests to ensure the core components’ functionality

when performing code changes. Tests can be located under Assets/Tests/Editor
folder in script RealtimePlottingTests. These tests can be run by using Unity Test
Runner. In the Unity editor, we can open it under Window/General/TestRun-
ner and run edit mode tests. These tests are testing our data collection to ensure
their correct functionality, as almost every component of our package uses them.
When everything works and is done correctly, the output should look like the
following figure 5.3.

Figure 5.3 Unity Test Runner window when every test passes successfully.

49

6 User documentation
This chapter presents the user documentation for the game. It guides the user

through running it and through step-by-step instructions, through which they go
through all the essential elements of the package and learn how to use it. When
trying to extend the package, see also chapter 5 for a reference and more detailed
information about implementation.

6.1 Importing the package
You should import the package into the Unity project using the Unity Package

Manager window to use the package correctly. Detailed description on how to do
that is in the section 3.4. After successfully importing, the package will be in the
Packages/RealtimePlotting folder.

6.2 Sample scene
The best place to start exploring the package is to open GraphScene inside

the package folder in the Scenes folder. After opening the scene and running
play mode, you should see the window shown in figure 6.1. The bar plot is in the
top left corner of the screen, and the line plot is in the bottom right corner.

Figure 6.1 Running GraphScene in play mode.

In the hierarchy as present in the following figure 6.2, you can see under
MainCanvas game object is located two game objects called BarGraphPanel and
LineGraphPanel. Each game object represents an example of how to draw a bar or
line plot and assemble it correctly. In the next section, we will dive deeper into
how to construct the plot.

50

Figure 6.2 Hierarchy of game object in the GraphScene.

6.3 Assemblying plot
In this section, we will go through the process of constructing the plot step by

step.

6.3.1 Create Canvas
If you don’t have a canvas in the project yet, create one by right-clicking in

the hierarchy window and choosing to make a canvas, as shown in the figure below
6.3.

Figure 6.3 Creating canvas in the hierarchy.

51

Create UI Panel

After creating a canvas in the hierarchy, we must make a UI Panel under the
canvas. Please do this by right-clicking on the canvas game object and selecting
Panel as shown in figure 6.4. Adjust the panel to your desired size and set its
color to the background color of the plot. This panel will serve as the background
of the plot.

Figure 6.4 Creating panel in the hierarchy under canvas.

Create base graph game object

Under the panel we just created, create an empty game object by right-clicking
on the created panel and choosing Create Empty from the dropdown. After that,
we need to adjust the anchors. Click on the newly created game object and under
RectTransform component, and adjust anchors to expand onto their parent, as the
figure 6.5 shows. Hold SHIFT + ALT and select the bottom right button to
stretch the RectTransform to the size of the parent panel and set the pivot position
to center.

52

Figure 6.5 Adjusting anchors on RectTransform component.

Adding graph components

We can add various graph components to this game object. At first, we add a
component called LineGraphView as shown in the figure 6.6 by clicking on Add
Component button in the last created game object and selecting LineGraphView.

Figure 6.6 Components onto game object after adding LineGraphView.

We can notice that UIDrawer component was also added automatically as our
graph view component requires this component to be present in the same game
object.

53

Adding graph entry point

However, to be able to see our graph working, we need to provide it with some
data. For this purpose, we can use the example DataCollector script. We have to
add it onto the same component as our graph view component, as shown in the
following figure 6.7.

Figure 6.7 Graph game object after adding DataCollector component.

We can leave default settings and check the box next to Testing Data field.
This will provide us with random testing data, allowing us to test out graphs
quickly. After starting play mode in the editor, you should be able to see the line
chart in action as shown in the following figure 6.8.

Figure 6.8 Basic line chart in game mode.

6.4 Components
In this section, we will present all graph components in detail and how to

use them. We will show examples on the graph created in the previous section
6.3. We also explain how to customize the visual or functional side through the
inspector window.

54

6.4.1 LineGraphView
In the previous section, we saw the LineGraphView component in use. When

we add this component, it has a couple of parameters that can be adjusted in the
inspector.

Figure 6.9 LineGraphView component.

We can adjust View Data Size, which means how many data points we want to
display on the plot at the time. We can adjust margins, which causes the graph
to be drawn onto a smaller UI panel. Also, we can customize the line’s width and
color to suit our needs.

6.4.2 BarGraphView
This component works similarly to LineGraphView. The only difference is that

we can set the bar width, as we can see in the following figure 6.10.

Figure 6.10 BarGraphView component.

When using this variance of GraphView, we can get a similar result as in the
figure 6.11.

55

Figure 6.11 Plot drawn using bars representation.

6.4.3 DataCollector
We saw DataCollector component in use in the previous chapter to see some

results. This component serves as an entry point to the application. We can also
use it for testing purposes, allowing us to feed plots with random testing data. It
also can choose from implemented data aggregators, as we can see in the following
figure 6.12. We can specify the DataFlushInterval, which means how frequently
aggregated data points are added to a graph.

Figure 6.12 DataCollector component.

We can approach this component programmatically as it provides API to feed
it with raw data; the method is called AddRawData, which takes two parameters.
The first is the data point’s value on the X-axis, and the second is the value on
the Y-axis. When aggregating data points, aggregation is only performed on Y
values, and the last X value provided is associated with the aggregated value.

6.4.4 GridDrawer
This component serves as a tool for drawing grids. As we can see in the

following figure 6.13, we need to fill in a couple of parameters to work correctly.

56

Figure 6.13 GridDrawer component.

The most important one is to set the reference to our plot drawer. The figure
above shows that LineGraphView is assigned so the grid component can have data
from the line plot to draw the grid onto. If this parameter is not set up in the
inspector, the script tries to find GraphView component on the same game object as
itself. Parameters like VerticalLines and HorizontalLines tell the grid drawer
how many lines should be drawn vertically or horizontally. We can also set the
line width to make grid lines work with the overall style of our plot. The last
parameter we can set up in the inspector is grid color. After we set all parameters
to suit our needs, we can get similar results as shown in the following figure 6.14.

Figure 6.14 Plot drawn by lines with grid component.

6.4.5 BordersDrawer
This component contains functionality to draw borders around our plot. You

can define offset from the main UI panel with the background by adjusting margins
parameters on the GraphView component. As we see in the following figure 6.15,
we need to provide this component with the reference to the GraphView that is
currently drawing the plot. If we don’t set up any, the script will try to find the
GraphView component on the same game object as it is assigned. We can also set
up the color and width of the borders.

57

Figure 6.15 BordersDrawer component.

After adjusting parameters to suit our needs, we can get a similar result to
the one shown in the following figure 6.16.

Figure 6.16 Plot drawn by lines with grid and borders components.

6.4.6 GraphLabel
This component provides us with the functionality of the axis. We can locate

the predefined axis setup in Runtime/Prefabs folder. We can find one prefab
for the vertical and one for the horizontal axis. To make the axis work, drag them
into the hierarchy under the game object with GraphView component. It is not
a must, but it is highly recommended to do it in this way. We should have a
hierarchy similar to the one shown in the following figure 6.17.

Figure 6.17 Recommended hierarchy of the game object with axis.

We can locate the GraphLabel component in both prefabs. The component
provides us with a couple of options to customize it, as shown in the following
figure 6.18.

58

Figure 6.18 GraphLabel component.

The most important is to set up a reference to the GraphView, as it wouldn’t
work without it as we need to associate axis values with actual data. We can
choose the type of the axis called LabelType. We should, however, choose only
between the horizontal axis when adjusting the horizontal axis prefab and the
vertical axis options when adjusting the vertical one. GraphLabel component
needs the reference to the prefab of single label unit as this will serve as a single
label for each data point. This label prefab is provided with the package inside
Runtime/Prefabs folder. This is just a simple game object with Text component
on it. We can also specify MinSize of the label, which means that for horizontal
labels, it will specify minimal height. For vertical labels, it specifies minimal
width as the other respective size is adjusted automatically based on a number of
data points shown in the plot. When moving margins, we can also decide whether
we want the label to resize with the plot. This can be done by checking the box
next to the FlexibleLabelSize property. The last property to adjust from the
inspector is the preferred number of labels on the vertical axis. The default value
is set to two, meaning it will show minimal and maximal values in the current
data view window. After adding graph label prefabs as proposed above, we can
get a similar result to the one shown in the following figure 6.19.

Figure 6.19 Plot is drawn by lines with grid, borders, and axes components.

59

7 Evaluation
This chapter will evaluate the package we created for real-time data visualiza-

tion in the Unity engine. We consider primarily how the package stands from the
performance point of view and explore limitations in the package.

7.1 Performance testing
One of the goals was to achieve excellent performance, allowing users and

developers to use this package with their applications without impacting the overall
performance. We focused on great memory management to avoid creating garbage
and not force garbage collector to be called often. In the following table, you may
see an evaluation of the performance with different amounts of data points at one
frame combined with the plotting of a graph using multiple components. The
data refresh rate is fixed at 100ms, meaning that after each 100ms, our package
aggregates data and provides aggregated data point to be drawn. The aggregation
strategy for the whole performance testing is SMA. Performance will be measured
in milliseconds to tell us how much CPU time we spend in the worst-case scenarios,
meaning we will measure performance drops.

Performance evaluation
50 points 200 points 1000 points

LineGraphView 0.17 0.46 2.1
Previous + GridDrawer 0.21 0.5 2.14
Previous + BordersDrawer 0.21 0.52 2.25
Previous + Vertical Axis 0.33 0.64 2.35
Previous + Horizontal Axis 10.2 22.1 85

Table 7.1 Performance evaluation of the package using Unity profiler tool.

We can see that drawing a reasonable number of points and using some graph
components doesn’t take much computational power. However, we can see that the
horizontal axis component performed very poorly. After investigating the problem,
we found out that the chosen approach to illustrate each point on the graph as
a Text component while using LayoutGroup is not good at all. We discovered
that LayoutGroup needs to calculate the positioning and alignment of labels every
time we redraw UI, and this operation is rather costly. Vertical axes would be
as expensive as horizontal axes as they share the same approach, but we set the
fixed label count to two to prevent this performance drop.

We can also see that drawing line graphs, even with 200 points at each frame,
is inexpensive and can be used in applications without significant performance
drops.

7.2 Limitations
Our package doesn’t provide as much functionality as well-established plotting

libraries. We can only draw line and bar plots with a couple of simple customization

60

components. Even though this seems like a current limitation, it can be easily
expanded to support more customization components.

As we can see in the performance evaluation represented by table 7.1, the
performance of the horizontal axis is not good at all, and even for displaying 50
data points, it becomes unusable. We discovered the problem after implementing
this component when using a more significant number of data points on the graph.

We haven’t been able to test the package commercially yet, and we have not
provided it publicly for a larger set of users and developers, so we cannot say
with confidence that the package is bug-free. Extensive testing would be required
with many use cases that we couldn’t come up with. In the real world, many
problems with applications and libraries are discovered when they are used by a
larger audience and in production.

61

8 Conclusion
The main goal we set in the section 1.2 was to create a Unity package that

provides essential tools for plotting graphs in real-time. In chapter 2, we explored
existing plotting libraries to understand use cases and processes that are established
and known for users of these libraries. We showed how to create and import a
Unity package, which was essential for us to develop and provide a package to
work with the Unity engine. We went through analysis in the section 4.3 and
offered more solutions to the problems that might occur during implementation.

Our work results in the package with functionality for plotting graphs and a
good base for developers to extend the package and its use cases. We rely on the
component-based system when constructing plots, as the users are used to using
well-known static plotting libraries like Matplotlib when using simple commands to
add plot components. Our approach in Unity is also more user-friendly, allowing
designers and non-programmers to set up their plots directly in the Unity inspector
window. We must say we didn’t provide as much functionality as we can find in
the large packages like Matplotlib with a broad user base. Still, we hope this is a
great start to help the community of developers who rely on Unity as the primary
application development tool.

We created a simple, easily extendible solution for creating different plot
visualizations. As a proof of concept, we created two visual representations of the
data. We implemented a solution to draw data points and connect them with
lines and a bar visualization of data points. We provided plots with the most
common components that can be added to enhance plot data visualization. This
system is designed to be easily extendible, and any component created similarly
can fit into plots immediately. The solution integrates seamlessly with the Unity
UI system as we maintain the basic principles on which the Unity engine is built.

8.1 Future work
Our package lacks a large set of customizable components that would enhance

the visuals of the plots. In the future, a couple of components could be added or
improved based on the following suggestions:

• Add new plot visualization, like a scatter plot.

• Improve axis components to be performant and usable on a large set of
data.

• Extend pool of aggregation strategies.

• Add title component.

• Add interactive components like pan and zoom.

• Add the possibility to pause the plot.

• Add the possibility of taking a snapshot of the plot at a specific time.
Also, providing this package publicly and allowing the community to extend

it could greatly improve it.

62

Bibliography
1. Cambridge University Press (ed.). Cambridge Academic Content Dic-

tionary [https://dictionary.cambridge.org/dictionary/english/
attention-span]. [N.d.]. URL validity: 3.7.2024.

2. Gloria Mark, PhD. Speaking of Psychology: Why our attention spans are
shrinking, with Gloria Mark, PhD [https://www.apa.org/news/podcasts/
speaking-of-psychology/attention-spans]. Ed. by American Psy-
chological association. 2023. URL validity: 3.7.2024.

3. The Matplotlib development team. Custom hillshading in a 3D surface
plot [https : / / matplotlib . org / stable / gallery / mplot3d / custom _
shaded_3d_surface.html#sphx-glr-gallery-mplot3d-custom-shaded-
3d-surface-py]. [N.d.]. URL validity: 5.7.2024.

4. PYPL PopularitY of Programming Language [https://pypl.github.io/
PYPL.html]. 2024. URL validity: 5.7.2024.

5. Nobledesktop. Python vs. Excel for Data Analytics [https : / / www .
nobledesktop.com/learn/python/python-vs-excel]. 2022. URL validity:
5.7.2024.

6. Introduction to Matplotlib [https://www.geeksforgeeks.org/python-
introduction-matplotlib/]. 2024. URL validity: 5.7.2024.

7. The Matplotlib development team. Quick start guide [https://
matplotlib.org/stable/users/explain/quick_start.html]. [N.d.].
URL validity: 5.7.2024.

8. Michael Waskom. An introduction to seaborn [https://seaborn.pydata.
org/tutorial/introduction.html]. [N.d.]. URL validity: 6.7.2024.

9. Michael Waskom. seaborn.relplot [https : / / seaborn . pydata . org /
generated/seaborn.relplot.html#seaborn.relplot]. [N.d.]. URL valid-
ity: 6.7.2024.

10. Plotly. Line Plots with plotly.express [https://plotly.com/python/line-
charts/]. [N.d.]. URL validity: 6.7.2024.

11. Plotly. Getting Started with Plotly in Python [https://plotly.com/
python/getting-started/]. [N.d.]. URL validity: 6.7.2024.

12. Bokeh Contributors. Bokeh documentation [https://docs.bokeh.org/
en/latest/index.html]. [N.d.]. URL validity: 6.7.2024.

13. Bokeh Contributors. First steps 1: Creating a line chart [https://
docs.bokeh.org/en/latest/docs/first_steps/first_steps_1.html].
[N.d.]. URL validity: 6.7.2024.

14. The Matplotlib development team. Animations using Matplotlib
[https://matplotlib.org/stable/users/explain/animations/animations.
html]. [N.d.]. URL validity: 6.7.2024.

15. The Matplotlib development team. Introduction to Artists [https://
matplotlib.org/stable/users/explain/artists/artist_intro.html].
[N.d.]. URL validity: 6.7.2024.

63

https://dictionary.cambridge.org/dictionary/english/attention-span
https://dictionary.cambridge.org/dictionary/english/attention-span
https://www.apa.org/news/podcasts/speaking-of-psychology/attention-spans
https://www.apa.org/news/podcasts/speaking-of-psychology/attention-spans
https://matplotlib.org/stable/gallery/mplot3d/custom_shaded_3d_surface.html#sphx-glr-gallery-mplot3d-custom-shaded-3d-surface-py
https://matplotlib.org/stable/gallery/mplot3d/custom_shaded_3d_surface.html#sphx-glr-gallery-mplot3d-custom-shaded-3d-surface-py
https://matplotlib.org/stable/gallery/mplot3d/custom_shaded_3d_surface.html#sphx-glr-gallery-mplot3d-custom-shaded-3d-surface-py
https://pypl.github.io/PYPL.html
https://pypl.github.io/PYPL.html
https://www.nobledesktop.com/learn/python/python-vs-excel
https://www.nobledesktop.com/learn/python/python-vs-excel
https://www.geeksforgeeks.org/python-introduction-matplotlib/
https://www.geeksforgeeks.org/python-introduction-matplotlib/
https://matplotlib.org/stable/users/explain/quick_start.html
https://matplotlib.org/stable/users/explain/quick_start.html
https://seaborn.pydata.org/tutorial/introduction.html
https://seaborn.pydata.org/tutorial/introduction.html
https://seaborn.pydata.org/generated/seaborn.relplot.html#seaborn.relplot
https://seaborn.pydata.org/generated/seaborn.relplot.html#seaborn.relplot
https://plotly.com/python/line-charts/
https://plotly.com/python/line-charts/
https://plotly.com/python/getting-started/
https://plotly.com/python/getting-started/
https://docs.bokeh.org/en/latest/index.html
https://docs.bokeh.org/en/latest/index.html
https://docs.bokeh.org/en/latest/docs/first_steps/first_steps_1.html
https://docs.bokeh.org/en/latest/docs/first_steps/first_steps_1.html
https://matplotlib.org/stable/users/explain/animations/animations.html
https://matplotlib.org/stable/users/explain/animations/animations.html
https://matplotlib.org/stable/users/explain/artists/artist_intro.html
https://matplotlib.org/stable/users/explain/artists/artist_intro.html

16. Plotly. Intro to Animations in Python [https://plotly.com/python/
animations/]. [N.d.]. URL validity: 6.7.2024.

17. Conduct Science. Games as Research Tools [https://conductscience.
com/games/]. [N.d.]. URL validity: 6.7.2024.

18. Mäyrä, Frans; Holopainen, Jussi; Jakobsson, Mikael. Research Method-
ology in Gaming An Overview. Simulation & Gaming. 2012, vol. 43, pp. 295–
299. Available from doi: 10.1177/1046878112439508.

19. Claire Baert. Citizen Science Games [https://citizensciencegames.
com/]. [N.d.]. URL validity: 6.7.2024.

20. Marie Dealessandri. What is the best game engine: is Unity right for you?
[https://www.gamesindustry.biz/what-is-the-best-game-engine-is-
unity-the-right-game-engine-for-you]. [N.d.]. URL validity: 6.7.2024.

21. Unity Technologies. How Unity works with packages [https://docs.
unity3d.com/Manual/upm-overview.html]. [N.d.]. URL validity: 6.7.2024.

22. Unity Technologies. Install a UPM package by name [https://docs.
unity3d.com/Manual/upm-ui-quick.html]. [N.d.]. URL validity: 6.7.2024.

23. Microsoft. Fundamentals of garbage collection [https://learn.microsoft.
com / en - us / dotnet / standard / garbage - collection / fundamentals].
[N.d.]. URL validity: 6.7.2024.

24. Unity Technologies. Line Renderer component [https://docs.unity3d.
com/Manual/class-LineRenderer.html]. [N.d.]. URL validity: 6.7.2024.

25. Unity Technologies. GL [https://docs.unity3d.com/ScriptReference/
GL.html]. [N.d.]. URL validity: 6.7.2024.

26. Unity Technologies. Graphic [https://docs.unity3d.com/2019.
1 / Documentation / ScriptReference / UI . Graphic . html]. [N.d.]. URL
validity: 6.7.2024.

27. Arpaci-Dusseau, Remzi H.; Arpaci-Dusseau, Andrea C. (2014).
Operating Systems: Three Easy Pieces [Chapter: Condition Variables, figure
30.13] [https://pages.cs.wisc.edu/~remzi/OSTEP/threads-cv.pdf].
Ed. by Arpaci-Dusseau Books. [N.d.]. URL validity: 6.7.2024.

28. Unity Technologies. RequireComponent [https : / / docs . unity3d .
com / ScriptReference / RequireComponent . html]. [N.d.]. URL validity:
6.7.2024.

29. Reddy, M. API Design for C++. Elsevier Science, 2011. isbn 9780123850041.
Available also from: https://books.google.cz/books?id=IY29LylT85wC.

30. NumFOCUS, Inc. pandas.DataFrame [https://pandas.pydata.org/
docs/reference/api/pandas.DataFrame.html]. [N.d.]. URL validity:
6.7.2024.

31. Hashemi-Pour, Cameron. What is a user interface (UI) [https://www.
techtarget.com/searchapparchitecture/definition/user-interface-
UI]. Ed. by Churchville, Fred. 2024. URL validity: 5.7.2024.

32. Unity Technologies. Package manifest [https://docs.unity3d.com/
Manual/upm-manifestPkg.html#required]. [N.d.]. URL validity: 6.7.2024.

64

https://plotly.com/python/animations/
https://plotly.com/python/animations/
https://conductscience.com/games/
https://conductscience.com/games/
https://doi.org/10.1177/1046878112439508
https://citizensciencegames.com/
https://citizensciencegames.com/
https://www.gamesindustry.biz/what-is-the-best-game-engine-is-unity-the-right-game-engine-for-you
https://www.gamesindustry.biz/what-is-the-best-game-engine-is-unity-the-right-game-engine-for-you
https://docs.unity3d.com/Manual/upm-overview.html
https://docs.unity3d.com/Manual/upm-overview.html
https://docs.unity3d.com/Manual/upm-ui-quick.html
https://docs.unity3d.com/Manual/upm-ui-quick.html
https://learn.microsoft.com/en-us/dotnet/standard/garbage-collection/fundamentals
https://learn.microsoft.com/en-us/dotnet/standard/garbage-collection/fundamentals
https://docs.unity3d.com/Manual/class-LineRenderer.html
https://docs.unity3d.com/Manual/class-LineRenderer.html
https://docs.unity3d.com/ScriptReference/GL.html
https://docs.unity3d.com/ScriptReference/GL.html
https://docs.unity3d.com/2019.1/Documentation/ScriptReference/UI.Graphic.html
https://docs.unity3d.com/2019.1/Documentation/ScriptReference/UI.Graphic.html
https://pages.cs.wisc.edu/~remzi/OSTEP/threads-cv.pdf
https://docs.unity3d.com/ScriptReference/RequireComponent.html
https://docs.unity3d.com/ScriptReference/RequireComponent.html
https://books.google.cz/books?id=IY29LylT85wC
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html
https://www.techtarget.com/searchapparchitecture/definition/user-interface-UI
https://www.techtarget.com/searchapparchitecture/definition/user-interface-UI
https://www.techtarget.com/searchapparchitecture/definition/user-interface-UI
https://docs.unity3d.com/Manual/upm-manifestPkg.html#required
https://docs.unity3d.com/Manual/upm-manifestPkg.html#required

33. Unity Technologies. Package layout [https://docs.unity3d.com/
Manual/cus-layout.html]. [N.d.]. URL validity: 6.7.2024.

65

https://docs.unity3d.com/Manual/cus-layout.html
https://docs.unity3d.com/Manual/cus-layout.html

List of Figures

2.1 Terrain 3D Plot. Source: Matplotlib.org [3] 11
2.2 Plotting Libraries user base (Obtained from their Github repositories) 13
2.3 Components of a Matplotlib Figure. Source: Matplotlib.org [7] . . 15
2.4 Basic line graph using Matplotlib. 17
2.5 Basic bar graph using Matplotlib 18
2.6 Plot representing data of the customer [9]. 19
2.7 Example interactive plot with hover over the specific point. Source:

plotly.com [10] . 21
2.8 Plotting Libraries user base (Created using Plotly) 22
2.9 Line plot created by using Bokeh [13]. 24
2.10 Animated bar plot using Plotly, generated by code 8. Source:

plotly.com [16] . 26

3.1 Proccess of updating packages in Unity. Source: docs.unity3d.com
[21] . 30

3.2 Unity package manager window in the editor. 30

4.1 Components assigned onto game object in Unity. 37

5.1 Diagram representing relations between parts of our package archi-
tecture. 42

5.2 Line segment constructed from two triangles and four vertices. . . 45
5.3 Unity Test Runner window when every test passes successfully. . . 49

6.1 Running GraphScene in play mode. 50
6.2 Hierarchy of game object in the GraphScene. 51
6.3 Creating canvas in the hierarchy. 51
6.4 Creating panel in the hierarchy under canvas. 52
6.5 Adjusting anchors on RectTransform component. 53
6.6 Components onto game object after adding LineGraphView. 53
6.7 Graph game object after adding DataCollector component. 54
6.8 Basic line chart in game mode. 54
6.9 LineGraphView component. 55
6.10 BarGraphView component. 55
6.11 Plot drawn using bars representation. 56
6.12 DataCollector component. 56
6.13 GridDrawer component. 57
6.14 Plot drawn by lines with grid component. 57
6.15 BordersDrawer component. 58
6.16 Plot drawn by lines with grid and borders components. 58
6.17 Recommended hierarchy of the game object with axis. 58
6.18 GraphLabel component. 59
6.19 Plot is drawn by lines with grid, borders, and axes components. . 59

A.1 Recommended package layout. Source: docs.unity3d.com [33]. . . 70
A.2 Example assembly definition file in Unity project explorer. 70

66

List of Tables

7.1 Performance evaluation of the package using Unity profiler tool. . 60

67

List of Abbreviations
API An application programming interface (API) is a way for two or more

computer programs or components to communicate with each other [29]..
12, 18, 47

DataFrame Two-dimensional, size-mutable, potentially heterogeneous tabular
data [30].. 18, 19

PYPL The PYPL PopularitY of Programming Language Index is created by
analyzing how often language tutorials are searched on Google: the more a
language tutorial is searched, the more popular the language is assumed to
be. It is a leading indicator. The raw data comes from Google Trends [4]..
11

UI The user interface (UI) is the point of human-computer interaction and
communication in a device. This can include display screens, keyboards, a
mouse and the appearance of a desktop. It is also how a user interacts with
an application or a website, using visual and audio elements, such as type
fonts, icons, buttons, animations and sounds [31].. 11, 12, 13, 36

68

A Attachments
A.1 Creating Unity package

To create a Unity package, the following steps must be reproduced :

1. First, we need to create an empty package. The easiest way is to use your
computer’s file manager to create a folder for your package.

2. Create a file named package.json in the root of the created folder. The re-
quired components to fill are name, which has to be in format com.[company-
Name].[package-Name] such as com.randomcompany.mypackage. Another
required component is version. The version string must follow package
version number convention in the form MAJOR.MINOR.PATCH, such
as 5.1.2. The other fields that can be filled in package.json file can be
found in official Unity documentation [32]. The following code 10 represents
an example manifest of the package for better understanding.

Program 10 Example package manifest [32]

{
"name": "com.[company -name].[package -name]",
"version": "1.2.3",
"displayName": "Package Example",
"description": "This is an example package",
"dependencies": {

"com.[company -name].some-package": "1.0.0",
"com.[company -name].other -package": "2.0.0"

},
"author": {

"name": "Unity",
"email": "unity@example.com",
"url": "https://www.unity3d.com"

}
}

3. Layout of the package must follow the package layout convention for Unity
packages. As shown in the following figure A.1.

69

Figure A.1 Recommended package layout. Source: docs.unity3d.com [33].

4. The layout must have assembly definitions files if the package includes code.
Assembly definition files are the Unity equivalent to a C# project in the
.NET ecosystem. Those files can be created in the Unity by following steps:

• Right-click on the mouse while in the Project tab.
• Find Create in the drop-down menu
• Click on Assembly Definition

It will create the file as shown in the following figure A.2.

Figure A.2 Example assembly definition file in Unity project explorer.

5. Add necessary tools, code, and assets into your package folder.

6. As to follow good practice, create tests to test your code inside the package.
Test scripts must be stored in the Tests folder as shown in the figure A.1.
Place your editor tests in the Editor folder and your runtime scripts in the
Runtime folder.

7. To add samples such as sample scenes, those should be placed in the
Samples folder. Note that when the folder is created with its name followed

70

by character ’ ’, Unity ignores this file to create a .meta file and to show
it in the project tab. As Unity might recommend this, I found it rather
unpleasant when importing and exploring the package; this Samples folder
might be easily missed, even though it is possible to interact and import
samples through the package manager window.

8. Good practice is to create Changelog file for the user to track recent
changes more quickly.

9. If needed License and ThirdPartyNotices filed can be created.

10. The package documentation might be one of the most crucial things that
must be created. Even though it is optional, I strongly recommend it, as
users will struggle to use your package without proper documentation.

11. To easily share your package. Open it in your computer’s file explorer and
compress the root folder of your package. Anyone with Unity can import it
using Unity Package Manager.

71

	Introduction
	Motivations
	Goals
	Structure

	Plotting libraries
	Usability
	Plotting libraries vs. Excel

	Static plotting libraries
	Matplotlib
	Seaborn
	Summary

	Real-time plotting libraries
	Interactive plotting libraries
	Animated plots
	Comparison with Static plotting libraries

	Unity package
	Games as research tool
	Unity engine

	Package parts
	Unity package manager
	Importing Unity package

	Requirements and analysis
	Functional requirements
	Drawing plots
	Axes
	Grid
	Borders
	Changable data point
	Aggregation of data
	Testability

	Performance requirements
	Garbage collector
	Data storage
	Rendering

	Solution analysis
	System architecture
	Rendering
	Data management
	Data aggregation
	Graph components

	Developer documentation
	Setting up the project
	System architecture
	Rendering
	UIDrawer
	GraphView
	LineGraphView
	BarGraphView

	Data handling
	DataPoint
	DataCollector
	CircularBuffer
	DataViewBuffer

	Data aggregation
	IAggregator
	BaseDataAggregator
	Examples

	Graph components
	BordersDrawer
	GridDrawer
	GraphLabel

	Package unity testing

	User documentation
	Importing the package
	Sample scene
	Assemblying plot
	Create Canvas

	Components
	LineGraphView
	BarGraphView
	DataCollector
	GridDrawer
	BordersDrawer
	GraphLabel

	Evaluation
	Performance testing
	Limitations

	Conclusion
	Future work

	Bibliography
	List of Figures
	List of Tables
	List of Abbreviations
	Attachments
	Creating Unity package

