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Introduction
In mathematics it is important to understand various types of symmetries. Group
theory can be regarded as a field that investigates invertible symmetries. Universal
algebra[10][6][7] generalizes this investigation to symmetries of larger arity.

For instance, given a relational structure the compatible functions can be re-
garded as its multivariate symmetries. collection of these functions form a struc-
ture called a clone. Understanding them tells us pieces of information about the
relations. Because of that it is a very important classification project in universal
algebra to understand all the clones and how they relate to each other.

All the clones on two element domain had been already fully understood
by Post [11]. On the other hand the clones on three element domain are not
understood yet. But there are some partial results like Zhuk’s classification [14]
of self-dual clones on three element domain.

It turns out that understanding all clones is a very hard task. However a
weaker comparison of clones coming from so-called minion homomorphisms [1] is
still useful in some context, such as for understanding the computational com-
plexity of problems. Because it is weaker it makes the resulting lattices a lot more
manageable.

For this reason we would like to understand all the clones modulo minion
homomorphisms and this thesis provides a modest contribution towards this goal.
In this thesis we look at clones that are products of boolean clones and we order
all of them with respect to minion homomorphisms.
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1 Multisorted clones
Definition 1.1 ([𝑛]). By [𝑛] we will denote the set containing the first 𝑛 positive
integers that means the set {1, 2, . . . , 𝑛}.

1.1 Function clones
The notion of clones in universal algebra is used to study functions and their
compostions.

Definition 1.2 (function composition). Let 𝐴 be a set. Let 𝑓 be a function
𝐴𝑛 → 𝐴 and 𝑔1, . . . , 𝑔𝑛 be functions 𝐴𝑚 → 𝐴. Then we define the composition
𝑓 ∘ (𝑔1, . . . , 𝑔𝑛) as function having arity 𝑚 and the following definition

(𝑓 ∘ (𝑔1, . . . , 𝑔𝑛))(𝑥1, . . . , 𝑥𝑚) = 𝑓(𝑔1(𝑥1, . . . , 𝑥𝑚), . . . , 𝑔𝑛(𝑥1, . . . , 𝑥𝑚))

Definition 1.3 (projections). By the 𝑛-ary projection to the 𝑖-th coordinate
on a set 𝐴 we mean the function 𝐴𝑛 → 𝐴 defined by

𝜋𝑛
𝑖 (𝑥1, . . . , 𝑥𝑛) = 𝑥𝑖

With these two definitions combined we are able to define the notion of a
function clone.

Definition 1.4 (function clone). Let 𝐴 be a set. Then we call a set 𝐶 of
functions on a set 𝐴 a function clone if it contains all projections of all arities
and is closed under composition.

Note. If not stated otherwise whenever we just say clone we are talking about
a function clone.

1.2 Relations
We will give a notion of function being compatible with a relation, as this gives
us a different way to characterize clones.

Definition 1.5 (compatibility with a relation). Let 𝐴 be a set. Let 𝑅 be a
relation on 𝐴 of arity 𝑚 and 𝑓 a function 𝐴𝑛 → 𝐴. Then we say that 𝑓 is compat-
ible with 𝑅 if for all 𝑎𝑖,𝑗 ∈ 𝐴 with 𝑖 ≤ 𝑚, 𝑗 ≤ 𝑛 we have that (𝑎1,𝑗, . . . , 𝑎𝑚,𝑗) ∈ 𝑅
for all 𝑗 implies that (𝑓(𝑎1,1, . . . , 𝑎1,𝑛), . . . , 𝑓(𝑎𝑚,1, . . . , 𝑎𝑚,𝑛)) ∈ 𝑅. This notion
is summarized by the following diagram.

𝑓( 𝑎1,1 𝑎1,2 . . . 𝑎1,𝑛 ) = 𝑏1
𝑓( 𝑎2,1 𝑎2,2 . . . 𝑎2,𝑛 ) = 𝑏2

...
...

. . .
...

...
...

𝑓( 𝑎𝑚,1 𝑎𝑚,2 . . . 𝑎𝑚,𝑛 ) = 𝑏𝑚
∈ ∈ . . . ∈ ∈
𝑅 𝑅 . . . 𝑅 ⇒ 𝑅

Definition 1.6 (compatibility with set of relations). Let 𝐴 be a set, 𝑓 a
function on 𝐴 and ℛ a set of relations on 𝐴. We say that 𝑓 is compatible with ℛ
if it is compatible with every 𝑅 ∈ ℛ.

Definition 1.7 (Pol). We denote the set of all functions compatible with ℛ as
Pol(ℛ).
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Theorem 1.8. Let 𝐴 be a set and ℛ be a set of relations on 𝐴. Then Pol(ℛ) is
a clone.
Proof. Proof is just a rutine check that whenever some functions satisfy given
relation, then their composition does as well and that all projections satisfy every
relation. For more details see [3].

It is known [5][8] that every clone on a finite set can be described as Pol(ℛ)
for some set of relations ℛ.

1.3 Multisorted clones
In this thesis we will work with special kind of clones called multisorted [12].
They give us a way to better handle some specific clones on bigger underlying
sets.

Definition 1.9 (𝑘-sorted set). A 𝑘-sorted set 𝐴 = (𝐴1, 𝐴2, . . . , 𝐴𝑘) is a 𝑘-tuple
of sets.

Definition 1.10 (sort). We will use the term sort to refer to some index of a
𝑘-sorted set.

Definition 1.11 (𝑘-sorted function). Let 𝐴 = (𝐴1, 𝐴2, . . . , 𝐴𝑘), 𝐵 =
(𝐵1, 𝐵2, . . . , 𝐵𝑘) be two 𝑘-sorted sets. Then a 𝑘-sorted function 𝐴𝑛 → 𝐵 is a
tuple of 𝑘 functions 𝑓 = (𝑓1, 𝑓2, . . . , 𝑓𝑘), where 𝑓𝑖 is a function 𝐴𝑛

𝑖 → 𝐵𝑖.

This means that a 𝑘-sorted function 𝑓 may be viewed as a special case of a
function on products (∏ 𝐴𝑖)𝑛 → ∏ 𝐵𝑖, where the sorts are independent. This
observation gives us for free the notion of compositions and projections in the
multisorted setting. But we still can view these in a multisorted way as shown in
the following definitions.

Definition 1.12 (𝑘-sorted composition). Let 𝐴 be a 𝑘-sorted set. Fur-
ther let 𝑓 = (𝑓1, . . . , 𝑓𝑘) be a 𝑘-sorted function 𝐴𝑛 → 𝐴. Finally let 𝑔1 =
(𝑔1,1, . . . , 𝑔1,𝑘), . . . , 𝑔𝑛 = (𝑔𝑛,1, . . . , 𝑔𝑛,𝑘) be 𝑘-sorted functions of arity 𝑚. Then
the arity 𝑚 composition 𝑓 ∘ (𝑔1, . . . 𝑔𝑛) is done component-wise, that is

𝑓 ∘ (𝑔1, . . . 𝑔𝑛) = (𝑓1 ∘ (𝑔1,1, . . . , 𝑔𝑛,1), . . . , 𝑓1 ∘ (𝑔1,𝑘, . . . , 𝑔𝑛,𝑘))

Definition 1.13 (𝑘-sorted projection). Let 𝐴 be a 𝑘-sorted set. The 𝑘-sorted
projection of arity 𝑛 onto 𝑖-th variable is 𝜋𝑛

𝑖 = (𝜋𝑛
𝑖 , . . . , 𝜋𝑛

𝑖 )

Now similarly as before we may define the notion of a 𝑘-sorted clone. As said,
this may be viewed as a clone using the notions of compostition and projection
described here or as a special kind of a clone on ∏ 𝐴𝑖, where for all functions the
sorts are independent.

Definition 1.14 (𝑘-sorted clone). Let 𝐴 be a 𝑘-sorted set. Then we call a
set 𝐶 of 𝑘-sorted functions on 𝐴 a 𝑘-sorted clone if it contains all the 𝑘-sorted
projections of all arities and is closed under 𝑘-sorted composition.

1.4 Multisorted relations
In contrary to multisorted functions being independent on the sorts, multisorted
relations give us a way to write some connections between the different sorts.
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Definition 1.15 (𝑘-sorted relation). Let 𝐴 = (𝐴1, . . . , 𝐴𝑘) be a 𝑘-sorted
set and 𝑖1, . . . , 𝑖𝑚 ∈ [𝑘] be indicies. A 𝑘-sorted relation of arity 𝑚 with type
(𝑖1, . . . , 𝑖𝑚) is a subset 𝑅 ⊆ 𝐴𝑖1

× 𝐴𝑖2
× · · · × 𝐴𝑖𝑚

.
Note that the type (𝑖1, . . . , 𝑖𝑚) is part of the definition of a relation, we cannot

talk about a multisorted relation without knowing its type. And this type will be
important even if all the 𝐴𝑖 are the same set.
Definition 1.16 (compatibility with multisorted relation). Let 𝐴 =
(𝐴1, . . . , 𝐴𝑘) be a 𝑘-sorted set, 𝑓 = (𝑓1, . . . , 𝑓𝑘) a 𝑘-sorted function 𝐴𝑛 → 𝐴
and 𝑅 a 𝑘-sorted relation of arity 𝑚 with type (ℓ1, . . . , ℓ𝑚). Then we say that
𝑓 is compatible with 𝑅 if for all 𝑎𝑖,𝑗 ∈ 𝐴ℓ𝑖

with 𝑖 ≤ 𝑚 and 𝑗 ≤ 𝑛 it holds that
(𝑎1,𝑗, . . . , 𝑎𝑚,𝑗) ∈ 𝑅 for all 𝑗 implies that

(𝑓ℓ1
(𝑎1,1, . . . , 𝑎1,𝑛), . . . , 𝑓ℓ𝑚

(𝑎𝑚,1, . . . , 𝑎𝑚,𝑛)) ∈ 𝑅.

This is again best summarized by the following diagram.

𝑓ℓ1
( 𝑎1,1 𝑎1,2 . . . 𝑎1,𝑛 ) = 𝑏1

𝑓ℓ2
( 𝑎2,1 𝑎2,2 . . . 𝑎2,𝑛 ) = 𝑏2

...
...

. . .
...

...
...

𝑓ℓ𝑚
( 𝑎𝑚,1 𝑎𝑚,2 . . . 𝑎𝑚,𝑛 ) = 𝑏𝑚

∈ ∈ . . . ∈ ∈
𝑅 𝑅 . . . 𝑅 ⇒ 𝑅

In this thesis we will study special case of multisorted relation, where the
type uses only one index. This means that all the 𝑓ℓ𝑖

in the above diagram would
be the same function. And hence it is the same as bounding functions on each
sort independently.
Definition 1.17 (simple 𝑘-sorted relation). By a simple 𝑘-sorted relation we
mean any 𝑘-sorted relation of type (𝑖, 𝑖, . . . , 𝑖) for some 𝑖.
Definition 1.18 (clone product). Let 𝐶1, 𝐶2, . . . , 𝐶𝑘 be clones on the domain
𝐴. Then their product 𝒞(𝐶1, 𝐶2, . . . , 𝐶𝑘) is the 𝑘-sorted clone containing all 𝑘-
sorted functions 𝑓 = (𝑓1, . . . , 𝑓𝑘), where 𝑓𝑖 ∈ 𝐶𝑖.
Lemma 1.19. Let 𝑅 be a set of simple 𝑘-sorted relations. And let us denote 𝑅𝑖
the subset of 𝑅 containing all relations with type (𝑖, 𝑖, . . . , 𝑖). Finally let 𝐶 be a
𝑘-sorted clone given by 𝐶 = Pol(𝑅). Then 𝐶 is the same clone as the product of
clones 𝒞(Pol(𝑅1), . . . , Pol(𝑅𝑘)).
Proof. This follows directly from the definition of compatibility with a relation,
as simple relations on sort 𝑖 exactly correspond to the relations satisfied by func-
tions on the 𝑖-th sort.

In this thesis we want to study all multisorted clones on 2-element domain
given as Pol(𝑅) for some set of simple multisorted relations 𝑅. This translates
into studying all the products of clones on 2-element domain. As all the clones
on 2-element domain are well known we want to take all subsets of them and
consider their products.

1.5 Homomorphisms
We want to talk about how different clones relate to each other and for that we
will mostly use the notion of minion homomorphisms, but for completeness we
also include the definition of clone homomorphisms.
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Definition 1.20 (clone homomorphism). Let 𝒜 be a clone on a set 𝐴 and
ℬ a clone on a set 𝐵. Then mapping 𝜁: 𝒜 → ℬ is a clone homomorphism if it
satisfies the following:

• It preserves arities, that is, a function of arity 𝑛 in 𝒜 gets mapped to a
function of arity 𝑛 in ℬ.

• It preserves projections, that is, 𝜁(𝜋𝑛
𝑖 ) = 𝜋𝑛

𝑖 .
• It preserves composition, that is, if 𝑓 ∈ 𝒜 is a function of arity 𝑛 and

𝑔1, 𝑔2, . . . , 𝑔𝑛 functions of arity 𝑚, then
𝜁(𝑓 ∘ (𝑔1, . . . , 𝑔𝑛)) = 𝜁(𝑓) ∘ (𝜁(𝑔1), . . . , 𝜁(𝑔𝑛))

When in the composition the functions 𝑔𝑖 are projections, it turns out to be
a very important special case. Hence it gets its own definition.
Definition 1.21 (minor). Let 𝐴 be a set and 𝑓 a function 𝐴𝑛 → 𝐴
and 𝑖1, 𝑖2, . . . , 𝑖𝑛 ∈ [𝑚] be arbitrary indicies. Then the composition 𝑓 ∘
(𝜋𝑚

𝑖1
, 𝜋𝑚

𝑖2
, . . . , 𝜋𝑚

𝑖𝑛
) is called a minor of 𝑓.

An example of minor is function 𝑔 defined as 𝑔(𝑥, 𝑦) = 𝑓(𝑥, 𝑥, 𝑦). Here 𝑔 is a
minor of 𝑓. Note that ”𝑥” is the binary projection on the first coordinate and ”𝑦”
is the binary projection on the second coordinate. And hence we could rewrite it
as 𝑔 = 𝑓 ∘ (𝜋2

1, 𝜋2
1, 𝜋2

2).
Note that up to dummy variables and renaming variables this definition is

interesting only if 𝑚 < 𝑛.
With minors we will relax conditions of clone homomorphism to get a weaker

notion of morphisms called minion homomorphisms that does not have to preserve
composition.
Definition 1.22 (minion homomorphism). Let 𝒜 be a clone on a set 𝐴 and
ℬ a clone on a set 𝐵. Then mapping 𝜁: 𝒜 → ℬ is a minion homomorphism if it
satisfies the following:

• It preserves arities. Function of arity 𝑛 in 𝒜 gets mapped to a function of
arity 𝑛 in ℬ.

• Preserves composition with projections in other words it preserves minors. Let
𝑓 ∈ 𝒜 be a function of arity 𝑛 and 𝑖1, 𝑖2, . . . , 𝑖𝑛 ∈ [𝑚] be arbitrary indicies.
Then

𝜁(𝑓 ∘ (𝜋𝑚
𝑖1

, . . . , 𝜋𝑚
𝑖𝑛

)) = 𝜁(𝑓) ∘ (𝜋𝑛
𝑖1

, . . . , 𝜋𝑛
𝑖𝑛

)

Note. Because this definition comes from structure called minions [2], which
are in general sets of functions between different sets, it does not make sense to
talk about preserving projections, as in general there are no projections. But in
our setting we may use the following lemma to assume they preserve projections,
as we will be talking only about idempotent functions.
Definition 1.23 (idempotent function). Let 𝐴 be a set and 𝑓 a function
𝐴𝑛 → 𝐴. Then 𝑓 is idempotent if for every 𝑥 ∈ 𝐴 we have 𝑓(𝑥, 𝑥, . . . , 𝑥) = 𝑥.
Definition 1.24 (idempotent clone). Clone 𝒜 is idempotent if every function
𝑓 ∈ 𝒜 is idempotent.
Lemma 1.25. Let 𝒜, ℬ be two idempotent clones and 𝜁: 𝒜 → ℬ be a minion
homomorphism. Then 𝜁(𝜋𝑛

𝑖 ) = 𝜋𝑛
𝑖 .

Proof. Because they are idempotent, they have only one function of arity 1, the
identity function 𝜏(𝑥) = 𝑥. Thus it has to be mapped to itself by 𝜁. And note
that 𝜋𝑛

𝑖 = 𝜏 ∘ (𝜋𝑛
𝑖 ) and thus 𝜁(𝜋𝑛

𝑖 ) = 𝜁(𝜏) ∘ (𝜋𝑛
𝑖 ) = 𝜏 ∘ (𝜋𝑛

𝑖 ) = 𝜋𝑛
𝑖 . □
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1.6 Preorder
From the notion of minion homomorphism we get a preorder on all clones.

Definition 1.26 (≤). Let 𝒜 and ℬ be two clones. Then we say 𝒜 ≤ ℬ if there
exists a minion homomorphism 𝒜 → ℬ.

Lemma 1.27. The relation ≤ is a preorder.
Proof. This follows from two observations

• Identity is a minion homomorphism 𝒜 → 𝒜, thus the relation is reflexive.
• When we have minion homomorphism 𝒜 → ℬ and a minion homomorphism

ℬ → 𝒞, then their composition gives us a minion homomorphism 𝒜 → 𝒞.
Hence the relation is transitive. □

This preorder gives us equivalence in the usual way as written in the following
definition.

Definition 1.28 (equivalence). Let 𝒜, ℬ be clones. Then we say 𝒜 is equivalent
to ℬ denoted by 𝒜 ∼ ℬ if 𝒜 ≤ ℬ and ℬ ≤ 𝒜.

We want to look at the order given by this preorder on the equivalence classes
given by ∼. This order is already known for all clones on a 2-element domain. We
will describe this order after we define our notation.

We will show a lemma which will be our proof strategy for proving that there
does not exist a minion homomorphism from one clone to another. For that we
need one more definition.

Definition 1.29 (Height one identity). Height one identity is an identity of
the form

𝑓1 ∘ (𝜋𝑖1
, . . . , 𝜋𝑖𝑛

) = 𝑓2 ∘ (𝜋𝑗1
, . . . , 𝜋𝑗𝑚

) = · · · = 𝑓𝑐(𝜋𝑘1
, . . . , 𝜋𝑘ℓ

)

Hence for example this identity is height one 𝑓(𝑥, 𝑥, 𝑦) = 𝑓(𝑥, 𝑦, 𝑧) = 𝑔(𝑥, 𝑧),
but this one 𝑓(𝑓(𝑥, 𝑦), 𝑦) = 𝑓(𝑥, 𝑥) is not.

Lemma 1.30. Let 𝑆 be set of height one identities. Let 𝐴, 𝐵 be two clones. Sup-
pose, that there exists some functions 𝑓1, . . . , 𝑓𝑛 ∈ 𝐴 satisfying all the identities
in 𝑆, but there do not exist 𝑔1, . . . , 𝑔𝑛 ∈ 𝐵 satisfying all the identities in 𝑆. Then
𝐴 /≤ 𝐵.
Proof. We will prove this by a contradiction. Suppose 𝐴 ≤ 𝐵. Then we have
some minion homomorphism 𝜁: 𝐴 → 𝐵. Because 𝑓1, . . . , 𝑓𝑛 satisfy all identities in
𝑆 and the identities are height one, we get, from definition of minion homomor-
phism, that 𝜁(𝑓1), . . . , 𝜁(𝑓𝑛) satisfy all the identities, which is a contradiction.

□

Now we will look at few lemmas which will show how the product of clones
behaves with respect to the minion homomorphisms. In a sense the product is
the same as a free meet in the lattice given by ≤.

Lemma 1.31. Let 𝒞(𝑋1, 𝑋2, . . . , 𝑋𝑛) be a product of clones. And let 𝑝 be a
permutation on the set [𝑛]. Then 𝒞(𝑋1, 𝑋2, . . . , 𝑋𝑛) ∼ 𝒞(𝑋𝑝(1), 𝑋𝑝(2), . . . , 𝑋𝑝(𝑛)).
Proof. The mappings (𝑓1, 𝑓2, . . . , 𝑓𝑛) ↦ (𝑓𝑝(1), 𝑓𝑝(2), . . . , 𝑓𝑝(𝑛)) and its inverse
are minion homomorphisms. □
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Lemma 1.32. Let 𝒞(𝑋1, 𝑋2, . . . , 𝑋𝑛) and 𝒞(𝑋1, 𝑋2, . . . , 𝑋𝑚) be two products
of clones such that there exists 𝑗1, 𝑗2, . . . , 𝑗𝑚 ∈ [𝑛] indicies for which 𝑋𝑗𝑖

≤ 𝑌𝑖
for every 𝑖. Then 𝒞(𝑋1, 𝑋2, . . . , 𝑋𝑛) ≤ 𝒞(𝑋1, 𝑋2, . . . , 𝑋𝑚)
Proof. Every inequality 𝑋𝑗𝑖

≤ 𝑌𝑖 gives us a minion homomorphism 𝜁𝑖: 𝑋𝑗𝑖
→

𝑌𝑖. To prove the inequality we define new minion homomorphism 𝜁 mapping
𝒞(𝑋1, 𝑋2, . . . , 𝑋𝑛) to 𝒞(𝑋1, 𝑋2, . . . , 𝑋𝑚) as follows:

𝜁(𝑓1, 𝑓2, . . . , 𝑓𝑛) = (𝜁1(𝑓𝑗1
), 𝜁2(𝑓𝑗2

), . . . , 𝜁𝑚(𝑓𝑗𝑚
))

It is only a rutine check that this is really a minion homomorphism. □

Corollary 1.33. Let 𝒞(𝑋1, 𝑋2, . . . , 𝑋𝑛) be a product of clones. Suppose that
𝑋2 ≤ 𝑋1, then

𝒞(𝑋1, 𝑋2, . . . , 𝑋𝑛) ∼ 𝒞(𝑋2, 𝑋3, . . . , 𝑋𝑛).

Proof. We will apply Lemma 1.32 twice. First we use indicies 𝑗1 = 2, 𝑗2 =
3, . . . , 𝑗𝑛−1 = 𝑛 to prove

𝒞(𝑋1, 𝑋2, . . . , 𝑋𝑛) ≤ 𝒞(𝑋2, 𝑋3, . . . , 𝑋𝑛).

And then we use the indicies 𝑗1 = 1, 𝑗2 = 1, 𝑗3 = 2, 𝑗4 = 3, . . . , 𝑗𝑛 = 𝑛 − 1 to
prove that

𝒞(𝑋2, 𝑋3, . . . , 𝑋𝑛) ≤ 𝒞(𝑋1, 𝑋2, . . . , 𝑋𝑛).

□
Corollary 1.34. By repeatably applying Corollary 1.33 and Lemma 1.31 we
see that every product of clones is equivalent to one which is given only by
incomparable elements. Thus if we want to study all products of clones modulo
minion homomorphisms, it sufficies to look at products given by incomparable
elements.

We want to describe the minion order for products of boolean clones. It turns
out that it does not have any non-trivial collapses. For clarity of the proof we
define the order that follows only from the order of the underlying clones.

Definition 1.35. (⪯) Let 𝒞(𝑋1, 𝑋2, . . . , 𝑋𝑛), 𝒞(𝑌1, 𝑌2, . . . , 𝑌𝑚) be two products
of clones. Then we say 𝒞(𝑋1, 𝑋2, . . . , 𝑋𝑛) ⪯ 𝒞(𝑌1, 𝑌2, . . . , 𝑌𝑚) if there exist
indices 𝑗1, 𝑗2, . . . , 𝑗𝑚 ∈ [𝑛] such that for every 𝑌𝑖 we have 𝑋𝑗𝑖

≤ 𝑌𝑖.

Definition 1.36. (trivially equivalent) Let 𝒞(𝑋1, 𝑋2, . . . , 𝑋𝑛), 𝒞(𝑌1, 𝑌2, . . . , 𝑌𝑚)
be two products of clones. We say that they are trivially equivalent if

𝒞(𝑋1, 𝑋2, . . . , 𝑋𝑛) ⪯ 𝒞(𝑌1, 𝑌2, . . . , 𝑌𝑚)
𝒞(𝑌1, 𝑌2, . . . , 𝑌𝑚) ⪯ 𝒞(𝑋1, 𝑋2, . . . , 𝑋𝑛).

We denote this fact as 𝒞(𝑋1, 𝑋2, . . . , 𝑋𝑛) ≈ 𝒞(𝑌1, 𝑌2, . . . , 𝑌𝑚)

From Lemma 1.32 we have that whenever two products are trivially equiva-
lent, they are equivalent.

Lemma 1.37. Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 be clones then in the order given by ⪯ on
products of clones modulo trivial equivalence we have that 𝒞(𝑋1, 𝑋2, . . . , 𝑋𝑛) is
the meet of 𝒞(𝑋1), 𝒞(𝑋2), . . . , 𝒞(𝑋𝑛).
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Proof. Because 𝑋𝑖 ≤ 𝑋𝑖 we have that 𝒞(𝑋1, 𝑋2, . . . , 𝑋𝑛) ⪯ 𝒞(𝑋𝑖). Now
suppose that for some product of clones 𝒞(𝑍1, 𝑍2, . . . , 𝑍𝑘) we have that
𝒞(𝑍1, 𝑍2, . . . , 𝑍𝑘) ⪯ 𝒞(𝑋𝑖) for all 𝑖. Then from definition of ⪯ we get for
every 𝑋𝑖 some 𝑍𝑗 such that 𝑍𝑗 ≤ 𝑋𝑖. But these together give us that
𝒞(𝑍1, 𝑍2, . . . , 𝑍𝑘) ⪯ 𝒞(𝑋1, 𝑋2, . . . , 𝑋𝑛). And hence 𝒞(𝑋1, 𝑋2, . . . , 𝑋𝑛) is a
meet.

Lemma 1.38. Suppose that the lattice given by ≤ on single sorted clones can
be covered by finite number of chains, then ⪯ induces complete lattice on all the
finite products.
Proof. From Lemma 1.37 we have all finite meets. We will show what are the
infinite meets. As all the elements are products, we have from Lemma 1.37 that
they are meets of the single sorted clones. Hence WLOG we may assume we want
to find meet of single sorted clones. Let 𝑛 be the number of covering chains. We
will denote element from the 𝑖-th chain with the upper index 𝑋𝑖. Suppose we
have for every 𝑖 some clones 𝑋𝑖

1 ≥ 𝑋𝑖
2 ≥ . . . and we want to find meet of all 𝑋𝑖

𝑗.
We claim the meet is the product of 𝑛 clones

𝑀 = 𝒞(min(𝑋1
1 , 𝑋2

2 , . . .), min(𝑋2
1 , 𝑋2

2 , . . .), . . . min(𝑋𝑛
1 , 𝑋𝑛

2 , . . .)),

where min is the infimum of the chain in the original lattice. Because we have
min(𝑋𝑖

1, 𝑋𝑖
2, . . .) ≤ 𝑋𝑖

𝑗 for all 𝑖, 𝑗, we get 𝑀 ⪯ 𝒞(𝑋𝑖
𝑗) for all 𝑖, 𝑗.

Now suppose we have some product of clones 𝒞(𝑍1, 𝑍2, . . . , 𝑍𝑘) such that for
every 𝑋𝑖

𝑗 we have 𝒞(𝑍1, 𝑍2, . . . , 𝑍𝑘) ⪯ 𝒞(𝑋𝑖
𝑗). We will prove for every 𝑖 that there

is some 𝑍ℓ such that 𝑍ℓ ≤ min(𝑋𝑖
1, 𝑋𝑖

2, . . .). Fix some 𝑖. Then we have for every
𝑗 that there exists some ℎ(𝑗) ∈ [𝑘] such that 𝑍ℎ(𝑗) ≤ 𝑋𝑖

𝑗.
Observation 1.39. Suppose that 𝑋1 ≥ 𝑋2, . . . is totally ordered set and ℎ a
mapping it into a finite set [𝑘]. Then there exists some ℓ such that the preimage
of ℓ under ℎ is unbounded. That means that for every 𝑋𝑗 there exists some 𝑗′ ≥ 𝑗
such that ℎ(𝑋𝑗′) = ℓ.
Proof. For contradiction suppose that no such ℓ exists. That means that for
every ℓ ∈ [𝑘] we have some 𝑗 such that 𝑋𝑗 is strictly smaller than every preimage
of ℓ. But taking the minimum of these gives us element that is strictly less then
preimage of any value, which is a contradiction.

Using the observation we have some 𝑍ℓ such that 𝑍ℓ ≤ 𝑋𝑖
𝑗 for every 𝑗 and

thus 𝑍ℓ ≤ min(𝑋𝑖
1, 𝑋𝑖

2, . . .).
Because this holds for every 𝑖 we have that 𝒞(𝑍1, 𝑍2, . . . , 𝑍𝑘) ≤ 𝑀 and thus

𝑀 is the meet. As we have all the infinite meets, the order is a complete lattice.
□
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2 Notation for clones on 2-element domain
From now on we will be working with 2-element domain {0, 1} with natural order
≤ and addition done modulo 2. Later we will use it in the multisorted setting.
Definition 2.1. (Notation for specific clones) Here we define the notation for
clones and relations used in the later chapters. All the nontrivial clones we will
be talking about are idempotent.

• (𝗥𝑛) The relation 𝗥𝑛 for 𝑛 ≥ 2 is a relation of arity 𝑛 given by 𝗥𝑛 =
{0, 1}𝑛 ∖ {(1, 1, . . . , 1)}.

• (𝗥∞) The set of relations 𝗥∞ is a set containing all 𝗥𝑖 for all 𝑖.
• (𝐵𝑛) The clone 𝐵𝑛 for 𝑖 ≥ 2 is Pol(𝗥𝑛).
• (𝐵∞) The clone 𝐵∞ is Pol(𝗥∞).
• (𝐵≤

𝑛 ) The clone 𝐵≤
𝑛 for 𝑖 ≥ 2 is Pol(𝗥𝑛, ≤).

• (𝐵≤
∞) The clone 𝐵≤

∞ is Pol(𝗥∞, ≤).
• (𝐴) The clone 𝐴 is a clone that is generated by the binary function ∧. Where

∧ is a binary function returning minimum of its arguments.
• (𝐶) The clone 𝐶 is Pol(≠).
• (𝐶≤) The clone 𝐶≤ is Pol(≠, ≤).
• (𝐿) The clone 𝐿 is the clone consiting of all idempotent linear functions, that

is, functions 𝑎1𝑥1 + 𝑎2𝑥2 + · · · + 𝑎𝑛𝑥𝑛, where odd number of 𝑎𝑖 are equal to
one and the others to zero.

Definition 2.2. (UP set) Let 𝑆 be a subset of {0, 1}𝑛. We use use ≤ on elements
of {0, 1}𝑛 componentwise, that means

(𝑥1, 𝑥2, . . . , 𝑥𝑛) ≤ (𝑦1, 𝑦2, . . . 𝑦𝑛) ⇔ 𝑥1 ≤ 𝑦1 ∧ 𝑥2 ≤ 𝑦2 ∧ · · · ∧ 𝑥𝑛 ≤ 𝑦𝑛

Then UP(𝑆) is a subset of {0, 1}𝑛 defined by {𝑥: ∃𝑦 ∈ 𝑆, 𝑥 ≥ 𝑦}.
Definition 2.3. (function input notation) Instead of the usual 𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛)
we will often remove the commas and write only 𝑓(𝑥1𝑥2 . . . 𝑥𝑛). In addition to
that we might sometimes want to optically distinguish some parts of the in-
put. For that we will use small spaces, for example 𝑓(100 100) = 𝑓(100100) =
𝑓(1, 0, 0, 1, 0, 0).
Definition 2.4. (matrix set notation) Note that we will be using a matrix nota-
tion of sets, where we write the elements as rows of the matrix. This for example
means that {001, 100} = { 011

100 }

Observation 2.5. The clones have the following properties.
• (𝐵𝑛) Let 𝑓 be a function, then 𝑓 ∈ 𝐵𝑛 if and only if the following holds. Let

us take 𝑛 notnessesarly different 𝑘-tuples from 𝑓−1(1). Then there exists a
coordinate on which all of them contain a 1.

• (𝐵∞) Similarly let 𝑓 be a function then 𝑓 ∈ 𝐵∞ if and only if there exists a
coordinate such that all the elements from 𝑓−1(1) have it nonzero.

• (𝐵≤
𝑛 ) Suppose that 𝑓 is a function in 𝐵𝑛 and let 𝑂 be the set 𝑓−1(1). Then

function defined as 𝑔(𝑥) = 1 if 𝑥 ∈ UP(𝑂) is in 𝐵≤
𝑛 .

• (𝐵≤
∞) Similarly let 𝑓 be a function in 𝐵∞ and let 𝑂 be the set 𝑓−1(1). Then

function defined as 𝑔(𝑥) = 1 if 𝑥 ∈ UP(𝑂) is in 𝐵≤
∞.

• (𝐶) Let 𝑓 be a function. Denote 𝑥 the binary negation of 𝑥. Then 𝑓 ∈ 𝐶 if
and only if 𝑓(𝑥) = 𝑓(𝑥) for every 𝑥.

• (𝐶) Minority and majority lies in the clone 𝐶.
• (𝐶≤) In 𝐶≤ are all the functions from 𝐶 that are monotone.
• (𝐶≤) Majority lies in 𝐶≤.
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3 Lattice of clones on 2-element domain

We want to characterize all multisorted clones on 2-element domain modulo min-
ion homomorphisms. From Lemma 1.19 this is the same as studying all products
of clones on 2-element domain. All of these clones are known and characterized
by Post’s lattice[11], but in this thesis we want to look on them only modulo
minion homomorphisms.

All clones on 2-element domain modulo minion homomorphism are also
known [4]. The lattice of all these clones modulo minion homomorphism is shown
in Figure 3.1

idempotent

projections

𝐶

𝐶≤

𝐿

𝐵≤
2

𝐵≤
3

𝐵≤
4

𝐵≤
5

𝐵≤
∞

𝐵∞

𝐵5

𝐵4

𝐵3

𝐵2

𝐴

Figure 3.1 Lattice of boolean clones modulo minion homomorphisms

Now we want to add all the clone products into this lattice. First we look at
them only modulo trivial equivalence.

Lemma 3.1. All products of boolean clones modulo trivial equivalence with the
order ⪯ form a complete lattice with product being the meet.

Proof. Notice that the lattice in Figure 3.1 can be covered by four chains. And
hence from Lemma 1.38 we have that all the finite products form a complete
lattice. □

The lattice of all products of all boolean clones modulo trivial equivalence is
drawn in Figure 3.2. In Figure 3.2 red points represent the sublattice from from
Figure 3.1, that is all the single sorted clone products. The lattice is then formed
by five triangles. In each such triangle, every vertex is the product of the top-left
corner, the vertical arrow pointing to it and the horizontal arrow pointing to it. For
example in the bottom-right triangle we have verticies of the form 𝒞(𝐶≤, 𝐵𝑖, 𝐵≤

𝑗 )
for 3 ≤ 𝑖 ≤ 𝑗 and one vertex is of the form 𝒞(𝐶≤, 𝐵∞, 𝐴) ≈ 𝒞(𝐶≤, 𝐴).
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𝐵2
𝐵3

𝐵4
𝐵5

𝐵∞

𝐵2
𝐵3

𝐵4
𝐵5

𝐵∞

𝐵≤
2

𝐵≤
3

𝐵≤
4

𝐵≤
5

𝐵≤
∞

𝐴

𝐵≤
2

𝐵≤
3

𝐵≤
4

𝐵≤
5

𝐵≤
∞

𝐴

𝐵≤
2

𝐵≤
3

𝐵≤
4

𝐵≤
5

𝐵≤
∞

𝐴
𝐵≤

3

𝐵≤
4

𝐵≤
5

𝐵≤
∞

𝐴

𝐵≤
3

𝐵≤
4

𝐵≤
5

𝐵≤
∞

𝐴

𝐵3
𝐵4

𝐵5
𝐵∞

𝐵2
𝐵3

𝐵4
𝐵5

𝐵∞

𝐵3
𝐵4

𝐵5
𝐵∞

idempotent

𝐶

𝐿

𝐶≤

projections

𝐿, 𝐶≤

Figure 3.2 Lattice of products of boolean clones modulo trivial equiva-
lence

3.1 Proof preparation

We will show that this is also the lattice of all the products of boolean clones
modulo minion homomorphisms. We already have that whenever there is 𝑋 ⪯ 𝑌,
then 𝑋 ≤ 𝑌 from Lemma 1.32, thus we only have to show that when 𝑋 /⪯ 𝑌, then
𝑋 /≤ 𝑌. We will show this for some special pairs 𝑋 and 𝑌 and then we will show
how any other pair can be proven using these.

All the lemmas here will use the same proof strategy, we will show some
concrete set of height one identities and then by using Lemma 1.30 we infer the
non-inequality. Note that proving that product of clones has a function satis-
fying some identity by definition is the same as finding function in each of its
components satisfying the identity.

Every lemma is proving one or more non-inequalities of the form 𝑋 /≤ 𝑌 for
some products of clones 𝑋 and 𝑌. Right of every lemma is a miniature of the
Figure 3.2 with 𝑋 being highlighted green and 𝑌 red.
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Lemma 3.2. 𝒞(𝐿) /≤ 𝒞(𝐵2)
Proof. We will use identities

𝑓(𝑦𝑦𝑥) =
= 𝑓(𝑦𝑥𝑦) =
= 𝑓(𝑥𝑦𝑦) = 𝑓(𝑥𝑥𝑥)

• 𝑓 ∈ 𝐿. We define 𝑓 as the sum of all three variables.
• 𝑓 ∉ 𝐵2. Every such 𝑓 satisfies

𝑓(001) = 𝑓(111) = 1
𝑓(010) = 𝑓(111) = 1

which contradicts the fact that 𝑓 has to be compatible with the 𝗥2 relation.
Note that 𝑓(𝑥𝑦𝑦) in the identity was redundant, it is there only to make it
symmetric.

Lemma 3.3. 𝒞(𝐴) /≤ 𝒞(𝐶)
Proof. We will use identity

𝑓(𝑥𝑦) = 𝑓(𝑦𝑥)
• 𝑓 ∈ 𝒞(𝐴). We define 𝑓(𝑥𝑦) = 𝑥 ∧ 𝑦.
• 𝑓 ∉ 𝒞(𝐶). From the condition we get 𝑓(10) = 𝑓(01),

but from compatibility with ≠ we have 𝑓(10) ≠ 𝑓(01),
which is a contradiction.

Lemma 3.4. 𝒞(𝐿, 𝐴) /≤ 𝒞(𝐶≤)
Proof. We will use identities

𝑓(𝑥𝑦𝑦𝑦𝑦) = 𝑓(𝑦𝑥𝑥𝑥𝑦) = 𝑓(𝑥𝑦𝑦𝑥𝑥)
• 𝑓 ∈ 𝒞(𝐿). We define 𝑓 as the sum of all variables.
• 𝑓 ∈ 𝒞(𝐴). We define 𝑓 as the meet of all variables.
• 𝑓 ∉ 𝒞(𝐶≤). Suppose such 𝑓 exists. We distinguish two cases

• 𝑓(10000) = 1. Using compatibility with ≠ we get 𝑓(01111) = 0. Further
using compatibility with ≤ we have

𝑓(01110) ≤ 𝑓(01111) = 0,

and thus
𝑓(01110) = 0 ≠ 1 = 𝑓(10000),

which contradicts the identity.
• 𝑓(10000) = 0. Using identity we get 𝑓(01110) = 0. Now using compat-

ibility with ≠ we have 𝑓(10001) = 1. Using compatibility with ≤ we
have

𝑓(10011) ≥ 𝑓(10001) = 1,

hence we get

𝑓(10011) = 1 ≠ 0 = 𝑓(10000),

which contradicts the identity.
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□
Lemma 3.5. 𝒞(𝐶≤, 𝐴) /≤ 𝒞(𝐿)
Proof. We will use identities

1. 𝑓(𝑦𝑦𝑥𝑥𝑥) = 𝑓(𝑥𝑦𝑥𝑥𝑥)
2. 𝑓(𝑥𝑦𝑦𝑥𝑥) = 𝑓(𝑥𝑥𝑦𝑥𝑥)
3. 𝑓(𝑥𝑥𝑦𝑦𝑥) = 𝑓(𝑥𝑥𝑥𝑦𝑥)
4. 𝑓(𝑥𝑥𝑥𝑦𝑦) = 𝑓(𝑥𝑥𝑥𝑥𝑦)
5. 𝑓(𝑦𝑥𝑥𝑥𝑦) = 𝑓(𝑦𝑥𝑥𝑥𝑥)

• 𝑓 ∈ 𝒞(𝐶≤). We define 𝑓 as the majority on all five variables.
• 𝑓 ∈ 𝒞(𝐴). We define 𝑓 as the meet of all variables.
• 𝑓 ∉ 𝒞(𝐿). For contradiction suppose 𝑓 is linear function satisfying the identi-

ties. Then let 𝑖 be such that 𝑓 depends on 𝑖-th variable. Then using the 𝑖-th
identity we get a contradiction.

□
Lemma 3.6. 𝒞(𝐿, 𝐶≤, 𝐵≤

∞) /≤ 𝒞(𝐴)
Proof. We will use identities

𝑝1(𝑥𝑥𝑦) = 𝑝1(𝑥𝑥𝑥)
𝑝2(𝑥𝑥𝑦) = 𝑝1(𝑥𝑦𝑦)
𝑞(𝑥𝑦𝑦) = 𝑝2(𝑥𝑦𝑦)
𝑞(𝑥𝑥𝑦) = 𝑞(𝑦𝑦𝑦)

𝑝𝑖(𝑥𝑦𝑥) = 𝑝𝑖(𝑥𝑥𝑥) 𝑖 ∈ {1, 2}
• 𝑝1, 𝑝2, 𝑞 ∈ 𝒞(𝐿). We define 𝑝1(𝑥𝑦𝑧) = 𝑝2(𝑥𝑦𝑧) = 𝑥 and 𝑞(𝑥𝑦𝑧) = 𝑥 + 𝑦 + 𝑧.

Then the identities are satisfied as follows.
𝑝1(𝑥𝑥𝑦) = 𝑝1(𝑥𝑥𝑥) = 𝑥
𝑝2(𝑥𝑥𝑦) = 𝑝1(𝑥𝑦𝑦) = 𝑥
𝑞(𝑥𝑦𝑦) = 𝑝2(𝑥𝑦𝑦) = 𝑥
𝑞(𝑥𝑥𝑦) = 𝑞(𝑦𝑦𝑦) = 𝑦

𝑝𝑖(𝑥𝑦𝑥) = 𝑝𝑖(𝑥𝑥𝑥) = 𝑥
• 𝑝1, 𝑝2, 𝑞 ∈ 𝒞(𝐶≤). We define 𝑝1(𝑥𝑦𝑧) as the majority and 𝑝2(𝑥𝑦𝑧) = 𝑞(𝑥𝑦𝑧) =

𝑧. Then the identities are as follows.
𝑝1(𝑥𝑥𝑦) = 𝑝1(𝑥𝑥𝑥) = 𝑥
𝑝2(𝑥𝑥𝑦) = 𝑝1(𝑥𝑦𝑦) = 𝑦
𝑞(𝑥𝑦𝑦) = 𝑝2(𝑥𝑦𝑦) = 𝑦
𝑞(𝑥𝑥𝑦) = 𝑞(𝑦𝑦𝑦) = 𝑦

𝑝𝑖(𝑥𝑦𝑥) = 𝑝𝑖(𝑥𝑥𝑥) = 𝑥
• 𝑝1, 𝑝2, 𝑞 ∈ 𝒞(𝐵≤

∞). We define 𝑝1(𝑥𝑦𝑧) = 𝑥 ∧ (𝑦 ∨ 𝑧), 𝑝2(𝑥𝑦𝑧) = 𝑧 ∧ (𝑥 ∨ 𝑦)
and 𝑞(𝑥𝑦𝑧) = 𝑧. Then the identities are as follows.

𝑝1(𝑥𝑥𝑦) = 𝑝1(𝑥𝑥𝑥) = 𝑥
𝑝2(𝑥𝑥𝑦) = 𝑝1(𝑥𝑦𝑦) = 𝑥 ∧ 𝑦
𝑞(𝑥𝑦𝑦) = 𝑝2(𝑥𝑦𝑦) = 𝑦
𝑞(𝑥𝑥𝑦) = 𝑞(𝑦𝑦𝑦) = 𝑦

𝑝𝑖(𝑥𝑦𝑥) = 𝑝𝑖(𝑥𝑥𝑥) = 𝑥
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• 𝑝1, 𝑝2, 𝑞 ∉ 𝒞(𝐴). From identity 𝑞(𝑥𝑥𝑦) = 𝑞(𝑦𝑦𝑦) = 𝑦 we get 𝑞(𝑥𝑦𝑧) = 𝑧. Now
we look at identities

𝑦 = 𝑞(𝑥𝑦𝑦) = 𝑝2(𝑥𝑦𝑦)
𝑝2(𝑥𝑦𝑥) = 𝑝2(𝑥𝑥𝑥) = 𝑥,

From the first we have 𝑝2(𝑥𝑦𝑧) is either 𝑦, 𝑧 or 𝑦∧𝑧. Plugging this into second
we get the only option is 𝑝2(𝑥𝑦𝑧) = 𝑧. Now we look at identities

𝑦 = 𝑝2(𝑥𝑥𝑦) = 𝑝1(𝑥𝑦𝑦)
𝑝1(𝑥𝑦𝑥) = 𝑝1(𝑥𝑥𝑥) = 𝑥,

Similarly as before from the first we get 𝑝1(𝑥𝑦𝑧) is either 𝑦, 𝑧 or 𝑦 ∧ 𝑧. And
again pluggin into the second one we get 𝑝1(𝑥𝑦𝑧) = 𝑧. But that contradicts
the identity 𝑝1(𝑥𝑥𝑦) = 𝑝1(𝑥𝑥𝑥) = 𝑥. □

Lemma 3.7. 𝒞(𝐿, 𝐵∞) /≤ 𝒞(𝐵≤
2 )

Proof. We will use identities

𝑓(𝑦 𝑥𝑦 𝑥𝑦) = 𝑓(𝑦 𝑦𝑥 𝑦𝑥)
𝑓(𝑦 𝑥𝑦 𝑦𝑦) = 𝑓(𝑥 𝑥𝑥 𝑥𝑥)

• 𝑓 ∈ 𝒞(𝐿). We define 𝑓 as the sum of all variables.
• 𝑓 ∈ 𝒞(𝐵∞). We define 𝑓 as

𝑓−1(1) = {1 11 11, 0 10 00}

• 𝑓 ∉ 𝐵≤
2 . From second identity we have

𝑓(0 10 00) = 𝑓(1 11 11) = 1

Now using that 𝑓 is monotone we have

𝑓(0 10 10) = 1.

Similarly we have

𝑓(1 01 11) = 𝑓(0 00 00) = 0

and from 𝑓 being monotone we get

𝑓(0 01 01) = 0

These results together contradict the first identity.
□

Lemma 3.8. For every 𝑖 ≥ 3 it holds that 𝒞(𝐿, 𝐶≤, 𝐵≤
𝑖−1, 𝐵∞) /≤ 𝒞(𝐵≤

𝑖 )
Proof.

• When 𝑖 is odd we use identities

𝑓(
𝑖

⏞⏞⏞⏞⏞𝑦𝑦 · · · 𝑦𝑦𝑥
𝑖

⏞⏞⏞⏞⏞𝑥𝑥 · · · 𝑥𝑥𝑦
𝑖

⏞⏞⏞⏞⏞𝑥𝑥 · · · 𝑥𝑥𝑦) =
= 𝑓(𝑦𝑦 · · · 𝑦𝑥𝑦 𝑥𝑥 · · · 𝑥𝑦𝑥 𝑥𝑥 · · · 𝑥𝑦𝑥) =

. . . . . . . . .

= 𝑓(𝑥𝑦 · · · 𝑦𝑦𝑦 𝑦𝑥 · · · 𝑥𝑥𝑥 𝑦𝑥 · · · 𝑥𝑥𝑥)

𝑓(
𝑖

⏞⏞⏞⏞⏞𝑦𝑦 · · · 𝑦𝑦𝑥
𝑖

⏞⏞⏞⏞⏞𝑥𝑥 · · · 𝑥𝑥𝑦
𝑖

⏞⏞⏞⏞⏞𝑦𝑦 · · · 𝑦𝑦𝑦) = 𝑓(
𝑖

⏞⏞⏞⏞⏞𝑥𝑥 · · · 𝑥𝑥𝑥
𝑖

⏞⏞⏞⏞⏞𝑥𝑥 · · · 𝑥𝑥𝑥
𝑖

⏞⏞⏞⏞⏞𝑥𝑥 · · · 𝑥𝑥𝑥)
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• 𝑓 ∈ 𝒞(𝐿). We define 𝑓 as the sum of all variables.
• 𝑓 ∈ 𝒞(𝐶≤). We define 𝑓 as the majority on the middle 𝑖 variables.
• 𝑓 ∈ 𝒞(𝐵≤

𝑖−1). We define 𝑓 as

𝑓−1(1) = UP

⎧{{{
⎨{{{⎩

𝑖
⏞⏞⏞⏞⏞00 · · · 001

𝑖
⏞⏞⏞⏞⏞11 · · · 110

𝑖
⏞⏞⏞⏞⏞00 · · · 000

00 · · · 010 11 · · · 101 11 · · · 101
00 · · · 100 11 · · · 011 11 · · · 011

. . . . . . . . .

10 · · · 000 01 · · · 111 01 · · · 111

⎫}}}
⎬}}}⎭

• 𝑓 ∈ 𝒞(𝐵∞). We define f as

𝑓−1(1) = {

𝑖
⏞⏞⏞⏞⏞11 · · · 111

𝑖
⏞⏞⏞⏞⏞11 · · · 111

𝑖
⏞⏞⏞⏞⏞11 · · · 111

00 · · · 001 11 · · · 110 00 · · · 000
}

• 𝑓 ∉ 𝒞(𝐵≤
𝑖 ). For every such 𝑓 we have

1 = 𝑓(
𝑖

⏞⏞⏞⏞⏞11 · · · 111
𝑖

⏞⏞⏞⏞⏞11 · · · 111
𝑖

⏞⏞⏞⏞⏞11 · · · 111) = 𝑓(
𝑖

⏞⏞⏞⏞⏞00 · · · 001
𝑖

⏞⏞⏞⏞⏞11 · · · 110
𝑖

⏞⏞⏞⏞⏞00 · · · 000)

From 𝑓 being monotone we get

𝑓(
𝑖

⏞⏞⏞⏞⏞00 · · · 001
𝑖

⏞⏞⏞⏞⏞11 · · · 110
𝑖

⏞⏞⏞⏞⏞00 · · · 000) = 1 ⇒ 𝑓(
𝑖

⏞⏞⏞⏞⏞00 · · · 001
𝑖

⏞⏞⏞⏞⏞11 · · · 110
𝑖

⏞⏞⏞⏞⏞11 · · · 110) = 1

And finally from the given identity we get

𝑓(
𝑖

⏞⏞⏞⏞⏞00 · · · 001
𝑖

⏞⏞⏞⏞⏞11 · · · 110
𝑖

⏞⏞⏞⏞⏞11 · · · 110) = 1
𝑓(00 · · · 010 11 · · · 101 11 · · · 101) = 1

. . . . . . . . .
...

𝑓(10 · · · 000 01 · · · 111 01 · · · 111) = 1

which contradicts the fact, that 𝑓 is compatible with the 𝗥𝑖 relation.
• When 𝑖 is even we use identities

𝑓(𝑦
𝑖

⏞⏞⏞⏞⏞𝑥𝑥 · · · 𝑥𝑥𝑦
𝑖

⏞⏞⏞⏞⏞𝑥𝑥 · · · 𝑥𝑥𝑦) =
= 𝑓(𝑦 𝑥𝑥 · · · 𝑥𝑦𝑥 𝑥𝑥 · · · 𝑥𝑦𝑥) =

... . . . . . .

= 𝑓(𝑦 𝑦𝑥 · · · 𝑥𝑥𝑥 𝑦𝑥 · · · 𝑥𝑥𝑥)

𝑓(𝑦
𝑖

⏞⏞⏞⏞⏞𝑥𝑥 · · · 𝑥𝑥𝑦
𝑖

⏞⏞⏞⏞⏞𝑦𝑦 · · · 𝑦𝑦𝑦) = 𝑓(𝑥
𝑖

⏞⏞⏞⏞⏞𝑥𝑥 · · · 𝑥𝑥𝑥
𝑖

⏞⏞⏞⏞⏞𝑥𝑥 · · · 𝑥𝑥𝑥)

• 𝑓 ∈ 𝒞(𝐿). We define 𝑓 as the sum of all variables.
• 𝑓 ∈ 𝒞(𝐶≤). We define 𝑓 as the majority on the first 𝑖 + 1 variables.
• 𝑓 ∈ 𝒞(𝐵≤

𝑖−1). We define 𝑓 as

𝑓−1(1) = UP

⎧{{{
⎨{{{⎩

0
𝑖

⏞⏞⏞⏞⏞11 · · · 110
𝑖

⏞⏞⏞⏞⏞00 · · · 000
0 11 · · · 101 11 · · · 101
0 11 · · · 011 11 · · · 011
... . . . . . .

0 01 · · · 111 01 · · · 111

⎫}}}
⎬}}}⎭
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• 𝑓 ∈ 𝒞(𝐵∞). We define f as

𝑓−1(1) = { 1
𝑖

⏞⏞⏞⏞⏞11 · · · 111
𝑖

⏞⏞⏞⏞⏞11 · · · 111
0 11 · · · 110 00 · · · 000

}

• 𝑓 ∉ 𝒞(𝐵≤
𝑖 ). For every such 𝑓 we have

1 = 𝑓(1
𝑖

⏞⏞⏞⏞⏞11 · · · 111
𝑖

⏞⏞⏞⏞⏞11 · · · 111) = 𝑓(0
𝑖

⏞⏞⏞⏞⏞11 · · · 110
𝑖

⏞⏞⏞⏞⏞00 · · · 000)

From 𝑓 being monotone we get

𝑓(0
𝑖

⏞⏞⏞⏞⏞11 · · · 110
𝑖

⏞⏞⏞⏞⏞00 · · · 000) = 1 ⇒ 𝑓(𝑓(0
𝑖

⏞⏞⏞⏞⏞11 · · · 110
𝑖

⏞⏞⏞⏞⏞11 · · · 110)) = 1

And finally from the given identity we get

𝑓(0
𝑖

⏞⏞⏞⏞⏞11 · · · 110
𝑖

⏞⏞⏞⏞⏞11 · · · 110) = 1
𝑓(0 11 · · · 101 11 · · · 101) = 1
... . . . . . .

𝑓(0 01 · · · 111 01 · · · 111) = 1
which contradicts the fact, that 𝑓 is compatible with the 𝗥𝑖 relation.

□
Lemma 3.9. 𝑖 ≥ 3 then 𝒞(𝐿, 𝐶≤, 𝐵≤

𝑖−1) /≤ 𝒞(𝐵𝑖)
Proof.

• When 𝑖 is odd we use identities

𝑓(𝑦
𝑖

⏞⏞⏞⏞⏞𝑦𝑦 · · · 𝑦𝑦𝑥
𝑖

⏞⏞⏞⏞⏞𝑥𝑥 · · · 𝑥𝑥𝑦) =
= 𝑓(𝑦 𝑦𝑦 · · · 𝑦𝑥𝑦 𝑥𝑥 · · · 𝑥𝑦𝑥) =

... . . . . . .

= 𝑓(𝑦 𝑥𝑦 · · · 𝑦𝑦𝑦 𝑦𝑥 · · · 𝑥𝑥𝑥) = 𝑓(𝑥 𝑥𝑥 · · · 𝑥𝑥𝑥 𝑥𝑥 · · · 𝑥𝑥𝑥)
• ∈ 𝒞(𝐿). We define 𝑓 as the sum of all variables.
• ∈ 𝒞(𝐶≤). We define 𝑓 as the majority on the last 𝑖 variables.
• ∈ 𝒞(𝐵≤

𝑖−1). We define 𝑓 as

𝑓−1(1) = UP

⎧{{{
⎨{{{⎩

0
𝑖

⏞⏞⏞⏞⏞00 · · · 001
𝑖

⏞⏞⏞⏞⏞11 · · · 110
0 00 · · · 010 11 · · · 101
0 00 · · · 100 11 · · · 011
... . . . . . .

0 10 · · · 000 01 · · · 111

⎫}}}
⎬}}}⎭

• ∉ 𝒞(𝐵𝑖). For every such 𝑓 we have

𝑓(1
𝑖

⏞⏞⏞⏞⏞11 · · · 111
𝑖

⏞⏞⏞⏞⏞11 · · · 111) = 𝑓(0
𝑖

⏞⏞⏞⏞⏞00 · · · 001
𝑖

⏞⏞⏞⏞⏞11 · · · 110) = 1 =
𝑓(0 00 · · · 010 11 · · · 101) = 1 =

... . . . . . .

𝑓(0 10 · · · 000 01 · · · 111) = 1 =
which contradicts the fact, that 𝑓 is compatible with the 𝗥𝑖 relation.
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• When 𝑖 is even we use identities

𝑓(𝑦
𝑖

⏞⏞⏞⏞⏞𝑥𝑥 · · · 𝑥𝑥𝑦) =
= 𝑓(𝑦 𝑥𝑥 · · · 𝑥𝑦𝑥) =

... . . .

= 𝑓(𝑦 𝑦𝑥 · · · 𝑥𝑥𝑥) = 𝑓(𝑥 𝑥𝑥 · · · 𝑥𝑥𝑥)
• ∈ 𝒞(𝐿). We define 𝑓 as the sum of all variables.
• ∈ 𝒞(𝐶≤). We define 𝑓 as the majority on all variables.
• ∈ 𝒞(𝐵≤

𝑖−1). We define 𝑓 as

𝑓−1(1) = UP

⎧{{{
⎨{{{⎩

0
𝑖

⏞⏞⏞⏞⏞11 · · · 110
0 11 · · · 101
0 11 · · · 011
... . . .

0 01 · · · 111

⎫}}}
⎬}}}⎭

• ∉ 𝒞(𝐵𝑖). For every such 𝑓 we have

𝑓(1
𝑖

⏞⏞⏞⏞⏞11 · · · 111) = 𝑓(0
𝑖

⏞⏞⏞⏞⏞11 · · · 110) = 1 =
𝑓(0 11 · · · 101) = 1 =

... . . .

𝑓(0 01 · · · 111) = 1 =
which contradicts the fact, that 𝑓 is compatible with the 𝗥𝑖 relation.

Lemma 3.10. 𝑀 /≤ 𝐼, where 𝑀 is the boolean clone consisting of all functions
and 𝐼 is the clone consisting of all idempotent functions.
Proof. We will use the identity

𝑓(𝑥) = 𝑓(𝑦)
• 𝑓 ∈ 𝑀. Any constant function satisfies the condition.
• 𝑓 ∉ 𝐼. For idempotent function we have 𝑓(𝑥) = 𝑥 ≠ 𝑦 = 𝑓(𝑦).

Thus no such 𝑓 exists.

Lemma 3.11. 𝒞(𝐿, 𝐶≤, 𝐴) /≤ Π, where Π is the clone consisting of all projections.
Proof. We will use the identities

𝑓(𝑦𝑦𝑦𝑥𝑥𝑥𝑥) = 𝑓(𝑥𝑥𝑦𝑥𝑥𝑥𝑥)
𝑓(𝑥𝑥𝑦𝑦𝑦𝑥𝑥) = 𝑓(𝑥𝑥𝑥𝑥𝑦𝑥𝑥)
𝑓(𝑥𝑥𝑥𝑥𝑦𝑦𝑦) = 𝑓(𝑥𝑥𝑥𝑥𝑥𝑥𝑦)
𝑓(𝑥𝑥𝑥𝑥𝑦𝑦𝑦) = 𝑓(𝑥𝑥𝑥𝑥𝑦𝑥𝑥)

• 𝑓 ∈ 𝐿. We define 𝑓 as the sum of all variables.
• 𝑓 ∈ 𝐶≤. We define 𝑓 as the majority on all variables.
• 𝑓 ∈ 𝐴. we define 𝑓 as the meet of all variables.
• 𝑓 ∉ Π. We will show it cannot be projection on none of the coordinates.

• Projection onto coordinate 1, or 2 contradicts the first identity.
• Projection onto coordinate 3, or 4 contradicts the second identity.
• Projection onto coordinate 5, or 6 contradicts the third identity.
• Projection onto the last coordinate contradicts the last identity.
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3.2 Finishing the proof
Now we will show why there does not exists any inequality 𝑋 ≤ 𝑌 that is not
drawn in Figure 3.2. For that we will show few more definitions and lemmas from
lattice theory [13].

Definition 3.12. (critical pair) Let 𝐿 be a lattice given by order ⪯ and 𝑥, 𝑦 two
of its elements. Then we call ordered pair (𝑥, 𝑦) critical if it satisfies the following1

• 𝑥 is minimal among all elements {𝑒: 𝑒 /⪯ 𝑦}.
• 𝑦 is maximal among all elements {𝑒: 𝑒 /⪰ 𝑥}.

Definition 3.13. (meet irreducible) Let 𝐿 be a lattice, then its element 𝑥 is meet
irreducible if whenever 𝑥 = ⋀ 𝑆, then 𝑥 ∈ 𝑆.

Definition 3.14. (join irreducible) Let 𝐿 be a lattice, then its element 𝑥 is join
irreducible if whenever 𝑥 = ⋁ 𝑆, then 𝑥 ∈ 𝑆.

Lemma 3.15. Let 𝑥 ∈ 𝐿. Then let 𝑦 be such that 𝑦 is maximum of the set
{𝑠: 𝑥 /⪯ 𝑠}. Then 𝑦 is meet irreducible.
Proof. Suppose for contradiction that 𝑦 = ⋀ 𝑆 and for every 𝑠 ∈ 𝑆, 𝑠 > 𝑦. Then
because 𝑦 is maximal among all elements not above 𝑥 we get that for every 𝑠 ∈ 𝑆
we have 𝑠 ⪰ 𝑥. But from that we have 𝑥 ⪯ 𝑦, which contradicts the fact that
𝑥 /⪯ 𝑦. □

Lemma 3.16. Let 𝑦 ∈ 𝐿. Then let 𝑥 be such that 𝑥 is minimum of the set
{𝑠: 𝑠 /⪯ 𝑦}. Then 𝑥 is join irreducible.
Proof. Proof is the same as in Lemma 3.15 when we interchange joins and meets.

□

Corollary 3.17. Suppose (𝑥, 𝑦) is a critical pair in a lattice 𝐿, then 𝑥 is join
irreducible and 𝑦 is meet irreducible
Proof. Is a direct consequence of Lemma 3.15 and Lemma 3.16. □

Let 𝐿 be the lattice of all products of boolean clones modulo trivial equiva-
lence from Figure 3.2. Now we will finish the proof that the lattice of all products
of boolean clones modulo minion homomorphisms is the lattice 𝐿. We will show
it in two parts. Let us remind that to finish the proof we need to show that for
every 𝑋 /⪯ 𝑌 we have 𝑋 /≤ 𝑌. First we will show that the lemmas from previous
chapter show this for all critical pairs (𝑋, 𝑌 ). Then we will show why in this case
that is sufficient.

Lemma 3.18. Let 𝑌 ∈ 𝐿 be meet irreducible. Then the following holds

• There exists unique 𝑋 such that (𝑋, 𝑌 ) is critical. Let us fix such 𝑋.
• For every element 𝑍 ∈ 𝐿 either 𝑍 ⪯ 𝑌 or 𝑋 ⪯ 𝑍.
• It holds that 𝑋 /≤ 𝑌.

Proof. The following Figure 3.3 shows all the meet irreducible elements of 𝐿.
Note that all such elements must be products of single sorted clones, as otherwise
they would have been meet of all their component clones. As such, they have to be
from the Figure 3.1. But not all of those are meet irreducible. The elements 𝐵∞ =
⋀ 𝐵𝑖, 𝐵≤

∞ = ⋀ 𝐵≤
𝑖 are not. Now we will go through all these meet irreducible

elements 𝑌 and for each one will show all the elements 𝑋, such that (𝑋, 𝑌 )
1 Usually it is required to have 𝑥, 𝑦 incomparable, we omit this part of the definition here.
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is critical. For this for every case there are two figures, one figure is showing
the critical pair (𝑋, 𝑌 ) in lattice 𝐿 with 𝑋 being green, 𝑌 red and all elements
𝑍: 𝑍 ⪯ 𝑌 being blue. And the other figure shows the element 𝑌 in the lattice from
Figure 3.1 with 𝑌 being red, all elements whose product is 𝑋 are green and all
elements 𝑍: 𝑍 ⪯ 𝑌 are blue.

𝐵2 𝐵3 𝐵4 𝐵5𝐵≤
2

𝐵≤
3

𝐵≤
4

𝐵≤
5

𝐴

idempotent

𝐶

𝐿

𝐶≤

projections

Figure 3.3 All meet irreducible elements of the lattice 𝐿.

• When 𝑌 = 𝐵𝑖 for 𝑖 ≥ 3, we get that there exists unique minimum of the
set {𝑠: 𝑠 /⪯ 𝑌 }, which is 𝒞(𝐿, 𝐶≤, 𝐵≤

𝑖−1). We see that (𝒞(𝐿, 𝐶≤, 𝐵≤
𝑖−1), 𝐵𝑖) is

unique critical pair for 𝑌 = 𝐵𝑖. And note that in this case for every element
𝑍 ∈ 𝐿 either 𝑍 ⪯ 𝑌 or 𝑋 ⪯ 𝑍. From Lemma 3.9 we have 𝑋 /≤ 𝑌.
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𝒞(𝐿, 𝐶≤, 𝐵≤
𝑖−1)

𝐵𝑖

𝐶≤

𝐿

𝐵≤
𝑖−1

𝐵𝑖

Figure 3.4 Lemma 3.9

• When 𝑌 = 𝐵2, we get that there exists unique minimum of the set {𝑠: 𝑠 /⪯ 𝑌 },
which is 𝐿. We see that (𝐿, 𝐵2) is unique critical pair for 𝑌 = 𝐵2. And note
that in this case for every element 𝑍 ∈ 𝐿 either 𝑍 ⪯ 𝑌 or 𝑋 ⪯ 𝑍. From
Lemma 3.2 we have 𝑋 /≤ 𝑌.

𝐵2

𝐿

𝐿

𝐵2

Figure 3.5 Lemma 3.2

• When 𝑌 = 𝐵≤
2 , we get that there exists unique minimum of the set {𝑠: 𝑠 /⪯

𝑌 }, which is 𝒞(𝐿, 𝐵∞). We see that (𝒞(𝐿, 𝐵∞), 𝐵≤
2 ) is unique critical pair

for 𝑌 = 𝐵≤
2 . And note that in this case for every element 𝑍 ∈ 𝐿 either 𝑍 ⪯ 𝑌

or 𝑋 ⪯ 𝑍. From Lemma 3.7 we have 𝑋 /≤ 𝑌.
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𝐵≤
2

𝒞(𝐿, 𝐵∞)

𝐿

𝐵≤
2

𝐵∞

Figure 3.6 Lemma 3.7

• When 𝑌 = 𝐵≤
𝑖 , we get that there exists unique minimum of the set {𝑠: 𝑠 /⪯

𝑌 }, which is 𝒞(𝐿, 𝐶≤, 𝐵∞, 𝐵≤
𝑖−1). We see that (𝒞(𝐿, 𝐶≤, 𝐵∞, 𝐵≤

𝑖−1), 𝐵≤
𝑖 ) is

unique critical pair for 𝑌 = 𝐵≤
𝑖 . And note that in this case for every element

𝑍 ∈ 𝐿 either 𝑍 ⪯ 𝑌 or 𝑋 ⪯ 𝑍. From Lemma 3.8 we have 𝑋 /≤ 𝑌.

𝐵≤
𝑖

𝒞(𝐿, 𝐶≤, 𝐵∞, 𝐵≤
𝑖−1)

𝐿

𝐵≤
𝑖 𝐵∞

𝐵≤
𝑖−1

𝐶≤

Figure 3.7 Lemma 3.8

• When 𝑌 = 𝐴, we get that there exists unique minimum of the set {𝑠: 𝑠 /⪯ 𝑌 },
which is 𝒞(𝐿, 𝐶≤, 𝐵≤

∞). We see that (𝒞(𝐿, 𝐶≤, 𝐵≤
∞), 𝐴) is unique critical pair

for 𝑌 = 𝐴. And note that in this case for every element 𝑍 ∈ 𝐿 either 𝑍 ⪯ 𝑌
or 𝑋 ⪯ 𝑍. From Lemma 3.6 we have 𝑋 /≤ 𝑌.
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𝒞(𝐿, 𝐶≤, 𝐵≤
∞)

𝐴

𝐿 𝐵≤
∞

𝐶≤

𝐴

Figure 3.8 Lemma 3.6

• When 𝑌 = 𝐶, we get that there exists unique minimum of the set {𝑠: 𝑠 /⪯ 𝑌 },
which is 𝐴. We see that (𝐴, 𝐶) is unique critical pair for 𝑌 = 𝐶. And note
that in this case for every element 𝑍 ∈ 𝐿 either 𝑍 ⪯ 𝑌 or 𝑋 ⪯ 𝑍. From
Lemma 3.3 we have 𝑋 /≤ 𝑌.

𝐶
𝐴

𝐶

𝐴

Figure 3.9 Lemma 3.3

• When 𝑌 = 𝐶≤, we get that there exists unique minimum of the set {𝑠: 𝑠 /⪯
𝑌 }, which is 𝒞(𝐿, 𝐴). We see that (𝒞(𝐿, 𝐴), 𝐶≤) is unique critical pair for
𝑌 = 𝐶≤. And note that in this case for every element 𝑍 ∈ 𝐿 either 𝑍 ⪯ 𝑌 or
𝑋 ⪯ 𝑍. From Lemma 3.4 we have 𝑋 /≤ 𝑌.
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𝐶≤

𝒞(𝐿, 𝐴)
𝐿 𝐴

𝐶≤

Figure 3.10 Lemma 3.4

• When 𝑌 = 𝐿, we get that there exists unique minimum of the set {𝑠: 𝑠 /⪯
𝑌 }, which is 𝒞(𝐶≤, 𝐴). We see that (𝒞(𝐶≤, 𝐴), 𝐿) is unique critical pair for
𝑌 = 𝐿. And note that in this case for every element 𝑍 ∈ 𝐿 either 𝑍 ⪯ 𝑌 or
𝑋 ⪯ 𝑍. From Lemma 3.5 we have 𝑋 /≤ 𝑌.

𝒞(𝐶≤, 𝐴)

𝐿

𝐿 𝐴

𝐶≤

Figure 3.11 Lemma 3.5

• When 𝑌 is the clone consisting of all idempotent functions, we get that there
exists unique minimum of the set {𝑠: 𝑠 /⪯ 𝑌 }, which is the boolean clone
consisting of all functions. From Lemma 3.10 we have 𝑋 /≤ 𝑌.
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idempotent
all functions

idempotent
all functions

Figure 3.12 Lemma 3.10
• When 𝑌 = projections, the clone consisting of all projections, we get that

there exists unique minimum of the set {𝑠: 𝑠 /⪯ 𝑌 }, which is 𝒞(𝐿, 𝐶≤, 𝐴). We
see that (𝒞(𝐿, 𝐶≤, 𝐴), projections) is unique critical pair for 𝑌 = projections.
And note that in this case for every element 𝑍 ∈ 𝐿 either 𝑍 ⪯ 𝑌 or 𝑋 ⪯ 𝑍.
From Lemma 3.11 we have 𝑋 /≤ 𝑌.

𝒞(𝐿, 𝐶≤, 𝐴)

𝐴

projections

𝐿

projections

𝐶≤

𝐴

Figure 3.13 Lemma 3.11
□

Lemma 3.19. For every 𝑋, 𝑌 ∈ 𝐿 such that 𝑋 /⪯ 𝑌 we have 𝑋 /≤ 𝑌.
Proof. Let 𝑌1 be the maximum element of the set {𝑠: 𝑠 ⪰ 𝑌 , 𝑋 /⪯ 𝑠}, which
exists because our lattice does not have upward infinite sequence. Note that 𝑌1 ⪰
𝑌. Then observe that this is also the maximum of the set {𝑠: 𝑋 /⪯ 𝑠}, and thus
from Lemma 3.15 we have 𝑌1 is meet irreducible. And thus from Lemma 3.18
there exists unique 𝑋1 such that (𝑋1, 𝑌1) is critical and also from Lemma 3.18
because 𝑋 /⪯ 𝑌1 we have 𝑋 ⪰ 𝑋1.
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Now suppose for contradiction that 𝑋 ≤ 𝑌, then we have 𝑋1 ≤ 𝑋 ≤ 𝑌 ≤ 𝑌1
and hence from transitivity we have 𝑋1 ≤ 𝑌1. But this contradicts that 𝑋1 /≤ 𝑌1
which we know from Lemma 3.18. □

Theorem 3.20. The lattice of all products of boolean clones modulo minion
homomorphism is the lattice 𝐿 shown in Figure 3.2.
Proof. From Lemma 1.32 we have that when 𝑋 ⪯ 𝑌 then 𝑋 ≤ 𝑌 and from 3.19
we have when 𝑋 /⪯ 𝑌 then 𝑋 /≤ 𝑌. Combining these we get that

𝑋 ⪯ 𝑌 ⇔ 𝑋 ≤ 𝑌

This finishes the proof. □
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Conclusion
In this thesis we showed the full lattice of all products of boolean clones modulo
minion homomorphisms. To prove that it looks as in Figure 3.2 we have proven
that there are no collapses on the critical pairs. It would be interesting to un-
derstand a bit more what are some easily checkable properties of the lattice that
allowed us to check it only on critical pairs.

Additionaly to make working with the lattice easier it would help to have
so-called minion cores of each described clone. These minion cores are in some
sense the smallest representants of the equivalence classes. They no longer have
to be clones, but they still give us a better way to talk about these equivalence
classes. We have already put some work into studying these and will publish them
in some later paper.

The next natural thing to study is to study all the multisorted boolean clones.
There have already been some progress in understanding those multisorted clones
that are determined by binary relations by Kapytka [9].
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