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Study programme: Physics

Study branch: FP Physics

Prague 2024



I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In . . . . . . . . . . . . . date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Author’s signature

i
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Introduction
The conformal bootstrap is a numerical method used initially in Conformal Field
Theory (CFT) leveraging symmetries and consistency conditions. It was used
with great success in estimating the 3d Ising model critical exponents and could
be used in attacking other very hard and famous models, such as the Banks-
Fischler-Shenker-Susskind matrix model of quantum mechanics (BFSS). Han,
Hartnoll, and Kruthoff [1] were the first to use the method on toy models in
quantum mechanics and showed that it can be used to constrain or solve compli-
cated systems that are not solvable by analytical approaches.

We introduce the bootstrap ideas in quantum mechanics and test them in two
simple models – the harmonic oscillator and the double-well. We go through the
details of implementing the bootstrapping algorithm in Python. We estimate
the spectrum of the harmonic oscillator and compare it to the well-known exact
spectrum that can be found analytically. We also estimate the spectrum of the
double-well potential and focus on the splitting of the ground state and the first
excited state. We compare our estimate for ground-state splitting with various
approximation techniques.

We need to describe these approximation techniques in great detail since they are
not trivial. Additionally, the applicability of these methods and concepts goes
beyond the double-well potential. We start with the WKB approximation, a use-
ful method for approximately solving the time-independent Schrödinger equation.
We derive the method and use it to calculate ground-state energy splitting in the
double-well potential. Then, we move on to a different approach using path inte-
grals and their approximate calculation. We introduce the instanton and how the
path integral around instanton can be used to calculate the ground-state energy
splitting.

We assume the reader is familiar with calculus, complex analysis, linear algebra,
quantum mechanics, and Python. All theory needed is derived along the way.
It is the beginner’s text on the bootstrap method. Therefore, we try to explain
pedagogically by providing many computational details. We hope that the reader
finds this more helpful than exhausting.

The aim of this thesis is to introduce and test the bootstrap method on two
simple quantum mechanical systems mentioned earlier using our implementation
and compare the obtained results with the results obtained analytically.

2



1. Theory
This chapter discusses two different theoretical methods to calculate the splitting
of the ground state energy in the double-well potential. We will do the same thing
in both methods because they give us the same result, but the approaches are
very different. The first method focuses on the approximate solution of the time-
independent Schrödinger equation. On the other hand, the second method uses
the formalism of path integrals and their approximate calculation. Our use of
these methods will concern the double-well potential. However, the applicability
of both methods is wide-ranging. The first method is often used to describe
tunneling through a given potential barrier or to obtain approximate solutions of
time-independent Schrödinger equation for a given potential. The second method
gives us a glimpse of the usage of path integrals in quantum mechanics, which
is a perfect playground for introducing the topic before meeting them in more
advanced field theories.

1.1 WKB approximation
We will examine the intricacies of the approximation technique for a particular
class of differential equations. It is called WKB, and it is very useful in quantum
mechanics. For a particle in a given potential, it will provide an ansatz for its
wavefunction in classically allowed and forbidden regions. We will discuss the
regions of validity of the approximation and how to connect WKB ansatzes from
different regions of validity. We will have to dive into expansions of the Airy
functions to tell how to connect correctly. Finally, we will apply this approxima-
tion to calculate the ground-state energy splitting of the double-well potential.
We will follow the steps of [2], an alternative approach to the WKB through the
Hamilton-Jacobi equation can be found in [3].

1.1.1 Approximation method
The WKB (Wentzel-Kramers-Brillouin) approximation technique provides ap-
proximate solutions for linear differential equations with slowly varying coeffi-
cients. What is meant by slowly is part of one of the sections ahead. In the
context of quantum mechanics, we call it also a semiclassical approximation since
we will work formally with ℏ as a small expansion parameter, and insights from
classical mechanics will help us understand the form of the wavefunction. The
linear differential equation in question will be a time-independent Schrödinger
equation.

Suppose we have a particle of mass m and total energy E, in potential V (x). We
will define the local momentum of the particle

p2(x) ≡ 2m(E − V (x)), (1.1)

and local de Broglie wavelength

λ(x) ≡ 2πℏ
p(x) . (1.2)
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Time-independent Schrödinger equation can be rewritten in terms of local mo-
mentum and momentum operator

− ℏ2

2m
d2

dx2ψ(x) = (E − V (x))ψ(x),

p̂2ψ(x) = p2(x)ψ(x). (1.3)

The equation above looks like an eigenvalue equation, but it is not one; p2(x) is
a function of position.

Our goal is to find approximative solutions for the wavefunction ψ(x), which is a
solution of the time-independent Schrödinger equation. In the case of a constant
potential, the solutions become plane waves

ψ(x) ∼ exp
(︃
i

ℏ
px
)︃
. (1.4)

We expect that the slowly varying potential will affect only the exponent. Because
of that, we will use an ansatz for solution in the form

ψ(x) = exp
(︃
i

ℏ
S(x)

)︃
, S(x) ∈ C. (1.5)

We will plug this ansatz into equation (1.3), we get

−ℏ2 d2

dx2 exp
(︃
i

ℏ
S(x)

)︃
= p2(x) exp

(︃
i

ℏ
S(x)

)︃
,

−ℏ2
[︄
i

ℏ
S ′′(x) − (S ′(x))2

ℏ2

]︄
exp

(︃
i

ℏ
S(x)

)︃
= p2(x) exp

(︃
i

ℏ
S(x)

)︃
,

(S ′(x))2 − iℏS ′′(x) = p2(x). (1.6)

We will argue that ℏS ′′(x) is small for slowly varying potentials. If we have
constant potential V (x) = V0, then p(x) = p0 and S ′(x) = p0 is a solution to
equation (1.6). Therefore, S ′′(x) = 0, and we expect that S ′′(x) will be small for
the slowly varying potential. Since we work in the limit ℏ → 0, term ℏS ′′(x) is
small indeed. We will expand S(x) in powers of ℏ

S(x) = S0(x) + ℏS1(x) + ℏ2S2(x) + O(ℏ3), (1.7)

and use it in equation (1.6) to obtain

(S ′
0 + ℏS ′

1 + ℏ2S ′
2 + ...)2 − iℏ(S ′′

0 + ℏS ′′
1 + ℏ2S ′′

2 + ...) − p2 = 0,
(S ′

0)2 − p2 + ℏ(2S ′
0S

′
1 − iS ′′

0 ) + O(ℏ2) = 0. (1.8)

We get two separate equations

(S ′
0)2 − p2 = 0, (1.9)

2S ′
0S

′
1 − iS ′′

0 = 0. (1.10)

From equation (1.9) and (1.10) we see that

S ′
0 = ±p ⇒ S0(x) = ±

∫︂ x

x0
p(x′) dx′, x0 < x, (1.11)

S ′
1 = i

2
S ′′

0
S ′

0
= i

2
p′

p
⇒ iS1(x) = −1

2 ln p(x) + C, C ∈ C, (1.12)
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where x0 and C are the constants of integration. Looking back at our ansatz for
the wavefunction (1.5), we have

ψ(x) = exp
[︃
i

h
(S0(x) + ℏS1(x) + O(ℏ2))

]︃
≃

≃ exp
(︃
i

ℏ
S0(x)

)︃
exp(iS1(x)) =

= exp
(︃

± i

ℏ

∫︂ x

x0
p(x′) dx′

)︃
exp

(︃
−1

2 ln p(x) + C
)︃

=

= A√︂
p(x)

exp
(︃

± i

ℏ

∫︂ x

x0
p(x′) dx′

)︃
, (1.13)

from which we get a so-called basic solution in the WKB approximation

ψ(x) ≃ A√︂
p(x)

exp
(︃

± i

ℏ

∫︂ x

x0
p(x′) dx′

)︃
, A ∈ C. (1.14)

Let us present two implications of this result.

1. Calculation of probability density gives us

ρ(x) = ψ∗(x)ψ(x) = |A|2

p(x) = |A|2

mv(x) , (1.15)

where v(x) is the local velocity of the particle. For small values of v(x),
we get big values of ρ(x). In other words, it is more probable to find the
particle in places where it is slower, which is a result we would expect.

2. Calculation of probability current gives us

J(x) = ℏ
m

Im(ψ∗(x)ψ′(x)) = ρ(x)±p(x)
m

= ± |A|2

p(x)
p(x)
m

= ±|A|2

m
. (1.16)

It should not be surprising to find that the probability current is constant.
The continuity equation tells us

∂ρ

∂t
+ ∂J

∂x
= 0, (1.17)

but probability density is time-independent in our case, and we get
∂ρ

∂t
= 0 ⇒ J(x) = const. (1.18)

We will apply the basic solution in WKB approximation to areas deep in classi-
cally allowed and forbidden regions. For classically allowed region is E−V (x) > 0
and we will denote p2(x) = ℏ2k2(x), k(x) > 0. Then equation (1.3) has the form

ψ′′(x) = −k2(x)ψ(x), (1.19)

and the basic solution is

ψ(x) = A√︂
k(x)

exp
(︃

−i
∫︂ x

x0
k(x′) dx′

)︃
+ B√︂

k(x)
exp

(︃
i
∫︂ x

x0
k(x′) dx′

)︃
. (1.20)
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For classically forbidden region is E − V (x) < 0 and we will denote p2(x) =
−ℏ2κ2(x), κ(x) > 0. Then equation (1.3) has the form

ψ′′(x) = κ2(x)ψ(x), (1.21)

and the basic solution is

ψ(x) = C√︂
κ(x)

exp
(︃

−
∫︂ x

x0
κ(x′) dx′

)︃
+ D√︂

κ(x)
exp

(︃∫︂ x

x0
κ(x′) dx′

)︃
. (1.22)

1.1.2 Validity of the approximation
We will specify the meaning of slowly varying potential and establish the region
of validity of the basic solution (1.14). We will go back to the expansion in powers
of ℏ

(S ′
0)2 − p2 + ℏ(2S ′

0S
′
1 − iS ′′

0 ) + O(ℏ2) = 0. (1.23)
The O(ℏ) terms must be lot less than O(1) terms. Because of equations (1.9) and
(1.10) it is sufficient to compare one O(ℏ) term with one O(1) term, for example

|ℏS ′
0S

′
1| ≪ |S ′

0|2 ⇒ |ℏS ′
1| ≪ |p|. (1.24)

We know from equation (1.12) that S ′
1 ∼ |p′/p|. Therefore

ℏ
⃓⃓⃓⃓
⃓p′

p

⃓⃓⃓⃓
⃓ ≪ |p|. (1.25)

There are three ways to interpret this result.

• Changes in the local momentum over a distance of de Broglie wavelength λ
are small compared to the momentum⃓⃓⃓⃓

⃓ℏp
⃓⃓⃓⃓
⃓ |p′| ≪ |p| ⇒ λ|p′| ≪ |p|. (1.26)

• The local de Broglie wavelength λ(x) must vary slowly⃓⃓⃓⃓
⃓ℏ p′

p2

⃓⃓⃓⃓
⃓ ≪ 1 ⇒

⃓⃓⃓⃓
⃓ℏ
(︄

1
p

)︄′ ⃓⃓⃓⃓
⃓ ≪ 1 ⇒ |λ′| ≪ 1. (1.27)

• Change in potential over a distance of de Broglie wavelength λ is small
compared to kinetic energy

p2 = 2m(E − V ) ⇒ |pp′| = m|V ′|,

|λV ′| = 2πℏ
m

|p′| ≪ p2

m
⇒ |λV ′| ≪ p2

2m. (1.28)

The equation above is what we mean by slowly changing potential.
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Suppose we have a particle in a potential V (x) depicted in Figure 1.1. The
particle’s total energy E is such that the turning point is at x = a (turning points
are points where E = V (x)). Near x = a, we can approximate the potential as a
linear function

V (x) − E ≃ g(x− a), g > 0. (1.29)
In the classically allowed region x < a, we have

p2(x) = 2m(E − V (x)) ≃ 2mg(a− x),

|λ(x)| = 2πℏ
|p(x)| ≃ 2πℏ√

2mg
√
a− x

⇒ |λ′| ≃ πℏ√
2mg

1
(a− x) 3

2
. (1.30)

We can see that the vicinity of the turning point is a problem. As x → a,
|λ′| → ∞, which is violation of the validity condition (1.28). We need a connection
formula connecting WKB solutions in classically allowed and forbidden regions.

x

V (x)

a

E

Figure 1.1: The potential V (x) is approximately linear near the point (a,E).

1.1.3 Airy functions
The study of a linear potential is crucial for understanding behavior near the
turning point. We will study a particle in the linear potential

V (x) = gx, x ∈ R, g > 0, (1.31)

with total energy E such that turning point is located in x = a

V (x) − E = g(x− a). (1.32)

Time-independent Schrödinger equation is in the form

− ℏ2

2m
d2ψ

dx2 + g(x− a)ψ = 0. (1.33)

To remove units from this equation, we introduce length parameter L = 3
√︂

ℏ2

2mg

and unit-free variable u = 1
L

(x − a). We can rewrite (1.33) in terms of this new
variable to get the Airy equation

d2ψ

du2 = uψ. (1.34)
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Solutions to the equation above are not elementary functions but the Airy func-
tions

ψ(u) = Ai(u) = Ai
[︄

1
L

(︄
x− E

g

)︄]︄
. (1.35)

We will write WKB solutions for u ≪ −1 and u ≫ 1, deep in allowed and
forbidden regions. Problems arise around u = 0, where the turning point is
located. If we compare Airy equation (1.34) with equation (1.21) we see that
for u ≫ 1 and κ →

√
u we get

ψ(u) = C

u
1
4

exp
(︃

−
∫︂ u

u0

√
u′ du′

)︃
+ D

u
1
4

exp
(︃∫︂ u

u0

√
u′ du′

)︃
=

= C

u
1
4

exp
(︃

−2
3u

3
2

)︃
+ D

u
1
4

exp
(︃2

3u
3
2

)︃
, (1.36)

where the constant of integration u0 ∈ [0, u) was chosen for convenience to be
zero (which is also the turning point). If we compare Airy equation (1.34) with
equation (1.19) we see that for u ≪ −1 and k →

√
−u = |u| 1

2 we get

ψ(u) = A

|u| 1
4

exp
(︃
i
∫︂ 0

u

√
−u′ du′

)︃
+ B

|u| 1
4

exp
(︃

−i
∫︂ 0

u

√
−u′ du′

)︃
=

= A

|u| 1
4

exp
(︃
i
2
3 |u|

3
2

)︃
+ B

|u| 1
4

exp
(︃

−i23 |u|
3
2

)︃
. (1.37)

We could have used an alternative approach to solve the linear potential. The
time-independent Schrödinger equation with linear potential is easily solvable in
momentum representation. That way, we can go from the second-order to the
first-order linear differential equation. The solution in coordinate representation
can be written as a Fourier transformation

ψ(u) =
∫︂ ∞

−∞

dk
2π

˜︁ψ(k)eiku, (1.38)

where ˜︁ψ(k) is a solution in momentum space and k is also unit-free. This way,
we obtain only one linearly independent solution, but we know that the original
coordinate representation is a second-order linear differential equation and must
have two linearly independent solutions.

It will prove very convenient to analyze the Airy functions more closely, especially
their asymptotic expansions. For more generality, instead of integrating over a
full real line, we will integrate over some oriented contour Γ in complex k plane
with starting point k− and endpoint k+ depicted in Figure 1.2

ψ(u) =
∫︂

Γ

dk
2π

˜︁ψ(k)eiku. (1.39)
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Re(k)

Im(k)

Γ

k−

k+

Figure 1.2: The oriented contour Γ in the complex k plane.

We will plug this ansatz into the Airy equation. Left-hand side gives

d2ψ

du2 = d2

du2

∫︂
Γ

dk
2π

˜︁ψ(k)eiku =
∫︂

Γ

dk
2π (−k2 ˜︁ψ(k))eiku, (1.40)

and the right-hand side gives

uψ =
∫︂

Γ

dk
2π

˜︁ψ(k)ueiku =
∫︂

Γ

dk
2π

˜︁ψ(k)1
i

d
dk (eiku) =

=
∫︂

Γ

dk
2π

[︄
1
i

d
dk ( ˜︁ψ(k)eiku) − 1

i

d ˜︁ψ
dk e

iku

]︄
=

= 1
2πi

[︂ ˜︁ψ(k)eiku
]︂k+

k−
−
∫︂

Γ

dk
2π

1
i

d ˜︁ψ
dk e

iku. (1.41)

Putting it all together, we get

0 = d2ψ

du2 − uψ =
∫︂

Γ

dk
2π

(︄
−k2 ˜︁ψ(k) + 1

i

d ˜︁ψ
dk

)︄
eiku − 1

2πi
[︂ ˜︁ψ(k)eiku

]︂k+

k−
. (1.42)

We have a solution if

− k2 ˜︁ψ(k) + 1
i

d ˜︁ψ
dk = 0, (1.43)

˜︁ψ(k−)eik−u = 0, ˜︁ψ(k+)eik+u = 0. (1.44)

Boundary conditions in (1.44) tell us that terms must vanish separately. If they
cancel each other out, we get a closed contour, which can be shrunk to zero
size (because no poles are present), giving a trivial solution. Because we are
looking for nontrivial solutions, terms in (1.44) must vanish separately. Solution
to equation (1.43) is (up to normalization)

˜︁ψ(k) = e
ik3

3 . (1.45)
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Thus, we have
ψ(u) =

∫︂
Γ

dk
2π e

ik3
3 eiku. (1.46)

However, this is true only when boundary conditions (1.44) are met. After plug-
ging (1.45) into (1.44), we get

e
ik3

−
3 eik−u = e

ik3
+

3 eik+u = 0. (1.47)

We are interested in asymptotic behavior |k| → ∞, in that case the e ik3
3 term can

vanish if Im(k3) > 0. If we write k = |k|eiθk then

Im(k3) = |k3| sin(3θk) > 0

θk ∈
[︃
0, 1

3π
]︃
, θk ∈

[︃2
3π, π

]︃
, θk ∈

[︃4
3π,

5
3π
]︃
. (1.48)

Re(k)

Im(k)

C1

C2

Figure 1.3: Shaded regions of (1.48) together with contours C1 and C2 used in
derivation of the Airy functions.

If k+ and k− approach infinity in regions given by (1.48) (shaded regions in
Figure 1.3), the boundary terms will vanish. If we take contour C1 from Figure 1.3
running along a real line, the result is the Airy function

Ai(u) =
∫︂ ∞

−∞

dk
2π e

ik3
3 eiku = 1

π

∫︂ ∞

0
dk cos

(︃1
3k

3 + ku
)︃
. (1.49)

As we will see, it oscillates for negative u and decays rapidly to zero for positive u.
We need another contour that cannot be deformed into C1 to get another linearly
independent solution to our second-order linear differential equation. We will
use contour C2 from Figure 1.3. The second solution Bi(u) is defined so it is
oscillatory in the same way as Ai(u) for negative u, but unlike Ai(u) it grows
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without bound for positive u. This is obtained by using the sum of contours

Bi(u) = −i
∫︂

C1

dk
2π e

ik3
3 eiku + 2i

∫︂
C2

dk
2π e

ik3
3 eiku =

= −i
∫︂ ∞

−∞

dk
2π e

ik3
3 eiku + 2i

(︄∫︂ 0

−∞

dk
2π e

ik3
3 eiku − i

∫︂ ∞

0

dk
2π e

−k3
3 eku

)︄
=

= i
∫︂ 0

−∞

dk
2π e

ik3
3 eiku − i

∫︂ ∞

0

dk
2π e

ik3
3 eiku +

∫︂ ∞

0

dk
π
e

−k3
3 eku =

= i
∫︂ ∞

0

dk
2π (e−ik3

3 e−iku − e
ik3

3 eiku) +
∫︂ ∞

0

dk
π
e

−k3
3 eku =

= 1
π

∫︂ ∞

0
dk

[︄
e

−k3
3 eku + sin

(︄
k3

3 + ku

)︄]︄
. (1.50)

Now we will investigate asymptotic behavior of Ai(u) and Bi(u). We have the
Stokes effect for the Airy functions, meaning their asymptotic behavior can differ
in different regions of the complex plane. We will start with the asymptotic
expansion u ≫ 1 of Ai(u) in integral form

Ai(u) =
∫︂

C1

dk
2π e

i

(︂
k3
3 +ku

)︂
. (1.51)

The bulk contribution to the integral comes from points ks where the phase is
stationary

ϕ(k) = k3

3 + ku ⇒ ϕ′(k) = k2 + u ⇒ ks = ±i
√
u. (1.52)

Because no poles are present, we can shift the contour C1 to go through the
point i

√
u and parametrize it with a new real variable

k = i
√
u+ ˜︁k, ˜︁k ∈ R. (1.53)

In terms of the new variable ˜︁k we have

ϕ(k) = ϕ(i
√
u+ ˜︁k) = 2

3iu
3
2 + i

√
u˜︁k2 + 1

3
˜︁k3

Ai(u) = exp
(︃

−2
3u

3
2

)︃ ∫︂ ∞

−∞

d˜︁k
2π exp(−

√
u˜︁k2 + i˜︁k3) ≃

≃ 1
2
√
π

1
u

1
4

exp
(︃

−2
3u

3
2

)︃
, (1.54)

where in the last step, we ignored the i˜︁k3 term because it is suppressed by
−

√
u˜︁k2 term for large u. Therefore we get the first asymptotic

Ai(u) ≃ 1
2
√
π

1
u

1
4

exp
(︃

−2
3u

3
2

)︃
, u ≫ 1. (1.55)

In the asymptotic expansion u ≪ −1, stationary points are real, and no shift is
needed; using the same technique, we get
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Ai(u) ≃ 1√
π

1
|u| 1

4
cos

(︃2
3 |u|

3
2 − π

4

)︃
, u ≪ −1. (1.56)

In the same way we get expansions for Bi(u)

Bi(u) ≃ 1√
π

1
u

1
4

exp
(︃2

3u
3
2

)︃
, u ≫ 1, (1.57)

Bi(u) ≃ − 1√
π

1
|u| 1

4
sin

(︃2
3 |u|

3
2 − π

4

)︃
, u ≪ −1. (1.58)

Equations (1.55), (1.56) and (1.57), (1.58) are connected since they are expansions
of a single object Ai(u) and Bi(u).

1.1.4 Connection formulae
Consider a general potential V (x) as shown in Figure 1.4.

x

V (x)

a

E

x ≪ a x ≫ a

Linear region

Figure 1.4: Shaded regions where the potential V (x) is approximately linear and
far enough from a that the WKB solutions are valid.

Near x = a is the potential sufficiently linear sloping upwards and V (x) − E
vanishes at x = a, therefore

V (x) − E ≃ g(x− a), g > 0. (1.59)

As we have seen in (1.22), WKB basic solution far to the right x ≫ a is

ψR(x) = C√︂
κ(x)

exp
(︃

−
∫︂ x

a
κ(x′) dx′

)︃
+ D√︂

κ(x)
exp

(︃∫︂ x

a
κ(x′) dx′

)︃
. (1.60)

The solution above was evaluated in (1.36) under the assumption that potential
was strictly linear. If we are in the shaded regions of Figure 1.4, then we are far
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enough from the turning point, but the potential is still accurately linear, and we
can use (1.36) to get

ψR(u) = C

u
1
4

exp
(︃

−2
3u

3
2

)︃
+ D

u
1
4

exp
(︃2

3u
3
2

)︃
, u ≫ 1, (1.61)

where we used the unit free variable u = (x − a)/L. Similarly, we will use the
WKB solution far to the left x ≪ a obtained in (1.20), but we will write it
in terms of cosine and sine functions with phase shift of π/4 which will prove
convenient

ψL(x) = A√︂
k(x)

cos
(︃∫︂ a

x
k(x′) dx′ − π

4

)︃
+ B√︂

k(x)
sin

(︃∫︂ a

x
k(x′) dx′ − π

4

)︃
. (1.62)

Again, using the fact that we are in a shaded region, we can use the evaluation
done in (1.37) with minor modifications

ψL(u) = A

|u| 1
4

cos
(︃2

3 |u|
3
2 − π

4

)︃
+ B

|u| 1
4

sin
(︃2

3 |u|
3
2 − π

4

)︃
, u ≪ −1. (1.63)

From asymptotic expansions of Ai(u) in (1.55) and (1.56) we know that

1
2
√
π

1
u

1
4

exp
(︃

−2
3u

3
2

)︃
⇔ 1√

π

1
|u| 1

4
cos

(︃2
3 |u|

3
2 − π

4

)︃
. (1.64)

By the arrows, we mean they are asymptotic expansions of a single quantity. This
implies that C = A/2. From asymptotic expansions of Bi(u) in (1.57) and (1.58)
we know that

1√
π

1
u

1
4

exp
(︃2

3u
3
2

)︃
⇔ − 1√

π

1
|u| 1

4
sin

(︃2
3 |u|

3
2 − π

4

)︃
. (1.65)

Which implies that D = −B. Putting it all together and letting A → 2A, we get

ψR(x) = A√︂
κ(x)

exp
(︃

−
∫︂ x

a
κ(x′) dx′

)︃
− B√︂

κ(x)
exp

(︃∫︂ x

a
κ(x′) dx′

)︃
,

(1.66)

ψL(x) = 2A√︂
k(x)

cos
(︃∫︂ a

x
k(x′) dx′ − π

4

)︃
+ B√︂

k(x)
sin

(︃∫︂ a

x
k(x′) dx′ − π

4

)︃
.

(1.67)

There is only one subtlety left, the direction of arrows in (1.64) and (1.65).

• Let B = 0 and A = 1, then we have

2√︂
k(x)

cos
(︃∫︂ a

x
k(x′) dx′ − π

4

)︃
?⇐⇒ 1√︂

κ(x)
exp

(︃
−
∫︂ x

a
κ(x′) dx′

)︃
. (1.68)

If we have an object to the right, then the arrow pointing to the left tells
us correctly that we match the object to the left. However, if we have an
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object to the left, there is always uncertainty that there is also sine with
a small coefficient B. That implies a growing exponential that overwhelms
the decaying exponential above. Therefore, the correct connection formula
is

2√︂
k(x)

cos
(︃∫︂ a

x
k(x′) dx′ − π

4

)︃
⇐ 1√︂

κ(x)
exp

(︃
−
∫︂ x

a
κ(x′) dx′

)︃
. (1.69)

• Let A = 0 and B = −1, then we have

− 1√︂
k(x)

sin
(︃∫︂ a

x
k(x′) dx′ − π

4

)︃
?⇐⇒ 1√︂

κ(x)
exp

(︃∫︂ x

a
κ(x′) dx′

)︃
. (1.70)

If we have an object to the left, then the arrow pointing to the right tells
us correctly that we match the object to the right because cosine with
a small coefficient A leads to decaying exponential, which is invisible in
comparison to growing exponential. However, if we have an object to the
right decaying exponentially with a small coefficient A, it leads to cosine,
which is comparable to sine. Therefore, the correct connection formula is

− 1√︂
k(x)

sin
(︃∫︂ a

x
k(x′) dx′ − π

4

)︃
⇒ 1√︂

κ(x)
exp

(︃∫︂ x

a
κ(x′) dx′

)︃
. (1.71)

The whole analysis above was done for a potential sloping upwards. The same
arguments apply to a potential sloping downwards with a turning point at x = b.
Connection formulae, in that case, are

1√︂
κ(x)

exp
(︄

−
∫︂ b

x
κ(x′) dx′

)︄
⇒ 2√︂

k(x)
cos

(︃∫︂ x

b
k(x′) dx′ − π

4

)︃
(1.72)

− 1√︂
κ(x)

exp
(︄∫︂ b

x
κ(x′) dx′

)︄
⇐ 1√︂

k(x)
sin

(︃∫︂ x

b
k(x′) dx′ − π

4

)︃
. (1.73)

All results can be summarized into one true statement for all cases:

We can connect away from a decaying exponential and into a growing one.

Be careful; this is relative to the turning point. The decaying exponential decays
as we move away from the turning point into the forbidden region, and the growing
exponential grows as we move away from the turning point into the forbidden
region.

1.1.5 Double-well potential
We will use the WKB approximation to calculate the energy splitting of the
ground state and the first excited state in the double-well potential. We will
work with potential

V (x) = mω2

8a2 (x2 − a2)2, (1.74)

depicted in Figure 1.5.
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x

V (x)

−a a

1
8mω

2a2

Figure 1.5: The double-well potential from (1.74).

If we expand our potential around x = a in the Taylor series, we get

V (x) = mω2

2 (x− a)2 + mω2

2a (x− a)3 + mω2

8a2 (x− a)4. (1.75)

We can see that around x = a wells are in the first approximation harmonic
oscillators, but there is also cubic and quartic anharmonicity. More precisely,
if |x− a| ≪ a, then anharmonic corrections are small. For example, for the cubic
term, we have

mω2

2a |x− a|3 = mω2

2a (x− a)2|x− a| ≪ mω2

2 (x− a)2. (1.76)

Introducing length parameter L0 =
√︂

ℏ
mω

which is the half-width of the harmonic
oscillator wavefunction for its ground state energy (see Figure 1.7), we rewrite
our potential in the unit free variable u and parameter λ

u = x

L0
, λ = a

L0
⇒ V (u) = ℏω

8
1
λ2 (u2 − λ2)2. (1.77)

As λ → ∞ the height of the barrier between the wells V (0) = ℏω
8 λ

2 is increasing.
We will work with V (0) ≫ ℏω. In large λ approximation L0 ≪ a and small
anharmonicity is also satisfied when |x− a| ≳ L0, few L0 from x = a.

The ground state and the first excited state of the double-well are even and odd
functions. This should not surprise us because when the barrier is large, the
potential is approximately two harmonic oscillators with the same parity of the
ground state and the first excited state as for the double-well. We will denote
wavefunctions of the first two states as ψ+(x) and ψ−(x), where subscript refers
to their parity. In the large λ limit, we will approximate ψ+(x) and ψ−(x) as
an even and odd combination of two ground state wavefunctions of harmonic
oscillators centered at x = ±a as depicted in Figure 1.6.
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x

ψ+(x)

a−a
x

ψ−(x)

a−a

Figure 1.6: Even and odd combination of two ground state functions of the
harmonic oscillator centered at ±a.

This is a good approximation around x = ±a but not around x = 0. For exact
solutions ψ±(x) we have

Ĥψ±(x) = E±ψ±(x), (1.78)

E± = E ∓ 1
2∆E, ∆E = E− − E+ > 0, (1.79)

where ψ±(x) are orthonormal, and we assume without a loss of generality that
both wavefunctions are positive for large x. It follows that ψ+(x) ≃ ψ−(x), x > 0.
Using this approximation, we get

− ℏ2

2mψ′′
+(x) = E+ψ+(x),

− ℏ2

2mψ′′
−(x) = E−ψ−(x),

− ℏ2

2m(ψ′′
−(x)ψ+(x) − ψ′′

+(x)ψ−(x)) = ∆Eψ+(x)ψ−(x),

− ℏ2

2m(ψ′
−(x)ψ+(x) − ψ′

+(x)ψ−(x))′ = ∆Eψ+(x)ψ−(x). (1.80)

Integrating both sides from 0 to ∞ and using that ψ−(0) = 0, ψ′
+(0) = 0,

ψ±(∞) = 0, we get

ℏ2

2mψ+(0)ψ′
−(0) = ∆E

∫︂ ∞

0
dxψ+(x)ψ−(x),

ψ+(x) ≃ ψ−(x), x > 0,∫︂ ∞

0
dxψ+(x)ψ−(x) ≃

∫︂ ∞

0
dxψ+(x)ψ+(x) = 1

2 ,

∆E ≃ ℏ2

m
ψ+(0)ψ′

−(0). (1.81)

We will focus on single-well ground states with energy E = ℏω/2. One of the
turning points in the harmonic approximation is located at x1 = a − L0. The
forbidden region extends from −x1 to x1. In the forbidden region, it holds |x −
a| ≳ L0. Therefore, we expect negligible anharmonicity. Using expression (1.22)
and parity of ψ±(x), we can write the WKB ansatzes for wavefunctions in the
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forbidden region

ψ+(x) ≃ C+√︂
κ(x)

cosh
(︃∫︂ x

0
κ(x′) dx′

)︃
, (1.82)

ψ−(x) ≃ C−√︂
κ(x)

sinh
(︃∫︂ x

0
κ(x′) dx′

)︃
, (1.83)

where it is good to remind that κ2(x) = 2m(V (x) − E)/ℏ2 and in this case
E = ℏω/2. We can now plug these ansatzes into equation (1.81) to get

ψ′
−(0) = C−

√︂
κ(0), ψ+(0) = C+

1√︂
κ(0)

,

∆E ≃ ℏ2

m
C+C−. (1.84)

Near x = a, we can write using the wavefunction of the ground state of harmonic
potential ϕ0(x)

ψ±(x) = 1√
2

(ϕ0(x− a) ± ϕ0(x+ a)), (1.85)

ϕ0(x) = 1
π

1
4
√
L0

exp
(︄

− x2

2L2
0

)︄
. (1.86)

Let us focus on x > 0. The approximation above holds as long as |x−a| ≪ a. On
the other hand, the WKB approximation expressions in the forbidden region are
valid for |x− a| ≫ L0 while x is to the left of a. Since in large λ approximation
is L0 ≪ a, the condition L0 ≪ |x − a| ≪ a can be satisfied simultaneously.
Therefore, we can match these two approximations. The region of validity is
depicted in Figure 1.7 as the shaded region.

x
a

V (x)

E = ℏω
2

|x− a| ≫ L0

|x− a| ≪ a x1

L0

Figure 1.7: The shaded region where the potential is approximately the harmonic
oscillator and not far enough from 0 that the WKB solutions are valid.

From hyperbolic functions, we must take only leading exponentials. Working
with x > 0, only the ground state centered at x = a is relevant; the other one
centered at x = −a is exponentially suppressed. Therefore, we get

C±

2
√︂
κ(x)

exp
(︃∫︂ x

0
κ(x′) dx′

)︃
≃ 1√

2
ϕ0(x− a) =

exp
[︂
− (x−a)2

2L2
0

]︂
π

1
4
√

2L0
. (1.87)
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Working with the left-hand side∫︂ x

0
κ(x′) dx′ =

∫︂ x1

0
κ(x′) dx′ −

∫︂ x1

x
κ(x′) dx′,

exp
(︃∫︂ x

0
κ(x′) dx′

)︃
= exp

(︃∫︂ x1

0
κ(x′) dx′

)︃
exp

(︃
−
∫︂ x1

x
κ(x′) dx′

)︃
. (1.88)

For x′ ∈ [x, x1] we have V (x′) ≃ mω2(x′−a)2/2 which leads to more simplification
∫︂ x1

x
κ(x′) dx′ =

∫︂ x1

x

√︄
2m
ℏ2

[︃1
2mω

2(x′ − a)2 − 1
2ℏω

]︃
dx′ =

=
∫︂ u1

u

√︂
(λ− u′)2 − 1 du′ =

∫︂ λ−u

1

√
t2 − 1 dt, (1.89)

where we firstly substituted x′ = L0u
′, giving u1 = λ − 1, and then substituted

t = λ− u′. Using the fact a− x ≫ L0 ⇔ λ− u ≫ 1∫︂ λ−u

1

√
t2 − 1 dt = 1

2(λ− u)
√︂

(λ− u)2 − 1 − 1
2 ln

[︃
λ− u+

√︂
(λ− u)2 − 1

]︃
≃

≃ 1
2(λ− u)2 − 1

2 ln (λ− u) − 1
4 − ln

√
2 + O((λ− u)−2). (1.90)

Let us use all results and plug them into equation (1.87) to obtain

exp
(︃

−
∫︂ x1

x
κ(x′) dx′

)︃
≃ exp

[︃
−1

2(λ− u)2 + 1
2 ln (λ− u) + 1

4 + ln
√

2
]︃
,

C±e
1
4
√

2
√
λ− u

2
√︂
κ(x)

exp
(︃∫︂ x1

0
κ(x′) dx′

)︃
exp

[︃
−1

2(λ− u)2
]︃

≃
exp

[︂
−1

2(λ− u)2
]︂

π
1
4
√

2L0
.

(1.91)

We will rewrite κ(x) using unit free variables and we will take advantage of
(λ− u) ≫ 1 to get

κ(x) =

⌜⃓⃓⎷2m
ℏ2

(︄
V (x) − ℏω

2

)︄
=

⌜⃓⃓⎷2m
ℏ2

(︄
mω2

2 (x− a)2 − ℏω
2

)︄
=

= 1
L0

√︂
(u− λ)2 − 1 ≃ 1

L0
(λ− u). (1.92)

Using this result we get

C±e
1
4
√
L0√

2
exp

(︃∫︂ x1

0
κ(x′) dx′

)︃
≃ 1
π

1
4
√

2L0
,

C± ≃ 1
(πe) 1

4L0
exp

(︃
−
∫︂ x1

0
κ(x′) dx′

)︃
. (1.93)

Using this result in equation (1.84), we get an equation for the energy splitting
of the ground state in general double-well potential

∆E ≃ ℏω√
πe

exp
(︃

−2
∫︂ x1

0
κ(x′) dx′

)︃
. (1.94)
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The expression above generally holds for potentials that can be well approximated
by single-wells at x = ±a separated by a high barrier.

Our last task is to use the expression for the energy splitting above for double-well
potential (1.74). The whole task simplifies into evaluating the integral

I =
∫︂ x1

0
κ(x′) dx′ = 1

ℏ

∫︂ x1

0

√︂
2m(V (x′) − E) dx′, (1.95)

where E = ℏω
2 and x1 = a − L0. Using b > 0 and L0 ≪ b ≪ a, we will split this

integral to obtain

I = 1
ℏ

∫︂ a−b

0

√︂
2m(V (x′) − E) dx′ + 1

ℏ

∫︂ x1

a−b

√︂
2m(V (x′) − E) dx′. (1.96)

It holds for x′ ∈ [0, a − b] that E ≪ V (x), thus first integral can be expanded
keeping the first correction

I = 1
ℏ

∫︂ a−b

0

√︂
2mV (x′) dx′ − 1

ℏ

∫︂ a−b

0

√
mE√︂

2V (x′)
dx′+

+ 1
ℏ

∫︂ x1

a−b

√︂
2m(V (x′) − E) dx′ = I1 + I2 + I3. (1.97)

We will again split integral I1 into two parts. For x′ ∈ [0, a] we will use exact
form of V (x′) but for x′ ∈ [a− b, a] harmonic approximation holds quite well

I1 = 1
ℏ

∫︂ a

0

√︄
2mmω2

8a2 (x′2 − a2)2 dx′ − 1
ℏ

∫︂ a

a−b

√︄
2mmω2

2 (x′ − a)2 dx′ =

= mω

2ℏa

∫︂ a

0
(a2 − x′2) dx′ − mω

ℏ

∫︂ a

a−b
(a− x′) dx′ = a2

3L2
0

− b2

2L2
0
. (1.98)

In calculating integral I2 we will use exact form of V (x′)

I2 = −1
ℏ

∫︂ a−b

0

√
mmω

2√︂
2mω2

8a2 (x′2 − a2)2
dx′ = −a

∫︂ a−b

0

1
a2 − x′2 dx′ =

= 1
2 ln

(︄
b

2a− b

)︄
. (1.99)

For integral I3, we can use harmonic approximation

I3 = 1
ℏ

∫︂ x1

a−b

⌜⃓⃓⎷2m
[︄
mω2

2 (x′ − a)2 − ℏω
2

]︄
dx′ =

=
√︃
mω

ℏ

∫︂ x1

a−b

√︃
mω

ℏ
(x′ − a)2 − 1 dx′ =

= b

2L0

√︄
b2

L2
0

− 1 − 1
2 ln

(︄
b

L0
+
√︄
b2

L2
0

− 1
)︄
. (1.100)
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By letting b/a → 0 and L0/b → 0 we obtain

I = I1 + I2 + I3 = a2

3L2
0

− b2

2L2
0

+ 1
2 ln

(︄
b

2a− b

)︄
+ b

2L0

√︄
b2

L2
0

− 1−

− 1
2 ln

(︄
b

L0
+
√︄
b2

L2
0

− 1
)︄

≃ a2

3L2
0

− b2

2L2
0
+

+ 1
2 ln

(︄
b

2a

)︄
+ b2

2L2
0

− 1
2 ln

(︄
b

L0

)︄
− 1

4 − ln
√

2 =

= a2

3L2
0

− 1
2 ln

(︃2a
L0

)︃
− 1

4 − ln
√

2. (1.101)

Plugging this result into (1.94), we get

∆E ≃ ℏω√
πe

exp
{︄

−2
[︄
a2

3L2
0

− 1
2 ln

(︃2a
L0

)︃
− 1

4 − ln
√

2
]︄}︄

, (1.102)

we finally obtain an expression for the ground state energy splitting in poten-
tial (1.74). It is

∆E ≃ 4ℏω√
π
λ exp

(︃
−2

3λ
2
)︃
. (1.103)

From this result, we can see that in the large λ limit, when a double-well becomes
two isolated wells, splitting of the ground state energy is exponentially suppressed.

1.2 Path integral around instanton
We will show the derivation of the path integral in quantum mechanics and its
usage in the calculation of the partition function as was done in [4] and [3]. We
will introduce an instanton concept and its effects in a double-well potential.
We will approximate the path integral around instanton in a so-called one-loop
approximation. In the process, we will meet the calculation of the spectrum of
the Pöschl-Teller operators and their determinants. In the end, we will use the
knowledge we have gained to calculate the ground-state energy splitting in the
double-well potential. We will follow the steps of [5]; another works considering
instantons in the double-well potential are [12] and [6].

1.2.1 Path integrals in quantum mechanics
Suppose we have a particle of mass m in a potential V (x) with the quantum
Hamiltonian

Ĥ = p̂2

2m + V (x̂). (1.104)

The Hamiltonian is time-independent; therefore, we can write evolution operator
simply as

Û (tf , ti) = exp
[︃
− i

ℏ
Ĥ (tf − ti)

]︃
, (1.105)
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where ti < tf is initial and final time, we will denote T = (tf − ti). We will
calculate the kernel of the evolution operator, also known as the propagator

K(xf , tf , xi, ti) = ⟨xf |Û (tf , ti)|xi⟩. (1.106)

The propagator is a probability amplitude that a particle localized at position xi
at time ti will be localized at position xf at a later time tf . We will show that the
propagator can be written as

K(xf , tf , xi, ti) =
∑︂

paths x(t)
x(ti)=xi
x(tf )=xf

exp
(︃
i

ℏ
S[x(t)]

)︃
, (1.107)

whereby the sum we mean integral over space of classical trajectories in configu-
ration space with given endpoints and S[x(t)] is the classical action of the particle
as a functional of its trajectory x(t).

t

x(t)

xi

xf

ti tf

Figure 1.8: Some of the possible paths from (ti, xi) to (tf , xf). The biggest contri-
bution to the functional integral is from trajectories in the vicinity of the classical
trajectory (red), for which δS = 0. These contribute in phase while others (blue)
tend to cancel each other.

We will start with a free particle with the Hamiltonian

Ĥ 0 = p̂2

2m. (1.108)

To calculate the free propagator K0(xf , xi, T ) = ⟨xf | exp
(︂
− i

ℏĤ 0T
)︂

|xi⟩ we will use
decomposition of the identity operator into momentum states Î =

∫︁
dp |p⟩⟨p| and
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integration of Gaussian function

K0(xf , xi, T ) = ⟨xf | exp
(︄

− i

ℏ
p̂2

2mT

)︄
|xi⟩ =

= ⟨xf | exp
(︄

− i

ℏ
p̂2

2mT

)︄
Î |xi⟩ =

=
∫︂

dp exp
(︄

− i

ℏ
p2

2mT

)︄
⟨xf |p⟩⟨p|xi⟩ =

=
∫︂ dp

2πℏ exp
[︄
− i

ℏ
p2

2mT + i

ℏ
p(xf − xi)

]︄
=

= 1
2πℏ

√︄
π

2mℏ
Ti

exp
{︄

−
[︃
i

ℏ
(xf − xi)

]︃2 (︄−2mℏ
4iT

)︄}︄
=

=
√︃

m

2πiℏT exp
[︃
im

2ℏT (xf − xi)2
]︃
. (1.109)

We will proceed to calculate the full propagator. We will need the Lie-Trotter
product formula, which states that for bounded not necessarily commuting oper-
ators Â, B̂ on Hilbert space, we can write

exp(Â + B̂) = lim
N→∞

⎡⎣exp
⎛⎝ Â
N

⎞⎠ exp
⎛⎝ B̂
N

⎞⎠⎤⎦N

, (1.110)

where the limit is in the sense of norm convergence of operators. A similar formula
is true for unbounded operators; details are in [7]. Thus, we can write

⟨xf | exp
[︄
− i

ℏ

(︄
p̂2

2m + V (x̂)
)︄
T

]︄
|xi⟩ =

= lim
N→∞
ε→0

Nε=T

⟨xf |
[︄
exp

(︄
− i

ℏ
p̂2

2mε

)︄
exp

(︃
− i

ℏ
V (x̂)ε

)︃]︄N

|xi⟩. (1.111)

In the expression above, we have a product of N brackets; each bracket is the
product of two exponential functions. In each bracket, we will insert a decompo-
sition of the identity operator into momentum states between exponential func-
tions. From the right of each bracket (except for the last one), we will stick a
decomposition of the identity operator into position states. The j-th bracket will
look like∫︂ ∫︂

dpjdxj−1 ⟨xj| exp
(︄

− i

ℏ
p̂2

2mε

)︄
|pj⟩⟨pj| exp

(︃
− i

ℏ
V (x̂)ε

)︃
|xj−1⟩ =

=
∫︂ dpjdxj−1

2πℏ exp
[︄
− i

ℏ

(︄
p2

j

2mε+ V (xj−1)ε− pj(xj − xj−1)
)︄]︄

, (1.112)

where, for brevity, we put just one integral sign instead of two. Putting it all
together, we get the expression for the full propagator

K(xf , xi, T ) =

= lim
N→∞
ε→0

Nε=T

∫︂ dpN

2πℏ

⎛⎝N−1∏︂
j=1

dpjdxj

2πℏ

⎞⎠ exp
[︄
i

ℏ

N∑︂
k=1

pk
(xk − xk−1)

ε
ε−H(pk, xk−1)ε

]︄
,

(1.113)
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where x0 = xi, xN = xf . Let us interpret the obtained result above. If we have a
particle with position x(t) and momentum p(t) its action is

S[x(t), p(t)] =
∫︂ tf

ti
(p(t)ẋ(t) −H(p(t), x(t))) dt. (1.114)

If we discretize x(t) and p(t) as in Figure 1.9 we get for t ∈ (tj−1, tj)

ẋ(t) = xj − xj−1

ε
⇒

∫︂ tj

tj−1
p(t)ẋ(t) dt = pj

xj − xj−1

ε
ε,

∫︂ tj

tj−1

p2(t)
2m dt =

p2
j

2mε, (1.115)

where ε = tj − tj−1. We can see that in the limit N → ∞, ε → 0, Nε = T we
get

N∑︂
k=1

pk
(xk − xk−1)

ε
ε−H(pk, xk−1)ε →

∫︂ tf

ti
(p(t)ẋ(t) −H(p(t), x(t))) dt. (1.116)

t

p(t)

p1

pN

ti t1 tN−1 tf

p2

pN−1

· · ·
t

x(t)

xi

x1

ti t1 tN−1 tfx2

xN−1

xf

· · ·

Figure 1.9: Discretization of particle’s trajectory x(t) and momentum p(t).

Therefore, the propagator in (1.113) resembles the Riemann sum for an integral
over the phase space of trajectories. This motivates us to rewrite the propagator

K(xf , xi, T ) =

=
∫︂ x(tf)=xf

x(ti)=xi
Dx(t)Dp(t) exp

[︃
i

ℏ

(︃∫︂ tf

ti
(p(t)ẋ(t) −H(p(t), x(t))) dt

)︃]︃
, (1.117)

this is to be understood as a symbolic way of writing the Riemann sum from
(1.113). It is only symbolic because Dx(t) and Dp(t) are not mathematically
rigorous measures in the space of continuous functions. Nevertheless, the whole
formalism can be reformulated such that the path integral will be a functional
integral with rigorously defined measures on continuous functions (see Wiener
measure in [4]).
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In our case, the dependence of the Hamiltonian on momentum is just quadratic,
and we can integrate the “momentum part” of (1.113), giving us “free propagator
term” from (1.109). We obtain∫︂ dpN

2πℏ

⎛⎝N−1∏︂
j=1

dpjdxj

2πℏ

⎞⎠ exp
[︄
i

ℏ

N∑︂
k=1

pk
(xk − xk−1)

ε
ε−H(pk, xk−1)ε

]︄
=

=
(︃

m

2πiℏε

)︃N
2
∫︂ ⎛⎝N−1∏︂

j=1
dxj

⎞⎠ exp
[︄
i

ℏ

N∑︂
k=1

1
2m

(xk − xk−1)2

ε
− V (xk−1)ε

]︄
. (1.118)

Again, we can use symbolic notation and rewrite the propagator
K(xf , xi, T ) =

= lim
N→∞
ε→0

Nε=T

(︃
m

2πiℏε

)︃N
2
∫︂ ⎛⎝N−1∏︂

j=1
dxj

⎞⎠ exp
[︄
i

ℏ

N∑︂
k=1

1
2m

(xk − xk−1)2

ε
− V (xk−1)ε

]︄
=

=
∫︂ x(tf)=xf

x(ti)=xi
Dx(t) exp

[︃
i

ℏ

(︃∫︂ tf

ti

1
2mẋ

2(t) − V (x(t)) dt
)︃]︃

=

=
∫︂ x(tf)=xf

x(ti)=xi
Dx(t) exp

(︃
i

ℏ

∫︂ tf

ti
L(x(t), ẋ(t)) dt

)︃
=

=
∫︂ x(tf)=xf

x(ti)=xi
Dx(t) exp

(︃
i

ℏ
S[x(t)]

)︃
, (1.119)

which gives us the path integral in its most famous form

K(xf , xi, T ) =
∫︂ x(tf)=xf

x(ti)=xi
Dx(t) exp

(︃
i

ℏ
S[x(t)]

)︃
. (1.120)

We will show how to use the path integral in calculating the canonical partition
function. To do so, we need to do something seemingly crazy. We will perform
Wick rotation – the analytic continuation to imaginary time t → −iτ , where
τ ∈ R. We can immediately see that it bears fruit when we write the Wick
rotated evolution operator

Û (tf , ti) = exp
[︃
− i

ℏ
Ĥ (tf − ti)

]︃
→ Û (τf , τi) = exp

[︃
−1
ℏ

Ĥ (τf − τi)
]︃

∝ ρ̂(β),
(1.121)

where we identified inverse temperature with Wick rotated time β = 1
ℏ(τf − τi) to

get an expression proportional to the canonical density operator ρ̂(β). To Wick
rotate the propagator, we must substitute ε → −iε in the discretized expression

K(xf , xi,−iℏβ) =

= lim
N→∞
ε→0

Nε=ℏβ

(︃
m

2πℏε

)︃N
2
∫︂ ⎛⎝N−1∏︂

j=1
dxj

⎞⎠ exp
[︄
−1
ℏ

N∑︂
k=1

1
2m

(xk − xk−1)2

ε
+ V (xk−1)ε

]︄
=

=
∫︂ x(τf)=xf

x(τi)=xi
Dx(τ) exp

[︃
−1
ℏ

(︃∫︂ τf

τi

1
2mẋ

2(τ) + V (x(τ)) dτ
)︃]︃

=

=
∫︂ x(τf)=xf

x(τi)=xi
Dx(τ) exp

(︃
−1
ℏ

∫︂ τf

τi
LE(x(τ), ẋ(τ)) dτ

)︃
=

=
∫︂ x(τf)=xf

x(τi)=xi
Dx(τ) exp

(︃
−1
ℏ
SE[x(τ)]

)︃
, (1.122)
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where the classical action S[x(t)] changed into so-called Euclidean action SE[x(τ)].
Calculation of the canonical partition function Z(β) is now straightforward

Z(β) = Tr[exp(−Ĥβ)] =
∫︂

dx ⟨x| exp(−Ĥβ)|x⟩ =
∫︂

dxK(x, x,−iℏβ) =

=
∫︂

dx
∫︂ x(τf)=x

x(τi)=x
Dx(τ) exp

(︃
−1
ℏ
SE[x(τ)]

)︃
=

=
∫︂

x(τi)=x(τf)
Dx(τ) exp

(︃
−1
ℏ
SE[x(τ)]

)︃
, (1.123)

giving us the canonical partition function in the path integral formulation

Z(β) =
∫︂

x(τi)=x(τf)
Dx(τ) exp

(︃
−1
ℏ
SE[x(τ)]

)︃
. (1.124)

By the last integral, we mean the integral over all periodic trajectories with the
period ℏβ.

1.2.2 Instanton
The nontrivial solutions of the Euclidean equation of motion are called instantons.
In other words, nontrivial solutions of

δSE[x(τ)] = 0. (1.125)

Our focus will be on instanton effects, which are non-perturbative effects that
go as

exp
(︄

−A

g

)︄
, (1.126)

where A is some constant and g > 0 is the coupling constant, giving us the
strength of an anharmonicity. Instanton effects cause tunneling through potential
barriers. Perturbed harmonic potential with unstable or false vacuum depicted
in Figure 1.10 on the left does not admit bound states because of tunneling.
However, it admits resonant states, which can be defined by considering scattering
in the potential depicted in Figure 1.10 on the left. As a boundary condition, we
demand cancellation of the incoming wavefunction (the Gamow-Siegert boundary
condition). The energies of these resonant states turn out to be complex

E = Re(E) + iIm(E) = Re(E) − i
Γ
2 , Γ > 0, (1.127)

which is not that surprising considering standard time evolution

exp
(︃

− i

ℏ
Et
)︃

= exp
(︃

− i

ℏ
Re(E)t

)︃
exp

(︄
− Γ

2ℏt
)︄
, (1.128)

where ℏ/Γ represents the lifetime of these unstable states. In particular, the imag-
inary part of the ground state energy has a typical instanton effect dependence

Im(E0)(g) ∼ exp
(︄

−A

g

)︄
, (1.129)
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while the real part of the ground state energy is the result obtained by the station-
ary perturbation theory. This is true since it is the perturbed harmonic oscillator,
and for the g → 0 limit, we must have

Re(E0) → ℏω
(︃
n+ 1

2

)︃
, n ∈ N ∪ {0}. (1.130)

x

V (x)

x

V (x)

Figure 1.10: Left: the potential with unstable vacuum. Right: the double-well
potential.

We will be interested in a particle in the double-well potential depicted in Fig-
ure 1.10 on the right. The perturbative method gives us twofold degenerate
ground state energy; however, in reality, degeneracy is lifted due to instanton
effects

E1(g) − E0(g) ∼ exp
(︄

−A

g

)︄
. (1.131)

From now on, we will set ℏ = 1, ω = 1, m = 1, and we will work with the
double-well potential of the form

V (x) = g

2

(︄
x2 − 1

4g

)︄2

, g > 0. (1.132)

The Euclidean action of our particle is

SE[x(τ)] =
∫︂ β/2

−β/2
dτ

(︃1
2 ẋ

2(τ) + V (x(τ))
)︃
, (1.133)

where without loss of generality we set τi = −β/2 and τf = β/2. Calculating
variation of the Euclidean action

δSE =
∫︂ β/2

−β/2
dτ (ẋδẋ+ V ′(x)δx) =

= [ẋδx]β/2
−β/2 +

∫︂ β/2

−β/2
dτ (−ẍδx+ V ′(x)δx) =

=
∫︂ β/2

−β/2
dτ (−ẍ+ V ′(x)) δx, (1.134)

we get the Euclidean equation of motion
ẍ− V ′(x) = 0,

ẍ− 2gx
(︄
x2 − 1

4g

)︄
= 0,

ẍ+ 1
2x− 2gx3 = 0. (1.135)
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The solution to this kind of nonlinear second-order differential equation is gener-
ally called the Jacobi elliptic function. We will be interested in boundary condi-
tions x(−β/2) = −x(β/2) and in the limit β → ∞ which will be explained later.
In that case, the nontrivial solution becomes simpler

xτ0
in(τ) = ± 1

2√
g

tanh
(︃
τ − τ0

2

)︃
, (1.136)

where we got families of solutions true for τ0 ∈ [−β/2, β/2] arbitrary. The param-
eter τ0 is called the modulus or the collective coordinate (it is a general feature,
tied not only to the double-well potential). These families of solutions are called
instanton and anti-instanton with center τ0 for potential (1.132) and are depicted
in Figure 1.11. They connect minima of our potential in τ = −∞ and τ = ∞.

τ

xτ0
in(τ)

1
2√

g

− 1
2√

g

τ0
τ

xτ0
in(τ)

1
2√

g

− 1
2√

g

τ0

Figure 1.11: Left: instanton with the center τ0. Right: anti-instanton with the
center τ0.

We can quickly check that, for example, the instanton solution satisfies our equa-
tion of motion

ẍτ0
in + 1

2x
τ0
in − 2g(xτ0

in)3 =

= − 1
4√

g

sinh
(︂

τ−τ0
2

)︂
cosh3

(︂
τ−τ0

2

)︂ + 1
4√

g

sinh
(︂

τ−τ0
2

)︂
cosh

(︂
τ−τ0

2

)︂ − 1
4√

g

sinh3
(︂

τ−τ0
2

)︂
cosh3

(︂
τ−τ0

2

)︂ =

= − 1
4√

g

sinh
(︂

τ−τ0
2

)︂ [︂
1 + sinh2

(︂
τ−τ0

2

)︂]︂
cosh3

(︂
τ−τ0

2

)︂ + 1
4√

g

sinh
(︂

τ−τ0
2

)︂
cosh

(︂
τ−τ0

2

)︂ =

= − 1
4√

g

sinh
(︂

τ−τ0
2

)︂
cosh

(︂
τ−τ0

2

)︂ + 1
4√

g

sinh
(︂

τ−τ0
2

)︂
cosh

(︂
τ−τ0

2

)︂ = 0. (1.137)

Lagrangian is not explicitly dependent on time; because of that, all trajectories
have to satisfy the energy conservation

E = ∂LE

∂ẋ
ẋ− LE = 1

2 ẋ
2 − V (x), (1.138)

and action along an instanton trajectory using the above equation can be writ-
ten as

SE[xτ0
in(τ)] = Sin =

∫︂ β/2

−β/2
dτ(ẋτ0

in(τ))2 − Eβ = W(E) − Eβ. (1.139)

27



For a trajectory of the period β → ∞ we get that energy of a particle has to be
E = 0 (see Figure 1.12), therefore in large β limit we get

W(0) = Sin. (1.140)

E = 0 x

−V (x)

xτ0
in(τ)

Figure 1.12: After Wick rotation, the Euclidean Hamiltonian has opposite sign
before the potential as is usual, HE(x(τ), p(τ)) = 1

2p
2(τ) − V (x(τ)). This can

be interpreted as the normal Hamiltonian of a particle moving in an inverted
potential −V (x). In the picture is depicted xτ0

in(τ) in β → ∞ limit.

1.2.3 One-loop approximation
This section will look at an approximation technique for calculating the path
integrals. We will work with the potential from Figure 1.10 on the left

V (x) = 1
2x

2 + 1
4gx

4, g < 0. (1.141)

We will be mainly interested in the double-well potential from Figure 1.10, but
as we will see, unstable potentials with resonant states represent, in some sense,
a more general problem.

To understand the canonical partition function expressed through the path inte-
gral for the above potential, we will focus on a toy model – a reduction from one
dimension (the only dimension is time) to zero dimensions. The path integral
becomes an ordinary integral

I(g) = 1√
2π

∫︂ ∞

−∞
dx exp

(︃
−1

2x
2 − 1

4gx
4
)︃
. (1.142)

We want to calculate this integral for g < 0, but we can see that the integral
is not convergent for g < 0. What to do? We will start by taking g and x to
be generally complex. The idea is that we start with g > 0 for which we can
calculate the integral and then move in complex g plane towards negative g. The
integral is convergent when

Re(gx4) > 0 ⇒ Arg(x) = −1
4Arg(g). (1.143)

This can be achieved by rotating an integration contour as in Figure 1.13. In
this way, we obtain the analytic continuation of the integral, but the resulting
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function has a branch cut along negative values of g. Functions I(−|g| + i0) and
I(−|g| − i0) are complex conjugate, thus for the discontinuity we have

± (I(−|g| + i0) − I(−|g| − i0)) = 2iIm(I(g)) =

= 1√
2π

∫︂
±(C+−C−)

dx exp
(︃

−1
2x

2 − 1
4gx

4
)︃
, (1.144)

where we have to choose one of the branch cuts (we will comment on that later).

Re(g)

Im(g)

−|g| + i0

−|g| − i0
Re(x)

Im(x)

C+

C−

Figure 1.13: As we are approaching negative g from above and below we must
rotate integration contour C+ to −π/4 and C− to π/4.

The discontinuity can be calculated by integrating through the nontrivial saddle
points (see [5], [8] and [9]). The moral of this toy model is that by approximating
the path integral for the unstable potential using nontrivial saddle points, we get
the discontinuity which is equal to 2iIm(Z(β)). And this is exactly what we will
do in the following.

We will expand the Euclidean action of a particle around the instanton solution
to second-order fluctuations

x(τ) = xτ0
in(τ) + r(τ), (1.145)

SE[x(τ)] ≈ Sin + 1
2

∫︂
dτ1dτ2 r(τ1)M(τ1, τ2)r(τ2), (1.146)

where linear term vanishes because the instanton solves the equation of motion
and M(τ1, τ2) is given by

M(τ1, τ2) = δ2SE

δx(τ1)δx(τ2)

⃓⃓⃓⃓
⃓
x(τ)=x

τ0
in

=

= δ

δx(τ1)

[︄
∂LE

∂x(τ2)
− d

dτ2

(︄
∂LE

∂ẋ(τ2)

)︄]︄⃓⃓⃓⃓
⃓
x(τ)=x

τ0
in

=

=
[︄

∂2LE

∂x(τ1)∂x(τ2)
δ(τ1 − τ2) + ∂2LE

∂ẋ(τ1)∂x(τ2)
δ̇(τ1 − τ2)−

− d
dτ2

(︄
∂2LE

∂ẋ(τ1)∂ẋ(τ2)
δ̇(τ1 − τ2) + ∂2LE

∂x(τ1)∂ẋ(τ2)
δ(τ1 − τ2)

)︄]︄⃓⃓⃓⃓
⃓
x(τ)=x

τ0
in

=

=
⎡⎣−

(︄
d

dτ1

)︄2

+ V ′′(xτ0
in(τ1))

⎤⎦ δ(τ1 − τ2). (1.147)
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M(τ1, τ2) is the integral kernel of differential operator M written explicitly as

M = −
(︄

d
dτ

)︄2

+ V ′′(xτ0
in(τ)). (1.148)

In this second-order approximation, also called one-loop approximation (Feynman
diagrams jargon) we have

2iIm(Z(β)) ≈

≈ exp(−Sin)
∫︂

r(−β/2)=r(β/2)
Dr(τ) exp

(︄
−1

2

∫︂ β/2

−β/2
dτ1dτ2 r(τ1)M(τ1, τ2)r(τ2)

)︄
,

(1.149)

where we are integrating over periodic trajectories; therefore, the boundary con-
ditions are (later, we will use different boundary conditions for the double-well
potential)

r(−β/2) = r(β/2), ṙ(−β/2) = ṙ(β/2). (1.150)
We need to perform the Gaussian integration over r(t). In order to do that, we
introduce a complete set of orthonormal eigenfunctions xn(τ) of M (orthonormal
set exists because it is a Hermitian operator, its completeness in L2(−β/2, β/2)
is discussed in [10])

Mxn = λnxn, n = 0, 1, . . . , (1.151)⎡⎣−
(︄

d
dτ

)︄2

+ V ′′(xτ0
in(τ))

⎤⎦xn(τ) = λnxn(τ), n = 0, 1, . . . , (1.152)

which satisfy the same boundary conditions as r(t). By orthonormality we mean∫︂ β/2

−β/2
dτ xn(τ)xm(τ) = δnm, (1.153)

where we assume we have a discrete spectrum. This is not the case in many cases,
but the formalism developed with this assumption can be easily generalized. We
will use an orthonormal set of eigenfunctions to expand the fluctuations

r(τ) =
∑︂
n≥0

cnxn(τ) , cn ∈ R. (1.154)

This can be understood as a change of variables from the set of paths r(τ) to
coefficients cn. All possible configurations of the system are parametrized by
these coefficients. Therefore the measure for r(τ) is defined as

Dr(τ) = N
∏︂
n≥0

dcn√
2π
, (1.155)

and we can rewrite the expression for the path integral∫︂
r(−β/2)=r(β/2)

Dr(τ) exp
(︄

−1
2

∫︂ β/2

−β/2
dτ1dτ2 r(τ1)M(τ1, τ2)r(τ2)

)︄
=

= N
∫︂ ∏︂

n≥0

dcn√
2π

exp
⎛⎝−1

2
∑︂
n≥0

λnc
2
n

⎞⎠ = N (det M)−1/2, (1.156)
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where
det M =

∏︂
n≥0

λn. (1.157)

Our new task is calculating the determinant of M. This looks straightforward,
but there are many subtleties to be taken into account.

Firstly, we will take the time derivative of the Euclidean equation of motion
(remember, we are working with the potential (1.141))

ẍτ0
in(τ) − V ′(xτ0

in(τ)) = 0,
d2

dτ 2 ẋ
τ0
in(τ) − V ′′(xτ0

in(τ))ẋτ0
in(τ) = 0.

Instanton xτ0
in(τ) for the potential (1.141) is periodic (the periodic boundary con-

ditions), therefore ẋτ0
in(τ) also satisfies the periodic boundary conditions. That

means that ẋτ0
in(τ) is a zero mode of M, which means eigenfunction with zero

eigenvalue. After normalization, it has to be one of the eigenfunctions, for exam-
ple

x1(τ) = ẋτ0
in(τ)

∥ẋτ0
in∥

, (1.158)

where the norm is

∥ẋτ0
in∥2 =

∫︂ β/2

−β/2
dτ(ẋτ0

in(τ))2 = W(E). (1.159)

We have to address the issue of the existence of the zero mode. Naively, one
suspects that the determinant vanishes and expression for the path integral ex-
plodes. A closer look is needed. The explosion of the expression for the path
integral is due to the absence of a damping exponential factor for c1. We will
isolate this apparent divergence

∫︂ ∏︂
n≥0

dcn√
2π

exp
⎛⎝−1

2
∑︂
n≥0

λnc
2
n

⎞⎠ =
(︄∫︂ dc1√

2π

)︄
(det′ M)−1/2, (1.160)

where
det′ M =

∏︂
n̸=1

λn. (1.161)

We must be cautious with integrating over c1 since this variable stands for collec-
tive coordinate τ0, as shown in the following. The coefficient c1 was introduced
in the expansion of arbitrary periodic function r(τ) in (1.154) however we could
also expand such a function as

r(τ) = xτ0
in(τ) +

∑︂
n̸=1

cnxn(τ), (1.162)

where collective coordinate τ0 is now understood as a coordinate in the space of
configurations. Indeed, if we vary c1 in (1.154), we get

δr(τ) = x1(τ)δc1 = ẋτ0
in(τ)

∥ẋτ0
in∥

δc1, (1.163)
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while varying τ0 in (1.162) gives

δr(τ) = −ẋτ0
in(τ)δτ0. (1.164)

We can see that both variations are proportional, and τ0 parametrizes the same
fluctuations as c1. Jacobian of this change of variables is

J =
⃓⃓⃓⃓
⃓δc1

δτ0

⃓⃓⃓⃓
⃓ = ∥ẋτ0

in∥ =
√︂

W(E). (1.165)

Therefore, the integration over c1 gives

1√
2π

∫︂
dc1 = J√

2π

∫︂ β/2

−β/2
dτ0 =

β
√︂

W(E)
√

2π
, (1.166)

where we used that τ0 ∈ [−β/2, β/2].

There is one more important property of the operator M – it has one and
only one negative mode. This can be seen regarding the operator M as a one-
dimensional Schrödinger operator (we mean the operator of a one-dimensional
time-independent Schrödinger equation) after formal substitution τ → x. We
can use the Node theorem (intuitive proof in [11]), which says that for the one-
dimensional Schrödinger equation, the wavefunction of n-th bound state has
n − 1 nodes (zeros). We know that ẋτ0

in changes sign once (from one turning
point to the other and back); therefore, there must be an eigenfunction with a
lower eigenvalue. Since the eigenvalue of x1 is zero, the eigenvalue of x0 is nega-
tive; this is the only negative mode of M.

This means we would like to understand what is going on with the integral∫︂ dc0√
2π

exp
(︃

−1
2λ0c

2
0

)︃
, (1.167)

when λ0 < 0. We will again use the analytic continuation. We take λ0 and c0 to
be generally complex. The integral is convergent if

Re(λ0c
2
0) > 0 ⇒ Arg(c0) = −1

2Arg(λ0). (1.168)

To make λ0 complex and maintain convergence, we must rotate the integration
contour. When λ0 = −|λ0| ± i0, then Arg c0 = ∓π/2 as depicted in Figure 1.14
and the result of the integral is ∓i|λ0|−1/2.

The sign ambiguity is related to the sign ambiguity in equation (1.144) (see [12]).
We choose the branch cut so that the final result is positive. In the following, we
will see why is this choice convenient.
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Re(λ0)

Im(λ0)

−|λ0| + i0

−|λ0| − i0

Re(c0)

Im(c0)

C+

C−

Figure 1.14: As we are approaching negative λ0 from above and below we must
rotate integration contour C+ to −π/2 and C− to π/2.
Putting it all together, we get

Im(Z(β)) ≈ 1
2i exp(−Sin)N

β
√︂

W(E)
√

2π
(det′ M)−1/2. (1.169)

We have to get rid of N . To do that, we use the known partition function for the
harmonic oscillator (with ω = 1)

Z0(β) = N (det M0)−1/2 = 1
2 sinh(β/2) , (1.170)

M0 = − d2

dτ 2 + 1. (1.171)

It follows that

Im(Z(β)) ≈ 1
2i exp(−Sin)Z0(β)

β
√︂

W(E)
√

2π

(︄
det′ M
det M0

)︄−1/2

. (1.172)

From the start, we assumed that we had perturbed a quadratic potential; there-
fore, in the limit of g → 0, we expect the partition function of the harmonic
oscillator, which is real. The partition function has also the real part. We got
only the imaginary one because we were calculating the path integral around the
instanton which is the nontrivial solution to the Euclidean equation of motion. If
we were calculating the path integral around a constant solution (which, in this
case, satisfies periodic boundary conditions) in the one-loop approximation, we
would get the real part of the partition function

Re(Z(β)) ≈ Z0(β). (1.173)

Let us use results (1.172) and (1.173) to derive one more result – the imaginary
part of the ground state energy. We will use the Helmholtz free energy and
β → ∞ limit

F (β) = − 1
β

ln(Z(β)) = − 1
β

ln
[︄ ∞∑︂

n=0
exp(−βEn)

]︄
, (1.174)

E0 = lim
β→∞

F (β). (1.175)
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Now we will use an expansion in powers of Im(Z(β)) (it is small for g → 0)

F (β) = − 1
β

ln(Z(β)) = − 1
β

ln[Re(Z(β)) + iIm(Z(β))] =

= − 1
β

ln[Re(Z(β))] − 1
β

ln
[︄
1 + i

Im(Z(β))
Re(Z(β))

]︄
≈

≈ − 1
β

{︄
ln[Re(Z(β))] + i

Im(Z(β))
Re(Z(β))

}︄
,

Im(F (β)) ≈ − 1
β

Im(Z(β))
Re(Z(β)) . (1.176)

Thus, we have

Im(E0) = lim
β→∞

Im(F (β)) = − lim
β→∞

1
β

Im(Z(β))
Re(Z(β)) . (1.177)

Using equations (1.140), (1.172) and (1.173), we get the imaginary part of the
ground state energy

Im(E0) ≈ − 1
2i exp(−Sin)

√
Sin√
2π

lim
β→∞

(︄
det′ M
det M0

)︄−1/2

. (1.178)

Now we can see why we chose the imaginary part of the partition function to be
positive. We did so because that way the imaginary part for the ground state of
the unstable potential is negative; which is consistent with equation (1.127).

The quotient of the determinant of M by the reference determinant of M0 is
essential. The eigenvalues of Schrödinger operators of the type (1.148) grow
as λn ≈ n2 for n ≫ 1 (see [4]). Therefore, with the quotient of these two
determinants, we expect that divergent parts will cancel out, and we will be left
with something finite. The following section will explain how to calculate the
determinants of some valuable operators.

1.2.4 Pöschl–Teller operators
We will investigate the family of operators called Pöschl-Teller operators

Ml,m = − d2

dx2 +m2 − l(l + 1)
cosh2 x

, (1.179)

where l,m ∈ N ∪ {0} are parameters. These operators can be understood as
Schrödinger operators in an inverted cosh2 potential, also called Pöschl-Teller
potential. The spectrum of these operators can be determined exactly. Let us
introduce the operators

Al = d
dx + l tanh x, (1.180)

A†
l = − d

dx + l tanh x. (1.181)
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It follows that

A†
lAl = Ml,m + l2 −m2, (1.182)

AlA
†
l = Ml−1,m + l2 −m2. (1.183)

Let us introduce the interesting properties of these operators. We will take ad-
vantage of the fact that if ψ(l)(x) is an eigenfunction of Ml,m with eigenvalue µl,
then

ψ(l−1)(x) = Alψ
(l)(x) (1.184)

is an eigenfunction of Ml−1,m with the same eigenvalue

Ml−1,mψ
(l−1)(x) = (AlA

†
l − l2 +m2)Alψ

(l)(x) =
= Al(Ml,m + l2 −m2)ψ(l)(x) + (m2 − l2)ψ(l−1)(x) =
= (µl + l2 −m2)ψ(l−1)(x) + (m2 − l2)ψ(l−1)(x) =
= µlψ

(l−1)(x). (1.185)

We can easily find a ground state of the operator Ml,m by solving

Alψ
(l)
0 (x) = 0. (1.186)

The solution to this first-order differential equation is

ψ
(l)
0 (x) ∝ 1

coshl(x)
. (1.187)

Using the operator from (1.182) on this function we get

A†
lAlψ

(l)
0 (x) = Ml,mψ

(l)
0 (x) + (l2 −m2)ψ(l)

0 (x),
0 = Ml,mψ

(l)
0 (x) + (l2 −m2)ψ(l)

0 (x),
Ml,mψ

(l)
0 (x) = (m2 − l2)ψ(l)

0 (x). (1.188)

Therefore, the ground-state energy is

E
(l,m)
0 = m2 − l2. (1.189)

Let us proceed to calculate excited states. This time, we will take advantage of
the fact that if ψ(l−1)(x) is an eigenfunction of Ml−1,m with eigenvalue µl−1, then

ψ(l)(x) = A†
lψ

(l−1)(x) (1.190)
is an eigenfunction of Ml,m with the same eigenvalue

Ml,mψ
(l)(x) = (A†

lAl − l2 +m2)A†
lψ

(l−1)(x) =
= A†

l (Ml−1,m + l2 −m2)ψ(l−1)(x) + (m2 − l2)ψ(l)(x) =
= (µl−1 + l2 −m2)ψ(l)(x) + (m2 − l2)ψ(l)(x) =
= µl−1ψ

(l)(x). (1.191)
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We will build the spectrum of Ml,m starting with the l = 0 state and applying the
A†

l operator. For l = 0, we get a free particle (in the sense of the particle in Pöschl-
Teller potential), and the eigenfunctions are plane waves (so-called scattering
states)

ψ(0)(k, x) ∝ exp(ikx) (1.192)
with energies

E(0,m)(k) = k2 +m2. (1.193)
Applying operator A†

1 on scattering states above, we get scattering states for l = 1

ψ(1)(k, x) ∝ A†
1 exp(ikx), (1.194)

and we have the ground state

ψ
(1)
0 (x) ∝ 1

cosh(x) . (1.195)

Again, by applying operator A†
2 on scattering states above, we get scattering

states for l = 2
ψ(2)(k, x) ∝ A†

2A
†
1 exp(ikx). (1.196)

Also, we have the bound state

ψ
(2)
1 (x) ∝ A†

2
1

cosh(x) , (1.197)

and the new ground state

ψ
(2)
0 (x) ∝ 1

cosh2(x)
. (1.198)

Iterating this way, we obtain the full spectrum of l-th potential. It consists of
scattering states

ψ(l)(k, x) ∝ A†
l . . . A

†
1 exp(ikx) (1.199)

with energies
E(l,m)(k) = k2 +m2, (1.200)

and l bound states

ψ
(l)
0 (x) ∝ 1

coshl(x)
, (1.201)

ψ
(l)
j (x) ∝ A†

l . . . A
†
l−j+1

1
coshl−j(x)

, j = 1, . . . , l − 1, (1.202)

with energies
E

(l,m)
j = m2 − (l − j)2, j = 0, . . . , l − 1. (1.203)
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This can be seen from the fact that eigenvalue of j-th state in l-th potential is
same as eigenvalue of (j − 1)-th state in (l − 1)-th potential

Ml,mψ
(l)
j (x) = (A†

lAl − l2 +m2)ψ(l)
j (x) =

= A†
lAlA

†
l . . . A

†
l−j+1

1
coshl−j(x)

+ (m2 − l2)ψ(l)
j (x) =

= A†
l (Ml−1,m + l2 −m2)A†

l−1 . . . A
†
l−j+1

1
coshl−j(x)

+ (m2 − l2)ψ(l)
j (x) =

= A†
l Ml−1,mA

†
l−1 . . . A

†
(l−1)−(j−1)+1

1
cosh(l−1)−(j−1)(x)

=

= A†
l Ml−1,mψ

(l−1)
j−1 (x) = E

(l−1,m)
j−1 ψ

(l)
j (x). (1.204)

Now that we know the full spectrum of the operator Ml,m, we can calculate
its determinant. As a reference determinant, we will take again the harmonic
oscillator operator M0,m, which corresponds to the free particle in the context
of Pöschl-Teller potentials. As we have seen, eigenfunctions of Ml,m consist of
scattering and bound states, which means that the spectrum will have discrete
part {λn} and continuous part λ(k). Determinant should be understood as

log(det Ml,m) =
∑︂

n

log(λn) +
∫︂

dk ρ(k) log(λ(k)), (1.205)

where ρ(k) is the density of states for the continuous part. To calculate ρ(k), we
will work in a large box of length L → ∞. As x → ±∞ we have

A†
j ≈ − d

dx ± j, (1.206)

and scattering states will be

ψ(l)(k, x) ≈
l∏︂

j=1
(−ik ± j) exp(ikx), x → ±∞. (1.207)

This can be rewritten as (up to normalization – we are interested in the phase)

ψ(l)(k, x) ≈ exp
(︄
ikx± i

θ(k)
2

)︄
, (1.208)

where (small exercise for the reader)

θ(k)
2 = −

l∑︂
j=1

arctan
(︄
k

j

)︄
. (1.209)

We will use the large-box quantization

ψ
(l)
+ (k, x+ L) = ψ

(l)
− (k, x),

kL+ θ(k) = 2πn, n ∈ N ∪ {0}, (1.210)
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and get the density of states as

ρ(k) = dn
dk = L

2π + θ′(k)
2π = ρfree(k) + ρθ(k), (1.211)

where
ρθ(k) = − 1

π

l∑︂
j=1

j

j2 + k2 . (1.212)

Using all derived results, we can get back to calculating the quotient of our two
determinants

log
(︄

det′ Ml,m

det M0,m

)︄
= log(det′ Ml,m) − log(det M0,m) =

=
∑︂

1≤j≤l, j ̸=m

log(m2 − j2) +
∫︂ ∞

−∞
dk (ρfree(k) + ρθ(k)) log(k2 +m2)−

−
∫︂ ∞

−∞
dk ρfree(k) log(k2 +m2) =

=
∑︂

1≤j≤l, j ̸=m

log(m2 − j2) − 1
π

l∑︂
j=1

j
∫︂ ∞

−∞

dk
k2 + j2 log(k2 +m2) =

=
∑︂

1≤j≤l, j ̸=m

log(m2 − j2) − 1
π

l∑︂
j=1

j

(︄
2π
j

log(j +m)
)︄

=

=
∑︂

1≤j≤l, j ̸=m

log(m2 − j2) − 2
l∑︂

j=1
log(j +m) =

= log
[︄∏︁

1≤j≤l, j ̸=m(m2 − j2)∏︁
1≤j≤l(m+ j)2

]︄
. (1.213)

Thus, the result for the quotient of our determinants for l ≥ 1 is

det′ Ml,m

det M0,m

=
∏︁

1≤j≤l, j ̸=m(m2 − j2)∏︁
1≤j≤l(m+ j)2 , (1.214)

for (l,m) ̸= (1, 1). For l = m = 1, the numerator should be taken as 1 since there
is no contribution from discrete states.

At the end, we will look at the effect on the quotient of determinants caused by
rescaling operators for m ≤ l. Let us suppose that we rescale by a factor ξ

Ml,m → ξMl,m, M0,m → ξM0,m. (1.215)

This rescaling results into

det′ Ml,m

det M0,m

→ ξN ′
l,m−N0,m

det′ Ml,m

det M0,m

, (1.216)
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where N ′
l,m − N0,m is difference between number of nonzero modes of Ml,m and

number of modes of M0,m. That can be easily calculated

N ′
l,m −N0,m = (l − 1) +

∫︂ ∞

−∞
dk ρθ(k) =

= (l − 1) − 1
π

l∑︂
j=1

j
∫︂ ∞

−∞

dk
k2 + j2 = (l − 1) − l = −1. (1.217)

Thus, after rescaling, we get

det′ Ml,m

det M0,m

→ 1
ξ

det′ Ml,m

det M0,m

. (1.218)

1.2.5 Instantons in the double-well potential
We will use all the things we have developed to calculate the splitting of the
ground-state energy in the double-well potential. We will be working with the
potential from (1.132), which is

V (x) = g

2

(︄
x2 − 1

4g

)︄2

, g > 0. (1.219)

The Hamiltonian is invariant under x → −x, which means that it commutes with
parity operator P̂. The action of the parity operator is

P̂ψ(x) = ψ(−x). (1.220)

Since P̂ commutes with the Hamiltonian Ĥ they can be simultaneously diagonal-
ized

Ĥψϵ,n(x) = Eϵ,nψϵ,n(x), (1.221)
P̂ψϵ,n(x) = ϵψϵ,n(x), (1.222)

where ϵ = ±1 is the parity. By the quantum number n ∈ N ∪ {0}, we mean that
in the limit of small coupling constant g → 0, we have

Eϵ,n = n+ 1
2 + O(g). (1.223)

As mentioned, the energy difference of the first excited and the ground state
E−,0 − E+,0 is invisible by perturbative methods and has classical instanton de-
pendence. We must find a quantity that can be calculated with the path integral
and expressed via the energy difference. The canonical partition function can
be expressed via the path integral but does not give us the energy difference.
However, we can consider the twisted partition function

Zt(β) = Tr[P̂ exp(−βĤ )], (1.224)

where P̂ is the already mentioned parity operator. In the limit β → ∞ and small
coupling constant g → 0 we can write for the twisted partition function

Zt(β) ≈ exp(−βE+,0) − exp(−βE−,0) =
= exp(−βE+,0){1 − exp[−β(E−,0 − E+,0)]} ≈
≈ β exp(−β/2)(E−,0 − E+,0). (1.225)
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Also, it can be expressed via path integral with twisted boundary conditions

Zt(β) =
∫︂

x(β/2)=P̂x(−β/2)
Dx(τ) exp (−SE[x(τ)]) , (1.226)

therefore boundary conditions are x(β/2) = −x(−β/2). In expression (1.136),
we have seen the instanton and the anti-instanton solutions for a particle in the
double-well potential in the β → ∞ limit

xτ0
in(τ) = ± 1

2√
g

tanh
(︃
τ − τ0

2

)︃
, (1.227)

which satisfied these boundary conditions. The operator M from (1.148) takes
the form

M = − d2

dτ 2 + 1 − 3
2 cosh2

(︂
τ−τ0

2

)︂ , (1.228)

which is proportional to the Pöschl-Teller operator M2,2

M = 1
4M2,2, (1.229)

after rescaling time τ → 2τ in the operator M. From the spectrum of the Pöschl-
Teller operators (1.203), we know that the operator M has one zero mode and
no negative mode. This agrees with the fact that we are studying the stable
potential. Similarly, as for the canonical partition function, we can perform a
one-loop approximation of path integral for the twisted partition function. The
steps of derivation are the same as for the canonical partition function (now it is
easier because the path integral expression for the twisted partition function is
well defined and it has just the real part), and we get

Zt(β) ≈ 2 exp(−Sin)Z0(β)β
√
Sin√
2π

(︄
det′ M
det M0

)︄−1/2

, (1.230)

where factor two is because the instanton and the anti-instanton give the same
contribution, and we used the fact that in the limit β → ∞, W(0) = Sin. This
time, the constant solution to the Euclidean equation of motion does not satisfy
boundary conditions. Using equation (1.225) we can write expression for the
energy splitting

E−,0 − E+,0 ≈ 2
√
Sin√
2π

exp(−Sin)
(︄

det′ M
det M0

)︄−1/2

, (1.231)
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where we used expression (1.170) for Z0. Action for the instanton and anti-
instanton trajectory in β → ∞ limit (E = 0) is

Sin = W(0) =
∫︂ β/2

−β/2
dτ(ẋτ0

in(τ))2 =

= 2
∫︂ 1

2√
g

0
pin(x) dx = 2

∫︂ 1
2√

g

0

√︂
2V (x) dx =

= 2
∫︂ 1

2√
g

0

⌜⃓⃓⎷g (︄x2 − 1
4g

)︄2

dx =

= 2√
g
∫︂ 1

2√
g

0

⃓⃓⃓⃓
⃓x2 − 1

4g

⃓⃓⃓⃓
⃓ dx =

= 2√
g

[︄⃓⃓⃓⃓
⃓x3

3 − x

4g

⃓⃓⃓⃓
⃓
]︄ 1

2√
g

0
= 1

6g . (1.232)

For calculating the quotient of determinants we use equations (1.216), (1.218),
(1.229) and we have

det′ M
det M0

= 4det′ M2,2

det M0,2
= 4 4 − 1

(2 + 1)2(2 + 2)2 = 1
12 . (1.233)

Putting it all together, we get the final expression for the splitting of the ground-
state energy

∆E = E−,0 − E+,0 ≈ 2
√
πg

exp
(︄

− 1
6g

)︄
, (1.234)

which is in agreement with the result obtained by the WKB method in (1.103)
after substitution λ = 1

2√
g
, ℏ = ω = m = 1. This time, the parameter describing

the energy splitting is g. The splitting of the ground state energy is exponentially
suppressed in the small g limit.

Better results for the ground-state energy splitting can be obtained by the n-loop
approximations. The idea behind the n-loop approximation is to integrate not
just over quadratic fluctuations S(2) giving us the Gaussian integral, but also over
higher-order fluctuations from the expression∫︂

Dx(τ) exp(−SE[x(τ)]) =

= exp(−Sin)
∫︂

Dx(τ) exp[−(S(2) + S(3) + S(4) + . . .)]. (1.235)

These higher-order fluctuations give us the result in the form

∆E ≈ 2
√
πg

exp
(︄

− 1
6g

)︄
(a0 + ga1 + g2a2 + g3a3 + . . .+ gn−1an−1), (1.236)

where we found out that a0 = 1 which is the one-loop approximation. In [6]
Kleinert found out that a2 = −71

12 , which is the two-loop approximation, and
in [13] Escobar-Ruiz, Shuryak and Turbiner found out that a3 ≈ 21.8713, which
is the three-loop approximation. The name of the approximation comes from the
fact that higher coefficients are calculated via many-loop Feynman diagrams.
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2. Bootstrapping quantum
mechanics
In this chapter, we will introduce a numerical method for calculating energy levels
for a given type of potential. The method is called bootstrap, which, according to
Oxford Learner’s Dictionaries, literally means an approach to creating something
that uses the minimum amount of resources possible. This is precisely how we
will proceed, using just symmetry and three basic identities. Following the steps
of [14] and [15], we will use the first two identities to derive a recursive relation
for the moments ⟨xn⟩. The third identity will decide if the resulting moment
sequence is accepted or rejected. Since energy and a few other parameters are
data to start the recursion, this gives us bounds on acceptable energies. Then,
we will go through the algorithmic structure of the method itself. Finally, we will
briefly look at using the bootstrap in single-matrix quantum mechanics as was
done in [1].

2.1 The recursion relation
We will derive the three basic identities, which are the three pillars on which the
method holds. Let us denote eigenstates of the Hamiltonian Ĥ with eigenvalues E
as |E⟩. It follows for any operator Ô that

⟨E|[Ĥ , Ô]|E⟩ = ⟨E|(Ĥ Ô − ÔĤ )|E⟩ = E⟨E|Ô|E⟩ − E⟨E|Ô|E⟩ = 0, (2.1)
⟨E|Ĥ Ô|E⟩ = E⟨E|Ô|E⟩, (2.2)

⟨E|Ô
†
Ô|E⟩ = (Ô|E⟩)†(Ô|E⟩) ≥ 0. (2.3)

We will be working in the one-dimensional quantum mechanics with the Hamil-
tonian

Ĥ = p̂2

2M + V (x̂), (2.4)

where x̂ = x and p̂ = −iℏ d
dx

are x-representations of coordinate and momentum
operators and M is mass of a particle. Now we will use identities (2.1) and
(2.2) for special operators Ô. We will start with Ô = x̂n, where n ∈ N ∪ {0}.
Setting ℏ = 1, M = 1 and using identity (2.1) we see that

0 = ⟨E|
[︃1
2 p̂2 + V (x̂), x̂n

]︃
|E⟩ = ⟨E|

(︃1
2 p̂2x̂n − 1

2 x̂np̂2
)︃

|E⟩ =

= ⟨E|
[︃1
2 x̂np̂2 − inx̂n−1p̂ − 1

2n(n− 1)x̂n−2 − 1
2 x̂np̂2

]︃
|E⟩ =

= ⟨E|
[︃
−inx̂n−1p̂ − 1

2n(n− 1)x̂n−2
]︃

|E⟩. (2.5)

Using (2.1) and (2.2) we see that

⟨E|x̂n

(︄
p̂2

2 + V (x̂)
)︄

|E⟩ = E⟨E|x̂n|E⟩. (2.6)
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Therefore, in simplified notation, we get

n⟨xn−1p⟩ = i

2n(n− 1)⟨xn−2⟩, (2.7)
1
2⟨xnp2⟩ + ⟨xnV (x)⟩ = E⟨xn⟩. (2.8)

Next, we will use Ô = x̂mp̂, where m ∈ N. Applying (2.1) we have

0 = ⟨E|
[︃1
2 p̂2 + V (x̂), x̂mp̂

]︃
|E⟩ = ⟨E|

(︃1
2 p̂2x̂mp̂ + V (x̂)x̂mp̂−

−1
2 x̂mp̂3 − x̂mp̂V (x̂)

)︃
|E⟩ = ⟨E|

[︃1
2 x̂mp̂3 − imx̂m−1p̂2−

−1
2m(m− 1)x̂m−2p̂ + V (x̂)x̂mp̂ − 1

2 x̂mp̂3 − x̂mV (x̂)p̂ + ix̂mV ′(x̂)
]︃

|E⟩ =

= ⟨E|
[︃
−imx̂m−1p̂2 − 1

2m(m− 1)x̂m−2p̂ + ix̂mV ′(x̂)
]︃

|E⟩, (2.9)

where V ′(x̂) = dV (x̂)
dx

. Therefore, we get in simplified notation

i⟨xmV ′(x)⟩ − 1
2m(m− 1)⟨xm−2p⟩ − im⟨xm−1p2⟩ = 0. (2.10)

Substituting for ⟨xm−2p⟩ and ⟨xm−1p2⟩ from (2.7) and (2.8) with n = m − 1 we
get the final recursive relation

2mE⟨xm−1⟩ + 1
4m(m− 1)(m− 2)⟨xm−3⟩ − ⟨xmV ′(x)⟩ − 2m⟨xm−1V (x)⟩ = 0.

(2.11)

Eigenstates are normalized. Therefore ⟨x0⟩ = 1. For m = 1, this equation reduces
to the Virial theorem

E = 1
2⟨xV ′(x)⟩ + ⟨V (x)⟩. (2.12)

The minimal set to start recursion S = {E, ⟨x⟩, ...} is called the search space and
contains energy and a few moments. Dimension of the search space is dependent
on the potential V (x̂). As was pointed out in [14], given polynomial potential,
one should expect dim(S) ∼ degV (x̂)/|G|, where G is any discrete symmetry
group of the Hamiltonian. For example (ω, g, h ̸= 0)

• V (x̂) = 1
2ω

2x̂2; S = {E},

• V (x̂) = gx̂3; S = {E, ⟨x⟩, ⟨x2⟩},

• V (x̂) = gx̂2 + hx̂4; S = {E, ⟨x2⟩}.

So far, we have not used the last of our three pillars, identity (2.3); this is about
to change. Suppose we have Ô = ∑︁

i cix̂ i, ci ∈ C. Then (2.3) gives

0 ≤ ⟨O†O⟩ =
∑︂
i,j

c∗
i ⟨xi+j⟩cj =

∑︂
i,j

c∗
iMijcj, (2.13)
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where the matrix M , which elements are Mij = ⟨xi+j⟩, is called a Hankel matrix.
We can see that for this form of the operator Ô is identity (2.3) equivalent to the
statement that the symmetric matrix M is positive semi-definite. In the following
algorithm, we will use a stronger constraint, which is that the matrix M should
be positive definite. As we shall see, this will prove convenient.

2.2 Algorithmic structure
The main idea is to start with a large subset of the search space X ⊂ S. For
each point of the subset p = (E, ⟨x⟩, . . .) ∈ X, we generate a sequence of mo-
ments {⟨xm⟩}2K−2

0 , where K is the so-called depth of the method, with recursion
relation (2.11). For this moment sequence, K ×K Hankel matrix

M =

⎛⎜⎜⎜⎜⎝
⟨x0⟩ ⟨x1⟩ . . . ⟨xK−1⟩
⟨x1⟩ ⟨x2⟩ . . . ⟨xK⟩

... ... . . . ...
⟨xK−1⟩ ⟨xK⟩ . . . ⟨x2K−2⟩

⎞⎟⎟⎟⎟⎠ (2.14)

is created, and its positivity is checked. If it fails the test, then the point p is
dismissed. This way, we obtain a truncated set of points XK ⊆ X at depth K.
This process can be done once for high depth if the allowed set of points is
small enough to deduce something from the allowed set of points XK . Another
possibility is to apply this procedure subsequently on allowed regions for higher
depths. Let us summarize this algorithm in a few steps.

1. Select a subset of the search space X ⊂ S. For each point p = (E, ⟨x⟩, . . .) ∈
X generate the moment sequence {⟨xm⟩}2K−2

0 .

2. From 2K − 2 terms of this sequence for the point p construct the K × K
Hankel matrix Mij = ⟨xi+j⟩, 0 ≤ i, j ≤ K − 1.

3. Check if the matrix M is positive definite. If it is not positive definite, then
dismiss the point p. This way, we obtain the set of allowed points XK ⊆ X
at depth K.

4. Repeat this procedure starting with the set of points XK and depth K + 1.

The expectation is that as K → ∞, the allowed set of points XK converges
to values from which true spectrum can be obtained. The steps of the above
algorithm are of polynomial complexity in the depth K, but convergence in K
has an exponential tendency, as we will see in the case of the harmonic oscillator
and the double-well potential in the next chapter. One of the method’s drawbacks
is that elements of the matrix M generally grow very rapidly. This growth can
be dampened by rescaling matrix elements

Mij −→ Mij

Mi1Mj1
, (2.15)

for Mi1,Mj1 ̸= 0. This way, the signs of the principal minors are unchanged, and
positive definiteness is conserved. Let us prove this little trick. From Sylvester’s
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criterion, we know that for a symmetric, positive definite matrix A ∈ Rn×n, all
principal minors are positive. We can write the k-th principal minor of matrix A
for k ∈ {1, . . . , n− 1} using the definition of determinant of an n× n matrix

detAk =
∑︂

π∈Sn

sgn (π)a0π(0)a1π(1) . . . an−1π(n−1), (2.16)

where Sn is the group of all permutations of the set {0, 1, . . . , n − 1} with the
function composition as group operation, π is a permutation, sgn (π) sign of
the permutation and small letters denote elements of the matrix. Now we will
perform (2.15) on the principal minor above

detAk −→
∑︂

π∈Sn

sgn (π) a0π(0)

a01aπ(0)1

a1π(1)

a11aπ(1)1
. . .

an−1π(n−1)

an−11aπ(n−1)1
. (2.17)

The denominator of each member of the sum is a square. Therefore, the sign of
the principal minor is unchanged.

Because of this growth, high numerical precision is needed. We worked in Python
with the mpmath library. Precision was set to 50 digits as was done in [14]. Check
of the positivity of the matrix M was done by trying the Cholesky decomposition
on the matrix M – given symmetric, positive definite matrix M , we can write
M = LL⊤ where L is a real lower triangular matrix with positive diagonal en-
tries. If the Cholesky decomposition of the matrix M is not possible, it means
M is not positive definite and, the moment sequence creating the matrix M is
rejected. As mentioned in [14], one could try to find the singular Hankel matrices
corresponding to boundary points of the accepted regions. This could speed up
computations. Unfortunately, we did not find a way to isolate such matrices;
thus, we opted to check positiveness using the Cholesky decomposition.

2.3 Matrix models
We will briefly outline that the bootstrapping method can also be generalized
to single-matrix quantum mechanics. Firstly, we will explain what single-matrix
quantum mechanics is. Quantum mechanics can be thought of as a special case of
Quantum Field Theory (QFT). In QFT, we have “input space”, called spacetime,
and “output space”, called target space. Quantum mechanics is QFT with the
spacetime of one dimension, where the only dimension is time. The target space
of the quantum mechanics we are used to is RN (most often N = 3, think of
position vector x⃗(t)). Single-matrix quantum mechanics works with the target
space of Hermitian N × N matrices. Generally, QFTs with this type of target
space are called matrix models. It is common to work in so-called large N limit,
where N → ∞ and certain aspects of matrix models simplify dramatically.

The Hamiltonian in this matrix model can, e.g., look like this

Ĥ = Tr(P̂2) + Tr(X̂ 2) + g

N
Tr(X̂ 4), (2.18)

where P̂ and X̂ are N × N Hermitian matrices analogous to momentum and
position operator and g > 0 the coupling constant. Matrices P̂ and X̂ satisfy
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commutation relations [P̂ ij, X̂ kl] = −iδilδjk (where we still have ℏ = 1). The
main difference in the bootstrap method for single-matrix quantum mechanics
is that we cannot eliminate momentum operator P̂ explicitly and isolate energy,
and we do not use closed recursion relation for all expectation values. However,
the energy and expectation values of short operators (operators of power less
than N) can still be constrained. This time, we will need more than three basic
identities; we will need to use more symmetries and tricks as large N factorization
to get additional relations between expectation values. The description of these
methods is beyond the range of this thesis and can be found in [1], [16] and [17].

46



3. Applications
The last chapter will be about applying the bootstrap method to two quantum
mechanical systems – the harmonic oscillator and the double-well. The harmonic
oscillator represents the simplest system to test the bootstrap method because
it has only one-dimensional search space, and the results gained can be eas-
ily compared to its well-known spectrum. After that, we will move on to the
double-well, which has two-dimensional search space. Therefore, it will pose new
challenges. We will compare the results gained with the methods described in the
first chapter. In both cases, we will go through the intricacies of implementing
the bootstrap in Python.

3.1 Harmonic Oscillator
We will work with a particle in the harmonic oscillator potential

V (x̂) = 1
2 x̂2, (3.1)

where frequency of oscillations ω, mass of the particle M and Planck’s reduced
constant ℏ are all set to one as we did before. Using the recursive relation for
expectation values (2.11) we get

0 = 2mE⟨xm−1⟩ + 1
4m(m− 1)(m− 2)⟨xm−3⟩ − ⟨xmV ′(x)⟩ − 2m⟨xm−1V (x)⟩ =

= 2mE⟨xm−1⟩ + 1
4m(m− 1)(m− 2)⟨xm−3⟩ − ⟨xm+1⟩ −m⟨xm+1⟩, (3.2)

and after substitution m = s− 1 where m ∈ N, therefore s ∈ {2, 3, 4, . . .} we get
the recursion relation for the harmonic oscillator

s⟨xs⟩ = 2E(s− 1)⟨xs−2⟩ + 1
4(s− 1)(s− 2)(s− 3)⟨xs−4⟩. (3.3)

This way, we have the recursion relation only for even moments. However, the
potential V (x) is even, which means that all odd moments are equal to zero.
From normalization, we know that ⟨x0⟩ = 1, and from equation (3.3), we see that
⟨x2⟩ = E and this is all we need to start the recursion. Thus, the search space is
truly one-dimensional S = {E}.

Now, we will proceed to implementation details. Figure 3.2 presents the program
we will go through. We started with importing libraries; we used scipy and
numpy for fitting data, matplotlib.pyplot for plotting, and most importantly,
mpmath for the high precision. By a command mp.dps, the precision for the real
float type mpf, with which we worked, was set to 50 digits. In order to maintain
high precision, we used special arithmetic operations from mpmath library – fadd
for addition, fsub for subtraction, fmul and fprod for multiplication, fdiv for
division and power for exponentiation.
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Then we moved on to defining some functions. The MakingGrid function created
a high-precision one-dimensional grid, and we used it to divide the interval of en-
ergies from Emin = 0 to Emax = 10 to N = 1000 pieces. The RecursionRelation
function produced a moment sequence {⟨xs⟩}2K−2

0 according to equation (3.3).
From this sequence, the function HankelMatrix created a K ×K Hankel matrix
where we also used the trick (2.15) to dampen the growth of matrix elements.
The last function fitting_function was used for fitting gained data; we will
comment on that later.

After that, we initialized parameters and variables and created the search space S.
Consequently, we started the primary cycle, reducing the search space until
K > 50. For every energy from the search space, we created a moment se-
quence, and from that, the Hankel matrix. Positivity was checked by trying the
Cholesky decomposition by the function cholesky. If it failed, we replaced the
relevant energy by 0. This way, we obtained the reduced search space. Then
we went through it to find the boundaries for the accepted regions of energies,
creating a list bounds1. This list was checked for duplicated values. If there was
a duplicated value, it meant that the relevant region of the accepted energies was
only one value. Therefore, this value was transferred into results list together
with a current size of a step as uncertainty to this value, as a potential member
of the spectrum. Either it was a member of the spectrum to which the algorithm
correctly converged or one of the accepted regions “crumbled” — it did not sim-
ply shrink; instead, one part of it was riddled with holes in such a way that the
one-value accepted regions existed. We will comment on this issue later. This
way, we created a modified list of boundaries called bounds2. From this list, we
calculated the total width of the accepted energy intervals for given K and saved
it in the convergence list to study the convergence of the method.

Most importantly, from the modified list of boundaries, we created new grids for
the accepted regions only and applied the whole process again to these accepted
regions. After depth K = 50 was reached, we took the average from the last
boundaries for each region and saved it in the results list together with the
half-length of each region as uncertainty to the averaged value. This way, we
obtained the accepted energies with their uncertainties, which are compared with
the exact spectrum of the harmonic oscillator in Table 3.1.

Firstly, we can see no impostors in the accepted energies caused by the “crum-
bling” mentioned earlier, and the bootstrapped results are in good agreement
with the exact spectrum. Secondly, we can see that the relative difference from
the exact value is more significant for higher energies. This also holds for the
uncertainties, except for the first bootstrapped energy. The first energy was iso-
lated to the one-value region for K = 10; therefore, it has the uncertainty of the
initial step size. The other bootstrapped energies were not isolated to one-value
regions; instead, they were averaged from the last regions, which were wider for
higher energies. This effect was also observed with the double-well potential, as
we will see later.
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n En Bootstrapped energy Relative difference from the exact value
0 1/2 0.50 ± 0.01 1.2 · 10−50

1 3/2 1.499999999999999996 ± 9 · 10−18 2.8 · 10−18

2 5/2 2.500000000000001 ± 3 · 10−15 4.6 · 10−16

3 7/2 3.4999999999998 ± 4 · 10−13 5.4 · 10−14

4 9/2 4.50000000001 ± 3 · 10−11 2.9 · 10−12

5 11/2 5.499999999 ± 1 · 10−9 1.0 · 10−10

6 13/2 6.50000001 ± 4 · 10−8 1.8 · 10−9

7 15/2 7.500000 ± 1 · 10−6 5.5 · 10−8

8 17/2 8.50001 ± 2 · 10−5 6.5 · 10−7

9 19/2 9.4999 ± 2 · 10−4 6.9 · 10−6

Table 3.1: Comparison of the bootstrapped energies with the exact spectrum of
the harmonic oscilator En = n+ 1/2 (in units of ℏω).

In the last part of the program, we used data saved in convergence list to not
only create in matplotlib.pyplot library a graph of convergence of the method
in Figure 3.1 but also to fit the data using orthogonal distance regression odr
from scipy library. As a fitting function, we used

y = ae−b(K−10)c

, (3.4)

where y is the total interval width and a, b and c are fitted real parameters. We
obtained a = 8.0 ± 0.3, b = 0.004 ± 0.002, and c = 1.9 ± 0.2. Thus, convergence
is faster than exponential.
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Figure 3.1: Convergence of the method for the harmonic oscillator.

We have also created another less complicated and faster program in which we
applied the algorithm only once for K = 50 and N = 10 000. This time, all ac-
cepted energies were reduced to one-value regions; therefore, they had the same
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uncertainty of the initial step size 0.001. Both approaches agreed in results, but
the subsequent one represented in Figure 3.2 was less stable in the choice of pa-
rameters K and N . This means that for some values of these parameters, the
correct energy was discarded because the depth K was too high for the fine-
ness of a grid of the relevant region. Therefore, parameters K and N had to
be carefully chosen based on trial and error. Also, individual approaches cannot
differentiate between the impostor value and the correct value. We used both
and compared the results to discard the incorrect values (there were none this
time). The following section will discuss other benefits of using both approaches
and their comparison. Both programs are included in the attachments to this
thesis.

1 import numpy as np
2 import scipy as sp
3 from scipy import odr
4 import matplotlib . pyplot as plt
5 from mpmath import *
6 mp.dps = 50
7 plt. rcParams . update ({
8 "text. usetex ": True ,
9 "font. family ": "cmr"

10 })
11

12 # making the grid
13 def MakingGrid (start ,end ,arr ,step):
14 x = start
15 while x <= end:
16 arr. append (x)
17 x = fadd(x,step)
18 return (arr)
19

20 # recursion for creating the moment sequence
21 def RecursionRelation (y,x,K):
22 x =[1,0, mpf(y) ,0]
23 for s in range (4 ,2*K -1):
24 if s%2 == 0:
25 x. append (fadd(fdiv(fprod ([2,y,(s -1) ,x[s -2]]) ,s),
26 fdiv(fprod ([s-1,s-2,s-3,x[s -4]]) ,fmul (4,s))))
27 else:
28 x. append (0)
29 return x
30

31 # creating the Hankel matrix from the moment sequence
32 def HankelMatrix (x):
33 d = int (( len(x) + 1) /2)
34 H = zeros(d)
35 for i in range (0,d):
36 for j in range (0,d):
37 if fmul(x[i+1],x[j+1]) != 0:
38 H[i,j] = fdiv(x[i+j],fmul(x[i+1],x[j+1]))
39 else:
40 H[i,j] = x[i+j]
41 return H
42

43 # defining the fitting function
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44 def fitting_function (p,x):
45 a,b,c = p
46 return a*np.exp(-b*(x -10) **c)
47

48 # creating the search space
49 N = power (10 ,3)
50 K = 10
51 K_list = []
52 E_min , E_max = 0, 10
53 length = fsub(E_max ,E_min)
54 S = [ MakingGrid (E_min ,E_max ,[], fdiv(length ,N))]
55 S_reduced = [ MakingGrid (E_min ,E_max ,[], fdiv(length ,N))]
56 results = []
57 convergence = []
58

59 while K <=50:
60 # reducing the search space
61 for j in range (0, len(S)):
62 for i in range (0, len(S[j])):
63 O = RecursionRelation (S[j][i],[],K)
64 try:
65 M = HankelMatrix (O)
66 L = cholesky (M)
67 except ValueError :
68 S_reduced [j][i] = 0
69 print(f"\n Reduced search space for K = {K}: \n",S_reduced )
70

71 bounds1 = []
72 for j in range (0, len( S_reduced )):
73 for i in range (1, len( S_reduced [j]) -1):
74 if i==1 and S_reduced [j ][0]!=0:
75 bounds1 . append ( S_reduced [j][0])
76 if i== len( S_reduced [j]) -2 and S_reduced [j][ -1]!=0:
77 bounds1 . append ( S_reduced [j][ -1])
78 if (( S_reduced [j][i -1]==0) and ( S_reduced [j][i]!=0)):
79 bounds1 . append ( S_reduced [j][i])
80 if (( S_reduced [j][i +1]==0) and ( S_reduced [j][i]!=0)):
81 bounds1 . append ( S_reduced [j][i])
82 if (( S_reduced [j][i -1]==0) and ( S_reduced [j][i]!=0) and
83 ( S_reduced [j][i +1]==0) ):
84 results . append ([ S_reduced [j][i],fdiv(fsub(S[j][i+1],S[j][

i -1]) ,2)])
85 print(f"\n Bounds for accepted regions for K = {K}: \n",bounds1

)
86

87 bounds2 = []
88 for i in range (0, len( bounds1 ) -1,2):
89 if bounds1 [i] != bounds1 [i+1]:
90 bounds2 . append ( bounds1 [i])
91 bounds2 . append ( bounds1 [i+1])
92 print(f"\n Modified bounds for accepted regions for K = {K}: \n

",bounds2 )
93

94 totwidth = 0
95 if len( bounds2 ) >=2:
96 for i in range (0, len( bounds2 ) -1,2):
97 totwidth = fadd(totwidth ,fsub( bounds2 [i+1], bounds2 [i]))
98 convergence . append ( totwidth )
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99

100 S = []; S_reduced = []
101 for i in range (0, int(len( bounds2 )/2)):
102 S. append ( MakingGrid ( bounds2 [2*i], bounds2 [2*i+1] ,[] ,
103 fdiv(fsub( bounds2 [2*i+1], bounds2 [2*i]),N)))
104 S_reduced . append ( MakingGrid ( bounds2 [2*i], bounds2 [2*i+1] ,[] ,
105 fdiv(fsub( bounds2 [2*i+1], bounds2 [2*i]),N)))
106 K_list . append (K)
107 K += 5
108

109 for i in range (0, int(len( bounds2 )/2)):
110 results . append ([ fdiv(fadd( bounds2 [2*i], bounds2 [2*i+1]) ,2),
111 fdiv(fsub( bounds2 [2*i+1], bounds2 [2*i]) ,2)])
112 print("\n Accepted energies are: \n",results )
113 print("\n Total width of accepted energies for given K: \n",

convergence )
114

115 # fitting data for convergence
116 for i in range (0, len( convergence )):
117 convergence [i] = float(str( convergence [i]))
118

119 odr_model = sp.odr.Model( fitting_function )
120 data = odr.Data(K_list , convergence )
121 fit = sp.odr.ODR(data ,odr_model ,beta0 =[7 ,0.0001 ,3])
122 out = fit.run ()
123 beta = out.beta
124 std = out. sd_beta
125 print("\n Parameters of the fit: ",beta ,
126 "\n Standart deviation of the parameters of the fit: ",std)
127

128 # plotting
129 plt.plot(K_list , convergence ,color = "black",marker = "o",

linestyle = "None")
130 plt.plot(np. linspace ( K_list [0] , K_list [ -1] ,50) ,
131 beta [0]* np.exp(-beta [1]*( np. linspace ( K_list [0], K_list [ -1] ,50) -10)

** beta [2]) ,
132 color = "red", linestyle = "--", linewidth = 1)
133 plt. legend (["Data"," Fitted curve $ae ˆ{-b(K -10)ˆc}$"],loc = "upper

right", fontsize =14)
134 plt.title(" Convergence of total interval width",fontsize =16)
135 plt. xlabel ("$K$",fontsize =14)
136 plt. ylabel ("Total interval width",fontsize =14)
137 plt.grid( linestyle = ’-’, linewidth = 0.5)
138 plt. savefig (" ConvergenceHO .pdf", dpi =300)

Figure 3.2: Implementation of the bootstrap method for the harmonic oscillator
in Python.

3.2 Double-Well
We will work with a particle in the double-well potential

V (x̂) = g

2

(︄
x̂2 − 1

4g

)︄2

, g > 0. (3.5)
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Using the recursive relation for expectation values (2.11) we get

0 = 2mE⟨xm−1⟩ + 1
4m(m− 1)(m− 2)⟨xm−3⟩ − ⟨xmV ′(x)⟩ − 2m⟨xm−1V (x)⟩ =

= 2mE⟨xm−1⟩ + 1
4m(m− 1)(m− 2)⟨xm−3⟩ −

⟨︃
2gxm+3 − 1

2x
m+1

⟩︃
−

− 2m
⟨︄
xm−1 g

2

(︄
x4 − 1

2gx
2 + 1

16g2

)︄⟩︄
=
(︄

2E − 1
16g

)︄
m⟨xm−1⟩+

+ 1
4m(m− 1)(m− 2)⟨xm−3⟩ + 1

2(m+ 1)⟨xm+1⟩ − g(m+ 2)⟨xm+3⟩, (3.6)

and after substitution m = s− 3 where m ∈ N, therefore s ∈ {4, 5, 6, . . .} we get
the recursion relation for the double-well potential

⟨xs⟩ = 1
2g
s− 2
s− 1⟨xs−2⟩ + 1

g

(︄
2E − 1

16g

)︄
s− 3
s− 1⟨xs−4⟩+

+ 1
4g

(s− 3)(s− 4)(s− 5)
s− 1 ⟨xs−6⟩. (3.7)

Again, we will use the evenness of the potential V (x) and get that all odd mo-
ments are equal to zero. From normalization, we know that ⟨x0⟩ = 1, and from
equation (3.7), we see that

⟨x4⟩ = 1
3g

(︄
2E − 1

16g

)︄
+ 1

3g ⟨x2⟩, (3.8)

where E and ⟨x2⟩ are needed to start the recursion. Thus, the search space is
two-dimensional S = {E, ⟨x2⟩}.

Now, we will proceed to implementation details. Figure 3.8 presents the pro-
gram we will go through. The core of the program – used libraries, functions,
and algorithm remains the same as in the programs for the harmonic oscillator
(of course, this time, we use the recursive relation (3.7) in RecursionRelation
function). The first new challenge was to estimate the relevant interval of the
second moment, given the interval of the energy. We used a classical particle in
the double-well potential (as was done in [15]). For a period of motion of getting
from turning point x1 to turning point x2 and back, we have

T = 2
∫︂ x2

x1

dx√︃
2E − g

(︂
x2 − 1

4g

)︂2
, (3.9)

and for the second moment

⟨x2⟩cl = 2
T

∫︂ x2

x1

x2√︃
2E − g

(︂
x2 − 1

4g

)︂2
dx. (3.10)

This curve represents the classical limit in the E-⟨x2⟩ plane, our search space S.
Because of that, the accepted regions by the bootstrap method have to be close
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to this curve, as is depicted in Figure 3.4 and Figure 3.5. In the program, we
used equations (3.9) and (3.10) to estimate the interval of the second moment.
The second challenge was to create and reduce a two-dimensional grid. We
created one one-dimensional grid for energies and, for each energy, another
one-dimensional grid for second moments, all grids with N = 300. For each
energy and grid of second moments related to that energy, the moment se-
quence {⟨xs⟩}2K−2

0 and consequently K × K Hankel matrix was created, and
its positive definiteness checked by trying the Cholesky decomposition. If
the whole one-dimensional grid for second moments for a given energy was
rejected, then the energy was replaced by 0. We were left with a reduced
one-dimensional search space of energies on which we applied the same proce-
dure as for the harmonic oscillator to get the boundaries for the accepted energies.

Again, we calculated the total width of the accepted energy intervals for given
K and saved it in the convergence list to study the convergence of the method.
New grids for the accepted regions of energies were made, and the process was
repeated. After depth K = 18 was reached, we took the average from the last
boundaries for each region and saved it in the results list. This way, we obtained
the accepted energies presented in Table 3.2. Some of the values proved to be
the impostors discussed in the last section, and we discarded them because of
Figure 3.4 and Figure 3.5 (we will discuss these figures and finding the impostors
later). This time, there was not so great difference in uncertainties of individual
energies as was the case for the harmonic oscillator, but still higher energies were
less constrained; also, it can be seen from Figure 3.4 and Figure 3.5.

Bootstrapped energy at g = 0.05
0.3850 ± 4 · 10−4 1.846 ± 3 · 10−3 2.8316 ± 4 · 10−4

0.4600 ± 7 · 10−4 1.884 ± 3 · 10−3 2.8556 ± 5 · 10−4

0.4971 ± 2 · 10−4 2.244 ± 2 · 10−3 2.8798 ± 6 · 10−4

1.0643 ± 8 · 10−4 2.263 ± 2 · 10−3 2.9040 ± 6 · 10−4

1.598 ± 3 · 10−3 2.283 ± 2 · 10−3 2.9284 ± 7 · 10−4

1.808 ± 3 · 10−3 2.784123 ± 9 · 10−6 2.9530 ± 7 · 10−4

1.829 ± 3 · 10−3 2.8078 ± 2 · 10−4 2.9777 ± 6 · 10−4

Table 3.2: The bootstrapped energies for the double-well potential obtained by
subsequently applying the bootstrap method (in units of ℏω). Red ones are the
impostors discarded by Figure 3.4 and Figure 3.5.

In the last part of the program, we used data saved in convergence list to not
only create in matplotlib.pyplot library a graph of convergence of the method
in Figure 3.3 but also to fit the data using orthogonal distance regression odr from
scipy library. We used (3.4) as the fitting function, where a, b and c are fitted
real parameters. We obtained a = 2.37 ± 0.08, b = 0.04 ± 0.02, and c = 2.2 ± 0.2.
Thus, convergence is again faster than exponential.
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Figure 3.3: Convergence of the method for the double-well.

We have also created another less complicated and faster program in which we
applied the algorithm only once for K = 16 and N = 600. In this program,
we did not focus on energies only but created Figure 3.4, where accepted
regions of the search space are depicted together with the curve for the classical
particle. For creating this picture, it was more convenient to construct the
search space oppositely – only one one-dimensional grid for second moments and
a one-dimensional grid of energies for each second moment. Also, from the data
obtained from the discussed program in Figure 3.8, we made another program
which created Figure 3.5, where the reduction of the subsequent approach and
the curve for the classical particle is depicted.

These figures are significant because the program in Figure 3.8 cannot differen-
tiate between the impostor value and the correct value on its own; however, the
correct value would be depicted in these figures. We can see that the discarded
energies from Table 3.2 have no region in Figure 3.4, and they have no darkest
region in Figure 3.5. Comparing these figures, we can see that the one-run ap-
proach and subsequent approach agree well about the accepted regions, and we
did not miss any regions with the one-run method. The subsequent method is
again less stable in the choice of parameters K and N , as was discussed in the
last section. On the other hand, the subsequent approach is better when one
tries the method on a system without prior knowledge. One can easily spot that
some regions were incorrectly rejected. We recommend using the subsequent ap-
proach to get to know the new system and then using the one-run approach with
calibrated parameters K and N in more complicated programs.
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Figure 3.4: Reduced search space after one run of the bootstrap method for
K = 16 and N = 600 together with the curve for the classical particle.
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Figure 3.5: Reduced search space after subsequently running the bootstrap
method for K from 10 (lightest) to 18 (darkest) and N = 300 together with
the curve for the classical particle.

And that is precisely what we did in the two more programs where we focused
on the ground and the first excited states. We repeated the one-run approach
for different values of the coupling constant g (from 0.037 to 0.050 with a step
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of 0.001) to get the dependence of ground state and first excited state energy on
g in Figure 3.6 and also the dependence of energy difference of these two energies
on g in Figure 3.7 (in both programs we used K = 18 and N = 900).
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Figure 3.6: Dependence of energies of the ground and the first excited state on
the coupling constant g. Both energies are closing on each other as g → 0.
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Figure 3.7: Dependence of energy difference of the ground and the first excited
state on the coupling constant g in comparison with the one-loop (equivalent with
the WKB), the two-loop, and the three-loop approximation method.
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From Figure 3.6, we can see that both energies are closing on each other as
they should in the g → 0 limit when the double-well becomes two single-wells.
Also, from Figure 3.7, we can see that the bootstrap method is better than the
one-loop (which is equivalent to the WKB) and the two-loop approximation,
and it is in good agreement with the three-loop on the used interval of g. All
approximations are closing on the bootstrapped data in the g → 0 limit. All
programs are included in the attachments to this thesis.

1 import numpy as np
2 import scipy as sp
3 from scipy import odr
4 import matplotlib . pyplot as plt
5 from mpmath import *
6 mp.dps = 50
7 plt. rcParams . update ({
8 "text. usetex ": True ,
9 "font. family ": "cmr"

10 })
11

12 # making the grid
13 def MakingGrid (start ,end ,arr ,step):
14 x = start
15 while x <= end:
16 arr. append (x)
17 x = fadd(x,step)
18 return (arr)
19

20 # recursion for creating the moment sequence
21 def RecursionRelation (x,y,z,w,K):
22 x =[1,0, mpf(z) ,0,fdiv(fadd(fsub(fmul (2, mpf(y)),fdiv (1, fmul (16,

mpf(w)))),mpf(z)),
23 fmul (3, mpf(w))) ,0]
24 for s in range (6 ,2*K -1):
25 if s%2 == 0:
26 x. append (fsum ([ fdiv(fprod ([ fsub(fmul (2, mpf(y)),fdiv (1, fmul

(16, mpf(w)))),
27 s-3,x[s -4]]) ,fmul(mpf(w) ,(s -1))),fdiv(fmul(s-2,x[s -2]) ,

fprod ([2, mpf(w),s -1])),
28 fdiv(fprod ([s-3,s-4,s-5,x[s -6]]) ,fprod ([4, mpf(w) ,(s -1) ]))])

)
29 else:
30 x. append (0)
31 return x
32

33 # creating the Hankel matrix from the moment sequence
34 def HankelMatrix (x):
35 d = int (( len(x) + 1) /2)
36 H = zeros(d)
37 for i in range (0,d):
38 for j in range (0,d):
39 if fmul(x[i+1],x[j+1]) != 0:
40 H[i,j] = fdiv(x[i+j],fmul(x[i+1],x[j+1]))
41 else:
42 H[i,j] = x[i+j]
43 return H
44
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45 # defining the fitting function
46 def fitting_function (p,x):
47 a,b,c = p
48 return a*np.exp(-b*(x -10) **c)
49

50 # creating the search space
51 g = 0.05
52 N = 300
53 K = 10; K_max = 18
54 K_list = []
55 E_min , E_max = 0, 3
56 if E_max <=(1/(32* g)):
57 x1 = sqrt ((1/(2* g)-sqrt (8* E_max/g))/2)
58 x2 = sqrt ((1/(2* g)+sqrt (8* E_max/g))/2)
59 else:
60 x1 = -sqrt ((1/(2* g)+sqrt (8* E_max/g))/2)
61 x2 = sqrt ((1/(2* g)+sqrt (8* E_max/g))/2)
62 integrand1 = lambda x: 1/( sqrt (2* E_max -g*(x**2 -1/(4*g))**2))
63 integrand2 = lambda x: x**2/( sqrt (2* E_max -g*(x**2 -1/(4*g))**2))
64 T = 2*re(quad(integrand1 ,[x1 ,x2]))
65 mom_max = 2*re(quad(integrand2 ,[x1 ,x2])/T); mom_min = 0
66

67 length1 = fsub(E_max ,E_min)
68 length2 = fsub(mom_max , mom_min )
69 S1 = [ MakingGrid (E_min ,E_max ,[], fdiv(length1 ,N))]
70 S2 = MakingGrid (mom_min ,mom_max ,[], fdiv(length2 ,N))
71 S1_reduced = [ MakingGrid (E_min ,E_max ,[], fdiv(length1 ,N))]
72 S2_reduced = MakingGrid (mom_min ,mom_max ,[], fdiv(length2 ,N))
73 results = []
74 convergence = []
75

76 while K<= K_max:
77 # reducing the search space
78 for k in range (0, len(S1)):
79 for i in range (0, len(S1[k])):
80 for j in range (0, len(S2)):
81 O = RecursionRelation ([],S1[k][i],S2[j],g,K)
82 try:
83 M = HankelMatrix (O)
84 L = cholesky (M)
85 except ValueError :
86 S2_reduced . remove (S2[j])
87 if S2_reduced == []:
88 S1_reduced [k][i] = 0
89 S2_reduced = MakingGrid (mom_min ,mom_max ,[], fdiv(length2 ,N))

90 print(f"\n Reduced search space for K = {K}: \n",S1_reduced )
91

92 bounds1 = []
93 for j in range (0, len( S1_reduced )):
94 for i in range (1, len( S1_reduced [j]) -1):
95 if i==1 and S1_reduced [j ][0]!=0:
96 bounds1 . append ( S1_reduced [j][0])
97 if i== len( S1_reduced [j]) -2 and S1_reduced [j][ -1]!=0:
98 bounds1 . append ( S1_reduced [j][ -1])
99 if (( S1_reduced [j][i -1]==0) and ( S1_reduced [j][i]!=0)):

100 bounds1 . append ( S1_reduced [j][i])
101 if (( S1_reduced [j][i +1]==0) and ( S1_reduced [j][i]!=0)):
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102 bounds1 . append ( S1_reduced [j][i])
103 if (( S1_reduced [j][i -1]==0) and ( S1_reduced [j][i]!=0) and
104 ( S1_reduced [j][i +1]==0) ):
105 results . append ([ S1_reduced [j][i],fdiv(fsub(S1[j][i+1],S1[

j][i -1]) ,2)])
106 print(f"\n Bounds for accepted regions for K = {K}: \n",bounds1

)
107

108 bounds2 = []
109 for i in range (0, len( bounds1 ) -1,2):
110 if bounds1 [i] != bounds1 [i+1]:
111 bounds2 . append ( bounds1 [i])
112 bounds2 . append ( bounds1 [i+1])
113 print(f"\n Modified bounds for accepted regions for K = {K}: \n

",bounds2 )
114

115 totwidth = 0
116 if len( bounds2 ) >=2:
117 for i in range (0, len( bounds2 ) -1,2):
118 totwidth = fadd(totwidth ,fsub( bounds2 [i+1], bounds2 [i]))
119 convergence . append ( totwidth )
120

121 S1 = []; S1_reduced = []
122 for i in range (0, int(len( bounds2 )/2)):
123 S1. append ( MakingGrid ( bounds2 [2*i], bounds2 [2*i+1] ,[] ,
124 fdiv(fsub( bounds2 [2*i+1], bounds2 [2*i]),N)))
125 S1_reduced . append ( MakingGrid ( bounds2 [2*i], bounds2 [2*i+1] ,[] ,
126 fdiv(fsub( bounds2 [2*i+1], bounds2 [2*i]),N)))
127 K_list . append (K)
128 K += 1
129

130 for i in range (0, int(len( bounds2 )/2)):
131 results . append ([ fdiv(fadd( bounds2 [2*i], bounds2 [2*i+1]) ,2),
132 fdiv(fsub( bounds2 [2*i+1], bounds2 [2*i]) ,2)])
133 results .sort ()
134 print("\n Accepted energies are: \n",results )
135 print("\n Total width of accepted energies for given K: \n",

convergence )
136

137 # fitting data for convergence
138 for i in range (0, len( convergence )):
139 convergence [i] = float(str( convergence [i]))
140

141 odr_model = sp.odr.Model( fitting_function )
142 data = odr.Data(K_list , convergence )
143 fit = sp.odr.ODR(data ,odr_model ,beta0 =[2 ,0.02 ,3])
144 out = fit.run ()
145 beta = out.beta
146 std = out. sd_beta
147 print("\n Parameters of the fit: ",beta ,
148 "\n Standart deviation of the parameters of the fit: ",std)
149

150 # plotting
151 plt.plot(K_list , convergence ,color = "black",marker = "o",

linestyle = "None")
152 plt.plot(np. linspace ( K_list [0] , K_list [ -1] ,50) ,
153 beta [0]* np.exp(-beta [1]*( np. linspace ( K_list [0], K_list [ -1] ,50) -10)

** beta [2]) ,
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154 color = "red", linestyle = "--", linewidth = 1)
155 plt. legend (["Data"," Fitted curve $ae ˆ{-b(K -10)ˆc}$"],loc = "upper

right", fontsize =14)
156 plt.title(" Convergence of total interval width",fontsize =16)
157 plt. xlabel ("$K$",fontsize =14)
158 plt. ylabel ("Total interval width",fontsize =14)
159 plt.grid( linestyle = ’-’, linewidth = 0.5)
160 plt. savefig (" ConvergenceDoubleWell .pdf", dpi =300)

Figure 3.8: Implementation of the bootstrap method for the double-well in
Python.
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Conclusion
We introduced the bootstrap method in quantum mechanics and implemented
it in Python to attack two simple systems – the harmonic oscillator and the
double-well. We found out that bootstrapped energies agreed with the exact
spectrum for the harmonic oscillator. For the double-well potential, we found out
that the bootstrapped energies agreed with the classical limit, and we focused
on the ground-state energy splitting.

To better understand and compare the ground-state energy splitting with the
numerical bootstrap, we investigated two different analytical approaches – the
WKB approximation and the path integral around instanton (the one-loop
approximation), which proved to be equivalent. We found out that the bootstrap
method outperformed these two approximations. We reached for better approx-
imations – the two-loop and the three-loop approximation. We found that the
bootstrap method gave a better estimate than the two-loop approximation and
agreed well with the three-loop approximation.

We went through the details of our implementation in Python. We explored
two approaches to the bootstrap method – the one-run and the subsequent
approach. We found that the one-run approach is faster and more stable
than the subsequent one and, therefore, more suitable for more complicated
programs. However, in systems with no prior knowledge, it is more convenient
to use the subsequent approach because it is easier to spot that we missed some
energies. We recommend using the subsequent approach to get to know the new
system and then using the one-run approach with calibrated parameters in more
complicated programs.

To conclude, for both systems, the bootstrap method proved successful. It gave us
a great estimate of the spectrum for both systems. In the case of the double-well,
it even gave us better results than the standard approximation methods.
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troja.mff.cuni.cz/˜novotny/text23.pdf, 1999. Accessed: 2024-6-12.

[5] M. Marino. Instantons and Large N: An Introduction to Non-Perturbative
Methods in Quantum Field Theory. First edition. Cambridge University
Press, Cambridge, United Kingdom, 2015. ISBN 9781316365540.

[6] H. Kleinert. Path Integrals in Quantum Mechanics, Statistics, Polymer
Physics, and Financial Markets. Fifth edition. World Scientific Publishing
Company, Berlin, 2009. ISBN 9814273562.

[7] J. Glimm and A. Jaffe. Quantum Physics: A Functional Integral Point of
View. Second edition. Springer-Verlag, New York, Heidelberg, Berlin, 1987.
ISBN 0387964770.

[8] M.J. Ablowitz and A.S. Fokas. Complex Variables. Second edition.
Cambridge University Press, Cambridge, United Kingdom, 2003. ISBN
9780521534291.

[9] C.M. Bender and S.A. Orszag. Advanced Mathematical Methods for
Scientists and Engineers. Second edition. Springer, United States of America,
1999. ISBN 9780387989310.
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