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Introduction
Game content is one of the most important factors of player engagement, with

the exact importance dependent on the given game. Still, it can be estimated
given the genre. As games grow more and more complex over time, the cost of
development of the game content increases as well [1]. Furthermore, the demand
for game content continues to rise. Manual content creation is becoming very
expensive and may not be sustainable [2]. With this in mind, it only makes sense
to research the territory of procedural game generation.

When choosing to use procedural generation, there are many methods available.
This thesis will demonstrate the use of evolutionary algorithms. Those are powerful
optimization tools that do not require any properties of the function they are
optimizing, which proves to be very valuable. The thesis also describes a generic
implementation of an evolutionary algorithm.

There are many different genres of games and their content very much differs.
And so when aiming to research procedural generation within game content, it
is logical to choose a specific group of games that would benefit from the given
generated content. This thesis focuses on level layout generation within the stealth
strategy genre. As mentioned above, game content’s importance for engagement
can be estimated by genre. It is very high for stealth games in general [3].

A generic abstraction of the genre will be discussed since its games are very
niche and there is just a thin line between it and other genres. Then we will show
the implementation of such an abstraction and a whole playable demo will be
shown as well. The thesis also includes a description of a level solver above the
created stealth strategy abstraction. We will also show how such a solver can help
while using the evolutionary algorithms to generate levels during design time.

Finally, within the thesis a research was conducted which captures the relation
between the procedurally generated levels and the manually created ones regarding
player experience. The goal of the research is to find out whether playing levels
generated by evolutionary algorithms can result in a similar player experience as
playing levels created manually.

This comparison is created based on Flow [4] measurements conducted on
participants playing the playable demo game.

Thesis structure

We will look into what other work was done on themes similar to this one 1.
Then it is necessary to describe what are evolutionary algorithms and stealth
strategy games and how we interpret them within this thesis 2.

In the next section, we will see how the respective parts of the software
created within the thesis were created. Mainly the game core library, evolutionary
algorithms library, the level generation, and the playable demo 3.

Another section will be about the methods used within the thesis experiment,
mainly the concepts regarding the survey and how the whole experiment structure
is layout 4.

Considering the completed survey, we also have to discuss the data we got 5.
Lastly, we conclude what the data suggest and what are the potential directions

for future work 5.
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1 Related studies
Procedural content generation within games dates thousands of years back.

Since analog games often make the players create some content for themselves
through dice throws and pictures [5]. Automated digital generation of game
content dates back to the 1980s. The manual game content creation in digital
games is suggested not to be scalable [6] and finding materials on this topic is
not hard. For example, the book by Tanya X. Short and T. Adams [7] covers
the topic very extensively. Another example of a study of this topic is Procedural
Generation of Dungeons [8] which focuses on level creation.

There even exist studies regarding procedurally generated game content by
evolutionary algorithms, such as Evolutionary generation of game levels [9]. This
study focuses on the generation of discrete levels. The implementation of an
individual within the study is however a binary string representing tiles within
the discretized level. This factor alone signifies how loosely related the works are.

The focus of this thesis also lies in the world of the stealth strategy genre.
Stealth games are a popular genre and are also researched extensively. For example,
the Examining the Essentials of Stealth Game Design [10] covers the essentials
of what they are and how they are separated from other games from the design
perspective. It mostly covers what challenges and means players have within
the genre and how important the artificial intelligence of enemies is to create a
well-designed game.

When combining procedural content generation with stealth games, even there
we can see many studies. For example, an enemy placement that creates interesting
puzzle-like games [11]. In the work, they split the levels into segments and then
place enemies, enemy routes, and cameras on the segment-splitting points. There
is also a subsequent study that introduces a way to create interesting guard paths
in a given vector [12].

Another example study is about enemy patrols which look natural and cover
the right amount of area [13]. They achieve it by storing a value for each place in
the level indicating how long it was not seen by any enemies. For any combination
of enemies and their paths, they compute how well the level is covered.

Another study is about dynamically placing enemies so that they obstruct
some of the paths to the level goal using grammar-based approaches [14]. They
create a graph of points that are crucial for enemies to spot big areas and then
find player paths to the goal and block them by placing guards at the previously
computed spots.

There is also an example of a study using grammar-based approaches within
stealth games to create discrete level layouts [15]. They use cyclic generation to
create a graph, which represents sectors of the game. They also combine it with
lock and key puzzles, which describe which sector should contain what element.

Another study discusses the ways both players and non-playable characters can
move stealthily and how to calculate such paths [16]. They detect spaces, where
the player can never be spotted by enemies and use rapidly exploring random
trees(RRT) on a discretized level.

Lastly, we mention a study, that tries to incorporate dynamic enemy behavior
based on player actions within stealth games [17], this study also depends on
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RRTs and heavily focuses on the usage of distractions, which is typical for stealth
games.

All of the above-mentioned studies deal only with generic stealth games and
are not more specific. No studies found mention the stealth strategy genre, also
called real-time tactics or commandos-like [18] games, directly. We can also see,
that evolutionary algorithms are a very novel introduction into the procedural
content generation within the stealth genre in general.

Most examined studies about level layout generation either work on a discrete
world or discretize a continuous world. In both cases, their abstraction and
algorithms work in a discrete environment, which is also not the focus of this
thesis.



2 Background
When asking whether the evolutionary algorithms are a suitable tool for

generating stealth strategy levels, it is crucial to split the question into multiple
different sections before we attempt to answer it. In this chapter we will look into
different parts of the question and what approach to them was used within the
project.

2.1 Evolutionary algorithms
Evolutionary algorithms are a class of generic purpose algorithms. Their

strength lies in a stochastic iterative search within the solution space. In this
section, we will explore how they work and what advantages and disadvantages
they bring. To see the explanation of the implementation of the used evolutionary
algorithm, see section 3.3, to see the actual implementation, you can visit the
related GitHub repository as mentioned in section 3.

When we want an evolutionary algorithm to solve a problem, it is crucial to
choose what the potential solutions to the problem look like. We refer to those
solutions as individuals. When considering a set of solutions, it is referred to as
population. The evolutionary algorithm starts by creating some initial population.
For the next step, we need to provide a function, that can assign a score to a
solution (individual), this score reflects how good the solution is. Such a scoring
function is known as a fitness function.

The evolutionary algorithm scores all individuals with the fitness function and
then, depending on those scores, selects which individuals will be used to create
new individuals. It takes a group of them and combines their solutions into new
solutions. In most cases, the count of the newly created solutions is the same
as the count of the input individuals, but it is not necessary. This process of
combining solutions is referred to as crossover and the new individuals are called
offsprings. The total number of offsprings created may vary, but it is mostly equal
to or larger than the amount of individuals in the population.

In the next step, those offsprings are changed, mostly referred to as mutated,
individually with or without connection to their score, but always totally separately
to all other individuals. This mutation typically only occurs on some of the
individuals given by mutation probability P.

Then we again score the new individuals and lastly, we select which individuals
are going to continue to the newly created population within a process called
selection. There were some offsprings created and it is necessary to reduce their
number back to the size of the population. It is also possible to include the
previous population in this process. When the new population is selected, the
iterations continue by creating new offsprings. We can see the whole process
portrayed in figure 2.1.

9



Figure 2.1 Evolutionary algorithm main loop

Evolutionary algorithms are very a powerful tool for finding complex solu-
tions with functions too complex to define or simulate. Computer games within
continuous space are exactly that type of virtual environment.

However, defining a fitness function for a procedural level generation using
this method is proving to be difficult. This thesis aims to overcome this barrier
within the stealth strategy game genre.

2.2 Stealth strategy
The first game of the Commandos series [18] is the Commandos: Behind

enemy lines [19], which is, to the best knowledge to the author, also the first game
of the genre. And since the game was very successful [20], a few other titles of the
genre were created during the upcoming years, such as Commandos: Beyond the
Call of Duty [21], Desperados: Wanted Dead or Alive [22] or Robin Hood: The
Legend of Sherwood [23]. The last game of the genre for nearly a decade was
Helldorado [24].

The silence within the genre was however broken by Satelitte Reign [25] and
later Volume [26]. Many titles have emerged since, for example Shadow Tactics:
Blades of the Shogun [27], Desperados III [28], Commandos 3: HD Remaster [29],
Frigato: Shadows of the Caribbean [30], Shadow gambit: the Cursed Crew [31]
and more. There are also announced not yet released games of the genre such as
Sumerian Six [32].

As the genre becomes more known and more games of the type arrive, it only
makes more sense to conduct research upon this new territory (see 1).

The stealth strategy game genre has a few characteristics that separate it from other
games. Because the borderline is very thin, it is crucial to unify our expectations for
this thesis. For this research, we consider games with the following characteristics



to be in the stealth strategy genre:

• Top-down view of the world

• Real-time

• Single player

• Continuous world space

• Up to a few playable characters in a given level, each with different abilities

• Levels include enemies

• Enemies can detect player by predetermined mechanisms

• Until the player interferes with enemies, their actions are mostly expectable

• The level has some goal(s)

• The player can control the character by setting a destination, mostly not by
giving a directional input

The properties of stealth strategy games are also visible within the figure 2.2.

Figure 2.2 Using a skill on an enemy in Desperados III

For algorithmic purposes within this thesis, it is essential to make an abstraction
of such games, that encompasses as many of them as possible but does not include
any of the games outside of the genre. It is however also necessary to remove
some of the constraints to allow the work to remain in the intended time scope.
With this in mind, the abstraction used in this thesis is the following:

• The level is represented in a two dimensional space



• The level only takes place within a predefined small area, meaning area of
10 full enemy viewcones or less

• Levels may contain obstacles, which are areas of concave polygonal shape
restricting movement or vision of the enemies or the playable character.

• Enemies have starting position and rotation, they move on a predefined
path the whole game

• Enemies can detect the playable character via their view, which is always
in the direction they are facing

• When the player is detected, the levels ends unsuccessfully

• The level contains one playable character which starts at a given position

• The level is successfully completed when the playable character reaches some
predefined goal location

• The playable character can have some starting skills which can each be
used a given number of times

• The level can contain some skills that could be picked up by the player

We shall elaborate on why were these constraints selected and how they relate
to a stealth strategy game as we defined it above. The ones that fully satisfy the
definition portrayed above, are going to be omitted.

Two dimensional Even though most of the existing stealth strategy games
are in a 3-dimensional environment, they can mostly be transformed into
two dimensions without losing any major gameplay elements. Furthermore
creating a three-dimensional playable game would be outside of the time
scope of this study.

In small area Stealth strategy levels are typically taking place on larger maps.
Mostly 200 enemy viewcones and more. But the levels can mostly be broken
down into small sections containing just a few enemies. For this reason, we
can assume levels in small areas without loss of generality.

Detect via view In a typical stealth strategy, the enemies can not only see but
also hear the playable character. The definition also allows sensing via other
means. However, the main way to catch the player is in most games the view.
So even though we do not cover the whole possible scale, the main point
remains covered and while adding other senses would improve the gameplay
experience and may introduce some interesting challenges that could be
discovered by the procedural generation, the feature is minor enough not to
be implemented for the sole reason of the study scope.

One playable character In the thesis we opted to only focus on creating a game
for one singular playable character. That is even though in all existing stealth
strategy games, the player can play as multiple different characters. By our
choice of including only one character we do not let the player appreciate



the interesting synergies that can arise from using multiple characters and
the level generation cannot discover those synergies. However, since every
character has its own skill set, creating a setup that is targeted for that
particular skill set is very useful as well. Also creating a level solver for
multiple characters would increase the complexity of the study far beyond
the available time frame.

It is also worth noting, that stealth strategy games typically offer the possibility
to save and load the game. This feature is however fully supported by the library,
only the demo does not include it. That is a decision by design. In a typical
stealth strategy the levels contain many different groups of enemies (as mentioned
above), so saving and loading in between interacting with these different groups is
crucial. However, in the demo game, there is only one group of enemies so the
saving feature becomes redundant.



3 Implementation
Now that we have set the terminology and have the background knowledge,

we can proceed to the explanation of three major pieces of software, that were
developed within this project. Those are:

• the game library, which contains the game core as well as level solvers,

• the evolutionary algorithms library,

• the example game demo created in the Unity software, which also contains
the level generating part.

All three of them are written in C#. In this chapter, we will dive into their
implementations and mention their respective algorithms, both novel and settled
ones. We will also look into the software architecture of those parts and how they
are interconnected. All of those 3 parts are available to view in a public GitHub
repository at https://github.com/CyrChudac/DiplomaThesis.

3.1 Game library
The game library contains stealth strategy game rules abstraction, level abstrac-

tion as well as level state abstraction, navigation pathing within the abstraction,
scalable player and enemy action repertoire, level solver on a given level and
more. Within this section, we will introduce the algorithms, concepts, classes and
architecture behind the library.

3.1.1 Game data structure
To be able to understand all of the algorithms and processes in the library, it is

important to first understand what data structures lie behind the game itself. The
most rigid data are the game rules, which are within the GameCreatingCore.Stat-
icSettings namespace. They form the rules of the game, such as characters’ speed
or the enemy’s viewcone lengths. Their data are stored in the form of classes,
which then get processed to their form which is actually used by other parts of
the software. The used classes have the Processed suffix compared to their storing
counterparts. In the figure 3.1 we see which class holds which data and how they
are structured, the diagram however omits the class duality for clarity.
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Figure 3.1 The data classes of the game rules

The next data structure to understand is the level representation data, which
are in the namespace of GameCreatingCore.LevelRepresentationData. They hold
the positions and shapes of obstacles as well as the starting positions of the player
and enemies, for which they also hold their patrol routines. We can see the data
structure displayed in the figure 3.2.

Figure 3.2 The data classes of a level representation

The last data structure regarding the game data is the LevelState in the
GameCreatingCore.LevelStateData namespace. Those hold the data of the current
state of the level, mainly the player and enemy positions, which skills are available
to the player and what actions are the enemies currently doing. Also if there are
any actions, which have a longer-lasting effect without occupying the character
who initiated them, such as projectiles, the Level state remembers those as well.
We can see the structure in the figure 3.3.



Figure 3.3 The data classes of a level state

3.1.2 Game actions system
Almost every change from game state to game state is made through game

actions, specifically through classes implementing the IGameAction interface.
These changes happen from the GameSimulator class, which can simulate the
game for a given time window of arbitrary length. The game actions have two
separate stages, both of which can be omitted while defining an action. In the
figure 3.4 we can see what methods and properties game actions have.

Figure 3.4 The properties and methods of game actions

The two methods of the game actions, which can alter the game state are the
CharacterActionPhase and the AutonomousActionPhase. They both can change
any data within the level state. The character action phase is meant to signify
what a character is doing, whilst the autonomous action phase is the result of his
actions doing something. A good example would be a character drawing a bow
as the action phase and the arrow flying as the autonomous phase. The actions
also know which character initiated them, which is the EnemyIndex property,
where null signifies the player. Some actions require the character to finish them,



which would for example fit a potential jumping ability. Such actions have the
IsCancelable sign set to true.

Since the library is meant to support level solving, it is important that any
given level state can be duplicated and branched into multiple different scenarios.
For this reason, the game actions need to implement the duplicate function, which
creates an exact copy of the action including its internal state. Without this
feature, the action’s internal state would change while searching one potential
branch of level states and the action would not finish properly in the other
branches.

Because of the level-solving feature, it is also necessary to support the reset
function. When the level-solving actions for the player are found and are to be
returned to the user, they were just used to alter the game state and so their
internal state has to be reset so that they function properly again.

It is also worth noting, that various actions implement the IWithInnerActions
interface, which means that they themselves do not change the level state, they
only provide a wrapper for other actions. The already implemented ones are:

ChainedAction which chains a list of actions of a single character one after
another

TimeRestrictedAction which executes the underlying action for a given time-
frame and then ends

StartAfterAction which wait for a given time and then executes the underlying
action

This design allows any action nesting, which proves very convenient as we will
see in section 3.1.4. The ChainedAction is also used for walking. Since the walk
action moves a character in a straight line from A to B, the WalkAlongPathAction
inherits from the chained action and assigns the underlying action to be multiple
walking and turning actions that make the given character walk along the given
path.

Another aspect of the game actions part of the software is the IActiveGameAction-
Provider interface. It represents an action someone can do, whilst IGameAction
represents an action they are doing. For example ”someone can throw a rock”
would be an action provider, which can create the game action of ”the player is
throwing a rock at the position (0,0)”. The action provider can also have a limited
number of uses.

These action providers are used as player starting skills, player available skills,
and as part of the skills the player can pick up within the level.

The last part of the game actions are the PatrolCommands, which represent a
part of an enemy routine. They are basically a middle ground between action and
action providers, inside them, it is precisely known what the action is, they are just
not connected to any enemy character. Returning to the previous stone-throwing
example, the patrol commands can be represented as ”some enemy can throw a
rock at the position (0,0)”.

This may be counter-intuitive since every command is created for a specific
enemy since they belong to one specific routine of one specific given enemy.



However, as much as the enemy is an integral part of the commands, also the
commands are an integral part of the enemy. So it is an arbitrary choice which
one will contain the reference and which one an index. When we understand this,
we find out that it is much more convenient to index enemies from commands
than commands from enemies.

Pathing

As the player defines the target location of the playable character, as well as
the enemy has some arbitrary position set for their commands, it is necessary to
be able to find the shortest path from point A to point B within the game level
quickly. It will also be very handy to have a quick way of creating the navigation
graph necessary for path-finding. We will get to the reason in section 3.1.4. For
all those reasons a dedicated path-finding system was created within the library,
which also includes the navigation graph creation.

The path-finding algorithm of choice was the Dijkstra’s algorithm. This same
algorithm is used for all traveling objects, however, the graph underneath is
different since various obstacles can be walkable and unwalkable for enemies and
the player respectively.

As the vertices on the graph inputting the Dijkstra’s algorithm, we use the
corners of the obstacles, which the given graph is to be created from. We also
have to keep in mind, that if we do not want the characters to visually interfere
with the obstacles, we cannot use the obstacles as they are stored in the Level
representation, they have to be inflated beforehand. This inflation happens within
the ObstaclesInflator class in the GameCreatingCore.GamePathing namespace.
The implications for the resulting game are described in section 3.2.2. We can see
the resulting navigation graph in figure 3.5.

Figure 3.5 A navigation graph on an example level

As the starting and ending positions are in a generic case not on the graph, we
have to find all the reachable points to the starting point and check reachability
to the ending point from every vertex within the graph. There are no further
deviations from the regular Dijkstra’s algorithm.



When creating the graph, we check for every pair of vertices and if they are
reachable in a straight line. To do that we have to find out whether the line
between them has an intersection with any of the obstacle perimeters and also
if the line is not inside any obstacle, which would happen if one of the obstacle
corners was inside another obstacle. That is allowed within the library.

The graph itself is a generic class, which contains a list of edges and a list of
vertices. It also computes the adjacency matrix if prompted to and holds a sign
indicating, whether it is computed or not. The figure 3.6 shows different types of
edge information and nodes and what data they contain.

Figure 3.6 The inheritance of Graph classes and their data

3.1.3 Game simulation
One of the most important features of the library is to simulate the run

of a stealth strategy game. That includes enemy movement, player actions,
autonomous actions, and determining enemy alerting. This all happens within
the GameSimulator class in the GameCretingCore namespace. Since it is a very
crucial part of the game, we will go through the whole process in this section. It
is illustrated in pseudocode 1. The respective parts are then described below.



Algorithm 1 Simulate(state, playerActions)
1: state← DuplicateActions(state)
2: actions← []
3: if state.player.noncancallableAction ̸= null then
4: actions.Add(state.player.noncancallableAction)
5: actions.Add(playerActions)
6: actions.Add(longNoAction)
7: allStates← [state]
8: for all act in actions do
9: newState← act.CharacterPhase(state)

10: usedT ime← state.time− newState.T ime
11: newState← RemoveSkillsWithNoUsesLeft(newState)
12: newState← UpdateEnemies(newState, usedT ime)
13: for all autoAct in state.ActionsInP lay do
14: newState← autoActAutonomousAction(newState, usedT ime)
15: newState.ActionsInP lay.Remove(a⇒ a.Done)
16: newState← Pla(newState, usedT ime)
17: allStates.Add(newState)
18: if newState.time == 0 then
19: if notact.Cancellable then
20: newState.player.noncancallableAction← act
21: break
22: else
23: if act.IsAutonomous then
24: newState.ActionsInP lay.Add(act)
25: state← newState
26: return UpdateTimeOfPlayeInView(allStates)

As mentioned above, we are aiming to allow level solving so before any action
takes place, we need to duplicate all actions within the level state (line 1).

We have to add one long empty action into player actions (line 6) so that
enemies and autonomous actions are updated even when the player does nothing.

For enemy update (line 12) we again have to consider if it has some non-
cancellable action from the previous state if the enemy is going forwards or
backwards within the patrol and more.

It is important to note, that the autonomous actions(lines 13-15) are part
of the level state and can be updated from other actions. For example, when a
character starts turning, it removes all previous autonomous turning actions. For
that reason, we have to be careful to run all actions we should and none that we
should not.

We also have to compute for every enemy what time the player has been in its
view for and update the value within the enemy state (line 26).

Even though in classical stealth strategy being caught by an enemy typically
only triggers some alarm and lets you try to escape, in the case of our game it
does end the game. For that reason, there is no mechanism implemented, that
would allow the enemy to set the alerted sign back to false. However, the game
core is very scalable in that regard and some features of that kind may be added.



Viewcones

When computing whether the playable character is within the player view, it
is necessary to compute the shape of the enemy viewcone. This process happens
within the ViewconeCreator class in the GameCreatingCore namespace.

As a constructor parameter for this class, we pass the number of rays to cast
inside of the view. Such a ray is of a given length since we know the maximal
length of the viewcone. So we can consider it just a straight line. Then we
compute if this line has any intersection with any obstacles the enemies cannot see
through. When all rays are cast, the resulting points of intersection or potentially
the points at the max distance are the ending points of the view. To get the full
shape of the viewcone, we also add the enemy position.

To save computational resources, we remember this computed viewcone in a
dictionary, where the keys are enemy states. We only need to consider where the
enemy is, what rotation it has, and if it is alive. This optimization is very useful
while playing since many enemies do not move and so their viewcone shape is the
same the whole time they are alive.

3.1.4 Level solving
The library has a build-in level-solving feature. This section will look into

how level-solving is executed on the implementation level. There are two different
path-finding systems implemented. One very trivial one, which finds the path
to the goal disregarding all enemies, the other one is much more complex, since
it factors the enemies in. They both implement the IGamePathSolver interface.
Any new solver that may be potentially added is expected to use this interface as
well.

At the start, we can easily say, that in a level without any enemies, the path
can be found by path-finding on the graph with obstacles that obstruct player
movement. To improve this method, the navigation graph is computed from the
goal and the score to the goal is kept within the nodes. This way the navigation
only finds which reachable point has the lowest score after adding the distance
to the score and the rest is already covered. This technique uses the ScoredNode
class to create the navigation graph and it is used by the NoEnemyGamePather
class.

The other level solver includes enemies and time into the equation. It is within
the FullGamePather class. In short, it creates a tree of level states, takes the best
of the states in the tree leaves, finds possible actions out of that state, simulates
them on the current state, and adds the new states into the tree. We can see the
algorithm in psedocode 2.



Algorithm 2 GameSolve(LevelRepresentation level)
1: if inflateObstacles then
2: level ← ObstaclesInflater.InflateObsts(level)
3: noEnemyPath← NoEnemyGamePather.GameSolve(level)
4: if noEnemyPath == null or level.Enemies.Count == 0 then
5: return noEnemyPath

6: viewconeGraph← new V iewconeNavGraph(level)

7: simulator ← new GameSimulator(level)
8: state←WaitInitial(initialWaitT ime)
9: return GameSolveRecursion(state, 0)

At line 6 we initialize the ViewconeNavGraph class. For now, let us consider
it a black box, that can create a graph that includes the enemy viewcones and
possible actions.

And at line 8, we do the initial wait. Basically, if an enemy sees the playable
character at the level start, we want to give the player a time window bigger than
what the solver can do. So we force the solver to wait before it starts the actual
solving.

The algorithm returns the result of the GameSolveRecursion. This recursion
goes to a deeper level whenever an enemy dies or whenever some of the pickupable
skills is picked up. This way we separate the scoring in the previous recursion
level from the one with some of the objectives achieved.

Now let us see what the recursion does internally. It creates a priority queue
of StateNodes (see figure 3.7) and puts in the input state.

Figure 3.7 StateNode class with its internal data

We can see the whole algorithm illustrated in the pseudocode 3.



Algorithm 3 GameSolveRecursion(inputNode, iterations)
1: queue.Enqueue(0, inputNode) /* We initialize the priority queue. */
2: while queue.Any() do
3: currentNode← queue.DequeueMin()
4: if IsGoalAchieved(currentNode) then
5: return currentNode
6: currentT ime← currentNode.T ime + timeStep
7: if currentT ime ≥ maxTime then
8: return null
9: iterations← iterations + 1

10: if iterations > maxIterations then
11: return null
12: for all actions in currentNode.PossibleActions do
13: newState← Simulate(currentNode.State, actions, timeStep)
14: time← currentT ime
15: /* If the player has some non-cancellable action, we run the simulator

to finish it, since the next states would have to wait for it anyway. */
16: if newState.P layerNoncancellableAciton ̸= null then
17: actions← newState.P layerNoncancellableAciton
18: timeAdd← actions.T imeLeft
19: newState← Simulate(newState, actions, timeAdd)
20: time← time + timeAdd
21: /* We compute the graph including viewcones using the black box

defined above */
22: graph← ComputeGraph(newState)
23: possibleNodes← GetReachableNodes(graph, newState)
24: /* We have to limit the branching factor to some user defined value,

since the tree is huge */
25: LimitBranching(possibleNodes, maxBranching)
26: score← ComputeScore(possibleNodes)
27: newPossibleActions← NodesToActions(possibleNodes)
28: newNode← new StateNode(score, newPossibleActions, time)
29: if ShouldStartNewRecursion(newNode) then
30: result← GameSolveRecursion(newNode, iterations)
31: if result ̸= null then
32: return result
33: else
34: queue.Enqueue(score, newNode)
35: /* We have not found any actions from the given input state (or all states

created from the input state), so we return null. */
36: return null

The described algorithm searches through the tree of level states and if it has
enough iterations and in-game time available, it finds the path to the goal, if it
exists. It does not guarantee the best path. That is because we go into a deeper
level of recursion as soon as the node which should go into the deeper level is
created. Going back to the pseudocode 3, lines 29-32 are at their place referencing
newNode and not between lines 3 and 4 referencing currentNode.



That is however necessary. The sole purpose of the recursion is to not let the
scores after doing an important action interfere with the scores before doing it. If
we added the node into the queue, its score would represent the score after the
important action took place and so the invariant would break.

To fully show that the algorithm works, we also have to show that the branching
does not take up all of the iterations before it gets into the next recursion, or to
the goal respectively. That is very much dependent on the score that the nodes
have in the priority queue (line 26). We compute the score to be very slightly
dependent on the time stored in the node and very heavily dependent on the
score of the possible actions. We will answer this one later. Let us first focus on a
different question.

That is, why it is necessary to separate the scores before and after the important
action. The explanation will be possible after we look into the creation of the
graph with viewcones, which is the black box we established earlier in this chapter.

It is important to note, that the algorithm requires a different graph with
viewcones every tick because the enemies can move. However, since the enemy
actions are predefined and the time step is almost fixed, we only need to compute
the graph for most timestamps once. Only when an enemy dies or a skill is picked
up, it has to be recalculated. Moreover, the black box also stores the viewcone
shape for enemies given their location and rotation, so when an enemy is standing
on one point multiple ticks, his viewcone shape is only computed once.

When considering the viewcone as a shape, it is not strictly non-traversable.
The playable character can step inside, it just has to be there for a short enough
time. For this reason, we cannot consider the viewcone as some kind of an obstacle.

In short, we discretize the viewcone to a new separate graph with directed
edges based on where it is possible to traverse. Then we take all viewcones and
cut off what common parts they have with each other, we add the pickupable
skills as vertices into the graph, we add the available skills as vertices into the
graph, we run scoring of all those vertices and then we get the graph. Now we
will look into how all of these steps are implemented.

Viewcones discretization

We can consider the viewcone shape as a set of ending points and one point at
the position of the enemy. If we take the first and last ending points, there will
be a graph edge towards the position of the enemy. We can compute, how far
could the player go on this edge if it was inside the view so that they wouldn’t
be caught by the enemy. At this distance, we add a point on each side of the
viewcone. Then we take a set distance and cut the viewcone end including these
two new points by this distance. This process is shown in figure 3.8.



Figure 3.8 Discretization of an enemy viewcone

Even though this process may seem pointless when the number of rays is not
large, it has multiple advantages. We can set a high number of rays, which creates
a very precise shape of the viewcone, and then reduce the number of vertices in
the resulting graph. We can also point a small number of rays and still have fine
discretization. We basically separate the complexity of the path-finding from the
precision of the viewcone shape.

On the newly created set of points, we create one-directional edges between
vertices, where the playable character has time to walk through without being
caught by the enemy. We need to remember, that all edges on the viewcone
perimeter are walkable since the enemy cannot see there. This way it is possible
to go around the viewcone.

Intersecting viewcones removal

If there was only one single enemy in the level, then the viewcones would be
ready now to be merged with the navigation graph. However since it is possible,
that multiple viewcones intersect each other, we cannot merge them yet. It would
possibly add some edges inside the viewcones, which are not walkable. In figure 3.9
we can see that adding two viewcones one on top of the other possibly creates an
illegal path (marked in red) within the navigation graph.

Figure 3.9 Combining viewcones with illegal path visualization

For this reason, it is necessary to adjust both viewcones. Going back to the
figure 3.9 we can see, that there were actually two illegal paths created, one on
the blue viewcone and one on the green one. So that proves that adjustments are
possibly necessary for both viewcones.



The adjustments however have to be very delicate, to let all edges which are
possible to travel there and remove the nontraversable ones. It is also important
to consider cases that are more complex than the simple one portrayed above.
However, let us now stick with this simple case and deal with the more complex
one later. We need to find the intersections of the viewcone perimeters and remove
all nodes between such intersections. Then possibly add an edge between them if
the distance between them is short enough for the player not to get caught. We
can see the desired result in the figure 3.10.

Figure 3.10 Desired result of viewcone combination

Now we get to the basic implementation principle. Let us consider a pair of
two viewcones. We iterate over the vertices of one of them and if we find out that
some of the vertices are inside the other viewcone, we store their index and find
out the first next index that is outside the viewcone. This way we find the two
edges, which have to intersect with the other viewcone. Let us call this edge Es.
In this step, we also compute the intersection points.

Then we iterate over the perimeter edges of the second viewcone and find out
which of them have an intersection with Es. This way we find the two edges in
the second viewcone, which contain the intersection.

Next, we consider the viewcones separately, let us focus on the first one now.
We simply remove the vertices, that are inside the other viewcone, remove edges
that end or start in them, and add to vertices in the intersection points. We also
add edges from and to these points and find out, if it is possible to travel on the
edge between the two intersections.

When focusing on the second viewcone, it is more complex. The first compli-
cation is, that we know the two edges which have the intersection on them, but
we do not know which part of the perimeter is contained in the first viewcone.
Checking if the vertices on the perimeter are inside the first viewcone will not
help, because the viewcones can actually cross each other, not just have some part
of themselves in the other viewcone. Two such situations are illustrated in the
figure 3.11.



Figure 3.11 Viewcones crossing each other

To overcome this challenge, we look in the direction of the ending and starting
points of the edges with intersections. This way we find out in which direction the
first viewcone really is. However, we cannot simply remove all vertices between
the two edges. It is very apparent from the figure 3.11 above. Some of the vertices
outside of the viewcone can be removed.

So firstly, we check if all the vertices in between the intersections are inside
the first viewcone. If so, we simply remove them just as we did with the first
viewcone. If not, we found two sections that are inside the first viewcone. Then
we remove those two separately.

We also should consider what happens if more than two viewcones intersect
somewhere. However, we find out by simple observation, that if we do the pairwise
viewcone intersecting area removal, the final result will work for any number of
intersecting viewcones.

Pickupables and available skills

To form the final graph, we will also need the points where pickupable skills
can be picked up and points where available skills can be used. It is very
simple with pickupable skills since they have their position stored within the
LevelRepresentation data. However available skills are different. Every available
skill has its specific reach type, use range, and target type. The target type has
four options, which the skill can target:

• The playable character himself (for example healing, speed...)

• An enemy (for example melee kill, shortening viewcone...)

• The ground, including obstacles (for example some distraction)

• The ground, excluding obstacles (for example some teleport)

Every skill has a Start and a Target. The Target is the location or the character,
which the skill will affect. The Start is the location where the player will use the
skill from. Both of them depend on the target type, we can see how they are
calculated in the following list based on the target type.

Player - the Target is the player, the Start is the current player location



Ground - we form a circle around the player with radius equal the range of the
skill. Then we create a user-defined number of Targets evenly distributed
on the circle. The Start is the current location of the player. We can see
the process illustrated in figure 3.12.

Figure 3.12 Created targets around the player with use range r

Enemy - We create the circle as shown in figure 3.12 around every enemy, but
the locations on the circle are now Starts and the Target is the given enemy.

The reach type only describes through what the skill can be used. It either
can be used through obstacles or not. The following code describes whether a
Start-Target pair will be added to the graph:

Algorithm 4 Reach Type requirement to add a pair
if ReachType == CanGoThroughObstacles then

return True
else

return notIsPathThroughObstacle(Start,Target)

This concludes the possible target types and how they influence the Start and
Target selection, as well as the reach types and what they require from a pair to
be added to the graph.

Combining the navigation graph and the viewcones

Now that the viewcone has no more common areas, and we have the pickupable
and available skill points, we can unify them all with the navigation graph. We
have all the vertices that will be in the final graph, however, there are many edges
missing and possibly many excess edges as well.

First, we find out if there are any obstacle corners, which are inside of enemy
views, this is especially probable, when the obstacles are inflated, because obstacle
inflation only affects the unwalkable obstacles, the vision is not affected and so the
corners of walkable obstacles naturally poke inside the viewcones. The vertices
inside viewcones are going to have all edges from and to them removed and will
be treated as an integral part of the viewcone, so they will only have edges to
other vertices inside the given viewcone, nowhere else.

Then we select such edges from the navigation graph, that are not obstructed
by any viewcones, only those are going to be passed to the final graph from the
navigation graph.



Next, we add the pickupable and skill use points into the new vertices. From
now on they will be treated just if they were an integral part of the previous
graph. Only we store their indices within the final vertices list so that we can
access them later.

Now we add vertices and edges from all the viewcones. It is important here,
that we combine vertices that are at the same points, which happens a lot in the
case of viewcone intersection, where the intersection points create two vertices
each - one in both viewcones. We also combine edges that go from the same vertex
to the same vertex. This way we find out if an edge in two intersecting viewcones
was traversable in one but not in the other. Such edges are not propagated into
the final graph.

Finally, we add edges between the viewcone vertices and navigation graph
vertices. There we have to again check, whether they are not obstructed by any
obstacle and also by any other viewcone.

Combined graph scoring

Now that we have a graph that contains all the viewcones, pickupable skills,
and usable skills, we have to score every vertex to know how good it is to go there.
However, we actually do not create one score for every vertex, we create three of
them. One for reaching the goal, one for reaching skill use and one for skill pick
up.

For scoring, we again use the Dijkstra’s algorithm. However, here we cannot
simply take the distance of the edge’s start and end as the edge score, the edge
may be inside of a viewcone, and in such cases, we raise the score so that passing
through viewcones is penalized.

To find the goal reachability score, we start at the goal and find out all vertices
that are reachable and what score they have. We store those scores. Then we
do the same for the vertices that the playable character can pick up objects at.
Finally, we do it for the points it is possible to use skills at. This way we get a
graph, where each vertex has up to three scores and for each of these scores the
edge also stores the previous vertex on the best path.

Final notes

Now that we understand how the graph is created and how the final data
looks, we can come back to the previously asked question: Why is it necessary to
separate the scores between recursions? (see the question)

Well, it is because we have to choose the score of vertices as one number. So
when scoring a vertex during the level solving, we take preferably the score to
goal, then the score to skill use, and finally the score to skill pick up. This is
defined within a single function which can be very easily changed to be an input
of the user.

When we consider this, we can see, that after an enemy dies or after a skill
is picked up, we have either picked up or used a skill and so other state nodes
that are close to executing that exact skill are close to a score of 0. So if some
new goal arose somewhere far, the scores within the current queue would be close
to zero and it would take a long time until the newly discovered goal would be



explored. For this reason, we go into deeper levels of recursion and use a new
queue to not let the previous low scores make the current new goal wait.

Now we can also answer the question about branching: Why does the algorithm
go into a deeper level of recursion or to goal instead of branching until it has no
more iterations left? (see the question)

We have three scores and when any of them gets to 0, we either go into a
deeper level of recursion or we got to the goal. So when the algorithm gradually
lowers the score inside the priority queue, it will inevitably get to a node with a
score of 0. That is because the character speed is linear and so the downwards
tendency of the score is linear as well. However, a score of 0 will lead to a deeper
level of recursion or the goal as already said above.

3.2 Playable demo
Even though the game library (3.1) represents a full stealth strategy game

core, building it into a game without a game engine would pose many graphical,
logistical, time, and other challenges. With this in mind, it was chosen, that the
game core library will be used in an existing game engine. Specifically Unity
2022.3.11f1. Unity already handles game the loop and graphics. The code for
Unity is also written in C# which further simplifies its interconnection with the
rest of the software created within the project.

In this section, we will dive into the implementation of the game. It was
created to demonstrate the capabilities of the game core library and also to
conduct research (4.2) focusing on the stealth strategy game genre. It is important
to consider the game with this in mind.

There are two very distinct parts of software, that were created within the
Unity game engine:

The first one is the part that creates game levels using evolutionary algorithms.
This one interconnects the evolutionary algorithms library and the game core
library. It uses game simulation and the automated level solution finder both
implemented within the game core library. This part of the software is only used
in design time and does not change the user gameplay experience.

The second part is the playable game itself. It takes either procedurally or
manually generated levels and turns them into a playable demo game.

3.2.1 Level generating
The software part within Unity that generates levels is not large. Its most

important functions are the mutation function and the fitness function. Those
are very crucial for the evolutionary algorithm to successfully create good results.

In this section, we will see a brief overview of the classes that combined create
the procedural generating functionality. Followed by the implementation of the
crucial parts mentioned above.

In the level-generating part of the game, there are only 8 classes, so this overview is
going to be very brief. The main class is the EvolAlgoGenerator class as apparent
from the figure 3.13.



Figure 3.13 Class dependencies within level generating part of Unity game

EvolAlgoGenerator calls the evolutionary algorithm itself while creating all
of its necessary parameters. It uses the LevelRepresentation class from the
GameCreationCore.LevelRepresentationData namespace as the individual. It also
uses the mutation classes (ObstaclesMutator, EnemyMutator), which define how
obstacles and enemies are changed from generation to generation within the
evolutionary algorithm.

The EvolAlgoGenerator class also sets the initial population. However, the
implementation within the software creates empty levels without any obstacles or
enemies. The reason is that creating a valid starting level is a hard problem and
implementing another new function for the initial population would be nontrivial.

The crossover function is also defined by the EvolAlgoGenerator class, but it
is empty. In the case of complex levels with enemies and obstacles in continuous
space, the interchange of data between individuals would lead to a huge downward
leap in scores for both resulting individuals. For that reason, no crossover was
implemented.

To have the level bounds set by the user, there is the PlaygroundBounds class
which graphically shows the user where the level generation will occur. This is
very useful to create levels that feel natural with their spacing given player speed
and size.

Since the evolutionary algorithm gives the option to reflect the current state
after each generation, there is the DebugLogWriter which writes to the Unity
debug console. It is however not updated until the full generating is done. Because
of that reason, the main purpose of this class is purely for debugging.

The LevelTester class lets the user see a layout of a chosen level without



entering the Unity play mode and it also scores the levels, which is used as a
fitness function by the EvolAlgoGenerator class.

The EvolAlgoRepeaterClass only runs multiple sessions of the level generating
each with a different random seed.

Fitness function

The fitness function located within the LevelTester class scores a given level.
It calls the level-solving part of the GameCreatingCore library, specifically the
FullGamePather ’s GetPath method (see 3.1.4) and processes the outputted actions
into a single floating point number representing the level. Within this function, it
is crucial to capture the goal of what we expect to see in the level.

Now lets carry through the scoring function visible in pseudocode 5.

Algorithm 5 Score(level)
1: playerActions← LevelSolver.GetPath(level)
2: if playerActions == null then
3: return 0 /* We found no path */
4: divisor ← level.Obstacles.Count ∗ 1

+level.enemies.Count ∗ 3
/* A user-defined count is added to the divisor so that levels with obstacles
are not punished too much compared to levels without them. */
+minimalDivisor

5: /* Path length is almost equivalent to the time spent in level as shown above. */
6: pathScore← playerActions.Count/divisor

7: actionBonus← 0
8: for all action in playerActions do
9: if not action.IsCancellable() then

10: if actionisKillAction then
11: actionBonus← actionBonus + killBonus
12: else if actionisWalkThroughV iewcone then
13: actionBonus← actionBonus + throughV iewconeBonus
14: else
15: /* We do not know what action it is, but since it is non-cancellable,

it is probably interesting. */
16: actionBonus← actionBonus + genericBonus

17: multiplier ← 1
18: if notplayerActions.IncludeKillAction() then
19: multiplier ← killNotUsedMultiplier

/* This lowers the score for the levels, which allow the player to kill
enemies even while it is not necessary, since the path does not contain any
kill action. */

20: return actionBonus + pathScore ∗multiplier

The approach of adding fixed values(lines 7-16) creates some very strange
behavior within the evolutionary algorithm. Levels that have the solved path



with some specific interesting action naturally get much higher scores and so they
propagate within the whole population very quickly making most of the levels
within one evolutionary algorithm run similar.

Even though it is logical to do the approach on lines 17-19, it also poses a
similar problem to the evolutionary algorithm as described above. If the level
allows the player to kill someone, it is punished heavily for not killing anything
and as soon as one level appears which solved path contains killing, its score
gets much higher than the score of the other levels and it spreads through the
population. For this reason, even though the software was created to support
it, the value of the score modifier for not using killing was set to 1 within the
experiment.

Mutation function

The mutation function is actually in the case of this software a set of functions.
It provides a system of how to randomly change a level and create a different
level. It aims for slight changes, which result in slight score shifts so the score can
gradually increase with the right mutations applied.

This aim is fulfilled with the Obstacles mutations, however, changes to the
enemies can have a drastic impact on the score so changes to the enemies are in
essence smaller just to lessen their impact on the score.

The enemy mutations can change enemy position and rotation slightly, also
add or remove points on a given enemy path and change those points slightly.
It can also remove and add enemies, with probability provided by the user with
respect to the current enemy count in the level. This approach gives the user full
control over enemy count in the level. It also however makes it more probable
that multiple levels will have the same count of enemies.

The obstacles mutation function can add and remove obstacles, it can also
change their position slightly and change their effect. The obstacles can be
walkable and unwalkable for both enemies and the player character and see-
through or non-see-through for enemies, which this mutation function can change
with probability given by the user.

When new obstacles are created, their area has to be in some given range
(provided by the user) and they cannot be too thin in any dimension. Even
though the game creation core library supports any concave obstacle shapes, this
mutation only operates over rectangle shapes, but in the full continuous scale.
Outer obstacle - the level bounds - can also be mutated by this function.

The mutation function also only makes valid levels. This is done by providing
the obstacle mutation function with the current position of the player, goal,
enemies and enemy path points so that obstacles are never mutated in a way
that they would contain some of the points they should not. Similarly, the enemy
mutation function is provided with the current shape of obstacles, so that enemies
are never mutated inside the obstacles.

The player character’s starting position, the level goal position, skills available
to the player at level start and skills that the player can pick up within the game
are not mutated within this function. Even though it could be implemented, they
change the level too fundamentally and so their mutation is not desired. Moreover,
they are often to be set as starting parameters for the generator, since they are



an important integral part of the overall designing process, possibly driven by the
game story.

3.2.2 Game
Within the thesis, a playable demo of a stealth strategy game was implemented.

The resulting gameplay can be seen in figure 3.14.

Figure 3.14 Example gameplay from the game demo

Within a level, the player controls the playable character(blue) with their mouse.
If the kill option is available within the level, they can choose enemies(red) to kill.
They can also display or hide viewcones of enemies. Their goal within a level is to
reach a given destination without being detected by the enemies. The whole game
is playable and downloadable at https://cyrdach.itch.io/masterthesisresearch.

The rest of this section will focus on the implementation of the portrayed
playable demo. A very brief picture is: Every frame, the game calls the game
creation library, which moves and turns the enemies accordingly and also moves
the playable character towards the location desired by the player. It computes
which enemies see the player and returns all of that information to the game as a
level state. All of the game objects are then changed to match that state.

To represent a game level, there are various scriptable objects, such as
UnityLevelRepresentation, UnityObstacle, UnityStaticGameRepresentation, and
more. Those hold the data necessary to run the game within the GameCreat-
ingCore library. We can see all of those classes, what other data classes they
hold, and which of those classes are in the Unity game and which are in the game
creating core library in figure 3.15.

https://cyrdach.itch.io/masterthesisresearch


Figure 3.15 Class dependencies within level generating part of Unity game

When the game starts, the LevelInitializor class calls the associated Level-
Provider, which either takes one of the scriptable objects above and creates a
LevelRepresentation out of it, or it can also generate the level representation itself,
just as the LevelProviderDummy class does.

The LevelInitializor then spawns obstacles and enemies provided by the En-
emyProvider to the places set by the LevelRepresentation. The obstacles are
created as new separate objects each with a custom MeshRenderer, the enemies
are instantiated from prefabs as is.

Then the GameRunner class takes the level representation, that the LevelIni-
tializor got, and creates static navigation meshes, one with obstacles enlarged(also
called inflated) so that characters do not visually interfere with obstacles, and
one straightly from the unchanged obstacles. It then calls the GameCreatingCore
library, specifically the GameSimulator class, which at each frame simulates the
game. And moves the player and enemies to the right positions. It also finds out
if the level goal is achieved and if the game is lost. And lastly is sets all enemy
viewcones to display how alerted the respective enemy is.

The GameRunner also looks into the HumanPlayerController class, which
supplies places where the player clicked and possible enemy targets to be killed.
Whenever a player makes such input, the GameRunner finds out if it was outside
of the inflated obstacles, inside them, or inside the unchanged obstacles. If inside
the unchanged, no location is assigned to the player, if it is inside inflated, the
nearest location outside is assigned. This process is shown in figure 3.16.



Figure 3.16 Behaviour of player clicking on obstacles

Even though the game creation core library computes the shape of the enemy
viewcones every frame, it only creates one continuous shape, but the visualization
of the viewcone has to create multiple shapes based on how long the player
is inside of that enemy’s viewcone. For this reason, the viewcone creation and
maintenance are handled solely from the Unity game demo by the ViewconeCreator
and ViewconeMaintainer classes. The length of the viewcone as well as how big
portion of it is turned red, which corresponds to how long time the player has
spent in the enemy view, is both computed within the library.

3.3 Evolutionary algorithms library
When asking the question if evolutionary algorithms can perform some specific

task, it is crucial to have a stable library that can run generic evolutionary
algorithms. To ensure its stability, to have full control over the library’s internal
functionalities, and to mitigate the overhead of unused evolutionary algorithm
parts, we created a whole new standalone library for evolutionary algorithms
within this project. This chapter will look into its implementation. We will not
however explain the evolutionary algorithm basics here, for that see 2.

Creating an evolutionary algorithms library requires to have a main loop. In
the case of the library created within this project, it is in the EvolutionaryAlgo
class. The main loop creates the initial population and then loops over creating
new offsprings, mutating and crossovering them, scoring them, and selecting a
new population. This process is shown in figure 2.1 in the Background chapter.

With this approach we do not deviate from the basic functionality or imple-
mentation of evolutionary algorithms [33], however, we still have full control over
the parameters. Those are all gathered within the EvolAlgoParameters class. We
can see which ones are available and what were their values for the level-generating
in the following list:

Population size - how many individuals are in one population

• was 10 individuals for a very long time because most of the individuals
were very similar. However then we found out that increasing the
population size creates more variety for the given run and creates
better results, so for that reason we ultimately used 100 for all levels

Offspring count - how many offsprings are created between populations



• was in 1:1 ratio with population size for all runs

Parent selector - before the offsprings are created, it is necessary to select their
parent from the population

• selected every individual once in each generation - this guarantees no
unintentional data loss, only works, because offspring count is 1:1 to
population size

Breeding - when parents are selected, this function defines how the new offsprings
are created from them (includes crossover)

• from 2 parent to 2 offsprings with no crossover, not changing any
individual - this is not ideal, but no functional crossover method was
discovered

Mutating function - with some probability, the new offspring is mutated to
have a bit different data

• it is described in detail in section 3.2.1, however some of its details
were changed in between runs as described in section 4

Selection mechanism - after the offsprings are mutated, we have to pick the
individuals that will pass to the next generation

• we used roulette wheel selection for all runs, however one of its param-
eters was changed as described in section 4

Elitism - when the selection occurs, this says how many of the best individuals
will be kept from the previous generation

• always kept exactly 1 best individual

Previous population bias - Within the selection, the previous population may
be used as well, this signifies how much is their score lower compared to the
new offsprings

• was changed in between runs, for details see section 4

Ending predicate - after each generation, we ask whether the algorithm should
end and this function gives us the answer

Initial population - when the algorithm starts, it gets the initial population
here

• provided empty levels with no enemies and no obstacles

Scoring function - a function that can compute score for any individual

• it is described in detail in section 3.2.1

Plotter - between every generation, this function gets the opportunity to report
the data to some outside source

• used to show the time, when each generation was finished
• later also stores the scores of all generations to produce data (see 4)



4 Methodology
In this section, we will look into what methods were used in this project and

why. We will also discuss the method specifics and their parametrization within this
thesis. First, we will discuss the evolutionary algorithms, their parametrization,
and the used techniques. Then we will dive into the survey used to compare the
manually created levels to the procedurally generated ones. In both cases, we will
also discuss the potential flaws with the used methods and their executions.

4.1 Evolutionary algorithms
In this thesis, evolutionary algorithms were used to generate levels. An

evolutionary algorithm is a very broad term, so to describe the method properly,
further specification is needed. However, the algorithm implementation is described
in section 3.3 and the basic structure in section 2, so no more specifics are needed
in that regard.

With this in mind, this section will mostly cover what results the genetic
algorithms yielded and what potential changes can be made in further research
in this direction. We will also cover the parameters, whose value was changed in
between runs. The values which stayed the same are specified in section 3.3.

Even though the unchanged parameters surely can be changed and it could
lead to better results, the parameter space is simply too huge to optimize manually
on all of its axes. Moreover, the generating itself is a time-consuming process so
it would not be possible to fit within the time frame available.

There were more than 50 successful recorded runs of the evolutionary algorithm,
each resulting in 10 to 100 created levels. It has to be admitted, that some of
those were pure test runs.

The time each run took varied a lot depending on the parameters. Most runs,
which had a population of 100 individuals took approximately 15 minutes, but
when we changed the iterations (see code of level solver 3) from 500 to 5000, the
whole run took approximately an hour. This holds for the following processor:
Intel(R) Core(TM) i7-4710HQ CPU, 2.5GHz 2501 Mhz, 4 cores.

It is also important to note, that since this thesis aims to show whether the
evolutionary algorithms are yielding good results and not what to optimize their
time, we did not implement any parallelization. The evolutionary algorithms can
benefit greatly there since most of the time spent is within the scoring function,
which could be parallel for the whole generation.

Now we can discuss the parameters changed between runs of the algorithm.
We will first describe them in a list if necessary, then we will present a table with
the actual value changes.

Mutating function - the mutation function is very complex and it cannot be
described as one value parameter, the internal mechanism remained the
same the whole time and is described in section 3.2.1. The following of its
parameters were changed in between runs:

Mutate probability - the probability that a given level representation
will be changed by the mutation function
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Enemy versus obstacle mutation probability - when mutating, either
obstacles or enemies are mutated, this is the probability of one versus
the other, we used many different values, but found out that enemies
have a much bigger impact on the level score and so their probability
should be low, we settled on 1:6 in favor of obstacles

Enemy mutate probability - when mutating enemies, what is the prob-
ability for every single enemy to be mutated

Add enemy probability curve - a curve that gives probability of adding
enemy given the number of enemies in level, it was changed, but we
did not find a way to display the values in the table

Remove enemy probability curve - this is the same as the previous
value, just for removing enemies

Enemy mutate max position change - when mutating an enemy, what
is the maximal change on position on a given axis, we shall call it
Enemy pos change

Selection mechanism - we only used roulette wheel selection, where the better
score an individual has the bigger chance it has to be selected, however in
this type of selection we can set some baseline, so that low scoring individuals
have a chance to advance, we will call it roulette base

Previous population bias - the previous generation has just slightly worse
chances to get to the next generations than the new offsprings

Ending predicate - as ending predicate, we used number of generations, which
changed between runs, we are going to call this number generations

Plotter - When some of the runs were already concluded, we discovered, that it
could be beneficial to store all of the scores of all generations. Those can
later be plotted into graphs. Those graphs will be presented later in this
chapter.

For space and clarity reasons it is not possible to include all runs in the table.
Since the actual research was conducted on a game including 5 procedurally
generated levels, the table 4.1 only focuses on parameters from those 5 runs, which
are represented as columns. The order of the columns is the order in which they
were generated. The last row shows the order of levels in the game.



Created order 1 2 3 4 5

Mutate probability 0.2 0.15 0.35 0.35 0.35

Enemy pos change 20 20 7 7 7

Roulette base 0.001 0.001 0.001 0.001 0.001

Previous pop bias 0.9 0.9 0.99 0.99 0.99

Generations 100 100 100 100 130

In game order 3 2 1 5 4

Table 4.1 Changed parameters of evolutionary algorithm

Even though columns 3 and 4 have the same parameter values, the results
were radically different, which is normal within the realm of genetic algorithms.
Now let us dive into which parameter changes had which reasoning and how they
potentially influenced the results. For visualization, we are going to use graphs
generated by matplotlib.pyplot python library. First such graph is to be seen in
figure 4.1.

Figure 4.1 The scores of all generations in the third level

In the graph, it looks like there is not enough variety for individuals, since the
maximum and minimum are very close and so most individuals are the same, for
that reason we lowered the mutation probability so that fewer individuals have
mutations and so they have a higher chance of remaining in the population. The
result can be seen in figure 4.2.



Figure 4.2 The scores of all generations in the second level

We can see that there is a bigger section without a bottleneck, but since there
is a serious bottleneck at the very start, most of the levels will not have much
variety and the last third of the generations were very stagnant. At this point, we
figured, that if we increase the previous population bias, the old populations will
have a high probability of retaining in the population so then we can increase the
mutation probability without the risk of losing much level diversity. We can see
the results of that change in figure 4.3.

Figure 4.3 The scores of all generations in the first and fifth levels

As we can see the diversity within the generations got much better. And even
though the parameters are the same, the fifth level still suffers from some serious
bottle-necking. However, when looking at the graph, we can see that the average
score increases at the graph end in both examples. From this, we concluded, that
increasing the generation count can be beneficial. We can see what that resulted
in in figure 4.4.



Figure 4.4 The scores of all generations in the fourth level

Even though the bottle-necking problem did improve, we can see that the
average is close to the maximum and so it is very probable, that most of the
individuals have very similar scores which signifies them being nearly identical,
even more so after the slight bottleneck we can see around generation 15.

We did not manage to arrive at a result, which would look like the parameters
are set ideally. However, we also saw the levels created and concluded, that they
are interesting enough to conduct the research on them.

This creates a very good opportunity for further research since there are many
possible parameters to change and the results may improve significantly upon
doing so.

4.2 Survey
As the hypothesis of the study is that stealth strategy game levels generated by

evolutionary algorithms can result in a similar experience of players as manually
created levels, it is necessary to measure the player experience. For this purpose,
a number of respondents were contacted and they completed a survey directly
after playing the game.

The demo contains 4 tutorial levels, 5 procedurally generated and 5 manually
created levels in this order. Between each of those sections, the game asks the
player to fill out one part of the research survey. The last part is then filled out
when the player finishes the game.

To measure the player experience, we decided to use the concept of Flow [4].
The flow of an activity signifies how much the person at hand is immersed in the
action they are taking. Since the definition allows the measurement of any action,
flow is a very universal tool to measure immersion. It is also commonly used in
the context of video games [34]. We can see the visualization of flow within video
games in figure 4.5.



Figure 4.5 The flow state within video games

The questionnaire used was the standardized Flow Short Scale(FSS) from 2003
[35].

To compare the experiences of the players when playing the procedurally
generated levels and the manually created ones, it is necessary to discuss the level
properties and how they relate to the flow measurements first.

As we have already discussed, the levels within the game are short. When
played optimally, they take just under 12 seconds on average to complete (excluding
the tutorial levels).

It is however necessary to acknowledge, that the participants will not know the
levels in advance so it is highly unlikely that they will find an optimal time-saving
play. It is also noteworthy, that when the player gets caught by an enemy, the
level is restarted. For all those reasons, players are likely to spend significantly
more time on each level than the optimal one. Also, the vocal report from several
participants is, that they played for more than 20 minutes in total.

The time spent in levels is potentially relevant for the study. Even though
neither the creators [35] nor the usage manual [36] mention any requirement on
time spent doing the activity before the flow measurement, we need to assume
that some minimal time requirement exists. It is for this reason, that we decided
to let the participants play all of the levels in a given group and only then measure
the flow.

The order, in which the level groups are, is potentially relevant as well. The
flow depends on the player’s skill as we can see in figure 4.5. So if the participants
learn the game within the first level group, the second level group naturally needs
harder levels to stay in the flow state which would decrease the flow comparison
value.

However, before both of the groups, there is a tutorial part, which is there
in large part to unify the skills for both groups. Also as discussed earlier, the
time spent in each level is very short so the skill gained for the player within each
group should be negligible.

Another point of discussion can be the validity of the manually created levels. If
those levels were created badly, the comparison between them and the procedurally
generated levels would hold no value. Those levels were created by someone with
thousands of hours of playtime in the stealth strategy games. They were created
methodically, we aimed to use mechanisms and design patterns from existing
stealth strategy games. Those principles were for example:

• incapacitating enemies barely outside of the view of other enemies,



• enemies inside of viewcones of other enemies,

• enemies which give very short time window for action within their usual
direction of view,

• small corners, where playable characters are not seen,

• and more.

It is up to debate whether this creative process did yield interesting enough levels.
It should also be addressed, that it is possible that the methodically created levels
are done well, but their difficulty is not right for the participants group.

With these points in mind, we can critically evaluate the whole experiment
structure which is to be seen in figure 4.6.

Figure 4.6 The structure of the experiment

It is also important to address the participants group, the conditions the
participants were in, the time window, and potential flaws with these points.

In the participant group, there were both men and women with ages ranging
between 20 and 30 years. Since no special requirement was set on the group, there
were people familiar with the stealth strategy genre as well as ones who did not
know it existed. Approximately one-fifth of the participants knew the genre well.

From this point of view, it is important to address that the flow of people
with less interest in the genre can be much lower than the flow of prior interested
players. For that reason, we can expect the flow values to be relatively low.
However since the experiment includes flow comparison, the relative difference of
flows is still relevant.

The participants completed the survey online from a location of their choice. It
may have skewed the results since some different locations give different amounts
of external impulses which may disturb the flow. However, we assume that the
amount of disturbance was the same during both groups, so the flow comparison
should still hold.

The participants were all asked to use their personal computers for the study.
So that the conditions are as similar as possible for all of them.

Since the research was conducted in Czechia, most available participants were
Czech-speaking, so it was decided that the survey would be written in Czech
as well. It does not have any impact on the results, since they are transferable
between languages.

It however may be possible, that concentration on a non-native language is
breaking the immersion. This idea was not researched and so has no backing, but
there are no downsides to having the survey in Czech since all of the participants



are Czech as well. We can see the survey questions in English and their translation
to Czech in figure 4.7.

Figure 4.7 The English to Czech translation of survey questions

The FSS was also used in other Czech surveys, such as [37] or [38]. These
theses also include the Czech translation, however, one of the questions is very
ambiguous within them and also they are not targeted at video games. For that
reason, the questions were translated to retain their meaning as much as possible
while targeting them at games.

There were twenty-two participants, yielding sixty-six measurements in total.
We have to acknowledge, that such a number is not sufficient to draw strong
statistical conclusions, as the sample-to-item ratio rule suggests that for each
question, there should be at least 5 participants. The conclusions however still
point in a direction, which could be followed in further research.

The survey was filled out 3 times by each participant, with a random order
of questions each time. Since the first survey does not try to target the game, it
omitted 5 of the questions. As both the creators [35] and the usage manual [36]
suggest, the participants answered each question on a 7-point Likert-scale from
”holds” to ”does not hold”.



5 Results
In this chapter, we will discuss the numerical gathered data and what possible

causes there are for their values.
In the flow short scale [35] survey, there are typically 4 factors measured,

which are Flow, Fluency, Absorption, and Worry. However, the Worry factor was
omitted within this thesis since the activity at hand does not pose any immediate
danger to the participants and so the low worry results may skew the overall flow
measurement.

To be able to interpret the data at hand, we need to know what is the
explanation of the above-mentioned terms and how they are calculated. Firstly,
since the measurements were on a 7-point scale, all of the data are from 1 to 7,
where 7 corresponds to the best flow (or fluency and absorption respectively) and
1 to the lowest.

For the explanation, let us start with the absorption. It can be interpreted as
an indicator of how much the participant is ignoring the outer impulses. With
high absorption, the measured person is only focused on one single task and no
other ones. The questions which are included in this factor are questions 1, 3, 6,
10.

The fluency describes, how much the person has to concentrate to overcome
barriers that obstruct the gameplay. Those would be for example bugs, poor or
not enough explanation as well as their mind state. The questions which are
included in this factor are questions 2, 4, 5, 7, 8, 9.

The flow factor is somehow deceptive by its name. Even with its name, a high
flow factor does not equate to high flow in general. And that is even though the
flow factor is calculated based on all of the questions.

To conclude the overall flow, we have to look if the flow factor value is high
and also whether both absorption and fluency are not much lower.

In table 5.1 we can see the mean and the standard deviation for all three
conducted flow surveys. The values are quite low, however, that was suspected as
described above (4.2). We also need to acknowledge, that it may be caused by
the potentially low quality of both manually created and procedurally generated
levels as also mentioned above (4.2).

Flow Fluency Absorption

Tutorial 5.46 (±1.6) 5.85 (±1.3) 3.86 (±2.0)

Procedural 5.62 (±1.7) 6.10 (±1.3) 5.16 (±2.0)

Manual 5.67 (±1.6) 5.90 (±1.5) 5.48 (±1.7)

Table 5.1 Gathered flow means and standard deviations

On one hand, we target the flow comparison, but it is also beneficial to discuss
the flow raw values. As described above, all three factors play a role in it. We see
that the tutorial flow factor is holding close to the flow factors of the other parts.
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however, the Absorption factor is 1.6 lower than the flow factor. That signifies a
relatively low flow level.

We also measured the internal consistency of the flow data within the proce-
dural and manual created levels. The tutorial is omitted since the target of the
thesis. To measure the consistency, we used the Cronbach’s alpha [39]. As we can
see from the values in table 5.2, they all exceed the 0.7 mark, which points to
acceptable data, and only in one case dropped below 0.8, which marks good data
consistency.

Flow Fluency Absorption

Procedural 0.88 0.85 0.83

Manual 0.87 0.79 0.89

Table 5.2 Cronbach’s alpha of the flow data

In table 5.3 we can see how the flow values changed from the ones conducted
after the tutorial to the ones conducted after playing the procedurally generated
levels. It is apparent, that the Absorption raised very highly. We suspect the
cause is the tutorial not posing much challenge and breaking the immersion with
the instructions.

We can also see, that the fluency did not change much. That is also logical
since the players play the same game and the amount of barriers encountered is
the same. It also signifies no major bugs compared to the tutorial.

We also have to acknowledge, that Fluency rose by 1.3, shrinking the gap
between it and the Flow factor to to only 0.46.

Flow Δ Fluency Δ Absorption Δ

0.16 0.25 1.3

Table 5.3 The flow differences from tutorial to procedural levels

In table 5.4 we can see how the flow values changed from the ones conducted
after the procedurally generated levels to the ones conducted after playing the
manually created levels.

Flow Δ Fluency Δ Absorption Δ

0.05 -0.20 0.32

Table 5.4 The flow differences from procedural to manual levels

All these values are together determining the conclusion of the experiment.
We can again see almost no change in fluency, which is probably for the same
reason as described above. We can also see, that the Absorption factor rose again



so it is now only 0.19 under the Flow factor. That signifies much better flow with
very similar values of the Flow factor.

Here we have to take into account, that the interval shrinking does not linearly
add to the flow. In other words, shrinking from 5 to 4 is very different from
shrinking from 1.5 to 0.5. There also exists a value, where more shrinking is no
longer important since the previous data signify good flow already.

We can also see the Flow factor values comparison in figure 5.1.

Figure 5.1 Flow factor of manual and procedural levels

Finally, we need to acknowledge, that even though we made the playing sessions
relatively long by only having the participants fill the survey three times, it is
still possible that the slow Flow factor growth is solely caused by them getting
gradually immersed because the sessions were not long enough. However, as
mentioned in section 4.2, some participants verbally described the experiment as
longer than 20 minutes, which should be sufficient.



Conclusion
We asked the question, whether playing stealth strategy levels generated by

evolutionary algorithms can result in a similar player experience as playing levels
created manually.

Throughout the thesis, we went through the implementation of the game
library including the game solver, which presents a novel algorithm for finding a
path within a level with moving enemies. We also saw our implementation of the
game demo including level generating. It uses the implementation of evolutionary
algorithms, which we went through as well.

Then we looked at how the experiment was conducted. We also explained
the techniques used and why they were used in the experiment. Now that we
have seen the final data, that the flow[4] survey yielded, we can try to draw some
conclusions.

We calculated the paired samples T-test [40] on all three factors where pairing
was the survey before and after playing the manually created levels. With a
significance level of 0.05, the T-test does not disprove our theory that there is
no significant flow difference between playing levels generated by evolutionary
algorithms and playing levels created manually.

In the final data, we can see that the Flow factor is high for all three measure-
ments compared to 6 studies presented in the flow manual [36]. On the other hand,
these studies also used the worry factor, which we omitted, so the comparison
cannot be used to draw any conclusions.

Finally, we can say, that the total flow level is slightly higher for the manually
created levels than the procedurally generated ones.

With these points in mind, we conclude, that our data suggest that a similar
level of flow can be achieved by playing levels generated using evolutionary
algorithms as by playing levels created manually. Moreover, we deduce from the
flow comparison, that it is probably possible to get a similar player experience by
playing stealth strategy levels generated by evolutionary algorithms as by playing
levels created manually.

We however have to acknowledge, that even while we are dealing with a yes-no
question, the conclusion is not as binary. The numerical data point in some
direction, but further exploration is needed to prove or potentially disprove what
they suggest.

We consider the project as an overall success. We managed to prove, that it is
possible to conduct research in the area and made a first step in that direction.
We also created a full game core, which could be used in future work to create a
full-scale playable game. Such a game could also include procedural generation of
levels.

That is however not the only direction potential future work can take, another
possibility would be to conduct further research investigating for example partici-
pant group consisting solely of stealth strategy players, longer time spent playing
by the participants, further investigation of the evolutionary algorithm parameter
space or researching on a game supporting multiple playable characters.
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