
MASTER THESIS

Alisher Kenzhebayev

Vectorized traversal of sparse volumes
for GPU path tracing

Department of Software and Computer Science Education

Supervisor of the master thesis: Mgr. Tomáš Iser, Ph.D.
Advisor of the master thesis: Tobias Rittig, Ph.D.

Study programme: Computer Science - Visual
Computing and Game Development
(IVVPA)

Prague 2024



I declare that I carried out this master thesis on my own, and only with the
cited sources, literature and other professional sources. I understand that my
work relates to the rights and obligations under the Act No. 121/2000 Sb., the
Copyright Act, as amended, in particular the fact that the Charles University has
the right to conclude a license agreement on the use of this work as a school work
pursuant to Section 60 subsection 1 of the Copyright Act.

In . . . . . . . . . . . . . date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Author’s signature



I want to dedicate this work to my mother, who has been supporting me
through this work, and thank her for showing never-ending love and care.

I strongly want to express my endless gratitude and a huge word of thanks to
my Thesis Advisor, Tobias Rittig, Ph.D., for his persistence and constant help in
the form of valuable advice throughout the implementation and making of this
work.

I also want to express a huge word of thanks to my supervisor, Mgr. Tomáš
Iser, Ph.D., for hours of advice given over our weekly calls and also for constant
help with code implementation issues.



Title: Vectorized traversal of sparse volumes for GPU path tracing

Author: Alisher Kenzhebayev

Department: Department of Software and Computer Science Education

Supervisor: Mgr. Tomáš Iser, Ph.D., Department of Software and Computer
Science Education

Advisor: Tobias Rittig, Ph.D., Additive Appearance s.r.o.

Abstract: In this thesis we explore the use of dense and sparse data structures for
the representation of voxelized data and their features to develop a NanoVDB
format-compatible, vectorized renderer plugin with native GPU support. To
that end, we provide a comparison of NanoVDB against the main features of
relevant data structures, including justification for the degree of suitability for
their use on GPU. This thesis’s contribution is the addition of the C++ standard
volumetric plugin for the Mitsuba 3 path tracer with added NanoVDB format
support, allowing sparse voxel data to be used. The obtained comparison shows
significant improvements on several backends using memory and render speed
benchmarks, without any significant quality loss on the resulting images.

Keywords: GPU, path tracing, data structures, participating media, sparse volume
textures



Contents

Introduction 7

1 Background 9
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Data structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.1 Regular grids . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.2 Octrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.3 OpenVDB . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.4 NanoVDB . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Renderers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.1 Mitsuba2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.2 DrJit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3.3 Mitsuba3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Methodology 18
2.1 Work outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Comparing VDB structures and Dense grid . . . . . . . . . . . . 19
2.3 Mitsuba 3 plugin implementation . . . . . . . . . . . . . . . . . . 21

2.3.1 Accessing VDB values . . . . . . . . . . . . . . . . . . . . 21
2.3.2 Rewriting the NanoVDB to DrJIT . . . . . . . . . . . . . 21
2.3.3 Framework unit testing . . . . . . . . . . . . . . . . . . . 22

2.4 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.1 VDB format conversion . . . . . . . . . . . . . . . . . . . 23
2.4.2 Baseline images . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.3 Setting up a comparison scene . . . . . . . . . . . . . . . . 25
2.4.4 Implemented plugin render . . . . . . . . . . . . . . . . . 25
2.4.5 Performance and Benchmarks . . . . . . . . . . . . . . . . 26

3 Implementation details 27
3.1 Our setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Scene descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 NanoVDB conversion . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 Plugin implementation . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5 Unit testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.6 Integration to Mitsuba . . . . . . . . . . . . . . . . . . . . . . . . 35
3.7 Rendering and Performance . . . . . . . . . . . . . . . . . . . . . 38
3.8 Packaging to Docker . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Results 39
4.1 Test scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Case comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4 CUDA image comparison . . . . . . . . . . . . . . . . . . . . . . 51

Discussion 53

5



Conclusion 54

Bibliography 55

List of Figures 57

List of Tables 58

A Attachments 59
A.1 Electronic Project Attachment . . . . . . . . . . . . . . . . . . . . 59
A.2 User Documentation . . . . . . . . . . . . . . . . . . . . . . . . . 59
A.3 Prerequisites Versioning . . . . . . . . . . . . . . . . . . . . . . . 59

6



Introduction
The vast majority of visuals and image productions had at some point started

incorporating voxel data as well as 3D textures into their work pipeline as an
industry standard. Feature use of volumetric textures can usually be illustrated
by their use in a wide variety of cases. That is, from visual effects that utilize
dynamic temporal data for volume, smoke, or fluid simulations, to scientific
computer-assisted medical imagery.

The reasoning behind their use is twofold, one being the switch from the
rasterization pipeline to the physically based light transport, or in other words,
path tracing [1]. Additionally, voxelized representation also allows for a better
definition of the object’s internal structure as compared to hard-surface modeling.
By enabling a move away from the standardized shader-based render pipelines, they
simplify both in-media and surface light calculation, as it is handled by physically
based rendering instead. As a result of their use, volumetric representation allows
for an easier setup phase for industrial rendering by removing the need for the
presence of scene and shader-based tweaking iterations in productions. However,
despite introducing improvements to the rendering pipeline by removing the
shader-based global illumination and light scene tweaking iterations, this use of
volumetric representation is not without its drawbacks, the main one being its
memory footprint [2].

Memory footprint as an issue Traditionally, the representation of volume
data, or in some cases also called volume textures, has been done in the form of
uniform regular 3D grids, being simple to use and easy to access/modify. However,
several major issues with regular data grids spurred the movement towards the
use of sparse data structures. The main reason is the badly scaling memory
requirement of popularized dense grids, as they scale proportionally with the
volume of their embedded space.

This issue of increased memory requirement for volume representations is
exacerbated further by the use cases of voxels in even small or moderate-sized
numeric volume or fluid simulations. Animated volumes add changes in an object’s
3D shape as a time-varying factor as well as a possibility of shifting the domain of
the grid. Both result in an increase in the feature demands in the data structures
that encode these animated voxels. While generally, it is possible to represent
such cases with simple dense grids, the combination of memory inefficiency as well
as the sheer amount of information either limits the resolution of embedded space
or raises a question of data packing efficiency. Which asks for the use of sparse
grid representation as a potential solution to this memory efficiency struggle.

The authors of OpenVDB claim VDB not to be a ”silver bullet” to all of the
existing structure and memory issues of spatial data representation. Their claims
aside, the OpenVDB is still an easily customizable data structure with a high
degree of flexibility that allows for the rendering of spatial grids with an almost
infinite spatial domain.

As the dense data structures tend to struggle with memory efficiency, the
OpenVDB’s hierarchical topology supposedly solves that. The proposed VDB data
structure solves some of the issues found in these simple sparse data structures

7



for the representation of 3D textures by introducing a hierarchical topology and
encoding most of the information using a construction-time fixed tree structure.
The only downside to it is that it, just like many other sparse data structures,
utilizes pointers for added flexibility, making it hard to use natively on GPU
due to SIMD-like instructions requiring sequential block memory access for a
GPU-side parallelized set of instructions.

NanoVDB as GPU optimized sparse data structure Despite the path
tracing being possible to be modeled on a CPU environment, it is, without doubt,
a slower approach than vectorized GPU or optimized SIMD, like ones using
LLVM for cases of high-performance computing. Unfortunately, despite both the
popularity of OpenVDB and its relative success as well as the widespreadness of
the volume representation in the industry, most approaches to GPU rendering still
utilize the intermediate representation grid format. That intermediate format is
usually in the form of dense grids, which, as it was introduced, have poor memory
efficiency and thus badly scale in their applications to GPU-side rendering. With
recent developments, a new variant of NVIDIA-developed OpenVDB compatible
structure was added, called NanoVDB. It is proposed as a fast and optimized
solution with a smaller memory footprint compared to OpenVDB, albeit with
reduced functionality. The goal of this thesis is the integration of this improved
GPU-ready sparse volumetric data structure into a vectorized JIT-compiled
research renderer of Mitsuba 3. To that end, this thesis aims to provide a
prototype implementation of the named NanoVDB grid plugin as a CUDA and
LLVM natively supporting solution due to its integration into a templated and
vectorized DrJIT + Mitsuba project.

Outline Structurally the thesis is split into four chapters, with additional space
for discussion and conclusion. Starting with the background chapter 1, our thesis
attempts to illustrate the problem with memory efficiency and builds a case of
VDB as a solution to these issues. Additionally, this thesis goes into some detail
to provide the reader with sufficient background linked to the problem of volume
representation using previous variants of data structures used for voxels. To
achieve that, some of the known data structures are compared by their relevant
features. Separately, a high-level description of their memory efficiency is briefly
added. However, as the main goal of this thesis is to provide access to the
sparse volumetric data within a NanoVDB format through the development of a
prototype Mitsuba 3 volume plugin, it is added in chapter 3. To achieve it, the
results chapter 4 shows that the reached performance values are comparable to
the results of existing dense grids rendered with the simple Mitsuba volume grid
plugin. To illustrate that, a quantitative comparison of produced path-traced
images is conducted, utilizing performance benchmarks on speed and accuracy.
For accuracy, a set of measurements is conducted with several image similarity
methods as well as attached benchmarks of the rendering time and memory.

Furthermore, the Discussion 4.4 and Conclusion chapters follow the main
content by reiterating the findings. These also include some of the peculiarities
that were of interest or deserve a mention. The discussion mainly describes some
of the challenges that were encountered in the process of implementation as well
as some of the shortcomings.

8



1 Background
This chapter aims to give the reader a brief description of concepts relevant to

the thesis in the following chapters. Sections focus on data structures used and
provide a brief overview of differentiable rendering in Mitsuba using Enoki/DrJIT.

1.1 Overview
The motivation of this thesis is to allow vectorized access to multiple graphics

APIs for sparse volumetric data, specifically targeting a Mitsuba 3 research
renderer. The end goal of this work is the production of a deliverable volumetric
plugin compatible with the aforementioned research renderer that would be able
to process files of the NanoVDB extension.

To that end, this chapter describes the nature of the memory consumption
problem with the use of dense grid representations and their memory bottleneck.
The goal of this chapter is to describe relevant data structures that were or are
currently used in the industry for the representation of volumetric data. Some of
these include regular uniform grids, Sparse Voxel Octrees (SVO), as well as other
kinds of sparse data structures.

However, not all sparse structures are well-suited to represent huge amounts
of data, be it in the context of rendering an object with a big resolution or a
moderate-sized animated volume. Another good example of this fact is the results
achieved by a sparse data structure, octrees in Meagher, in which the downside to
their approach was also emphasized as its inefficient memory utilization. In this
case, it is because the memory footprint is directly proportional to the surface
area of the enclosed object [3].

OpenVDB’s claim supports that because, to the best of their knowledge, none
of the dense nor simple octree representations were successfully used for animations
or simulations.

Actualizing this information in this chapter also serves to illustrate why the
use of sparse data structures becomes the norm as well as the factual industry
standard, especially with the introduction of Sparse Voxel Octrees by Nvidia [4]
as well as open source OpenVDB by Ken Museth in 2013.

Later sections introduce the main focus of this thesis, sparse structures known
as OpenVDB and NanoVDB. Both of them are introduced briefly and on a surface
level, covering most of the relevant features. Separately, our Renderers section 1.3
describes DrJIT, a Just-In-Time Compiler for Differentiable Rendering as well as
two versions of a Mitsuba renderer. Paragraphs inside it emphasize the modularity
of Mitsuba, acting as a gradual introduction to the renderer’s architecture being
a highly modifiable plugin-based solution.

1.2 Data structures
This section explores and provides a descriptive case of relevant data structures,

starting with regular grids and one of the first sparse data structures, octrees.

9



Additionally, other included subsections provide descriptions of OpenVDB features
and how NanoVDB iterates on OpenVDB as its successor.

1.2.1 Regular grids
Probably, the simplest and most uncompressed version of the volume represen-

tation that can be easily perceived is the Cartesian Coordinate (CC) regular grid,
analogous to a 3-dimensional array with index order ijk in programming. It has
major Cartesian axes X, Y, and Z, most of which assume the mapping of each
equally spaced, discrete coordinate value in a sorted XYZ order to a separate voxel
value. However, the resolution may be different in distinct cases [5] [6]. While the
approach is widely known and used, it is also recognized to be quite inefficient in
terms of memory usage because it lacks proper compression. Because the data is
uncompressed, various approaches prefer another version, a body-centered cubic
grid (BCC), as a way to save around 30% in memory due to sampling specifics.
Despite that, and also due to the GPU’s inability to natively generalize to the
BCC grid’s linear interpolation, most approaches still continue widely using the
CC regular grids as a favored representation format. [7]

Utilization of regular uniform 3D grids in that uncompressed form clearly
has several advantages and downsides. One of the more prominent benefits of
using such a structure for volumes is the speed and simplicity of random memory
access. The downsides, however, include a huge memory footprint that poorly
scales in comparison to sparse data structures such as octrees 1.2.2, hierarchical
OpenVDB 1.2.3, or its successor NanoVDB 1.2.4. As a very extreme example of
this inefficiency, a sparse data structure like OpenVDB allows for a grid domain
to be virtually infinite. In contrast, the regular dense grid has some strict grid
domain size limits. That is due to the memory footprint scaling proportionally to
the volume of the embedding domain. Additionally, as a result of the gap between
processing power and memory performance steadily growing for several decades
now, this is also becoming an issue in the use of dense grids for more sizeable
volumetric data [8].

Evidently, for that to be an immediate concern with rendering, even in the
case of regular dense grids, the object in question has to be of sufficient grid
size. One of the most well-known examples of such data would be a Disney cloud
dataset, around 2.7 GB in the form of sparse OpenVDB format. During conversion
from dense grids to a sparse data structure, they are typically enclosed in an
approximated bounding box with floating-point values that, during conversion,
require a cutoff tolerance parameter. This is done to indicate the active voxels for
sparse representations because of optimizations that come from the hierarchical
data structures in their topology. When converting such clouds from sparse to
dense, however, there is no such cutoff, as the data is either way copied into
the densely allocated space. That space is most likely serialized in memory, as
opposed to indirection through pointers used in most CPU sparse structures. As
such, it is hard to estimate the exact location of each voxel for such a float cloud,
making it challenging to calculate its accurate size in the precise dense voxelized
equivalent. Significantly, because the resulting data is typically subjected to
transfers over the CPU-GPU bus, in the case of GPU-side renders, the use of
dense grid representation would usually result in a memory bottleneck due to their

10



enormous size [9]. Thus, despite us not knowing the exact amount of memory its
representation would take in the form of a dense grid, that still makes the memory
efficiency argument conceptually quite simple.

Both image and effects productions usually require some massive scene to be
rendered that would include one of the effects as smoke, clouds, or even sometimes
fuzzy but complexly shaped objects in the distance. While this was an issue even
for voxel data of size 512 MB in the year 2009, current generation GPUs allow
for a memory size of 6-8 GB as a standard VRAM capacity [10]. This fact of
GPU memory limits having been increased over several years makes it a bit of a
challenge to find a relevant isolated volume. At least one of a size that its dense
representation would not fit into the GPU memory directly. However, single file
cases aside, even for samples of small to moderate size that have temporal variance
data, this memory issue again becomes important since they have to record the
file in the animation frames, which is usually the case for animated or simulated
volumes [9].

While for the sake of the scope of this paper, this discussion will not delve
much deeper than this into the regular grids, it was important to mention them.
Our approach uses dense grid representations frequently in the rendering process
for producing the baseline reference images. That is because producing a reference
image in Mitsuba 3 renderer requires using a volume grid plugin, which requires
a dense grid representation either in the VOL format or Python dense array.
Additionally, because the methodology initially includes all original grids in the
form of OpenVDB files as a starting point, there is a need to convert them to
dense representation. This procedure is included in all comparison steps because
of the need to produce a baseline in memory and render time benchmarking. The
conversion process is described in subsection 2.4.1.

1.2.2 Octrees
This particular data structure is widely known for both space partitioning and

voxel data representation. First proposed to be used by Donald Meagher [3] as
a direct successor of quadtrees for 2D representation, octrees can be generalized
as hierarchical N-dimensional binary trees, specifically in the case of a 3D object
representation. The topology of octrees meant that the node structure would
always have a fixed number of children, exactly eight. Thus, through that
hierarchical partition, they were able to represent the object comparatively a bit
more efficiently than just dense grids. Despite there being several available memory
packing options, most octrees are known for the breadth-first traversal, which
enables ease of access, better cache efficiency, and predictable access patterns.
However, as the authors note, still its main downside was its relatively bad scaling
memory requirement.

While the use of octrees for voxel data has been popularized by works like that
of Crassin (2009), these early works also include inefficient block-sized leaf nodes
[10]. While this coincidentally makes it quite efficient in reading mip-mapped 3D
textures, this also wastes a lot of memory. For example, in cases where the leaves
do not contain true volume data, early octrees had leaves that typically contained
163 or 323 voxels, depending on the resolution.

With some clever pointer optimizations, there is another version of octrees,

11



namely Sparse Voxel Octrees, that enables octrees to be used for the volume
representation [4]. This particular optimization adds that nodes always represent
a voxelized space, with further partitioning being represented by the presence of
children inside of a parent node. This structure encodes both the parent node
and most of its children, minimally including the topology information in its
64-bit child descriptor that includes a 15-bit pointer to a first child and two 8-bit
masks that indicate if the child is valid or is a leaf. The paper only includes a
brief mention of this masking structure because of its light resemblance to the
OpenVDB hierarchical structure.

1.2.3 OpenVDB
OpenVDB is an open-sourced variant of a data structure, also known as VDB,

which was under closed development until 2012 in the Dreamworks Animation
by Ken Museth [9]. The name is short for Volumetric, Dynamic grid that shares
several characteristics with B+ trees. The file format itself has been initially
used behind closed doors at Dreamworks for animated movies. Already, after
VDB became open-source, it became more widespread with its more diverse use
cases, such as representing background objects of complex structures that are not
required to be rendered in detail.

Aside from OpenVDB, several other data structures precede it, finding their
use in compactly representing level set and volume data, including octrees and
Sparse Voxel Octrees, but as the authors of the VDB paper suggest, none of the
aforementioned structures have been practically applied to animated volumes or
simulated voxels [9].

The authors of the VDB approach address the data sparsity in a way that
on a surface level, structurally resembles B+ trees. Specifically, it also employs
cache coherency, similar to the B+ trees. Additionally, as a consequence of the
resemblance, because of its topology creating multiple internal nodes with a high
branching factor, it allows for sparsity of stored data.

In order to understand a bit more about OpenVDB, we focus on what are
the B+ trees as they have a lot in common with VDB. Then, we provide a
brief description of both its structure and features that differentiate OpenVDB
from other sparse data structures and the problems it solves compared to its
counterparts using those features.

Starting with B+ trees, although their definition is not documented to a
standard in any paper, they are brought up as a B-tree variant in a publication
by Bayer and McCreight [11]. Compared to the more widespread binary trees,
both B-trees and B+ trees are used mainly in the application of reading from
memory in blocks because of better structure and data alignment that allows for
faster and more efficient sequential queries. That makes B+ trees a perfect choice
for implementations of relational databases and some non-relational ones.

Structurally B+ trees resemble B-trees as both are M-ary trees, meaning that
each node can have up to m children. Unlike binary trees, which are a specific
case of M-ary trees with m equal to 2, B+ trees and B-trees can have a higher
branching factor of m. Both B-trees and B+ trees are balanced trees, ensuring
that all leaf nodes are at the same depth, and they maintain a balanced structure
by ensuring that the number of children of each node ranges from

⌈︂
m
2

⌉︂
to m. In

12



Figure 1.1 1D structure example (simplified) of voxel data packing in VDB tree.
Going from top to bottom, there is a hashmap Root node, two Internal nodes, and
block-size Leaf nodes. Both internal nodes contain two bit-masks that are integral
parts of VDB tree traversal. Two bit-masks are the active and topology masks with
mValueMask and mChildMask for the internal node structure, respectively. Voxels are
represented in leaves in red. White nodes at the bottom are the compressed leaf blocks
with only active (interesting) values present. All nodes have their own fixed branching
factor, aside from the root node. It is noteworthy that the fixed branching factor is 2N

because OpenVDB tree traversal depends on fast bit operations.

B+ trees, all the actual data records are stored at the leaf level, and internal nodes
only store keys to guide the search process, with leaf nodes linked to facilitate
efficient range queries and sequential access.

Conveniently for our explanation, what the VDB has in common with B+
trees is the use of the high branching factor in all nodes of the tree, automatic
balancing on the construction stage, and the fact the VDB is also an acyclic
connected graph with its basic structure including a root, several internal nodes
and leaf level nodes. What is different from B+ trees, however, is the absence of
linked list connections on the leaves as well as varying but large branching factors
of internal nodes, restricted to powers of two. These factors make OpenVDB a
wide and shallow data structure that is suitable for storing vast amounts of data.
Additionally, it also enables the storage of data on a close-to-infinite 3D grid when
applied to volumes. Compared to the B+ trees, however, the VDB can encode
the spatial coordinate information of the grid in each of its nodes, and not only
its leaves [9].

VDB concepts To provide a clearer level of understanding of the features that
VDB offers, there are several specialized concepts in VDB that must be described
beforehand. These concepts also provide a relevant background for Chapter 3
because of the increased grasp of implementation details. As a standard, the data
recorded into VDB is represented by a templated data type Value, accompanied
by the Topology of named Value. The value represents the location of the node by
storing its spatial index (x, y, z) as Cartesian coordinates. Values can be either
active or inactive, with the activeness indicators stored in a node’s binary mask.
The value being active, as the paper puts it, represents its rate of ”importance”
and ”interest.” In the context of Voxels, the smallest spatial elements that can
be recorded to VDB, the active voxel would represent a value that is different

13



from a background value, making it an object of ”interest.” In contrast to voxels,
there are Tiles that represent areas of index space with the same value. Tiles are
crucial in VDB for both memory efficiency and sparsity of spatial representation
since a proper tile placement allows for representation of the entire subdomain of
node’s children with a single value [9].

Starting with Leaf nodes, they contain a compile time-defined, fixed amount of
voxels, with a typical block size being 8x8x8. Leaf nodes have their enclosed voxel
space encoded in a direct access table mLeafDat, while topology information is
retained using a bitmask mValueMask. Direct Access Table in the context of VDB
indicates an array of elements with a worst-case access complexity of O(1) [9].
What is important for later is that the mLeafDat is represented as a C++ union
with its voxel values being able to be streamed out-of-core without additional
memory overhead. This will become important in later sections as we address the
voxel data by offsets in NanoVDB.

The structure of the Internal nodes heavily resembles that of leaf nodes, with
the addition of mInternalDat recording not only the node values but also pointers
to its children in a Direct Access Table. Another important change is an added
bit mask, mChildMask, that allows for recording topology information. While
both Leaf nodes and Internal nodes have compile-time-defined fixed branching
factors, VDB allows for several levels of Internal nodes. In fact, the internal
nodes comprise the main depth of the tree in OpenVDB. Additionally, while the
branching factor is fixed for an Internal node, it is possible to have different node
levels with a different number of children, just as shown in Figure 1.1, leading
to a highly flexible data structure. In practice, however, the structure of most
OpenVDB trees is quite fixed, as can be observed from the configuration files
written for VDB reads; the structure is typically Tree_float_5_4_3, resulting in:

• Single root node (1 x 8)

• Several internal upper-level nodes (typically 8 x 323)

• Several thousand internal lower-level nodes (K x 163)

• Multitude of leaf nodes, typically in hundreds of millions (M x 83).

Lastly, when describing the VDB Root node, it is important to note that it is
the only node type that does not have a Direct Access Table as its basis. A reason
for this is that if it did have a strictly bound branching factor, the data structure
itself would not be that much different from an m-tree with modifications. Since
there would be a limit on the number of potential discrete spatial blocks that its
children cover, the potentially infinite feature of the embedding space of VDB
would not be possible. Despite the random access to a hashmap as well as a hash
generation step both making the structure slower, there are bottom-up optimizing
algorithms in place that amortize the cost of search traversals that start from the
root node.

To better illustrate the explanation of the hierarchical structure of OpenVDB,
Figure 1.1 is useful. Of utmost importance is the shallow and fixed depth of
the tree, accompanied by the large fixed and predefined at construction, a set of
branching factors for each level of the tree’s depth, and an unbounded Root node.
Both Internal nodes are essentially the same in structure and include, as such,

14



two bit-masks, one for active values and the other for hierarchical information
about its children nodes, called mValueMask and mChildMask. Noteworthy is
that the Root node has a hashmap as its choice optimization data structure.

1.2.4 NanoVDB
Despite all the advantages that OpenVDB offers, its main downside is the

inability to be used natively on GPU. To be precise, as the authors put it, first
of all, it was purposed for CPU use, and secondly, it is not designed to work on
GPU due to its structure’s heavy utilization of pointers. Because of that, the data
locality inside of the structure is also much worse when compared to NanoVDB.
To that end, in contrast to OpenVDB being a highly customizable structure with
fast random access and in itself representing a wide and shallow B+-resembling
tree, NanoVDB loses the customizability due to assuming the topology of the
internal nodes structure to be static [12].

NanoVDB had adopted the majority of OpenVDB’s best features, including
its hierarchical structure, bottom-up recorded traversal of the tree and already
integrated templating of standard types. Initially developed by Nvidia, it was
integrated into OpenVDB as a way to add GPU support with a data structure
that is fully compatible with the existing OpenVDB core.

Thanks to this and the way NanoVDB is implemented as a flat, contiguous
memory buffer, not only does NanoVDB work on both CPUs and GPUs with a
wide list of supported architectures, but it is also supported by several graphics
APIs widely used in image production and game industry, like CUDA, OpenGL,
DirectX, and HLSL, just to name a few. Thus, making it a perfect choice for
future development as well as a focus of our thesis.

When packaged as a product, NanoVDB contains a reduced set of instruments
available compared to its predecessor. As the biggest downside of this, NanoVDB
does not have tools for modifying an already serialized grid; that is not to say it
is impossible to modify a single or a series of values themselves. As a restriction,
because of this, it focuses mainly on implementations of grids on static trees.

Essentially, what NanoVDB itself represents is a C++11 standard header-only
library with a significantly reduced functionality of standard OpenVDB. At the
time of writing our work, the NanoVDB is also accompanied by two additional
header-only implementations, a CNanoVDB and PNanoVDB which are both
minimized C99 standard usable implementations of core data structures and
access methods, although when compared to CNanoVDB, PNanoVDB provides
better coverage of original functions from NanoVDB.

1.3 Renderers

1.3.1 Mitsuba2
Li et al. first introduced the differentiable rendering approach and the accompa-

nying challenges in 2018. [13] Challenges include having to manually differentiate
every existing expression with the addition of a new model or algorithm to a
differential rendering system. Mitsuba 2 addressed these issues by standardizing a
set of types and disjointing the algorithms and various rendering methods by ways

15



of abstraction. This allows Mitsuba to be highly customizable and re-targetable
to various applications. This thesis utilizes this render code generalization to
customize the rendering system in our interactions with Mitsuba 3 as its direct
successor, allowing native support of multiple backends.

This generalization of render algorithms is achieved by Mitsuba 2 being
supplied in two different projects, Enoki, which is a template library, that handles
vectorization and JIT compilation. The second project is the compilation of
multiple approaches culminating in a differentiable render system, Mitsuba 2,
which is a complete rewrite of the previous version, only borrowing the Mitsuba
0.6 scene description style.

Mitsuba 2 includes multiple features, however, for the scope of this thesis only
several of them are of relevance. Starting with, template metaprogramming is
a feature that gets heavily used in the Mitsuba renderer itself, with most of its
features specified using target-specific abstracted types, like Float and Spectrum
templates. Due to optimization on target-specific backends, like CUDA for
support of vectorized computation and high-performance computation, the unused
branches are pruned at compile-time utilizing constexpr evaluated code blocks.
The last feature is the JIT evaluation, which includes Nvidia Parallel Thread
Execution (PTX) intermediate representation code generation, branch pruning,
and optimizations, as well as JIT GPU kernel optimizations. The emergence of
such an approach was motivated by the unpredictability of vectorization when
applied to physically-based rendering due to rendering code being able to jump to
any part of the renderer [13].

Due to these Enoki and Mitsuba 2 features, the entire system can be charac-
terized as a compile-time branched system that includes a Just-In-Time compiler,
similar in application range to DrJIT, which is included in the later discussion of
the following section.

1.3.2 DrJit
DrJIT stands for a Just-In-Time Compiler for Differentiable Rendering, which

focuses on physically-based rendering by producing and aggressively optimizing the
computation graphs of high-level simulation code as well as helping in simplifying
the differentiable rendering algorithms. While the scope of this thesis does
not require the coverage of differentiable rendering, the kernel evaluation and
optimization are most interesting to us.

Modern-day effective computing requires the elevation of features like SIMD
instruction sets and GPU compute shaders, depending on the host device area
of the application. Tracing is the production of a trace, or a large computation
graph, during the execution of a rendering algorithm. A traced graph typically
includes a large computation graph of ”arithmetic, loops, ray tracing operations,
and polymorphic calls” that later gets evaluated onto a host-backend’s large
data-parallel kernel. DrJIT, with its roots in Enoki, already had support for its
own kernel evaluation on GPUs and optimized PTX instruction set in the form
of IR code. While the creation of traced kernels was done in Enoki as well, it
only supported GPU with its CUDA backend. DrJIT, however, includes a recent
addition of LLVM IR support, which enables highly parallelized CPU vectorized
computing.

16



This traced computation graph, in essence, describes the exchange of informa-
tion between the algorithm and scene objects, with scene objects including the
object representation, light, sensors, and many other standard render primitives.
A key difference between DrJIT and Enoki, however, is that the computation
graph size is much larger as it includes a larger set of operations to evaluate before
generating an unevaluated image in the form of a trace [14].

1.3.3 Mitsuba3
Mitsuba 3 directly builds on top of Mitsuba 2 with its plugin-based solution as

well as the scene descriptor language support from Mitsuba 0.6, with its approach
to rendering primitives being defined as scene objects.

Due to Mitsuba 3 evaluating its computation through a vectorized scene tracing
in DrJIT, it also inherently supports both backends, CUDA and LLVM. These are
recognized as variants in Mitsuba and are required to be separately specified with
build flags to be compiled and built. Additionally, the Mitsuba 3 is inherently
language-agnostic, as it is written on top of DrJIT, and most API calls having an
equivalent in both Python and C++.

Separately, the Mitsuba 3 is once again a plugin-based system, with most
objects and algorithms being directly interchangeable within the variant and
defined through inherited class plugins, as shown in section 3.2. In this thesis, we
make use of that fact to develop our own plugin solution for NanoVDB-supported
volume path-tracing.

17



2 Methodology
This chapter provides a high-level overview of our work and main processes,

including conversion, plugin implementation, rendering, and comparisons. Fur-
thermore, it also covers most of the decisions involved in the implementation
of the plugin itself. It also briefly summarizes both acquisition and comparison
processes for the resulting rendered images. It is important to note that most
of what this chapter covers is non-technical details of our work and some of the
shortcomings, which will be additionally described in chapter 4.4 with the rest of
the discussion.

OpenVDB Input File

OpenVDB to NanoVDB
conversion script NanoVDB grid file

Comparison image

Reference image

Image Comparison &
Performance/Benchmarks

Mitsuba 3 scene
pathtracing with volume

plugins

Our NanoVDB
vectorized plugin
implementation

OpenVDB to NumPy
conversion (copyToArray) NumPy dense grid

Scene descriptor with 
specified grid and plugin

type

C++

Python

Standard Mitsuba
volume grid plugin 

Conversion (Verification) Scene rendering Comparison (Verification)

- Procedure

- Input / Output

Figure 2.1 A schematic flow diagram for illustrating the conducted work and its
general structure. This diagram outlines major sections of our process on a high level.
The work is split into several steps, out of which distinguishable are major three. Starting
from left to right, the VDB conversion stage processes inputs of OpenVDB to both
sparse NanoVDB and dense grid NumPy. Secondly, there is a Mitsuba plugin involved
in the rendering stage that loads the relevant converted file format into the plugin
and outputs the rendered image. Lastly, in the comparison stage, both accuracy and
performance are measured using image metrics as well as benchmarks. Additionally,
the dashed lines indicate sparse data while solid lines indicate dense volumes.

2.1 Work outline
As illustrated in Figure 2.1 by a vertical split, this thesis can be symbolically

separated into two major parts. One above involves our developed code, while
the below interacts only on the Python side using existing API calls, either to
Mitsuba plugins or OpenVDB converters. The exact configurations for replicating
the complete setup are provided in the chapter 3 together with selected code
samples. Just as illustrated, both processes receive the input in the form of a
sparse volume file in the OpenVDB format. A rough common outline for these
distinct sections can be described because of the shared similarities between the
majority of steps for these two development parts.

It is imperative to note that the order in which this chapter is structured does
not directly reflect the sequence of conducted work. Because a flow schema of
the general process is provided here in the first section, it becomes possible to
discuss the methodology steps in a way, that in our belief, would most benefit the
reader’s understanding.

18



Because of that, instead of VDB conversion, this chapter begins with section
2.2 that describes the differences in directly working with volumetric formats.
That information becomes useful in the following sections, including one describing
the implementation of the volumetric plugin. As the background for the data
structures that are used in the thesis was already provided, this should be enough
to justify not reintroducing the topic again in this chapter. Instead, the focus
is shifted to a discussion of the peculiarities as well as distinguishing features of
working with these voxel formats. That discussion also includes the limitations
that follow the choices of data structures. Additionally, these feature constraints
of some selected structures also define some of the restrictions imposed on the
implementation itself.

Right after introducing the differences and some of the restrictions that come
with our selected data structures, the section 2.3 follows. Its purpose is to provide
an overview of the high-level implementation sequence for the production of the
finalized NanoVDB plugin. The actual implementation with code samples will be
included in chapter 3.

After that, section 2.4 attempts to gradually lead the discussion to our rendering
and comparison stages, which are unified under it. Thus, verification is mainly
there to provide a description of image production by path tracing the scene
descriptors in the Mitsuba 3 renderer. Later, it is finalized by comparing their
outcomes using various comparison methods and rendering time and memory
benchmarks.

2.2 Comparing VDB structures and Dense grid
Before, the section 1.2 only gives a general overview of features for these

VDB-typed data structures as well as some types of dense grids. That module
also gives minimal context for how they might be used to represent volumetric
grid data.

In contrast, the following description attempts to highlight the use limitations
that arise from conversion from OpenVDB to Numpy dense and OpenVDB to
NanoVDB. In light of that, the following paragraphs also serve as an introduction
to the conversion topic of VDB, which will be discussed more in section 2.4.1.

This part focuses on the comparison of those same data structures mainly
in the context of their use in plugin implementation. It additionally discusses a
number of restrictions they introduce when utilized in the scope of this thesis.

The provided Table 2.1 is a short table of feature comparison that allows us to
illustrate how the conversion from OpenVDB to other data structures affects the
data, including data accessibility as well as introduces constraints in the conversion
process itself, which we cover further in the section 2.4.1. It additionally allows
us to argue for the choices of data structures and implementation headers done in
the following section 2.3.

Starting from the top of the list, there is a question of voxel data structures
being suitable for their use in GPU-side rendering. As it was already pointed out,
out of all described structures, either due to the inefficient memory footprint of
dense grids or due to the utilization of pointers in the topology of a volumetric
structure for OpenVDB, only NanoVDB is suited for working on GPU. However,
it does suffer in other aspects. Such shortcomings include being unable to write

19



Dense
Numpy

Open
VDB

Nano
VDB

PNano
VDB

Optimized* for GPU No No Yes Yes
OpenVDB func. coverage n/a Full Min* Core*
Can values be modified Yes Yes Yes Yes
Can topology be modified Yes Yes No No
Depends on pointers n/a Yes No No
Multiple grids in a file No Yes Yes* No
Memory effective for sparse No Yes Yes Yes

Table 2.1 Selected feature comparison table for data structures that are used in the
thesis. Column-wise, highlighted in bold, are the minority outliers in each data structure
column, done only for increased visibility.

data into an already initialized grid, as well as assuming the grid structure to be
static, as opposed to fixed at construction. Additionally, that means supporting a
smaller set of instructions than the original OpenVDB, but for our scope, it is an
advantage, as it significantly limits our code testing stage.

Separately, there is support for multiple grids being composed in one file.
From the construction and API documentation of OpenVDB, it is known that
both OpenVDB and NanoVDB support the addition of multiple grids to a single
file. However, this is not the case for the dense voxel grids, as the data structure
would quickly grow out of proportion, resulting in an even worse memory footprint
scaling. Furthermore, as was pointed out in the OpenVDB paper, there is no
known evidence if they were ever used for animated volumes, which is one of the
main reasons for including multiple grids in a single file [9]. We point that out
as one of the reasons because aside from path tracing in a scene file of multiple
objects, which can also be achieved by simply increasing the number of referenced
single grid files, other goals can potentially be achieved in the frame compositing.

Because both dense and sparse data structure formats are used in our compar-
ison stage, we argue in comparing them in rendering performance in speed as well
as memory. Figure 2.1 roughly allows us to summarize dense grids as a structure
that is not designed for holding sparse volumetric data with dynamic topology on
a massive scale grid, which is, inversely, a specialization of VDB [12]. Furthermore,
section 1.2 in combination with the figure 2.1 helps us illustrate that in the case
of 3D representations of large-scale data, a dense grid fails to fit the dataset into
memory effectively. This problem is even more exacerbated in the case of GPU
memory, as the inefficiency means that the dataset will completely fail to fit into
the limited memory. That serves as support for one of the major reasons for this
thesis, the utilization of VDB structures on GPU. Additionally, that serves as a
special case in the comparison stage, representing data that always requires some
sparse representation to allow storing it in GPU memory.

20



2.3 Mitsuba 3 plugin implementation
This section describes in high level terms our general approach to the imple-

mentation of deliverable plugin, from the first steps of accessing the grid handles
and reading out float monochromatic values, to rewriting PNanoVDB core using
both DrJit types and vectorized API. This part of thesis also includes a few
paragraphs on the setup and implementation of Unit Tests that accompany all of
implemented methods.

2.3.1 Accessing VDB values
Accessing the float values of either OpenVDB or NanoVDB is done using a set

of required grid pointers and value read accessors that are obtained before the call
to a type-templated read method. Our goal for this part was to ensure consistent
results were obtained across files in both formats. As a first step, the simple data
conversion setup was completed, which allowed the conversion of all input files
from OpenVDB to NanoVDB format. In the same procedure, a series of random
reads ensures that the results stay consistent across all files both before and after
conversion.

Combined with our initial render, this step helps us in the long term by
providing a baseline image for benchmarks and comparison. As for the VDB
values themselves, there are several possibilities for acquiring the data from the
grid. For both OpenVDB and NanoVDB, it is required to obtain a read accessor
for the relevant grid type and then try addressing the read by the Cartesian
coordinates of the queried voxel. In contrast, in PNanoVDB, as the data structure
does not rely on multiple tree-level pointers, the API call requires obtaining
multiple dummy grid handles. These are designated for several distinct levels of
the tree, including for root, upper, and lower internal nodes, and later addressing
of the value by its 3D coordinates.

2.3.2 Rewriting the NanoVDB to DrJIT
As it may seem from a quick glance, the simplicity of NanoVDB’s calls is

better suited for the end-user. However, for the thesis goals of implementing the
plugin with NanoVDB support, the PNanoVDB header was a better choice for
multiple reasons.

One of the reasons in favor of PNanoVDB is a much heavier use of templating
in the NanoVDB codebase. What was initially predicted to become one of the
main issues with NanoVDB during translation to DrJIT types was a type conflict
when replacing the standard types with vectorized alternatives defined in DrJIT.
However, this step to vectorize and rewrite all types and at least the stripped
core of NanoVDB methods was a strict requirement in all cases. Mainly because
this reduction of core code was unaffected by the choice of header library, the
PNanoVDB header was selected as a final choice of implementation basis. Because
NanoVDB itself is a cut-down version of OpenVDB, without including standard
or any other libraries as dependencies, the header-only trimmed-down file of
PNanoVDB takes it a step further. It is, in essence, a very slim header file
with around 8200 lines of code, without any external dependencies. However,
with the main goal being the delivery of the translated PNanoVDB code itself

21



and its integration into Mitsuba, it was necessary to trim it even further. This
was possible because of the inclusion of multiple graphics APIs, including HLSL,
GLSL, DirectX, and CUDA. The following steps were direct translations of existing
standard-type replacements in NanoVDB. Following that was a minimally invasive
vectorization of a method stack that comprised a complete call to a Cartesian
coordinate read of a value stored in a queried voxel.

There were several options to achieve results that would be comparable to one
another. One option was to attempt re-implementing all of the methods, including
both core and helper, from the NanoVDB header. Another option was to utilize
a cut-down version in either of the two, PnanoVDB or CNanoVDB headers. As
both mainly contain the only core with some additional functionality coverage,
we opted for the PNanoVDB as it was simpler to understand, provided more
coverage, and was thus easier to end-test using a testing framework. Additionally,
PNanoVDB was simpler to test because of the granularity of calls in the end
API coordinate read. This factor allowed us to unit test different levels of
implementation separately, without additional templating, ultimately ensuring
the working capability of the entire module.

2.3.3 Framework unit testing
The unit testing phase utilizes DocTest, a lightweight C++ only testing frame-

work for testing and asserting our code implementation’s quality and reliability
when implementing the NanoVDB to DrJIT. Following the TDD principles, test
cases are defined for each function with an extensive amount of random querying
subtests. Fortunately, most of the data that is returned from a vectorized method
variant can be directly compared to an original PNanoVDB counterpart. Addi-
tionally, what DocTest helps with as a framework is an almost painless DrJIT
test fixture setup with initialization and flag setting for debugging purposes. Sep-
arately, it defines test fixtures, encapsulating the setup and each test, allowing for
avoidance of repetition of boilerplate code in setup phases for each fixture. Because
of the number of functions that were required to be tested, the DocTest proved to
be an irreplaceable part of our process, allowing us to ensure working order in
all of the translated vectorized functions. Furthermore, it allows the testing of
the complete plugin calls as a system-wide test by also providing an easy-to-use
environment to compare and assert data equality to PNanoVDB results.

2.4 Verification
This section is mainly concerned with rendering for the purposes of producing

an image from the file with OpenVDB or NanoVDB format, be it initial render in
Mitsuba 3 by utilizing the built-in volume grid plugin, or the image produced as
a result of the developed deliverable. In addition it describes general approach
with a bench-marking process for obtained results and separately, for measuring
performance metrics.

However, as can be observed in Figure 2.1, before the discussion of image
production by path tracing, there is still a need to describe a bridge between the
original inputs and the inputs that are fed into the relevant Mitsuba plugins. In

22



our case, it includes a description of the conversion process for OpenVDB format
to both Dense NumPy and NanoVDB.

Because of that, this section first covers the VDB conversion process for both
VDB cases in section 2.4.1. This includes conversion to uniform dense NumPy
grid in Python as well as conversion to NanoVDB format in C++. Because
section 2.2 briefly covers the differences in features between our original and target
representations, we provide a description of the conversion process accounting for
those restrictions.

2.4.1 VDB format conversion
Interestingly, despite how widespread the use of the format is, currently, there

is no way of natively utilizing the sparsity of VDB in the Mitsuba 3 renderer.
Specifically, the existing Mitsuba standard volume plugin requires for dense grid
representation of the target volume instead of a sparse one. Thus, the only
available way of utilizing the data is mediating it to the renderer by pre-processing
it to dense grids. After processing, the data is transformed to the VOL simple
binary exchange format that, in essence, represents a spatially encoded dense
uniform grid.

However, this thesis uses another conversion process for these files. The reason
is that the Mitsuba 3 procedure of converting OpenVDB to the VOL uniform
grid format exists only in the form of an outdated and relatively unsupported
conversion tool. Despite it still fitting our purposes for testing and an initial
rendering stage, the conversion step utilizes the NumPy dense grid instead. The
reason behind that decision was better documentation coverage by OpenVDB as
well as its relatively quick availability.

As already shown in section 2.2, the dense grids do not have support for
more than one grid to be recorded, including NumPy dense representation and
VOL format. To summarize the effect this choice has on the thesis, this issue is
relatively minor, as the same effect of multiple grids can be achieved in increasing
the number of files in the scene. Despite that it still restricts our own comparison
images to be produced with single grid files only. That is because our scene
descriptors only have a single file in an attempt to decrease potential rendering
errors.

Another minor issue was the misalignment of the resulting grid during con-
version. That was resolved by ensuring the resolution of the declared NumPy
grid matches that of the grid’s bounding box resolution. The issue was noticed
during the initial Python call for conversion to NumPy, as the Python grid itself
has to be declared with the required resolution. During the conversion process,
the resulting zero coordinate API call results in a bounding box shift and only a
partial rendering of the original volume. This was linked to a re-centering that is
done inside of the method call relative to the supplied zero coordinate parameter.
Because of that, the only way to ensure one-to-one alignment of the correctly
sized resulting grid is to utilize the meta-packed information for specifying the
NumPy grid’s new initialized zero as the minimum bound of the grid’s bounding
box in OpenVDB.

We have pointed out our limitation to single grid files in dense grid represen-
tations. For the NanoVDB conversion we have written another converting script.

23



The reason this conversion tool was required was because there are almost no
existing and ready-to-use NanoVDB files in common access. A separate justifica-
tion for this tool’s existence was the added possibility of casting the grid pointer
type to another grid pointer type. For the sake of simplicity as well as for better
coverage of our own test cases, we limited from the start that we were working
with a single monochromatic, value-only, float-typed grid representation.

Due to the initially described restriction on dense grids, we also constrain this
conversion process. Thus, in the conversion script from OpenVDB to NanoVDB,
we also use a single grid file output. Despite the API allowing writes of multiple
grids to the single file, we choose to adhere to this choice for consistency and
simplicity of the resulting script. For that reason, both our conversion methods
and our process involves as source only one file with isolated single grid volumes
and has clearly defined bounding boxes.

In order to ensure that the conversion went without major issues, our script
also tests for equality a fixed number of random sampled coordinates in both
pre-conversion and converted grids. As an output of our NanoVDB converter, we
are able to receive a resulting file with .nvdb format that contains data similar in
local coordinates and values as our original grid.

2.4.2 Baseline images
Due to our ultimate goal with this thesis being the production of a Mitsuba3

compatible plugin that would be able to rival the existing plugin for dense grid
rendering, we need a baseline image to compare to.

The initial render and development were done using the OpenVDB Stanford
bunny cloud model, as provided in the samples section on the OpenVDB website.
All other models were also borrowed from OpenVDB for initial dense grid rendering
and later NanoVDB conversion.

Because the Mitsuba3 plugin does not natively support OpenVDB or NanoVDB,
we had to convert our borrowed datasets into a dense grid first, just as outlined
in section 2.4.1. As per available instructions on the OpenVDB documentation
page, the bunny was converted using the provided API call into a NumPy dense
grid and rendered using a very small number of samples due to the hardware
limitations of a target machine.

Ideally, the image was to be of higher resolution, but due to time constraints
and hardware issues, the increase in target resolution was only achieved by using
a computation cluster for rendering. An additional constraint was our scene
iterations while developing the plugin because of fine-tuning the scene to work in
both of our environments as well as adjusting for NumPy bounding box correction
during the conversion process.

The initial rendering was produced on a laptop series RTX 2060 GPU with 6
GB VRAM by using the setup described in section 3.1. The image was produced
in the resolution 256x256 pixels per image with a spp equal to 2, which is a very
small count of samples per pixel (spp). The cluster-produced images, however,
allowed for much higher computational throughput, so the final renders were
produced using a resolution of 1024x1024 pixels square image and a converging
spp of 1024 for all images. Additional details on results recording are described in
chapter 4.

24



2.4.3 Setting up a comparison scene
In order to achieve any significant result aside from the base render, there is

a need to focus on two major objectives. The first objective is creating a plugin
itself, which is described in detail in chapter 3. Following that, the second goal
is to produce a reliable and reproducible example scene that would be nearly
identical to the rendered baseline image. This standard scene file is necessary
because otherwise, it is hard to produce relevant and consistent comparison data
otherwise.

To give the reader a better understanding of scene descriptors, the main
elements of the scene file that should be present are described. This scene file
is also required for minimal reproduction of our results as well as for minimal
rendering of the scene in Mitsuba. While a Mitsuba scene description can be as
simple as placing the object file inside of a space, the bare minimum a scene requires
is a model to be rendered, a single light source, and a single sensor representing a
camera view to be rendered. Additionally, as Mitsuba is a plugin-based renderer,
most of the plugins have their internal parameters available for tweaking. All
of the standard and in-plugin parameters can be exposed and modified, making
it relatively easy to set up a scene. Our scene iterations also use that process
for setting up reference and final renders. The entire process mainly focused on
modifications and applying correct transformations to the centered volume file.
With these iterations, a primary goal was to try and match the resulting world
transformations of queried 3D Cartesian coordinates to their correct positions.

The resulting comparison scene was set up using the centered unit cube with an
empty material for the enclosing cube and a volume with a fixed scaling centering
transform placed inside of it. Additionally, for consistency, a set of fixed-angle
increment rotating sensors with an elevated angle is provided for all reference sets
of images in a manner similar to a turntable rendering, as described in chapter 4.

2.4.4 Implemented plugin render
Our plugin implementation takes the code of NanoVDB as its reference and

combines the existing minimal functionality required for the grid volume Mitsuba
3 plugin to work. That minimal set of functions includes a call to a texture
evaluation method that directly samples and interpolates the values of a plugin
class’s member volumetric texture in the simple binary exchange format VOL. In
our implementation, that volumetric texture sampling call is replaced with a read
to a NanoVDB file, with removed interpolation because of a raw integer-rounded
coordinate read, which then reads the value for the transformed world space
coordinates already in the local coordinate space for the file.

In our experiments, we have limited ourselves to a call to a monochromatic
interpolate function that originally samples the 3D texture based on local Point3D
coordinates, affected by grid transforms from the scene descriptor. For the entire
stage of development, the sample count was kept low to increase the feedback
effectiveness and produce results faster. In the evaluation and performance sections
of our work, the sample count was kept close to 1024 with an additional increase in
the rendering image’s resolution to achieve render convergence and reduce image
noise.

For the result that was pursued, our plugin utilizes the same scene descriptor

25



set up for the comparison scene. That helps once again in the case of direct
resulting image comparison as well as for clearing up the resulting combinations
of transformations to be exactly the same in both cases. This is additionally
supported by the accuracy measurements. Just as was outlined in chapter 2, while
the development for the plugin was done in C++, the rendering of the volume
itself was done using the Mitsuba 3 through Python calls with a Jupyter Notebook
environment.

In the final rendering stages of our process, the entire setup is transferred to
a Docker container while replicating and combining the results achieved in the
previous steps with both plugin implementation and rendering Jupyter Notebook
setup. The finalized rendering is done in a much higher sample count and increased
resolution in order to achieve a meaningful comparison in our following section 4.4

2.4.5 Performance and Benchmarks
For the comparison of the results in terms of accuracy, the MSE and SSIM are

used as our primary image comparison metrics. These are conducted using renders
of the same scene description, with the only difference being the use of a plugin.
All images are rendered with 1024 spp as the resulting number of samples per
pixel to achieve a compromise between the time of rendering and image quality
achieving convergence.

The performance results on both speed of rendering as well as memory utiliza-
tion are done using Python Time library for recording rendering time in between
the Mitsuba render calls. The memory measurement is parsed from the Mitsuba
whos_str() method call that returns a string for all traced variables involved in
the call as well as device memory for both CUDA and LLVM variants. A more
detailed explanation of the recording process as well as analysis is attached in
chapter 4.

26



3 Implementation details
This chapter describes the necessary steps for recreating the setup. It starts

with the complete development environment, including relevant library names and
dependencies, but omits exact version history. Because of its relevant simplicity,
the chapter provides only a short description of the technology stack used. A
huge portion of its focus is devoted to describing the detailed process of the
plugin development itself and conducting unit tests that were added to ensure
code correctness and adherence to the original NanoVDB results. Additionally,
some space is devoted to describing the image production process with path
tracing, which will include scene setup, exact rendering settings, and, separately,
comparison and recording of benchmarks. The end sections of this chapter
additionally describe several challenges encountered in the implementation process.

3.1 Our setup
The initial project setup was completed on a locally virtualized Windows

Subsystem for Linux (WSL ver.2) with dedicated 12 GB RAM and 128 GB swap
space. Completed Mitsuba plugin builds, including its initial implementation,
as well as unit testing utilizing CMake and Ninja generator as a build system.
The entire project configuration with relevant versions is packed in our repository
to increase the chances of it being reproducible. For reference, both full version
information and a quick setup script in attachments A.1 and A.2 are also included.

Before, in the Methodology sections, it is mentioned that our project is
separated into our C++ implementation and OpenVDB/Mitsuba used Python
side code and that this language separation acts as its rough division. Factually,
our project consists of three smaller projects. Two projects are C++ only, one
including a DrJIT-based NanoVDB implementation with added unit tests and
another a separate Mitsuba 3 build with a developed NanoVDB plugin that acts as
a dependency for our rendering. Lastly, there is a Python-only Jupyter notebook
containing scene descriptors that links to the Mitsuba build as its dependency,
with Mitsuba acting as the project’s renderer. The dependency between the two
projects is managed by connecting them using the PYTHONPATH environment
variable and a linker bash script that is configured inside of the Mitsuba build.

The second significant half of the implementation is set up on a computation
cluster using Docker containers for easier dependency management. The cluster
was used only after several iterations of code optimizations. Its main purpose
was the final path-tracing of resulting images, with the finalized parameters being
fixed across all renders. To achieve that, the local machine setup of several
projects was recreated in the Docker container while retaining most of the original
linking by rebuilding the projects from scratch inside Docker and connecting
their dependencies. Rendering projects that use the Jupyter notebooks and the
Mitsuba plugin implementation are connected by linking the Mitsuba to the
Python environment path in Jupyter, similar to the local machine setup.

The reason for specifically choosing Docker as our final rendering setup was
twofold. First was the hardware limitations of our local machine, which was
also the initial reason behind using only a small number of samples during the

27



plugin implementation phase. Additionally, the resulting images of compute cluster
rendering were used to compare the results. The second reason for selecting Docker
was that it allowed us to achieve a more precise benchmarking process. Because it
allows isolating development containers similar to the environment virtualization.
The final reported comparison data was also recorded using the compute clusters.
Thus, Docker was an obvious choice there, as the added possibility of isolating
memory and execution speed allowed for more precise benchmarking, which was
specifically useful for this case.

3.2 Scene descriptors
Earlier, only a brief overview was given of the scene descriptors’ main compo-

nents that are required for rendering the scene, as well as some of the components
required by the default volumetric plugin module to ensure its basic functionality.
This section can go into deeper details and provide several examples of the code
structure of our scene descriptor, as well as describe the exact parameters we
use in our plugin against those used in the default volume plugin. This step is
relevant to the loading of the plugins at the start of the scene rendering section in
our methodology chart, as illustrated in Figure 2.1.

What is interesting from these descriptors is the fact that all the plugins and
rendering primitives used in Mitsuba can be classified and inherit the object class.
That includes the scene, objects in the scene, light emitters, camera sensors, and
many, many more. This can be illustrated in Figure 3.1 as well as Figures 3.2 and
3.3 with the dictionary key ’type’ that signifies the exact plugin to be linked.

1 scene_dict = {
2 'type': 'scene',
3 'integrator': {
4 'type': 'volpath',
5 },
6 'object': {
7 'type': 'cube',
8 },
9 'emitter': {

10 'type': 'constant',
11 'radiance': 1.0,
12 },
13 }

(a) Scene in Python

1 <scene version="2.1.0">
2 <integrator type="volpath"
3 id="integrator"
4 name="integrator"/>
5 <emitter type="constant"
6 id="emitter"
7 name="emitter">
8 <float name="radiance"
9 value="1.000000"/>

10 </emitter>
11 <shape type="cube"
12 id="object"
13 name="object"/>
14 </scene>

(b) Scene in XML

Figure 3.1 Example of a simple scene in both XML and Python

The standard for scene descriptors is specified in the XML format. All of the
scene descriptors can be provided either in the XML format or in the Python
dictionary format, depending on the convenience and preference of the end user.
It is additionally possible to convert in-between formats using the API calls
to Mitsuba’s dict_to_xml(). In our implementation, we utilize both, with our
primary use case being the Python format because of improved readability for
the scene iterations itself. Separately we utilize the conversion call from Python

28



dictionary to XML format for debugging purposes in C++ Mitsuba build because
of the faster build times and a removed project linking step.

1 'object': {
2 'type': 'cube',
3 'bsdf': {'type': 'null'},
4 'interior': {
5 'type': 'heterogeneous',
6 'sigma_t': {
7 'type': 'gridvolume',
8 "use_grid_bbox": False,
9 "filter_type": "nearest",

10 "grid": volume_grid ,
11 # "filename": "scenes-m3/dataVol.vol",
12 'to_world': T().scale(3).translate([-0.5, -0.5, -0.5])
13 },
14 'albedo': 0.999,
15 },
16 "to_world": T().scale(2)
17 },

Figure 3.2 Use of the standard gridvolume plugin parameters

1 'object': {
2 'type': 'cube',
3 'bsdf': BSDF,
4 'interior': {
5 'type': 'heterogeneous',
6 'sigma_t': {
7 'type': plugin,
8 "grid_n": 0,
9 "grid_type": "float",

10 'vdb_filename': FOLDERNAME+filename+FILEEXT,
11 'to_world': T().scale(3).rotate([1., 0., 0.], 90).

translate([-0.5, -0.5, -0.5]),
12 },
13 'albedo': 0.999,
14 'scale': float_scale ,
15 },
16 "to_world": T().scale(2)
17 },

Figure 3.3 Use of the our grid_pnano plugin parameters

These samples are provided to illustrate and highlight the required parameters
in both the standard volumetric plugin as well as our developed NanoVDB plugin,
pointing out the differences. As Mitsuba 3 allows for plugging of variables in
Python, the VOL input to the plugin can be defined as a variable, which is
illustrated in Figure 3.2 by grid parameter. It is also possible to supply the
input in the form of a filename with VOL extension. What is, however, absent in
our implementation is the parameter filter_type. Because we are simplifying the
function calls to its bare minimum, there is no volumetric texture interpolation,
as we only sample single-point data.

29



As can be illustrated in the provided code samples for setting up the plugin
scene descriptors, a set of minimal rendering functionalities for our goals can be
ensured by providing object file references, a light source, and a rendering sensor,
or in other words, a virtual camera. While it is possible to define only an object
in Mitsuba 3, it would not provide the extended customization that our scene
asks for. Thus, all objects are to be defined explicitly for increased replication and
better comparison results. That is because each file includes standard lighting and
transforms for the standard volumetric plugin. Thus by only providing the object
grid in the VOL format, the resulting images would not have proper transforms,
sometimes making them not visible from the standard camera view angle.

3.3 NanoVDB conversion
While we already described the bulk of our conversion procedure due to its

relative simplicity in the Methodology section, this subsection of Implementation
is here to provide a detailed example of how the grid pointer casting works, what
access options are available to the grid tree data, and what limitations we were
imposed with because of using the selected conversion method. This part is related
to the conversion section of our methodology in Figure 2.1.

Several concepts need to be introduced once again to describe the inner
workings of OpenVDB at a level that can be grasped. As already described
multiple times, the VDB is built on top of a B+ tree resembling structure, with
the tree holding the data recorded at each ijk index in Cartesian space, when the
query is sent for a data read by that index. Trees have different common aliases
of form FloatTree or UInt32Tree that in essence are defined in openvdb.h as some
of the commonly used tree topology type aliases, with the most common being
FloatTree, as can be seen in Figure 3.4.

Because this type of addressing to the tree is enclosed by a container class,
that is our utilized Grid class, we first need to read the file’s grid descriptors from
the stream and then access them by name, reading the GridBase pointer.

Unavoidably, the obtained grid pointer needs to be downcast from a generic
grid pointer to a concrete Grid type alias because BaseGrid does not have the
generic ReadAccessor methods. To achieve that, a call as seen in Figure 3.4
to convert the grid is made. With the grid pointer casting, there are multiple
supported grid types that, in essence, are cast to a concrete Grid class with
definitions of the concrete tree value type. That templated method checks for
gridType names and performs a static_cast on the shared grid pointer.

On a lower level, this is what happens during a grid read and grid pointer
conversion. In our implementation, the simplified basis was, however, provided
in the form of a Quick Start page from the OpenVDB documentation. Thus, in
order to implement the basic conversion for the NanoVDB format from OpenVDB,
the API requires a pointer cast to an OpenVDB grid type. With a later call to a
conversion API method that will convert the pointer to a NanoVDB handle.

Because of the absence of topology pointers in NanoVDB, the main structure
pointer is contained within a HostBuffer class that contains both buffer size and
data*() pointer to the raw buffer for the NanoVDB grid.

30



1 using FloatTree = tree::Tree4<float, 5, 4, 3>::Type;
2 using Int32Tree = tree::Tree4<int32_t, 5, 4, 3>::Type;
3 using Int64Tree = tree::Tree4<int64_t, 5, 4, 3>::Type;
4 ...
5

6 using FloatGrid = Grid<FloatTree >;
7 using Int32Grid = Grid<Int32Tree >;
8 using Int64Grid = Grid<Int64Tree >;
9 ...

10

11 // Reading file descriptors from the stream for a given filename
12 openvdb::io::File file(source);
13 // Populates the grid descriptors without slow-loading the grid

itself
14 file.open();
15 openvdb::GridBase::Ptr baseGrid;
16

17 // Get the gridName on the index 0
18 ...
19

20 // Reading and casting a grid pointer to a concrete type
21 baseGrid = file.readGrid(gridName);
22 openvdb::FloatGrid::Ptr srcGrid =
23 openvdb::gridPtrCast <openvdb::FloatGrid >(baseGrid);

Figure 3.4 Tree type defines and grid pointer casting

3.4 Plugin implementation
This section describes the implementation detail of the deliverable plugin, as

illustrated by a red rectangle in Figure 2.1.
The nanoVDB itself heavily utilizes all standard types in both 32-bit and

64-bit alignment. Besides, the entire PNanoVDB header is parameterized to
be compiled depending on the define macros, as it is a header-only library that
supports multiple languages, including graphics programming ones like GLSL
and HLSL. Additional code branching is introduced by splitting the methods for
x64 and x32 bitness. For simplicity, and because our main focus is the plugin
delivery itself, this thesis initially limited itself to the x64 system bitness, with
the relatively easy potential addition of x32 systems support in the future.

As was also already pointed out, we selected the file of PNanoVDB.h for the
implementation basis as well as a comparison code for which to write unit tests.
With the first step being the conversion to DrJIT vectorized types, the task was
simplified to figuring out a way to reuse the types from DrJIT in replacing the
C++ standard types that were used throughout the header file to the DrJIT
variants, with added traced loops and masking where it was necessary. While for
most methods, this procedure was as simple as line-by-line translation without
any significant modifications, some of the functions required to be modified a bit.
Due to the vectorization nature of DrJIT, most of what was rewritten included
the functions that had multiplication-addition arithmetic operators of new JIT
array types. Additionally, all of the branching if cases were replaced by masking.

The only current dependency of our implementation is the NanoVDB’s header-
only library from the OpenVDB repository, which is only used for the .nvdb file

31



1 // Creating a file object, reading from file and grid descriptors
2 ...
3

4 openvdb::SharedPtr <openvdb::FloatGrid > srcGrid =
5 openvdb::gridPtrCast <openvdb::FloatGrid >(baseGrid);
6

7 // Convert the OpenVDB grid, srcGrid, into a NanoVDB grid handle.
8 auto handle = nanovdb::createNanoGrid(*srcGrid);
9

10 // It is possible to straightaway write the NanoGrid handle to a
file

11 nanovdb::io::writeGrid(convertedFilePath , handle);

Figure 3.5 Conversion to NanoVDB and writing to file

format IO operations, as well as for storing the PNanoVDB’s static grid offset
array pnanovdb_grid_type_constants for the duplication avoidance, that are
initially utilized in the PNanoVDB’s implementation. This has to be added either
way, as the static array of constant offsets will be extended at some future points
by the VDB team, thus making it possible to extend the float-grid-only support
of our prototype to cover more grid types.

Challenging to the implementation itself was the pnanovdb_root_find_tile
method, not only because of issues with vectorization but also because of added
complexity when attempting to test it on the LLVM IR instructions produced
by JIT tracing, as produced logs resulted in the bug of unknown nature with an
undefined %mask variable. That forced a temporary workaround and a switch
to a separate build for the project of Mitsuba 3. The added complexity was
purely coincidental, as the main repository was and is still currently experiencing
a switch to a new Python binding library, nanobind instead of pybind11. To
be exact, the project was switched to the version of Mitsuba supplied in the
nanobind_mitsuba_bindings branch with relevant submodules. This version
repository hash for a DrJIT submodule was also copied to the implementation
folder as it was at the stage before integrating into the Mitsuba plugin. The reason
for choosing this version was a suggestion to switch to nanobind when contacted
for help with the abovementioned LLVM bug. It was given by the author, Wenzel
Jakob, as Mitsuba was once again on a continued path towards utilizing nanobind,
and supposedly, that branch was more stable.

Unfortunately, right after the switch and a working implementation on the
nanobind branch, on the stage of integrating the translated PNanoVDB code into
CUDA, it turned out that the CUDA version was not working for some reason
on the Docker machine in that branch and the latest master, specifically. We
attribute this factor to the currently ongoing transition to nanobind, as it is also
supported by issues being submitted for the last several months in relation to
CUDA compatibility. This forced the last switch with the rewrite of the same
function to the old traced loop version, as shown in Figure 3.7. With the last
version presented in this thesis, the base branch with all the modifications added
is stable v3.5.2 of Mitsuba and v0.4.6 of DrJIT.

32



1 PNANOVDB_FORCE_INLINE
2 pnanovdb_root_tile_handle_t pnanovdb_root_find_tile(
3 pnanovdb_grid_type_t grid_type ,
4 pnanovdb_buf_t buf,
5 pnanovdb_root_handle_t root,
6 PNANOVDB_IN(pnanovdb_coord_t) ijk)
7 {
8 pnanovdb_uint32_t tile_count =
9 pnanovdb_uint32_as_int32(pnanovdb_root_get_tile_count(buf,

root));
10 pnanovdb_root_tile_handle_t tile =
11 pnanovdb_root_get_tile_zero(grid_type , root);
12 pnanovdb_uint64_t key = pnanovdb_coord_to_key(ijk);
13 for (pnanovdb_uint32_t i = 0u; i < tile_count; i++)
14 {
15 if (pnanovdb_uint64_is_equal(
16 key,
17 pnanovdb_root_tile_get_key(buf, tile)))
18 {
19 return tile;
20 }
21 tile.address =
22 pnanovdb_address_offset(
23 tile.address,
24 PNANOVDB_GRID_TYPE_GET(
25 grid_type ,
26 root_tile_size));
27 }
28 pnanovdb_root_tile_handle_t null_handle =
29 { pnanovdb_address_null() };
30 return null_handle;
31 }

Figure 3.6 PNanoVDB method pnanovdb_root_find_tile

3.5 Unit testing
Our unit tests utilize a Doctest header-only lightweight framework for testing

the implementation of the PNanoVDB functionality to a DrJIT-compatible version.
The entire translation process attempts to adhere to the principles of test-driven
development.

The overall procedure for the tests was shown in the previous sections; in this
one, we want to focus on the specifics of code testing, including test windup and
fixture setup.

DrJIT targets two backends, and usually, it is Mitsuba that handles their
switching at runtime with the const expression evaluated conditionals added
throughout the code. However, in our separate project that only contains DrJIT,
the switch is done using a header for defines.h, which holds a manually switched
define macro for AD and LLVM / CUDA switching. The initially integrated variant
of the code also used that before switching to Mitsuba templated types. As the
define macro determines the backend, DrJIT has to initialize the selected one using
a call to drjit::init(JitBackend.CUDA) or alternatively jit_init(JitBackend.LLVM).
DocTest helped us avoid firing up the backend initialization through the use of

33



1 PNANOVDB_FORCE_INLINE drjit_root_tile_handle_t
2 drjit_root_find_tile(
3 drjit_grid_type_t grid_type ,
4 drjit_buf_t buf,
5 drjit_root_handle_t root,
6 PNANOVDB_IN(drjit_coord_t) ijk,
7 Mask active)
8 {
9 MI_MASK_ARGUMENT(active);

10 UInt32 tile_count = drjit_uint32_as_int32(
drjit_root_get_tile_count(buf, root, active), active);

11 drjit_root_tile_handle_t tile = drjit_root_get_tile_zero(
grid_type , root, active);

12 UInt32 tileFixedOffset = drjit::full<UInt32 >(
PNANOVDB_GRID_TYPE_GET(grid_type , root_tile_size));

13 UInt64 coordKey = drjit_coord_to_key(ijk, active);
14 UInt64 tileAddressOffset = tile.address.byte_offset;
15 UInt32 byte_offset = drjit::full<UInt32 >(uint32_t(

PNANOVDB_ROOT_TILE_OFF_KEY));
16

17 UInt32 i = drjit::full<UInt32 >(0);
18 Bool foundMask = drjit::full<Bool>(false);
19 Bool curMask = drjit::full<Bool>(false);
20 Bool modifyMask = drjit::full<Bool>(false);
21 drjit::Loop<Bool>
22 loop("Root Find Tile", i,
23 coordKey , tile_count , curMask, foundMask , modifyMask ,
24 tileFixedOffset , tileAddressOffset , byte_offset , buf);
25

26 while(loop(i < tile_count)){
27 drjit_root_tile_handle_t dummyTileHandleInLoop =
28 { drjit_address_t { drjit::fmadd(i, tileFixedOffset ,

tileAddressOffset) } };
29 UInt64 currentKey = drjit_root_tile_get_key(buf,

dummyTileHandleInLoop , active);
30 curMask = drjit_uint64_is_equal(coordKey , currentKey , active

);
31 Bool pos = foundMask.and_(curMask);
32 Bool neg = foundMask.not_().and_(curMask);
33 modifyMask = pos.or_(neg);
34 foundMask = foundMask.or_(curMask);
35 tileAddressOffset = drjit::select(
36 modifyMask ,
37 drjit::fmadd(i, tileFixedOffset , tileAddressOffset),
38 tileAddressOffset);
39 i += 1;
40 }
41

42 drjit_root_tile_handle_t null_handle = { drjit_address_null(
active) };

43 tile.address.byte_offset = drjit::select(foundMask ,
tileAddressOffset , null_handle.address.byte_offset);

44 return tile;
45 }

Figure 3.7 DrJIT translated NanoVDB method drjit_root_find_tile

34



fixture setups and teardowns, which are always executed at the start of the testing
phase. Similarly, all of the testing code is enclosed with relevant fixture code to
reduce code replication.

3.6 Integration to Mitsuba
Our second project involved building our own Mitsuba 3 version with the

already-tested translated NanoVDB code added to the renderer. As can be noticed
in-code, the unit testing code part was excluded from the renderer builds. This
was done in order to not over-encumber the resulting project as well as to ensure
the unit tests stayed separate from the final build because the Mitsuba uses their
own set of test suites.

The process of integrating NanoVDB DrJit variant translation into the Mitsuba
itself was done by minimizing the functional calls for the existing volumetric grid
plugin. This procedure enabled the use of a developed plugin natively in connection
with already existing scene descriptors. The adjustments to simple grid plugin
descriptors were minimal, as only several new parameters were added, and most
of the old ones were replaced, as illustrated in examples of section 3.2.

Writing and adjusting the already existing volume plugin function calls for
sampling the underlying 3D texture. Instead, as already noted, we opt to only
utilize the single read, as the 3D texture would allow us more functionality but
less in terms of reliability of our prototype, and it is not covered by the unit tests,
as we don’t yet have integration tests added to Mitsuba.

A completed DrJIT implementation of the translated NanoVDB code was
attempted to be included in the Mitsuba 3 codebase several times. With each
attempt, something was either not optimized, outright broken, or produced a
CUDA or an LLVM side error. While the previous stage of our development
pipeline has helped us immensely, this is a compilation of all major changes done
to the code to get to its current stage. This includes various noteworthy fixes and
also stuff that was not covered by static branched define macro-ed tests

Templating and Masking
DrJIT has its own templated types, and Mitsuba3 uses the same types, just

defining them under a different templated alias. Thus, the inclusion of Mitsuba 3
types required simply adapting our standard templated types from the standalone
NanoVDB translated implementation to the already used notation.

Considering masking, there are several macros that Mitsuba 3 provides for
writing new plugins that are added for the inclusion of exposed masks that are
used in traced graphs for aggressive optimization. However, it wasn’t until the
second branch switch, from the nanobind to v3.5.2, that this action was needed.
In short, for this procedure, we only needed to template all of the functions by
enclosing them in a templated class DrJitImplementation and then extend them
by passing through all method calls, a Mask active parameter. The resulting
change looks something like Figure 3.8.

35



1 PNANOVDB_FORCE_INLINE UInt32Jit drjit_read_uint32(drjit_buf_t buf,
drjit_address_t address)

2 {
3 return drjit_buf_read_uint32(buf, address.byte_offset);
4 }

(a) Before added templating and masking
1 class DrJitImplementation
2 public:
3 MI_IMPORT_CORE_TYPES();
4 ...
5

6 PNANOVDB_FORCE_INLINE UInt32 drjit_read_uint32(drjit_buf_t buf,
drjit_address_t address, Mask active)

7 {
8 MI_MASK_ARGUMENT(active);
9 return drjit_buf_read_uint32(buf, address.byte_offset ,

active);
10 }

(b) After added templating and masking

Figure 3.8 Adding templating and masking during Mitsuba integration of PNanoVDB

Fixing unbounded reads
This issue showed up only after the attempt at reading from a bigger file,

as the entire initial development was based on the bunny cloud fog volume as
a testing sample for both CUDA and LLVM variants. It wasn’t until then that
mainly, the unit tests fired off that there was a mistake in the read access for an
invalid memory offset. Why this occurred was then evident.

Because this is handled by a simple if clause in the original, and masking
should have done the same work, the caveat was that DrJIT tracing evaluated both
paths in the select call. And because the original addressing was still exceeding
the allocated bounds, it was causing a segmentation fault error. The solution
was to plug that with a preceding select to nullify the offset before a read step is
recorded in the traced graph.

Optimizing malloc
Originally, in the first phase of implementation, the version of the prototype

that used define macros, has utilized double memory allocation for both UInt32
data and UInt64 data as a dirty way to overcome the failing tests. In the final
implementation, instead of a double malloc, we figured out a better way to both
satisfy tests and allocate the memory only once. This was done by utilizing a
DrJIT load_aligned call that allocates memory on the DrJIT side for our UInt32
data and maps the same memory pointer to the allocated space for the UInt64
data. This change can be seen in commented lines in the call drjit_make_buf as
well as Figure 3.9.

36



1 PNANOVDB_BUF_FORCE_INLINE drjit_buf_t drjit_make_buf(const uint32_t*
data, uint64_t size_in_words)

2 {
3 uint32_t byteSize = size_in_words;
4 uint32_t data32Size = byteSize / 4;
5

6 drjit_buf_t ret;
7 // ret.data = drjit::empty<UInt32 >(data32Size);
8 ret.data = drjit::load_aligned <UInt32 >(data, data32Size);
9 // ret.data64 = drjit::empty<UInt64 >(data32Size << 1);

10

11 if constexpr(IsJIT) {
12 // if constexpr(IsLLVM) {
13 // jit_memcpy(JitBackend::LLVM, ret.data.data(), data,

byteSize);
14 // jit_memcpy(JitBackend::LLVM, ret.data64.data(), data,

byteSize);
15 // } else {
16 // jit_memcpy(JitBackend::CUDA, ret.data.data(), data,

byteSize);
17 // jit_memcpy(JitBackend::CUDA, ret.data64.data(), data,

byteSize);
18 // }
19 ret.data64 = drjit::map<UInt64 >(ret.data.data(), data32Size

/ 2);
20 }
21 }

Figure 3.9 Optimizing memory allocation

37



3.7 Rendering and Performance
As already covered in the outline of this chapter, there exists a rendering-only

Jupyter Notebook solution that was originally set up in a closed Python virtual
environment. The initial setup in the environment was completed using Python 3,
and both standard Mitsuba 3 and Jupyter Lab were installed through pip packages.
This Jupyter Notebook rendering virtual environment is later manually connected
to the Mitsuba plugin builds. As the dependency for mitsuba3 is used, we change
the linked version by referencing the relevant Mitsuba build that includes the
latest plugin code. This version switch is completed by modifying temporary
console environment variables using the source CLI command to a setEnv.sh script,
automatically generated by Mitsuba build. The exact setup replication will be
described in the relevant repositories’ readme files as well as in Appendix A.2.

3.8 Packaging to Docker
When attempting to record the profiling numbers, we concluded that we

would need a more performant system than what was available locally. The
first choice, as described in previous sections, was a computation cluster of MFF
Charles University, server Mayrau. We rolled out a docker on the version of
Ubuntu that checked all our boxes and included CUDA support. This was only
available through the image of nvidia/cuda:11.7.1-devel-ubuntu22.04, as it allowed
for relevant installations of dependency libraries for both OpenVDB and still was
within the maximum version that was supported hardware-side, as CUDA v11.7.

The entire setup was moved through GIT repositories and rebuilt on the
Docker itself, with dependencies being managed by a few shell scripts linking it
all together. More on the performance capture process and Docker setup will be
additionally covered in chapter 4

38



4 Results
This chapter’s purpose is to provide description of the results obtained during

the rendering and profiling phases, with added details on procedures of benchmarks
and image comparison. This part is additionally a post-mortem document of most
of the findings, in combination with chapter 4.4 providing a whole picture of both
effective results and observations done during implementation. As well as some of
the shortcomings that were encountered during the process of results acquisition.

4.1 Test scenarios
This work limits the sections of this chapter to testing on six unique scenar-

ios, not including duplicated ones that are introduced through the generation of
multiple dense grid level sets. Selected scenarios include freely available files from
OpenVDB of moderate size, with the biggest being crawler, which takes up to
10.5GB in dense equivalent. This baseline profiling number is provided by Open-
VDB’s vdb_read tool as a reference point for dense representation on the device.
In later sections, both benchmarks, as well as relevant conclusions, are provided
based on different comparisons. Thus, to provide a relevant frame of reference for
scenario files that will be used throughout, a Table 4.1 is provided below. The
recorded data in the table is provided by the same vdb_read functionality of the
OpenVDB built tool.

The recording process is conducted on the final Docker container setup with
LLVM 14 and CUDA 11.7. All resulting files are in the FogVolume format, with
most being converted inside the Docker container to FogVolume and later written
to NanoVDB format using the VDB conversion tool. As noted already, in the
case of baseline images, depending on the comparison purposes, different variants
as well as different plugins were used. Mainly, what is important to remember for
later is that the baseline always uses the dense grid representation, no matter the
variant used.

Level sets (armadillo, bunny, crawler, dragon)
Level sets in VDB are represented by three distinct voxel regions, inside,

outside, and a thin narrow-band region. Both inside and outside are inactive,
with constant signed distances to the object’s surface. The narrow-band, typically
represented by three voxels on both sides has a signed value signifying distance to
the surface, with positive on the outside and negative on the inside.

The majority of profiled scenarios, including the case of dense grids, are either
generated or obtained in the form of grids with class set as Level Set. However,
level sets are structured to represent the signed distance to the closest surface
point in each voxel, with signs indicating if the voxel is located inside or outside.
Thus, for clearer visualization as illustrated in Figure 4.2 on an example of a
crawler, it was required to inverse the two halves of narrow-band values, using the
sdfToFogVolume API method call. This makes it so that negative active voxels
inside half of the narrow-band become instead a positive 0-1 ramp and inactive
inside voxels become active with a constant approximate value of 1. Additionally,

39



Test
scenario
filenames

Voxel
Dim.
(XYZ)

Structure
lower internal
and leaf

Leaf
mem
(%)

Actual
mem
(MB)

Dense
eq.

armadillo
1270x
1513x
1154

Internal(336x),
Leaf(97,988x) 53.6% 213.2 8.2 GB

bunny
622x
615x
483

Internal(76x),
Leaf(23,424x) 52% 52.4 704.8 MB

cloudBunny
577x
572x
438

Internal(73x),
Leaf(66,212x) 52.4% 139.7 551.4 MB

crawler
2613x
505x
2143

Internal(1,059x),
Leaf(558,446x) 56.7% 1177.6 10.53 GB

dense300
301x
301x
301

Internal(56x),
Leaf(8,216x) 62.4% 20.6 104.0 MB

dense934
935x
935x
935

Internal(296x),
Leaf(82,136x) 38.7% 179.5 3.0 GB

dragon
2017x
905x
1341

Internal(310x),
Leaf(99,658x) 53.2% 215.8 9.1 GB

distr300
301x
301x
301

Internal(64x),
Leaf(54,872x) 97.1% 116.3 104.0 MB

distr934
935x
935x
935

Internal(512x),
Leaf(1,643,032x) 97.2% 3378.1 3.0 GB

Table 4.1 All of the used test scenario files compared by memory footprint and
structure. The structure column is shortened, providing only lower and leaf child counts,
with root(1 x 8) and upper(8 x 323) already specified in Chapter 1.2.3

40



(a) Fog volume of bunny level set (b) Sparse bunny fog volume

(c) Fog volume of Crawler level set (d) Fog volume of dragon level set

(e) Fog volume of armadillo level set (f) Dense cube level set

Figure 4.1 Samples of test scenarios that are used.

41



the active exterior, including background value, becomes inactive with a constant
value of 0.

(a) The before of bunny VDB LevelSet (b) The after of bunny VDB as FogVolume

Figure 4.2 Example of level set to fog volume conversion.

Fog volume (cloudBunny)
Similar to level sets, fog volumes also have a zero-to-one ramp in their narrow

band, separating outside from inside regions and inactive outside voxels of back-
ground constant value. However, an inside region is active and has a value of one.
Test scenarios include a single true fog volume file of cloudBunny with a higher
variance in extinction coefficient than compared to converted level sets. This is
easily explained by the conversion process for level sets, as all internal values are
rewritten to a constant of 1. Due to a lack of true fog volumes in the test cases,
this file serves as the only baseline in a truly sparse voxel representation case.

Dense fog volume (denseGrid300, distrGrid300)
In an attempt to get performance values for a densely packed voxel enclosing

domain space of the same value, which was set to a standardized 5.0 float value
for all dense files, a small executable specifically for creating artificial dense grids
was added to one of the projects.

Test scenarios also include two dense fog volumes with varying floats in a
random distribution from 4.5 to 5.5 floating point values.

This executable was used to create a set of dense grids, including ones of
resolution 300 and 934, as can be seen in Figure 4.1 the voxel cube is filled with the
same value. This cube is then transformed to sparse VDB and later to NanoVDB
using the VDB conversion script. The bounding box for the generation of relevant
volume is centered inside the cube, with zero-ed pivot coordinates. The bounding
box spans to a half resolution in all directions, removing the need for additional
transformations in the scene descriptors.

42



4.2 Case comparison
Selected cases are structured in a way that allows comparison of the developed

plugin to the base, which utilizes dense grid representation, loaded from OpenVDB
file format to NumPy dense. To that end, the files in the LevelSet class all undergo
value inversion using the process described in section 4.1. The selected cases are
generally split into:

• Comparison of both Mitsuba variants to scalar variant.

• Comparing LLVM dense to LLVM with our developed plugin.

• Lastly, CUDA dense compared with CUDA using the NanoVDB plugin.

Base Scalar vs LLVM / CUDA
This case comparison is used to give an approximation of the increase when

compared to a scalar method. Unfortunately, as the benchmark values are recorded
using the internal call to method whos_str(), an accurate memory measurement
cannot be provided, as the scalar mode does not allocate memory recorded on the
device. Instead, this case comparison uses the dense equivalent from the table 4.1,
converted to MiB equivalent, to provide some approximate meaningful comparison
baseline, even if not a completely precise one.

Base LLVM vs LLVM
LLVM case comparison is used to provide a reliable measurement baseline and

comparison values on one of the Mitsuba variants. This case helps indicate a clear
increase or decrease in performance and memory consumption, as opposed to the
approximated values for memory used in the base scalar vs LLVM case described
earlier.

Base CUDA vs CUDA
Similarly, to the LLVM vs LLVM case, the CUDA vs CUDA plugin case

helps illustrate and draw clear conclusions without using approximated data.
We are also drawing conclusions mainly on the results of variant-constrained
results that were recorded, mainly due to these showing direct comparison within
respective backends, as well as because of the motivation for this thesis being the
CUDA-availability of data structures, as NanoVDB being made available.

4.3 Benchmarks
All of the benchmark samples were recorded inside of the Dockerized, isolated

single Jupyter kernel, individual for each sensor and scene launch to ensure
environment isolation and better, more consistent testing results.

Final samples per pixel were set up to be consistent across both baseline
rendering as well as comparison images. The value of spp was set at 1024, with
rendering resolution also being 1024x1024 square sensor for each of 8 sensors.

43



Figure 4.3 Four of turntable shots, illustrating the capture process.

Additionally, all scenes were rendered multiple times (at least 4), with both
average and maximum measurements provided in relevant tables. All images have
a standardized set of sensors and a pre-set order of these sensors to be recorded,
operating similarly to a turntable. This can be clearly illustrated in Figure 4.3

To record performance values of rendering time, a Time library inside of the
Python kernel was used. To isolate performance to only the Mitsuba rendering
phase, the command mi.render() alone is enclosed in time tracking calls from
Time library. Recording of the relevant memory measures was conducted using
the mitsuba.render() internal debugging call to Python bound whos_str() method.

Notably, to verify the file resolution grid limit on dense test scenarios for loads
on CUDA/GPU, the cuda_rgb variant was attempted instead of cuda_ad_rgb,
which was initially used for reasons of code compatibility checks. That is because,
from one of the recent Mitsuba 3 repository issues, it was known that an additional
GPU footprint is added on AD variants, in the form of a large wavefront buffer
created that gets stored in device memory. However, there was quite a bit of
discrepancy in expected results for memory allocation on the target device as
compared to observed ones, on both variants. Thus, in our experiments, the
reported results for the baseline of scalar_rgb are mainly based on the OpenVDB
read equivalent of dense device memory as a reference number, despite it being
sometimes a much smaller baseline number.

To support that observation of allocated memory not matching, a separate
set of experiments was conducted on the NVIDIA RTX 2080 Ti with 12 GB of
memory capacity. It was observed that AD variants on the CUDA backend and
files of 3GB equivalent representation were still able to fit into GPU memory,
while samples of 6 GB equivalent were already failing to create and maintain a
computation kernel. This is further supported by examples of observed results for
a file of dense equivalent in 6GB resulting in a Mitsuba reported device memory
of 8.002GiB, while monitoring CLI command nvidia-smi reports a total memory
utilization by python process as 14.512GB. We should mention that the upper
GPU limit should never have been theoretically reached even on RTX 3080 Ti
and all setup processes in for scalar setups were done specifically to eliminate any
additional memory allocation on the device as described in section 3.6.

Upon inspection of the results from the following benchmarks for all testing
case comparisons, there seems to be a consistent two-time increase in the allocated
size on all backends, based on the reported raw file size in NanoVDB format. This
is unforeseen because a double memory allocator inside the plugin was removed at
the last minute, which was at the start of buffer creation. This matter will need
to be discussed further, but unfortunately, due to a tightening time constraint for
this thesis deadline, we can only report on it here as a last-moment observation.

44



(a) Render time for armadillo.nvdb (b) Render time for bunny.nvdb

(c) Render time for cloudBunny.nvdb (d) Render time for crawler.nvdb

(e) Render time for dragon.nvdb

45



(f) Render time for denseGrid300.nvdb (g) Render time for denseGrid934.nvdb

(h) Render time for distrGrid300.nvdb (i) Render time for distrGrid934.nvdb

Figure 4.4 Render time box plots for all base and plugin variants.

46



Dense Scalar vs Plugin CUDA

File Base(sec) cuda Avg. cuda Max. Raw Diff %Diff
armdl 45.11 15.55 20.68 -29.55 -65.52
bunny 45.27 16.79 22.05 -28.48 -62.91
cloud 58.78 19.67 24.77 -39.11 -66.54
crawler 47.67 20.91 25.86 -26.77 -56.15
grid300 51.16 14.92 20.52 -36.23 -70.82
grid934 52.60 15.00 20.75 -37.60 -71.49
dragon 44.25 14.10 19.23 -30.14 -68.12
distr300 81.48 33.35 34.44 -48.13 -59.07
distr934 90.24 34.28 35.41 -55.96 -62.01

Table 4.2 Render time benchmark for Scalar base vs CUDA plugin

File Base(MiB) cuda Avg. cuda Max. Raw Diff %Diff
armdl 8459.26 288.10 288.10 -8171.16 -96.59
bunny 704.81 96.07 96.08 -608.74 -86.37
cloud 551.45 288.10 288.10 -263.35 -47.76
crawler 10786.82 2079.74 2079.74 -8707.07 -80.72
grid300 104.03 64.07 64.08 -39.96 -38.41
grid934 3118.08 288.10 288.10 -2829.98 -90.76
dragon 9337.86 288.10 288.10 -9049.76 -96.91
distr300 104.03 160.10 160.10 56.07 53.90
distr934 3118.08 4127.74 4127.74 1009.66 32.38

Table 4.3 Memory benchmark for Scalar base vs CUDA plugin.
The file column represents shortened names for tested scenario files. The columns
represent values and relative comparison for respective values, in MiB, all except the
last column %Diff, which represents the percentile difference decrease or increase.

Observation

It is easy to observe a significant decrease in render times across all files. While
interesting, this metric is not as useful to us because of the comparison case being
too drastic, as we are in essence, comparing completely different approaches.

What is, however, useful to us is the memory benchmark results that show
a significant drop in device GPU utilization, even when compared to equivalent
dense values, as they are cutting off a significant chunk of memory footprint, when
compared to the device metric. Interestingly, there is no variation in the reported
numbers for memory footprints. What is even more noteworthy is the absence of
variation in CUDA-allocated memory, showing that JIT load_aligned calls are
allocating memory in blocks of fixed size.

47



Dense Scalar vs Plugin LLVM

File Base(sec) llvm Avg. llvm Max. Raw Diff %Diff
armdl 45.11 55.44 56.56 10.34 22.92
bunny 45.27 57.70 59.42 12.43 27.45
cloud 58.78 79.02 81.13 20.24 34.43
crawler 47.67 62.29 63.47 14.62 30.66
grid300 51.16 42.78 44.70 -8.37 -16.37
grid934 52.60 42.33 43.80 -10.27 -19.53
dragon 44.25 53.08 54.42 8.83 19.96
distr300 81.48 113.36 116.58 31.88 39.13
distr934 90.24 117.22 120.36 26.98 29.90

Table 4.4 Render time benchmark for Scalar base vs LLVM plugin

File Base(MiB) llvm Avg. llvm Max. Raw Diff %Diff
armdl 8459.26 442.50 442.50 -8016.76 -94.77
bunny 704.81 120.80 120.80 -584.01 -82.86
cloud 551.45 295.60 295.60 -255.85 -46.40
crawler 10786.82 2372.61 2372.61 -8414.21 -78.00
grid300 104.03 57.35 57.35 -46.68 -44.87
grid934 3118.08 375.10 375.10 -2742.98 -87.97
dragon 9337.86 447.70 447.70 -8890.16 -95.21
distr300 104.03 248.70 248.70 144.67 139.07
distr934 3118.08 6771.71 6771.71 3653.63 117.18

Table 4.5 Memory benchmark for Scalar base vs LLVM plugin.
The file column represents shortened names for tested scenario files. The columns
represent values and relative comparison for respective values, in MiB, all except the
last column %Diff, which represents the percentile difference decrease or increase.

Observation

Interestingly, the LLVM experiences a slowdown in all tested scenarios, except
on densely populated artificial grids. This could be attributed to the fact that
our dense artificial grids contain only a single value. Additionally, the shape of
the object is more simple, meaning the leaf nodes, closer to the outside, represent
less detail, resulting in a speed-up when compared to a scalar dense grid. This
is supported by the rough calculation based on the number of active voxels that
are not in leaf nodes, or by looking up the footprint percentage for the leaf nodes
from Table 4.1. In this case, the dense300 is an outlier from the leaf% statistic.
Once again, these render time benchmarks can’t be used for conclusive evidence
due to using scalar variants, but they still provide meaningful statistics.

48



Dense LLVM vs Plugin LLVM

File Base(sec) llvm Avg. llvm Max. Raw Diff %Diff
armdl 48.15 55.44 56.56 7.30 15.15
bunny 49.89 57.70 59.42 7.81 15.66
cloud 65.06 79.02 81.13 13.96 21.45
crawler 53.72 62.29 63.47 8.57 15.95
grid300 39.43 42.78 44.70 3.35 8.49
grid934 38.87 42.33 43.80 3.46 8.89
dragon 46.19 53.08 54.42 6.88 14.90
distr300 85.59 113.36 116.58 27.76 32.44
distr934 89.25 117.22 120.36 27.98 31.35

Table 4.6 Render time benchmark for LLVM base vs LLVM plugin.

File Base(MiB) llvm Avg. llvm Max. Raw Diff %Diff
armdl 8455.17 442.50 442.50 -8012.67 -94.77
bunny 717.10 120.80 120.80 -596.30 -83.15
cloud 564.30 295.60 295.60 -268.70 -47.62
crawler 10772.48 2372.61 2372.61 -8399.87 -77.98
grid300 119.00 57.35 57.35 -61.65 -51.81
grid934 3124.22 375.10 375.10 -2749.12 -87.99
dragon 9331.71 447.70 447.70 -8884.01 -95.20
distr300 119.00 248.70 248.70 129.70 108.99
distr934 3124.22 6771.71 6771.71 3647.49 116.75

Table 4.7 Memory benchmark for LLVM base vs LLVM plugin.
The file column represents shortened names for tested scenario files. The columns
represent values and relative comparison for respective values in MiB, all except the
last column %Diff, which represents the percentile difference decrease or increase.

Observation

From the benchmarked results it is obvious that LLVM is experiencing a slow-
down in all files, with the ones in dense uniform value grids being less prominent,
and ones with highly varying bunny cloud more prominent. Additionally, the
maximum increase does not seem to be related to the size of the reported file,
as crawler is bigger than cloud both in actual size and dense equivalent, but the
reported render time for it is lower on all variants.
Separately, the memory benchmarks perform as expected, with the exception of
artificial random distribution dense grids. On other files, the memory footprint
becomes noticeably smaller due to NanoVDB packing being more efficient. It
occupies a contiguous memory block for its underlying fixed hierarchical structure.

49



Dense CUDA vs Plugin CUDA

File Base(sec) cuda Avg. cuda Max. Raw Diff %Diff
armdl 18.83 15.55 20.68 -3.28 -17.40
bunny 15.97 16.79 22.05 0.83 5.17
cloud 18.41 19.67 24.77 1.26 6.84
crawler 19.78 20.91 25.86 1.13 5.70
grid300 14.03 14.92 20.52 0.89 6.37
grid934 14.08 15.00 20.75 0.91 6.47
dragon 13.35 14.10 19.23 0.75 5.63
distr300 31.93 33.35 34.44 1.42 4.44
distr934 32.12 34.28 35.41 2.16 6.74

Table 4.8 Render time benchmark for CUDA base vs CUDA plugin.

File Base(MiB) cuda Avg. cuda Max. Raw Diff %Diff
armdl 16414.72 288.10 288.10 -16126.62 -98.24
bunny 1055.74 96.07 96.08 -959.67 -90.90
cloud 1055.74 288.10 288.10 -767.64 -72.71
crawler 16414.72 2079.74 2079.74 -14334.98 -87.33
grid300 160.10 64.07 64.08 -96.03 -59.98
grid934 4127.74 288.10 288.10 -3839.64 -93.02
dragon 16414.72 288.10 288.10 -16126.62 -98.24
distr300 160.10 160.10 160.10 0.00 0.00
distr934 4127.74 4127.74 4127.74 0.00 0.00

Table 4.9 Memory benchmark for CUDA base vs CUDA plugin.
The file column represents shortened names for tested scenario files. The columns
represent values and relative comparison for respective values, in MiB, all except the
last column %Diff, which represents the percentile difference decrease or increase.

Observation

The observed results on CUDA in combination with the render time box plots
in Figure 4.4 show some slowdown on all files on the CUDA variant, with an
outlier improvement over 8 sensor launches only with file armadillo. The overall
trend is that the rendering time has insignificantly slowed down, with outliers
present in less than half of the samples, showing a significant slowdown. On a
separate note, the renders seem to take longer for the artificially distributed grids,
probably linked to the growing size of their file. Memory benchmarks consistently
show improvement in the amount of device memory. Similar to the case of Scalar
vs CUDA, the allocated memory is the same on multiple different files, solidifying
that the CUDA allocation pattern is indeed block-based.

50



4.4 CUDA image comparison
This section provides SSIM as well as MSE method image comparison results

to illustrate the attained accuracy of the developed plugin. The results show a
very high degree of accuracy, with the average MSE values not increasing past 10
units of squared error as well as the average SSIM not exceeding 0.97. However,
as the artificial grid results show the MSE being at around 0.00 units throughout
the entirety of the testing and result recording phases, we have the right to assume
that something does indeed go wrong in the conversion process, either OpenVDB
to PNano or OpenVDB to Dense. Upon closer inspection, as shown in Figure
4.5 that pinpoints the multiplied absolute image difference of a worst-case file for
bunny, it can be seen as approximately 5-10 pixel displacement in the XY axis,
which must have resulted from the NumPy dense comparison image conversion
process, as we manually set the bounding box. This is not a direct result of a fault
in the plugin development, but it will be investigated further before the release.

It is important to note that for the generation of base images for image
comparison, only the cuda_ad_rgb variant was used. That is because the results
needed to be compared to the same available implementation on the GPU backend
as it meets the main goal of the thesis. All images were matched pairwise using
their sensor IDs and compared using either MSE or SSIM comparison algorithms
on the OpenCV library in Python.

File MSE average MSE max SSIM average SSIM min
armdl 2.63 5.07 0.99 0.99
bunny 9.82 21.50 0.99 0.98
cloud 4.57 8.51 0.98 0.97
crawler 8.21 9.68 0.97 0.97
grid300 0.00 0.00 0.99 0.99
grid934 0.00 0.00 0.99 0.99
dragon 2.33 4.06 0.99 0.99
distr300 0.00 0.00 0.99 0.99
distr934 0.00 0.00 0.99 0.98

Table 4.10 MSE and SSIM measurements for all files on CUDA variant

51



Figure 4.5 Several pixels of displacement difference.

52



Discussion
Versioning

The compiler settings for Mitsuba 3 specifically require adding a Clang compiler
with supported libraries libc++-dev and libc++abi-dev since it does not support
GCC’s libstdc++. Most of our required packages are installed using Linux’s
Advanced Package Tool, or apt for short, because of ease of use and increased
availability. The only exception from this is the LLVM Clang itself, which is
installed from the official repository and checked out at version 17.0.5.

Future work
Due to a failure to include a larger file size, the next step for this is investigating

the nature of this behavior and potentially opening issue tickets in the relevant
development repositories. As the implementation is limited to only monochromatic
float grids right now, the next step would be to add support for colored grids as
well as supporting other grid types. The ultimate goal would be the inclusion of
all types of grids of all sizes, with the later opening of a merging pull request.

Shortcomings
As one of the shortcomings of this thesis, there is one oversight that forced

us to exclude several bigger files from being included in the results. During the
experimental setup with the different available GPUs, several files consistently
failed in the kernel creation stage. This happened for all image renderings on
both CUDA and LLVM variants. That includes our initially included Disney
cloud as well as dense representation grids above 1174 resolution. This issue was
further observed by experimenting on a local variant of unit-tested PNanoVDB
implementation, which led to the conclusion there is something wrong with reads
that exceed a certain file size/resolution. An interesting observation was, however,
made that the issue was caused by the unchanged variant of the PNanoVDB
header file on the read method for UInt64 reads. Extensive testing and both
compiler and LLVM version matching did not produce any significant behavior
changes for the observed code, neither in the produced deliverable nor on the
original header. The best assumption right now on this issue is that a newer
version of PNanoVDB changes this behavior, but as this was not fixable within the
time limit left on the thesis, our effort was better spent on producing meaningful
results.

Separately, due to a tightening time constraint, our current version can only
support a monochromatic value read from the NanoVDB file, with some improve-
ments possible in the near future, outside of this thesis’s scope. Additionally,
because of heavy templating, our version of the NanoVDB plugin does seem
to work natively with multiple vectorization backends but is limited to the x32
assumption, which, as it later turns out, is an in-built limitation of the Mitsuba /
DrJIT itself.

53



Conclusion
In this thesis, we provide a brief descriptive survey of the data structures used

for volumetric object representation. Using that, we illustrate the actual degree
of memory issue’s importance. OpenVDB and its NVIDIA-produced derivative
structure, NanoVDB, are prioritized as examples of effective sparse hierarchical
structures that can provide solutions to some of these memory efficiency problems.
Through limiting the scope to a monochromatic, float grid, a vectorized imple-
mentation of a header-only PNanoVDB to DrJIT templated types is presented,
with the attached described unit testing procedure in DocTest. The unit tests
are there to ensure the reliability of the produced results as well as overall code
correctness.

Results were rendered through a high amount of samples-per-pixel on a suffi-
cient resolution on a remote compute cluster to ensure the reproducibility and
accuracy of the observations as well as limiting of resulting image noise.

Through the collected renderings and benchmarked results on the Docker-
isolated Linux system environment setup on both Mitsuba variants of CUDA and
LLVM, a relatively low threshold of result dissimilarity is observed. The potential
problem introducing the error is identified and will be dealt with as indicated in
the future work section of the discussion.

We believe that considering the limiting scope of the initial assumptions, the
resulting deliverable in the form of a rendering plugin, that supports NanoVDB
format on both CUDA and LLVM backends has been achieved. The results
are supported by the attached observations and speed/memory performance
benchmarks when compared to the baseline combination of dense grids and the
original Mitsuba volumetric grid plugin. The main flaws include the undetermined
exact limit on the size of the included grid as well as a question of doubly allocated
memory, which was noticed in the last hours before the submission.

54



Bibliography
1. Fascione, Luca; Hanika, Johannes; Heckenberg, Daniel; Kulla, Christo-

pher; Droske, Marc; Schwarzhaupt, Jorge. Path tracing in production:
part 1: modern path tracing. In: ACM SIGGRAPH 2019 Courses. Los Ange-
les, California: Association for Computing Machinery, 2019. SIGGRAPH ’19.
isbn 9781450363075. Available from doi: 10.1145/3305366.3328079.

2. Christensen, Per; Jarosz, Wojciech. The Path to Path-Traced Movies.
Foundations and Trends® in Computer Graphics and Vision. 2016, vol. 10,
pp. 103–175. Available from doi: 10.1561/0600000073.

3. Meagher, Donald. Geometric modeling using octree encoding. Computer
Graphics and Image Processing. 1982, vol. 19, no. 2, pp. 129–147. issn 0146-
664X. Available from doi: https://doi.org/10.1016/0146-664X(82)
90104-6.

4. Laine, Samuli; Karras, Tero. Efficient sparse voxel octrees–analysis, ex-
tensions, and implementation. NVIDIA Corporation. 2010, vol. 2, no. 6.

5. Theußl, Thomas; Moller, Torsten; Groller, Meister Eduard. Optimal
regular volume sampling. In: Proceedings Visualization, 2001. VIS’01. IEEE,
2001, pp. 91–546.

6. Gárate, Matías. Voxel Datacubes for 3D Visualization in Blender. Publi-
cations of the Astronomical Society of the Pacific. 2017, vol. 129, no. 975,
p. 058010. Available from doi: 10.1088/1538-3873/129/975/058010.

7. Rodríguez, M. Balsa; Gobbetti, E.; Guitián, J.A. Iglesias; Makhinya,
M.; Marton, F.; Pajarola, R.; Suter, S.K. State-of-the-Art in Com-
pressed GPU-Based Direct Volume Rendering. Computer Graphics Forum.
2014. issn 1467-8659. Available from doi: 10.1111/cgf.12280.

8. Carvalho, Carlos. The gap between processor and memory speeds. In:
Proc. of IEEE International Conference on Control and Automation. 2002,
vol. 5000, p. 15000. No. 10000.

9. Museth, Ken. VDB: High-resolution sparse volumes with dynamic topology.
ACM transactions on graphics (TOG). 2013, vol. 32, no. 3, pp. 1–22.

10. Crassin, Cyril; Neyret, Fabrice; Lefebvre, Sylvain; Eisemann, Elmar.
Gigavoxels: Ray-guided streaming for efficient and detailed voxel rendering.
In: Proceedings of the 2009 symposium on Interactive 3D graphics and games.
2009, pp. 15–22.

11. Bayer, R.; Mccreight, E. M. Organization and maintenance of large
ordered indexes. Acta Inf. 1972, vol. 1, no. 3, pp. 173–189. issn 0001-5903.
Available from doi: 10.1007/BF00288683.

12. Museth, Ken. NanoVDB: A GPU-Friendly and Portable VDB Data Struc-
ture For Real-Time Rendering And Simulation. In: ACM SIGGRAPH 2021
Talks. Virtual Event, USA: Association for Computing Machinery, 2021. SIG-
GRAPH ’21. isbn 9781450383738. Available from doi: 10.1145/3450623.
3464653.

55

https://doi.org/10.1145/3305366.3328079
https://doi.org/10.1561/0600000073
https://doi.org/https://doi.org/10.1016/0146-664X(82)90104-6
https://doi.org/https://doi.org/10.1016/0146-664X(82)90104-6
https://doi.org/10.1088/1538-3873/129/975/058010
https://doi.org/10.1111/cgf.12280
https://doi.org/10.1007/BF00288683
https://doi.org/10.1145/3450623.3464653
https://doi.org/10.1145/3450623.3464653


13. Nimier-David, Merlin; Vicini, Delio; Zeltner, Tizian; Jakob, Wenzel.
Mitsuba 2: a retargetable forward and inverse renderer. ACM Trans. Graph.
2019, vol. 38, no. 6. issn 0730-0301. Available from doi: 10.1145/3355089.
3356498.

14. Jakob, Wenzel; Speierer, Sébastien; Roussel, Nicolas; Vicini, Delio.
Dr.Jit: A Just-In-Time Compiler for Differentiable Rendering. Transactions
on Graphics (Proceedings of SIGGRAPH). 2022, vol. 41, no. 4. Available
from doi: 10.1145/3528223.3530099.

56

https://doi.org/10.1145/3355089.3356498
https://doi.org/10.1145/3355089.3356498
https://doi.org/10.1145/3528223.3530099


List of Figures

1.1 1D structure example (simplified) of voxel data packing in VDB
tree. Going from top to bottom, there is a hashmap Root node,
two Internal nodes, and block-size Leaf nodes. Both internal nodes
contain two bit-masks that are integral parts of VDB tree traversal.
Two bit-masks are the active and topology masks with mValue-
Mask and mChildMask for the internal node structure, respectively.
Voxels are represented in leaves in red. White nodes at the bottom
are the compressed leaf blocks with only active (interesting) values
present. All nodes have their own fixed branching factor, aside
from the root node. It is noteworthy that the fixed branching
factor is 2N because OpenVDB tree traversal depends on fast bit
operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 A schematic flow diagram for illustrating the conducted work and
its general structure. This diagram outlines major sections of our
process on a high level. The work is split into several steps, out
of which distinguishable are major three. Starting from left to
right, the VDB conversion stage processes inputs of OpenVDB to
both sparse NanoVDB and dense grid NumPy. Secondly, there
is a Mitsuba plugin involved in the rendering stage that loads
the relevant converted file format into the plugin and outputs the
rendered image. Lastly, in the comparison stage, both accuracy
and performance are measured using image metrics as well as
benchmarks. Additionally, the dashed lines indicate sparse data
while solid lines indicate dense volumes. . . . . . . . . . . . . . . 18

3.1 Example of a simple scene in both XML and Python . . . . . . . 28
3.2 Use of the standard gridvolume plugin parameters . . . . . . . . . 29
3.3 Use of the our grid_pnano plugin parameters . . . . . . . . . . . 29
3.4 Tree type defines and grid pointer casting . . . . . . . . . . . . . 31
3.5 Conversion to NanoVDB and writing to file . . . . . . . . . . . . 32
3.6 PNanoVDB method pnanovdb_root_find_tile . . . . . . . . . . 33
3.7 DrJIT translated NanoVDB method drjit_root_find_tile . . . . 34
3.8 Adding templating and masking during Mitsuba integration of

PNanoVDB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.9 Optimizing memory allocation . . . . . . . . . . . . . . . . . . . . 37

4.1 Samples of test scenarios that are used. . . . . . . . . . . . . . . . 41
4.2 Example of level set to fog volume conversion. . . . . . . . . . . . 42
4.3 Four of turntable shots, illustrating the capture process. . . . . . 44
4.4 Render time box plots for all base and plugin variants. . . . . . . 46
4.5 Several pixels of displacement difference. . . . . . . . . . . . . . . 52

57



List of Tables

2.1 Selected feature comparison table for data structures that are used
in the thesis. Column-wise, highlighted in bold, are the minority
outliers in each data structure column, done only for increased
visibility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1 All of the used test scenario files compared by memory footprint
and structure. The structure column is shortened, providing only
lower and leaf child counts, with root(1 x 8) and upper(8 x 323)
already specified in Chapter 1.2.3 . . . . . . . . . . . . . . . . . . 40

4.2 Render time benchmark for Scalar base vs CUDA plugin . . . . . 47
4.3 Memory benchmark for Scalar base vs CUDA plugin. The file

column represents shortened names for tested scenario files. The
columns represent values and relative comparison for respective
values, in MiB, all except the last column %Diff, which represents
the percentile difference decrease or increase. . . . . . . . . . . . . 47

4.4 Render time benchmark for Scalar base vs LLVM plugin . . . . . 48
4.5 Memory benchmark for Scalar base vs LLVM plugin. The file

column represents shortened names for tested scenario files. The
columns represent values and relative comparison for respective
values, in MiB, all except the last column %Diff, which represents
the percentile difference decrease or increase. . . . . . . . . . . . . 48

4.6 Render time benchmark for LLVM base vs LLVM plugin. . . . . . 49
4.7 Memory benchmark for LLVM base vs LLVM plugin. The file

column represents shortened names for tested scenario files. The
columns represent values and relative comparison for respective
values in MiB, all except the last column %Diff, which represents
the percentile difference decrease or increase. . . . . . . . . . . . 49

4.8 Render time benchmark for CUDA base vs CUDA plugin. . . . . 50
4.9 Memory benchmark for CUDA base vs CUDA plugin. The file

column represents shortened names for tested scenario files. The
columns represent values and relative comparison for respective
values, in MiB, all except the last column %Diff, which represents
the percentile difference decrease or increase. . . . . . . . . . . . 50

4.10 MSE and SSIM measurements for all files on CUDA variant . . . 51

58



A Attachments
A.1 Electronic Project Attachment

The electronic attachment includes the project folders and two Docker files for
quick Docker installation of the entire setup.

• The plugin/ folder contains the relevant files that were added to mitsuba3
as well as a quick install script that places them in the correct folders
This includes:

– nanovdb/ - folder with NanoVDB headers, util, and IO mainly. Can
also be taken cleanly from the OpenVDB repository

– vdb_header/ - folder with impl_drjit.h that holds our implementation
– grid_pnano.cpp - our added Mitsuba 3 plugin code
– CMakeLists.txt - modified Cmake file from src/volumes/ folder in

Mitsuba

• The nano_jit_prelim - folder with pre-checkout git repository contains
converted scripts, DocTest unit_tests, dense generator script.

• The Jupyter_notebooks - folder with all Jupyter notebooks that were used
for automated and manual rendering of the results.

• The text in the entries may be of any length.

• Dockerfile - a docker file with all required dependencies and prerequisites
listed

• docker-compose.yml - a docker-compose file for easier setup with CUDA

A.2 User Documentation
A small .md file with instructions on replicating the setup, either using the

provided Dockerfile in A.1 or checking out the GIT repositories. Due to a large
build folder size, we couldn’t include them physically, so all attempts to replicate
our setup should be built from scratch.

A.3 Prerequisites Versioning
Another small .md file with listed prerequisites that are relevant/required by

some of the projects to function correctly during the build process. We advise to
use the listed versions.

59


	Introduction
	Background
	Overview
	Data structures
	Regular grids
	Octrees
	OpenVDB
	NanoVDB

	Renderers
	Mitsuba2
	DrJit
	Mitsuba3


	Methodology
	Work outline
	Comparing VDB structures and Dense grid
	Mitsuba 3 plugin implementation
	Accessing VDB values
	Rewriting the NanoVDB to DrJIT
	Framework unit testing

	Verification
	VDB format conversion
	Baseline images
	Setting up a comparison scene
	Implemented plugin render
	Performance and Benchmarks


	Implementation details
	Our setup
	Scene descriptors
	NanoVDB conversion
	Plugin implementation
	Unit testing
	Integration to Mitsuba
	Rendering and Performance
	Packaging to Docker

	Results
	Test scenarios
	Case comparison
	Benchmarks
	CUDA image comparison

	Discussion
	Conclusion
	Bibliography
	List of Figures
	List of Tables
	Attachments
	Electronic Project Attachment
	User Documentation
	Prerequisites Versioning


