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Abstract: An orthostack is an orthogonal polyhedron obtained by stacking or-
thogonal prisms (slabs) on top of each other. An unfolding is the process of
cutting the surface of the polyhedron and flattening it to the plane. We describe
a known algorithm for unfolding a subclass of orthostacks with orthogonally con-
vex slabs, and we indicate why it is unsuitable for slabs of arbitrary height. Next,
we describe a known algorithm for unfolding a subclass of orthostacks with rect-
angular faces, and we present a modification of this algorithm for unfolding box
towers (orthostacks with rectangular slabs). Unzipping is a special type of unfold-
ing whose cutting segments form a single path. As our main result, we show that
every box tower has an unzipping. Finally, we introduce a subclass of orthogonal
polyhedra named box towers streets and present an algorithm for unfolding.
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Abstrakt: Ortostack je ortogonální mnohostěn vytvořený stavěním ortogonál-
ních hranolů (pater) na sebe. Rozklad do sítě je proces, ve kterém rozřežeme
povrch mnohostěnu a rozložíme ho do roviny. Popíšeme známý algoritmus pro
rozklad třídy ortostacků s ortogonálně konvexními patry a naznačíme, proč není
dostatečný pro patra libovolné výšky. Poté popíšeme známý algoritmus pro
rozklad třídy ortostacků s obdélníkovými stěnami a představíme modifikaci to-
hoto algoritmu pro rozklad věží z kvádrů (ortostacky s obdélníkovými party).
Rozzipování je speciálním typem rozkládání, kde řezné hrany tvoří jedinou cestu.
Naším hlavním výsledkem je algoritmus pro rozzipování věží z kvádrů. Nakonec
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Chapter 1

Introduction

1.1 Overview of known results and types of un-
folding

A long-standing open question by Dürer asks whether every convex polyhedron
can be edge-unfolded into a single simple polygon [13]. We use nets for creating
3D objects from paper.

A polyhedron P ⊆ R3 is an orthogonal polyhedron if each face is parallel to
an xy, yz, or xz plane.

As it is common in the literature we redefine the notion of a face as follows. We
subdivide the surface of P with axis-parallel planes passing through the vertices
of P . We will call the parts of the subdivision the faces of P . Note that in this
definition each face of P is a rectangle. See Figure 1.1 for an illustration.

An edge unfolding of P is the process of cutting along the edges of the original
polyhedron and isometrically mapping the cut surface into the plane with no
interior overlap. A grid-edge unfolding is a generalization of an edge unfolding
that allows cutting along the edges of the redefined faces of P . A grid-edge
unfolding is called a grid-edge unzipping if the cutting segments altogether form
a path on the surface of P . The result of the unfolding is called a net; we also
refer to it as the unfolding. A grid-edge unfolding is simple if no vertices (and
therefore no edges) overlap; in other words, the images of the cutting segments
form a simple closed curve after flattening to the net; see Figure 1.2. A net created
by a simple unfolding is called a simple net. Simple nets are more practical for
constructing polyhedra from paper as they leave some space for glue tabs.

Figure 1.1: The new definition of faces for the purpose of grid-edge unfolding.
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a) b) c)

Figure 1.2: a) A part of a net with an overlapping edge. The segment with
scissors is supposed to be cut. b) A part of a net with an overlapping vertex. c)
A simple net. There is enough space for glue tabs. And the polyhedron folded
from the net.

The edge-unfolding does not exist for some non-convex orthogonal polyhe-
dra, for example, a cube with a small hole in the middle of one face. If we
allow arbitrary cuts on the surface of the polyhedron, then an unfolding exists
for all convex polyhedra [12, Theorem 24.1.2]. We refer to survey papers by
O’Rourke [14, 16, 15] for a broader overview.

Grid-edge unzipping is also called a Hamiltonian unfolding [17] or an edge-
unzipping [15]. All Platonic and Archimedean solids have edge unzipping [11].
There exist orthogonal polyhedra with no grid-edge unzipping [10]. The char-
acterization of orthogonal polyhedra that have a grid-edge unzipping remains
open.

One could further subdivide each face of the polyhedron using an a × b or-
thogonal grid, allowing cuts along these grid lines. This process is termed a
refinement and is characterized by the parameters a and b, which may also de-
pend on the number of vertices of the polyhedron P . It has been demonstrated
that all orthostacks can be unfolded using 1 × 2 refinement [2] and all genus-0
orthogonal polyhedra can be unfolded using various levels of refinement: expo-
nential refinement [7], quadratic refinement [6], and linear refinement [4]. More
recently, Damian, Demaine, Flatland, and O’Rourke have developed an unfolding
method for all genus-2 orthogonal polyhedra using only linear refinement [5].

1.2 Thesis outline
An orthostack is an orthogonal polyhedron formed by stacking orthogonal prisms
(slabs) on top of each other. In Chapter 2 we explore known results for grid-
edge unfolding orthostacks. We describe an algorithm for grid-edge unfolding
orthostacks with orthogonally convex slabs by Damian and Meijer [8]. We add a
few clear pictures illustrating the notation and the steps and indicate why it is
not sufficient for slabs of arbitrary height. Then we show an algorithm to grid-
edge unfold rectangle-faced orthostacks (orthostacks whose every component of
faces parallel to the xy plane is a rectangle) by Chambers, Sykes, and Traub [3].
We present a modification for grid-edge unfolding box towers (orthostacks with
rectangular slabs).

In Chapter 3 we present our main result.
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Theorem 1.1. Every box tower has a simple grid-edge unzipping.

To prove Theorem 1.1 we provide an algorithm for the unzipping and prove
its correctness in Chapter 3.

In Section 3.6 we present a modification of the unzipping for grid-edge unfold-
ing a class of orthogonal polyhedra obtained by gluing two or more box towers
on top of another box tower.
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Chapter 2

Grid-edge unfolding orthostacks

Let P ⊆ R3 be an orthogonal polyhedron. Let z0, z1, . . . , zn be all distinct z-
coordinates of its vertices and assume that z0 < z1 < z2 < · · · < zn. The slab
Si is the part of the polyhedron with z-coordinates between zi and zi+1. The
orthogonal polyhedron P is called an orthostack if each slab is a prism whose
base is a simple polygon. An orthostack is called a box tower if its slabs are
axis-parallel boxes.

Biedl et al. [2] proved that orthostacks could be unfolded while allowing the
cuts along segments from the grid-edge unfolding and also along segments in
horizontal planes with z-coordinates (zi + zi+1)/2.

2.1 Orthostacks with orthogonally convex slabs
Damian and Meijer [8] studied orthostacks with orthogonally convex slabs. An
orthogonally convex slab is a slab of an orthogonal polyhedron P where the in-
tersection with any line parallel to the x or y-axis is either empty or a single
line segment. They presented an algorithm for grid-edge unfolding of such or-
thostacks with an additional restriction stating that the boundary of each part
of the top boundary of Si has two orthogonally incident edges that belong to the
bottom boundary of the slab Si+1; see Figure 2.1. We describe their algorithm
and indicate why it is unsuitable for slabs of arbitrary height.

a) b)

Figure 2.1: a) An orthostack with orthogonally convex slabs considered by
Damian and Meijer [8]. The blue lines show the orthogonally incident edges
mentioned in their restriction. b) Box towers that do not satisfy the require-
ments of Damian and Meijer [8].
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Z0
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T1
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Figure 2.2: An overview of notation.
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s0(f2) f3
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Figure 2.3: a) The definition of strips for the face f parallel to the xz plane.
b) The definition of strips for the face f parallel to the yz plane.

In a recently published full version [9] of the extended abstract [8], Damian
and Meijer present an algorithm for edge-unfolding polycubes with orthogonally
convex layers with no additional restriction. A polycube is an orthogonal poly-
hedron obtained by gluing unit cubes face-to-face. The edges of the cubes are
available for cutting for an edge-unfolding. The authors also state that the al-
gorithm works for orthostacks with orthoconvex layers composed of boxes whose
height does not exceed the width or depth, but still is not sufficient for slabs of
arbitrary height; thus not covering general box towers.

2.1.1 Notation
See Figure 2.2, Figure 2.3, and Figure 2.4 for a summary of this section.

We define Ti to be the top boundary and Bi to be the bottom boundary of
the slab Si (including the interior parts). Faces parallel to the xy plane are called
horizontal, and faces parallel to the xz plane or the yz plane are called vertical.
We define Zi to be the union of vertical faces of Si.

Assume that a vertical face f ∈ Zi is parallel to the xz plane. We define
a strip si(f) to be the set of faces conforming to the following conditions, see
Figure 2.3:

(i) the faces are horizontal and have z = zi+1

(ii) the projections of the faces on the x-axis are the same as of the face f

(iii) the faces form a connected component adjacent to the face f .

We analogously define si−1(f) for the faces with z = zi; and for the faces parallel
to the yz plane (the condition (ii) uses the y-axis).
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[g1, h1]
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Figure 2.4: A top view of a slab. Half-space H(f) in its clockwise and counter-
clockwise variants. The sequence [g, h] is highlighted by the red color.

L0
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L1
R1

bridge

O0: ccw

L′

0
R′

0

bridge

L′

1
R′

1

a)

b)

O1: ccw

Figure 2.5: a) An orthostack with highlighted important faces. b) The first part
of the unfolding of the orthostack from a).

Looking at slab Si from z = ∞ we see Zi as a simple polygon. We will
assign each slab an orientation Oi, either clockwise or counterclockwise. From
a given point on the perimeter of the polygon, we create a walk Wi along the
whole perimeter in the given orientation Oi (the walk is actually composed of the
faces of Zi). For a vertical face f ∈ Zi we define an open half-space H(f), see
Figure 2.4, such that:

(i) it contains the interior of f

(ii) its bounding plane is perpendicular to f

(iii) its bounding plane contains the vertical edge of f that is first encountered
on the walk Wi.

For two vertical faces g, h ∈ Zi we denote by [g, h] the sequence of all vertical
faces of Zi that are encountered on the walk Wi from g to h, including g and h;
see Figure 2.4.

For a given face f , we will denote by f ′ the corresponding polygon in the
constructed planar net.

2.1.2 Algorithm
We arbitrarily choose a vertical face L0 ∈ Z0 and an orientation O0, clockwise or
counterclockwise. Next, we proceed inductively.

For every slab Si (except the topmost one) we find a vertical face Ri ∈ Zi,
a vertical face Li+1 ∈ Zi+1, and a bridge. A bridge is a (possibly empty) set of
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L0 R0

L1

O0: cw

L
′

0 R
′

0

L
′

1

O1: cw

Figure 2.6: An orthostack and the first part of the unfolding. The bridge between
R0 and L1 is empty. The orientation for the next iteration remains the same. Note
that the net is upside down because of the clockwise orientation.

connected horizontal faces with z = zi+1 connecting Ri and Li+1. The type of
the bridge will determine the orientation for the next step. We place [Li, Ri] on
the net so that it forms a rectangle whose left edge corresponds to a vertical edge
of Li. We place the bridge above/below R′

i and attach L′
i+1 to it. See Figure 2.5

for an illustration. We will handle the remaining faces of the slab Si later.

Finding Ri, Li+1, and the bridge between them

Every face f of Zi except Li is considered a candidate for Ri. The walk Wi starts
at Li and contains all the candidate faces. For each candidate f , we test for the
existence of a suitable bridge and corresponding Li+1. If we cannot find such a
bridge and Li+1, f is discarded as a candidate. From the remaining candidates,
we select Ri as the last face on Wi.

If a candidate f is adjacent to the band Zi+1, then we choose Li+1 as the face
adjacent to f , see Figure 2.6. The bridge between f and Li+1 is empty in this
case. The orientation for the next iteration remains the same.

If a candidate f is not adjacent to the band Zi+1, we try to find a connected
component of horizontal faces with z = zi+1 that connects f with Li+1 ∈ Zi+1.
We need Li+1 to be parallel to f so that the band Zi+1 can also be unfolded in the
increasing x direction. We will need almost all the space straight above/below
[Li, Ri]′ for the remaining faces of Si, so the bridge in the net should go only in the
increasing x direction. This is fulfilled if the bridge belongs to H(f). Briefly, we
search for a face Li+1 that is parallel to f and belongs to H(f), and a component
of horizontal faces with z = zi+1 that connects f with Li+1 and also belongs to
H(f); see Figure 2.7 for some examples.

There could be several Li+1 and corresponding bridges. We introduce two
parameters for the choice of Li+1; see Figure 2.7. The first parameter is the
distance to the plane bounding H(Ri); we choose the closest one. The second
parameter is the distance to Ri; again we choose the closest one. However, there
might be two best ones according to these parameters; see Figure 2.8. We can
choose either of them.

We will now choose the bridge. Assume that Ri is parallel to the xz plane and
its projection to the x-axis is [xR,1, xR,2] and the projection of Li+1 to the x-axis
is [xL,1, xL,2], xR,1 ≤ xL,1. As their bridge, we choose the union of the strip si(Ri)
and the strip si(Li+1). If xR,2 < xL,1, then we add also every horizontal face with
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H(R0)
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H(R0)
a) b)
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H(R0)
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bridge
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Figure 2.7: Pictures show only some possibilities of L1 and the bridge, not the
final choice. The first parameter is the distance to the plane bounding H(R0); we
choose a) or b) over c). The second parameter is the distance to R0; we choose
a) over b).
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L1 L1

Figure 2.8: Two best options of L1 according to the parameters.
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O0: ccw

O1: ccw O1: ccw

O0: ccw O0: ccw O1: cw

Figure 2.9: The chosen R0, L1, and the bridge between them. a) and b) The
strips have opposite directions, so the orientation O1 remains the same as O0. c)
The strips have the same direction, so the orientation O1 changes from O0.
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a) b) c)

fi

fi+1

fi

fi+1
fi

fi+1

fi

fi+1

Figure 2.10: An orthostack; faces R0, L1, and the bridge between them are
green. We show the four situations where the bridge always exists. a) The bridge
is empty. b) The bridge is not empty. c) The bridge is at the bottom of the upper
slab.

z = zi+1 in their component whose projection to the x-axis is in [xR,2, xL,1]; see
Figure 2.9. The continuity of such a union of faces is ensured by the choice of
Li+1 based on the previously mentioned parameters.

If the two strips have the same direction from their corresponding vertical
faces (for example, both go in the increasing x direction), the orientation Oi+1
changes from Oi. If the strips have different directions (for example, one goes in
the increasing y direction and the other goes in the decreasing y direction), the
orientation Oi+1 remains the same as Oi.

Note that the bridge can also be in the bottom Bi+1 of the slab Si+1.
Observe that Ri, Li+1, and a bridge exist for every pair of adjacent slabs Si

and Si+1. Because the slabs are adjacent, there exists a face fi in Si adjacent to
a face fi+1 in Si+1. See Figure 2.10 for an illustration. If both faces are vertical,
the situation is simple and with an empty bridge. Otherwise one of the faces
is vertical and the other is horizontal, let fi+1 be vertical. The strip si(fi+1),
containing fi, will be the bridge. Its one end is fi+1 ∈ Zi+1 and its other end
surely belongs to Zi because the slabs are orthogonally convex and it contains fi.
So we can choose the first end as Li+1 and the other as Ri. There are four different
directions in which such Ri and Li+1 can face: rightward, forward, leftward, and
backward. This gives us four unique suitable Ri and Li+1. We cannot choose Ri

to be Li, so we might exclude one of the four pairs. We are left with at least three
possibilities. That concludes the proof of the existence of a suitable Ri, Li+1, and
a bridge for every pair of adjacent slabs.

Unfolding the remaining faces of Si

We have already placed [Li, Ri], Li+1, and the bridge between them on the net.
There is space above and below [Li, Ri]′, we will place the remaining faces of Si

there.
If Zi = [Li, Ri], the unfolding is straightforward; see Figure 2.11 for the un-

folding. We divide Ti into strips parallel to si(Ri). Every strip is exactly si(f)
for some f ∈ Zi (if a strip was not si(f) for some f ∈ Zi, its both ends would be
adjacent to Zi+1; that is not possible as Si+1 is orthogonally convex). Note that
the bridge is a union of strips within Ti parallel to si(Ri), so it cannot interfere
with other strips or be adjacent to the ends of the other strips. We can attach
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Figure 2.11: An orthostack; faces R0 and L1 are highlighted with thick red seg-
ments, and the bridge between them is green. The unfolding for Z0 = [L0, R0].

the strip to f ′, there is enough space for it. We analogously divide Bi into strips
parallel to si−1(Li) and attach them to the band Z ′

i = [Li, Ri]′. Note that B0 and
Tn−1 can be attached arbitrarily to the bands Z ′

0 and Z ′
n−1.

If Zi ̸= [Li, Ri], some band faces are still not unfolded. We cannot place them
next to [Li, Ri]′ as it will interfere with the space above or below an adjacent
unfolded band. Note that for every band face f ∈ Zi adjacent to a bottom face
in Bi+1 there exists a bridge, it is si(f) (the second end of the strip is adjacent to
the upper band because the slabs are orthogonally convex). Also for band faces
adjacent to the upper band there exists an empty bridge. Since we chose Ri to be
the last face on the walk Wi for which a bridge exists, and because a bridge exists
for every band face adjacent to Bi+1 or Zi+1, all the band faces not in [Li, Ri]
are adjacent to Ti. Thanks to the restriction stating that the boundary of each
component of Ti has two orthogonally incident edges that belong to Bi+1, it is
easier to find a bridge in Ti.

We divide the faces of Ti into two sets, χ and Ti \ χ. The set χ consists of
all faces in Ti between a plane containing Li and a plane parallel to it containing
a vertical edge of Ri closer to Li, see Figure 2.12. We divide χ into strips I
perpendicular to si(Li). For each face f ∈ Zi \ [Li, Ri] perpendicular to Li there
is a strip si(f) ∈ I, let g be the vertical face adjacent to the other end of si(f),
so that si(f) = si(g). The strip si(f) cannot interfere with the bridge from the
choice of I and the bridge. The face g cannot lie in Zi+1 as it would form a valid
bridge with Ri = f further on the walk Wi than the chosen Ri. The face g cannot
lie in Zi \ [Li, Ri] as H(f) ∪ H(g) covers the whole Ti thus H(f) or H(g) contains
a valid bridge. Then g ∈ [Li, Ri]. We place si(g) next to g′ and f next to si(g)′.

All faces in Zi \ [Li, Ri] perpendicular to Li are placed next to the strips I ′.
All remaining faces are parallel to Li.

Let f ∈ Zi\[Li, Ri] be a remaining face. Consider the case where f is adjacent
to two already unfolded faces g1, h1 ∈ Zi \ [Li, Ri]; see Figure 2.12. Assume g1
is earlier on Wi then h1. Let g2, h2 ∈ [Li, Ri] be the other ends of si(g1), si(h1).
We see that h2 is earlier on Wi than g2. The strips si(g), si(h) are adjacent strips
in Ti, so between si(h2)′ and si(g2)′ according to the x-coordinate there are only
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Figure 2.12: a) We cut the band and reconnect the parts with h′
1, f ′, g′

1. b) We
place f ′ next to g′

1.

band faces A′ = [h2, g2]′ \ {h2, g2}′. If the projection of A′ to the x-axis is longer
than (or of equal length as) f when viewed from z = ∞, we place f next to g′

1.
Otherwise we cut [Li, Ri] between h2 and g2 and reconnect the parts via h′

1, f ′, g′
1.

The remaining faces in Ti and Bi are handled similarly as earlier.
A problem arises when a remaining face f ∈ Zi is adjacent to Li or Ri; see

Figure 2.13. We indicate, not prove, why we cannot add the face f to the net.

• We cannot easily place f next to another face or do the cutting and recon-
necting as in the previous case.

• Changing the set χ does not help for some symmetrical configurations.

• Since each slab has an arbitrary height, face f has one unlimited dimension.
If we position f on the net such that the unlimited dimension extends in
the x direction, it might overlap with the space reserved for other slabs.

• The images of slabs Si−1 and Si+1 on the net can extend arbitrarily in both
the positive and negative y directions.

• The direction of the strips in Bi is parallel to the direction of si−1(Li).
There might be a strip si−1(f) that we need to attach to f ′ if the end of
the strip is adjacent to Zi−1. In this case, we do not want to place f and
si−1(f) in the space on the net reserved for Si−1. We cannot use the faces
from Bi to unfold the remaining faces of Zi. Instead, we need to first unfold
the remaining faces of Zi before unfolding the faces from Bi.

The full version [9] of this article [8] solves the problem with remaining band
faces in all cases, provided the height of the faces does not exceed their width or
depth.
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a)

b)

c)

Figure 2.14: a) A top view of a rectangle-faced orthostack satisfying both restric-
tions (i) and (ii) considered by Chambers, Sykes, and Traub [3]. b) An orthostack
violating restriction (ii); the thick (blue) line highlights an edge that partially lies
in the side boundary of the top slab and partially in the side boundary of the
bottom slab. c) Top views of box towers violating restriction (i).

2.2 Rectangle-faced orthostacks
In this section, we consider the original definition of horizontal faces, without
the subdivision. We only subdivide vertical faces by horizontal planes passing
through the vertices of the polyhedron.

Chambers, Sykes, and Traub [3] showed that a grid-edge unfolding exists for
a special class of orthostacks, named rectangle-faced orthostacks, satisfying the
following conditions; see Figure 2.14.

(i) All horizontal faces, except the top face of the topmost slab and the bottom
face of the bottommost slab, are rectangles

(ii) Every edge of every rectangular horizontal face lies completely within a side
boundary (left, front, right, or back) of an adjacent slab.

We describe their algorithm and modify it for box towers.

2.2.1 Preliminaries
We denote by Bi the band around the slab Si, that is the union of all faces of Si

parallel to the xz plane or the yz plane. The faces parallel to the xy plane are
called z-faces. By z-faces of zi, we mean the union of all z-faces where z = zi.

The authors provide some important lemmas that will be used in the algo-
rithm.

• For every z-face f with z = zi (excluding z0 and zn) there exists a pair of
its opposite sides, such that one side is contained in the band Bi−1 and the
other side is contained in the band of Bi.

18



X1

X2

X1 X1

X2 X2

Figure 2.15: The top view of an orthostack and its unfolding. The points X lie
on the band cuts. The scissors show a segment where two faces meet but are not
adjacent.

• We can order the z-faces of zi based on adjacency to the band Bi−1 in
counterclockwise order when viewed from z = ∞. The ordering is the same
for the band Bi.

2.2.2 Algorithm
See Figure 2.15 for an illustration.

We cut the band B0 arbitrarily and unfold it in a counterclockwise order. We
place it on the net so that it goes straight in the increasing x direction. We place
the z-face with z = z0 below the unfolded band B0. We proceed inductively.

For every z-face of zi, we find a pair of its opposite sides, s1 and s2, such that
s1 is contained in the band Bi−1 and s2 is contained in the band Bi. We place
the z-face on the net above the unfolded band Bi−1 to match the side s1. Now
s1 is oriented in the decreasing y direction and s2 is oriented in the increasing
y direction. At least one z-face is present, so we choose the right-most one in
the net. Its side s2 will be matched with the band Bi (its top left point will be
matched with the bottom left point of the unfolded band Bi). We unfold the band
Bi in a counterclockwise order and place it on the net so that it goes straight in
the increasing x direction.

At the end, we place the z-face of zn above the unfolded band Bn−1.
This approach ensures the non-overlap of the faces. It is primarily based on

the increasing x direction and secondarily on the increasing y direction.

2.2.3 Modification for box towers
The attachment of the band Bi was chosen to be the right-most unfolded z-face of
zi. It also defined the cut of the band Bi. But we can choose the highest unfolded
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Figure 2.16: Examples of subdivision of z-faces of z1.

Figure 2.17: The only configuration of two adjacent layers that need a specifically
chosen cut. The position of the cut is highlighted by a thick segment (blue). Note
that only the bottom slab needs the specifically chosen cut so it does not interfere
with other steps.

z-face of zi (by highest we mean the one with the highest bounding y-coordinate
in the net) as the attachment and then cut the band Bi arbitrarily.

We need to split the non-rectangular z-faces into rectangles and find attach-
ment sides for them. We denote by Ii the intersection of the slabs Si−1 and Si; it
is a rectangle with z = zi. We divide the z-faces of zi (1 ≤ i ≤ n − 1) by the lines
containing the sides of Ii; see Figure 2.16. From now on, by z-faces, we mean the
subdivisions. All the z-faces are rectangles. There are three types of z-faces:

• the both-band z-faces, where for one pair of opposite sides, the bottom-band
side is contained in the band Bi−1 and the top-band side is contained in the
band Bi

• the bottom-band z-faces, whose two adjacent sides are contained in the band
Bi−1 and the other two adjacent sides are adjacent to both-band z-faces

• the top-band z-faces, whose two adjacent sides are contained in the band
Bi and the other two adjacent sides are adjacent to both-band z-faces

For every band, we choose a cut. There is only one configuration of two
adjacent slabs that needs a specifically chosen cut; see Figure 2.17; the rest can
be arbitrary.

We start by unfolding the band B0 in the counterclockwise order. We attach
the z-face of z0 below the unfolded band B0. We proceed inductively. In each
step, we unfold the z-faces of zi and the band Bi. There are three cases:

• If there is no top-band z-face, we attach all the bottom-band z-faces above
the unfolded band Bi−1 arbitrarily and all the both-band z-faces above the
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Figure 2.18: Unfolding of two adjacent layers with no top-band z-face. Blue
crosses show the cuts of the bands. Thick (red) lines show the possible attachment
sides to the upper band.
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Figure 2.19: Unfolding of two adjacent layers with no bottom-band z-face. Blue
crosses show the cuts of the bands. Thick (red) lines show the possible attachment
sides to the bottom band.
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Figure 2.20: The only configuration of two adjacent layers with a bottom-band
z-face and a top-band z-face. Blue crosses show the cuts of the bands. Thick
(red) lines show the possible attachment sides to the upper band.

unfolded band Bi−1 by the bottom-band side. For every bottom-band z-
face there is a both-band z-face of the same height. One of the highest
rectangles of all the unfolded z-faces of zi must be a both-band z-face. We
unfold and attach the band Bi to this rectangle. See Figure 2.18 for an
example.

• If there is no bottom-band z-face, we attach all the z-faces below the band
Bi+1 in the same way we attached all the z-faces above the band Bi in the
previous step. We attach this by the highest rectangle to the band Bi. See
Figure 2.19 for an example.

• If there is a bottom-band z-face and a top-band z-face, it is a special case.
We attach the z-faces as shown in Figure 2.20. Again, one of the both-band
z-faces must be one of the highest rectangles of all the unfolded z-faces of
z = zi. We unfold and attach the band Bi+1 to this rectangle.

At the end, we attach the z-faces of zn above the unfolded band Bn.
The algorithm is based on the increasing y direction and thus no overlap of

the faces is ensured.

2.2.4 H-convex Manhattan towers
Andres, Largeteau-Skapin, Richaume, and Zrour [1] presented an algorithm for
grid-edge unfolding H-convex Manhattan towers; see Figure 2.21 for an example.
We create an orthogonal prism by gluing unit cubes face-to-face so that the prism
is convex in the x-direction, that is the base. We then glue a stack of cubes on
top of every base cube.

They also presented an extension for grid-edge unfolding Up-and-Down or-
thoterrains; see Figure 2.21 for an example. We have some stacks of cubes par-
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a) b) c)

Figure 2.21: a) A base, convex in y-direction. b) H-convex Manhattan towers,
convex in z-direction. c) A front view of an Up-and-Down orthoterrain, convex
in z-direction.

allel to the z-axis and glue them together to form a single polyhedron with the
following restrictions. From z = ∞ the polyhedron can be seen as a rectangle.
Every two neighboring cube stacks have to be face-connected.

Note that H-convex Manhattan towers and Up-and-Down orthoterrains are
subclasses of polycubes and orthostacks. Each slab is formed by cubes with the
same y-coordinate.

The algorithms are similar to unfolding rectangle-faced orthostacks. We create
bands from faces parallel to the xy and yz planes and unfold them into the plane.
Faces parallel to the xz are placed between the unfolded bands.
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Chapter 3

Grid-edge unzipping box towers

3.1 Notation
Faces parallel to the xy plane are called horizontal, faces parallel to the xz plane
are called front-back, and faces parallel to the yz plane are called left-right.

Since each slab Si is an axis-parallel box, we can express it as a Cartesian
product

Si = [xi,1, xi,2] × [yi,1, yi,2] × [zi, zi+1] .

Let Ei be the union of all the horizontal faces of P with z-coordinate zi (it
consists of the top faces of the slab Si−1 and the bottom faces of the slab Si).
Let Li be the union of the left-right faces in Si with x-coordinate xi,1 (it is the
left rectangular boundary of Si). Similarly, let Ri be the union of the left-right
faces in Si with x-coordinate xi,2, let Fi be the union of the front-back faces in Si

with y-coordinate yi,1, and let Bi be the union of the front-back faces in Si with
y-coordinate yi,2. The surface of P is exactly the union of Ei for 0 ≤ i ≤ n and
of Li, Ri, Fi and Bi for 0 ≤ i < n.

We subdivide Ei for i ∈ {1, 2, . . . , n − 1}, only E0 and En remain untouched.
We denote by Ei,L the following subset of Ei (see Figure 3.1):

Ei,L = {(x, y, zi) ∈ Ei;
x ∈ [min(xi−1,1, xi,1), max(xi−1,1, xi,1)]

∧ y ∈ [yi−1,1, yi−1,2] ∩ [yi,1, yi,2]}.

Similarly we define Ei,R, Ei,F and Ei,B:

Ei,R = {(x, y, zi) ∈ Ei;
x ∈ [min(xi−1,2, xi,2), max(xi−1,2, xi,2)]

∧ y ∈ [yi−1,1, yi−1,2] ∩ [yi,1, yi,2]},

Ei,F = {(x, y, zi) ∈ Ei;
y ∈ [min(yi−1,1, yi,1), max(yi−1,1, yi,1)]},

Ei,B = {(x, y, zi) ∈ Ei;
y ∈ [min(yi−1,2, yi,2), max(yi−1,2, yi,2)]}.
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Figure 3.1: The rectangles are the projections to the xy plane of two adjacent
slabs; the pictures do not distinguish which slab is above the other one. Dotted
lines show the subdivision of Ei into Ei,F , Ei,R, Ei,B, Ei,L and are the only places
where we cut across an original face of the polyhedron. Pictures show only some
cases of how two consecutive slabs can interact.

Note that Ei,L, Ei,R, Ei,F , Ei,B are pairwise internally disjoint. Observe that each
of these sets is either empty or a rectangle contained either in the top boundary
of Si−1 or in the bottom boundary of Si. The lines between Ei,L, Ei,R, Ei,F , Ei,B

are the only places where we cut across an original face of the polyhedron.

3.2 Algorithm
Let P be a box tower. For a given subset A of the surface of P , we will denote
by A′ the corresponding subset in the constructed planar net.

We divide the algorithm into three phases, see Figure 3.2 for the division
of faces into phases. We start with projecting E0 orthogonally to the xy-plane.
Each phase unfolds a part of the box tower. See Figure 3.3 for the resulting net.
The cutting segments will be clear from the process and described in detail in
Section 3.3.

3.2.1 Right-left phase
In this phase we unfold all the rectangles Ri, Ei,R, Li, Ei,L and En. Let RE be
the union of all the rectangles Ri and Ei,R, and let LE be the union of En and
all the rectangles Li and Ei,L.

We start with placing all rectangles from RE. We place R0 to the right of
E ′

0, then E1,R to the right of R′
0, then R1 to the right of E ′

1,R, and we continue
placing Ri and Ei,R, for i = 2, 3, . . . , n − 1, always to the right of the previous
one. We then place to the right the whole rectangle En.

We continue placing the remaining rectangles from LE. We place Ln−1,
En−1,L, Ln−2, En−2,L, . . . , L0 in this order, always to the right. Clearly, in the
resulting net no vertices, edges, or faces overlap so far.

Note that the y-coordinates of the rectangles are preserved in this phase; they
are the same in the box tower and the net.
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a)

b) c) d)

Figure 3.2: a) A box tower with three slabs. b) All the faces unfolded during the
back phase. c) All the faces unfolded during the right-left phase. d) All the faces
unfolded during the front phase.
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Figure 3.3: A box tower with three slabs and its net resulting from the unfolding
algorithm.
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3.2.2 Back phase and front phase
Now we describe the second and the third phases. We denote the union of all the
rectangles Bi and Ei,B by BE and the union of all the rectangles Fi and Ei,F by
FE.

In the second phase, the back phase, we will be placing the rectangles of
BE in the direction of increasing y-coordinate. We place B0 above E ′

0. Then
we proceed with E1,B, B1, E2,B, B2, . . . , En−1,B, Bn−1 in this order, placing each
rectangle always above the previous one. The rectangle En has already been
placed in the right-left phase.

In the third phase, the front phase, we will be placing the rectangles of FE
in the direction of decreasing y-coordinate. We place F0 below E ′

0. Then we pro-
ceed with E1,F , F1, E2,F , F2, . . . , En−1,F , Fn−1 in this order, placing each rectangle
always below the previous one.

In the second and third phases, the x-coordinates of the rectangles are pre-
served.

3.3 Proof of non-overlap
Each phase on its own creates a simple non-overlapping polygon because of the
continuous one-directional process. For a similar reason, rectangles from the back
phase and the front phase cannot overlap. We will prove that no rectangle from
the back phase can overlap or touch with a rectangle from the right-left phase.
The proof for the rectangles from the front phase and the right-left phase would
be analogous.

We will define a piecewise linear curve C formed by a subset of the cut-
ting segments on the surface of P , which will partially separate rectangles from
the right-left phase and the back phase, see Figure 3.4. The curve C starts at
(x0,2, y0,2, z0), which is the bottom right back corner of S0, continues in the z
direction to (x0,2, y0,2, z1), which is the top right back corner of S0, then separates
B0 ∪ E1,B ∪ B1 from R0 ∪ E1,R ∪ R1 in the x and y directions, reaching the point
(x1,2, y1,2, z1), which is the bottom right back corner of S1. The curve proceeds
analogously until C reaches (xn−1,2, yn−1,2, zn), which is the top right back corner
of the topmost slab Sn−1.

The curve C maps onto two piecewise linear curves in the net. One curve,
denoted by Q, forms the right part of the perimeter of BE ′, and the second curve,
denoted by R, forms the top part of the perimeter of RE ′.

Our goal is to prove that the curves Q and R do not intersect.
When the curve C cuts between Bi and Ri, the corresponding part of the curve

R moves in the increasing x-direction by zi+1 −zi > 0 and the corresponding part
of the curve Q moves in the increasing y-direction by zi+1 − zi > 0. If C moves in
the x-direction by d, then R moves to the right by d and Q moves to the left or
right (preserving the former direction of C) by d. If C moves in the y-direction
by d, then R moves up or down (preserving the former direction of C) by d and
Q moves up by d.

The curves R and Q start diverging just after their common starting point
when C cuts between B0 and R0: the curve R moves by z1 − z0 in the increasing
x-direction and the curve Q moves by z1 − z0 in the increasing y-direction.
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Figure 3.4: Box towers with a clear view of the right and the back part, the cut C
and its images Q and R. In both pictures red lines separate Bi from Ri in the z
direction and blue lines separate Bi ∪ Ei+1,B ∪ Bi+1 from Ri ∪ Ei+1,R ∪ Ri+1 in the
x and y directions. a) Blue lines separate E1,B from R0 in the y direction, E1,B

from E1,R in the x direction, and then separate E2,B from R1 in the y direction
and B2 from E2,R in the x direction. b) Blue lines separate E1,B from E1,R in the
x direction, E1,B from R1 in the y direction, and then separate B1 from E2,R in
the x direction and E2,B from R2 in the y direction.
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Figure 3.5: The cut C and vertices for proof.

R

Q

Figure 3.6: The curves R and Q might be very close.

For every point A on the curve C we denote by A′
R the image of A on the

curve R and we denote by A′
Q the image of A on the curve Q.

From the iterative process of constructing Q and R, we deduce the following.

Lemma 3.1. Let A be a point on the curve C except the starting point and
assume that A′

R = (xR, yR) and A′
Q = (xQ, yQ). Then xR > xQ and yR < yQ. □

Lemma 3.2. The curves R and Q do not intersect nor touch, except at the
starting point (x0,2, y0,2).

Proof. For a proof by contradiction suppose the curves Q and R intersect, see
Figure 3.5. Denote by I ′ the point of the first intersection of Q and R (except the
starting point). The point I ′ corresponds to a point U on C from the perspective
of R and also corresponds to a point V on C from the perspective of Q (that
is, U ′

R = V ′
Q = I ′). By Lemma 3.1 we have U ̸= V . Assume, without loss of

generality, that U appears on C before V . Then U ′
Q is before V ′

Q on Q. From
Lemma 3.1 the y-coordinate of U ′

Q is greater than that of U ′
R. Since Q is y-

monotone and U is before V on C, the y-coordinate of U ′
Q is smaller than or equal
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Figure 3.7: The cutting path of the grid-edge unzipping produced by the algo-
rithm. The red line shows the first part and the blue line shows the second part.

to the y-coordinate of U ′
R = V ′

Q. These two inequalities imply a contradiction.
Note that R and Q might be very close, see Figure 3.6.

The rectangles of BE ′ are to the left of the curve Q and the rectangles of RE ′

are below the curve R. Because the curve Q is to the left and upwards of the
curve R and the curves Q and R do not intersect or touch, the rectangles of BE ′

and RE ′ cannot overlap.

Lemma 3.3. All points in BE ′ are to the left from the rightmost point of RE ′.
The set of the rightmost points of RE ′ forms the rightmost edge of RE ′.

Proof. Let S be a point on the curve C such that S ′
Q is the rightmost point of Q.

Then by Lemma 3.1 the point S ′
R is to the right of S ′

Q. The second part is clear
from the algorithm.

All the rectangles in LE ′ are to the right of S ′
R, so the rectangles in BE ′ cannot

overlap with the rectangles in LE ′. This concludes the proof that rectangles
placed in the back phase cannot overlap with the rectangles from the right-left
phase.

3.4 Unzipping
If we closely inspect the cutting segments of our algorithm, we can see that they
form a single path, see Figure 3.7. The path starts with the cut C separating the
right part RE from the back part BE, followed by the back edge of En, a cut
separating BE from LE, the left edge of E0, a cut separating LE from FE, the
front edge of En, and a cut separating FE from RE.

We can take inspiration from alternatives of unzipping a cube [11], see Fig-
ure 3.8, to try to rearrange the parts of the net. There is a problem though;
we need all four cuts in the z-direction. The alternative unzippings are then
unusable for our algorithm and the distribution of rectangles into the phases.
Turning the only valid cube unzipping around will not give new nets as we can
also turn the original box tower similarly and obtain the corresponding nets from
our algorithm.
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Figure 3.8: a) The unzipping of a cube produced by the algorithm. b) and c)
Alternative unzippings of a cube [11].
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3.5 Slight net modifications
We obtain multiple new nets if we consider a grid-edge unfolding and not only
an unzipping. We can split the front part FE ′ horizontally to FE ′

1 and FE ′
2 and

place FE ′
2 next to the front side of E ′

n. It does not create an overlap as there are
still simple cuts separating RE, En, and LE from the parts of FE. The parts of
FE ′ cannot overlap each other either. There is a point T in the intersection of
the cut separating FE1 from FE2 and the cut separating FE1 ∪ FE2 from RE.
One of the images of the point T in the net lies in the front boundary of RE ′. Its
x-coordinate divides the plane into two half-planes; the left contains the whole
FE ′

1 and the right contains the whole FE ′
2. It is based on Lemma 3.1 and the

process of unfolding RE from left to right. We can analogously split BE ′ and
LE ′, see Figure 3.9. More of these slight modifications cannot be done; E ′

0 and
E ′

n have to be connected and without loss of generality we choose RE ′ to be the
connector. More nets can be obtained by rotating the box tower before unfolding.

3.6 Unfolding box towers street
Let T0, . . . , Tm be box towers, and let D0, . . . , Dm be their respective bottom
boundaries. We will unfold an orthogonal polyhedron P obtained by gluing
T1, . . . , Tm on top of T0 so that the projections of D1, . . . , Dm onto the x-axis
are pairwise disjoint and if i < j then the projection of Di to the x-axis is to the
right from the projection of Dj.

We leave it open whether box towers streets with more branching are unfold-
able.

3.6.1 Notation
Without loss of generality, assume that P is the union of T0, T1, . . . , Tm.

The notation is analogous to a single box tower. We only add the first index
indicating the index of the box tower.

Let ni be the number of slabs of the box tower Ti, and let Si,0, . . . , Si,ni−1 be
the slabs of Ti. Let zi,0 < zi,1 < · · · < zi,ni

be the z-coordinates of the vertices of
Ti; note that z0,n0 = z1,0 = · · · = zm,0. Then

Si,j = [xi,j,1, xi,j,2] × [yi,j,1, yi,j,2] × [zi,j, zi,j+1] .

Let Ri,j, Li,j, Fi,j, Bi,j be the right, left, front, and back face of Si,j. Let Ei,j be
the union of the horizontal faces of Ti with z = zi,j. For every i, j satisfying
0 < j < ni we subdivide Ei,j into Ei,j,R, Ei,j,L, Ei,j,F , Ei,j,B analogously as in the
algorithm for unfolding a single box tower.

We denote by Eg the union of the horizontal faces of P with z = z0,n0 and we
divide it as follows; see Figure 3.10. Let the connector C0 be the following subset
of Eg:

C0 = {(x, y, z0,n0) ∈ Eg;
x ∈ [min(x0,n0−1,2, x1,0,2), max(x0,n0−1,2, x1,0,2)]

∧ y ∈ [[y0,n0−1,1, y0,n0−1,2] ∪ [y1,0,1, y1,0,2]])}.
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Figure 3.10: Two examples of the subdivision of Eg. The red rectangle is E0,n0 ,
the blue rectangles are Ei,0. The union of the green faces is Eg,F , the union of the
yellow faces is Eg,B, the union of the light blue faces is Eg,L and the components
of the orange faces are Ci.

(that is, the x-coordinate lies between the right edge of S0,n0−1 and the right
edge of S1,0, and the y-coordinate lies in the union of the projections of the slabs
S0,n0−1 and S1,0 to the y-axis). Next, let the connector Ci for i ∈ {1, . . . , m − 1}
be the following subset of Eg:

Ci = {(x, y, z0,n0) ∈ Eg;
x ∈ [xi+1,0,2, xi,0,1]

∧ y ∈ [[yi,0,1, yi,0,2] ∪ [yi+1,0,1, yi+1,0,2]]}.

(that is, the x-coordinate lies between the right edge of Si+1,0 and the left edge of
Si,0, and the y-coordinate lies in the union of the projection of the slabs Si,0, Si+1,0
to the y-axis). Let Eg,L be the following subset of Eg:

Eg,L = {(x, y, z0,n0) ∈ Eg;
x ∈ [min(x0,n0−1,1, xm,0,1), max(x0,n0−1,1, xm,0,1)]}.

(that is, the x-coordinate lies between the left edge of S0,n0−1 and the left edge
of Sm,0).

The union of Eg,L, Ci and Ei,0 ∩ Eg for i ∈ {1, . . . , m} forms a contiguous
chain between the leftmost and the rightmost edge of Eg. We denote by Eg,F the
union of the faces in front of the chain, and we denote by Eg,B the union of the
faces behind the chain.

Finally, for i ∈ {1, . . . , m} let

LEi =
⋃︂

{Li,j; 0 ≤ j < ni} ∪
⋃︂

{Ei,j,L; 0 < j < ni}.

We analogously define REi, FEi, BEi, and RE0. Let

LE0 = Eg,L ∪
⋃︂

{L0,j; 0 ≤ j < n0} ∪
⋃︂

{E0,j,L; 0 < j < n0}.

We analogously define FE0 and BE0.
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Figure 3.11: a) The subdivision of Eg. b) A box towers street. c) The resulting
unfolding. The projections of N0, N1, and N2 to the x-axis are pairwise disjoint.

3.6.2 Algorithm
We create a partial net Ni from each box tower Ti, i ∈ {1, . . . , m}, as follows (it is
a special slight net modification mentioned in Section 3.5). The partial nets show
the inner surface of the box towers. We place Ei,ni

(the union of the topmost
horizontal faces of Ti) to the net. We proceed by placing LEi to the right, REi

to the left, FEi to the front, and BEi behind E ′
i,ni

. We analogously create a net
T ′

0; we place E0,0 (the union of the bottommost horizontal faces of T0) to the net.
We place LE0 to the left, RE0 to the right, FE0 to the front, and BE0 behind
E ′

0,0.
Note that by Lemma 3.3, the leftmost point of N0 lies in the left boundary

of LE ′
0, and the rightmost point of N0 lies in the right boundary of RE ′

0 (not in
FE ′

0 nor BE ′
0). Also for i > 0 the leftmost point of Ni lies in the left boundary

of RE ′
i and the rightmost point of Ni lies in the right boundary of LE ′

i.
We place the partial net N0 arbitrarily into the final net. We proceed by

placing to the right: C0, N1, C1, N2, C2, . . . , Cm−1, Nm. See Figure 3.11 for an
example.

All the connecting C ′
i are rectangles and connect to the leftmost and the

rightmost edges of Ni. Then, the final net is simple.
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Conclusion

We have presented an algorithm for grid-edge unzipping box towers, which shows
promise for unfolding orthostacks with more general slabs. A modification of
the algorithm successfully unfolds some orthostacks with ’L’-shaped slabs, see
Figure 3.12. However, certain configurations of slabs require further investigation.
Our method relies on ensuring that FE, RE, LE, and BE are contiguous, with
simple cuts between BE and RE, and between RE and FE.

Additionally, we introduced an algorithm for grid-edge unfolding box towers
street. We can unfold most of the faces of the polyhedron from Figure 3.13 with
the algorithm for unfolding box towers street. However, the unfolding of BE2
and FE2 remains unresolved.
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Figure 3.12: Modification of the algorithm for unzipping box towers, used for
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Figure 3.13: A multilayered box towers street.
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