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Introduction
An atomic element of most of the natural language processing (NLP) tasks is
a token. After decades of experimenting with tokenizing the texts by linguistic
rules, regular expressions, or other heuristics, in recent years, the NLP community
has switched to predominantly using the subword tokenization principle, which
means splitting the texts based on the frequencies of the character sequences.
This method allows us to encode the frequent words as single tokens and to split
the rare words (that would otherwise have gone out of the restricted vocabulary)
into smaller but frequent character sequences. Today, there are several popular
approaches on which the subword tokenization can be based, for instance, BPE
Sennrich et al. [2016] or SentencePiece Kudo and Richardson [2018]. Due to the
unsupervised way of training and language agnosticism, subword tokenizers are
used for the entire range of NLP tasks, including multilingual NLP and neural
machine translation (NMT).

However, despite their obvious strong sides, subword tokenization algorithms
have inherent vulnerabilities that are the reverse sides of their advantages. One of
these problems is high sensitivity towards variation in the character usage, which
is understandable (and sometimes even unnoticed) for a human. The examples of
such variation are various types of casing (capitalization or upper-casing) of the
words or omitting the diacritics where they are expected by the orthography rules.
The subword tokenizers trained on the general-purpose data usually show poor
performance on tokenizing the words which bear similar meaning but are written
differently by casing or de-diacritization: since they have not seen enough training
examples of different casing or diacritizations, they cannot find the corresponding
lines for the upper-cased words and end up over-splitting it into smaller sequences
they could find. The illustration of such over-splitting is shown in the table 1
below. Since tokens in the NMT (and other neural NLP models) are connected
to their distributive representations, over-splitting of the word results in poorer
performance on the final task; moreover, it increases the processing time as the
input sequence gets longer.

This variation can be treated as noise and may be deleted beforehand, but
in some cases it may also bear linguistic (as is in diacritics) or expressive (as in
writing the sentences in all caps in the social networks) information. Thus, an
ideal solution for handling such a variation would be to preserve the information
about casing or diacritization while not damaging the quality of the tokenization.
One of the solutions suggested for the casing problem and developed in a line of
works is applying preprocessing on the texts before tokenizer. For casing, this
means transforming the sentence to lower case, but preserving the information
about the cased words via auxiliary symbols. The recent analysis by Jain et al.
[2023] shows that, if applied with a number of tricks (for example, using a single
auxiliary token for a sequence of uppercase words) and with data augmentation, it
can handle the inputs well with different casings. However, the way the auxiliary
symbols are assigned in this paper is questionable, as it allows both treating it as
a separate token and merging the word with it (in this case, the transformation
may lose its sense, since we aim to separate the character sequence from the
casing information anyway). Moreover, most of the work on the inline casing

3



Variation Input Phrase Tokenized Sequence
None Během výběr̊u _Během _výběr ů
All-Caps BĚHEM VÝBĚRŮ _B Ě H EM _V Ý B Ě R Ů
No Diacritics Behem vyberu _Be hem _vy ber u

Table 1: An illustration of the tokenization problem with the phrase (in the sec-
ond column) which was transformed either by upper-casing or by deleting the
diacritization. For a general Czech speaker, all three phrases would be easily
understood as the same phrase; however, the tokeniser struggles to split it con-
sistently as it was trained on the "regular" data, where the words are diacritized
and usually not upper-cased. In the third column, you see how the tokenizer
splits the sequence into subwords (the splitting is represented by white spaces,
the underscore is an auxiliary tokenizer sign denoting the actual white space).
Contrary to the "normal" sentence in the first line, where the line is split into
meaningful Czech words (or at least morphemes), in two lower lines it is over-
tokenized into meaningless parts, which would influence the processing time and
the performance on the downstream NLP task.

algorithms either focuses on the downstream performance of the tokenization on
the NLP tasks or solely on the intrinsic performance of the tokenizers without
its downstream NLP applications. Bearing in mind that subword tokenization is
a relatively new technique and there is still no consensus in how to evaluate the
efficiency of the tokenizer itself, this lack of simultaneous analysis of the intrinsic
qualities of the tokenizer and the extrinsic performance of the systems which
use this tokenizer is a big problem. Finally, to our knowledge, there has been
no attempt to apply the inline approach to other orthographical transformations
such as diacritics and de-diacritization mentioned above.

Another problem of the subword tokenizers is also rooted in its language ag-
nosticism and concentration on the character sets used for training. For instance,
two related languages that use different writing systems may have many common
or similar words, but due to the mere fact that the character sets used to write
their pronunciation are different, there would be no common representation of
the similar words in the joint subword dictionary. Recent research on related lan-
guages, for example, Moosa et al. [2023], shows that another way of preprocessing
can help. That is, mapping the texts in various writing systems to the common
character set significantly improves the performance on the NLP tasks. Since our
university is developing and improving the direct Ukrainian-Czech NMT system,
we are facing exactly this problem, and we are interested in whether roman-
ization of the Ukrainian texts (which are written in Cyrillic script) would help
creating a more efficient tokenizer, as from the typological perspective, Czech and
Ukrainian are considerably close. However, we have not seen a profound analysis
of the impact of romanization of Ukrainian with respect to our translation pair.

Considering all the above, we decided to conduct an investigation of vari-
ous pre-processing techniques with the focus on a particular NLP application -
improving the performance of NMT for the Charles University Ukrainian-Czech
translator. We are interested in analyzing and comparing various types of inline
casing algorithms (including one suggested by us), developing an inline diacritiza-
tion algorithm, and assessing the romanization of Ukrainian for the extrinsic task
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of Czech-Ukrainian and Ukrainian-Czech translation pairs and for the intrinsic
metrics of the tokenizers.

The goals of our research are the following.

1. To suggest the inline casing solutions that improve robustness for different
types of casing of the texts, without making the performance worse on the
non-noised texts. Since we are not the first to propose this approach for
the casing problem, our aim is to improve the stability and efficiency of our
solution compared to the existing ones.

2. To expand the inline approach to the problem of diacritization and to try
various principles of the auxiliary token preprocessing.

3. To apply the romanization of the Ukrainian for the task of direct Czech-
Ukrainian and Ukrainian-Czech machine translation, and by that to im-
prove the subword overlap of the two related languages without losing the
performance on the downstream task.

4. To perform a simultaneous analysis and comparison of both intrinsic and
extrinsic metrics (downstream, in our case, MT) of the tokenization. We
are doing it in order to understand, firstly, which intrinsic metrics are infor-
mative for comparing the preprocessing methods. Secondly, our aim is to
understand whether we can find reliable intrinsic predictors for the extrinsic
performance of the NMT system which uses a particular tokenizer.

Our work is organized as follows. In Chapter 1, we provide an overview of the
background in tokenization, its solutions with respect to noise, and its evaluation.
In Chapter 2, we present the methodology of our research, explaining the data
we use, the preprocessing and the tokenization algorithms we compare, and the
metrics for evaluation of the algorithms’ performance. Chapter 3 is related to
the issues in text normalization and stabilization of our experiments. The three
subsequent chapters, 4, 5 and 6, cover in detail our experiments in inline casing,
inline diacritization, and romanization of the Ukrainian, respectively. Chapter
7 is dedicated to the comparative analysis of extrinsic and intrinsic metrics. In
Conclusions 7.1, we summarize our results, show the limitations of our research,
and outline the perspectives of our future work.
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1. Theoretical Background

1.1 Tokenization: Main Approaches and Their Prob-
lems

1.1.1 Two Extremes: Words and Characters

The essential step in most natural language processing (NLP) applications is
splitting the text into “atomic” units, usually called “tokens”. These tokens are
expected to bear the distributional information necessary for language modeling,
be it n-gram or neural language models. Traditionally, a token was perceived
as an equivalent of a “typographic” word (sequence of characters between white
spaces or non-alphabetic symbols) or a “linguistic” word (whatever it is according
to a particular language and a particular linguistic theory) [Mielke et al., 2021, p.
2]. Most of such tokenization packages, for example Moses Koehn et al. [2007] as
one of the most popular, were deterministic and at least to some extent language
and writing system specific.

However, a regular problem that arises during the inference of the language
models is that a system can face an unknown token which was not seen dur-
ing training [Jurafsky and Martin, 2023, pp. 20, 43]. This is called an out-of-
vocabulary problem (hereafter OOV). This problem becomes especially serious
when it comes to neural language models, as most of the neural NLP models
(such as Bahdanau et al. [2014], Luong et al. [2015], Vaswani et al. [2017], Devlin
et al. [2019]) work with fixed length vocabularies [Kudo, 2018, p. 66], where
extending vocabulary ends up with higher computational costs. For this reason,
using the “orthographic” or “linguistic” words as tokens is inevitably a suboptimal
approach.

Another “extremal” idea that recently gained its popularity is to equate a token
to a character1 (with Chung et al. [2016] and Gupta et al. [2019] being among
the first suggestions), or even to “zoom in” and base the language models on the
byte level (with ByT5 model presented in Xue et al. [2022] being the most famous
one). On the one hand, this approach solves the OOV problem as we can take into
account all available UTF-8 symbols. On the other hand, it seems linguistically
doubtful as, according to most language theories Haspelmath and Sims [2010],
the smallest language element that has semantics is a morpheme. Even if we
ignore that tenet, the major technical problem is increase of the computational
complexities, as the length of such character or byte sequences for the neural
models increases drastically. Libovický et al. [2022] show that the character and
byte-level models do not show competitive results in the WMT competitions on

1The term “character” is used for Chinese and Japanese writing to denote the graphical
symbols equal to syllabo-morphemic units. Thus, in the Chinese and Japanese NLP, the word
“character-level segmentation/tokenization” was initially used for splitting the text into these
characters, which obviously bear more semantics and phonetic information than the characters
in the alphabetic writing systems. However, it is notable that Chinese characters can be split
into graphical elements that are usually called “radicals” or “glyphs”; the characters can also be
romanized. Thus, a corresponding level of the “European” character-level NLP in the Chinese
and Japanese NLP is a subcharacter level, with the glyphs or the characters of the romanization
as tokens, for instance, Meng et al. [2019] and Si et al. [2023].
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the neural machine translation task (hereinafter NMT), and their only significant
advantage is greater robustness of noise. The newer research, for instance, Edman
et al. [2023], is more lenient towards the byte-level models (namely, ByT5), and
demonstrates their advantage compared over the subword model of the similar
architecture, mT5 (Xue et al. [2021]), in low-resource and cross-language transfer
settings. Still, as of now, the opinion on character- and byte-level NLP models
is far from consensus and there are many technical considerations (such as time
inefficiency or UTF encoding inequality [Mielke et al., 2021, p. 14]) that prevent
them from dominating in all domains and settings.

Before we move to the balanced solutions between the words and characters,
we should also note that, for some writing systems, accessing the character (or
sub-character) information seems more efficient than the coarse-grained tokeniza-
tion. This is the case in Korean, where the basic unit of writing is a syllable which
is a compound of 3 symbols (called “jamo”) that represent the exact vowels or con-
sonants. Cognetta et al. [2023], contrary to the general syllable-level approach,
presents a recurrent neural architecture that uses the conditional information
about the jamo that are generated for the current character, which allows to
minimize the number of embedding parameters by over 99% while retaining the
baseline performance on the tasks such as machine translation.

1.1.2 Subword Segmentation: Fully Unsupervised
and Language-Aware

Finding the intermediate level of tokens between words and characters sounds like
a promising compromise. This solution has been first introduced in Sennrich et al.
[2016] as a byte pair encoding (hereafter BPE). This is a deterministic approach
that is based on creating the dictionary of a given size, starting with the characters
of the training texts and then iteratively merging two character sequences that
are most frequently met in the text, until it hits the dictionary size. The resulting
character sequences were called subwords. Such an approach was the first to solve
both the OOV problem and the length of the processed string in terms of tokens,
as, for the frequent words (or patterns of several characters), there will be one
or very few corresponding tokens, while for the unseen words, the segmentation
would be character-wise or containing character combinations (assuming every
character is seen in the training data). Later, two other subword tokenization
methods were introduced: WordPiece (the initial idea presented in Schuster and
Nakajima [2012], developed in Wu et al. [2016]), and Unigram language model,
better known as SentencePiece (approach presented in Kudo [2018], implemented
in Kudo and Richardson [2018]). Contrary to BPE, the two latter models are
based on probabilistic approaches; several approaches, BPE-dropout Provilkov
et al. [2020] being the most popular one, introduced robustness to BPE.

Speaking of intermediate-level tokenization, we should also mention the ex-
periments on the linguistically motivated approaches to retrieving morphemes
of the words with different degrees of supervision – from supervised Gezmu and
Nürnberger [2023] to mostly or completely unsupervised Morfessor family (Creutz
and Lagus [2002] and later versions) or Eskander et al. [2020]. The compari-
son of the completely statistical and linguistically motivated subword segmenters
shows that, for some languages, the morpheme segmenters can show better per-
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formance [Mielke et al., 2021, p. 11], especially when it comes to agglutinative
languages (like Turkish) that use multiple grammatical morphemes for each word
form. However, the same overview shows the opposite results for other languages.
Overall, it seems that currently the statistics-based approaches for subword to-
kenizers are significantly more popular than the morphological ones, which may
be explained by their complete language agnostic nature. For this reason, in the
subsequent research we will pay more attention to the statistical approaches such
as BPE or Unigram LM.

The neural approaches have become state-of-the-art solutions for most of the
NLP applications within the last decades; especially in the last years, with the im-
pressive performance of the so-called large language models (hereinafter – LLMs),
which are mostly based on the Transformer architecture and are pre-trained on
extremely large corpora (apart from aforementioned Vaswani et al. [2017] and
Devlin et al. [2019] technological solutions, one of the first famous products was
GPT-1 Radford et al. [2018]).

Since subword tokenization showed its efficiency on solving OOV problem and
was also a convenient way of handling the trained vocabularies for the LLMs, the
subword tokenizers became the default components of the neural NLP architec-
tures. Thus, following the emerging convention both in academia Mielke et al.
[2021] and in industry2 we will use the term “tokenization” to denote subword
tokenization unless specified otherwise, while the traditional approaches aiming
word segmentation will be called “pre-tokenization”. Correspondingly, the out-
puts of subword tokenization would be called “tokens” or “subwords”, while the
pre-tokenization outputs would be called “pre-tokens”.

1.1.3 Inherent Problems of Subword Tokenizers

Despite preventing OOV problems, subword tokenizers faced several problems
mainly related to excessive sensitivity to character variations. For instance, the
default BPE or Unigram LM algorithm, when applied to the text in the orthog-
raphy that uses cases for letters (e.g., English), will treat the same word in title
case3, lower case and upper case (for instance, “Hello”, “hello” and “HELLO”) as
three completely different character sequences, ending up with different subwords,
that would learn different vector representations after training. Specifically, the
uppercased word will probably be segmented more heavily as it was either not
seen at all or only a few times.

The same problem, dramatic change of the subword splitting due to minor
typographical variation, happens if a tokenizer faces languages with diacritics
(such as Czech), typos, or spelling variation in dialects or similar languages: for
instance, Standard German “Schweiz” and Swiss German “Schwiz”, both denoting
“Switzerland”, differ in one letter, will be split differently, and the corresponding
subwords will be trained with no respect to the whole words’ similarity. The
problem is aggravated when it comes to similar languages with different writ-
ing systems (such as Arabic-based Urdu and Devanagari-based Hindi, or Turkic

2For instance, we can see the usage of the presented terminology in HuggingFace, one of the
main hubs for neural architectures, datasets and pretrained models: https://huggingface.
co/docs/tokenizers/api/pre-tokenizers.

3Hereinafter, the term “title-case” will be used for all occurrences of the first letter capital-
ization, not only the titles.
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languages, which use Latin, Cyrillic, or Arabic-based alphabets): we understand
that the number of potentially similar subwords on the phonological level should
be large, but the small or zero overlap in characters will not cover it.

Tokenizers are also very sensitive to the handling of auxiliary symbols, for
instance, on additional marking of the end of word (Macháček et al. [2018], up
to 5 BLEU Papineni et al. [2001] points on German-Czech MT, depending on
whether to mark the word boundary explicitly and how to handle it in the end
of the sentence).

For several problems such as casing, a seductive solution would be to automat-
ically augment the dictionary, for instance, create a BPE for lowercased words
and then expand it by creating the corresponding titlecased and uppercased sub-
words. However, by this we violate the idea of minimizing the subword vocabulary
size. This is aggravated by the fact that the performance of the NLP application
depends heavily on the size of the subword vocabulary: the experiments show
that the fixed MT architecture will vary by almost 10 BLEU points depend-
ing on the predefined vocabulary size Gowda and May [2020]. The problem of
proper vocabulary size choice for the tokenizer became even more important with
the increasing popularity of the massively multilingual LLMs (such as Conneau
et al. [2020]), as it requires making decisions about the representation of various
languages and various writing systems in the model.

Another solution to the problems of casing, diacritics, typos and other char-
acter variation (which we will hereinafter combine by the term “typographic vari-
ation”) will be to preprocess the texts by minimizing this variation on training
and inference steps. For instance, we could lowercase all texts, delete the dia-
critization, etc. However, this would obviously lead to loss of information that
sometimes is grammatically relevant (for diacritics) or may contain stylistic or
other subtle differences (such as writing fully uppercased or fully lowercased sen-
tences in the social networks). Thus, the desired solution would be to come up
with such a tokenization algorithm that would take into account the information
about typographic variation for the same or similar words, but will also group
the same or similar words closely in the subword space despite this variation.

For the reasons mentioned above, the NLP community started addressing the
particular aspects of tokenizer sensitivity in order to improve their robustness.
An overview of this field will be presented in the subsequent section.

1.2 Addressing the Typographic Variation by To-
kenizers

1.2.1 Case Handling

In this section, we will cover the various types of typographic variations and
the approaches that were suggested to solve them. We will start with casing
information. One of the first solutions to it was provided in Rexline and Robert
[2011].4 The initial idea was to substitute the upper-cased and title-cased words

4Notably, the paper was initially intended for the purposes of text compression but not
NLP. This is not a unique case of the compression algorithms inspiring the NLP solutions: the
BPE algorithm also roots back to the compression algorithm solution Gage [1994]; moreover,
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with their lower-cased correspondences, but to prepend them with the additional
symbols that would mark the case of the word. This solution was implemented
by the Naver lab for the MT task in 2019 Berard et al. [2019], where it was named
“inline casing”. Specifically, the additional symbols (we will call them and similar
auxiliary elements “flags”) were applied after the use of BPE to every subword
that was upper-cased or title-cased; however, in this paper, according to the
authors, it did not seem to have any significant impact. The next papers modified
the approach. For instance, Etchegoyhen and Gete [2020] rather implemented
the initial idea stated in Rexline and Robert paper and applied the casing flags
before the BPE tokenization. Their results show that inline casing is the most
efficient case marking strategy for several MT language pairs, compared to other
approaches such as keeping the initial casing, lower-casing, true-casing, recasing
and case factors (which will be described below). It showed both improvement in
the overall BLEU scores, as well as a higher percentage of word reference matches
with the cased words. The authors suggested that this happened because the
inline casing is the strategy that allows “to combine lowercase-based translation
benefits with case information exploitation” [Etchegoyhen and Gete, 2020, p.
3755]. Another study Shi et al. [2020] compared two variants of placing inline
casing flags – either before or after the cased word, and trained the additional
neural models for case prediction. They show that all approaches outperform
baseline, specifically, the right allocation of flags works better than the left one.
The authors suggested that the flags can help the system reduce the search space
to translate the next word. However, compared to case prediction models, the
inline casing showed a lower performance.

Another family of approaches for case handling is based on case factorization.
In this scenario, the information about casing is disentangled from the word in the
embedding step, after subword tokenization. For instance, Powalski and Stanis-
lawek [2020] handled the case information in the same manner as the positional
information in Transformer model – by embeddings that are added pointwise
to the word embedding. This showed improvement on a variety of downstream
tasks; moreover, a qualitative example showed that it especially improved the
performance on the upper-cased words that were over-segmented otherwise. A
more generalized approach was shown in Samuel and Øvrelid [2023]: the outputs
of subword tokenization are transformed into 3-dimentional space by variational
auto-encoder architecture Oord et al. [2017], resulting in a set of 3 integers in
range [0, 255]. The results show that similar strings (differing not only with
casing but also with other typographical variations) are represented similarly in
such a format. The NLP task chosen to compare the performance was tagging on
UD corpora De Marneffe et al. [2021], where it clearly outperformed the baseline
BPE. It also showed significant robustness to character-level noise. Overall, this
approach is a significant step forward in subword representation, as it solves the
problem of non-relatedness of the similar subwords in all default tokenizer imple-
mentations. However, a drawback of this method is that VAE outputs are not as
interpretable as the deterministic inline casing or similar approaches; they also

the recent observations of the GZIP text compression algorithms were claimed to be a good
substitution for state-of-the-art solutions for text classification Jiang et al. [2023], however, this
was soon disproved. The discussion took place on the GitHub page of the published paper:
https://github.com/bazingagin/npc_gzip/issues/3.
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need additional training for each new language.
There are other solutions similar to case factorization that also address typo-

graphical variations at the level of the neural model architecture. For example,
Aguilar et al. [2021] combine the subword embeddings with the character rep-
resentations, the latter being augmented by various operations such as random
noise or case toggling for robustness purposes. This architecture is applied for
several NLP tasks such as language identification or named entity recognition
(NER), where it showed improvement and noise robustness.

1.2.2 Diacritics Handling

Another typographical variation aspect that we mentioned earlier is handling
diacritics. Depending on the language, they can perform one of the two functions.
On the one hand, they can be obligatory and bear phonological meaning, which
is true for most Latin-based languages, from German and Czech to Vietnamese
or pinyin, official romanization for standard Chinese. On the other hand, they
can be perceived as auxiliary, which is usually true for consonantal alphabets
such as Arabic or Hebrew, where the vowels are mostly marked with diacritics
and are omitted everywhere except a closed range of domains (such as religious
texts or books for children). Notably, the imporatance of proper handling of the
diacritics in the current NMT is not only studied by the NLP community but
is also analyzed by the formal and descriptive linguists: for example, Khoshafah
and Tagaddeen [2023] in their qualitative analysis show that at least some of the
widespread industrial MT applications (such as Reverso or Systran) do not take
the information about vowel diacritics into account, thus not differentiating the
translations of the diacritized and non-diacritized texts.

As for the NLP researchers addressing the problem of diacritics, there seems
no significant body of research tackling the problem of encoding the diacritized
letters: we have not found any serious discussion on handling the diacritization,
comparison of diacritized and non-diacritized tokenization models, or different
ways of diacritics normalization (representing diacritized letters as combinations
of characters or as single characters). The default approach is to treat the letters
with diacritics as the “atomic” characters in the same way as the “base” alphabetic
symbols (which is mostly applied for the “obligatory” diacritics), or to strip the
text off the diacritics (which seems to happen with consonantal systems and with
some large multilingual models such as BERT Devlin et al. [2019]). The only
brief mention and speculation about the impact of diacritics on vocabulary size
is made in Alabi et al. [2020], where two low-resource African languages, Twi
(which does not use diacritics) and Yoruba (which uses diacritics) are compared
by their representations trained in FastText pre-trained models (usually of low
quality) and on manually curated data. The authors speculate that, despite the
fact that Yoruba orthography requires diacritics, there are not many properly
diacritized open source data. Thus, the dilemma is either to use both diacritized
and non-diacritized texts (which will expand the vocabulary) or to erase diacritics
(which will lose phonological information).

There is an adjacent body of research related to the restoration of diacritics,
both for languages with obligatory diacritics (such as the South Slavic languages
Ljubešić et al. [2016] or Vietnamese Nga et al. [2019]), and for vowel signs for con-
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sonantal alphabets (such as Arabic Shamardan and Hifny [2023]). In most cases,
the problem is formulated as an MT task from non-diacritized to diacritized lan-
guage; thus, solutions such as sequence-to-sequence models or classical statistical
MT architectures are applied to it.

1.2.3 Dialectal Variation Within the Same Writing System

The final significant aspect of typographical variation is the problem of dialectal
variation or the use of similar languages. The approach suggested by Aepli and
Sennrich [2022] suggests infusing character noise in the tokenizer training step,
which showed an improvement in tokenization performance of closely related lan-
guages or non-standardized varieties of the standardized languages. This ap-
proach was replicated in Blaschke et al. [2023] and Srivastava and Chiang [2023],
thus being proven on a wide variety of language families (from European lan-
guages like German and Norwegian to Indian languages and dialects of Arabic),
and also showed improvement on downstream tasks such as PoS-tagging and
sentence classification. As the latter paper shows, the resulting tokenizers start
performing better even on the unseen varieties of the languages under question.

Another approach was demonstrated in work within the field of dialect classi-
fication Kanjirangat et al. [2023], where the authors tweaked the sizes of common
vocabularies that would be minimal for a representative identification of a lan-
guage variety. This approach is similar to the field of massively multilingual
LLMs, whose first component is optimal choice of the subword vocabulary that
would cover all languages in the training set: Rust et al. [2021], Chung et al.
[2020]. Another related paper, Limisiewicz et al. [2023], will be analyzed more
thoroughly in terms of the metrics suggested for tokenization evaluation.

1.2.4 Dialectal Variation with Different Writing Systems

The special case within dialectal and similar language variation is the phenomenon
of languages and dialects that are very similar on the linguistic level but use dif-
ferent writing systems. Since one of the biggest regions with such dialectal and
graphical variety is the Indian subcontinent, a large body of research is related to
studying the unification of the writing systems before applying tokenizers. Usu-
ally, the final writing system is Latin script. In this case, romanization is applied
according to a universal system for all Indian languages, such as the WX notation5

in Kumar et al. [2023] and other unified packages such as in Moosa et al. [2023], or
language-specific romanization schemes such as in Singh and Bansal [2021]. All
demonstrated experiments show a significant improvement on the performance
of both downstream tasks such as sentence classification or NMT, or on intrinsic
parameters such as various metrics of subword splitting granularity; see [Moosa
et al., 2023, p. 676].

A recent study that took into account a set of distant languages, Amrhein and
Sennrich [2020], suggested applying different pre-tokenization romanization tech-
niques to improve the performance in the NMT task. Of the two romanization
packages used in the paper, uroman6 assigned any input to the base Latin alpha-

5https://github.com/irshadbhat/indic-wx-converter
6https://github.com/isi-nlp/uroman
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bet, making it more lossy but promised a larger character sequence overlap, while
uconv7 used a more elaborate system with diacritization, which allowed even full
reversibility for some languages. This generalized analysis showed that roman-
ization (which keeps as much detail as possible, uconv for this case) improves
performance on the genealogically close languages that use different writing sys-
tems, while it does not have positive effect on the non-related languages. For
some languages like Chinese (which did not have any related language in the
sample), romanization showed a significant performance decrease.

The last paper that also tackles the initial writing system transformation
(however, not within the scope of similar languages) was presented in Si et al.
[2023]. The authors experimented with the effect of different encodings of Chinese
characters on tokenization and downstream tasks. The characters were encoded
either phonologically (using various approaches, including pinyin, standardized
romanization for Chinese) or graphically (by encoding the strokes and radicals of
the characters). Optionally, for the phonological romanization, the enumeration
of homophonic characters was included. The results showed a significant im-
provement in intrinsic parameters, such as the speed of training and the coverage
of the character combination (compared to Chinese character-level tokenization).
The downstream metrics showed mixed results depending on a given NLP task,
however, they showed robustness of the transliterations’ encoding against random
and homophone noise.

1.3 Tokenization Metrics for NMT
Since tokenization is the first step in any NLP pipeline, its efficiency can be
measured by two essentially different approaches – either by the performance on
a downstream task (which is called extrinsic evaluation), or by measuring how
optimal the tokenization is compared to other tokenizers or to some ground truth
parameters (intrinsic evaluation). Ideally, the intrinsic metrics should also be
good predictors for the extrinsic metrics, as tokenization is a computationally-
cheap operation compared to training the neural models such as a Transformer for
an MT task. Thus, it would be fruitful to estimate the most promising tokenizer
configurations before training and evaluating the final systems. Since our main
focus is improving the MT task, we will be mostly interested in the extrinsic
metrics for the MT, which will be presented in the next section, as well as cover
the intrinsic metrics for tokenization.

1.3.1 Extrinsic MT Metrics

The general problem of MT quality evaluation is that, contrary to several other
NLP tasks such as automated speech recognition (ASR) or part-of-speech tagging
(PoS tagging), there is no single correct translation of a source sentence that we
should expect from the system [Koehn, 2010, p. 217]. Because of that, the
creation and adjustment of the metrics is a whole subfield in MT, with specific
shared tasks related to that, for example, a yearly metrics shared task at the
WMT conference8. In general, MT systems and MT metrics are developing in

7https://linux.die.net/man/1/uconv
8https://wmt-metrics-task.github.io/
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parallel and contributing mutually.
Throughout the history of statistical and neural MT, an abundance of metrics

have been proposed and used. We can try to classify them by several main
parameters. We should start with the adequacy/fluency opposition: for the MT
task, it is important to precisely transmit the information from source to the
target (this is called adequacy) as well as to make the target sentence grammatical
and coherent (fluency). The general MT metrics are aiming at covering both
parameters, but for most of them, we can say whether a particular evaluation is
more inclined towards adequacy or fluency.

The second dimension is the type of data that is shown to the metric: apart
from the system translation, we can either provide an evaluation system with
source sentence (source-based metrics, also known as Quality Estimation), a ref-
erence translation, usually made by human or by an oracle (reference-based met-
rics) or both (source+reference-based metrics).

The third dimension is the length of the system output that is being assessed:
in most cases, it is the level of sentences, however, there are also document-based
metrics (where the whole document is being assigned with a score) or document-
aware metrics (where the assessor is provided with a document but assigns scores
to the sentences).

The fourth differentiation parameter is whether the metric measures the sur-
face features of the translation (e.g. character or word overlap), or its semantic
contents.

The final parameter is the assessor itself, whether it is a human, a deterministic
formula, or a stochastic (usually a neural) model. Below we will overview the main
metrics by grouping them by this parameter, while briefly characterizing them
by the above-mentioned dimensions.

Human MT Metrics

The first attempts to formalize human assessment can be found in the previous
century, for example, White et al. [1994], where the authors addressed the features
of adequacy and fluency directly. However, as shown in King [1996], most of the
metrics were initially based on ranking the models or assigning points to them,
and the assessors were not provided with rigorous differentiation criteria in the
scores. The most widely used human metrics were designed in parallel with the
classical automatic formulas. For example, the Human-targeted Translation Edit
Rate (HTER), presented by Snover et al. [2006], was proposed together with an
automatic metric of the Translation Edit Rate (TER). Both of these metrics can
be described as source+reference sentence-based surface+semantic metrics. The
metric principle is the following: how many edits are necessary to make (either
manually for HTER or automatically for TER) to transform a system output to
the reference sentence, which is not provided in advance but created on the basis
of the MT output.

Another widespread family of metrics is called Multidimensional Quality Met-
ric (MQM) Lommel et al. [2014], which is a framework that aims to identify the
exact characteristics of the adequacy and fluency of the translation, and asks
the assessors to score the systems with the points for each parameter. Depend-
ing on the exact set and granularity of parameters, the metric can be considered
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sentence- or document-based, surface- or semantics-based, but mostly it is source-
based.

The third family of metrics, Direct Assessment (DA), was presented in Gra-
ham et al. [2013]: Contrary to the traditional ranking of the systems by humans,
now the annotators were to provide a score for each translation. This metric is
usually source-based, thus more semantics-based, and depending on the setup
can be either sentence-based or document-aware.

Due to the obvious strengths of human evaluation (such as understanding
semantics and possibly pragmatics of the text), human evaluation is the most
valuable kind of metrics. On the other hand, it has several inherent problems
that can be generalized by the term “bad reproducibility”. This includes subjec-
tivity of the annotators, not only based on the personal preferences on scoring
candidates (which can be solved by normalization), but also based on their profes-
sional background. Freitag et al. [2021] showed that the judgments of the profes-
sional translators differ significantly from the crowd-sourced workers; moreover,
Vojtěchová et al. [2019] noted that expert knowledge in the professional domain
drastically affects human evaluation. Apart from that, there are other organiza-
tional problems related to the creation of the guidelines, inter-annotator agree-
ment, and costs of human annotation. Thus, the creation of reliable automatic
metrics becomes vital.

Non-Neural Automatic Metrics

The main advantage of automated metrics was supposed to be their speed, low
cost, and reproducibility, whether to compare different systems or evaluate the
progress of the same system. The most popular metric of this kind, BLEU Pap-
ineni et al. [2001], is a sentence-level reference-based metric whose core feature is
counting the n-gram overlap with the reference translations (thus, the metric is
surface based). The authors tried to combine the precision and recall constraints
for the overlap, by applying the so-called n-gram precision and brevity penalty
parameters in the metric. Introducing BLEU was a breakthrough in the field
of MT (as well as other NLG problems), as it allowed to facilitate the research-
and-development cycle given a relatively small and stable number of reference
translations. However, since its very introduction, a large body of research has
shown that BLEU has several significant drawbacks. Firstly, it is extremely sen-
sitive to the number and quality of the reference translations. Secondly, since the
metric is heavily surface-based by default, it is overly sensitive to preprocessing
features such as tokenization Bojar et al. [2006], as well as to minimal (character
or unigram-level) variations in the outputs. Finally, recent meta-analyses such as
Ma et al. [2019], show that BLEU correlation with human judgements is uneven,
reaching poor correlation with the top-scoring MT systems.

For this reason, several more robust modifications of BLEU were suggested,
such as character n-gram F-score (chrF3) Popović [2015], which narrowed the
BLEU concept of n-gram overlap to the character level. Another modification
Stanojevic and Sima’an [2014] was based on a trained linear interpolation model
with character-level or word-level factors, that allowed for more surface variation,
such as gaps between the reference words. A family of METEOR metrics, pre-
sented in Banerjee and Lavie [2005], addressed several variation parameters such
as morphological variants of the same lemmas.
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The other automated approach, TER Snover et al. [2006], was based on the
Levenshtein distance concept and evaluated the number of modification opera-
tions (such as insertion, deletion, substitution) to transform the MT output and
the reference translation. This metric was still quite surface- and reference-based
as BLEU and its modifications; however, combined with human assessment de-
scribed in the previous section, it could allow for deeper structure and semantics
of the outputs.

Finally, we should note that there was a family of approaches called quality
estimation (QE), which are by default only source-based metrics. Progress in
research and solutions in this field is more notable within the last years (see, for
example, Specia et al. [2018]). The most popular approaches in the field have been
QuEst by Specia et al. [2013] and Kepler et al. [2019]. The former QE framework
is based on a combination of feature extraction (that try to comprehend both
adequacy and fluency of translation) and classical machine learning, while the
latter is based on neural approaches for prediction the human judgements based
on sources and system translations.

Neural MT Metrics

The automated metrics based on deterministic algorithms, although they had
significant imperfections and biases, allowed for quick and stable development of
the MT systems. However, as can be seen from the inherent problems of reference-
based (and surface-based) metrics and from the development of the QE metrics,
the next logical step in the metric development was to rely more on semantics and
less on the reference, probably with the help of deep neural networks. The first
attempts to make trained metrics go back to the 2000s [Koehn, 2010, p. 244], but
the boost in their popularity happened within the last few years and was related
to LLMs.

The concept of embedding representations of the texts allowed one to first
solve the inherent problem of the reference-based n-gram overlap metrics, the
sensitivity to paraphrases; based on that, BERTScore Zhang et al. [2020] allowed
for a more generalized and robust reference-based evaluation, which was demon-
strated in MT and image captioning tasks. There were other experiments that
were aimed at training a model that would work in low-resource MT, such as
YiSi Lo [2019], or trained for greater domain robustness based on automatically
generated data, such as BLEURT Sellam et al. [2020].

A new word in the MT evaluation was COMET Rei et al. [2020], the neu-
ral metric that was based on massively multilingual pre-trained LLM and could
therefore make use of source and reference representations. It was generating the
predictions on the human-assisted estimates and, according to the results, showed
a significant correlation with human judgements on the top systems, which was
usually a weak point for the previous metrics. Now COMET is a family of models
that are trained on different types of input (some of the models are referenceless)
or target variable (some models are aimed at ranking, while others predict DA,
MQM, or HTER scores). As can be seen from our overview, the general feature
of the neural metrics is their focus on semantic evaluation, while different models
can be based on source, reference, or both.

According to recent meta-analyses such as Freitag et al. [2022], neural metrics
are now more reliable compared to the classical n-gram ones. However, an even
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more abstractive meta-analysis Moghe et al. [2023] where the authors compared
MT metrics (a variety of n-gram and neural ones) in the range of downstream
tasks such as Dialogue State Tracking, shows that there is no clear correlation with
metric types and downstream scores; however, reference-based metrics proved
more informative compared to reference-free approaches (i.e., QE).

1.3.2 Intrinsic Tokenization Metrics

When it comes to evaluating the intrinsic tokenization, we can optimize several
parameters of it. Firstly, an important feature of tokenization is reversibility of
the encoded sequence, as a proof of lossless transformation of text. Sometimes we
can allow for a small degree of non-reversible transformations: for instance, the
first implementation of BPE did not guarantee the proper whitespace handling
Kudo and Richardson [2018], while Amrhein and Sennrich [2020] discussed differ-
ent ways of romanization with respect to how lossy it is and whether more lossy
transformations could help generalization and robustness. However, in a general
case we want to minimize the loss in the encoding-decoding cycle. The second
objective is optimization in terms of text compression: we want to minimize the
encoded length (number of tokens) given a fixed vocabulary size. The third pa-
rameter, which can be called the main priority of this work, is the robustness
of the tokenizer against noise, new domains or vocabularies, and typographical
variations. As was stated in the first section, it is quite problematic to optimize a
tokenizer by all three dimensions, as improving robustness or compression usually
leads to loss in reversibility, while maximizing reversibility minimizes the effects
of compression.

Another concept that is not an objective but an opposition necessary to bear
in mind is the opposition between frequency and compositionality capacities of the
tokenizer. As Wolleb et al. [2023] show, when the main tokenization approaches,
such as BPE and Unigram LM, were announced, they claimed that both features:
frequency-based encoding of the subwords and efficient handling of the OOV (or
very rare) words (which they call compositionality), contribute comparably to
the state-of-the-art performance of the subword tokenization compared to other
approaches. The authors attempted to disentangle these two features by creating
a tokenizer that would only be able to handle the frequency problem and not
address the OOV problem. They used another compression mechanism, Huffman
coding, as a tokenization principle: by using highly multi-dimensional Huffman
trees, they assigned the words with different IDs depending on their frequencies.
They compared this approach to the standard implementation of BPE in the
task of MT, and the algorithm showed a very high (around 90%) and consistent
correlation with the performance of BPE. The authors’ interpretation on this
finding is that frequential aspect of subword encoding plays the main role in BPE
efficiency, and urge the NLP community to think about the compositionality
aspect of the subword encoders as of a task that is not automatically optimized by
current tokenization approaches. We think that the metrics that will be described
below can be described as being biased towards either the frequentist or the
compositionality aspect of the subword encoding.

The research and formulation of the internal metrics for tokenization has
started quite recently. It seems to be pushed forward especially by the multi-
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lingual LLMs, as one of the crucial problems there is which vocabulary length
is optimal, and what is the optimal way to allocate the subwords from different
languages and writing systems. For instance, Rust et al. [2021] state that the
exact tokenization method is as important as vocabulary size for the downstream
performance for the massively multilingual models. In line with this research,
a recent master thesis by Jǐŕı Balhar Balhar [2023] analyses the problem of the
tokenizers’ performance for the multilingual models. Balhar provides a thorough
analysis of the internal tokenization metrics and compares them both from a
theoretical and a practical perspective. In this overview, we will refer to this
overview and generalize it in order to clusterize the possible metrics into several
groups.

Metrics Related to Sequence Length

The first group of metrics addresses the length of the sequence encoded by the
tokenizer. Our objective is to create the most coarse tokenization possible. It can
be formulated differently – as average number of subwords per sentence Amrhein
and Sennrich [2020] (also sequence length, Chung et al. [2020] and Liang et al.
[2023]) or as average number of subwords per word (also known as fertility, Rust
et al. [2021]). Balhar introduces a more generalized version of this metric, charac-
ters per token (CPT). He mathematically proves that the sequence length can be
reduced to CPT with a corpus-dependent constant, and mentions that CPT is not
as language-dependent as fertility, because the latter is based on the notion of the
“word”, which is not an intuitive concept for many languages or writing systems.
Since this group of metrics is focused more on the lengths of each token or the
resulting encoded sequence, we can say that it is rather compositionality-related
as it describes the character length-subword correlation more directly than the
frequency of the particular token.

Token Distribution Metrics

The second family of metrics addresses the distribution of the resulting subwords
in a tokenized corpus. Sorting the subwords’ occurrences by their frequencies
allows us to create a variety of the probability- or entropy-related metrics. An
intuitive idea is to analyze the parameters of the whole distribution: we want to
have a distribution that would be closer to uniform, as this would increase the
information of each token. For this task, metrics such as average log probability
Zheng et al. [2021], entropy and average rank (AR) Balhar [2023] are introduced.
Balhar shows that the suggested metric of average rank (which is the sum of
token ranks weighted by their probabilities) is an optimal metric: firstly, average
log probability is a combination of average rank and entropy; secondly, under the
assumption that the tokens follow Zipfian distribution (which is usually the case
for the natural language data), entropy correlates with AR, but is less sensitive
to low-frequency tokens.

The initial idea of the subword tokenization is to handle the OOV words,
which, in terms of Zipfian distribution, can be formulated as handling an (in-
finitely) long tail of the rare words. It is intuitively clear that we should pay
special attention to the tail of the subword token distributions in order to make
it as short as possible. Thus, several proposed distribution-based metrics specifi-
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cally aim at the tail of the token distribution, such as Frequency at 95th% Class
Rank Gowda and May [2020]: counting the least frequency in the 95th percentile
of most frequent classes. Based on their analysis of tokenizers on the downstream
MT tasks, the authors suggested that the optimal size of BPE is the largest size
such that at least 95% of tokens would be met at least 100 times in the training
corpus.

All the above-mentioned metrics (which we, by the way, can call frequency-
related) were created ad-hoc and tried to measure the empirically obtained token
distributions. Recently, a more fundamental metric was suggested by Zouhar
et al. [2023]. It is based on the assumption that tokenization is a noiseless trans-
formation and is based on the concept of efficiency, which aims at penalizing the
token distribution on both head and tail. The metric is theoretically based on
the notion of Rényi entropy, which is a generalization of Shannon entropy. The
authors show that, on a variety of tokenizers and on a set of MT language pairs,
this metric correlates well with the downstream external metrics such as BLEU.
The metric will be presented in detail in the next chapter 2.4.2.

Comparison of Multiple Corpora

The metrics described above are concentrated on a particular tokenized text.
There are a number of metrics that aim at evaluation of the similarity of two
tokenizations for different corpora or languages (if it comes to multilingual tok-
enizers). A primitive metric of this kind is lexical overlap, which is an overlap
of distinct tokens in the test data sets compared to the trained vocabulary (for
example, used for the evaluation of dialect transfer in Srivastava and Chiang
[2023]). We can see that it is a simplified version of the distribution-related met-
rics from the previous group, which does not weight the token occurrences and
just counts them; however, the difference lies in its usage, as it aims at comparing
the coverage of the training token set on multiple test corpora.

Another metric aimed at comparing multiple languages is suggested by Bal-
har: it is Jensen-Shannon Divergence (JSD). This metric is used to measure the
distance between two distributions with the help of the midpoint distribution and
the Kullback-Leibler divergence. This metric can be used to estimate the overlap
between two languages given a multilingual tokenizer. Balhar also mentions that
Chung et al. [2020] used Wasserstein’s (or “earth mover’s”) distance for the same
purpose, but he argues that using JSD is more justified since the earth mover’s
distance is defined for the probability distributions with metric space, while tok-
enizer vocabulary does not have one. In his work, Balhar analyzed the correlation
between the intrinsic metrics and the downstream performance (which was im-
plemented as a form of probing on a set on NLP tasks), and as a result, JSD as
CPT showed a good correlation with the word-level downstream tasks (such as
PoS-tagging).

1.4 Charles Translator for Ukraine
Since the main experimental contribution of this work is related to developing the
Czech-Ukrainian MT system of Charles University, we have to briefly describe it.
Charles Translator for Ukraine continues the development of the Charles Univer-
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sity NMT solutions, which are in general based on the Transformer architecture
Vaswani et al. [2017]. The distinctive features of this family of models (CUB-
BITT) are, first, block back-translation Popel et al. [2020]: the use of augmented
backtranslated sentences separated from authentic bilingual data by different
blocks. According to the authors, such a training approach allows for a better
training curve than mixing the authentic and augmented sentence pairs within
the same block. Another feature of CUBBITT systems that proved good perfor-
mance in a number of shared tasks of WMT is called document-level translation
Popel [2020]. In fact, it is a combination of a large attention context (which usu-
ally comprises several sentences) and an implementation of sliding context where
the input sequences overlap for the sake of consistency throughout the text.

The CUBBITT version under question was created in March 2022, as a re-
sponse to the massive inflow of Ukrainian refugees into the Czech Republic as a
result of the Russian invasion into Ukraine9. It was presented at WMT-2022 Popel
et al. [2022], where it participated in the Czech-Ukrainian translation task. In
addition to architectural features, several language-specific elements that tackle
data pre-processing were introduced. Firstly, the authors suggested the modified
version of inline casing (InCa) that was frequency-based: instead of marking all
upper- or title-cased words with flags, each word was analyzed by the frequency
of its occurrences depending on case, and the default version was stored in the
auxiliary vocabulary. Then, the most frequent type of occurrences was written
as lower-cased and without any flag (even if it is upper-cased or title-cased),
while the less frequent types were assigned with corresponding flags (including
the lower-case flag for the rare occurrences of the lower-cased writings of words).
This modification was aimed at generalizing the tokenizer vocabulary, on the one
hand, and minimizing the encoded length, on the other.

Unfortunately, the authors did not have time to make an extensive compar-
ative analysis of the InCa algorithm features. In this work we will thoroughly
analyze the performance of various inline casing methods, as well as inline dia-
critization and romanization experiments for a clearer view of the importance of
each factor in the Ukrainian-Czech MT system.

9The system is available for free at LINDAT repository: https://lindat.cz/translation
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2. Methodology
In this chapter, we will introduce the methodology of the experiments on pre-
processing of subword tokenization for the Czech-Ukrainian machine translation.
This will include a general overview of the experimental setup in the following
and a detailed description of each step in Sections 2.1–2.5.

The chapter covers the description of the training, validation and testing
datasets (Section 2.1), the specification of the preprocessing (Section 2.2) and
tokenizer configurations (Section 2.3) that we want to compare, and the evalu-
ation approaches and metrics for the experiments (2.4). Finally, we will specify
the technical implementation of our experiments in Section 2.5.

2.1 Data

2.1.1 Datasets

The problem of Czech-Ukrainian machine translation task stems partially from
the fact that Ukrainian is currently a low-resource language even compared to
Czech. There are active attempts to overcome this problem, for instance, within
the Ukrainian NLP workshops Romanyshyn [2023]. Thus, we used almost all data
from the open resources for the training procedure, and several small datasets
(sometimes not open-sourced ones) for validation and testing.

For the training step, we used the same training data as was presented and
described by Popel et al. [2022]: the dataset comprising 8 million sentences that
contain all Czech-Ukrainian data from the OPUS corpus Tiedemann [2012], Wiki-
Matrix data from the initial publication Schwenk et al. [2021], and the ELRC EU
acts in Ukrainian.1 The OPUS data consists of the multilingual web-crawled
datasets that are usually met in the project, such as subtitles translations (Open-
Subtitles, TED2020, QED datasets), localization files (Ubuntu, GNOME, KDE4
datasets), crowdsourced translations (Tatoeba dataset), Bible translations (bible-
uedin dataset) and Wikipedia and CommonCrawl data (XLEnt, MultiCCAligned,
wikimedia datasets, etc.). The data were preprocessed and filtered from mal-
formed UTF-8 symbols, the sentences that were detected to be neither Czech nor
Ukrainian, and the sentence pairs with too big difference in length. Finally, the
handcrafted rules were applied to check the spelling of the named entities in two
languages. The detailed explanation of the procedure is presented in the paper:
[Popel et al., 2022, p. 353]. For brevity, the training dataset will be hereinafter
called T8M (from “training – 8 million sentences”).

For validation and various types of evaluation, the subset of 1012 sentences
from Flores 101 dataset was used Goyal et al. [2022]. This is the dataset com-
prising the Wikipedia articles translated professionally to 101 language. Since
the OPUS data partially comprised the Wikipedia data, we can name these data
in-domain with respect to training data. For brevity, this dataset will be further
referred to as flo.

The summary of the datasets is represented in the table 2.1.
1https://elrc-share.eu/repository/browse/eu-acts-in-ukrainian/

71205868ae7011ec9c1a00155d026706d86232eb1bba43b691bdb6e8a8ec3ccf/
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ID Used For Domains Sentences Words (cs) Words (uk)

T8M training

IT localization,
web scraping,
subtitles, Bible,
tatoeba

7,905,591 82,019,407 81,601,852

flo testing
Wikipedia (prof.
translation)
∼in-domain

1,012 19,113 19,181

Table 2.1: Dataset Overview. The number of sentences and words was counted
as the number of lines and the number of white space-delimited positive-length
character sequences, respectively.

2.1.2 Dataset Preparation

We created the module for the controllable preparation of the datasets, which
consists of the normalization module and the noising module. Both modules are
described in the following.

Normalization

For the consistency and reproducibility of the experiments, we created a normal-
ization module. It consists of several main aspects. Firstly, as we are working
with languages that contain various writing systems and numerous diacritics, we
should make the consistent formatting of the character sequences denoting the
same “abstract” (in Unicode terms) character information. The Unicode nor-
malization forms are used for that.2 The normalization forms are distinct by
two parameters. The first opposition is “canonical VS compatibility equivalence”,
which stand, respectively, for mapping various sequences of characters that de-
note the same abstract character to one representation or unifying the various
visual variants of the same abstract character to one. The canonical normaliza-
tions (NFD, NFC) are mostly lossless and can be seen as one-to-one mappings,
as they only unify the way the abstract characters are denoted; the compatibility
normalizations (NFKD, NFKC) are many-to-one and then can be lossy. For ex-
ample, for a diacritized Czech letter ř, it does not matter whether it is encoded
as a single Unicode character U+0159 or as combination of “r” letter U+0072 and
its diacritic “háček” sign U+02C7 (this is an example of canonical equivalence).
However, the numero sign can be decomposed into general Latin “N” and “o”
characters, but once decomposed, it will not be re-composed into numero sign
back (this is an example of compatibility equivalence).

The other opposition tackles the treatment of the characters that consist of
smaller parts (composites in Unicode terms): we can either consistently represent
them as sequences of these parts (NFD, NFKD), or consistently combine them
into single characters (NFC, NFKC). With an example of the Czech letter ř,
the NFD and NFKD forms will decompose the letter into the “r” letter and
“háček” diacritic, while the NFC and NFKC will unify the sequences of these two
characters into one.

2https://unicode.org/reports/tr15/
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Our data preparation module allows to normalize the text in any of the Uni-
code forms. Since our main interest is to compare the subword creation in different
lossless settings, we will be primarily interested in the second opposition given the
canonical transformation. Moreover, for our experiments, we consistently used
the combining normalization. Thus, the normalization used in our setups was
NFC.

Another parameter of normalization is handling the white spaces. The algo-
rithms at many MT steps are sensitive to various types of white spaces; moreover,
sometimes they distinct between single and multiple white spaces in the sentence.
However, from the human reader’s point of view, we can claim that these differ-
ences do not bear any “linguistic” meaning (or at least negligible compared to the
“no VS single white space” difference). Thus, we decided to map the occurrences
of multiple white spaces to single ones and to map all white space symbols except
for a newline to the default white space.

Noising

Since one of our main aims is improving the subword tokenizers’ robustness to
noise, we included various types of noising of the input text. The first noising
parameter is the casing. We can set the text fully upper-, lower- or title-cased.
We can also set the percentage of the words that will be randomly cased (with
upper-, lower- or title-case).

The second parameter is diacritization. From our experience, the main real-
world noising with respect to diacritization in the Czech language is either full or
partial omission of the diacritization. Thus, our noising system allows to either
completely delete the diacritics from the sentence, or to delete it from a given
percentage of words.

Note that in both types of noising, our system operates on the word level (for
example, the whole word is de-diacritized or upper-cased). We do not infuse the
noise that would tackle particular characters within the word.

Table 2.2 below shows the noising scenarios that we used for our evaluation in
the work, namely, three scenarios of case noising (fully upper- or lower-casing, and
10% of randomly cased words), and of diacritization noising (full de-diacritization
or stripping diacritics off 20% of the randomly chosen words).

2.2 Pre-processing Algorithms
The following section describes the crucial part of the work, the experiments with
pre-processing (and post-processing) of the input texts for the Czech-Ukrainian
MT. We will briefly motivate the ideas of our experiments, explain our proposed
solutions and their variants, and mention similar solutions designed by other
researchers that we compared in our work.

2.2.1 Casing

InCa – Inline Casing Algorithm

As shown in 1.2.1, one of the methods to handle the case variation is the inline
casing. Its default idea is to prepend each word (in some approaches, the full
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ID Type Short Description Language Aligned

none case, di-
acr no noise cs, uk +

upper case upper-case whole sentence cs, uk +
lower case lower-case whole sentence cs, uk +
rand0.1 case random case to 10% words cs, uk -

strip diacr delete diacritics from all
words cs -

strip0.2 diacr delete diacritics from 10%
words cs -

Table 2.2: Data preparation. The symbols mentioned in the “ID” column will
be used to denote the text modifications in the ablation studies. The “Type”
column shows which aspect of noising it refers to (either casing or diacritization);
the “Language” column refers to the languages to which the noising applies; the
“Aligned” column shows whether the operation is applied simultaneously to the
pair of sentences or its application on the Czech and the Ukrainian sentence does
not have to be aligned.

line or a subword) with a specific flag that would denote that this word is upper-
cased or title-cased, and then lower-case the word. This approach, presented in
Etchegoyhen and Gete [2020], solves the problem of inconsistency of subword ex-
traction from the lower-cased and non-lower-cased character sequences. However,
its problem is an increase (possibly significant if it is a long upper-cased sentence)
of the input sequence.

Thus, Popel et al. [2022] suggested a solution that would combine the inline
casing with optimization in terms of input line length, which was named InCa
(from “INline CAsing”). The core idea is to collect the counts of each word in the
training data about how frequently it was met in lower-, upper- and title-case,
and to keep the information about the most frequent version of each word’s casing
in a vocabulary.3

Then, in the inference step, we access the vocabulary with each input word
and check its most frequent casing. If the input word is cased the same way, it
is lower-cased; otherwise it is lower-cased and prepended with a flag showing its
casing. It is easy to notice that in this situation, we will need a third flag for
lower-casing (for the case when the most frequent form is non-lower-cased, and
the input word is in lower case), apart from the title- and upper-case flags. Since
in both Czech and Ukrainian, the first words in the sentences are usually written
with title case, the beginnings of the lines are treated separately: at the training
step, the sentence initial words are lower-cased, thus do not add up to the counts
of the title-cased variants. During the inference, they are checked against the
vocabulary and are prepended with a title-case flag only if this title-case writing
differs from the variant in the trained vocabulary (for instance, there it is upper-
cased). Finally, we should handle the words unseen in the training step. In
the inference step, they are treated in a straightforward way: they are explicitly
marked with upper-case and title-case flags (with the exception of sentence initial

3For the purposes of vocabulary brevity, if the most common form of the word was lower-
cased, it was omitted and treated as unseen.
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position).
The post-processing part of the algorithm is responsible for decoding the text

that contains the flags into the standard orthography. Each word is checked
whether there is an explicit flag before it and, if so, it is used for the word casing.
Otherwise, the algorithm queries the vocabulary, and, if there is an entry of
the word, it returns its most frequent casing form. Otherwise, the word is left
lower-cased.

There are several hyper-parameters of the model. Firstly, to filter out the
infrequent words, we can set the minimal number of word occurrences to be listed
in the vocabulary. Tuning this parameter can help minimizing the generalization
error at the inference step. Secondly, since we “linearize” the information about
the word casing and disentangle it from the typographical words, the position of
the flag (whether it is to the left or to the right of the word) may play role in the
performance of the algorithm, since the sequences of the tokens for the attention
mechanism would differ. In this work, we compared only the left allocation of
the flags. Third, for the sake of encoded length minimization, the initial InCa
implementation featured a specific treatment of the all-uppercased sentences (for
sentences of more than three words): instead of prepending each word with a flag,
the sentence was prepended with a doubled uppercase flag; moreover, the words
from these sentences were not counted in statistics, and thus did not influence the
vocabulary. However, such a solution may decrease the quality of translation on
the all-upper-cased texts as the network may have too few training data for such
sentences. Thus, we can either keep this option on or turn it off for consistency.

The default parameters that are used in standard InCa implementation are
setting minimal counts of cased words to 1 (i.e., taking into account all cased
words seen in the training data), turning on special treatment of all-uppercased
sentences, and left allocation of the casing flags.

Naive InCa

As was mentioned above, the main difference of InCa compared to other inline
casing algorithms is the optimization of flag use by putting it only on unseen
words or infrequent casings of the seen words. The hypothesis that this can help
in the extrinsic MT quality step should be explicitly verified. To do that, we
also applied the naive version of the InCa experiment, which differs from the
main InCa in omitting the pre-trained vocabulary, thus marking each not fully
lower-cased words with a particular flag, without regard to its counts. Logically,
this can be seen as a limiting case of the main InCa, if the minimum number is
put to a very large number that is never reached in the corpus; thus, each word
is treated as unseen in training data. However, for the sake of time saving, the
realization algorithm is not applied for training.

There are two parameters of the naive InCa to be tweaked: the first is the
location of the flag, left or right, and the default value is left (same as in basic
InCa). The second parameter is explicit or implicit handling of the sentence-
initial words – whether we should mark all of them with explicit title-case flag
or we can expect that by default and only mark the non-title-cased words with a
lower-case flag specifically. In our experiments, we used the left allocation of the
flags and explicit handling of the sentence initial words: i.e., every sentence-initial
word was marked with title-case flag, contrary to standard InCa.
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Marian Inline Casing

One of the recent implementations of inline casing algorithms was presented as
a part of the Marian NMT project by Jain et al. [2023]. This approach aims to
optimize the initial ideas of inline casing by Berard et al. [2019] and Etchegoyhen
and Gete [2020], which introduced the flags for upper-, title- and mixed cases
which are space-separated from the words (essentially analogous to the naive
InCa approach). As the Marian authors rightly observed, such an approach
was not optimal in terms of the tokenized sequence length. Their solution is
as follows: first, each non-lowercased character in each word was prepended by
a non-lowercase flag; then, with the finite state machines, the sequences of non-
lowercased characters are grouped into either upper-cased, title-cased or mixed-
case sequences; finally, if an upper-casing pattern spans over 3 words, it is marked
by additional flags at the start and the end of this span.

Contrary to the naive InCa or the earlier approaches, the flags are not nec-
essarily space-separated from the words they are marking. This is done in order
for the SentencePiece algorithm to statistically decide in which words the token
should not be separated (the more frequent sequences) and in which it should.
The motivation behind this is similar to that of the basic InCa, since we are
trying to minimize the explicit use of the flags by taking into account the casing
frequencies of the words. However, it is based on the sequence transformation and
does not require an external dictionary. Such a solution may look more elegant,
but it has a feature that from the logical point of view is disputable: since we
expect the frequent co-occurrences of the flags and (parts of) words to be merged,
this would mean that the character-level representation of a particular frequent
upper- or title-cased token is still not stripped off the casing information; it is just
redistributed to the neighboring character. For instance, if we use the character
T as the title case flag and we have the word “Prague” in the training corpus
mostly title-cased, then after the preprocessing it would look like Tprague, and
after SentencePiece traning this whole string would be assigned to a particular
token ID. However, if we face a lower-cased or upper-cased words “prague” or
“PRAGUE”, they will not be mapped to the “Tprague” token as they are cased
differently; this may only help in cases where the SentencePiece was trained to
separate the flags from the words.

However, such a doubt is based on the theoretical analysis, while the paper in
which the algorithm was presented shows increased robustness of the algorithm
towards noised casing, as well as does not change the encoded length significantly
on the noised data compared to the general text. It is necessary to note, though,
that all algorithms (BPE without preprocessing, classical inline casing and the
proposed algorithms) were showed better performance after using the augmented
training data.

To assess that, we applied the in-built solution of the Marian inline casing
preprocessor on our training data.

TokenMonster

The final approach that is covered within the inline casing is another outsourcing
solution provided by TokenMonster.4 This is a standalone subword tokenization

4https://github.com/alasdairforsythe/tokenmonster
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system which claims to compress the text in an optimal and lossless manner, com-
pared to other tokenizers. The details of its tokenization mechanism compared
to BPE, SentencePiece and other subword tokenizers will be covered in Chapter
2.3; as for now, we should note that the algorithm allows for its own variant of
inline casing (named capcode). Specifically, it introduces the auxiliary symbols
W and C that are responsible for upper-casing the whole word or only the next
character, respectively, while the input text is transformed to lower case. The
approach is similar to the Marian inline casing by the fact that the capcodes
need not be separate tokens and can be combined with other (usually auxiliary)
symbols. The difference is that there are only two capcodes, for upper-casing and
title-casing a single character, contrary to 4 flags in Marian inline casing system.

2.2.2 Diacritization

As described in the theoretical overview, we do not know about any approach that
explicitly handled the diacritics for the tokenization task. However, inspired by
the inline casing approach, we suggest a family of similar algorithms for the inline
diacritization that we correspondingly call InDia (for INline DIAcritization). As
a naming convention, we will call a unique sequence of Latin symbols that can
take on various diacritics a “base”. For example, the diacritized words “kĺıcky”,
“kličky”, and “kĺıčky” all have the same base, “klicky”. 5 The general idea for
all InDia algorithms is to collect statistics about various diacritics of each word
base, encode various diacritizations with specific flags, and put such flags near
the word while stripping off the diacritics from the word.

Leveraging the inline approach to diacritization may have two main extremes.
On the one hand, we can look at the combinations of diacritizations in a word as
at an atomic feature (for this reason, we will call this variant “word-level InDia”
or, shorter, “Word-InDia”). For instance, if we have the base “hrabe” which may
have diacritized forms “hrábě” (meaning rake) and “hrabě” (meaning count as a
noble rank). If we do not pay attention to the number of diacritized characters
in each word or to their characteristics, we can assign the first diacritization
with a flag 1 and the second diacritization with a flag 2, which would become
the flags for these words. Thus, the two words, “hrábě” and “hrabě”, will be
transformed to “1 hrabe” and “2 hrabe”. Such an approach has the advantage

5Contrary to using inline approach to casing, there can be a general objection against it in
diacritization. When we apply inline approach to casing, we are based on the assumption that
all casing variants of a particular word actually denote the same “essential” word (for instance,
in terms of semantics or lexicography), but are just represented differently in various contexts.
However, when we address the diacritizations of the same base, it is obvious from the linguistic
perspective that in many cases we are dealing with various lexemes, as for Czech the diacritized
characters phonologically mean different sounds. For instance, three words, “zebra”, “ žebra”
and “žebrá”, have the same base, but map to three unrelated lemmas: “zebra” (zebra), “žebro”
(a rib) and “žebrat” (to beg). For this reason, the whole idea of separating diacritics from bases
may seem more doubtful. However, we can still provide arguments for such an approach, and
the main reason is that, despite being non-standard, there is wide use of non-diacritized Czech
in the Internet, which shows that in real life the non-related words are mapped to the same
bases. We can also mention that there are corner cases of the inline casing, where the casing
variants distinguish various lexemes, for instance, “US” (as the United States) and “us” as the
indirect form of “we”. However, the number of such lexical ambiguities with casing is orders of
magnitude lower than the diacritization.
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of encoded length, as it maps an arbitrary number of diacritized symbols to a
single sign. Moreover, this approach is easy to be compatible with ordering the
word diacritization by frequency, in a similar way to what was done with casing
(the difference is that here we will have to put all variants of a bare word ordered
by frequency in the vocabulary to keep track of the flags). However, such an
approach has clear weaknesses. The main one is the lack of “semantics” in the
resulting flags: since we only enumerate the diacritizations by frequency without
regard to what these diacritizations are, the flags have no inherent “meaning”
of a particular diacritization marking, contrary to the casing, where each flag
stably denoted a particular orthographic operation. Here, in contrast, the flags
1 or 3 mean different operations for different words, thus potentially not leading
the MT system to learn about the distributional properties of the embeddings
of flags. Another problem with this approach to inline diacritization is handling
the unseen diacritization: while for InCa unseen casing is explicitly marked with
the same flags, here, we either have to keep the vocabulary updated even at the
inference step, or leave the unseen diacritized words untouched as we have no
explicit ID on how to transform them.

Another approach starts from the lower level of granularity: we can apply
the flags to the diacritization operations on separate characters (we will call that
“character-level InDia” or, shorter, “Char-InDia”). For example of “hrábě” and
“hrabě”, we can decide that a flag denotes the particular diacritizing of a letter;
for instance, marking letter “a” with acute (in Czech – čárka) will be denoted
with a flag 1, and marking letter “e” with caron (Czech – háček) is 3. Thus, the
word “hrábě” will be transformed as “13 hrabe”, while “hrabě” will be transformed
to “3 hrabe”. This approach brings back “semantics” to the flags, since each flag
starts to denote the same orthographical effect throughout the whole text; it also
solves the problem of unseen words for the same reason.

However, this comes at the cost of variable length of the flags for each word
depending on the number of diacritized characters in it. Moreover, it is a tricky
task to make a reversible but short transformation of a diacritized word into flags
because if there are multiple characters that can take on the same diacritics sign
and not all of them are diacritized with it, it is hard to associate the flag with
a particular position without explicitly mentioning the location of the diacritic
in the initial word. For instance, the base “radi” can be diacritized as “rádi”
(meaning “happy [Plural, animate]”) and “rad́ı” (“[she/he] gives advice”), which
both use the same “háček” diacritic but on different vowels. So, if a flag means
putting “háček”, it will not be clear which exact word was encoded with it. This
can be solved by introducing different flags for putting “háček” on “a” and on “i”
letters; but this will become problematic for words that have the same letters
that are possibly diacritized, such as “pit́ı” (“a drink”).

We see that both approaches have complications that we can formulate with
an inverse proportion: the more semantically interpretable flags, the less optimal
in terms of space. Still, we may try to make the partial workarounds for both
ways, that we will introduce below.

Before we get into detail with the description of InDia variants, we should
note that in the Czech-Ukrainian language pair, Czech is more heavily diacritized,
while in Ukrainian there are only two letters, ї and й, that use diacritics. For
this reason, most of the discussion on diacritics handling will be referred to Czech
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side only (and will be applied only to the Czech data unless specifically noticed).

Word-InDia

As mentioned, this variation of InDia is the closest to InCa. It is organized
as follows. In the training step, we retrieve the base of each word and make
dictionaries of counts of all possible diacritizations of a particular base. Then, for
each base, we sort the diacritizations by frequency and assign each diacritization
with a flag.6 We store all ordered variants of a particular base in the vocabulary,
as, contrary to InCa, we cannot unambiguously retrieve the diacritization of a
particular flag by itself, without an explicit mapping.

Then, at the encoding step, each word is checked against the pre-trained
vocabulary. In case a particular diacritization of a base (or a base itself) is not
found, in the default implementation the word is kept intact. Otherwise, each
word is transformed into its base and a flag according to the vocabulary. The flags
are always prepended to the word with the only exception: if the diacritization
variant is the most frequent one, it is not explicitly marked with a flag. At the
decoding step, if we see a flag with a subsequent (base) word, we look up the
vocabulary and diacritize the base according to the flag. Otherwise, if a word is
not preceded by a flag explicitly, we return the most frequent diacritization of
the base from the vocabulary.

As was said, this version of InDia has problems of lack of flags’ interpretability:
for different bases, the same flag may mean different diacritizations. We attempt
to partially solve it by allocating at least one specific flag with “stable” meaning:
the one that denotes zero diacritics over the word.7 The overall pipeline does not
change, with only exception that now, the same flag is consistently assigned to
non-diacritized forms in the vocabulary and the encoded data.

What are the parameters of the Word-InDia implementation? Firstly, we
can make an implementation of InDia similar to the naive InCa, namely, order
all diacritizations for each base, but mark the default one as the base form.
This surely will not be optimal in terms of the length of preprocessed sequence;
however, this may lead to some useful generalization. Thirdly, as with InCa, we
can put the flags to the right and to the left of each word. Finally, we can treat
the unseen diacritics with the seen base differently: the most straightforward way
is to leave them as they are; however, for the sake of generalization (which comes
at the cost of loss of reversibility), we can strip off the diacritics and assign the
word with a specific flag with semantics of “unseen” diacritics. Another solution
would be to dynamically increment the vocabulary at the inference step, being
able to create new flags as we see the previously unseen diacritizations. However,
this is tricky in terms of the real-world implementation, thus we did not try this
scenario.

The default values of the above mentioned parameters are: ordering diacriti-
zations from the most frequent one (not in the naive manner), allocation of the

6We use the circled digits in range 1-20, UTF range U+2460 – U+2473, in the descending
order; however, the most frequent form is marked by the circled digit 0, U+24EA

7As a technical note, for the “equal to base” flag we use a specific flag – negative-circled
zero sign, U+278A. However, this choice is made solely for the readability and otherwise any
rounded number from the scope described above could be chosen.
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flag to the right of the word, and no specific treating of the unseen diacritizations
(leaving them untouched).

Char-InDia

A different approach to inline diacritization is based on perceiving characters as
atomic units. We can map each diacritization operation to a particular flag, and,
armed with that, de-diacritize the word and prepend the base with a sequence of
the respective flags. Since the scope of our diacritization experiments is narrowed
to a single language, the easiest variant of this approach will be to naively assign
each occurrence of each diacritized words with the whole set of its diacritization
flags. For instance, three words “zebra”, “žebra” and “žebrá”, given the operation
flags 1 for putting háček and 2 for putting čárka, would be transformed to “ze-
bra”, “1 zebra” and “12 zebra”, correspondingly. Since háček can be theoretically
put on the “r” character, and čárka – on “e” character, such a mapping is too
ambiguous. This can be solved in one of the two ways. Firstly, we can make
a more granular mapping of flags by assigning each flag to each diacritic+letter
combination. Thus, for háček transformation of the letter “z” there would be one
flag and for “r” – another. This would narrow the ambiguity space but would not
reduce it to zero, as we can imagine the cases with multiple occurrences of the
same letter in one word. Another way is to specify the character position on which
the diacritization took place. This can be done, on the one hand, by creating a
sequence of flags equal to the length of the base, where each flag would corre-
spond to a character (we will call that “linear” format). For instance, with word
“žebrá” the annotation will be “10002 zebra”, with the 0 flag meaning there is no
diacritization on this character. On the other hand, we can create position-flag
pairs for each diacritization. For example, the word “žebrá” will be transformed
to “1:1;5:2 zebra” showing that the flag 1 should be at position 1 and the flag 2
at position 5. This format can be called “key-value”.

Both formats have obvious drawbacks. Firstly, contrary to inline casing that
generates a restricted set of flags with no combinations of them, here we should
expect a combinatorial explosion in either of the formats, since the positions and
the number of the diacritics would vary significantly across the corpus. Thus,
while generalizing the bases, we will produce too many unique flag combinations.
Speaking of each specific format, the “linear” format may guarantee more explicit
diacritization patterns that can end up grouping into subwords. We can expect
this due to regular morphemes and their combinations, such as the suffix of a verb
nominalization -áńı in the words like létáńı (flying) or vzděláváńı (education).
However, this format comes at the cost of doubling the pre-processed text length
(in characters). The other, “key-value” format, should be significantly shorter as
it would only point at the indices of the diacritized characters; however, it will
lose the ability to generalize the subwords from multiple flags, as the absolute
positions of the same morpheme or other diacritization pattern may differ.

Given all these problems, how justified is any attempt to implement any of
the proposed word-InDia algorithms? To estimate that, we can look at the distri-
butions of the frequencies of words in the training data according to their lengths,
as well as the number of diacritized characters per word for each word length.
The resulting statistics are shown in Figure 2.1.

The graph first shows that most of the words in the training data are not
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Figure 2.1: Average number of diacritized characters for each word length, cal-
culated on the T8M training dataset (only Czech side). The x-axis represents
the word length in characters (only subset of 1 to 25 characters is taken since it
covers the majority of the words). The left y-axis shows the average number of
diacritized characters for each word length; the two lines are showing the values
(red is computed on unique word types, blue is weighted by the frequencies of
each word type). The right y-axis shows the share of the cumulative distribution
function of the words coverage in the dataset; the grey area is showing its values.

longer than 10 characters. Secondly, the average number of diacritized characters
in the word is increasing slowly, roughly proportional to 0.1 of the length of the
word. Although the average diacritized character rate is higher for shorter words,
it is still not larger than 1.5 characters per 10-character word. This leads us to
the suggestion that using the “key-value” format of diacritization flags is more
feasible in terms of string length, since such sequences should be relatively short.

The problem left with “key-value” format is weaker ability to capture the flag
patterns (in case they are multiple). We can approach this by reformatting the
syntax of the flags. Suppose we have n key-value pairs: k1− v1, k2− v2, ...kn− vn,
where ki is a position of a diacritized character and vi is diacritization flag.

We can store the pairs in the format k1k2kn|v1v2vn instead of the more intu-
itive k1v1|k2v2|knvn. Without losing full reversibility, we will group the diacritic
flags on one side of our auxiliary word, which will leave space for generalization
regardless of the absolute positions of the diacritics.

Can we minimize the lengths of the flag sequences even more? A possible
solution can be to leverage the logic of frequency-ordered flags, such as in the
standard InCa. We can store the most frequent diacritizations of each base in the
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pre-trained vocabulary, and mark with the flags only those diacritizations that
are less frequent. This is an intuitive guess, but the statistics that we can collect
from Word-InDia may support this claim. In the dictionary creation step, we sort
the diacritizations of each base by frequency. Now, for each base, we can count
two values: firstly, how distant (i.e. how many additional or different diacritics)
each diacritized variant is from the most frequent form, secondly, how distant it
is from the base (non-diacritized form). Since in the Word-InDia dictionary the
diacritizations are ranked by frequency, we can evaluate the average diacritization
distance of each rank in each of the two scenarios. We can do that with the
Levenshtein distance metric Levenshtein [1966]. The result of this comparison is
shown in the Figure 2.2

Figure 2.2: Average Levenshtein distance of the diacritization variants (ranked
by frequency) for the Czech data. The x-axis represents the Word-InDia diacriti-
zation flags in ascending order. The number represents the frequency rank. On
the right table, the “pivotal” words from which distance is computed is the base,
thus all ranks (including most the most frequent, denoted by “0” flag) are shown.
On the left table, the most frequent version is not presented as it is pivotal point
itself; the negative “X” flag represents the base form in case it is present in the
training data and different from the most frequent one. The y-axis represents the
Levenshtein distance between each rank and the “pivot”, which is averaged over
the whole InDia vocabulary entries.

The table shows that the distribution of the ranked distances compared to the
base has higher peaks and on average is approximately 1.5 characters, while if
we measure the distances from the most frequent diacritization, the distribution
becomes more uniform with an average of around 1.25 characters. This leads us
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to the suggestion that creating the pre-trained vocabulary of the most frequent
diacritizations and marking only the deviations from them would be more optimal
in terms of the encoding flag length.

Interestingly, this approach resonates with the way in which diacritics are
used in a number of languages, especially in consonant-based writing systems.
For instance, in standard registers of Hebrew and Arabic, the vowel diacritics
are not expected to be written regularly, and one is expected to predict which
vowel should stay after each consonant. However, if a writer thinks that a word’s
vocalization would be “unexpected” in the context (usually it happens with foreign
proper names or ambiguous words), one can mark a full word with diacritics.
Moreover, if only one syllable is opaque and other vowels meet the expectations
of a reader, one can put a vocalization diacritic only on the position “under
question”, which is essentially our supposed way of diacritics of only the characters
“diverging” from the most common diacritization.

The parameters that we can specify with this algorithm are, firstly, the left
or right allocation of the flags. Secondly, we can choose the default (non-flagged)
values to the base forms (this will be called the naive approach) or to the most
frequent diacritizations of each base. The parameters that we used in the default
implementation are left allocation of the flags, most frequent diacritization as the
default form for marking divergent diacritics.

2.2.3 Romanization

Both languages in question, Czech and Ukrainian, belong to the same Slavic
language family. Although they belong to different branches within it (West
Slavic and East Slavic, respectively), the influence of the West Slavic languages on
Ukrainian, especially Polish, has been intensive throughout the centuries. Thus,
we can expect that in spoken mode of languages, the lexical overlap between the
two languages should be substantial. This may help a lot at the tokenization
level, as the joint vocabulary trained on both languages can have a substantial
number of tokens used by both languages, not only by one of the two.

However, there is a significant obstacle on the way to that: Czech uses the
Latin alphabet, and Ukrainian uses Cyrillics. Thus, despite many words being the
same on the phonetical and phonological level (for instance, Ukrainian “слово”
and Czech “slovo” meaning “word” are pronounced in the same way as [slovo]),
or at least differing only in one or several sounds (such as “урода” and “úroda”
meaning “harvest” with the only difference in vowel length), the overlap of the
orthographical words would equal to zero just because of various character sets.

The logical solution is to map one of the languages to the writing system of
another one. In our case, it would be the romanization of Ukrainian. There
have been various standard or widespread approaches to romanizing Ukrainian
texts throughout history and today. For instance, in the XIX century there
were competing versions of the Ukrainian romanization, for example, by Josef
Jireček, which was similar to Czech by using diacritization signs, or by Josyp
Lozynski, which was sticking to Polish orthography in terms of using digraphs.
Such systems did not provide a simple one-to-one Cyrillic-to-Latin mapping, but
also suggested various framings of the Ukrainian orthography rules; thus, such
approaches are not perfect for our technical transformation of the Ukrainian to the
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Latin base as an intermediate preprocessing step. Currently, there are latinization
approaches to Ukrainian, such as the national standard approved in 2010 by the
Ukrainian Cabinet of Ministers, as well as the more recent standards such as
DSTU 9112:2021. Some of such standards even have packages for automatic
romanization and deromanization texts.8 However, all these standards have at
least one of the two problems: firstly, they may suffer from the non-reversibility
(for instance, in the 2010 national standard both letter and “йе” combination
may be mapped to “ie”). Secondly, Ukrainian phonemes that overlap with Czech
may be encoded differently from Czech (for example, Ukrainian letter “г” in the
DSTU standard is substituted either by a “g” with breve or by “gh” symbols,
while in Czech the same phoneme is denoted by “h”). If we used that, we could
have significantly decreased the overlapping vocabulary even within the scope of
the Latin script, despite our main task being to increase it as much as possible.

Bearing these two factors in mind, we decided to use the romanization cre-
ated by Martin Popel for the WMT-22 Czech-Ukrainian shared task Popel et al.
[2022]. It was used within one of the ablation experiments but did not show any
significant improvement and thus was not covered in detail. The main principle
of this algorithm is based on, firstly, full reversibility, secondly, biggest character
overlap of the romanized Ukrainian and Czech texts. For most of the charac-
ters, it works as a form of one-to-one mapping of a Ukrainian character to its
Czech correspondent. The main difference lies in the scope of treatment of soft
(or palatalized) consonants. According to Ukrainian orthography, the informa-
tion about consonant softening is contained not in the consonant itself but in its
right context, either in the iotized vowel or on the special letter “soft sign”, which
“softens” the preceding character. In contrast to that, in most cases for Czech,
the palatalization is marked on the palatalized consonant itself. For example, the
palatalized consonant [rj] in the Ukrainian word “рiкa” is encoded in the letter
“i”, which stands after the letter denoting “r” consonant. At the same time, the
analogous palatalized sound of its Czech cognate “řeka” is contained as a diacriti-
zation of the “r” consonant itself. In our algorithm, a set of bigram character rules
is applied in order to relocate the palatalization signs to the consonants where it
is possible, and in other cases to insert the Czech letter “j” denoting the iotation.9

The initial romanization algorithm left one character of the Ukrainian alpha-
bet that does not have a correspondence in Czech untouched – it is the soft sign
(ь). In Ukrainian, it is used for the palatalization of the previous consonant and
as a part of the iotized sound “o” (resulting in the digraph “ьо”). Where pos-
sible, this sign’s information was redirected to the palatalized Latin consonant;
however, for non-dental consonants it is not possible within the Czech orthog-
raphy. In such cases, the soft sign was used as is in the romanized version of
the text. It appeared to be a problem for tokenization, as the default implemen-
tation of the SentencePiece tokenizer splits all occurrences of different Unicode
scripts, thus it would consistently dissect all occurrences of the soft sign within a
word (a detailed discussion on this can be found in 2.3 and in 3.1.1 with a rela-

8For instance, 13 romanization standards implementation: https://github.com/
dchaplinsky/translit-ua.

9Another detail, handling the Latin sequences which are already present in the Ukrainian, is
handled by marking the spans within which the characters are left untouched after the backward
cyrillization.
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ID Type Short Descrip-
tion Params and Variants

base casing,
diacr no preprocessing

inca casing InCa algorithm m - min count, n - naive, +a - incl.
all-caps in statistics

tkm casing tokenmonster
capcodes

marian casing marian inline
casing

india diacr InDia algorithm type - char or word, n - naive,
scope - cs or all

roman casing,
diacr romanization +soft - encode soft sign as Latin

Table 2.3: Overview of the pre-processing algorithms. The names in the “ID” col-
umn and the parameter labels in the “Params and Variants” column will be con-
sistently used hereinafter to refer to the experiment configurations. The “Type”
column describes whether this preprocessing is applied for the casing or diacriti-
zation experiments.

tion to another problem, apostrophe sign). Thus, we created a modified version
of the romanization, where we used a symbol that belongs to the Latin script
part of the Unicode table, so that splitting by the soft sign is not enforced. We
compare both romanization methods in combination with the standard InCa and
char-InDia no-prep-rocessing approaches.

2.3 Tokenizer Algorithms
We are using two tokenizer algorithms in our research, which will be described in
detail below. For the sake of consistency, in all setups we train a joint subword
vocabulary on T8M data, and the size of the vocabulary is 32000 tokens.

2.3.1 SentencePiece

The main tokenization algorithm used in the work is the implementation of the
Unigram LM in SentencePiece, presented in Kudo and Richardson [2018].10 It
has been one of the dominant solutions for subword tokenization in recent years,
together with BPE Sennrich et al. [2016] and algorithms based on WordPiece
Schuster and Nakajima [2012], such as tokenization in BERT Devlin et al. [2019].
The main difference between BPE and WordPiece, on one hand, and Unigram
LM, on the other, is that the formers are the bottom-up algorithms that start
with single characters and gradually merge either the most co-occurring pairs of
the subwords (as in BPE) or such pairs that maximize the n-gram LM probability
of the segmented text (as in WordPiece). SentencePiece, on the other hand, is a

10The implementation is the fork of the main sentencepice library in the Marian repository:
https://github.com/marian-nmt/sentencepiece.
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top-down algorithm that starts with creating a large dictionary of the frequent
words and common substrings, and then, with the help of the EM algorithm,
filters out the subword candidates that maximize the loss of the unigram LM
for this corpus. When the pool of subword candidates is reduced to the desired
number, the training stops.

Why is SentencePiece chosen as the main tokenizer in our work and why is
it popular, in general? The Unigram LM approach is a solution to an impor-
tant vulnerability of the greedy subword algorithms such as BPE, as usually the
same word can be tokenized into various subword combinations, and the greedy
algorithms such as BPE do not take into account the probability of the resulting
subword sequence. There were several solutions to improving the robustness of
BPE toward ambiguous sub-word splitting, for example, Provilkov et al. [2020],
however, it seems not to have become a popular solution compared to basic BPE
or Unigram LMs. As for the statistically-based WordPiece, contrary to that
solution, SentencePiece’s implementation of the top-down approach has a less
complex architecture, since it only takes into account the 1-gram level language
models. 11

The SentencePiece implementation of Unigram LM is a full-fledged package
accessible in various programming languages that provides a wide range of train-
ing and encoding parameters that a user can specify. Some of these parameters
are important for our research. Firstly, it is input_sentence_size parameter that
is responsible for taking the subset of the input data to train the tokenizer; in
all our experiments, this parameter is equal to the total of all sentences in Czech
and Ukrainian T8M data12. The only exception is the augmentation scenario,
where the value of our parameter is the same, while the size of the training data
is increased by 4, thus, only a quarter of the augmented training sentences is used
for training the tokenizer.

The second group of parameters tackles a distinguishing feature of Senten-
cePiece implementation (of both its Unigram LM and BPE): it encodes the
white spaces as specific symbols, since this allows the tokenizer to distinguish
between word-internal and word-boundary character sequences. Such a distinc-
tion was perceived efficient in the earlier literature (for instance, in Macháček
et al. [2018] for specifically the task of NMT) and is now a widely-used practice.
It is worth noting that recent research for the encoder-only models in non-NLG
tasks (such as NER or classification) shows that at least WordPiece subword
vocabularies do not lose in performance if the information about the spaces is
fully omitted; moreover, the tokenization of multimorphemic words becomes more

11It is worth noting, however, that the latest research Beinborn and Pinter [2023] on compar-
ison of the human cognitive plausibility of subword segmentation shows that human judgement
on plausible word segmentation correlates more with bottom-up approaches such as WordPiece
and BPE. This is an important note in the perspective of general interpretability of the subword
segmentation and NLP solutions; however, we leave these arguments beyond the scope of our
work since we are aiming at the robustness and the MT system performance of the tokenizers
and preprocessing algorithms.

12Unfortunately, even the explicit specification of the number of training lines does not guar-
antee leveraging all data in training, since it is computationally costly. Because of that, the
algorithm subsamples approximately 5M sentences from a large training dataset (which are
in our case approximately 16M sentences). However, the sentence sampling algorithm seems
deterministic or controlled by seed, since rerunning the training on the same datasets leads to
the same subword vocabularies.
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aligned with morphology. Still, such findings are restricted by both the scope of
tasks, languages, and tokenizer architecture, so we adhere to the common prac-
tice of marking the whitespaces of specific affixes to the words. The parameter
treat_whitespace_as_suffix is responsible for choosing whether the whitespace
affix should be before or after the word; the default value of the parameter is false
and the spaces are treated as prefixes. For most of the experiments, we follow
the default value of prefix marking of the white spaces; the only exception is ex-
perimental setup with Marian’s SentencePiece inline casing algorithm described
in 2.2.1.

The two other parameters are related to the restrictions of the subword search
space. The parameter split_by_whitespace defines whether we restrict the sub-
words to go beyond the word boundaries (which are defined by white space, begin-
ning and ending of the lines, and non-alphanumeric sequences). If the parameter
is set to False, the subwords can span over multiple words. We set the parame-
ter to True, the default value (contrary to TokenMonster algorithm that will be
described thereafter in 2.3.2). Another parameter, split_by_unicode_script, de-
fines whether a subword can contain the characters of the different script classes
from the Unicode systems (for our work the important classes are Latin includ-
ing numerals and punctuation, Cyrillic, “Code for undetermined script” which
includes punctuation and diacritization, and Vai syllabary which is used for InCa
and InDia flags). The default value of this parameter is True, thus the characters
of different scripts are not to be placed together. However, when we go beyond
the scope of the “Standard Average European” Latin-based languages, we will see
that clustering of Unicode symbols into scripts becomes less intuitive and some-
times completely unexpected. One of such examples, the Ukrainian apostrophe,
will be covered in detail in Section 3.1.1; In this section, we tried to analyze
whether disabling the unicode splitting parameter brings more advantages or dis-
advantages in tokenization. With the exception of the experiments in apostrophe
normalization, for all other experiments, we used the default value of splitting
the characters by Unicode scripts.

The next parameters tackle handling of the characters that we plan to use
as flags. The user_defined_symbols parameter lets the user define symbols that
would be treated as a separate subword in any context. We do not use these
parameters by default since our preprocessing algorithms already ensure that
the flags are separated from the alphanumeric sequences. The only exception
is one of the ablation experiments 4.2.2, where we compare the performance of
the MT system with the standard InCa with and without specifying the flags for
SentencePiece.

Another parameter which is important for flag handling is required_chars.
The SentencePiece training process starts with defining “alphabet”, a set of Uni-
code characters from which any subword in the vocabulary would consist. Since
the training corpus may have single or very rare occurrences of some characters,
the required character coverage is set to 99.95% of the characters seen in the
training dataset that were observed most frequently (this is a default value of a
character_coverage parameter which is also adjustable). However, on top of that,
we can manually add characters that we will require to be included into subwords
disregarding how rare they are seen: this is a task of the required_chars parame-
ter, and we had to use it in the InDia experiments, since our flags were by default
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neglected by the SentencePiece trainer. Finally, normalization_rule_name pa-
rameter is responsible for UTF normalization before training and inference of the
tokenizer. It only allows for 2 options: NFKC normalization (as the default value)
and “identity”, i.e. preserving the current format. For most of the cases, NFKC
normalization is permissible for our tasks as the general alphanumeric sequences
in our data do not change under this process. However, the flags that we are
using for InDia are vulnerable to that, thus we use “identity” normalization for
InDia experiments and NFKC normalization otherwise.

2.3.2 TokenMonster

TokenMonster is a new tokenizer whose stated objective is to optimize the en-
doded token lengths and the encoding time at the inference stage. Not only the
algorithm, but also a number of pre-trained models are available online at its
Github repository13, as well as a web interface showing comparison between the
state-of-the-art tokenizers used by LLMs and this system. The creator shows
that with TokenMonster, “text can be represented with 37.5% fewer tokens at
the same vocabulary size compared to other modern tokenizing methods”, which
means the solutions such as GPT-2 tokenizer or Tiktokenizer14 that are used
in OpenAI models. The author also states that, compared to these algorithms,
“vocabulary size can be reduced by 75% or more”.

Unfortunately, there is no available publication or detailed documentation of
the TokenMonster; we can judge about the method based on the description in
the Github repository. According to it, the concept of TokenMonster is similar
to top-down n-gram language model approaches such as the one presented in
SentencePiece, although the author does not mention this term and calls his
approach “distillation”. Firstly, the algorithm generates all possible tokens based
on the corpus and deletes such tokens that occur in the corpus less than threshold
times. Then, multiple vocabularies of the pre-set vocabulary size are randomly
sampled. Each vocabulary tokenizes the text, and 1% of the “worst scoring”
tokens is deleted (the scoring technique is not explicitly provided). Then, when
the vocabulary size is significantly reduced, the previously deleted tokens are
resurrected, and the process is repeated multiple times. The iterative process
stops when there is no improvement in tokenization quality after 1000 iterations.

An important parameter in the training process is an “optimization mode”,
which defines how strict the requirements are to allow a sequence to be a to-
ken. There are five optimization modes ordered by strictness, and the author
announces that the strictness of the modes correlates negatively with the average
length of the tokens in the text. Since the tokeniser is planned not only for natural
language applications but also for code and for bioniformatics, some modes are
advised only for non-NLP use. Bearing that in mind, the recommended modes
for the usage in NLP task are two strictest modes – “consistent” (second strictest)
and “strict” (the strictest). The “strict” mode enforces encoding the alphanumeric
sequences in the same way as much as possible (from the example on the website,
the sequences “however”, “However” and “However!” will be represented using the
same “however” token with the specific tokens for casing and punctuation where

13https://github.com/alasdairforsythe/tokenmonster
14https://github.com/dqbd/tiktokenizer

38

https://github.com/alasdairforsythe/tokenmonster
https://github.com/dqbd/tiktokenizer


necessary). The “consistent” mode allows more variation in this respect but still
limits the delimiters and other sequences for a bigger consistency of the word and
multiword expression collocations’ representation.

From what we can see, the difference between the SentencePiece implemen-
tation of the Unigram LM tokenizer and TokenMonster is the way the subword
filtering process is organized. While in SentencePiece, only one vocabulary is
generated and then the words with the smallest loss are iteratively filtered, To-
kenMonster first parallelizes the vocabularies sampling, and secondly iteratively
returns the previously filtered-out tokens. The latter feature allows the author
to call the algorithm “non-greedy” and to point it as a positive distinction from
BPE; although this is true, the WordPiece and SentencePiece approaches, which
can hardly be called greedy because of their probabilistic nature, are not men-
tioned and compared on the website. Finally, there is no specification of the loss
function that is used to define the “worst” tokens; it may also differ from the LM
likelihood in the SentencePiece approach. Unfortunately, we cannot comment on
these differences in a detailed manner because of the lack of documentation.

There are several parameters of the tokenizer that a user can regulate before
training. Some of them were crucial for our task. Firstly, it is choosing the opti-
mization mode described above. For our experiments, we followed the advice of
the author and performed two experiments – one with the “strict” mode and an-
other with “consistent” mode. They showed similar results; therefore, hereinafter
we will only refer to the “strict” version of TokenMonster. Secondly, TokenMon-
ster allows us to choose whether we want to use the “capcodes” (the auxiliary
tokens are used in the same way as the InCa flags, described in detail in Section
2.2.1). In both experiments, we use this option and use such capcodes. Third, the
“norm” parameter allows normalization of the input data. The default approach
is NFD Unicode normalization; however, since it is different from our basic NFC
approach, we disable this function and leave the data as intact as possible (it
is not possible to choose zero normalization, thus we use the “unixlines” value
which is supposed to change the Microsoft newline combinations to UNIX ones,
which we preliminarily do for all experiments). It is necessary to note that all
these parameters are applied for the first step of the algorithm training – possible
token extraction; all parameters for the iterative training process are left default,
except for specifying the resulting vocabulary size, which is 32,000.

It is important to remember that TokenMonster by default takes into account
the tokens that span over multiple words. This is obviously one of the features
that allows it to increase the character per token ratio and decrease the encoded
lengths, as many frequent multi-word expressions in a natural language can be
mapped to a single token. What makes it different from most of the other tok-
enizer systems is that TokenMonster does not allow disabling this function. We
must bear this in mind when comparing the intrinsic metrics of TokenMonster
with those of SentencePiece.
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2.4 Evaluation

2.4.1 Extrinsic Evaluation

Since our focus is machine translation, we used three metrics specific for the MT
performance evaluation that are being widely used in the community throughout
the last few years. Two of them, BLEU Papineni et al. [2001] and Popović
[2015], are surface-based, reference-based and n-gram based (see classification of
these parameters in 1.3.1). The third metric, COMET Rei et al. [2020], is a
neural, semantics-based and source+reference-based metric. These metrics will
be presented in more detail below, and Table 2.4 will provide the abbreviations
that will be used in the experiments and discussion chapters.

BLEU and Its Lower-Cased Version

The principle of the BLEU metric is to compute the number of n-gram overlaps
between the system output and the reference translation(s). This is done by com-
puting the weighted average of the n-gram count matches for various n (usually
1 to 4). Since a naive ratio of correctly translated n-grams over all generated
n-grams can be abused in several ways: either by generating as many various
tokens as possible so that recall is inflated; or by guessing a minimum subset of
words and stopping in order not to increase the denominator. To handle such
tricks, two features are introduced. The modified n-gram precision takes into
account how frequent a particular candidate n-gram was met in a particular ref-
erence; and brevity penalty is used to encourage the system to not output the
sequences which are substantially shorter than reference (based on average ratio
of the system output to reference sentences). The final metric is formalized in
the following formula:

BLEU = BP × exp

(︄
N∑︂

n=1

wn log pn

)︄
(2.1)

where:

• BP is the brevity penalty, counted as

BP =

{︄
1 if c > r

e(1−r/c) if c ≤ r

where:

c = length of candidate translation
r = length of reference translation

• N is the maximum n-gram order considered,

• pn is the modified precision for n-grams, counted as

pn =

∑︁
C∈{Candidates}

∑︁
n-gram∈C Countclip(n-gram)∑︁

C′∈{Candidates}
∑︁

n-gram′∈C′ Count(n-gram′)
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, where:

Countclip(n-gram) = Count of n-gram clipped by the maximum reference count
Count(n-gram0) = Count of n-gram in the candidate translation

• wn is the weight for n-grams.

Since its emergence, BLEU has been heavily criticized for its lack of repro-
ducibility. Some of the factors impeding reproducibility are inseparable from the
metric, for instance, its dependence on the choice, quality, and number of ref-
erences. However, there are many technical factors that significantly influence
the metric. Firstly, there are parameters within the metric such as maximum
n-gram order or the way the maximum reference count is defined; secondly, the
metric heavily depends on pre-tokenization procedures or other normalization of
the texts, such as case folding. All these parameters can be controlled, and in
2018, the SacreBLEU package Post [2018] was published for these purposes. It
allows for a more interpretable and reproducible BLEU (and a number of other
surface-based) scores by allowing to define the parameters for the metric compu-
tation and text normalization. All defined (and default) parameters are output
together with the metric value as a “signature” at each run of the evaluation.

We use this package for our extrinsic evaluation, with all BLEU parameters
(such as no pre-tokenization and smoothing values) equal to the default values.
The only parameter that we tweak is case: whether the reference and hypothesis
are compared intact with respect to casing or are lower-cased. We computed two
versions of the BLEU metric. The one with the casing being intact (mixed value),
which we will refer to as BLEU, and another with the lower-cased documents
(lc value), which hereafter will be called lc(BLEU).

chrF and Its Lower-Cased Version

One of the disadvantages of the BLEU score is its dependency on pre-tokenization,
as well as on its insensitivity to the cognates or similar forms of words. Although
it is almost an inseparable problem of the surface-based metrics (with the ex-
ception of the thesaurus-enhanced metrics such as METEOR), we can reduce
this insensitivity by going from the word level to the character level. Of various
character-based n-gram metrics for MT, one of the most popular is chrF, the
character-based n-gram F score proposed in Popović [2015]. It is formulated as
follows:

chrFβ =
(1 + β2) × Precision × Recall

β2 × Precision + Recall
(2.2)

where:

• Precision is percentage of n-grams in the hypothesis which have a counter-
part in the reference;

• Recall is percentage of character n-grams in the reference which are also
present in the hypothesis;

• β is a parameter which assigns β times more importance to recall than to
precision.
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As we can see, this approach has a more straightforward way of handling the
precision-recall balance compared to BLEU. The approach also has significantly
less parameters of uncertainty; however, there are still factors such as beta and the
length of the character n-grams that can be explicitly specified for a parametric
evaluation.

SacreBLEU package allows for running the controlled version of chrF as well.
We used this metric in two variants in our experiments by fixing all parameters
to the default. The only exception is the case parameter. Similarly as in BLEU,
we apply two variants of the metrics – with matching the casing (mixed value)
and after lowercasing the hypothesis and the reference (lc value). In the first
case, we refer to the metric as chrF, in the second case as lc(chrF)

COMET

The last extrinsic metric Rei et al. [2020] used in our work differs significantly
from BLEU and chrF, since, firstly, it is neural and, secondly, it takes into ac-
count both the source and the reference text. The model is based on the com-
bination of the Transformer networks: an Estimator and a Translation Ranking
model. The Estimator model takes on the hypothesis, source and reference sen-
tence, passes it through a pretrained cross-lingual encoder, creates four features
(element-wise source-by-hypothesis and reference-by-hypothesis products, abso-
lute element-wise source-hypothesis and reference-hypothesis differences), con-
catenates these features, and passes them to a regressor, which is trained by
minimizing the mean squared error. The task of this module is to produce the
absolute score for a given translation.

The Translation Ranking model is needed to enforce the distinction between
the hypotheses of different qualities given the same source and reference. It takes
as input four segments: source and reference “anchors” and two hypotheses, one
of which is known to be better than the other. Each of the four segments is
passed through the pre-trained encoder network and the pooling layer, and then
the triplet margin loss introduced by Schroff et al. [2015] is applied. The triplet
margin loss is the sum of two losses:

L(s, h+, h−) = max (0, d(s, h+) − d(s, h−) + ϵ)
(2.3)

L(r, h+, h−) = max (0, d(r, h+) − d(r, h−) + ϵ)
(2.4)

where:

• s and r are the “anchors” – source and reference sentence embeddings, re-
spectively
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• h+ is a better and h− is a worse translation candidate sentence embeddings

• d(x, y) represents the distance between two embeddings x and y.

• ϵ is the margin parameter.

In other words, during training, the embeddings are trained in such a way
that the distances between the worse translation and the “anchors” are at least
by a margin bigger than the distances between the better translation and the
“anchors”.

During inference, since only one hypothesis sentence is provided at each time,
the harmonic mean is computed:

f(s, ĥ, r) =
2 × d(r, ĥ) × d(s, ĥ)

d(r, ĥ) + d(s, ĥ)

(2.5)

where:

• d(s, ĥ) is a distance between the source and hypothesis sentence embed-
dings.

• d(r, ĥ) is a distance between the reference and hypothesis sentence embed-
dings.

In order to bound the score between 0 and 1, the following normalization is
applied:

f̂(s, ĥ, r) =
1

1 + f(s, ĥ, r)
(2.6)

In our work, we are using the WMT22-COMET-DA model presented in Rei
et al. [2022] and available at Huggingface15. The architecture of the basic COMET
model is enhanced by the sequence tagging estimator and a QE module. The
resulting system is an ensemble of two models, an ensemble between a COMET
Estimator model trained on top of XLM-R Conneau et al. [2019] using WMT
direct assessment data from 2017 to 2020, and a sequence tagging model trained
on top of InfoXLM Chi et al. [2021]. The range of supported languages (inherited
by XLM-R) comprises more than 100 languages, including Czech and Ukrainian.

The metric is entirely sentence-level; however, it also outputs the average score
for the whole document. We used only the document-level COMET score in our
analysis.

15https://huggingface.co/Unbabel/wmt22-comet-da
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2.4.2 Intrinsic Evaluation

As was pointed out earlier, the analysis of the intrinsic metrics of subword to-
kenization is still an ongoing subfield, and there are numerous attempts to es-
timate the optimality of the tokenized sequences and subword vocabularies. In
1.3.2, we provided the discussion of the crucial aspects of internal evaluation and
tokenization, namely losslessness, sequence length, and token distribution estima-
tion. Given the text normalization described in 2.1, the algorithm construction,
and the language pair of interest, our algorithms are either completely lossless or
have the number of lossy transformations up to several hundred occurrences on
the whole T8M dataset (and no loss on the validation and test sets). Thus, we
are not providing any explicit estimation or comparison of the solutions over this
parameter, assuming that all our systems are lossless16.

Thus, in the following, we will present the metrics that are supposed to es-
timate the sequence length and token distribution estimation. Moreover, since
we are applying various types and combinations of flags in some of our setups,
there will be a specific metric dedicated only to the flag distribution for the ex-
periments where it is applicable. The definitions of metrics and the motivation
for the particular choice of them are partially inspired by the recent research of
Balhar [2023] about the tokenization for the multilingual LLMs.

Characters per Token and Its Variants

This metric aims to estimate the optimality of the encoded text in terms of its
length. The concept of the metric is to evaluate the number of characters in the
initial text that an average token comprises. The mathematical formulation of
the metric is taken from Balhar [2023][p. 27] and is shown below:

CPT (τ, π, C) =

∑︁
s∈C |s|∑︁

s∈C |τ(π(s))|
(2.7)

where:

• τ is a given tokenizer,

• π is the preprocessing function such as InCa or InDia (where applicable, for
no preprocessing scenario π(s) = s),

• C is a given language corpus,

• s is a sentence within the C corpus, |s| is its length in characters and
|τ(π(s))| is the length of the encoded sequence in tokens.

Since we expect a better tokenizer to minimize the space of the encoded
sequence, we say that a better tokenizer should have a higher number of characters
per token ratio. The metric has a lower bound of 1 (the worst case where each
character corresponds to its own token).

Balhar [2023] shows in his analysis that two other frequently used metrics,
average sequence length (i.e. average number of tokens per sentence) and the

16However, for the future research in a more multilingual setting, we should bear this ob-
jective in mind again and possibly create another metric for this aspect of pre-processing and
tokenization.
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word fertility (average number of tokens per word) can be mathematically reduced
to the CPT formula. The two advantages that CPT has is that, firstly, it is
independent from the notion of “word” which is language-specific and problematic
for many non-European languages; secondly, it is easier to interpret due to its
clear lower bound (contrary to the average sequence length).

The metric is applied to tokenized validation and test sets such as flo. In
other words, how long are the tokens that are used at the inference step for a
given file. However, we may also be interested in looking at how long on average
the subword vocabulary items that the tokenizer chose as a result of training;
that is, what is the average length of the token that the tokenizer would expect
at the inference step. Notably, since we are not applying CPT to the training
dataset as we compare the intrinsic and extrinsic metrics on the smaller datasets,
this ratio can give us an indirect estimation on the average plausible length of
the token on the training dataset. Thus, we introduce a metric that, contrary to
the one described above, we will apply to the tokenizer vocabulary, not to the
encoded texts:

CPTv(V ) =

∑︁
t∈V |t|
|V |

(2.8)

where:

• V is a subword vocabulary trained by the tokenizer τ , which is trained
on the (usually preprocessed) training dataset π(Ctraining), and |V | is the
length of the vocabulary in subwords,

• t is a unique subword in the tokenizer vocabulary, and |t| is its length in
characters.

Thus, we will be using the CPT metric as a default metric for our intrinsic
analysis of tokenized texts, and the CPTv metric for analysis of the vocabularies
that are trained on our datasets.

Average Rank

The next metric is, in our classification, related to the token distribution esti-
mation. We are interested in understanding how uniform our distribution is, as
we hypothesize that the more uniform the empirical distribution of tokens, the
more informative each of them (contrary to the distributions that are closer to
a skewed one, where overly frequent tokens would not be informative and overly
rare tokens would be met too sparsely distributed over the text). We can estimate
this distribution by ranking the empirical token distribution in a given text. One
of the easiest metrics proposed for estimating the share of effectively used tokens
is counting the least frequency in the 95th percentile of the most frequent classes,
following Gowda and May [2020]. However, for this metric to be informative, we
need a reasonably large dataset to estimate, as the texts comprising hundreds or
even thousands of sentences will most likely not differentiate the tokenizers as
the count will always be low. This was the case of our dataset; thus we dismissed
this metric.
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Another simple metric that we can take from the ranked distribution of the
tokens in the text is the average rank of the text. It is formally represented in
the formula below:

AR(τ, C) =
∑︂
t∈Vτ

rank(t, τ(C)) · p(t, C) (2.9)

where

• τ is a tokenizer function, and Vτ is its vocabulary,

• C is a given corpus,

• rank(t, τ(C)) is a rank of a token t (position in the list of the unique tokens
met in tokenized corpus C ordered by frequency),

• p(t, C) is a frequency of a given token in the corpus.

In other words, the average rank metric is a weighted average of the tokens
met in the tokenized corpus, where weights are the frequencies of the tokens in the
given corpus. If the distribution is skewed, then it will have a long tail of tokens
with small probabilities; in this case the bigger frequency weights will be skewed
towards the head of the distribution. The more uniform the distribution (or at
least the smaller the tail in favor of the high-frequency tokens), the larger the
weighted average. Thus, we expect that the higher average rank of the tokenized
text would signify the more optimal usage of the tokens, hence a better tokenizer.

Rényi Efficiency

The metrics such as frequency of the 95th percentile token or average rank, de-
spite being transparent and easy to calculate, may not be informative about the
whole token distribution. Recently, a rigorous analysis of tokenization from the
perspective of information theory was performed Zouhar et al. [2023], in order to
create an intrinsic metric that would comprise more information on the tokenized
text. The authors start with the assumption that, contrary to many other NLP
tasks which are usually modeled in terms of the noisy channel, most up-to-date
tokenization algorithms perform the noiseless transformations (i.e., the full round
of tokenization and de-tokenization returns the initial text). Thus, contrary to
the optimization task in the noisy channel where we need to minimize the infor-
mation loss, in the noiseless case, we only care about the efficiency of the channel.
For this efficiency, two parameters are important, the frequency distribution of
the tokens and the length of each token used in the tokenization function. The
efficiency is formulated in terms of entropy and the optimal efficiency is proven
to be bounded by the entropy of the uniform distribution of the tokens with the
same code length. The authors show that the Shannon entropy is not an optimal
entropy model for that task, as it linearly penalizes the long codes, which may
not be an optimal thing in the case of the infrequent tokens. Their solution is to
use the generalized version of the Shennon entropy, namely, Rényi entropy, which
allows us to give flexibility to the preferred expected token length (as we may
expect that for different tasks, different tokens may be preferred).

The final metric is defined as follows:
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EFFα(pΣ∗ , t) =
Lencs∆

(p∆∗)

LencU∆
(p∆∗)

(2.10)

where

• t : Σ∗ → ∆∗ is a tokenization function, which maps texts in alphabet Σ to
sequences of tokens in ∆,

• pΣ∗ is a distribution of the input sequence Σ∗,

• (p∆∗) is the frequency distribution of the tokens given tokeniser function t,

• Lenc∆ is an expected code length:

Lenc∆(p∆) =
∑︂
δ∈∆

p∆(δ) · |enc∆(δ)|

• LencU∆
is an expected code length for a uniform encoded (which assigns the

same lengths for all tokens),

• s = α−1 − 1, where α is an order of the Rényi entropy,

• Lencs∆ is a discounted expected code length for a given s, which allows for
non-linear penalization of the longest tokens.

Since the most informative distribution is the one with the tokens of uniform
lengths (the one in the denominator), it is the upper bound of the observed
distribution. Thus, the scope of the metric is between 0 and 1, and the closer the
score to 1, the more optimal it is believed to be.

The empirical analysis conducted by the authors showed that for the MT
task, the preferred value of alpha equals 2.5; in this case, the Pearson correlation
between Rényi efficiency and BLEU score equals to 0.78.

The authors provided the community with a standalone Python package that
allows us to compute the Rényi efficiency score17. We used this package for the
computations and we used the default alpha parameter (2.5) to estimate the
efficiency of the distribution.

Flag-Related Statistics

Since both our suggested approaches (InCa and InDia) and the competing ap-
proaches such as TokenMonster capcodes or Marian inline casing use flags of cer-
tain types at the preprocessing step, we intend to pay special attention to their
positions in the tokenized texts. However, the principles of the flags’ assignment
and their internal structure differs significantly (only two codes for TokenMon-
ster, up to four codes in InCa and four codes with different semantics in Marian
inline casing, and as for InDia, the flag can consist of the whole sequence of the
symbols), we did not intend to create a formalized metric that would compare the
distributions of the flags in different systems. Thus, where applicable, we focused
on mostly looking at the number of the unique tokens comprising the flags used

17https://github.com/zouharvi/tokenization-scorer
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ID Level Short Description Range
BLEU ext BLEU score 0-100
lc(BLEU) ext lower-cased BLEU 0-100
chrF ext chrF score 0-100
lc(chrF) ext lower-cased chrF 0-100
COMET ext COMET score 0-1
CPT int characters per token 1-∞
CPTv int average token length in vocabulary 1-∞
AR int average rank 1-|V |
EFF int Renyi efficiency 0-1
R(f) int rank of a flag f 1-|V |

C(F), CV (F ) int count of unique flags in preprocessed
text, vocabulary 1-|V |

Table 2.4: Overview of the metrics used in the analysis. The names in the “ID”
column will be consistently used to denote the metrics hereinafter. The “Level”
column shows whether the metrics perform the extrinsic (ext) or intrinsic (int)
evaluation. The column “Range” shows the range of the possible values of the
metrics (|V | stands for the tokenizer vocabulary size). For all metrics except for
flag ranks the higher value means the better performance.

in the tokenized texts, as well as the ranks of these tokens. For uniform notation,
when the discussion is about the ranks of a particular flag, it would be denoted
as R(flag). In case of the counts of all unique flags, either in the observed distri-
bution of the tokenized text, or in the tokenizer vocabulary, it would be denoted
either as C(F ) for the tokenized text and CV (F ) for the vocabulary entries.

2.5 Implementation Details
We use the Marian implementation Junczys-Dowmunt et al. [2018] of the Trans-
former model Vaswani et al. [2017]. Marian is a fast (due to its realization in
C++) implementation of the main NMT architectures, including Transformer,
and it provides the end-to-end training, validation, and inference system for NMT.
We are using the Marian version v1.12.14 which was released in November 2023.
Here are the main hyperparameters of our model’s implementation:

• 9 GB of the preallocated GPU memory;

• transformer-base model size;

• tied embeddings and output layer;

• validation – every 5000 updates;

• validation metrics: cross-entropy and the above-mentioned sacreBLEU im-
plementation of BLEU score;

• mini-batch size (for both training and decoding) equals to 40 sentences;

• beam search with beam size 4 applied (for both training and decoding);
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• attention scores are normalized;

• maximum length of a sentence at the training step – 150 tokens, in a vali-
dating sentence pair – 500 tokens;

• pre-loading 1000 mini-batches to sort lengths within each mini-batch is
enabled;

• training lasts 16 epochs (for data augmentation – 4 epochs X quadrupled
data), where each epoch is defined as single full pass of the training dataset.
The only exception is the data augmentation scenario, where we use the
training dataset of the size of four initial datasets; in this case the training
lasts 4 epochs (yielding the same 16 full passes of the initial dataset size).

• no early stopping is enabled.

All other parameters are set to default, described in the Marian documen-
tation.18 All models were trained with a fixed seed. We could not fix the size
of the tokens in the mini-batch due to the conflicting hyper-parameters and the
implementation details of Marian; thus the number of the tokens in a mini-batch
was defined for each system separately and on average was between 7500 and
8500 tokens.

Marian system allows for both using an in-built SentencePiece tokenizer in-
stance or a text which is tokenized by an external system. In most cases, we were
using the in-built SentencePiece tokenizer, which is Marian’s for of the Sentence-
Piece,19 version 0.1.94. The only exception tackled TokenMonster, as it generates
tokenized text itself. SentencePiece tokenizer parameters are described in 2.3, and
the training lasted 40 to 60 minutes.

All tokenization and MT experiments were run on a GPU cluster with a
single GPU used for one experiment. The NVIDIA RTX 3090 was used for all
experiments, with driver version 525.85.12 and CUDA Version: 12.0. The training
time typically spanned 22 to 25 hours.

18https://marian-nmt.github.io/docs/cmd/marian/
19Available at: https://github.com/marian-nmt/sentencepiece
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3. Issues in Stabilization and
Normalization

3.1 Data Normalization: Apostrophes and Incon-
sistent Casing

The method of the data normalization that was used for the creation of the train-
ing data (Popel et al. [2022]) did not include several features that are important
for our research. One of these features is specific to Ukrainian language, while
another tackles the general problem of Latin- or Cyrillic-based languages.

3.1.1 Inconsistencies with Apostrophes in Ukrainian data

The first problem covers treating apostrophe symbol in Ukrainian. The Ukrainian
orthography includes an apostrophe sign which is mandatory in writing. It usu-
ally has phonetic meaning in context with iotated vowel characters such as я
or ї, negating the palatalization of preceding vowel and releasing the [j] sound
(compare: a syllable бя is pronounced as [bja] without apostrophe, whereas б’я
is pronounced as [bja]).

The character was included in one of the first versions of Unicode (version 1.1,
June 1993) under the name of “MODIFIER LETTER APOSTROPHE” and the
code U+02BC, and was assigned to the category of modifier letters. However, the
user experience of many Ukrainian speakers changed the seemingly straightfor-
ward situation for character usage. For instance, the Ukrainian language support
in the IT products was always significantly weaker compared to Russian; thus
many people (especially in the first decades of the computer era) had to use the
Russian+English keyboards to type Ukrainian texts. In this setup, a logical so-
lution was to use an English apostrophe ’ U+0027 (which we will later refer to
as ASCII apostrophe since it was already present there) or quotation marks from
the English or Russian keyboards. A human reader would not distinguish from
a modifier letter apostrophe; however, a computer would see them as different
characters. Another factor is inconsistency of the location of apostrophes (both
the “ASCII” and the “Ukrainian” ones) on various keyboards provided by various
operating systems and especially by various smart phones (IPhone, Android- or
Windows-based systems). In such cases, a logical user experience is to find the
fastest way to type an apostrophe, no matter what UTF code it has, which some-
times ends with using English apostrophes or quotation marks. Because of these
reasons, to name a few, the Ukrainian language data in the Internet comprise
large inconsistencies of character usage with respect to the apostrophe.

What is especially important for the topic of our research, most of the al-
ternatives for a modifier letter apostrophe have another category of the Unicode
characters, mostly – punctuation marks. This is a crucial complication for our
work, since on all levels of MT process (our design of preprocessing algorithms,
subword tokenizers and extrinsic evaluation systems), most of the systems have
in-built distinction between the alphanumeric and non-alphanumeric characters,
with the latter often use as the token boundary. Thus, the same Ukrainian word

50



written with the modifier letter apostrophe and the ASCII apostrophe, would
not only consist of various characters, but in most cases would be even treated
as two or three tokens instead of one. Since tokenization is our main focus, we
understood that it is necessary to normalize the training data with respect to
apostrophes.

Speaking of the apostrophe normalization, we had to decide which character
we should map the inconsistent apostrophes to. The practice of the most of
the Ukrainian language data resources, such as Aranea web-corpora or GRAK
(General Regionally Annotated Corpus of Ukrainian), shows that the corpora
creators tend to normalize all apostrophe variants to the ASCII apostrophe. The
paper Starko et al. [2021], which describes the text normalization schema in
GRAK (mainly concentrating on OCR problems), also specifies this solution and
presents a package that covers a number of other frequent normalization problems
for Ukrainian, such as letter “i” handling.1 Finally, the test sets used in the Czech-
Ukrainian WMT competitions also contain consistent use of ASCII apostrophes
or predominantly use this character. We could not see any explicit justification for
mapping to ASCII apostrophe specifically; however, we can hypothesize that it
can be done based on, firstly, preliminary analysis on the frequency distribution of
the apostrophe variants in the datasets; secondly, the user stories of the language
data resources by the international users who may have only English keyboard.
We checked the counts of the most widely mentioned substitutes of the modifier
letter apostrophe and the letter apostrophe itself, in our main training dataset
(T8M) and in the default validation dataset (flo) by checking the Ukrainian-only
data and only the allowed contexts for the apostrophe. The results are shown in
Table 3.1. We can see that the ASCII apostrophe is the most frequent version,
and the modifier letter apostrophe comprises less than 0.1 percent of the whole
number of occurrences.

Based on the best practices and the observations on our data, we, first, decided
to normalize the test dataset by unifying all occurrences to the ASCII apostrophe.
As for the training data, in our main setup we decided to normalize the data to
an ASCII apostrophe as well. Our goals were twofold: firstly, we wanted to
have a more interpretable and searchable dataset in terms of the apostrophe
usage; secondly, we hoped to improve the extrinsic and intrinsic metrics by such
a normalization. To assess the achievement of the latter, we compared the non-
normalized data to the ASCII normalization of the apostrophes. For each of the
scenarios, we compare the default MT pipeline (without any pre-processing) and
the standard InCa pre-processing. The results are shown in Tables 3.2 and 3.3

1Another problem which roots in similar factors of the keyboard usage as described above,
tackles the letter “i”, which is present in Ukrainian alphabet but absent in the Russian alphabet.
For this reason, a Cyrillic letter “i” was introduced to the UTF charset under the names “CYRIL-
LIC (SMALL/CAPITAL) LETTER BYELORUSSIAN-UKRAINIAN I” and IDs U+0456 and
U+0406. These letters differ from the Latin letters “i” and “I” under IDs U+0069 and U+0049,
respectively. However, if a person has only a Russian and an English keyboard, a logical user
story is to type a Latin letter “i” instead of the Cyrillic one. We found such occurrences of
inconsistencies in our training data; however, we decided not to normalize them for a num-
ber of reasons. Firstly, the estimated number of Latin “i” occurrences is orders of magnitude
lower than the correct ones (for instance, for small letters it is 17,000 Latin letters against over
25,000,000 Cyrillic ones, which should not drastically drop the performance of the algorithm
but may even add robustness. Secondly, the rules for the correct detection and substitution of
the letter “i” are more complicated than the rules for apostrophes.
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UTF code Name Count (T8M) Count (flo)
U+0027 APOSTROPHE 480228 124

U+2019 RIGHT SINGLE QUOTATION
MARK 108649 3

U+2018 LEFT SINGLE QUOTATION
MARK 501 0

U+02BC MODIFIER LETTER APOS-
TROPHE 493 0

U+2032 PRIME 54 0
U+0384 GREEK TONOS 6 0

Table 3.1: Table 3.1. Counts of occurrences of various types of apostrophes in
the Ukrainian parts of the training (T8M) and test (flo) datasets

for Czech-to-Ukrainian and Ukrainian-to-Czech translation directions, where we
compare the main intrinsic and extrinsic metrics in the default flo datasets. The
values “-” and “ASCII” relate to the absence of normalization and normalization
to ASCII apostrophes, respectively.

We can see as a result of the comparison that normalization of apostrophes did
not bring any significant improvement in any of the intrinsic or extrinsic metrics.
However, since it did not decrease either and since we now have more understand-
ing of what the expected functionality of the apostrophe is, we decided to keep
the normalized version of the training data hereinafter for the experiments.

We also wanted to clarify whether mapping the apostrophes to the “ortho-
graphically correct” Ukrainian modifier letter apostrophe would improve the per-
formance of the algorithm. The motivation behind that was to estimate the pos-
sible benefits of using the alphanumeric category of characters (which Ukrainian
letter apostrophe is part of) instead of punctuation (which ASCII apostrophe is
part of). To do that, we substituted all occurrences of the ASCII apostrophe in
the apostrophe context with the Ukrainian apostrophe, hoping that this would
automatically increase the number of subword tokens with those containing a
modifier letter. However, we discovered that SentencePiece does not differenti-
ate between the alphanumeric and non-alphanumeric words (which would make
difference for ASCII and Ukrainian apostrophe). Instead, it only differentiates
between the Unicode scripts (which is the function of split_by_unicode_script
parameter), and the Modifier letter apostrophe, although being in the alphanu-
meric character type, is not in the Cyrillic script.

Thus, to allow for generalization of the modifier letter apostrophe in the sub-
words, we first had to deactivate the split_by_unicode_script parameter in Sen-
tencePiece. Since this change of the parameter may help by itself, we made two
next ablations on our experiment: firstly, by changing the split_by_unicode_script
parameter to false (while preserving the ASCII apostrophe), and secondly, by
changing the split_by_unicode_script parameter together with substituting the
apostrophe to the Ukrainian modifier letter. As a result, the crucial parameter
was the value of the split_by_unicode_script parameter, and using the ASCII
or Ukrainian apostrophe did not change any of the statistics. Thus, we provide
only one of these two experiments (with turning the split_by_unicode_script
parameter off and keeping the ASCII apostrophe) and present it in the same
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inca normalization CPT AR EFF BLEU chrF COMET
- - 3.974 1236 0.538 21.7 51.5 0.872
- ASCII 3.973 1238 0.538 21.6 51.3 0.869
- ASCII, -split 4.065 1318 0.577 21.6 51.5 0.872
+ - 4.009 1172 0.526 21.6 51.3 0.870
+ ASCII 3.995 1166 0.522 21.7 51.4 0.870
+ ASCII, -split 4.092 1256 0.549 21.5 51.2 0.869

Table 3.2: Internal and external metrics comparison with respect to apostro-
phe normalization, Czech-Ukrainian translation direction. The first two columns
show the training parameters of the MT model, each line corresponds to a
separately trained system. The “InCa” column shows preprocessing setup (-
for no preprocessing, + for standard InCa); “Normalization” shows whether we
used no mapping to the only apostrophe (-), mapping to the ASCII apostrophe
(ASCII), mapping to ASCII apostrophe with disabled SentencePiece parameter
“split_by_unicode_script” (ASCII, -split). The metric naming is defined in 2.4.

inca normalization CPT AR EFF BLEU chrF COMET
- - 4.033 1189 0.516 22.8 51.2 0.872
- ASCII 4.033 1189 0.516 22.7 51.0 0.873
- ASCII, -split 4.189 1292 0.572 23.0 51.1 0.873
+ - 4.034 1121 0.503 22.6 50.7 0.867
+ ASCII 4.014 1113 0.500 22.7 51.0 0.867
+ ASCII, -split 4.166 1217 0.534 22.7 51.0 0.870

Table 3.3: Internal and external metrics comparison with respect to apostrophe
normalization, Ukrainian-Czech translation direction. The notation is equivalent
to the one in Table 3.2

tables 3.2 and 3.3 as the italicized lines.
What we can see as the result of these experiments is that while the extrinsic

metrics remain constant, all intrinsic metrics show increasing performance com-
pared to the activated split_by_unicode_script parameter. On the other hand,
the difference between using the ASCII and Ukrainian apostrophe given the neg-
ative split_by_unicode_script parameter does not show a significant difference.
We can see the explanation for this if we examine the SentencePiece dictionar-
ies formed by these setups in the table 3.4. The table shows that the number
of tokens with an apostrophe disregarding the apostrophe symbol amounts to
more than 170 tokens, which is approximately 0.5% of the whole 32,000 token
subword vocabulary. The comparison of the tokens with apostrophe mapped
to ASCII and to the Ukrainian letter shows that they overlap significantly (100
to 110 of tokens out of approximately 170, depending on setup), which demon-
strates us that choice of the ASCII or Ukrainian apostrophe does not play a
significant role for SentencePiece given a disabled function of splitting by Uni-
code script2. However, turning this parameter off comes at a cost of a slight

2The difference in the tokens can be explained by the fact that not all occurrences of ASCII
and Ukrainian apostrophes overlap, since there are occurrences of the apostrophised foreign
words in the Ukrainian texts, and there are even more cases of the apostrophe usage in the
Czech data which have nothing to do with the Ukraininan apostrophe.
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decrease in the average token length in the vocabulary (by 0.02 characters in
the default setup and by 0.04 in the InCa setup). This happens because since
Unicode script division is disabled, all frequent combinations of any other punc-
tuation with alphabetic symbols are now also taken into account. We can see
evidence of that in the vocabularies: if we take the non-preprocessed vocab-
ulary trained on ASCII-normalized apostrophe and compare the two versions
with and without split_by_unicode_script disabling, we will see that the differ-
ence between the unique tokens comprises 3284 tokens (10% of the vocabulary).
Of these 3284 tokens, in the disabled split_by_unicode_script scenario, almost
1000 comprise shorter (2- or 3-character) sequences that combine a punctuation
mark and a character (for instance, “м.” or “_„N”. Only after filling vocabulary
with them, it proceeds with longer alphanumeric-only subwords. The vocabulary
trained with split_by_unicode_script enabled does not have such tokens, thus
offering more space to the longer alphanumeric sequences instead of the “punc-
tuation+character” combinations. With that, the average token length of the
tokens unique for the vocabulary trained with enabled script splitting is 6.56,
while the unique tokens trained with disabled script splitting are 6.37 characters
on average.

The takeaways of this comparison are contradictory. On the one hand, en-
abling the SentencePiece tokenizer to include the apostrophe allows one to include
frequent tokens with it to the vocabulary and thus to catch longer Ukrainian sub-
words as a single unit. It may be especially precious, as most of the extracted sub-
words containing an apostrophe have it within the stem (for instance, subwords
like “об’єкт” (object), “п’ять” (five), “пам’ять” (memory) and their cognates),
not on the morphemic borders. However, this comes at the cost of spending
several times more tokens on the frequent but less plausible combinations of sin-
gle alphabetic characters and punctuation, which leads to decreasing the average
token length of the vocabulary. Thus, since there was no conclusive advantage
of switching to the disabled splitting, we stuck to the ASCII normalization and
default (enabled) splitting by Unicode scripts in the SentencePiece tokenizers in
all experiments hereafter.

Still, the general consideration on this issue is that, despite some tokenisers
such as SentencePiece provide a wide range of tuning parameters for the tok-
enization depending on various information from UTF (such as normalization
or script types), language-specific “artifacts” that do not fall into one of the pre-
programmed categories may appear in a particular NLP case, which would require
targeted preprocessing of the data or tuning the tokenizer algorithms. Notably,
such work cannot be tokenizer-agnostic (which we hoped to perform by substi-
tuting the ASCII apostrophe to the Modifier letter apostrophe). Probably, the
solution that should take all advantages and omit all disadvantages related to the
apostrophes in Ukrainian, for our setup, is substituting the all Ukrainian apostro-
phe occurrences with a specific Cyrillic letter absent in the Ukrainian but present
in the “Cyrl” script in Unicode, and enabling the split_by_unicode_script pa-
rameters. However, since this does not seem to be a crucial issue in the intrinsic
or extrinsic metrics, we did not proceed with such experiments in this work.
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InCa Apostrophe
Normalization Apostrophe CPTv

Tokens with
Apostrophe

- - ASCII 6.837 2
- ASCII ASCII 6.837 2
- ASCII, -split ASCII 6.818 176
- letter, -split letter 6.818 172
+ - ASCII 7.124 1
+ ASCII ASCII 7.119 1
+ ASCII, -split ASCII 7.081 178
+ letter, -split letter 7.081 171

Table 3.4: SentencePiece vocabulary statistics on apostrophe normalization
modes. The first two columns show the training parameters of the Senten-
cePiece model, each line corresponds to a separately trained tokenizer. The
“InCa” column shows preprocessing setup (- for no preprocessing, + for stan-
dard InCa); “Normalization” shows whether we used no mapping to the only
apostrophe (-), mapping to the ASCII apostrophe (ASCII), mapping to ASCII
apostrophe with disabled SentencePiece parameter “split_by_unicode_script”
(ASCII, -split) or mapping to the Ukrainian modifier letter apostrophe with the
disabled “split_by_unicode_script” parameter (letter, -split). The “Apostrophe”
column denotes which apostrophe character we would count in the “Tokens with
Apostrophe” column – ASCII one (ASCII) or the “Modifier letter apostrophe”
(letter). “CPTv” denotes the average token length in the vocabulary, “Tokens
with Apostrophe” show the number of the tokens that contain the apostrophe of
a given type.
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3.1.2 Inconsistencies with Fully Upper-Cased Sentences

One of the main objectives of our work is to increase the robustness of MT
systems against various casings. According to the preliminary analysis on our
training data, we observed that, out of the three main scenarios of casing noise,
the hardest task for the MT systems was to translate the fully upper-cased texts
to their fully upper-cased counterparts.

We hypothesized that this could happen because of the lack of fully upper-
cased sentence pairs in the training data. The initial dataset contained sentence
pairs that were either both fully upper-cased or only upper-cased on one of the
sides. The total of such sentence pairs of all types is equal to approximately
17,000. Only 7,900 of these sentence pairs were upper-cased consistently (both in
source and target). We decided to normalize the inconsistencies of this type and
make sure that the upper-cased sentences have their upper-cased counterparts.

The results of this operation are shown in Tables 3.5 and 3.6 for the Czech-
Ukrainian and Ukrainian-Czech translation directions. We compared the changes
of the extrinsic metrics on the fully upper-cased flo dataset for two scenarios: no
pre-processing and standard InCa preprocessing. For reference, we also provide
information on the scores of the same metrics on the default (non-upper-cased)
flo dataset to see if the quality on the basic dataset decreases.

We can see that in both setups, for all translation directions, the performance
on the BLEU, chrF and COMET scores increases significantly. If we take a
look at the no-pre-processing setup, we see that chrF and COMET figures as
they gain from 4 to 7 and from 0.02 to 0.03 points, respectively. However, even
larger increase occurs with InCa preprocessing, as the versions of BLEU, chrF
and COMET metrics reach the levels of performance on the default (non-upper-
cased) dataset. This shows us that even a relatively small but consistent number
of paired upper-cased sentences can help increase the performance of the MT
systems, especially if they are enhanced by the preprocessing techniques. Based
on that, we decided to take on such an upper-case normalization and used it for
all experiments hereinafter.

3.2 Stabilization of the Experiments
The initial results of our normalization experiments, as well as the comparison
of the non-preprocessed and standard InCa models on the default flo dataset,
showed us that the performance on the extrinsic metrics remained within a small
interval and did not show significant improvement. Moreover, the first experiment
in InCa showed a slight decrease compared to the no-preprocessing setup. We
decided to estimate how stable and reproducible the MT systems are given the
fixed training setup, and whether we should rely on the slight changes of our
extrinsic metrics.

To do that, we ran the non-preprocessing and InCa experiments with default
parameters, trained on our dataset (after applying all normalization described
above), three times each. After that, we conducted an extrinsic evaluation of
the systems both with our general metrics and with the pairwise bootstrap re-
sampling technique, which was presented in Koehn [2004] and is implemented in
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InCa Norm.
Upper BLEU lc(BLEU) chrF lc(chrF) COMET

- - 1.322.1 2.422.7 18.851.7 23.452.2 0.4210.874
- + 1.621.6 1.922.1 22.551.3 23.051.8 0.4480.869
+ - 2.521.4 21.422.1 6.251.2 51.251.9 0.5780.868
+ + 21.321.7 21.322.4 51.351.4 51.352.1 0.8710.87

Table 3.5: External metrics comparison with respect to upper-case paired
sentence normalization, Czech-Ukrainian translation direction. The first two
columns show the training parameters of the MT model, each line corresponds to
a separately trained system. The “InCa” column shows preprocessing setup (- for
no preprocessing, + for standard InCa); “Norm. Upper” shows whether we used
upper-case preprocessing for the consistency of source and target sentence pairs
(- for non-normalized data, + for normalized data). The models are evaluated
on the fully upper-cased flo dataset and on the default flo dataset (described in
Section 2.1); since the main interest is fully upper-cased dataset, it is provided
in general font, while the subscripts show the performance on the default dataset
for reference. The metrics are decscribed in Section 2.4.1.

InCa Norm.
Upper BLEU lc(BLEU) chrF lc(chrF) COMET

- - 1.223.1 3.423.6 14.951.4 25.051.9 0.3890.876
- + 1.922.7 2.523.2 21.851.0 23.251.5 0.4190.873
+ - 1.923.0 22.923.6 4.551.1 51.451.8 0.5790.866
+ + 22.822.7 22.823.3 51.351.0 51.351.7 0.8650.867

Table 3.6: External metrics comparison with respect to upper-case paired sen-
tence normalization, Ukrainian-Czech translation direction. The notation is
equivalent to the one described in Table 3.5.
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BLEU chrF COMET
Run Score µ± 95%CI p-value Score µ± 95%CI p-value Score
1st 21.5 21.5 ± 1.1 - 51.2 51.2 ± 0.7 - 0.871
2nd 21.8 21.8 ± 1.1 0.076 51.5 51.5 ± 0.7 0.023* 0.873
3rd 21.5 21.5 ± 1.0 0.274 51.3 51.3 ± 0.8 0.271 0.873

Table 3.7: Extrinsic metrics comparison of the MT systems trained in the same
setup: no preprocessing, Czech-Ukrainian direction. Each line represents an
instance of the model trained separately but with the same setup and hyper-
parameters. The BLEU and chrF columns comprise three parameters: “Score” is
an overall score computed for the whole document; “µ ± 95%CI” is mean score
and 95% confidence interval based on bootstrap resampling of the given system
output; “p-value” is significance test comparing the first run with the given run
(significance threshold is 0.05, statistically significant values are marked with an
asterisk). The COMET value shows the score only.

BLEU chrF COMET
Run Score µ± 95%CI p-value Score µ± 95%CI p-value Score
1st 21.7 21.7 ± 1.0 - 51.3 51.3 ± 0.7 - 0.871
2nd 21.7 21.7 ± 1.0 0.331 51.4 51.4 ± 0.7 0.174 0.870
3rd 21.6 21.6 ± 1.1 0.298 51.2 51.2 ± 0.7 0.287 0.869

Table 3.8: Extrinsic metrics comparison of the MT systems trained in the same
setup: standard InCa preprocessing, Czech-Ukrainian direction. The notation is
equivalent to one in 3.7.

SacreBLEU 3 package – Post [2018]. Within the bootstrap resampling approach,
for a particular text, 1000 samples of translated sentences are taken and compared
against the reference. For each sample, a BLEU (or chrF) score is computed; then
the scores are ordered, 2.5% of the highest and lowest scores are dismissed, and
the mean value of the rest of the scores is calculated. With this, we obtain an
expected mean and 95% confidence interval for a given system. Pairwise boot-
strap resampling is based on the same technique, but on top of that, the samples
drawn from two systems are compared and for each sample pair. Our null hy-
pothesis is that the samples from both system outputs are generated by the same
process. Based on pairwise comparisons, we perform a p-value significance test
with a threshold of 0.05. If the p-value shows significance, we can assume that
the performance of the two systems is significantly different. This approach, con-
trary to a “bare” BLEU score, is believed to be more informative in terms of the
reliability of the MT scores.

We compare the performance of the systems of the same setup with absolute
BLEU, chrF and COMET scores, as well as with paired bootstrap-resampled
BLEU and chrF scores. For each setup, each system is compared with pairwise
bootstrap resampling against the first run. The results of these comparisons are
shown in Tables 3.7–3.10.

The results within each of the setups show that the variation in the absolute
BLEU and chrF values between the runs within the same setup may not be

3https://github.com/mjpost/sacrebleu
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BLEU chrF COMET
Run Score µ± 95%CI p-value Score µ± 95%CI p-value Score
1st 22.6 22.6 ± 1.1 - 50.8 50.8 ± 0.8 - 0.872
2nd 22.9 22.9 ± 1.0 0.139 51.0 51.0 ± 0.8 0.134 0.871
3rd 22.7 22.7 ± 1.1 0.258 51.0 51.0 ± 0.8 0.121 0.873

Table 3.9: Extrinsic metrics comparison of the MT systems trained in the same
setup: no preprocessing, Ukrainian-Czech direction. The notation is equivalent
to one in 3.7.

BLEU chrF COMET
Run Score µ± 95%CI p-value Score µ± 95%CI p-value Score
1st 22.9 22.9 ± 1.1 - 51.1 51.0 ± 0.8 - 0.867
2nd 22.7 22.7 ± 1.1 0.207 51.0 51.0 ± 0.8 0.27 0.867
3rd 22.6 22.6 ± 1.1 0.11 50.8 50.8 ± 0.8 0.081 0.867

Table 3.10: Extrinsic metrics comparison of the MT systems trained in the same
setup: standard InCa preprocessing, Ukrainian-Czech direction. The notation is
equivalent to one in 3.7.

large; however, the confidence intervals show a wide variation, usually equal to
1 BLEU and 0.75 chrF score. Moreover, although the statistical significance
in the paired bootstrap resampling was reached only once (second run of no-
preprocessing setup for Czech-Ukrainian direction, chrF), the values which are
similar to the significance level are seen in several other cases such as BLEU in
the same experiment, or the third run of InCa preprocessing for Ukrainian-Czech
direction. The variation range of the experiments shown in the tables covers
also the normalization experiment statistics that we showed above, in Sections
3.1.1-3.1.2.

What is crucial for our research is that we can see that the absolute values and
the confidence intervals of the no-preprocessing and InCa scenarios also overlap
considerably. To verify this, we also merged the three runs of each of the above
setups and compared such merged triplets of files between the default and InCa
preprocessing methods. The results for each translation direction are shown in
Tables 3.11 and 3.12. We can observe that combining the outputs of the systems
allows us to narrow the variation to 0.5 BLEU points, however, the mean values
for the no-preprocessing and InCa preprocessing setups remain the same (which
is supported by the p-values).

On the one hand, this shows us that convincingly beating the baseline with
our preprocessing technique will be a challenging task, which may sound disap-
pointing. On the other hand, we should remember that the aims of our research
were also to improve the quality on various types of noising, as well as to op-
timize the intrinsic parameters of tokenization. The results of the analysis on
normalization of the upper-case translation and apostrophe normalization show
that the improvements on InCa amount to dozens of BLEU points and substan-
tial changes in the intrinsic metrics. Thus, hereinafter our main interest would
be formulated as follows: Our main goals are to improve the extrinsic metrics on
translation of the noised texts, and intrinsic metrics (in both general and noised
texts), controlling that there is no significant drop in the extrinsic metrics of the
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BLEU chrF
Prepro-
cessing Score µ± 95%CI p-value Score µ± 95%CI p-value

base 21.6 21.6 ± 0.6 - 51.3 51.4 ± 0.5 -
inca 21.7 21.7 ± 0.6 0.294 51.3 51.3 ± 0.5 0.197

Table 3.11: Extrinsic metrics comparison of the combined outputs of 3 runs of MT
systems trained in the same setup, Czech-Ukrainian direction. The “preprocess-
ing” column shows whether we used InCa (“inca”) or no pre-processing (“base”).
The BLEU and chrF columns comprise three parameters: “Score” is an overall
score computed for the whole document; “µ ± 95%CI” is mean score and 95%
confidence interval based on bootstrap resampling of the given system output;
“p-value” is significance test comparing the first and the second lines (significance
threshold is 0.05).

BLEU chrF
Prepro-
cessing Score µ± 95%CI p-value Score µ± 95%CI p-value

base 22.7 22.7 ± 0.6 - 50.9 50.9 ± 0.4 -
inca 22.7 22.7 ± 0.6 0.417 51.0 51.0 ± 0.4 0.27

Table 3.12: Extrinsic metrics comparison of the combined outputs of 3 runs of
MT systems trained in the same setup, Ukrainian-Czech direction. The notation
is equivalent to one in 3.11.

general translation of the validation sets.
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4. Experiments with Casing
Strategies
This chapter will address experiments with the impact of various inline casing
algorithms. Firstly, we will compare the main algorithm we propose, InCa, with
the base MT system and the main competing inline casing solutions; then we will
show the ablation analysis of the InCa algorithm.

4.1 Main Inline Casing Algorithms
Before we show the statistical analysis of the main inline casing algorithms, let
us look at the difference between them in the examples presented in the table
4.1. It shows the results of pre-processing and tokenization of the input line,
with the flags marked in blue. Firstly, the no-preprocessing system does no
casing normalization, thus we can see the upper- and title-cased words being
tokenized as they are. As for pre-processing algorithms, we can see the difference
between standard InCa and all other algorithms (including naive-InCa): it does
not explicitly put the flags whenever it meets a cased word – this is a result of
using the vocabulary that was created during training, which allows it to omit
putting the flags into the words that are more often cased. In Marian inline
casing, we can see with the example of the words “ISIS” or “Martellyho” that it
allows to merge the casing flags to the words themselves if they are met frequently.
Finally, in the TokenMonster example we can see that it allows for creating the
multi-word tokens such as “je to” at the beginning of the second line.

Below we compare the main inline casing algorithms that were proposed by
us or by other authors, namely, standard InCa (inca), its naive implementation
(inca-n), marian inline casing function for SentencePiece (marian), and capcodes
for TokenMonster – tkm (we also provide the no-preprocessing system, base, for
comparison). In all cases, the SentencePiece tokenizer with no specific parameters
was used for tokenization. The exception of the TokenMonster with its own
tokenizer. We will first compare their performance on the extrinsic metrics on
the general (not noised) flo development set, and then address their behavior in
the noised scenarios.

From the tables 4.2 and 4.3 for the Czech-Ukrainian and Ukrainian-Czech
translation directions we can see that all systems including the no-preprocessing
implementation go on par, with 21.5-22.0 BLEU score (0.86-0.87 COMET score)
variation for Czech-Ukrainian direction and 22.7-23.3 BLEU score (0.86-0.87
COMET score) interval for Ukrainian-Czech. This, as was shown in the pre-
vious chapter, also fits within the variation range of 1 BLEU score that we saw
for the results of various runs of the same system.

Similar processes can be seen in most of the noise experiments. For example,
the variation in fully lower-cased datasets for the Czech-Ukrainian pair is within
18.7-19.2 BLEU points (19.6-20.4 for Ukrainian-Czech), the variation in texts
with random casing of 10% tokens is 19.9-21.0 BLEU points (for Czech-Ukrainian)
and 21.2-22.5 BLEU points (for Ukrainian-Czech). The detailed overview of the
metrics for these types of noising is presented in Appendix A.1.
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Preprocessing Examples
Input Turecko převezme ostrahu bojovńık̊u ISIS

Je to Martellyho pátá CEP
base _Turecko _pře ve z me _o stra hu _bojovńık ů _IS IS

_Je _to _Mar tel ly ho _pá tá _ CEP
inca _turecko _pře vez me _o stra hu _bojovńık ů _i sis

_je _to _ T _mar tel ly ho _pá tá _ cep
inca-n _ T _turecko _pře vez me _o stra hu _bojovńık ů _ U _i sis

_ T _je _to _ T _mar tel ly ho _ pát á _ U _cep
marian T tureck o_ pře vezme _ o stra hu _ bojovńık ů_ Uis is

T je_ to_ Tmar tel ly ho_ pát á_ Uce p_
tkm T turecko pře vezme ostr ah u bojovńık ů U i sis

T [je to] T mar tel ly ho pá tá U ce p

Table 4.1: Illustration on the work of different preprocessing algorithms (and
tokenizers applied to the pre-processed texts) with respect to casing. The first
row shows the examples of the input sentence; the next rows show the results
of the tokenization (the boundary between tokens is shown with a white space).
The flags that were used at the pre-processing step are marked blue. The flag T
means title-casing of the next word, the flag U upper-cases the whole word. There
are other flags that are not represented in the example (for instance, fully upper-
cased line or upper-cased spans) that will be shown later. For TokenMonster
preprocessing, the square brackets show that the multi-word token boundaries.
The preprocessing algorithms’ naming follows 2.3.

Prepro-
cessing BLEU lc(BLEU) chrF lc(chrF) COMET

base 21.6 22.1 51.3 51.8 0.869
inca 21.7 22.4 51.4 52.1 0.870
inca-n 21.9 22.4 51.4 52.0 0.872
marian 21.9 22.5 51.7 52.2 0.876
tkm 21.4 21.9 51.1 51.6 0.870

Table 4.2: Extrinsic metrics comparison of the main inline casing algorithms for
the general (not noised) flo development set, Czech-Ukrainian translation pair.
The preprocessing algorithms’ naming follows 2.3, the metrics are formulated as
in 2.4

.
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Prepro-
cessing BLEU lc(BLEU) chrF lc(chrF) COMET

base 22.7 23.2 51.0 51.5 0.873
inca 22.7 23.3 51.0 51.7 0.867
inca-n 23.2 23.7 51.2 51.8 0.873
marian 23.3 23.7 51.4 51.9 0.875
tkm 22.9 23.3 51.0 51.5 0.870

Table 4.3: Extrinsic metrics comparison of the main inline casing algorithms for
the general (not noised) flo development set, Ukrainian-Czech translation pair.
The preprocessing algorithms’ naming follows 2.3, the metrics are formulated as
in 2.4

Prepro-
cessing BLEU lc(BLEU) chrF lc(chrF) COMET

base 1.6 1.9 22.5 23.0 0.448
inca 21.3 21.3 51.3 51.3 0.871
inca-n 20.7 20.7 50.7 50.7 0.867
marian 15.5 20.4 39.1 50.7 0.814
tkm 15.5 17.9 46.6 48.9 0.840

Table 4.4: Extrinsic metrics comparison of the main inline casing algorithms for
the fully upper-cased noising of the flo dataset, Czech-Ukrainian translation pair.
The preprocessing algorithms’ naming follows 2.3, the metrics are formulated as
in 2.4

.

The main takeaway from this observation is that, for a general translation task
and for some of the case noising scenarios, all suggested preprocessing approaches
show similar performance, which does not significantly exceed the baseline with-
out casing preprocessing. This shows that the solution suggested by us is at least
on par with the approaches, which is a minimally satisfying scenario for us. In
the following, we will focus on the noising scenarios for which various approaches
cope with different efficiency; we will also concentrate on the intrinsic metrics
that show the optimality of the encoding provided by various algorithms.

A more interesting comparison can be seen in the fully upper-cased noising
scenario. In tables 4.4-4.5 we can see that, firstly, all inline casing algorithms show
at least ten-times improvement in the BLEU scores and double of the COMET
scores compared to the non-preprocessing scenario. Secondly, we see a signifi-
cant differentiation between the inline casing algorithms. While the lower-cased
versions of the BLEU and COMET metrics in most cases are reaching the per-
formance on the baseline datasets (with the exception of TokenMonster), both
metric versions that take casing into account show a better performance of InCa
and naive InCa compared to Marian and TokenMonster casing. This means that
the main difference between the algorithms is that the Marian and TokenMonster
casing-trained systems did not output the upper-case flags for the whole sentences
(or all words in the sentences).

Qualitative analysis supports this assumption. Indeed, the outputs of the
system trained with Marian inline casing have hundreds of non-upper-cased oc-
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Prepro-
cessing BLEU lc(BLEU) chrF lc(chrF) COMET

base 1.9 2.5 21.8 23.2 0.419
inca 22.8 22.8 51.3 51.3 0.865
inca-n 22.0 22.0 50.8 50.8 0.861
marian 17.6 22.3 41.4 51.0 0.822
tkm 17.6 19.9 47.4 49.3 0.842

Table 4.5: Extrinsic metrics comparison of the main inline casing algorithms for
the fully upper-cased noising of the flo dataset, Ukrainian-Czech translation
pair. The legend follows the corresponding Czech-Ukrainian table above.

currences in the texts, which can be grouped into several clusters. Usually, the
upper-cased sequences are interrupted either by the title-case flags or the tokens
which do not bear case by default (such as punctuation or numerics). Recall that
the principle of the Marian upper-case marking is to put the “all-upper-case” flag
in the beginning of the span and to end the span with the “return to lower-case”
flag. Thus, the problem seems to be in the moment when the fully upper-cased
sequences are interrupted by other cases or non-cased elements, after which there
is no flag of opening the upper-case span again.

The upper-case inconsistencies generated by TokenMonster can be explained
by its architecture. Recall that it allows one to create tokens that consist of
multiple words, and the flag for upper-casing the token is marked before each
token. However, the upper-casing function at the post-processing step seems to
react to the internal white spaces within the multi-word tokens. For instance, in
the TokenMonster-strict model, the same reflexive marker “se” in Czech is both a
separate token and a part of the multi-word token “stát se” (“to become”). Thus,
in cases where the single-word token is used, it is upper-cased since it is directly
prepended by the upper-case flag, while in cases such as with token “stát se”,
only the first verb is upper-cased and the scope of upper-casing finishes at the
“surface” white space sign.

Notably, hallucinations in overgeneralization of the casing other than upper-
case can be seen in InCa as well. It works as follows: Despite the fact that
the whole sentence is prepended with a special flag meaning the whole line is
upper-cased, there can be single occurrences marking a particular token within
the sentence upper-cased. However, such hallucinations are considerably rarer
in InCa than in other preprocessing systems. For instance, in the translated
Ukrainian-Czech fully upper-cased dataset InCa had 70 wrong flags of title-cased
words; while for SentencePiece there were 568 occurrences of the title-case flags.
Moreover, in InCa this is not reflected in the resulting post-processed text as the
sentence is left upper-cased once it sees the flag at the beginning of the sentence.1

Examples of such hallucinations and inconsistencies made by pre-processing
algorithms are demonstrated in Table 4.6. In Marian inline casing, we can see
that the words in the rest of the sentence are lower-cased once there was a “break”
of the title-case flag in the previous word; in TokenMonster, the upper-case flag

1The only problem of the InCa implementation is that by default we did not include filtering
out the hallucination occurrences of such flags, thus they are left within the text as the artifact;
still, at the production stage they can be easily deleted by an elementary regular expression.
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Prepro-
cessor Flags Tokenized Output; Postprocessed

Result

marian A - upper-case span, A př́ı̌st́ı_ týden_ v_ elli s_ parku_
v_ Tjohan ne sburg u,_ kdy_ ...

T - title-case word PŘÍŠTÍ TÝDEN V ELLIS PARKU V
Johannesburgu, kdy ...

tkm U - upper-case word, U nebo U [stát se] U silněǰśı m U soupeř
em ...

[] - multi-word token NEBO STÁT se SILNĚJŠÍM
SOUPEŘEM ...

inca A - upper-case sentence, A _v _otázce _politiky _ T _bĺızké
ho _východu ...

T - title-case word V OTÁZCE POLITIKY T
BLÍZKÉHO VÝCHODU

Table 4.6: Examples of flag hallucinations that took place in the Ukrainian-Czech
translations of the fully upper-cased texts. Each preprocessor (left column) shows
the flags that are used to represent upper-case and other casing operations (central
column). For each preprocessor, the rightmost column shows at the first line the
tokenized output generated by the MT system and then the final output after
the post-processing algorithm.

was applied only to the first word in the multi-word token; in InCa, the result
was fully upper-cased but the redundant flag remained in the output.

Thus, we can conclude that the general accuracy and fluency of the trans-
lations for all above-mentioned algorithms is comparably equal for all scenarios;
however, due to the implementation details of the flag decoding (such as in To-
kenMonster) or to inconsistencies in the principles of the upper-case flag usage
(such as in Marian inline casing), the full upper-casing of the output sentence is
more consistent in InCa implementations rather than in the other algorithms.

4.1.1 Intrinsic Analysis

To evaluate the intrinsic features of our preprocessing algorithms, we encoded
the input sentences with our preprocessors and tokenizers and evaluated them
with the intrinsic metrics. The results of this evaluation on the base (not noised)
datasets are demonstrated in tables 4.7-4.8. If we look at the character per
token (CPT) ratios, we can see that the worst performance is shown by the
naive InCa implementation. We can hypothesize that this happens due to its
straightforward way of marking every non-lower casing occurrence with a separate
token, which increases the number of separate single-character tokens “linearly”,
thus lowering the average number of characters per token for the dataset. It
is notable that for TokenMonster, whose behavior on marking cases is similar
to naive InCa (the upper- and title-case flags are put before each occurrence of
the cased word), the statistics differ depending on whether it is applied to the
Czech text (in this case it is similar to naive InCa) or to the Ukrainian one
(in this case it is similar to the non-preprocessed case). Since the number of
flags in both texts is comparable, the only interpretation is that the words in the
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Prepro-
cessing CPT AR EFF

base 3.973 1238 0.538
inca 3.995 1166 0.522
inca-n 3.592 1042 0.423
marian 4.033 1354 0.554
tkm 3.619 1101 0.492

Table 4.7: Intrinsic metrics comparison of the main inline casing algorithms for
the fully upper-cased noising of the flo dataset, Czech data. The preprocessing
algorithms’ naming follows 2.3, the metrics are formulated as in 2.4

.

Prepro-
cessing CPT AR EFF

base 4.033 1189 0.516
inca 4.014 1113 0.500
inca-n 3.635 997 0.417
marian 4.197 1301 0.563
tkm 4.062 1336 0.503

Table 4.8: Intrinsic metrics comparison of the main inline casing algorithms for
the fully upper-cased noising of the flo dataset, Ukrainian data. The legend
follows the table above.

Ukrainian texts happened to correspond to the longer tokens in the TokenMonster
dictionary. The better performance is shown by no-preprocessing and standard
InCa algorithms (approximately on the same level). The fact that InCa’s CPT
does not significantly differ from the no-preprocessing scenario is that the number
of the auxiliary flags (and therefore tokens) is minimized in this approach; thus,
both the denominator in the CPT formula is only slightly increased. The similar
process happens in the Marian’s inline casing, which shows up to 0.1 additional
character in CPT metric. This shows that frequency-based allocation of a flag at
least does not decrease the lengths of the encoded tokens, contrary to the explicit
encoding of each cased word.

As for the average rank, we can see that the difference between the systems is
more substantial. Again, the worst performance is shown by naive InCa, which is
then followed by TokenMonster (in Czech language). After that, the close values
of InCa and no-preprocessing systems go; while the biggest value is shown by
Marian inline casing (and TokenMonster for Ukrainian). On the one hand, this
shows better efficiency of the Marian and TokenMonster preprocessors; however,
this may be a result of the way these systems treat casing flags and tokens, in
general. Recall that both in Marian inline casing and in TokenMonster capcodes,
there is no restriction for including the flags into the combinations with other al-
phanumeric or punctuation sequences. Thus, we can hypothesize that placement
of the flagged tokens (i.e. the ones that at least contain a flag) is scattered around
the whole ranked distribution, which may tear the average rank towards a higher
number. We can see evidence supporting this claim: for instance, in Czech text,
Marian uses 420 tokens that contain a flag; 359 out of them have a higher rank
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none rand0.1 lower upper
Prepro-
cessing AR R(f) AR R(f) AR R(f) AR R(f) Vari-

ation
base 1238 - 1233 - 1047 - 60 - 1178

inca 1166
T:5
U:39
L:28

1085
T:3
U:4
L:18

1069 L:1 1134 A:3 97

inca-n 1042 T:1
U:17 985 T:1

U:4 1193 - 1121 A:3 208

marian 1354 T:0
U:1628 1324

T:0
U:3

A:2475
-A:2468

1265 - 1213

T:131
U:17
A:0

-A:14

141

tkm 1101 T:3
U:35 1063 T:1

U:5 1135 - 647 U:0 488

Table 4.9: Average Rank and ranks of the casing flags for various types of noising
in the flo dataset, encoded Czech texts. The names of noising modes follow
2.2, the preprocessing algorithms’ naming follows 2.3, the metrics are formulated
as in 2.4. The flags are denoted as follow: “T” stands for title-case, “U” – for
upper-casing a word, “A” – for upper-casing the whole sentence (or a span for
marian), “-A” – for ending the upper-cased span for marian, “L” – for lower-casing
the word. The bold figures mark either the best values over the column; for AR
scores higher is better, for “Variation” – lower is better.

than the AR score for the document. Thus, diversifying the allocation of the
flag depending on whether it should be a separate token or a part of a character
sequence helps to flatten the frequency distribution of the token types.

We compared the systems by their AR score on the base dataset, but how
important is the absolute value of an average rank? To answer this, we may have
a look at the comparison of the systems with respect to different noising of the
validation dataset, which is shown in tables 4.9 and 4.10. We are interested in how
stable the AR values are for the same algorithm applied to various noising, and
how the it is related to the flag ranks in the tokenized datasets. We hypothesize
that the ranks of the flags may influence the average rank, most possibly in
the following way: the higher the rank(s) of the flag(s), the lower the average
rank score as the mean value skews towards the flags in the head of the token
distribution. We can see that the statistics support this claim: for instance, for
all preprocessing algorithms the AR score slightly decreases if we move from the
non-noised dataset to the one with randomly cased 10% of words, and at the
same time the title- and upper-case flags (and lower-case for InCa) move towards
the head of the distribution, usually getting top-5 places. This can also be seen
at the lower-case scenario, where we observe the difference in trends between
the algorithms that have no specific flag for the lower-cased words (naive InCa,
Marian inline casing and TokenMonster) and standard InCa, as all the former
show improvement on AR compared to the standard dataset; while InCa shows
a considerable decline as the lower-case token gets the first rank.

Now that we see that there is at least a correlation between the ranks of
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none rand0.1 lower upper
Prepro-
cessing AR R(f) AR R(f) AR R(f) AR R(f) Vari-

ation
base 1189 - 1154 - 1024 - 46 - 1143

inca 1113
T:3
U:23
L:25

1041
T:3
U:4
L:19

1034 L:1 1091 A:3 79

inca-n 997 T:1
U:16 946 T:1

U:4 1135 - 1069 A:3 188

marian 1301
T:0

U:171
-A:1617

1266

T:0
U:4

A:4012
-A:2466

1235 - 1181

T:229
U:22
A:0

-A:15

120

tkm 1336 T:2
U:28 1289 T:1

U:5 1383 - 755 U:0 628

Table 4.10: Average Rank and ranks of the casing flags for various types of noising
in the flo dataset, encoded Ukrainian texts. The legend conventions follow the
table 4.9 on Czech data.

the flags and the AR scores, we can think of the stability of the AR score with
respect to the casing noise. We do that by computing the difference between the
highest and the lowest score of each system among all noising scenarios. Such
a comparison shows that InCa, despite being behind Marian and TokenMonster
in most separate scenarios, remains the most stable algorithm with respect to
any possible noise. For instance, while TokenMonster is the best-performing
algorithm on the Ukrainian data, its variation (especially because of the upper-
cased noise) exceeds 600 AR points, the variation of InCa does not exceed 80. We
believe that this is an important advantage since it gives better predictability of
the intrinsic perfromance if we conducted the experiment on one noise and want
to hypothesize about the other types of noise.

The final metric that we used for the comparison, Rényi efficiency, gives least
preference to naive InCa preprocessing; it is followed by TokenMonster, and then
all other systems including the one without pre-processing. If we take that into
context of the noising experiments (tables 4.11-4.12), as we did with AR, we will
see the motivation behind that. The performance of the metric seems heavily
dependent on the presence and frequency of the flags; and the more (and the
oftener) the flags, the less the score of the metric. The clearest examples can be
seen on the upper-case noising: no-preprocessing scenario gets the highest scores
in the table, while the TokenMonster obtains three times as less score (recall that
it marks each upper-cased word occurrence with a token, thus it has the biggest
absolute number of flags compared to any other algorithm). We understand that
this should not be a fair estimate of the non-preprocessing scenario for the future
work, as the quality of this system on the downstream performance was between
1.5 and 2.5 BLEU points total. Analogous trends can be seen if we compare other
types of noising: for instance, InCa, being the only algorithm that uses flags in
the fully lower-cased scenario (to mark the lower-cased words, for instance, in the
beginning of the sentence), shows the lowest performance. This is also seen if
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none rand0.1 lower upper
Prepro-
cessing EFF R(f) EFF R(f) EFF R(f) EFF R(f)

base 0.538 - 0.549 - 0.539 - 0.658 -

inca 0.522
T:5
U:39
L:28

0.473
T:3
U:4
L:18

0.444 L:1 0.500 A:3

inca-n 0.423 T:1
U:17 0.391 T:1

U:4 0.527 - 0.488 A:3

marian 0.554 T:0
U:1628 0.529

T:0
U:3

A:2475
-A:2468

0.581 - 0.551

T:131
U:17
A:0

-A:14

tkm 0.492 U:35
T:3 0.489 U:5

T:1 0.452 - 0.226 U:0

Table 4.11: Rényi efficiency and ranks of the casing flags for various types of nois-
ing in the flo dataset, encoded Czech texts. The names of noising modes follow
2.2, the preprocessing algorithms’ naming follows 2.3, the metrics are formulated
as in 2.4. The flags are denoted as follow: “T” stands for title-case, “U” – for
upper-casing a word, “A” – for upper-casing the whole sentence (or a span for
marian), “-A” – for ending the upper-cased span for marian, “L” – for lower-casing
the word. The best (highest) scores for each column are marked bold.

we compare each particular system in various noising setups: for instance, naive
InCa gets a lower rank of the upper-case flag in the random 10% casing scenario
compared to the standard dataset, and while it is used in the lower-cased scenario
without any flags, it gets its maximal score.

Can this be a problem of a particular alpha? We made the comparative graphs
to see if the ranking of the systems would differ depending on the alpha value. We
sampled alphas from 0 to 10 with 0.2 stride and estimated the Rényi efficiency
score for each alpha. Then, we compared the performance of the systems for each
noising scenario separately. The result of the evaluation on the Czech data is
presented in Figure 4.1 (the Ukrainian data show the same patterns). Here, we
firstly see that in the majority of the cases, the scores for each system decrease
monotonously and do not change their ranking depending on alpha. We can also
see that, while for the non-noised and randomly cased 10% scenarios the worst
performance is shown by naive InCa (since it uses more tokens than the “smarter”
approaches), in the upper-case scenario TokenMonster goes significantly down as
it marks each word with a flag), and in the lower-cased scenario, it is InCa with
the lower-case flags that lies below.2

2It is less clear why TokenMonster also shows bad performance on the fully lower-cased
data, as it does not use an explicit lower-case flag there. Most probably it is the result of
another special token introduced by TokenMonster, “D” token that handles the deletion of the
white space after this token. It is used as a way to handle the fully reversible word separation,
but in an opposite logic to SentencePiece: while the latter explicitly marks the white spaces,
TokenMonster by default restores white spaces between each of its tokens and then deletes them
whenever the special token is used. Thus, the frequent usage of this token may skew Renyi
efficiency in this case.
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none rand0.1 lower upper
Prepro-
cessing EFF R(f) EFF R(f) EFF R(f) EFF R(f)

base 0.516 - 0.527 - 0.519 - 0.678 -

inca 0.500
T:3
U:23
L:25

0.460
T:3
U:4
L:19

0.442 L:1 0.486 A:3

inca-n 0.417 T:1
U:16 0.388 T:1

U:4 0.504 - 0.473 A:3

marian 0.563
T:0

U:171
-A:1617

0.534

T:0
U:4

A:4012
-A:2466

0.602 - 0.566

T:229
U:22
A:0

-A:15

tkm 0.503 U:28
T:2 0.500 - 0.474 - 0.219 U:0

Table 4.12: Rényi efficiency and ranks of the casing flags for various types of
noising in the flo dataset, encoded Ukrainian texts. The legend conventions
follow the table on Czech data above.

The authors of the approach Zouhar et al. [2023] suggest that the increase
in alpha should favor the frequent sequences to be encoded into shorter tokens.
We cannot say that our evaluation supports this claim. Instead, we can say that
it penalizes the systems that output numerous auxiliary tokens (which, in our
case, are predominantly single-character). The only exception here is Marian
inline casing that sometimes happens to even outperform the non-preprocessing
scenario; this can be interpreted due to the nature of the inline casing flags that
can be merged with a word, thus not creating a separate token.

In conclusion, we should say that the Rényi efficiency metric (at least in its
classical version) does not favor using the characters that increase the number of
separate words (and thus tokens). Thus, if we want to encode the flags separately
(this is our aim – to relocate the casing information in an way of creating separate
tokens), it is impossible to outperform the zero preprocessing scenario on average
since any inline approach to casing would at least slightly increase the length of
sentence. The case of Marian encoding shows that we can make it better if we
allow the flags to merge with the words; but theoretically this does not seem a
perfect solution, since if we create a digraph within a word instead of separating it
from the word completely, it would not solve the problem of the possible allocation
of the same words with different casings in the vocabulary. Bearing all that in
mind, hereinafter we will not take this metric into account, since it showed its
practical inaplicability for the case of different preprocessing comparisons.

4.1.2 Vocabulary statistics

As a way to address the internal structure of tokenizers, we can analyze their
vocabularies as such. We are interested, first, in whether inline casing helps in-
crease the token length in the tokenizer vocabulary; second, how different types
of inline casing help release more space for the unique character sequences rather
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Figure 4.1: Comparison of the Rényi efficiency score depending on alpha. The
subplots are created for each type of case noising, each figure shows the EFF
score of each system (Y axis) with respect to alpha score (X axis).

than doubling the tokens that differ only in casing. The table 4.13 attempts to
estimate that: the CPTv column provides an answer to the first question, and
the “Cased tokens” and “Overlap with Uncased” columns give an estimate for the
answer to the second one. We can see that both InCa approaches increase the
average unique token length by 0.3 characters. The TokenMonster result is out-
standing by increasing the values by more than 1.5 characters; this is one of the
features they displayed as their advantage compared to other algorithms, as at
their Github they showed that they on the English data the average character per
unique token ratio reaches 7 characters. However, this happens due to allowing
the tokens to be multi-word ones, which is prohibited by the default Sentence-
Piece implementation: over 6,800 tokens in the Tokenmonster dictionary with an
average length of 12.44 characters are present in the tokenizer.

We can also look at how optimal the inline casing approaches are in terms
of saving space for unique lower-case character sequences. Contrary to the no-
preprocessing scenario where there are more than 6,000 cased tokens, 3,500 of
which fully correspond to their lower-cased analogues (which are 19% and 10%
of the full vocabulary, respectively), we can see that all inline casing algorithms
decrease these numbers several times. 3 However, only the InCa approaches allow
us to decrease these numbers to zero, thus allocating all possible space released

3It is necessary to note that in case of TokenMonster, all tokens with cased flags are the
combinations of the flags with punctuation, not alphanumeric sequences.
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Prepro-
cessing CPTv

Cased
Tokens

Overlap with
Uncased

base 6.837 6169 3508
inca 7.119 0 0
inca-n 7.127 0 0
marian 6.554 2754 1049
tkm 8.573 149 92

Table 4.13: Vocabulary statistics for the tokenizers trained for the main models.
The CPTv metric is defined in 2.4; the “Cased tokens” value shows the number
of tokens that contain a casing flag (or cased letters), and the “Overlap with
Uncased” value shows the number of the uncased tokens in the dictionary that
differ from the cased ones (in the “Cased tokens”) only by casing or casing flag.

by casing normalization to the new tokens. Although this may not be directly
reflected in the intrinsic metrics above, this is undoubtedly an important feature
for the interpretability and predictability of the tokenizer models, as we expect
that the variety of the tokens present in the vocabulary would not be obscured
by the casing variation of the tokens.

4.2 Ablation Experiments

4.2.1 Disabling Fully Upper-Cased Strings

One of the standard InCa features is encoding the fully upper-cased lines with
only one flag that is prepended to the sentence. We will see how implementation
of this feature influences the performance of the system by disabling this method:
thus, now at the training step the words from the fully upper-cased lines will be
included into InCa vocabulary statistics; and at encoding step each upper-cased
word will be (if necessary) encoded with a flag separately. At the flag level it also
means that the inventory of the possible flags is reduced by 1: now there is no
special flag upper-casing for the whole sentence, only the upper-cased words.

The results show that the general performance of this modification does not
differ from the standard InCa – it has approximately the same performance on
all translation directions and in all noising scenarios as the standard InCa im-
plementation. The intrinsic metrics do not show any significant difference either.
The only difference is the performance on the fully upper-cased noising of the
dataset: there the performance on the validation set significantly decreases. This
is reflected in Tables 4.14 – 4.15. We have already seen such a trend in other
algorithms that do not use a special flag for full sentences (recall tables in A.1
or their excerpts from 4.4-4.5). For instance, in the Czech-Ukrainian direction,
the TokenMonster implementation drops from quite a stable BLEU score of ap-
proximately 20 to 15.5 in the upper-case scenario and shows 17.9 on lc(BLEU)
score. Similar figures are shown with Marian inline casing, as performance drops
to 15.5 and 20.4 BLEU and lc(BLEU) scores, respectively. Notably, we can see
that with both our ablation and Marian inline casing, the BLEU score is almost
completely “restored” to the level of the performance on the non-noised text, while
TokenMonster does not show that.
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Prepro-
cessing BLEU lc(BLEU) chrF lc(chrF) COMET

inca 21.3 21.3 51.3 51.3 0.871
inca-A 18.0 18.3 48.7 49.1 0.850

Table 4.14: Extrinsic performance in fully upper-cased scenario, Czech-Ukrainian
translation direction. The metrics are formulated as in 2.4. The standard InCa
implementation is referred to as “inca” in the “Preprocessing” column, and the
ablation without special treatment of the full upper-case sentence is referred to
as “inca-A”.

Prepro-
cessing BLEU lc(BLEU) chrF lc(chrF) COMET

inca 22.8 22.8 51.3 51.3 0.865
inca-A 19.9 20.3 49.3 49.7 0.849

Table 4.15: Extrinsic performance in fully upper-cased scenario, Ukrainian-Czech
translation direction. The legend conventions follow the table on Czech-Ukrainian
table above.

The closer look at the intrinsic metric shows similar trends in decrease as the
TokenMonster performance again. In tables 4.16–4.17 we can see the significant
decrease in both CPT and AR values, which resembles the decrease that occurred
in the same setup with TokenMonster. Such halving is again logical since both
metrics are skewed towards overly frequent upper-case flags, and we can see that
if we count the occurrences of the upper-case flags in both encoded documents,
in the ablated InCa it is 18799, and in TokenMonster it is 18905.

The analysis provided above shows that introducing the feature that marks
large spans of text with upper case (be it a single flag for the whole sentence
as in standard InCa or span marker flags as in Marian) is beneficial both for
the extrinsic performance on the fully upper-cased texts and for the intrinsic
representations of the texts.

4.2.2 Enforcing Flag Separation by SentencePiece

A brief note should be referred to the SentencePiece option user_defined_symbols
that allows one to enforce the auxiliary tokens to be separately allocated in the
dictionary. This function is initially created for tasks such as “<SYSTEM>” or
“<USER>” markers in the dialogue systems, where a whole string must be kept

Prepro-
cessing CPT AR

inca 3.890 1134
inca-A 1.872 543

Table 4.16: Intrinsic performance in fully upper-cased scenario, encoded Czech
text. The metrics are formulated as in 2.4. The standard InCa implementation
is referred to as “inca” in the “Preprocessing” column, and the ablation without
special treatment of the full upper-case sentence is referred to as “inca-A”.
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Prepro-
cessing CPT AR

inca 3.944 1091
inca-A 1.935 531

Table 4.17: Intrinsic performance in fully upper-cased scenario, encoded
Ukrainian text. The legend conventions follow the table on Czech table above.

consistently in all contexts; however, we can use it for the case of our flags. By
the definition of our InCa implementation, the InCa flags are expected to be
separated from the alphanumeric sequences and punctuation by default. Thus,
there should not be any effect on turning on the user_defined_symbols option.
We decided to make sure if it is true, or if our preprocessor is working not as
optimally, and an explicit separation of the special symbols helps.

The results show that neither extrinsic nor intrinsic metrics show any sub-
stantial change compared to the standard InCa implementation; the stable per-
formance was shown on all noising scenarios as well; thus for the sake of brevity,
we do not provide any tables to demonstrate that. What is interesting is that
the vocabularies trained by the tokenizers slightly differ (the difference tackles
only 1,100 tokens out of 32,000). The qualitative analysis did not show any clear
trend in the differing subsets of the vocabularies (the average lengths of the to-
kens and the ratio of the Czech and Ukrainian texts are almost the same there).
Thus, we can only hypothesize that the normalization that takes place within
SentencePiece tokenizer before the actual training is sensitive to turning on and
off the parameter in question, despite the fact that the real training distribution
does not differ significantly.

We can conclude from this experiment that the application of the InCa algo-
rithm is self-sufficient and does not require tweaking of the hyperparameters of the
tokenizer algorithm. This also allows us to hope that InCa preprocessing should
be tokenizer-agnostic; however, we will be able to state this only after comparative
experiments with other tokenization algorithms such as BPE or WordPiece.

4.2.3 Casing Augmentation

Training data augmentation is one of the popular and efficient solutions to many
problems in NLP. Even specifically with the inline casing problem, the authors
of the Marian inline casing Jain et al. [2023] show that their algorithm works
best when applied to case-augmented data. Thus, we attempted to see if data
augmentation helps the MT system both in no-preprocessing scenario and in pair
with InCa.

The data are augmented in the following way: first, the training dataset is
multiplied by four, and each instance of the dataset is shuffled. These four copies
are noised as follows:

1. data is left as is;

2. data is fully upper-cased;

3. data is fully lower-cased;
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4. data is randomly assigned with casing noise with 10% chance.

The upper- and lower-casing of the full data are conducted symmetrically: for
each sentence pair, both sentences are upper- or lower-cased. The fourth instance
of the dataset, 10% noising, is done asymmetrically – by that we mean that the
source and the target sentence are noised separately, thus there is no alignment
of the noised words in the sentence pair.

We applied such casing augmentation to both the no-preprocessing scenario
and InCa pre-processing. Moreover, for InCa preprocessing, we compared two
levels at which augmentation can be applied. In the first case, the augmented
data were used both for the InCa vocabulary training and for MT training (which
included tokenizer training); while in the second case, the InCa vocabulary was
trained only on the initial dataset, while the tokenizer and the MT system were
trained on the augmented data. With that, we could better understand the
impact of augmentation on the pre-processing algorithm.

The results of the experiments on the non-noised dataset did not show any
improvement neither in the non-preprocessing nor in the InCa preprocessing sce-
nario. This resembled the situation with the similar performance of all main
algorithms on the default dataset, which we describe in Section 4.1. However, a
more interesting observation can be seen in full lower-case and upper-case noising
of the validation dataset. The extrinsic evaluation is presented in tables 4.18-
4.19. We can see the following trend there: for the fully lower-cased scenario, the
breaking point lies between the augmented and non-augmented data, where the
difference in BLEU scores yields up to 3 points. However, after augmentation,
the difference between the no-preprocessing system and the InCa combinations
is within the variation span. In the fully upper-cased data setup, the border (as
was discovered earlier) lies between no-preprocessing and InCa systems, and all
systems with augmentation do not significantly surpass it.

Does that mean that casing augmentation is a “silver bullet” and we get no
improvement from using InCa? To answer this question, we can look at the in-
trinsic performance of the systems in question (presented in tables 4.20-4.21).
We can see that, for both noising setups, the average rank score for the casing-
augmented data with no preprocessing is considerably lower than the one in any
of InCa setups; while for InCa, casing augmentation does not influence this met-
ric significantly. It is especially clearly marked in the fully upper-cased noising
scenario, where the Average Rank for no-preprocessing is multiplied by ten com-
pared to non-augmented data, but is still twice as lower compared to InCas. A
similar, however not that clear, trend can be seen with characters per token ratio,
where InCa scores remain stable, while case augmentation of the no-preprocessing
system either gives 0.5 CPT less (in upper-cased noise) or even slightly decreases
the score compared to the not augmented system (in lower-cased noise).

The high performance on the lower-cased data of the non-preprocessing non-
augmented system (compared to both augmentation and InCa) can be easily
interpreted: since the majority of the tokens in the base system are the lower-
cased tokens, applying it to the lower-cased text is the most “comfortable” setup
for it. The InCa approach, whether it is augmented or not, will spend addi-
tional tokens on marking the lower-case flags where necessary (contrary to fully
upper-cased sentence where it only needs one sentence-initial flag); and the non-
preprocessing augmented systems were trained in the way they reallocated more
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lower upper
Setup BLEU chrF COMET BLEU chrF COMET
base 18.7 49.4 0.849 1.6 22.5 0.448
inca 19.2 50.1 0.856 21.3 51.3 0.871
base+caseaug 22.1 51.8 0.861 21.6 51.4 0.874
inca+caseaugall 22.4 52.2 0.864 22.2 52.2 0.877
inca+caseaugMT 22.3 51.9 0.862 22.3 51.9 0.875

Table 4.18: Extrinsic performance on casing-augmented data, Czech-Ukrainian
translation direction. The metrics are formulated as in 2.4, they show scores for
fully lower-cased noising an fully upper-case noising of the development dataset.
In the “Setup” column, the non-preprocessing scenario and standard InCa im-
plementation are referred to as “base” and “inca”, while “base+caseaug” means
casing augmentation for no-preprocessing system, “base+caseraugall” stands for
casing augmentation applied both for InCa vocabulary and for tokenizer; and
“inca+caseaugMT ” stands for applying casing augmentation applied only on the
tokenization and MT step. The horisontal line shows the border between the clus-
ter of the best-scoring systems (differing from each other for less than 1 BLEU
point): the rows below are the best cluster and the rows above are considerably
worse.

lower upper
Setup BLEU chrF COMET BLEU chrF COMET
base 19.6 49.3 0.847 1.9 21.8 0.419
inca 20.4 50.1 0.853 22.8 51.3 0.865
base+caseaug 23.2 51.7 0.859 22.5 51.4 0.868
inca+caseaugall 23.1 51.5 0.856 22.9 51.5 0.867
inca+caseaugMT 23.2 51.7 0.857 23.4 51.7 0.866

Table 4.19: Extrinsic performance on casing-augmented data, Ukrainian-Czech
translation direction. The legend conventions follow the table on Czech-Ukrainian
table above.

lower upper
Setup CPT AR CPT AR
base 3.924 1047 1.625 60
inca 3.671 1069 3.890 1134
base+caseaug 3.791 940 3.370 610
inca+caseaugall 3.695 1073 3.881 1128
inca+caseaugMT 3.636 1023 3.852 1084

Table 4.20: Intrinsic metrics on casing-augmented data, Czech text. The metrics
are formulated as in 2.4, they show scores for fully lower-cased noising an fully
upper-case noising of the development dataset. The values of the “Setup” column
are equal to the ones defined in 4.18.
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lower upper
Setup CPT AR CPT AR
base 4.010 1024 1.569 46
inca 3.739 1034 3.944 1091
base+caseaug 3.846 885 3.420 572
inca+caseaugall 3.755 1033 3.930 1082
inca+caseaugMT 3.695 977 3.894 1029

Table 4.21: Intrinsic metrics on casing-augmented data, Ukrainian text. The
legend conventions follow the Czech table above.

Setup CPTv

base 6.837
inca 7.119
base+caseaug 6.495
inca+caseaugall 7.126
inca+caseaugMT 7.205

Table 4.22: Average unique token length in the tokenizers with and without casing
augmentation.

of their capacities to the cased versions of the words.
The latter claim can be supported by the analysis of tokenizer dictionaries.

Firstly, if we compare the average token length in the tokenizers depending on the
casing augmentation (see table 4.22 below), we can see that for non-preprocessing
scenario the casing-augmented tokens became almost 0.5 characters shorter. At
the same time, there is no such drop in tokenizers trained after the InCa ap-
plication. Moreover, if we look at the details of the tokenizer vocabularies, we
will see that for the case-augmented no-preprocessing tokenizer, 12,270 tokens
are not lower-cased, and 10,700 of them have their full lower-cased analogues in
the vocabulary. This is a demonstration of non-optimal allocation of the vocabu-
lary, contrary to all InCa tokenizers. Regarding the comparison of the tokenizers
trained after InCa with and without case augmentation, we will see that the main
difference lies between the inca+caseaugMT setup and two other systems, as it
has 6500 differing tokens compared to both other alternatives. The qualitative
analysis did not show any pattern in the differing tokens: in all cases, there is a
similar amount of proper nouns (which are expected to be written with the title
case) and the ratio between the Czech and Ukrainian sequences.

As a result of this ablation experiment we can see that, on the one hand, cas-
ing augmentation is a straightforward and efficient algorithm that can improve
the extrinsic performance of the MT even without preprocessing. However, the
optimality of the tokenizer (which can be seen through its vocabulary or through
the intrinsic metrics) is significantly reduced. However, with InCa setups, aug-
mentation does not provide any significant growth in extrinsic metrics; but it
shows stability in both intrinsic and extrinsic performance showing that we can
even manage without augmentation with no significant performance loss. The
only counter-example to the InCa performance is the difference in the augmented
and non-augmented lower-cased noise; however, we can hope that it can be solved
by a simple modification of InCa by adding the full-sentence lower-case flag, anal-
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ogously to the full-sentence upper-case flag. Due to the lack of time, we did not
conduct such an experiment and leave it to future research.

4.3 Intrinsic Comparison of Tokenizers Trained on
Varying InCa Vocabulary Size

The crucial feature of the standard InCa pre-processing method is to create a
vocabulary that would store information about the most frequent casing of the
words met in the training corpus. However, if we record all words that occurred
in the training data and were predominantly cased, the resulting dictionary, ac-
cording to Zipf’s law, will likely consist of numerous hapax legomena or words
that occurred only a few times. On the one hand, this may be beneficial as we
store more information about the possible rare proper names; on the other hand,
it makes the algorithm vulnerable to single occurrences. Thus, we introduced a
training parameter responsible for the minimal count of the cased occurrences of
a particular word to be recorded into the vocabulary.

In the extrinsic experiments described above, the InCa took minimal count as
1, thus including any occurrence of the cased word if it was more frequent than
the non-cased one (even in case if it was the only occurrence of the word). The
naive implementation of InCa, although technically implemented slightly differ-
ently to speed up the algorithm, essentially can be thought of as a standard InCa
implementation with a minimal count set to infinity (thus the InCa dictionary
will always be equal to zero). We decided to take a deeper look at the distri-
bution of the cased tokens that InCa was taking into account, and to conduct
several experiments with intrinsic evaluation to see if a particular parameter of
the minimal counts would influence the intrinsic metrics of InCa.

To begin with, we calculated the distribution of the tokens in the standard
InCa dictionary with respect to their counts in the training data. We wanted to
estimate how many upper- or title-cased tokens were met once, twice, and other
number of times. The results of this calculation are represented in Figure 4.2.
The x-axis of the graph represents the counts of a particular unique word in the
training data that was recorded in the InCa dictionary. The y-axis shows how
many words with a given count (on the x-axis) are in the training data. For
instance, if there were three unique words that were met 1,000 times, it would
correspond to a point with the x-coordinate 1000 and y-coordinate 3.

From the figure, we can see, firstly, that the number of the upper-cased to-
kens is approximately one order of magnitude lower than that of the title-cased
tokens. Secondly, both upper- and title-cased tokens are ordered in the log-log
distribution, thus there is indeed a big imbalance towards the words that oc-
curred once or a few times. Thus, we decided to create the InCa vocabulary with
minimal counts equal to logarithmically increasing values, namely, 1 (standard),
5, 10, 50, 100, 500, 1000 and 5000 occurrences, as well the naive implementation
that does not store any words (which, according to the plot above, roughly corre-
sponds to minimal counts of 10,000). We created the InCa dictionaries, trained
the tokenizers, and applied them to our flores dataset and its noised forms.

The results of the intrinsic evaluation of the documents tokenized with differ-
ently pre-processed data are presented in the figure 4.3. We can see the following
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Figure 4.2: Counts of the number of unique words that were met in the corpus a
particular number of times. The upper-cased and the title-cased words are marked
separately. The x-axis represents the number of times a particular unique word
was met in the training data. The y-axis represents how much words were met a
given number of times. Both axes are logarithmic.

general trends: the lower-cased text encoding efficiency gradually increases with
the increase of the minimal counts; while the non-noised and randomly cased 10%
words encoding lose their efficiency. The range of the values for CPT is approx-
imately 0.5 charaters and for AR – over 100 ranks. In particular, the dynamics
are similar for both languages and for both metrics. The increase in lower-case
performance is easy to interpret: When we decrease the number of the cased
words that we store in the InCa dictionary, each of their lower-cased occurrences
does not have to be marked with lower-case flag. At the same time, each cased
word that is now not in the InCa dictionary has to be marked with an upper-
or title-case flag from now on. This is also supported if we specifically analyze
the flag ranks: for instance, for the no-noised scenario on the minimal count
range of 1 to 1000, the title-case flag rank increases from 5 to 3, the upper-case
flag rank increases from 39 to 27, and the lower-case flag rank drops from 28 to
62. It is also notable that all graphs show two intersection points – between the
fully lower-cased and random 10% noise (approximately at the minimal count of
10), as well as between the no-noising, fully lower-cased noise and almost with
upper-cased noise (between the minimal counts of 1000 and 5000).

What are the words that are being filtered out at every new threshold? The
words of count 1 to 5 usually comprise much junk that emerged as an artifact
of web crawling (for instance, “новиниКонцепт” which is literally translated as
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Figure 4.3: Comparison of the intrinsic metrics for the tokenizers trained on InCa
vocabularies with different minimal counts. The first row shows the character per
token ratio; the second one – the Average Rank ratio (defined in 2.4). The left
column shows the performance on the Czech data, the right – on the Ukrainian
data. Each graph shows the efficiency of the metric (y-axis) with respect to
minimal counts value (x-axis, logarithmic). On each graph, four lines represent
different noising of the encoded dataset: black for no noising (“none”), red for
fully upper-cased; green for fully lower-cased; blue for random 10% casing.

“newsConcept” is most probably a wrongly deciphered HTML line which com-
bined two separate words), the words from languages other than Czech, Ukrainian
or English (for instance, the Portuguese “Libertação”), and the technical abbrevi-
ations like “FM1100”. At the threshold of 10, junk starts to disappear and numer-
ous international acronyms start to appear (such as ICMPv6 for “Internet Control
Message Protocol for IPv6”). At thresholds of 50 and 100, we can see a steep in-
crease in the human names, especially in the indirect cases (such as “Chruščova”,
“Навального” (“Navalny” in genitive), “Tutanchamona” or “Данiеля” (“Daniel”
in genitive)), as well as locations and words derived from it (such as “Karlsruhe”
or “Страсбург” meaning the city of Strasbourg). When the threshold is 500, we
start obtaining names of the popular companies or cultural entities (such as “Nin-
tendo”, “Pinterest” or “Євангелiї” meaning “Gospel”) and names of the countries
or regions (like “Chorvatsku” or “Польщу” meaning Poland). The levels of 1000
words do not break this trend; however, it is interesting to notice that even there
we can find numerous occurrences of the English cased words such as “Palace”
or “Tower”). Thus, since there seems to be a switch from the unfrequent (and
often junked) occurrences of the cased words towards the frequent namings of
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the popular personalities, companies, or locations, it may be a valid solution to
introduce a threshold between 50 to 500 words.

However, the InCa implementation is language-agnostic and does not take into
account the word declination (which is the case for both Czech and Ukrainian
languages). Should we worry about the inconsistency in the declination paradigm
of the same lemma? In other words, should we worry that the nominative case
“Česko” would be recorded in the dictionary but the genitive case of the same
word,“Česka”, would not? The preliminary qualitative analysis shows that, if we
take a particular proper name and look at the counts of its forms with respect
to grammatical cases, the counts of the forms would usually be within the same
order of magnitude. This seems to be consistent for both very frequent and
moderately rare entities. For example, the counts of the grammatical forms of
the lemma “Rusko” span from 2600 to 10900 (with 8,000 to 9,000 occurrences on
average); while the counts of a rarer toponym such as “Alž́ırsko” span from 107
to 218 (with the only exception of the instrumental case with 21 occurrences).
Thus, we can hope that establishing a threshold would not make a situation of
inconsistency of the case marking with respect to grammatical forms frequent,
because all forms of the particular word would tend to either be recorded or not.

Thus, based on our intrinsic and qualitative overview, we can suggest that the
optimal minimal counts value should be approximately 100. At that point, the
values of non-noised and 10% randomly-noised words do not decrease yet, while
the lower-cased encoding starts increasing; and at the same time, the vocabulary
becomes free of junk or the occurrences of very infrequent words.
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5. Experiments with Diacritization
Strategies
This chapter addresses experiments with the inline diacritization approaches that
we presented in Section 2.2. Since we have not found any existing solution of that
type, we will compare the two main InDia versions – Char-InDia and Word-InDia
– with the base (no-preprocessing) system first; then, we will address the ablation
experiments with Char-InDia.

Before we delve into the quantitative analysis of the results, let us have a look
at how two main inline diacritization results look like after pre-processing and
tokenization. The example of this is represented in the table 5.1. Recall that both
approaches use the pre-trained vocabulary (similar to standard InCa), but they
differ in marking the less frequent diacritizations for each base (bare sequence
of the Latin characters of the word). In case of Char-InDia, the flag consists
of a dictionary of key-value pairs, where each key is an index of a diacritized
character and the value is an ID of the diacritization operation; the morphology
of the flag is KV − idx1− ID− idx2−KV − d1− d2, where a special symbol KV
separates the sequences of keys (in the beginning) and values (in the end), and
a special symbol ID separates the indices of the diacritized characters (which are
marked by numbers). This can be a long sequence, but each diacritization symbol
consistently bears information about its operation, and each key deterministically
shows the position of the diacritized symbol. In the case of Word-InDia, all
diacritizations of the same base are ordered at the training step, and during
inference, each diacritization which is not most frequent is assigned with its rank
in the ordered list of the particular base. This is shorter, but each flag loses its
semantics.

In the illustration, we can see that both char-InDia and word-InDia omit
flags on the word “Olympijské”, since it is stored in their dictionaries. We also
see that in case where the word is non-diacritized while the most frequent version
of its base is diacritized, they both use flags that erase diacritization (in the
case of the word “komisi”, for which the most frequent diacritization is “komiśı”).
We can see that, in case of the non-diacritized word, the words which have the
diacritization different from the most frequent one tend to be over-tokenized by
the no-preprocessing system, while they are kept as a whole in both InDia setups
(such as the word “stálá”). Finally, we can see that if we disregard the flags, the
tokenization of the bases for each word is the same with Word-and Char-InDia.

5.1 Main Inline Diacritization Algorithms
Below, we will compare solutions for three of our systems: without preprocessing
(base), character-level InDia that uses the vocabulary to store the most frequent
diacritics and uses sequences of flags for each diacritic sign in a word (char-InDia),
and a word-level InDia that uses the vocabulary with all diacritizations stored
and uses single flags for each word to show the ID of the whole diacritization
sequence for a particular base.

Apart from the translation comparison on the default flores dataset, we also
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Preprocessing Examples
input Olympijské komisi Spojených stát̊u

stálá tajemnice Nobelovy komise
base _Olymp ijské _kom is i _Spojených _stát̊u

_stál á _tajemn ice _Nobelov y _komise

char-InDia _Olymp i jske _KV 5 KV n _komisi _Spojenych
_KV 4 KV k _statu
_KV 2 ID 4 KV č č _stala _ta jem nice _Nobelov
y _komise

word-InDia _Olymp i jske _ N _komisi _Spojenych _ 1
_statu
2 _stala _ta jem nice _Nobelov y _komise

Table 5.1: Illustration of two inline diacritization methods applied to the Czech
excerpts. Two first rows show the inputs, the next lines show the results of
pre-processing and tokenization (“Base” means no pre-processing). The InDia
flags are marked in blue. For char-InDia, KV flag marks the separator between
the keys (indices of the diacritized character) and values (flags for each char-
acter diacritization), and ID is a separator if there are multiple keys. k means
putting “kroužek” diacritization, č means putting “čárka” diacritization, n means
de-diacritizing the letter. For word-InDia, N means de-diacritizing the whole
word, 1 and 2 mean the second- and the third- frequent diacritizations for the
same base. The preprocessing algorithms’ naming follows 2.3.

see if the system is robust against the texts with deleted diacritics (either com-
pletely or in 20% words). Since Czech is considerably richer in diacritizations
than Ukrainian, we only use the Czech-Ukrainian translation pair for the nois-
ing scenario. However, for the default flores dataset, we use both translation
directions to demonstrate that the system can be used on the target side as well.

The table 5.2 shows the extrinsic performance on noise in the non-noised
setup for both directions. We can see that both Char- and Word-InDia handle
both translation directions well and result in very similar scores. It is especially
important for the Ukrainian-Czech translation direction, as it shows both the
ability of the MT system to learn the token sequences which contain flags, and
the InDia decoder allows one to correctly restore the diacritics in the resulting
files.

As for the noised scenario (presented in table 5.3), we can see that both InDia
approaches handle the task significantly better, doubling the quality on the fully
de-diacritized text and yielding 3 BLEU points in the 20% de-diacritized text.
It is notable, though, that for the fully de-diacritized scenario, the performance
of Char-InDia is stably lower. Since it lies within 1 BLEU point span, thus
this may be a matter of stability of the NMT training; however, this may be a
consequence of how the de-diacritization is marked in two approaches. We will
see the demonstration of this below, when we look at the intrinsic performance.
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Czech-Ukrainian Ukrainian-Czech
Prepro-
cessing BLEU chrF COMET BLEU chrF COMET

base 21.6 51.3 0.869 22.7 51.0 0.873
char-InDia 21.7 51.5 0.872 22.8 51.0 0.867
word-InDia 21.7 51.3 0.867 22.7 51.1 0.870

Table 5.2: Extrinsic metrics comparison of the main inline diacritization algo-
rithms for the general (not noised) flo development set, Czech-Ukrainian and
Ukrainian-Czech translation pairs. The preprocessing algorithms’ naming fol-
lows 2.3, the metrics are formulated as in 2.4

.

Noise Preprocessing BLEU chrF COMET
strip base 9.2 36.0 0.552
strip char-InDia 17.9 47.2 0.812
strip word-InDia 18.8 49.1 0.827
strip0.2 base 18.6 48.4 0.800
strip0.2 char-InDia 21.1 50.9 0.862
strip0.2 word-InDia 21.1 51.0 0.861

Table 5.3: Extrinsic metrics comparison of the main inline diacritization algo-
rithms for the noised flo development set, Czech-Ukrainian translation direction.
The noising naming follows 2.2, the preprocessing algorithms’ naming follows 2.3,
the metrics are formulated as in 2.4

.
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Noise Preprocessing CPT AR
none base 3.973 1238
none char-InDia 3.709 1112
none word-InDia 3.903 1156
strip base 2.829 418
strip char-InDia 1.604 480
strip word-InDia 2.530 742
strip0.2 base 3.675 1110
strip0.2 char-InDia 2.922 878
strip0.2 word-InDia 3.511 1040

Table 5.4: Intrinsic metrics comparison of the main inline diacritization algo-
rithms for the un-noised and noised flo development set, Czech texts. The
noising naming follows 2.2, the preprocessing algorithms’ naming follows 2.3, the
metrics are formulated as in 2.4

.

5.1.1 Intrinsic Evaluation of the Czech Texts

We also compared the intrinsic metrics of our systems in Czech texts (since we
do not apply InDia to the Ukrainian side). We can see from the table 5.4, that,
for both non-noised and noised scenarios, the no-preprocessing and Word-InDia
metrics show similar performance, while Char-InDia shows significantly worse
scores. This is, again, logical due to the type of noise we are examining (only
de-diacritization) and the way it is handled by both approaches. As for many
words, there has to be a de-diacritization flag, Word-InDia handles it in a more
optimal way by assigning a single-character token, as Char-InDia can produce
long sequences representing all character IDs which should be de-diacritized. This
makes it similar to the poor intrinsic performance on the fully upper-cased data
of TokenMonster, where it had to apply the upper-cased flag before each token,
and thus was intrinsically very inefficient.

What is more surprising is why the no-preprocessing and Word-InDia algo-
rithms show similar intrinsic performance. The reason for that seems to be lying
in the way the de-diacritized text is tokenized in the no-preprocessing and in
Word-InDia systems. In the first case, the word is over-tokenized since it cannot
find the corresponding diacritized substrings, and because of that it uses more
tokens for a given sentence. In the case of Word-InDia, the words are not over-
tokenized, but almost every word has a flag showing that it is de-diacritized.
Thus, two essentially different processes have the same effect of decreasing the
intrinsic metrics values. The example of this over-segmentation (for the no-
preprocessing system) and over-use of the flags (for Word-InDia and Char-InDia)
is shown in the table 5.5. We can see that the de-diacritized word segmentation
of the bases (pure Latin character sequences) in both InDia implementations is
reasonable; however, they are overwhelmed with the non-diacritization flags.

5.1.2 Vocabulary Analysis

One of our hopes during the inline diacritization implementation was that the
tokenizer would allocate more space to the longer Latin character substrings via
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Preprocessing Tokenization Output
Initial Sentence Na r̊uzných mı́stech v...
De-diacritized Na ruznych mistech v...
base _Na _ru z ny ch _mi st ech _v ...
Word-InDia _Na _ N _ruznych _ N _mistech _v ...

Char-InDia _Na _KV 1 ID 4 KV NN _ruznych
_KV 1 KV N _mistech _v ...

Table 5.5: An example of the fully de-diacritized text tokenized by no-
preprocessing (base) and two InDia algorithms. At the first two rows, the initial
(diacritized) and the de-diacritized input are shown. In the InDia outputs, the
blue characters represent the flags, out of which the N means stripping diacti-
rization (for Word-InDia – full word, for Char-InDia – for particular character).
For Char-InDia, KV shows the separation between the key-value parts of the flag,
and the ID is a delimiter of the indices of the characters that should be diacritized
in the word.

Preprocessing CPTv

base 6.837
char-InDia 6.919
word-InDia 6.911

Table 5.6: Average unique token length in the SentencePiece vocabularies with
and without inline diacritization. The metric CPTv is defined in 2.4.

allocation of all diacritization information to flags. The table 5.6 shows that it
indeed increased the average unique token length by almost 0.1 characters. Still,
the increase is not substantial (it is three times smaller than it was with the
inline casing). This can be explained if we look at the diacritized subwords in
the no-preprocessing tokenizer. There, out of 32,000 tokens, we will see 8,454
diacritized subwords (which comprises a quarter of the whole vocabulary and
approximately a half of the Czech subwords there), but only 583 were having
a non-diacritized analogue. This fundamentally differs from the trends in the
inline casing-optimized vocabularies described in 4.1.2, where up to a half of
the cased unique subwords are doubled with the non-cased ones. Thus, despite
helping having more consistent word splitting with respect to de-diacritization
noise, the potential for increasing the lengths in the non-cased vocabularies is
very restricted.

We also analyzed the difference between the Char-InDia and Word-InDia vo-
cabularies. The overlap between them reaches 31,000 tokens, which shows that
the exact choice of inline diacritization does not significantly influence the cre-
ation of the bare Latin tokens.

5.1.3 Analysis of Char-InDia Flags

Since Char-InDia allows for the multi-character flags due to its marking of each
diacritized character, we allowed the tokenizer to combine the flags for separate
character diacritization operations. In 2.2.2, we hypothesized that combining
such flags may even show some linguistic patterns within the Czech language. In
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Cluster Inputs Outputs
hč žádáni KV 0 ID 1 ID 5 KV hč n zadani

washingtonšt́ı KV 10 ID 12 KV hč washingtonsti
konč́ı KV 3 ID 4 KV hč konci

hh měď KV 1 ID 2 KV hh med
vǐsňových KV 2 ID 3 ID 6 KV hh n visnovych
vyprošťovaly KV 5 ID 6 KV hh vyprostovaly

nč pojmenovaná KV 8 ID 10 KV hč pojmenovana
napsaný KV 4 ID 6 KV hč napsany
drahý KV 2 ID 4 KV hč drahy

Table 5.7: Examples of the clusters of the Char-InDia diacritization operations
flags that are generalized by the SentencePiece tokenizer and seen in the encoded
flores dataset. The h flag means applying háček, č flag means čárka, n flag means
de-diacritization of a character. The flags KV and ID are auxiliary tokens that
delimiter the indices of the diacritized flags and their operations, the numbers
in blue show the indices of the characters (0-based) to which the diacritization
operations should be applied.

the following, we will provide a short analysis of whether it was true. To begin
with, the range of the diacritization operations that we allowed for Char-InDia
was 4 (operations for marking a letter with “háček”, “čárka” or “kroužek”, plus
de-diacritization of the character). The SentencePiece tokenizer that was trained
on the data preprocessed in this way generated 14 tokens that contained one or
more diacritization flags. Four of them were representing the single flags, and
ten others either had combinations of de-diacritization (2 or even 3 de-diacritized
flags as one token) or the combinations of the diacritization operations (sometimes
together with de-diacritization). Thus, the idea of generalizing the diacritization
operations into clusters indeed has some potential. On the other hand, we see
that the most frequently combined operation is de-diacritization, which rhymes
with our analysis on the performance on de-diacritized texts and the need to
possibly create a flag that would signify de-diacritization of all characters in a
word.

However, do these diacritization clusters represent some clear features of the
Czech language? We cannot speculate on that based on the tokenizer vocabulary
only, thus we looked at the text tokenized with Char-InDia and analyzed the
words that were assigned the flags with the combinations of the diacritization
operations. Such occurrences were not abundant, but some combinations, such
as applying two háček signs or a háček and a čárka did occur tens of times in the
texts. Examples of such occurrences are shown in the table 5.7 below.

We could not see the obvious linguistic patterns in any of the diacritization
clusters. As can be seen from the table, they can relate to various parts of speech
and denote different phonemes standing at different distances from each other.
The only two interesting observations that may give a hint of the underlying
patterns are the following. Firstly, we can see that the háček+háček combina-
tions seem to be tied to the neighboring consonants (such as šť). Secondly, the
combination of de-diacritization+čárka tend to be assigned to adjectives or par-
ticiples. Apart from the examples in the table, there are also occurrences of such
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word classes that relate to the same tokenization, for instance, “nazyvaná” or
“radá”. These are anecdotal evidence of such trends and we cannot talk about
that confidently, but we believe that there is space for analysis of that on the
bigger datasets and in different setups.

5.1.4 Analysis of Hallucinations in Ukrainian-Czech MT
Output

As for applying char-InDia on the target side, we performed an analysis of the
hallucination counts in the output texts. Despite all other approaches covered in
the work, be it InCa or Word-InDia, the Char-InDia approach is distinctive for
its use of the sequences of characters that are used to denote a flag for one word.
Moreover, according to the principles of SentencePiece training, we are sure that
these combined flags are represented as sequences of tokens (because of different
classes of signs used to separate the keys from the values in the flag). Thus, we
should be more concerned about hallucinations in this scenario than in the others,
since long sequences of tokens may be more vulnerable to that. We estimated two
types of the most obvious hallucinations: firstly, the pointers to the non-existent
character IDs in the next word (for instance, a pointer to make a “háček” on the
seventh letter of the word, although the length of the word is 3); secondly, the
incompatible diacritic-character combination (for instance, a “háček” pointer on
the letter “p”, which is not permitted in Czech). We will call the first type of
hallucinations “out-of-range”, and the second “wrong sign” type.

However, the results of the MT output are encouraging. Out of 19,760 words
in the target text (detokenized after output), there are 642 char-InDia flags, and
only 8 of them show hallucinations (5 of out-of-range type, 3 of wrong sign type).
What is even more interesting is that if we calculate the hallucinations at the
validation set during the model training, it will show that this small number
of hallucinations (summing to approximately 10) becomes stable by the end of
the first epoch. Thus, it seems that for the standard Char-InDia implementation,
such combined flags are easily processed, and we should not fear the combinations
of the tokens that represent a single flag.

5.2 Ablation Experiments

5.2.1 Data Augmentation

We tried augmenting the training data to estimate if enhancing the system with
fully or partially de-diacritized sentences will help its performance. For augmen-
tation, we used the following method: we created quadruples of the training data,
within which the initial (diacritized) Czech data were kept intact two times, fully
de-diacritized data were introduced once and partially de-diacritizded (in 20% of
the words) data were introduced once. The target Ukrainian data were always
intact.

We compared the performance in the non-augmented and augmented scenarios
of both non-preprocessing system and Char-InDia. Since we expect the Ukrainian
data to be translated into diacritized text, we only tried the noising experiments
in the Czech-Ukrainian direction. The performance on the non-noised dataset
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strip strip0.2

Setup BLEU chrF COMET BLEU chrF COMET
base 9.2 36.0 0.552 18.6 48.4 0.800
char-InDia 17.9 47.2 0.812 21.1 50.9 0.862
base+Aug 21.2 51.0 0.857 21.6 51.4 0.869
char-InDia+Aug 21.2 50.8 0.856 21.4 51.3 0.867

Table 5.8: Extrinsic performance on diacritization-augmented data, Czech-
Ukrainian translation. The metrics are formulated as in 2.4, they show scores for
fully de-diacritized and 20% de-diacritization noising of the development dataset.
The “Setup” naming denotes the systems the following way: “base” and “char-
InDia” stand for the no-preprocessing and Char-InDia systems trained on initial
data; “+Aug” suffix means the training data was augmented with de-diacritized
texts as described above. The horizontal line between the metrics shows the bor-
der between the group of the best scoring results (below the line) and the results
that are at least 1 BLEU point worse (above the line).

strip strip0.2

Setup CPT AR CPT AR
base 2.829 418 3.675 1110
char-InDia 1.604 480 2.922 878
base+Aug 3.727 884 3.841 1275
char-InDia+Aug 1.618 482 2.927 875

Table 5.9: Intrinsic performance on diacritization-augmented data, Czech texts.
We compare the fully de-diacritized and 20% de-diacritization noising of the de-
velopment dataset. The system naming conventions follow the extrinsic table 5.8
above. The figures marked bold show the best results in each parameter and
setup.

was comparable for all systems, and thus we do not describe it here in detail. It
was more interesting to compare the noised scenarios both from the extrinsic and
the intrinsic perspectives. The results of this comparison are shown in Tables
5.8-5.9.

We can see that data augmentation, indeed, helps to improve the quality of
the translation and the efficiency in the intrinsic metrics and allows to reach the
scores for the non-noised scenarios. As for the extrinsic metrics, we can see that
for the fully de-diacritized texts, the border lies between augmentation and non-
augmentation, while for the partial de-diacritization, the standard Char-InDia
already shows a similar performance. This is explained by the fact that, for the
partial de-diacritization, the method of de-diacritization encoding of Char-InDia
still allows us to keep all information without generating too long strings; while
for the full de-diacritization, the long de-diacritization flags start being a problem
for the MT systems.

The evidence supporting this can be found in the intrinsic metrics table, as
we see that Char-InDia suffers from a significant drop in the fully de-diacritized
scenario, and it persists even in the scenario of data augmentation. What is even
more impressive, is that we can see the only significant increase in the internal
metrics with the no-preprocessing and data augmentation setup.
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Does this mean that we should give up InDia in favor of data augmentation
for de-diacritization noise? Firstly, we can see the potential in Char-InDia: as
was already seen from the comparison of the main algorithms (Word- and Char-
InDia), the problem of the solely character-level inline diacritization is that for the
fully de-diacritized texts it makes the encoded lengths too long, and a simple trick
such as marking the word with one “un-diacritized” flag (as is done with word-
InDia) helps both intrinsic and extrinsic performance. Thus, it can be easily
modified in the future implementations of InDia to make the performance on the
fully de-diacritized scenarios better. What is also seen from the data is that in
the partial noising even the current Char-InDia is already a working instrument,
which does not require augmentation. Moreover, we can see the stability of the
intrinsic performance of the algorithm, similar to what we have seen in InCa
ablation studies. On the one hand, it is sad that the augmentation does not
improve it; on the other hand, it shows that we do not have to think of tuning
the augmentation and can rely on the initial data.

Secondly, we should also look at the tokenizer vocabularies trained on the
no-preprocessing data for the augmented and non-augmented dataset. Recall
that in the non-augmented scenario, the share of the diacritized tokens there
was over 8,000, and only 500 of these tokens had their de-diacritized pairs in
the vocabulary. In the augmented scenario, the number of the diacritized tokens
is reduced to 6162 tokens, but the number of its de-diacritized pairs increased
to 2976, yielding almost 10% of the whole vocabulary. This shows that in the
augmented data scenario, the the capacities of the tokenizer trained with no
preprocessing are not optimally used, and in a way are used even less efficiently
than in no augmentation scenario (since more diacritized words have their de-
diacritized pairs). InDia approach solves the problem of such overlap, but to
make it more efficient in terms of intrinsic and extrinsic metrics of the texts, we
will have to combine the word- and char-level methods in one solution.

5.2.2 Naive Char-InDia

In Section 2.2.2 where we were presenting Char-InDia, we argued that, when
assigning the word with diacritization flags, we should depart not from the base
(non-diacritized Latin character sequence), but from its most frequent diacritized
form. We decided to verify this claim by running the extrinsic and intrinsic
evaluation of the Czech-Ukrainian translation on the “naive” implementation of
Char-InDia. In this scenario, analogously to naive InCa, we do not track the
most frequent diacritizations of each word; instead we depart from the base and
mark every diacritization explicitly with the Char-InDia technique. The results
of this evaluation in comparison to the standard Char-InDia are shown below in
the tables 5.10-5.11.

The experiments support our initial claims: using the naive implementation
does not help us improving extrinsic performance on the initial data and partially
de-diacritized data (the ranges of variation in chrF and COMET even give us
hints that this can be statistically significant difference; but we will not claim
that as we know about the instability of the training systems). It is also seen
in the intrinsic metrics, as the values of CPT and AR drop to their halves. The
only slight increase of performance is seen on the fully de-diacritized noise, which
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Noise Setup BLEU chrF COMET
none Char-InDia 21.7 51.5 0.872
none Char-InDia-n 21.0 50.4 0.855
strip Char-InDia 17.9 47.2 0.812
strip Char-InDia-n 18.4 48.0 0.804
strip0.2 Char-InDia 21.1 50.9 0.862
strip0.2 Char-InDia-n 20.5 50.1 0.849

Table 5.10: Extrinsic performance comparison of standard Char-InDia and naive
Char-India (marked “Char-InDia-n”), Czech-Ukrainian translation. The metrics
are formulated as in 2.4, each two lines show comparison on no noising, full de-
diacritization and 20% de-diacritization of the development dataset (defined in
“Noise” column).

Noise Setup CPT AR
none Char-InDia 3.709 1112
none Char-InDia-n 1.579 478
strip Char-InDia 1.604 480
strip Char-InDia-n 4.092 1207
strip0.2 Char-InDia 2.922 878
strip0.2 Char-InDia-n 1.807 545

Table 5.11: Intrinsic performance comparison of standard Char-InDia and naive
Char-India (marked “Char-InDia-n”), Czech texts. The system naming conven-
tions follow the extrinsic table 5.10 above.

is logical, as the naive implementation does not use any flags on the fully de-
diacritized text. Still, even in this setup we see that the extrinsic performance
does not reach the non-noised results of the translation.

Finally, if we look at the tokenizer vocabulary trained on the naive Char-
InDia, we will see that the number of tokens consisting of only the diacritization
flags has increased to 31 (from 14 in standard Char-InDia), which is again less
optimal. Having all this in mind, we can conclude that our decision to use the
most frequent diacritization of the word was indeed a better idea than to use the
base.
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6. Experiments with Romanization
The final chapter of our experimental research is related to the effect of Ukrainian
romanization on both the Czech-Ukrainian translation and on the intrinsic met-
rics of encoding Ukrainian and Czech texts. Firstly, we will look at the extrin-
sic performance of Czech-to-Ukrainian and Ukrainian-to-Czech translation, and
then we will analyze if romanization has a positive impact on the encoding of
the Ukrainian texts. We compared only the no-preprocessing scenario for both
languages, to evaluate the effect of sole romanization on both directions. We
compare two types of romanization presented in 2.2.3 and the scenario without
romanization, where we treat Ukrainian as Cyrillic. Recall that the difference be-
tween the romanization types is treating the soft sign, which is initially (marked
“roman” in the table) not switched to a Latin character due to the absence of
its analogue; however, this appears to enforce token splitting over this character
because of the SentencePiece restriction on consistent Unicode script within the
same token. The modified romanization, called “roman+soft”, switches the soft
sign to an auxiliary Latin character as well.

The results of the translation evaluation in both directions are represented in
Table 6.1. We can see, similarly to the inline casing or inline diacritization, that
our romanization techniques do not lose in performance in both directions when
applied to the Ukrainian. We also do not see any substantial difference between
the two romanization variants.

We will now take a closer look at the intrinsic performance of the romanization
techniques, presented in Table 6.2. If we look at the encoding performance of
Ukrainian texts, we will see an improvement of up to 0.2 characters per token
and up to 100 ranks in the average rank score. We can also see that the complete
romanization (which includes the soft sign) works better than that using the
Cyrillic soft sign. This is evident since SentencePiece consistently split the words
over that sign. This can be seen in detail if we look at the tokenizer vocabularies
generated for each system. In the “roman” case, the only token containing the
soft sign is the soft sign itself. In the no-preprocessing vocabulary, however, we
see that there are over 1700 tokens containing the soft sign; thus the necessity in
romanizing all cheracters is clear. In “roman+soft” we see better handling of the
soft sign, as there are 1057 tokens containing the soft sign. We should also note

Czech-Ukrainian Ukrainian-Czech
Romanization BLEU chrF COMET BLEU chrF COMET
none 21.6 51.3 0.869 22.7 51.0 0.873
roman 21.7 51.4 0.870 23.0 51.2 0.874
roman+soft 21.5 51.3 0.872 22.8 51.1 0.872

Table 6.1: Extrinsic performance comparison of no preprocessing and two ro-
manization preprocessing techniques for Czech-Ukrainian and Ukrainian-Czech
translation directions. The metrics are formulated as in 2.4. In column “Roman-
ization”, “none” stands for the “base” experiments without preprocessing, “roman”
stands for romanization of all characters except for the soft sign, and “roman+soft”
stands for romanization of all characters including the soft sign.
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Czech Ukrainian
Romanization CPT AR CPT AR
none 3.973 1238 4.033 1189
roman 4.065 1328 4.095 1223
roman+soft 4.049 1320 4.261 1286

Table 6.2: Intrinsic performance comparison of no preprocessing and two ro-
manization preprocessing techniques for Czech and Ukrainian texts. The system
naming conventions follow the extrinsic table 6.1 above.

Romanization CPTv

none 6.837
roman 7.071
roman+soft 7.134

Table 6.3: Average unique token length in the SentencePiece tokenizer vocabu-
laries for no preprocessing and two romanization preprocessing techniques. The
system naming conventions follow the extrinsic table 6.1 above.

that implementing the romanization helped to increase the intrinsic vocabulary
metric: as Table 6.3 shows, there is an increase in the CPTv metric for both types
of romanization, and romanization with soft sign performs the best.

6.1 Vocabulary Overlap Estimation
Our main goal was to increase the overlap between the token coverage of the
two related languages. Did we succeed in that? If we look at the results of
tokenization (for instance, at the table 6.4), we will easily see that in many cases,
the token overlap was granted due to a simple latinization of the Ukrainian (it
works for both loanwords like “Tokio” and Slavic cognates like “bude”), and at the
same time many words that are obviously linguistic cognates differ slightly and
because of that cannot be mapped to the same tokens (such as “jedynym” and
“jediným”). Thus, we will need an estimation of how successful we were.

We used two approaches to estimate the token overlap. We took the corre-
sponding tokenized texts in Czech and Ukrainian and, firstly, counted the over-
lap of the unique tokens in the two texts. We also computed the number of the
unique tokens in both encoded texts and obtained the intersection-over-union
score, showing the fraction of the shared unique tokens to the total of the ob-
served unique tokens. Secondly, we calculated the probability distributions of
the tokens for both texts and applied the Jensen-Shannon distance metric to
these distributions. Contrary to the intersection over union, the Jensen-Shannon
distance takes into account the frequencies of the tokens, thus it should be less
sensitive towards rare occurrences of the corresponding tokens in two texts (for
instance, if the same English word was used once in two texts). The results of
this comparison are presented below in the table 6.5.

We can see that for both romanization approaches, the overlap jumped signif-
icantly to over 1700 tokens, yielding 5% of the whole 32,000 subword dictionary
and to 13% of the tokens used in the particular texts. The JSD metric also de-
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Romani-
zation Ukrainian Czech

input Токiо буде єдиним
азiатським мiстом,

Tokio bude jediným asijským
městem,

none _Токiо _буде _єдиним
_азiатськ им _мiстом ,

To ki o _bude _jediným _asi-
jský m _městem ,

roman _Tokio _bude _jedynym
_aziats ь kym _mistom ,

_Tokio _bude _jediným
_asijský m _městem ,

roman+soft
_Tokio _bude _jedynym
_aziatsk ym _mistom ,

_Tokio _bude _jediným
_asijský m _městem ,

Table 6.4: Illustration of the romanization experiments on the encoded Czech
and Ukrainian sentence. The first line shows the input sentence before (possibly
romanization and) tokenization. The overlapping tokens in the two languages
are marked blue. The system naming conventions follow the extrinsic table 6.1
above.

Romanization Overlap IoU JSD
none 285 0.020 0.780
roman 1751 0.130 0.630
roman+soft 1738 0.129 0.627

Table 6.5: The degree of overlap in the encoded Czech and Ukrainian bitext. The
“Overlap” column stands for the count of unique tokens met in both texts (bigger
is better), “IoU” stands for Intersection-over-Union score (fraction of overlap value
by the number of unique tokens used in either of the texts), and “JSD” stands
for Jensen-Shannon Distance (scale 0-1, lower is better). The system naming
conventions follow the extrinsic table 6.1 above.
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creased by 0.15, which is a considerable change bearing in mind that even the
noised versions of the texts in the same language have a high JSD: for instance,
the non-noised and lower-cased versions of the file in the same language have a
JSD score of 0.19, and the non-noised and de-diacritized versions – 0.45.

The last comparison that we conducted was the estimation of the general-
ization potential of SentencePiece training on texts with the same writing sys-
tem. We took the SentencePiece dictionary from the initial (no-romanization)
setup, where we found 15,027 out of 32,000 tokens that consisted of the Cyrillic
characters. We took them all and romanized them straightforwardly with our
romanization script. Then we searched in the SentencePiece vocabulary that was
trained on the romanized data to find the complete analogues of the initial Cyril-
lic tokens that we romanized with a script post factum. We could find 13,394
such tokens. This gives us a hint that for most romanized tokens in Ukrainian,
their distribution is still independent from the distribution of the Czech tokens,
therefore most of them are grouped the same way with no regard to the alphabet
they are encoded with.

From the comparisons conducted above we can see that a straightforward ro-
manization of the Ukrainian characters (or, in case of the palatalized consonants,
character bigrams) allows us to increase the overlap between the tokens both in
the tokenizer vocabulary representations and in the token distributions observed
in the tokenized texts of the two languages. Still, we see much space for improve-
ment with respect to both trying the inline algorithms described in the earlier
chapters, as well as more elaborate versions of mapping the Cyrillic texts on the
Latin script.
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7. Comparison of Intrinsic and
Extrinsic Metrics
We have already examined the comparison of the extrinsic and intrinsic perfor-
mance of various algorithms within the particular setups. In this chapter, we will
give a broader overview of the metric distributions and see if there is correlation
between the intrinsic and intrinsic performance of tokenization.

Firstly, we will take a look at the metrics on all experiments and visualize the
paired distributions of the main intrinsic (CPT, AR) and extrinsic (BLEU, chrF,
COMET) metrics used in the analysis. The graph representing this visualization
is shown in the figure 7.1. We can see that, in general, a slight linear correlation
between the extrinsic metrics and intrinsic metrics takes place, and in all intrinsic-
extrinsic pairs it is even statistically significant (with a p-value lower than 0.05).
Judging by Pearson and Spearman’s correlation coefficients, the average rank
statistic is more correlated with the extrinsic values than the character per token
ratio; out of the extrinsic metrics, the BLEU and COMET scores tend to be
slightly more correlating than the ones of chrF.

However, from the visualization on the graphs we can see two common prob-
lems for all combinations: on the one hand, for the intrinsic scores of the “medium”
quality, there are multiple cases of similar intrinsic values corresponding to a large
scale of the extrinsic values. This makes such a comparison unreliable for the cases
that represent the systems which are in the middle of the distribution. Another
problem is that for the best scoring extrinsic systems (within a very small range
of variation over the y-axis), the variation in the intrinsic metrics is very wide.
This makes intrinsic metrics unhelpful if we want to distinguish similar but highly
scoring systems, which is the crucial case for MT in general.

Comparing all setups within one plot and one statistical test may blur the
patterns that can possibly be seen within a particular text. This is especially
important for the potential use of the intrinsic metric as a way to search for the
optimal configurations for the extrinsic systems. For that task, we are mostly
interested in how the relative ranking of intrinsic metrics within a given text
reflects the ranking of the resulting extrinsic performance. Thus, we conduct
separate ranking tests for each language and for each noising scenario. We used
both the Spearman rank correlation coefficient (in table 7.1) and Kendall tau (in
table 7.2).

We can see from this comparison that indeed some of the noising parame-
ters (although only related to casing) start showing stronger ranking correlation
between the extrinsic and intrinsic metrics. This is not surprising for the fully
upper-cased scenarios (where the correlation coefficients are the highest), as we
could see from the detailed analyses. However, we see that for the randomly cased
10% of words scenario the correlation is also considerably high. Another inter-
esting observation is the case of the fully lower-cased noise: here, the coefficient
is negative, which may be surprising as both our intrinsic and extrinsic metrics
are organized by the “higher is better” principle. If we look at the systems with
the highest intrinsic (Marian inline casing, TokenMonster) and extrinsic (various
types of casing augmentation, InCa) scores for this scenario, we may see a pos-
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CPT against... AR against...
Lang Noise BLEU chrF COMET BLEU chrF COMET
cs none 0.215 0.346 0.105 0.083 0.182 0.172
cs lower -0.468 -0.594* -0.424 -0.224 -0.365 -0.194
cs upper 0.668* 0.676* 0.656* 0.603* 0.626* 0.594*
cs rand0.1 0.594* 0.516* 0.488* 0.571* 0.504* 0.482*
cs strip 0.214 0.262 -0.048 0.619 0.667 0.429
cs strip0.2 0.333 0.405 0.214 0.143 0.19 0.048
uk none 0.281 0.055 0.21 0.227 -0.064 0.15
uk lower -0.715* -0.77* -0.556* -0.571* -0.626* -0.506*
uk upper 0.735* 0.691* 0.629* 0.738* 0.688* 0.591*
uk rand0.1 -0.213 -0.344 -0.293 -0.253 -0.379 -0.287

Table 7.1: Spearman’s rank correlation between the intrinsic metrics (denoted
above) and the extrinsic metrics (denoted for each column below), split by lan-
guage (“cs” for Czech, “uk” for Ukranian) and noising of the flores dataset (naming
follows 2.3). The metrics are formulated as in 2.4. The statistically significant
scores with p-value lower than 0.05 are marked with an asterisk.

CPT against... AR against...
Lang Noise BLEU chrF COMET BLEU chrF COMET
cs none 0.13 0.282 0.06 0.028 0.147 0.108
cs lower -0.283 -0.367 -0.276 -0.117 -0.233 -0.109
cs upper 0.483* 0.5* 0.467* 0.433* 0.45* 0.417*
cs rand0.1 0.384* 0.304* 0.246 0.355* 0.275 0.246
cs strip 0.071 0.143 0.071 0.429 0.5 0.429
cs strip0.2 0.286 0.357 0.143 0.071 0.143 -0.071
uk none 0.194 0.036 0.151 0.166 -0.04 0.091
uk lower -0.477* -0.561* -0.427* -0.433* -0.5* -0.4*
uk upper 0.583* 0.55* 0.45* 0.583* 0.55* 0.45*
uk rand0.1 -0.142 -0.192 -0.151 -0.15 -0.233 -0.159

Table 7.2: Kendall’s tau correlation between the intrinsic metrics (denoted above)
and the extrinsic metrics (denoted for each column below), split by language (“cs”
for Czech, “uk” for Ukranian) and noising of the flores dataset (naming follows
2.3). The statistically significant scores with p-value lower than 0.05 are marked
with an asterisk.
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CPT against...
Lang Noise BLEU lc(BLEU) chrF lc(chrF)
cs none 0.178 0.39 0.291 0.461*
cs lower -0.468 -0.379 -0.594* -0.646*
cs upper 0.668* 0.721* 0.676* 0.75*
cs rand0.1 0.511* 0.469* 0.407 0.488*
uk none 0.241 0.124 -0.019 -0.241
uk lower -0.715* -0.711* -0.77* -0.758*
uk upper 0.735* 0.815* 0.691* 0.797*
uk rand0.1 -0.213 -0.368 -0.344 -0.312

Table 7.3: Spearman’s rank correlation between the CPT metric (denoted above)
and the standard and lower-cased versions of BLEU and chrF metrics (denoted
for each column below), split by language (“cs” for Czech, “uk” for Ukranian) and
noising of the flores dataset (naming follows 2.3). The metrics are formulated as
in 2.4. The statistically significant scores with p-value lower than 0.05 are marked
with an asterisk.

sible explanation to it: the pre-processing algorithms in the former group favour
the lower-cased data (e.g. they use flags for all casing apart from lower-case),
while the algorithms in the latter group are trained for the general robustness in
various tasks. This leads us to the conclusion that we should pay attention to
what are the “preferred” options of noise for each pre-processing system, because
if they are over-sensitive to a particular noising, they may start optimizing the
intrinsic performance while losing in the extrinsic scores.

Finally, we should pay special attention to absence of correlation in the di-
acritization noise. This can be explained by the internal structure of the flags
that are used in Char-InDia, as they themselves can consist of multiple char-
acters and be even split to multiple tokens. This shows that for various types
of typographic effects, different intrinsic metrics can be helpful. What is also
important is that the versions of the extrinsic metrics, if they are prepared for
a particular type of noising, can show bigger correlation with the given intrinsic
metrics. This can be shown in Table 7.3, where we compare the intrinsic metrics
and the standard BLEU and chrF scores with their lower-cased versions (for the
sake of brevity, we only show an excerpt with the comparison of CPT against
the extrinsic metrics; with AR, however, the trends are similar). We can see that
the correlation scores that were seen with standard BLEU and chrF, are consis-
tently higher in the lower-cased versions of these metrics; moreover, we see more
statistically significant correlations which even tackle the non-noised scenarios.

All the observations above show us that for different types of typographic
phenomena (casing or diacritization), both extrinsic and intrinsic metrics should
be carefully chosen and paired. This motivates us for future research in finding
a better way of intrinsic evaluation, especially for the de-diacritized texts.

7.1 Intrinsic Metrics Comparison
We have seen that we can benefit from using the intrinsic metrics for estimat-
ing the extrinsic performance on our tasks (although only in a small subset of
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scenarios). But how important is it to use both character per token ratio and
average rank? To answer that, we plot the distribution of two intrinsic metrics
and compute their correlation. The results are shown in the figure 7.2. We can
see the obvious correlation from the visualized distribution, supported by the
Pearson’s and Spearman scores. Since we have not seen an obvious advantage of
any of the intrinsic metrics compared to each other in the section above while
compared directly to the extrinsic metrics, and since the intrinsic metrics highly
correlate between each other, using both metrics does not add much information
to intrepreting the models performance and we can resort to one of the two.

The last metric that we have to compare is the average length of a vocabulary
item, CPTv. We are interested in seeing whether this metric that is related to the
internal structure of the tokenizer can be a good predictor for the intrinsic or the
extrinsic metrics. We created a graph representing the distribution of the CPTv

scores of each experiment and the scores of the extrinsic and intrinsic metrics
that were calculated for the texts generated by the tokenizers. The results are
represented in the figure 7.3 for one extrinsic and one extrinsic metric only, as
the behavior of the other metrics is similar. We can see that, for both BLEU and
CPT, the distribution of the metrics is skewed toward the upper left quadrant,
and at the same time, the range of the values for each CPTv score is very wide.
Thus, we can conclude that CPTv should not be considered as a predictor of the
extrinsic or intrinsic performance of systems. However, we still find this metric
useful as it provides a better understanding of the inner structure of the tokenizer,
not only the distributions that it generates.
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Figure 7.1: Pairwise comparison of the main extrinsic and intrinsic metrics on all
experiments. In each graph, the x-axis represents the intrinsic metric score and
the y-axis – the extrinsic metric score. The colours represent the language of the
encoded text (and, for extrinsic metric, the source) – red is for Czech (and Czech-
Ukrainian direction), blue is for Ukrainian (and Ukrainian-Czech direction). The
ρ stands for Pearson correlation coefficient, the rs stands for Spearman’s rank
correlation coefficient; the asterisk shows if the p-value is lower than 0.05.
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Figure 7.2: Comparison of two intrinsic metric distributions – character per token
(CPT, x-axis) and average rank (AR, y-axis). The colours represent the language
of the encoded text – red is for Czech, blue is for Ukrainian. The ρ stands for
Pearson correlation coefficient, the rs stands for Spearman’s rank correlation
coefficient; the asterisk shows if the p-value is lower than 0.05.
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Figure 7.3: Comparison of two intrinsic CPTv score on the tokenizer and the
intrinsic (CPT) and extrinsic (BLEU) scores for the texts generated by the tok-
enizers. The CPTv score is shown over x-axis, the extrinsic and intrinsic metrics
are shown over y-axis. Each data point shows a metric for a particular text; they
differ by the color depending on the type of noising of the text which is encoded.
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Conclusion
The primary goal of our work was to introduce the inline casing algorithms that
would enhance intrinsic and extrinsic performance in Czech-Ukrainian machine
translation in noised scenarios. We show that the proposed inline casing solution,
InCa, manages to show the best performance on some of the noised texts while
performing on par in other noising scenarios. We also conduct the analysis of
the intrinsic performance of our algorithm and the existing alternatives and show
that the proposed algorithm is more stable and that the tokenizer vocabulary
generated by it is more interpretable than competing solutions. This is a crucial
advantage of an algorithm in the era of neural NLP and large language models,
since “just good performance” is not enough, as it does not provide the explanation
of black-box processes within the system. Moreover, our algorithm does not
require data augmentation, which was considered the preferred setup for some of
the inline casing algorithms against which we compared our system.

The second goal of our work was to leverage the inline approach for the pre-
processing of diacritized texts. Being the first, to our knowledge, to try it in
this field, we show that this approach shows significant improvement on the de-
diacritized Czech texts without losing performance on the original data. We see
that two “extremes” of the inline diacritization that we have suggested, character-
level InDia and word-level InDia, have imperfections, and the best solution would
be to try to combine these two approaches. Unfortunately, due to the lack of time
and compute resources, we did not manage to do that within the thesis.

The third goal of our research was to examine the impact of romanization
of Ukrainian texts for the Czech-Ukrainian translation pair. We show that the
intuition behind increasing the shared vocabulary can be supported by the ob-
servations, and the extrinsic performance of the system remains stable. Still,
we see that there is space for generalizing the vocabulary even more, although
it has to be done through either more fine-grained romanization approaches or
through combination of romanization and other preprocessing (for instance, the
above-mentioned InCa and InDia).

Finally, we aimed to perform the simultaneous extrinsic and intrinsic exami-
nation of the tokenizers with respect to preprocessing, as well as comparing the
extrinsic and intrinsic metrics on our data. Within our research, we showed that
one of the recently suggested metrics, Rényi efficiency, is not applicable for the
setup of the pre-processed tokenizers and we instead use other metrics to explain
the internal processes of the tokenizers. We also show that, apart from the in-
terpretation of the tokenizers as they are, the intrinsic metrics tend to correlate
with the extrinsic performance in some of the noising scenarios, which may en-
courage the community to use them as approximations for choosing the optimal
tokenizers without training the full rounds of tokenizers with downstream neural
NLP systems, which takes much time and compute. At the same time, we show
that the scope of this correlation is quite narrow and depends on the particular
noising scenario and the choice of the extrinsic metrics used for the evaluation.

Our research has several limitations. Firstly, we restricted the scope of lan-
guages to the single language pair of the same family, which uses similar ortho-
graphical principles. Even within the European language area and Latin script-
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based languages, there are other orthography systems such as German, where
each noun is title-cased; thus, we cannot claim that the performance and stabil-
ity of our system will be replicated for other language pairs. Similar problems
stand for diacritization, as there are languages that use a significantly wider range
of diacritics (such as Vietnamese), for which our InDia system may end up being
inefficient.

Secondly, we evaluated our approaches (and, for inline casing, the competing
systems) on a single validation dataset whose domain partially overlaps with
the training data (Wikipedia). We need to evaluate the robustness of our (and
competing) systems towards unseen domains, as our system relies on a pre-trained
vocabulary of the words seen in the training data.

Finally, for the sake of comparison of the extrinsic performance of the sys-
tems, we did a limited training of the MT systems. For instance, the current
version of the Charles translator for Ukraine which is accessible online shows a
stable performance of several BLEU points higher than ours, since it uses a bigger
Transformer model and is trained for a week (contrary to one day in our case)
and on the back-translation augmented data. Thus, we did not claim that our
algorithm reaches state-of-the-art on the Czech-Ukrainian translation pair; in-
stead, we fixed all training parameters and compared the performance of various
accessible preprocessing approaches within the same setting. The problem of the
restricted training setup is also reflected in the extrinsic metrics performance: as
we have shown, BLEU scores for the systems that were trained with exactly the
same parameters show variation up to 1 BLEU point; this puts constraints on
our conclusions that are made about the comparison of the different algorithms
that we did. However, we tried to show the intervals of such variations and to
pay more attention responsibly to situations where the difference in the extrinsic
scores was greater than the expected variation.

Apart from the future experiments that we have already mentioned above
to mitigate the limitations of our work (such as applying the systems to other
languages or testing them in other domains), there are several other directions
for prospective research in this field.

Firstly, the inline approaches suggested by us focus on the word-level variation
of the words; however, we can imagine that the casing noise or diacritization
omitting will be on particular characters within the word. It would be interesting
to compare our approach with other existing approaches for such setups and
possibly to enhance InCa for that (while character-level InDia seems to be ready
for it, but it needs verification).

Secondly, the tokenizers used in our comparison were both based on the Uni-
gram language model in SentencePiece (and on a similar approach in TokenMon-
ster). Thus, it would be useful to see how our approaches would help the NMT
system if the tokenizers trained on the data would be using other principles, such
as BPE or WordPiece.

Thirdly, as was shown in the fully upper-cased or fully de-diacritized scenarios,
the best performance in such cases is reached by the systems that use flags for as
long sequences as possible, for the spans of the words or even for the full lines.
Thus, in future, we should try introducing such flags for other types of noising
and see if their added value is comparable to the flags that are already used for
other long sequences.
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Finally, it would be interesting to see how the MT system reacts to the par-
ticular flags directly, for instance, by examining the attention weights assigned to
the flags and their connections with other tokens.

7.2 Ethical Statement
One of our work’s focuses was the improvement of the robustness of the systems
against the noise. The robustness improvement can be seen as a dual use technol-
ogy, if a user intentionally tries to prevent the automatic analysis of their texts. In
many cases, such an activity of intentional noising can be used for illegal activities
such as phishing or other type of fraud. However, in countries with oppressive
political regimes, the total scrapping of the content generated by the users can
be used for censorship and tracking of dissidents. Based on the experience of the
author of the thesis, we hope that the scope of the noising scenarios examined
here is different from the one generally used to hide oppositional content. Still,
we urge the community to bear the possibility of the robust systems they develop
for evil purposes.
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lation: a deep learning system reaches news translation quality compara-
ble to human professionals. Nature Communications, 11(1):4381, Septem-
ber 2020. ISSN 2041-1723. doi: 10.1038/s41467-020-18073-9. URL https:
//www.nature.com/articles/s41467-020-18073-9.
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WMT19 Test Suite: Machine Translation of Audit Reports. In Proceedings
of the Fourth Conference on Machine Translation (Volume 2: Shared Task
Papers, Day 1), pages 481–493, Florence, Italy, 2019. Association for Compu-
tational Linguistics. doi: 10.18653/v1/W19-5355. URL https://www.aclweb.
org/anthology/W19-5355.

John S. White, Theresa O’Connell, and Francis O’Mara. The ARPA MT Evalu-
ation Methodologies: Evolution, Lessons, and Future Approaches. pages 193–
205, Columbia, Maryland, USA, 1994. URL https://aclanthology.org/
1994.amta-1.25/.

Benoist Wolleb, Romain Silvestri, Giorgos Vernikos, Ljiljana Dolamic, and Andrei
Popescu-Belis. Assessing the Importance of Frequency versus Compositionality
for Subword-based Tokenization in NMT. 2023. doi: 10.48550/ARXIV.2306.
01393. URL https://arxiv.org/abs/2306.01393. Publisher: arXiv Version
Number: 2.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff
Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan
Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George
Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex
Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean.
Google’s Neural Machine Translation System: Bridging the Gap between Hu-
man and Machine Translation. 2016. doi: 10.48550/ARXIV.1609.08144. URL
https://arxiv.org/abs/1609.08144. Publisher: arXiv Version Number: 2.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya
Siddhant, Aditya Barua, and Colin Raffel. mT5: A Massively Multilingual
Pre-trained Text-to-Text Transformer. In Proceedings of the 2021 Conference
of the North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, pages 483–498, Online, 2021. Association
for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.41. URL
https://aclanthology.org/2021.naacl-main.41.

Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan
Narang, Mihir Kale, Adam Roberts, and Colin Raffel. ByT5: Towards

117

https://ieeexplore.ieee.org/document/9648705/
http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://www.aclweb.org/anthology/W19-5355
https://www.aclweb.org/anthology/W19-5355
https://aclanthology.org/1994.amta-1.25/
https://aclanthology.org/1994.amta-1.25/
https://arxiv.org/abs/2306.01393
https://arxiv.org/abs/1609.08144
https://aclanthology.org/2021.naacl-main.41


a Token-Free Future with Pre-trained Byte-to-Byte Models. Trans-
actions of the Association for Computational Linguistics, 10:291–306,
March 2022. ISSN 2307-387X. doi: 10.1162/tacl_a_00461. URL
https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00461/
110049/ByT5-Towards-a-Token-Free-Future-with-Pre-trained.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi.
BERTScore: Evaluating Text Generation with BERT, February 2020. URL
http://arxiv.org/abs/1904.09675. arXiv:1904.09675 [cs].

Bo Zheng, Li Dong, Shaohan Huang, Saksham Singhal, Wanxiang Che, Ting
Liu, Xia Song, and Furu Wei. Allocating Large Vocabulary Capacity for
Cross-Lingual Language Model Pre-Training. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language Processing, pages 3203–
3215, Online and Punta Cana, Dominican Republic, 2021. Association for
Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.257. URL
https://aclanthology.org/2021.emnlp-main.257.

Vilém Zouhar, Clara Meister, Juan Luis Gastaldi, Li Du, Mrinmaya Sachan, and
Ryan Cotterell. Tokenization and the Noiseless Channel. 2023. doi: 10.48550/
ARXIV.2306.16842. URL https://arxiv.org/abs/2306.16842. Publisher:
arXiv Version Number: 1.

118

https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00461/110049/ByT5-Towards-a-Token-Free-Future-with-Pre-trained
https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00461/110049/ByT5-Towards-a-Token-Free-Future-with-Pre-trained
http://arxiv.org/abs/1904.09675
https://aclanthology.org/2021.emnlp-main.257
https://arxiv.org/abs/2306.16842


List of Figures

2.1 Average number of diacritized characters for each word length, cal-
culated on the T8M training dataset (only Czech side). The x-axis
represents the word length in characters (only subset of 1 to 25
characters is taken since it covers the majority of the words). The
left y-axis shows the average number of diacritized characters for
each word length; the two lines are showing the values (red is com-
puted on unique word types, blue is weighted by the frequencies of
each word type). The right y-axis shows the share of the cumula-
tive distribution function of the words coverage in the dataset; the
grey area is showing its values. . . . . . . . . . . . . . . . . . . . . 31

2.2 Average Levenshtein distance of the diacritization variants (ranked
by frequency) for the Czech data. The x-axis represents the Word-
InDia diacritization flags in ascending order. The number repre-
sents the frequency rank. On the right table, the “pivotal” words
from which distance is computed is the base, thus all ranks (in-
cluding most the most frequent, denoted by “0” flag) are shown.
On the left table, the most frequent version is not presented as
it is pivotal point itself; the negative “X” flag represents the base
form in case it is present in the training data and different from
the most frequent one. The y-axis represents the Levenshtein dis-
tance between each rank and the “pivot”, which is averaged over
the whole InDia vocabulary entries. . . . . . . . . . . . . . . . . . 32
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A. Appendix

A.1 General Statistics on Main Inline Casing Al-
gorithms

Noise Prepro-
cessing CPT AR EFF BLEU(lc) chrF(lc) COMET

none base 3.973 1238 0.538 21.622.1 51.351.8 0.869
none inca 3.995 1166 0.522 21.722.4 51.452.1 0.870
none inca-n 3.592 1042 0.423 21.922.4 51.452.0 0.872
none marian 4.033 1354 0.554 21.922.5 51.752.2 0.876
none tkm 3.619 1101 0.492 21.421.9 51.151.6 0.870
lower base 3.924 1047 0.539 18.720.9 49.450.6 0.849
lower inca 3.671 1069 0.444 19.221.8 50.151.6 0.856
lower inca-n 4.123 1193 0.527 19.221.8 49.751.3 0.855
lower marian 4.115 1265 0.581 18.921.5 49.851.3 0.859
lower tkm 3.760 1135 0.452 18.720.9 49.450.7 0.850
rand0.1 base 3.745 1233 0.549 19.920.6 49.450.3 0.839
rand0.1 inca 3.715 1085 0.473 20.522.0 50.051.7 0.855
rand0.1 inca-n 3.394 985 0.391 20.621.8 50.251.4 0.857
rand0.1 marian 3.907 1324 0.529 21.021.8 50.951.9 0.863
rand0.1 tkm 3.509 1063 0.489 20.221.2 50.151.2 0.854
upper base 1.625 60 0.658 1.61.9 22.523.0 0.448
upper inca 3.890 1134 0.500 21.321.3 51.351.3 0.871
upper inca-n 3.870 1121 0.488 20.720.7 50.750.7 0.867
upper marian 3.917 1213 0.551 15.520.4 39.150.7 0.814
upper tkm 2.434 647 0.226 15.517.9 46.648.9 0.840

Overview of the intrinsic and extrinsic metrics for the main Inline casing
algorithms, Czech-Ukrainian translation direction. The "Noise" column shows

which type of noising was applied (the description of the values are explained in
2.1), the "Preprocessing" table shows which case preprocessing algorithms were
applied, where "base" means no preprocessing and "inca-n" means naive InCa,
and all other algorithms are explained in 2.3; all metrics are defined in 2.4. The

sub-scripted values under BLEU and chrF metrics show the lc(BLEU) and
lc(chrF) metrics, correspondingly.
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Noise Prepro-
cessing CPT AR EFF BLEU(lc) chrF(lc) COMET

none base 4.033 1189 0.516 22.723.2 51.051.5 0.873
none inca 4.014 1113 0.500 22.723.3 51.051.7 0.867
none inca-n 3.635 997 0.417 23.223.7 51.251.8 0.873
none marian 4.197 1301 0.563 23.323.7 51.451.9 0.875
none tkm 4.062 1336 0.503 22.923.3 51.051.5 0.870
lower base 4.010 1024 0.519 19.622.1 49.350.6 0.847
lower inca 3.739 1034 0.442 20.422.9 50.151.5 0.853
lower inca-n 4.160 1135 0.504 19.922.7 49.451.1 0.854
lower marian 4.298 1235 0.602 20.122.8 49.651.1 0.853
lower tkm 4.237 1383 0.474 19.922.3 49.350.7 0.846
rand0.1 base 3.785 1154 0.527 21.221.9 49.550.5 0.844
rand0.1 inca 3.756 1041 0.460 21.522.9 49.951.6 0.850
rand0.1 inca-n 3.450 946 0.388 22.023.1 50.351.5 0.859
rand0.1 marian 4.069 1266 0.534 22.523.4 50.651.7 0.862
rand0.1 tkm 3.931 1289 0.500 21.922.8 50.251.2 0.856
upper base 1.569 46 0.678 1.92.5 21.823.2 0.419
upper inca 3.944 1091 0.486 22.822.8 51.351.3 0.865
upper inca-n 3.915 1069 0.473 22.022.0 50.850.8 0.861
upper marian 4.102 1181 0.566 17.622.3 41.451.0 0.822
upper tkm 2.702 755 0.219 17.619.9 47.449.3 0.842

Overview of the intrinsic and extrinsic metrics for the main Inline casing
algorithms, Ukrainian-Czech translation direction. The legend is the same as in

A.1.
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