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namics of the given mathematical models. Subsequently, the proper understanding of the physical
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tude stability analysis of flows of the fluids described by these models. The stability analysis
is based on general concepts introduced in [P1]. Finally, papers [P9] and [P10] deal with math-
ematical description of certain nonlinear phenomena encountered in experimental investigation
of viscoelastic rate-type fluids, whereas these papers use the general approach introduced in [P8].
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[P7] Pr̊uša, V. and K. R. Rajagopal. On implicit constitutive relations for materi-
als with fading memory. J. Non-Newton. Fluid Mech., 181–182:22–29, 2012. doi:
10.1016/j.jnnfm.2012.06.004.
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CHAPTER 1

Introduction

1. Beyond Navier–Stokes equations

Majority of works focused on mathematical modelling of fluid flows use the classical Navier–
Stokes equations. The equations were gradually developed in 19th century by Navier [1823], Poisson
[1831], Saint-Venant [1843] and Stokes [1845], and since then they have been successfully used to
describe and explain various fluid flow phenomena especially in substances such as water and air.
In particular, the advent of computers gave rise to the computational fluid dynamics, and the
numerical solution of Navier–Stokes equations in complex geometries became an indispensable tool
in science and technology. There are, however, fluid flow phenomena that are beyond the reach of
Navier–Stokes equations.

While in the early days of Navier–Stokes equations the fluids of interest were predominantly
water and air, thorough the 20th century the interest expanded to substances such as oils, molten
polymers and biological fluids. For such fluids the Navier–Stokes equations cease to provide an
adequate description of the corresponding fluid motion, and the whole field of non-Newtonian
fluids emerged. The term “non-Newtonian fluids” reflects the departure from the linear relation
between the shear stress and the shear rate. For Newtonian fluids—and subsequently the Navier–
Stokes equations—the linear relation between the shear stress and the shear rate is assumed, and
this assumption goes back to [Newton, 1687, Book II, Section IX]:

The resistance arising from the friction [lit. lack of lubricity or slipperiness] of
the parts of fluid is, other things being equal, proportional to the velocity with
which the pars of the fluid are separated from one another1.

For non-Newtonian fluids such a linear relation does not hold, and more elaborate relation between
the shear stress and the shear rate—or more precisely between the Cauchy stress tensor and the
symmetric part of the velocity gradient—must be used.

The first simple mathematical models for non-Newtonian fluids did not differ significantly from
the classical Newtonian assumption. Instead of the linear relationship between the shear stress
and shear rate, models based on shear dependent viscosity assumption were proposed, see, for
example, Ostwald [1925] and de Waele [1923]. This class of models can be used, for example, to
model the important shear-thinning/shear-thickening effect. However, these models fail to predict
important non-Newtonian effects such as normal stress differences in simple shear flows, creep and
stress relaxation and so forth, that give rise to visually stunning phenomena such as rod-climbing
effect, see especially the seminal paper by Weissenberg [1947]. (For a detailed description of various
non-Newtonian effects see Tanner and Walters [1998] or newer texts such as Málek and Rajagopal
[2005] or Larson and Desai [2015] and references therein.) The need to model the effects that are
beyond the reach of the classical Navier–Stokes equations subsequently lead to more sophisticated
mathematical models.

Indeed, the research activity in the second half of 20th century lead to various competing classes
of models regarding non-Newtonian fluids. The approaches to the development of mathematical
models were ranging from purely phenomenological models/concepts such as Reiner–Rivlin fluid,
Rivlin [1948], Rivlin–Ericksen fluid, Rivlin and Ericksen [1955], Green and Rivlin [1957], integral
type models Bernstein et al. [1963], fluids with fading memory, Coleman and Noll [1960], to micro-
macro models Kramers [1946]. (See Tanner and Walters [1998] for a detailed historical account
and Larson [1988], Bird et al. [1987b,a], Phan-Thien [2013] and Truesdell and Noll [2004] for tech-
nical details concerning various classes of models.) Arguably, the best class of models that emerged

1Quoted from English translation Newton [1999].
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10 1. INTRODUCTION

from this period are the viscoelastic rate-type models stemming from the seminal work by Oldroyd
[1950].

The model developed by Oldroyd [1950] is a purely phenomenological model, which means that
it exclusively works with macroscopic quantities. This implies that the models from this class are
conceptually very simple in the sense that they are not based on assumptions concerning the internal
structure of the given fluid, the models are calibrated by relatively simple macroscopic rheological
measurements. (This could be also a drawback if one is interested in the internal structure and
details concerning its evolution. But this is usually not the case in engineering practice focused
on flows of macroscopic amount of fluids in complex geometries.) Furthermore, given the nature
of the quantities entering the models, there are no substantial problems with the set-up of initial
conditions and boundary conditions for these models, which could be an issue for other classes of
models. Consequently, using this class of models it is straightforward to formulate initial–boundary
value problems, and, in principle, solve these problems numerically, see Alves et al. [2021] and
references therein for a state-of-the-art review on the corresponding computational issues.

To cut the long story short, the viscoelastic rate-type models are—with a bit of exaggeration—
the second most frequently used models for fluid flows after the Navier–Stokes model. As such they
deserve utmost attention, and the main obstacle in dealing with these models is their nonlinearity.
Indeed, while the Navier–Stokes equations (for incompressible fluids) contain just one nonlinearity
due to the material time derivative (convective term), the viscoleatic rate-type models contain
multiple nonlinearities. Furthermore, the system of governing equations is more complex than that
in the Navier–Stokes model—the viscoelastic rate-type models introduce new tensorial quantities
that are governed by additional evolution equations.

The present thesis summarises some results concerning viscoelastic rate-type models. It consists
of contributions focused on physical underpinnings and thermodynamics of the given mathematical
models, applications of thermodynamics in finite amplitude stability analysis of corresponding fluid
flows, and finally, on mathematical issues regarding the description of mechanical response of these
fluids.

2. Viscoelastic rate-type fluids

Before we proceed with detailed comments regarding the results, we briefly introduce the basic
viscoelastic rate-type model—the Oldroyd-B model. Subsequently we point out some fundamental
differences between the Navier–Stokes model and the Oldroyd-B model, and, for that matters, the
differences between the Navier–Stokes model and the whole class of viscoelastic models based on
seminal work by Oldroyd [1950]. In this introductory section we for the sake of simplicity focus on
incompressible fluids only.

2.1. Incompressible Navier–Stokes–Fourier equations.
2.1.1. Governing equations. The standard Navier–Stokes model for flow of an incompressible

fluid reads

divv = 0, (1a)

ρ
dv

dt
= div T + ρb, (1b)

where v denotes the (Eulerian) velocity field, ρ is the fluid density, b is the external body force and
T is the Cauchy stress tensor. The Cauchy stress tensor is assumed to take the form

T =def −pI + Tδ, (1c)

where the traceless part of the Cauchy stress tensor Tδ is assumed to be given by the formula

Tδ =def 2νD, (1d)

where ν denotes the dynamic viscosity (a constant) and D denotes the symmetric part of the velocity

gradient, D =def
1
2
(∇v + (∇v)⊺). The symbol Aδ is hereafter used for the traceless part (deviatoric

part) of the corresponding tensor

Aδ =def A − 1

3
(Tr A) I, (1e)
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while the symbol d
dt

denotes the standard material time derivative,

d

dt
=def

∂

∂t
+ v ● ∇ (1f)

of the given Eulerian quantity. (Equation (1d) is the modern version of Newton’s assumption quoted
in Section 1 on page 9. Any deviation from (1d) leads to a non-Newtonian fluid model.) If needed,
equations (1a) and (1b) can be easily completed by the evolution equation for the temperature,

ρcV
dθ

dt
= div (κ∇θ) + 2νD ∶D, (1g)

where θ denotes the temperature, cV denotes the specific heat capacity at constant volume and κ
denotes the thermal conductivity. Both cV and κ are assumed to be constant. (In the temperature
evolution equation we use Fourier law.) The complete system of governing equations 1 is referred
to as the Navier–Stokes–Fourier equations/model, while the fluids described by this model are
referred to as the Navier–Stokes–Fourier fluids.

2.1.2. Thermodynamics. Concerning thermodynamic background of Navier–Stokes–Fourier flu-
ids, everything is clear. The energy of such a fluid can exist in two forms—the thermal energy and
the kinetic energy. It is straightforward to show that the kinetic energy is according to the model dis-
sipated and converted into the thermal form, and that the term that characterises the conversion
is the term 2νD ∶D in the temperature evolution equation (1g).

2.2. Oldroyd-B model.
2.2.1. Governing equations. The original Oldroyd-B model for flow of an incompressible fluid

reads

divv = 0, (2a)

ρ
dv

dt
= div T + ρb, (2b)

where the Cauchy stress tensor is again given by the formula (1c), but its traceless part is given by
the formula

Tδ =def 2νD + µ(Bκp(t))δ, (2c)

where the quantity Bκp(t) is known to be a symmetric positive definite tensor. (Compare (2c) with

the Navier–Stokes model (1d).) The evolution of the new tensorial quantity Bκp(t) is governed by
the equation

ν1

▽

Bκp(t) + µ (Bκp(t) − I) = 0, (2d)

wherein ν1 and µ are material parameters (constants). The symbol
▽

A denotes the so-called Oldroyd
derivative or upper convected derivative of the corresponding tensorial quantity A. The upper
convected derivative is defined as

▽

A =def
dA
dt

− LA − AL⊺, (3)

where L =def ∇v denotes the velocity gradient and where dA
dt

is the standard material time derivative,
dA
dt

=def
∂A
∂t
+(v ● ∇)A. The presence of the new quantity Bκp(t) makes the system (2) more complex

than the Navier–Stokes system.
The Navier–Stokes equations (1) are nonlinear because of single nonlinear term v ● ∇v in the

balance of momentum equation (1b). (Recall that d
dt

denotes the material time derivative (1f).)
Even with such a single nonlinearity, the corresponding dynamical behaviour predicted by the
Navier–Stokes model can be very rich and challenging to analyse, just think of turbulence phenom-
enon.

The Oldroyd-B model has, besides the same nonlinear term as the Navier–Stokes model, another
nonlinear terms. In particular, the upper convected derivative (3) introduces a new nonlinearity
into the system of governing equations. This suggests that the dynamical behaviour predicted by
the Oldroyd-B model, and for that matters by other models from this class, can be expected to be
far more complex than that predicted by the Navier–Stokes model.
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2.2.2. Viscoelastic fluids. The first question one might ask when dealing with the Oldroyd-B
model is why is the corresponding fluid referred to as a visco-elastic fluid. The second, closely
related question is a physical motivation behind the Oldroyd-B model.

In order to answer these questions, we rewrite the model into two equivalent forms. The
introduction of new variables

p̃ =def p + µ
3

Tr Bκp(t) − µ, (4a)

S =def µ (Bκp(t) − I) , (4b)

and the identity
▽

I = −2D, allow us to rewrite the evolution equation for Bκp(t) (2d) and the formulae

for the Cauchy stress tensor (1c), (2c) in the form

T = −p̃I + 2νD + S, (5a)

ν1

▽

(S
µ
) + S = 2ν1D. (5b)

(Note that for incompressible fluids one is allowed to redefine the pressure at will.) This is the
formulation of the Oldroyd-B model frequently used in the mechanics of non-Newtonian fluids,
especially if the model is derived by upscaling from a microscopic model based on the concept of
dilute polymeric chains dispersed in a Newtonian fluid. The total Cauchy stress T is understood as
a sum of the “solvent” contribution 2νD and the extra “polymer” contribution S.

Yet another change of variables

S̃ =def S + 2νD (6)

then converts (5) into the form

T = −pI + S̃, (7a)

ν1

▽

( S̃
µ
) + S̃ = 2 (ν1 + ν)D + 2ν1

▽

(νD
µ

). (7b)

This is the formulation originally obtained by Oldroyd [1950].
If we now consider formulation (7) with ν = 0, which would in the formulation (5) correspond

to zero solvent viscosity, we see that the formula for S̃ reduces to

ν1

▽

( S̃
µ
) + S̃ = 2ν1D. (8)

This resembles the scalar relation
dF

dt
+ F
T

= E dS

dt
, (9)

where F denotes the “stress” and S denotes the “strain” and E and T are constants. (Recall that D
is the symmetric part of the velocity gradient, hence it can be interpreted, albeit a bit incorrectly, as
the “rate of strain” or time derivative of strain.) Formula (9) was used in a remark made by Maxwell
[1867] in his study of dynamics of gases, and generalisation of a single scalar equation (9) to the
fully nonlinear three-dimensional setting (8) is in fact the main motivation behind Oldroyd [1950]
seminal contribution.

Formula (9) justifies the name viscoelastic fluids. Indeed, let us consider a simple mechanical
system made of a spring and dashpot (damper) connected in series, see Figure 1. The relation
between the applied force F1 and the strain S1 for the spring (elastic element) is

F1 = ES1, (10)

where E is a constant, while the relation between the applied force F2 and the strain S2 for the
daspot (viscous element) reads

F2 = ν1
dS2

dt
. (11)
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If the behaviour of the individual elements is specified via (10) and (11), than it is straightforward
to find that the relation between the total applied force F and the total strain S is

dF

dt
+ 1
ν1
E

F = E dS

dt
, (12)

which is the same as (9). (We have used the fact that F = F1 = F2 and that S = S1 + S2.) In
this sense, the model (7) is indeed a model for visco-elastic fluid—the viscoelastic fluid is a viscous
fluid with an additional elastic response. Various simple mechanical analogues made of systems
of springs and dashpots in fact serve as a basis for various sophisticated models for viscoelastic
response of fluids as well as solids, see, for example, Wineman and Rajagopal [2000].

response
viscous elastic

response

F1 = ES1 FF F2 = ν1
dS2

dt

Figure 1. Mechanical analog for a viscoelastic rate-type fluid of Maxwell type.

2.2.3. Stress relaxation and instantaneous elastic response. Formula (9) also shows that the
rate-type viscoelastic models can model the stress relaxation effect, and that the fluids described
by this model exhibit the instantaneous elastic response. Both stress relaxation and instantaneous
elastic response are important non-Newtonian effects.

If the strain S is given by the formula

S =H(t), (13)

where H denotes the Heaviside function,

H(t) = ⎧⎪⎪⎨⎪⎪⎩
0, t < 0,

1, t ≥ 0,
(14)

then the response force F to such an input is given by the solution to (9) with the right-hand side
given by (13). The solution reads

F (t) = Ee− tT H(t). (15)

We note that the time derivative of S given by (13) does not exist in the classical sense, and it
must be interpreted is a generalised sense (typically as a distribution),

dS

dt
= δ(t − 0). (16)

Using (15), we can analyse the force response at t = 0. The force instantaneously jumps from
zero to F ∣t=0+ = E, which is the same response as that of a single elastic spring (10). In this sense
we talk about instantaneous elastic response2. After this event the force exponentially decreases to

zero, that is for t > 0 we have F = Ee− tT . This process is referred to as the stress relaxation.
2.2.4. Upper convected derivative. Going from the naive one-dimensional equation (9) to the

fully three-dimensional equation (8) requires one to introduce the concept of upper convected de-
rivative. Since the upper convected derivative is the source of nonlinearity in the model, it is
worthwhile to briefly contemplate on its origin.

If we have an Eulerian tensorial quantity A, and if we want to take its time derivative, we can
not simply form the difference quotient

A(x, t + h) − A(x, t)
h

, (17)

take the limit limh→0, and declare the limit to be a genuine time derivative. In the difference
quotient we need to compare the values of A that are associated to the same material point X,
and not the same point in space x. Furthermore, if A is associated with the given material point
X, not only do we have to track the motion of the material point in space x = χ(X, t), but we

2This response conforms to the intuition regarding the behaviour of springs and dashpots. If we try to suddenly
elongate the spring-dashpot system shown in Figure 1, then the dahspot jams and the elongation takes place only

in the spring.



14 1. INTRODUCTION

also have to track the corresponding privileged basis formed by tangent vectors to material curves
and/or normal vectors to material surfaces.

This can be achieved, if we first map all A back to a reference configuration, then we differen-
tiate as usual in the common reference configuration, and then map the result back to the current
configuration. We know that the tangent vectors to material lines are mapped between the ref-
erence and the current configuration by the deformation gradient F, and that the normal vectors
to the material surfaces are mapped between the reference and the current configuration by F−⊺.
Consequently, if we want to map a generic tensor A in an arbitrary current configuration back to
the reference configuration, we need to perform the operation

F−1(X, t)A(χ(X, t), t)F−⊺(X, t). (18)

(The tensor A in (18) must of a specific type. It must represent a linear mapping that takes a
normal to a surface in the current configuration and returns a tangent vector to a material curve
in the current configuration. The Cauchy stress tensor and Bκp(t) tensor are of this type.) In this
common reference configuration we can differentiate with respect to time as usual, and then we
return back to the current configuration, that is we define the derivative as

▽

A(x, t)∣
x=χ(X,t) =def F(X, t) [ d

dt
(F−1(X, t)A(χ(X, t), t)F−⊺(X, t))]F(X, t)⊺, (19)

where we use the standard notation x = χ(X, t) for the deformation function, and F =def
∂χ(X,t)
∂X

for

the deformation gradient. A straightforward algebraic manipulation based on the identity dF
dt

= LF
then reveals that (19) indeed leads to (3).

A reader familiar with differential geometry might recognise the Lie derivative in the above
construction, which is indeed the case, see, for example, Stumpf and Hoppe [1997]. Another concepts
that lead to the introduction of upper convected derivative are the concept of evolving natural
configuration, see Rajagopal and Srinivasa [2000] and the concept of objective tensorial rates, see,
for example Truesdell and Noll [2004]. (The concept of evolving natural configuration in fact
gives a physical meaning of tensor Bκp(t) , see Chapter 3 for details.) The reader interested in
upper convected derivative and its various generalisations used in continuum mechanics is referred
to Bruhns et al. [2004].

2.2.5. Temperature evolution equation and the second law of thermodynamics. The original sys-
tem of equations (2) proposed by Oldroyd [1950], and for that matter many subsequent viscoelastic
rate-type models, deals with mechanical quantities only. In particular, the temperature evolution
equation is missing in the model.

The absence of the corresponding temperature evolution equation indicates that the thermo-
dynamic consistency of the model was not investigated in the early days of viscoelastic rate-type
models. The reason is that thermodynamic background is more complicated than that for the
Navier–Stokes–Fourier model. Apart from the kinetic energy and the thermal energy, the energy in
a viscoelastic fluid can also take the form of elastic stored energy, and one has to deal with mutual
conversions between these energy types.

The understanding of thermodynamic of viscoelastic rate-type fluids took a long time, and
for simple viscoelastic rate-type models the appropriate temperature evolution equations were not
proposed until the last decade of 20th century, see especially Wapperom and Hulsen [1998] and
Dressler et al. [1999] and the discussion therein. In fact thermodynamics of more viscoelastic rate-
type models is still a subject of research, see, for example, Mackay and Phillips [2019, 2021], both
form the theoretical as well as computational perspective.

3. Questions, answers and author’s contribution

As indicated in the previous section the analysis of viscoelastic rate-type models provides many
opportunities for research work. Particular problems and questions that has been considered in
author’s own research are for readers convenience listed in Summary 1.
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Summary 1: Questions, answers and author’s contribution

[Q1] What is the status of Oldroyd-B model from the perspective of the concept of simple
fluid, see Noll [1958]? Can one interpret the Oldroyd-B model and other vicoelastic
rate-type models as approximations of a simple fluid with fading memory in the
sense of Coleman and Noll [1960]?

The answer is given in [P7] and it is based on the concept of implicit constitutive
relations, see Rajagopal [2003, 2006] and a variant of the approximation theorem
by Coleman and Noll [1960].

[Q2] The concept of instantaneous elastic response, see Section 2.2.3, requires one to in-
vestigate the system response to an input with a jump discontinuity. This is easy to
do if the corresponding governing equation is linear as in (9). What happens if the
governing equation is nonlinear? In the nonlinear case one might face the problem
of multiplication of distributions, that is one might need to interpret the terms such
as the product of the Heaviside function and the Dirac delta distribution, which is
beyond the reach of the classical theory of distributions.

The problem is investigated on an abstract level in [P8]. The problem of multi-
plication of distributions is addressed using the Colombeau algebra, see Colombeau
[1984, 1985, 1992], which is a generalisation of the standard theory of distributions
to a nonlinear setting. Applications of the general theory to mechanical systems are
given in [P9] and [P10].

[Q3] Governing equations (2) are formulated for mechanical quantities only. What is the
corresponding the temperature evolution equation? Is the model consistent with
the laws of thermodynamics, in particular with the second law of thermodynamics?
What are the corresponding energy storage mechanisms and entropy production
mechanisms?

Complete thermodynamic framework for a non-isothermal viscoelastic rate-type
model is given in [P5]. This work can be seen as a variation to already known
results by Wapperom and Hulsen [1998], but from the perspective of the approach
developed by Rajagopal and Srinivasa [2000]. Work [P6] introduces thermodynamic
framework for viscoelastic rate-type fluids with stress diffusion, which is a setting
wherein a thermodynamic analysis was missing.

[Q4] It is nice to have thermodynamically consistent models for viscoelastic fluids, but
does it help in the analysis of qualitative behaviour of the corresponding flows? Can
thermodynamics help one in nonlinear (finite amplitude) stability analysis of spa-
tially homogeneous steady states in thermodynamically isolated systems, and, more
importantly, in nonlinear stability analysis of spatially inhomogeneous steady states
in thermodynamically open systems?

Concerning thermodynamically isolated systems the answer is in principle well
known—the thermodynamic basis of the models can help one to design candidates
for Lyapunov-type functionals for nonlinear stability analysis of spatially homo-
geneous steady states. Yet a rigorous analysis can be still technically challenging.
Concerning thermodynamically open systems the answer is also positive, basic start-
ing points are discussed in [P1]. The method proposed in [P1] is then applied in a
purely mechanical context in [P4], and in a full thermo-mechanical setting in [P2]
and [P3].





CHAPTER 2

Mechanical response

This chapter comments on the answers to questions [Q1] and [Q2]. We start with [Q1]
regarding the status of viscoelastic rate-type fluids from the perspective of simple fluids with fading
memory.

1. Viscoelastic rate-type fluids from the perspective of simple fluids with fading
memory

The main task in mechanics of non-Newtonian fluids is to propose a constitutive relation that
allows one to determine the value of the Cauchy stress tensor from known values of geometric
quantities describing the motion of the fluid, and, if necessary, from other known quantities such as
the temperature. In the most primitive case such a geometric quantity might be just the current
value of symmetric part of the velocity gradient D.

In influential study Noll [1958] introduced the concept of simple fluid wherein the current
value of the Cauchy stress tensor depends on the history of the relative right Cauchy–Green tensor
Ct (t − s). This concept has been later adopted as the key concept in the monumental treatise
by Truesdell and Noll [2004]. If we consider and incompressible fluid, the concept of simple fluid
formally boils down to the relation

T = −pI + F+∞s=0(Ct (t − s)), (20)

where p is the indeterminate part of the stress due to the constraint of incompressibility and F+∞s=0 is
a functional acting on the history of the relative Cauchy–Green tensor. (We follow the terminology
introduced by Coleman and Noll [1960], and we do not use the term functional for a map from a
vector space into its underlying scalar field as it is common in the mathematical literature. What is
called functional here would be denoted as operator in the mathematical literature.) Formula (20)
is however not very useful from the practical point of view—it is too general. In practice one needs
something more tractable.

In subsequent study Coleman and Noll [1960] make assumptions concerning the memory of the
given material, that is they make assumptions on the functional F+∞s=0. In particular, they assume:

Intuitively speaking, the “memory” of the system [. . . ] will “fade away” in time.

Upon formalising this assumption in technical terms, they further assume that the material of
interest is subject to slow processes only. Using these assumptions it can be then shown that the
material response (20) can be—with increasing fidelity—approximated by the constitutive relation
wherein the functional F+∞s=0 is replaced by an algebraic combination of Rivlin–Ericksen tensors1 An.
This then leads to observation that a whole cascade of the so-called differential-type models can be
seen as approximations to the “exact” model (20) in slow processes, see Coleman and Noll [1960]

1We recall that the Rivlin–Ericksen tensors An are defined in terms of the derivatives of the relative Cauchy–

Green tensor

An(x, t) =def
dnCt (x, τ)

dτn
∣
τ=t , (21)

and that they can be computed by the recursive formula

A1 = 2D, (22a)

An =
dAn−1

dt
+ An−1L + L⊺An−1, (22b)

.
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and Truesdell and Noll [2004] for details. For example, the so-called second order incompressible
fluid is given by the formula

T = −pI + νA1 + βA2
1 + γA2, (23)

where ν, β and γ are constants.
Neither of these approximating models however resembles the rate-type Oldroyd-B model (7b)

where one works not only with the time derivatives of the geometric quantities but also with the
time derivatives of the (part of) stress tensor. This brings us back to question [Q1]. In fact question
on relations between various concepts in mechanics of non-Newtonian fluids has always troubled
the community, see, for example, Walters [1970].

In [P7] we reconcile the concept of fading memory and the concept of viscoelastic rate-type
fluid. We appeal to the concept of implict constitutive relations, see Rajagopal [2003, 2006]. The
concept, with a bit of oversimplification, claims that the relation between the stress tensor and the
geometrical quantities should take the generalised form

H+∞
s=0 (T(t − s),Ct (t − s)) = 0. (24)

A proper nontrivial modification of the approximation procedure introduced by Coleman and Noll
[1960] then reveals, see [P7] for details, that the viscoelastic rate-type models can be seen as
approximations of the “exact” and “all-encompassing” model (24). For example, if we consider
only slow processes, then the model

T = −pI + S, (25a)

b0 (Tr S) I + b1S + 2b3D + b4 (Tr
▽

S) I + b5▽S = 0, (25b)

where {bi}5
i=0 are constants, is a first order approximation of (24), and the standard Maxwell

model (8) is clearly a special case of (25). The main technical issue in the analysis [P7] is the
introduction of the upper convected derivative of stress; this is achieved by the application of a
variant of Coleman and Noll [1960] approximation procedure in a convected coordinate system and
subsequent transformation back to the fixed-in-space coordinate system.

2. Multiplication of distributions and response to step input

Question [Q2] deals with the response of systems governed by ordinary differential equations
to step inputs. As indicated in Section 2.2.3 in Chapter 1 such a problem arises in analysis of
creep and stress relaxation experiments with viscoelastic materials, see, for example, Wineman and
Rajagopal [2000].

In principle we are facing the problem outlined in Figure 1. We have a system governed by a
nonlinear ordinary differential equation of the type

f (ε, σ, dε

dt
,
dσ

dt
,
d2ε

dt2
,
d2σ

dt2
) = 0, (26)

where f is a given scalar function and ε and σ are functions of time. (Here the notation ε and
σ suggests the physical interpretation—the symbol ε denotes the strain and the symbol σ denotes
the stress.) We control one of the quantities ε or σ—for specificity let us assume that we control
ε—and we refer to this quantity as the input. The response quantity is then σ, which is given as a
solution to (26) for the given input ε. Typically, the input ε is a piecewise smooth function with a
jump discontinuity at time tj, while the response σ is expected, in a reasonable physical system, to
have a jump at time tj as well. An intricate question then arises—knowing the height of the jump
in the input, what is the height of the jump in the response?

In fact, once the jump event is over, we are typically dealing with a standard ordinary differential
equation, which is a well studied problem. The only thing we need to know are the initial conditions
for this differential equation. This means that we need to know, depending on the order of the
governing equation, the initial value of the response function at time tj (the height of the jump)
and the slope of the response curve at time tj of and so forth. Clearly, this is the only conceptually
difficult part of the problem, since once we pass the jump event we are within the realm of standard
theory of ordinary differential equations.
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What is the height
of the jump
in the response?

tj t

ε0
ε0H(t − tj)

tj t

σ(t)
σ+|t=tj+

σ+(t)H(t − tj)

ε(t)

f
(
ε, σ, dε

dt
, dσ

dt
, d2ε

dt2
, d2σ

dt2

)
= 0

input ε(t) response σ(t)

Nonlinear dynamical system.

Figure 1. Response of a system governed by a nonlinear ordinary differential
equation to a step input.

If the material response is linear—the function f specifying the governing equation (26) is
linear—then the analysis of response to jump input is straightforward. Equation (26)—which is
in this case a linear equation—is interpreted and solved in the sense of distributions, see Schwartz
[1966]. In particular the time derivatives of functions with jump discontinuities simply generate
Dirac delta distributions.

If the material response is nonlinear—the function f specifying the governing equation (26) is
nonlinear—the story changes completely. It is impossible to use the standard theory of distributions
since the nonlinear operations with standard distributions are not defined. Consequently, it is not
clear how to interpret the equation at all. Worse than that, the lack of nonlinear operations in
the standard theory of distributions is not a matter of exaggerated rigour. The multiplication of
standard distributions is not defined for a good reason, see Schwartz [1954], since it could lead to
various paradoxes.

We have first encountered this problem in Pr̊uša and Rajagopal [2011], where we have studied
the response of a material described by the constitutive relation

σ + λ1(σ)dσ

dt
+ λ2(σ)d2σ

dt2
= 2µ1(σ)dε

dt
+ 2µ2(σ)d2ε

dt2
, (27)

where λ1, λ2, µ1 and µ2 are given functions. (This material can be seen as a generalisation of
Burgers fluid model.) In Pr̊uša and Rajagopal [2011] we in principle apply a straightforward
naive approach to the problem. The input—this time the function σ—with a jump discontinuity
is with a an increasing fidelity approximated via a sequence of smooth inputs {σn}∞n=1 without
jump discontinuity, and we study the corresponding sequence of responses {εn}∞n=1. Under certain
conditions on functions λ1, λ2, µ1 and µ2, we then show that the sequence of responses {εn}∞n=1 has a
limit, and this limit is interpreted as a response to the input with jump discontinuity. Subsequently,
we interpret this limit process in the framework of Colombeau algebra of generalised functions.

Colombeau algebra, see Colombeau [1984, 1985, 1992], Rosinger [1990, 1987] and Biagioni
[1990], is a generalisation of the standard theory of distributions into the nonlinear setting. Unlike
in the standard theory of distributions, the generalised functions are not constructed as linear func-
tionals whose action on smooth “test” functions is known. The approach to generalised functions
is completely different in Colombeau algebra.

On a very informal level, the approach to the generalised functions in Colombeau algebra is
based on the interpretation of generalised functions as collections of smooth functions that provide
appropriate approximation of the target non-smooth object (function with jump discontinuity, stan-
dard distribution). All the operations such as the multiplication and the differentiation are then
done at the level of smooth approximations, and the resulting new collection of smooth functions
is then declared to represent the result of the multiplication or differentiation between the target
objects (function with jump discontinuity, standard distribution). Furthermore, Colombeau algebra
introduces two types of equality, a strict one, and the so-called equality in the sense of association.

The equality in the sense of association basically means that two generalised functions are equal
up to some “microscopic” features such as the structure of the jump discontinuity. (Asymptotic
behaviour of the smoothed approximations at the jump discontinuity.) In particular, the equality in
the sense of association allows one to formalise statements such as H2 =H, where H is the Heaviside
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function. Careful balance between the definitions of multiplication and differentiation and the strict
equality and the equality in the sense of association then leads to the so-called coupled calculus,
which allows one, amongst other, to define and study a generalised solution to the equations of
type (26), see [P8] for a concise summary.

From the user perspective, the rules of the coupled calculus in Colombeau algebra encapsulate
all the details concerning the sequential approximations, and one can work on a symbolic level with
“sharp” objects only. For example, one can directly work with symbolic expressions of the type
dH
dt

= δ, and there is no need to go into the details regarding the sequential interpretation thereof.
In [P8] we have adopted this approach, and we have studied generalised solutions to equations

a(ε, σ)σ + dσ

dt
= b(ε, σ)ε + c(ε, σ)dε

dt
, (28)

and

σ + a(σ, ε)dσ

dt
+ b̃d2σ

dt2
= 2c(σ, ε)dε

dt
+ 2d̃

d2ε

dt2
, (29)

where a, b and c are given functions and b and d are constants. In particular we have been interested
in the response to a step input, and we have derived theorems that explicitly allow one to find the
height of the jump in (28), and the height of the jump and the initial slope after the jump event
in (29), see [P8].

For example, concerning (28) the corresponding theorem reads as follows.

Theorem 10 (Solution of equation a(ε, σ)σ+ dσ
dt

= b(ε, σ)ε+c(ε, σ)dε
dt

). Let us consider a system
governed by ordinary differential equation

a(ε, σ)σ + dσ

dt
= b(ε, σ)ε + c(ε, σ)dε

dt
, (30)

where functions a(ε, σ), b(ε, σ) and c(ε, σ) are smooth functions such that ordinary differential
equation (30) has for the given smooth ε a unique smooth solution σ. If (30) is understood in the
generalised sense of Colombeau algebra as

a(ε,σ)σ + dσ

dt
≈ b(ε,σ)ε + c(ε,σ)dε

dt
, (31)

then the response σ of the system governed by (30) to the step input ε

ε = ⎧⎪⎪⎨⎪⎪⎩
0, t < 0,

ε̃(t), t ≥ 0,
(32)

where ε̃ is a smooth function, is given by the function

σ = ⎧⎪⎪⎨⎪⎪⎩
0, t < 0,

σ̃(t), t ≥ 0.
(33)

(The function σ is interpreted as an element in Colombeau algebra via the canonical embedding.)
Function σ̃ is for t > 0 a solution to the ordinary differential equation

a(ε̃, σ̃)σ̃ + dσ̃

dt
= b(ε̃, σ̃)ε̃ + c(ε̃, σ̃)dε̃

dt
(34a)

σ̃∣t=0+
= σ0. (34b)

The initial condition σ0 in (34)—that is the height of the jump in the response—is obtained by
evaluating the solution ς of the ordinary differential equation

dς

dε
= c(ε, ς), (35a)

ς ∣ε=0 = 0, (35b)

at point ε = ε0, that is σ0 = ς ∣ε=ε0 , where ε0 =def ε̃∣t=0+
denotes the height of the jump in the input.

We see that the height of the jump in the response function (34b), that is the initial condition
for the standard ordinary differential equation after the jump event, is indeed explicitly identified.
The height of the jump is given by the solution to an auxilliary differential equation (35).
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Note that the Colombeau algebra setting does not always lead to a solution to the corresponding
differential equation. For some systems, see Pr̊uša and Rajagopal [2011] for details, the response
to the sequence of approximated inputs does not converge. This means that the solution based
on the equality in the sense of association does not exist. However, such a behaviour has a nice
physical interpretation. In such a case the response is sensitive to “microscopic” details at the jump
discontinuity, meaning that the particular features of the smoothing procedure does matter. (In
real setting the jump discontinuity in strain is an idealisation of some fast continuous transition.
Hence we are not in principle working with a jump discontinuity but with its particular “smoothed”
version.) The details of the smoothing procedure are not smeared out, instead they are magnified,
and if we want to know the response of the system, we must provide the detailed description of the
jump discontinuity.

The abstract results obtained in [P8] are then used in subsequent works [P9] and [P10].
In [P9] we show how to apply the theory in investigation of the response of spring–dashpot–
mass systems wherein the individual mechanical elements are described by nonlinear constitutive
relations, see Figure 2 for a sketch of such a system. Finally, in [P10] we investigate the response
of a viscoelastic fluid in a fully three-dimensional setting, in particular we show how to apply the
theory in the case of suddenly started squeeze flow, see Figure 3 for a sketch of such a system.
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Figure 2. Nonlinear spring–dashpot system with an attached mass.
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Figure 3. Lubricated squeeze flow. Axisymmetric sample is compressed by two
parallel plates with lubricated surfaces ensuring the perfect slip boundary condition
on the sample-plate interfaces.





CHAPTER 3

Thermodynamics

This chapter provides explanatory comments to the technical results regarding question [Q3],
that is the question regarding thermodynamic background of some viscoelastic rate-type models.

The objective is to provide thermodynamic background to the classical viscoelastic rate type
models such as the Oldroyd-B model

divv = 0, (36a)

ρ
dv

dt
= div T + ρb, (36b)

ν1

µ

▽

S + S = 2ν1D, (36c)

T = −pI + 2νD + S, (36d)

where ν, µ and ν1 are constants. (See Section 2.2 in Chapter 1 for a discussion of Oldroyd-B
model. Compared to (5) we use the symbol p instead of p̃. This change is inconsequential.) As we
have already noted certain thermodynamic background for Oldroyd-B model existed prior to our
work, and our contribution [P5] can be thus seen as a reformulation and generalisation of known
results from a different perspective, that is using the concept of evolving natural configuration.
Furthermore, in [P5] we also investigate the impact of temperature dependent material parameter
µ on the response of the given fluid. This is an important feature, since the elastic response of the
fluid then exhibits thermo-mechanical effects such as the Gough–Joule effect in elastic solids, see
Gough [1805], Joule [1859] and, for example, a newer contribution by Anand [1996].

But our contribution goes beyond thermodynamic analysis of Oldroyd-B model and other qual-
itatively similar models, no matter whether with or without temperature dependent material pa-
rameters. In [P6] and Dostaĺık et al. [2019a] we provide thermodynamic background for viscoelastic
rate-type models with stress diffusion, that is for variants of the model

divv = 0, (37a)

ρ
dv

dt
= div T + ρb, (37b)

ν1

µ

▽

S + S = 2ν1D + ε∆S, (37c)

T = −pI + 2νD + S. (37d)

For such models thermodynamic background was unknown prior to our work.
The term ∆S is referred to as the stress diffusion term, and there are several reasons for

this qualitative modification of the standard Oldroyd-B model. First, the presence of the term
guarantees some qualitative properties of corresponding flows, in particular in modelling of shear
banding phenomenon. Second, if the model is carefully derived using the micro-macro models based
on the concept of dilute polymeric fluids, then the stress diffusion term naturally appears. Third,
it can be expected that (37) has better mathematical properties than (36). For further discussion
concerning the stress diffusion term see [P6], up-to-date comments can be found in Varchanis et al.
[2022], while seminal paper on stress diffusion term is El-Kareh and Leal [1989].

1. Concept of evolving natural configuration

We want thermodynamic background for viscoelastic rate-type models to be purely phenomeno-
logical, which means that we want to work with macroscopic quantities/concepts only.

23
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In particular, we do not want to refer to the concept of conformation tensor. This concept is
used in theory of dilute polymeric fluids, and the conformation tensor is a quantity describing the
configuration of polymeric chains and can be related to quantity Bκp(t) , for details see, for example,

Bird et al. [1987a], Grmela and Carreau [1987], Beris and Edwards [1994] and Phan-Thien [2013].
(The concept of conformation tensor essentially goes back to Kramers [1946].) While the use of
conformation tensor is perfectly fine and insightful in the case of dilute polymeric fluids, polymeric
fluids represent only one class of fluids that on macroscopic level exhibit viscoelastic behaviour.
Indeed, fluid substances such as blood, Thurston [1972], asphalt binders, Narayan et al. [2016], or
Earth’s mantle, Harder [1991] and Moresi et al. [2002], exhibit viscoelastic behaviour as well, but
their internal structure is far out from sparsely scattered polymeric chains flowing in a solvent,
hence the concept of conformation tensor is of no use here.

current
configuration

natural
configuration

reference
configuration

dissipative
response

elastic
response

κ0(B)

κt(B)

κp(t)(B)

Fκp(t)

F

G

Figure 1. Viscoelastic fluid – kinematics of evolving natural configuration.

The right concept for purely phenomenological analysis seems to be the concept of evolving
natural configuration. The concept of evolving natural configuration allows one to generalise simple
phenomenological spring–dashpot models, see Figure 1 in Chapter 1, to the setting of continuous
media. The key idea, see Rajagopal and Srinivasa [2000], is that the response of the given fluid
is decomposed to a dissipative part (dashpot) and an elastic part (spring), see Figure 1. (On
the formal level, this is similar idea as that in the celebrated paper Lee [1969] on finite elasto-
plastic deformation of solids.) The intermediate configuration κp(t) (B) is referred to as the natural
configuration, and it corresponds to the configuration the material will take after instantaneous
unloading. (Recall that such a process is—according to the insight from spring-dashpot model—
an elastic process. See Section 2.2.3 in Chapter 1.) The tensor Bκp(t) that appears in governing

equations (36) is then the left Cauchy–Green tensor associated to the elastic part of the response,

Bκp(t) =def Fκp(t)F
⊺
κp(t)

. (38)

This subtle shift in interpretation of the extra tensorial quantity Bκp(t) has been largely appre-
ciated by the research community in non-Newtonian fluids, and the paper Rajagopal and Srinivasa
[2000] has been included in the 40th Anniversary Article Collection of Journal of Non-Newtonian
Fluid Mechanics. We follow this interpretation of Bκp(t) in our works.

2. Thermomechanical response of standard viscoelastic rate-type fluids

The thermodynamic analysis is based on the assumption that the given material is fully char-
acterised by its energy storage ability and entropy production ability, see Rajagopal and Srinivasa
[2004] for a thorough discussion thereof. The energy storage ability is characterised by the choice
of the Helmholtz free energy function, while the entropy production ability is characterised by
the choice of entropy production function. (The Helmholtz free energy can by substituted by an
equivalent thermodynamic potential.) Both these functions are scalar functions, and their choice
indeed implies the constitutive relations for the tensorial quantities such as the Cauchy stress tensor
and vectorial quantities such as the heat flux.

https://www.journals.elsevier.com/journal-of-non-newtonian-fluid-mechanics/highlighted-articles/40th-anniversary-article-collection
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In order to develop phenomenological models for viscoelastic rate-type fluids, we thus need to
properly specify the energy storage ability and entropy production ability of the given fluid. Con-
cerning the Helmholtz free energy1, we split it to purely thermal part ψthermal and to deformation
dependent part ψmech.

For the thermal part ψthermal we can use the classical formula

ψthermal =def −cV,refθ (ln
θ

θref
− 1) , (39)

where θ denotes the temperature and θref is a reference temperature value (a constant) and cV,ref

is a constant. Formula (39) leads to a material with the specific heat capacity at constant volume
equal to the constant cV,ref .

Concerning the energy storage mechanisms related to the deformation, that is concerning the
specification of ψmech, it is also almost obvious what to do. We assume that the energy storage
mechanisms are related to the elastic response of the fluid, and we characterise the energy storage
ability by the same manner as in standard theory of Green elastic (hyperelastic solids) solids. Instead
of the full left Cauchy–Green tensor for the full response B =def FF⊺, which is the right choice for
solid materials, we however use the left Cauchy–Green tensor Bκp(t) associated to the elastic part

of fluid response. (For a list of popular stored energy functions for hyperelastic materials see,
for example, Marckmann and Verron [2006], Destrade et al. [2017] or Mihai and Goriely [2017].)
Note that ψmech can still depend on the temperature. It can be, for example, proportional to the
temperature such as in the classical entropic elasticity, see, for example, Ericksen [1998] and Anand
[1996].

Regarding the basic incompressible Oldroyd-B model (36) with temperature independent ma-
terial parameters, the following choice of Helmholtz free energy is an appropriate one,

ψ(θ,Bκp(t)) =def ψ
thermal(θ) + ψmech(θ,Bκp(t)), (40a)

ψthermal(θ) =def −cV,refθ (ln
θ

θref
− 1) , (40b)

ψmech(θ,Bκp(t)) =def
µ

2ρ
(Tr Bκp(t) − 3 − ln det Bκp(t)) , (40c)

see Málek et al. [2015].
Having identified the Helmholtz free energy, we can proceed with the entropy production. If

the Helmholtz free energy ψ = ψ(θ, y1, . . . , yN) is given as a function of temperature θ and other

state variables denoted as {yi}Ni=1, then the entropy evolution equation in the Eulerian description
reads

ρ
dη

dt
+ div (jq

θ
) = 1

θ
{T ∶D − ρ N∑

i=1

∂ψ

∂yi

dyi
dt

} − jq ● ∇θ
θ2
, (41)

where the symbol η denotes the entropy and jq denotes the heat flux. (For the derivation of (41)
see Truesdell and Noll [1965], Müller [1985] or any standard book on continuum thermodynamics.
Here we follow the notation used in Málek and Pr̊uša [2018].) The terms on the right-hand side
of (41) are referred to as the entropy production terms, and the objective is to propose constitutive
relations in such a way that the right-hand side of (41) is positive. In particular we are interested
in the specification of a formula for the Cauchy stress tensor.

In our case, the entropy evolution equation reduces to

ρ
dη

dt
+ div (jq

θ
) = 1

θ
{T ∶D − ρ ∂ψ

∂Bκp(t)
∶ dBκp(t)

dt
} − jq ● ∇θ

θ2
(42)

Following Rajagopal and Srinivasa [2000] the next step is—in a nutshell—based on the prescription
of entropy production. A generic entropy evolution equation must read

ρ
dη

dt
+ div jη = ξ, (43)

1The Helmholtz free energy ψ is introduced as energy density per unit mass. This means that the physical
dimension of ψ is [ψ] = J/kg, and that the net Helmholtz free energy is obtained by the integration over the current

configuration of the body of interest, that is ∫Ω ρψ dv. (Similarly for the entropy.)
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where jη denotes the entropy flux and ξ denotes the entropy production, ξ ≥ 0. In order to charac-
terise the entropy production abilities of the material, we prescribe the entropy production ξ in (43),
and then we “compare” it with the right-hand side (41), that is with the entropy production that
is implied by the previous choice of the Helmholtz free energy. For example, if we choose

ξ =def
1

θ
{2νDδ ∶Dδ + µ2

2ν1
Tr [Bκp(t) + B−1

κp(t)
− 2I]} + κ∇θ ● ∇θ

θ2
, (44)

then we can, after some manipulation, see Málek and Pr̊uša [2018] or [P5] for details, identify the
formulae for the heat flux jq and the Cauchy stress tensor as

T =def −pI + 2νDδ + µ(Bκp(t))δ, (45a)

jq =def −κ∇θ, (45b)

while the formula for the time derivative of Bκp(t) must read

ν1

▽

Bκp(t) = −µ [Bκp(t) − I] . (45c)

The temperature evolution equation is then obtained from (42) and the fact that η = −∂ψ
∂θ

(θ,Bκp(t)).
We note that if the shear modulus µ is temperature dependent, then formulae (45) remain the same.
(The thermodynamic background for the Oldroyd-B model is summarised in Summary 2.) How-
ever, the corresponding temperature evolution equation is different than that in the constant shear
modulus case. The impact of temperature dependent shear modulus µ on fluid dynamic is discussed
in [P5]. A list of Helmholtz free energies and entropy production for various popular models is
given in Dostaĺık et al. [2019a]—an updated version posted at arXiv.org (arXiv:1902.07983) corrects
some misprints in the published paper.

Finally, we emphasise that the specification of energy storage mechanism in terms of the
Helmholtz free energy is not the only option. Other thermodynamic potentials, in particular the
Gibbs free energy, might be used as well. This is of interest from the perspective of new develop-
ments in theory of elastic solids, see Muliana et al. [2018], Bustamante and Rajagopal [2020], Pr̊uša
et al. [2020] and references therein, where the use of Gibbs potential seem to lead, in some case, to
better phenomenological models than in the standard setting based on the Helmholtz free energy.
The point is that although the descriptions based on different thermodynamic potentials might be
formally equivalent, the particular formulae might be simpler in one of the descriptions.

The use of Gibbs potential in theory of viscoelastic rate-type models, which is a novel contri-
bution to the field, is investigated in Pr̊uša and Rajagopal [2021]. The thermodynamic background
of Oldroyd-B mode is, from the perspective of Gibbs free energy, is summarised in Summary 3. In-
terestingly, the main kinematic quantity in the Gibbs description is the Hencky strain tensor Hκp(t)
associated to the elastic response of the fluid Hκp(t) =def

1
2

ln Bκp(t) , which opens up the possibility
to seamlessly formulate models that are from the very beginning working with the log-conformation
tensor, see Fattal and Kupferman [2004]. This is a task for future investigation.

3. Thermomechanical response of viscoelastic rate-type fluids with stress diffusion

Viscoelastic rate-type models (37) with the stress diffusion term ∆S are challenging from the
modelling perspective. Following the assumption that each material is characterised by its en-
ergy storage mechanisms and entropy production mechanisms, we must make a decision regarding
the origin of the stress diffusion term. Either we can consider the stress diffusion term to be a
consequence of a new energy storage mechanism or of a new entropy production mechanism.

In [P6] we investigate both options. If we want to interpret the stress diffusion term as a
consequence of a new energy storage mechanism, we need to specify the corresponding Helmholtz
free energy. Assuming that the standard Helmholtz free energy (40) contains an additional nonlocal
term, that is if we set

ψ =def ψ̃ (θ, ρ) + µ

2ρ
(Tr Bκp(t) − 3 − ln det Bκp(t)) + µ̃(θ)2ρ

∣∇Tr Bκp(t) ∣2 (46)

then we indeed get a diffusion term in the evolution equation for Bκp(t) , and consequently in the
evolution equation for S, see Section 2.2 in Chapter 1 for various forms of governing equations for

https://arxiv.org/abs/1902.07983
https://arxiv.org
https://arxiv.org/abs/1902.07983
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Summary 2: Incompressible Oldroyd-B model via Helmholtz free energy

Specific Helmholtz free energy:

ψ(θ,Bκp(t)) =def ψthermal(θ) + µ(θ)
2ρ

(Tr Bκp(t) − 3 − ln det Bκp(t))
ψthermal(θ) =def −cV,refθ (ln

θ

θref
− 1) .

Entropy production:

ξ = 1

θ
{2νDδ ∶Dδ + µ(θ)2

2ν1
Tr [Bκp(t) + B−1

κp(t)
− 2I]} + κ∇θ ● ∇θ

θ2

Material parameters: cV,ref specific heat at constant volume – positive constant; µ(θ) shear
modulus – nonnegative function, typically proportional to θ; ν, ν1 viscosity – nonnegative
functions of the primitive variables, typically constants; κ thermal conductivity – nonnegative
function of the primitive variables, typically constant

Evolution equations (mechanical variables p, v, Bκp(t) and thermal variable θ):

divv = 0

ρ
dv

dt
= div T + ρb

ν1

▽

Bκp(t) = −µ(θ) [Bκp(t) − I]
−ρθ d

dt
(∂ψ
∂θ

(θ,Bκp(t))) = div (κθ) + 2νDδ ∶Dδ + µ(θ)2

2ν1
Tr [Bκp(t) + B−1

κp(t)
− 2I]

Cauchy stress tensor:
T = −pI + 2νDδ + µ(θ)(Bκp(t))δ

Thermodynamical relations:

η = −∂ψ
∂θ

(θ,Bκp(t))
Left Cauchy–Green tensor Bκp(t) and Hencky strain tensor Hκp(t) associated to the elastic
response:

Bκp(t) = e
2Hκp(t)

viscoelastic rate-type fluids. (Note that (46) is written for a compressible fluid.) The terminology
“nonlocal term” is here used for a gradient term; this is a common practice. The corresponding
evolution equation for Bκp(t) then reads

ν1

▽

Bκp(t) + µ (Bκp(t) − I) = 2µ̃ (∆ Tr Bκp(t))Bκp(t) + 2
dµ̃

dθ
[(∇Tr Bκp(t)) ● ∇θ]Bκp(t) , (47)

see [P6] for details. Assuming that the material function µ̃ is a constant, we see that equation (47)
is close to the desired one—we have the Laplace operator on the right-hand side of (47). However
the Laplace operator is acting on a scalar function, not on the full Bκp(t) tensor. A remedy for
this drawback could be based on further adjustment of the Helmholtz free energy. One can, for

example, think of using ∣∇Bκp(t) ⋮∇Bκp(t) ∣2 instead of ∣∇Tr Bκp(t) ∣2, where we use the notation

∇Bκp(t) ⋮∇Bκp(t) =def

∂Bij

∂xm

∂Bij

∂xm
. (48)

This would however lead to constitutive relations wherein the Cauchy stress tensor is not symmetric.
Although such theories based on the concept of couple stress exist in continuum mechanics, see, for
example, Hadjesfandiari et al. [2014] and references therein, we prefer, if possible, not to use them.
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Summary 3: Incompressible Oldroyd-B model via Gibbs free energy

Specific Gibbs free energy:

g(θ,Sκp(t)) =def gthermal(θ) + µ(θ)
2ρ

Tr( ρ

µ(θ)Sκp(t) − [ ρ

µ(θ)Sκp(t) + I] ln [ ρ

µ(θ)Sκp(t) + I])
gthermal(θ) =def −cV,refθ (ln

θ

θref
− 1)

Reduced stress (notation):

Sκp(t) =def

Tκp(t)
ρ

Entropy production:

ξ = 1

θ

⎧⎪⎪⎨⎪⎪⎩2νDδ ∶Dδ + 1

2ν1
Tκp(t) (Tκp(t)

µ(θ) + I)−1 ∶ Tκp(t)
⎫⎪⎪⎬⎪⎪⎭ + κ

∇θ ● ∇θ
θ2

Material parameters: cV,ref specific heat at constant volume – positive constant; µ(θ) shear
modulus – nonnegative function, typically proportional to θ; ν, ν1 viscosity – nonnegative
functions of the primitive variables, typically constants; κ thermal conductivity – nonnegative
function of the primitive variables, typically constant

Evolution equations (mechanical variables p, v, Tκp(t) and thermal variable θ):

divv = 0

ρ
dv

dt
= div T + ρb

ν1

▽

(Tκp(t)
µ(θ) ) + Tκp(t) = 2ν1D

−ρθ d

dt
(∂g
∂θ

(θ,Sκp(t))) = div (κθ) + 2νDδ ∶Dδ + 1

2ν1
Tκp(t) (Tκp(t)

µ(θ) + I)−1 ∶ Tκp(t)
Cauchy stress tensor:

T = −pI + 2νDδ + Tκp(t), δ
Thermodynamical relations:

Hκp(t) = − ∂g

∂Sκp(t)
(θ,Sκp(t))

η = −∂g
∂θ

(θ,Sκp(t))
Left Cauchy–Green tensor Bκp(t) and Hencky strain tensor Hκp(t) associated to the elastic
response:

Bκp(t) = e
2Hκp(t)

The second option is to interpret the stress diffusion term as a consequence of a non-standard
entropy production mechanism. This is in principle consistent with the microscopic interpretation
of the stress diffusion term in dilute polymeric fluids—here the term originates from Brownian
motion of the centre of mass of polymeric chains. If we fix the entropy production as

ξ =def
1

θ
{2ν + 3λ

3
(divv)2 + 2νDδ ∶Dδ + µ2

2ν1
(Tr Bκp(t) +Tr B−1

κp(t)
− 6) + µµ̃(θ)

2ν1
∇Bκp(t) ⋮∇Bκp(t)}+κ ∣∇θ∣2

θ2
,

(49)
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then we get the evolution equation for Bκp(t) in the form

ν1

▽

Bκp(t) = −µ (Bκp(t) − I) + 1

2
[div (µ̃∇Bκp(t))Bκp(t) + Bκp(t) div (µ̃∇Bκp(t)) ]. (50)

This gives us the desired Laplace operator applied on the full Bκp(t) tensor, see [P6] for details. We

note that the key concept that allows us to go from (49) to (50) is, besides the identification of the
entropy production, also the proper identification of the entropy flux jη.

Careful analysis2 then reveals that more elaborate choice of the entropy production

ξ̃ =def
1

θ
{2νDδ ∶Dδ + µ2

2ν1
(Tr Bκp(t) +Tr B−1

κp(t)
− 6)}

+ 1

θ
{2
µµ̃

ν
Tr [Sym(B

− 1
2

κp(t) (∇B
1
2
κp(t))) ● Sym(B

− 1
2

κp(t) (∇B
1
2
κp(t)))]} + κ ∣∇θ∣2

θ2
, (51)

where Sym () denotes the symmetric part of the corresponding tensor, then leads to the evolution
equation precisely in the desired form with the Laplace operator acting on Bκp(t) ,

ν1

▽

Bκp(t) = −µ (Bκp(t) − I) + div (µ̃∇Bκp(t)) . (52)

While [P6] is focused on a diffusive variant of Oldroyd-B model, the follow-up work Dostaĺık
et al. [2019a] we then investigate other popular viscoelastic rate-type models such as Giesekus,
FENE-P, Johnson–Segalman, Phan-Thien–Tanner and Bautista–Manero–Puig models. We empha-
sise that in Dostaĺık et al. [2019a] we also work with other objective tensorial rates beyond the
upper convected derivative (3). (An updated version posted on arXiv, arXiv:1902.07983, corrects
some misprints in the published paper.) The analysis of thermodynamic background of viscoelastic
rate-type models with stress diffusion has been then partially used in mathematical analysis of the
corresponding governing equations, see Buĺıček et al. [2018, 2021] and Bathory et al. [2021].

4. Viscoelastic micro-macro models

So far we have been dealing with purely phenomenological models, but the assumption that
the material is fully characterised by its energy storage ability and its entropy production ability
applies in microscopic setting as well, see, for example, our work Dostaĺık et al. [2020].

Without going into details, we recall that the standard micro-macro viscoelastic rate-type model
for a compressible dilute polymeric liquid, see Öttinger and Grmela [1997], reads

dρs

dt
+ ρsdivxv = 0, (53a)

ρs
dv

dt
= divxT + ρsb, (53b)

∂ϕ

∂t
+ divx (vϕ − kBθs

2ζ
∇xϕ) + divq ((∇xv)qϕ − 2F

ζ
ϕ − 2kBθs

ζ
∇qϕ) = 0, (53c)

and

ρscV,s
dθs

dt
= −θs

∂pth,s

∂θs
divxv + divx (κ∇xθs) + λ (divxv)2 + 2νD ∶D − 2kBθsnpdivxv

+ [∫
D

(∇q θs

θref
Uη)⊗ qϕdq] ∶D + 2

ζ
∫
D

(∇qUe) ● ∇q (Ue + θs

θref
Uη) dq − 2kBθs

ζ
∫
D

[∆qUe]ϕdq,

(53d)

where the unknown fields are the velocity field v, solvent density ρs, solvent temperature θs and
probability distribution function ϕ. (For details concerning the notation and physical interpretation
of the variables please see Dostaĺık et al. [2020].) The constitutive relation for the dumbbell spring
force F is given via the specification of potentials Ue and Uη,

F =def ∇q [Ue (1

2
∣ q
qref

∣2) + θs

θref
Uη (1

2
∣ q
qref

∣2)] , (53e)

2Miroslav Buĺıček, personal communication.

https://arxiv.org/abs/1902.07983
https://arxiv.org
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while the Cauchy stress tensor T is given by the formula

T =def −pth,sI + λ (divxv) I + 2νD − 2kBθsnpI + ∫
D
F ⊗ qϕdq, (53f)

pth,s =def
cV,s (γ − 1)ρsθs

1 − bρs
− p∞, (53g)

where we have used the Nobel–Abel stiffened gas equation of state, Le Métayer and Saurel [2016],
Chiapolino and Saurel [2018].

The Helmhotz free energy behind the governing equations can be identified, see Dostaĺık et al.
[2020], and it is given by the formulae

ψ(θs, ρs, ϕ) =def ψs(θs, ρs) + 1

ρs
∫
D
Ue (1

2
∣ q
qref

∣2)ϕdq + kBθs

ρs
∫
D

⎛⎜⎜⎜⎝
Uη ( 1

2
∣ q
qref

∣2)
kBθref

ϕ + ϕ ln
ϕ

K

⎞⎟⎟⎟⎠ dq

(54a)
and

ψs(θs, ρs) =def −cV,sθs [ln( θs

θs,ref
) − 1] − cV,sθs (1 − γ) ln [cV,s (γ − 1)ρs

1 − bρs

θs,ref

pref
]

− q′θs + ( 1

ρs
− b)p∞ + q, (54b)

where Uη and Ue are some given spring potentials. The corresponding entropy production reads

ξ = 1

θs
(2νDδ ∶Dδ + λ̃ (divxv)2)

+ 2

θsζ
∫
D

1

ϕ

RRRRRRRRRRR
⎛⎝ dUe

ds
∣
s= 1

2 ∣ q
qref
∣2 + θs

θref

dUη

ds
∣
s= 1

2 ∣ q
qref
∣2
⎞⎠ q

q2
ref

ϕ + kBθs∇qϕRRRRRRRRRRR
2

dq

+ k2
Bθs

2ζ
∫
D

1

ϕ
∣∇xϕ∣2 dq + κ ∣∇xθs∣2

θ2
s

, (55)

see Dostaĺık et al. [2020] for details.
The point of this short excursion is to add a final argument to the claim that the viscoelastic

rate-type models can be quite complex and that they are typically coupled—thermal variables
influnce the evolution of mechanical variables and vice versa. Consequently, analysis of qualitative
behaviour predicted by the governing equations (53) or by governing equations shown in Summary 2
and similar ones, can be quite challenging. Fortunately, thermodynamics offers us a helping hand.
The knowledge of thermodynamic background of the models can be gainfully exploited, for example,
in nonlinear stability analysis. Such an analysis is the subject of the last chapter.



CHAPTER 4

Stability

Having invested a lot of effort into development of thermodynamically consistent models for
viscoelastic fluids, one can ask whether such an effort has been worth of it. In fact the viscoelastic
rate-type models have been for a long time gainfully used without proper understanding of the
underlying thermodynamic background. Thus our question [Q4] is how to exploit thermodynamics
in analysis of qualitative behaviour of solutions to the corresponding systems of nonlinear partial
differential equations. Our answer is that the effort invested in the development of thermodynami-
cally consistent models pays off, amongst others, in nonlinear stability analysis of solutions to the
corresponding nonlinear partial differential equations.

Parts of the following text are based on our recent review paper Dostaĺık and Pr̊uša [2022].
We have first dealt with the topic in [P1], while the general approach is then applied/tested in a
purely mechanical context in [P4] and in a full thermo-mechanical setting in [P2] and [P3].

1. Concept of stability and related mathematical techniques and problems

The objective is to establish stability of a steady state in a system whose dynamics is governed
by a differential equation. (In our case by a system of nonlinear partial differential equations.)

Informally, the task is the following. If the system of governing equations has a steady solution Ŵ ,
then we say that the solution is asymptotically stable provided that any solution W starting from
a perturbed steady state remain close to the steady state (Lyapunov stability), and, furthermore,
if ∥Ŵ −W ∥

st

t→+∞ÐÐÐ→ 0, (56)

where ∥⋅∥st is a norm, see Figure 1 for a sketch. The size of the initial perturbation can be restricted
or unrestricted. In the former case one talks about conditional stability, while in the latter case
when all perturbations are attracted to the steady state one talks about unconditional stability.

t

perturbation

steady state Ŵ

W(t) = Ŵ + W̃

W̃

Figure 1. Concept of stability.

The standard tool for nonlinear stability analysis is the Lyapunov functional, see, for example,
Henry [1981] for a discussion that applies to the infinite dimensional setting. We consider a system
of governing equations in the form

dW

dt
= F (W ), (57)

where Ŵ is a steady state, that is F (Ŵ ) = 0, and where ∥⋅∥st denotes a norm on the underlying

state space. We say that the functional V(W̃ ∥Ŵ ) is a strict Lyapunov functional of the steady

state Ŵ provided that:
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(1) There exists a neighborhood of Ŵ such that the functional is bounded from below by a

function f of the distance between the steady state Ŵ and the perturbation W , that is

V (W̃ ∥Ŵ ) ≥ f (∥Ŵ −W ∥
st
) , (58a)

where f is a continuous strictly increasing function such that f(0) = 0 and f(r) > 0
whenever r > 0.

(2) The time derivative of V(W̃ ∥Ŵ ) is negative and bounded from above by a function g of

the distance between the steady state Ŵ and the perturbation W , that is

d

dt
V (W̃ ∥Ŵ ) ≤ −g (∥Ŵ −W ∥

st
) , (58b)

where g is a continuous strictly increasing function such that g(0) = 0 and g(r) > 0
whenever r > 0.

We note that the theorem can be rephrased in metric spaces as well.
If the given system of governing equations admits a strict Lyapunov functional near the state

Ŵ , then we know that the steady state Ŵ is conditionally asymptotically stable. This means that
the solution W = W̃ + Ŵ that starts in the neighborhood of Ŵ satisfies

∥Ŵ −W ∥
st

t→+∞ÐÐÐ→ 0. (59)

V
(
Ŵ + W̃

)

U(Ŵ)

Ŵ + W̃
Ŵ

Figure 2. Lyapunov functional.

Consequently, the stability analysis boils down to the identification of a suitable Lyapunov
functional. However, this is not easy. The more complex the governing equations, the harder is to
identify the suitable Lyapunov functional. (Think for example about system of equations (53) for a
dilute polymeric fluid—what is a suitable Lyapunov functional for such system?) In other words,
the more complex the governing equations, the less likely is to succeed with ad hoc constructions
of Lyapunov functional. A systematic approach to construction of Lyapunov functionals is needed,
and here is the point where thermodynamics offers a helping hand.

Before we proceed with thermodynamically motivated construction of Lyapunov functionals,
we point out some mathematical and physical issues we need to face. Mathematical issues are
related to the fact that we work with partial differential equations, which means that we work in
infinite dimensional state spaces. Physical issues are related to the fact that we need to carefully
work with the boundary conditions, and that we need to work with fully coupled thermomechanical
systems.

1.1. Mathematical issues. First, the choice of topology on the underlying state space is
essential; it is not a matter of convenience as in the finite dimensional case. The reason is that in the
infinite dimensional setting different norms are not in general equivalent as in the finite dimensional
case. Consequently, the solution can be shown to be asymptotically stable using a particular choice
of the norm/distance, but it might be unstable if one chooses a different norm/distance; specific
examples are given in Flavin and Rionero [1995].

Another typical problem dwells in the fact that if we know that a function tends to zero, the
same is not necessarily true for its derivative/gradient. (The standard counterexample is the func-

tion f(n,x) = 1
n

sin (n2x) that for arbitrary x satisfies limn→+∞ f(n,x) = 0, but limn→+∞ df
dx

(n,x) /=
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0. The limit of the derivative even does not exist.) However, the argument “if a function vanishes,
then its gradient must vanish as well,” is frequently used in various non-rigorous physical works.
Albeit such a behaviour can be expected, it is not granted a priori ; such a behaviour must be
inferred from the governing equations.

Finally, various theorems referring to the concept of Lyapunov functional, for example the
LaSalle invariance principle, typically hold in the infinite dimensional setting only under stronger
assumptions than in the finite dimensional setting, for details see, for example, Henry [1981]
or Šilhavý [1997]. Naturally, the stronger assumptions are more difficult to work with. For in-
structive counterexamples showing peculiarities of the infinite dimensional setting we refer the
reader to Zwart [2015].

1.2. Physical issues. At first glance, it may seem that the construction of physically moti-
vated Lyapunov functionals is straightforward. For example, if we deal with a spring–mass system
with damping, see Figure 3, then the governing equation for the spring elongation x reads

m
d2x

dt2
= −bdx

dt
− k(x − xeq), (60)

where xeq denotes the equilibrium length of the spring, see Figure 3, and m, k and b are constants
(mass, spring stiffness, damping coefficient). The equilibrium length of the spring xeq is the steady
solution to (60), and using the notation introduced above we can thus identify W =def x and

Ŵ =def xeq. Using (60) it is easy to conclude that the evolution equation for the perturbation x̃
reads

d

dt

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1

2
m(dx̃

dt
)2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
kinetic energy

+ 1

2
kx̃2

²
elastic stored energy

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= −b(dx̃

dt
)2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
dissipation

. (61)

From (61) it follows x̃→ 0 as t→ +∞.

time

time

sum of kinetic and potential energy

distance from equilibrium

xeq

x = xeq + x̃

Figure 3. Damped spring and its long-term dynamics.

In this case the sum of the kinetic energy and the elastic stored energy decreases—it is lost due
to the dissipation. In virtue of this observation, we can immediately identify the Lyapunov function
and establish the desired stability result. At this point one might think that the identification of
the mechanical energy and the dissipation would suffice even in the continuum mechanics setting.

The situation is however much more challenging in the continuum mechanics setting. First, in a
coupled thermo-mechanical system the net total energy is typically conserved (thermodynamically
isolated system) or its time derivative is a priori unknown (thermodynamically open systems). The
stability of a steady state is not related to the decay of net total energy, instead we are dealing with
reorganisation of the energy distribution in space. Second, the solution of the corresponding system
of partial differential equations depends on the choice of boundary conditions, and the same holds
for stability analysis. In other words, the boundary conditions are as important as the governing
equations themselves.
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2. Construction of Lyapunov type functionals

The systematic construction of Lyapunov type functionals differs for thermodynamically open
systems and thermodynamically isolated systems, see [P1]. The case of thermodynamically isolated
systems is simpler, since there is no need to work with fluxes through the boundary of the system.

2.1. Thermodynamically isolated systems.
2.1.1. Expected qualitative behaviour. Thermodynamically isolated systems are not allowed to

interact with the outside environment, see Figure 4 for a sketch. If the system of interest is a
dissipative one, then the expected dynamical behaviour is pretty boring. The spatially homogeneous
steady state is expected to be stationary (zero macroscopic velocity field) and stable with respect to
any perturbation. The ambition is to prove that this actually happens for any initial perturbation.
In particular, one can not focus on “infinitesimal” perturbations described by the linearisation of
the governing equations—a truly nonlinear theory is needed.

t → +∞

no mechanical energy

no heat flux

n flux

Ω
no mechanical energy

no heat flux

n flux

Ω

v|∂Ω = 0

v|∂Ω = 0

jq • n|∂Ω = 0

jq • n|∂Ω = 0

Figure 4. Thermodynamically isolated system.

We note that this goal can not be achieved using the frequently referred approach proposed
by Glansdorff and Prigogine [1971]. (Albeit the approach is clearly beneficial provided that one
is interested in necessary conditions for instability. The comment applies to the open systems as
well, see the discussion below.) Indeed, Glansdorff and Prigogine [1971] propose to track the time
evolution of perturbations using a functional that involves the second variation of the net entropy
functional, hence the perturbations are essentially measured by the means of a quantity “quadratic”
in perturbations. This is clearly insufficient in a fully nonlinear setting.

2.1.2. Lyapunov type functional. The path to the fully nonlinear setting starts with the famous
statement by Clausius [1865]: “The energy of the world is constant. The entropy of the world
strives to a maximum.” If the statement is understood in the sense that the net entropy in an
isolated system must increase in time, and that all other relevant net quantities such as the energy
and the total mass must be conserved, then the statement suggests that the functional

Veq =def −S + λ1 (Etot − Êtot) + λ2 ∫
Ω
(ρ − ρ̂) dv (62)

might be of interest regarding the monitoring of the approach to the target stationary state. Here
the symbol S denotes the net entropy,

S =def ∫
Ω
ρη dv, (63)

and the symbol Etot denotes the net total energy

Etot =def ∫
Ω
(1

2
ρ ∣v∣2 + ρe) dv (64)

at the current state, and Êtot denotes the net total energy at the stationary spatially homogeneous
stationary state, Êtot = ∫Ω ρ̂êdv respectively, and Ω is the domain of interest. Finally, symbols
λ1 and λ2 denote appropriately chosen Lagrange multipliers, see Section 2.1.3 below for detailed
discussion.



2. CONSTRUCTION OF LYAPUNOV TYPE FUNCTIONALS 35

Depending on the particular system of interest other constraints must be added on the right-
hand side of (62). For example for dilute polymeric fluids one has to enforce also conservation of
the number of polymeric chains, that is

Vmeq = −S + λ1 (Etot − Êtot) + λ2 ∫
Ω
(ρs − ρ̂s) dv + λ3 ∫

Ω
(np − n̂p) dv, (65)

where λ3 denotes a new Lagrange multiplier and np denotes the current density of polymeric chains
and n̂p denotes the steady state density of polymeric chains.

The approach based on (62) in principle leads to a functional that is decreasing in time and
nonnegative, and that vanishes if and only if the perturbation vanishes. Indeed, the time derivative
of the functional (62) reads

dVmeq

dt
= −dS

dt
= −∫

Ω
ξ dv ≤ 0, (66)

where we have used the fact the net total energy and mass in an isolated system are conserved, and
that the definition of net total entropy (63) in virtue of generic entropy evolution equation (43) and
the absence of entropy flux jη through the boundary imply that

dS

dt
= ∫

Ω
ξ dv − ∫

∂Ω
jη ●nds = ∫

Ω
ξ dv, (67)

where the entropy production ξ is a nonnegative quantity.

The guaranteed nonpositivity of the time derivative
dVmeq

dt
and the nonnegativity of the func-

tional Vmeq make the functional an ideal candidate for the Lyapunov functional for the nonlinear
stability analysis. However, the relation of the functional to a suitable norm/metric on the corre-
sponding state space in the sense of inequalities (58) might not be clear, hence we prefer to denote
functionals of type (62) only as Lyapunov type functionals.

In continuum thermodynamics setting the idea to use functionals of type (62) in nonlinear
stability analysis was introduced by Coleman and Greenberg [1967], Coleman [1970] and Gurtin
[1973, 1975], though its origins can be traced back to Duhem [1911].

2.1.3. Identification of Lagrange multipliers in Lyapunov type functional. The Lagrange mul-
tipliers in (62) can be identified via solution of a constrained maximisation problem, see [P1] for
details. In [P1] we however deal with an incompressible material only, the treatment of a com-
pressible material is discussed below.

We want the net entropy S at the stationary state to be maximal subject to the corresponding
constraints. The auxilliary functional for the constrained maximisation problems is, up to the sign,
the functional (62). If we use the definitions of the net entropy and the net total energy, we get the
auxilliary functional in the form

Lλ1,λ2 =def ∫
Ω
ρη dv − λ1 ∫

Ω
(1

2
ρ ∣v∣2 + ρe − ρ̂ê) dv − λ2 ∫

Ω
(ρ − ρ̂) dv. (68)

The stationary spatially homogeneous state ρ̂, θ̂ and v̂ = 0 is a solution to the maximisation problem
provided that the Gâteaux derivative1 of auxilliary functional (68) at point ρ̂, θ̂ and v̂ vanishes in

every admissible direction ρ̃, θ̃ and ṽ. Now we evaluate the Gâteaux derivative in two different
descriptions, which allows us to identify the multipliers λ1 and λ2. The idea is the following. The
fact that the net entropy is at maximum value must be true no matter whether our primitive
variables are the temperature and the density, or the temperature and the pressure and so forth;
consequently we can conveniently switch between various descriptions in order to get the desired
piece of information.

First, we interpret the entropy and the internal energy as functions of the density ρ and the
temperature θ. The formula for the Gâteaux derivative at point ρ̂, θ̂ and v̂ in the direction θ̃, ρ̃

1We recall that the Gâteaux derivative DM(x)[y] of a functional M at point x in the direction y is defined as

DM(x)[y] =def lims→0
M(x+sy)−M(x)

s
which is tantamount to DM(x)[y] =def

d
ds
M(x + sy)∣

s=0. If it is necessary

to emphasize the variable against which we differentiate, we also write DxM(x)[y] instead of DM(x)[y].
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and ṽ reads

DLλ1,λ2(θ̂, ρ̂,0)[θ̃, ρ̃, ṽ] =
d

ds
{∫

Ω
(ρ̂ + sρ̃)η(ρ̂ + sρ̃, θ̂ + sθ̃)dv − λ1 ∫

Ω
(1

2
(ρ̂ + sρ̃) ∣sṽ∣2 + ρe(ρ̂ + sρ̃, θ̂ + sθ̃) − ρ̂ê(ρ̂, θ̂)) dv

−λ2 ∫
Ω
(ρ̂ + sρ̃ − ρ̂) dv}∣

s=0
, (69)

which with a slight abuse of notation yields

DLλ1,λ2(θ̂, ρ̂,0)[θ̃, ρ̃, ṽ] = ∫
Ω
ρ̂(∂η(ρ̂, θ̂)

∂θ̂
− λ1

∂e(ρ̂, θ̂)
∂θ̂

) θ̃ dv, (70)

where we have used the fact that ∫Ω ρ̃dv = 0, which is a consequence of the mass conservation con-

straint. (Recall that the stationary state is spatially homogeneous, hence θ̂ and ρ̂ are constants. The

abuse of notation is about using ∂η(ρ̂,θ̂)
∂θ̂

as an abbreviation for ∂η(ρ,θ)
∂θ

∣(ρ,θ)=(ρ̂,θ̂).) Using standard

thermodynamic identities

∂η̂(θ̂, ρ̂)
∂θ̂

= cV(ρ̂, θ̂)
θ̂

, (71a)

∂ê(θ̂, ρ̂)
∂θ̂

= cV(ρ̂, θ̂), (71b)

where cV denotes the specific heat at constant volume, we see that (70) reduces to

DLλ1,λ2(θ̂, ρ̂,0)[θ̃, ρ̃, ṽ] = ∫
Ω
ρ̂(1

θ̂
− λ1) cV(ρ̂, θ̂)θ̃ dv. (72)

The Gâteaux derivative therefore vanishes for arbitrary θ̃ provided that we fix the Lagrange mul-
tiplier as

λ1 = 1

θ̂
. (73)

The second Lagrange multiplier λ2 is however still unidentified. In order to identify it, we need to
switch to a different set of variables.

Now we interpret the entropy and the internal energy as functions of the density ρ and the
thermodynamic pressure pth. The formula for the Gâteaux derivative at point ρ̂, p̂th and v̂ in the
direction θ̃, p̃th and ṽ reads

DLλ1,λ2(θ̂, p̂th,0)[θ̃, p̃th, ṽ] = d

ds
{∫

Ω
ρ(θ̂ + sθ̃, p̂th + sp̃th)η(θ̂ + sθ̃, p̂th + sp̃th)

−λ1 ∫
Ω
(1

2
ρ(θ̂ + sθ̃, p̂th + sp̃th) ∣sṽ∣2 + ρ(θ̂ + sθ̃, p̂th + sp̃th)e(θ̂ + sθ̃, p̂th + sp̃th)) dv

−λ2 ∫
Ω
ρ(θ̂ + sθ̃, p̂th + sp̃th)dv}∣

s=0
. (74)

(The density is now interpreted as a function of the primitive variables—the temperature and the
thermodynamic pressure.) Straightforward calculation reveals that

DLλ1,λ2(θ̂, p̂th,0)[θ̃, p̃th, ṽ]
= ∫

Ω
{∂ρ(θ̂, p̂th)

∂θ̂
(η̂ − λ1ê) + ρ̂(∂η(θ̂, p̂th)

∂θ̂
− λ1

∂e(θ̂, p̂th)
∂θ̂

) − λ2
∂ρ(θ̂, p̂th)

∂θ̂
} θ̃ dv

+ ∫
Ω
(∂ρ(θ̂, p̂th)

∂p̂th
(η̂ − λ1ê) + ρ̂(∂η(θ̂, p̂th)

∂p̂th
− λ1

∂e(θ̂, p̂th)
∂p̂th

) − λ2
∂ρ(θ̂, p̂th)
∂p̂th

) p̃th dv, (75)

where we denote ρ̂ = ρ (θ̂, p̂th), η̂ = η (θ̂, p̂th) and ê = e (θ̂, p̂th) and where we have again slightly
abused the notation.

Since we have already identified the Lagrange multiplier λ1 as λ1 = 1
θ̂

we see that

η̂ − λ1ê = η̂ − 1

θ̂
ê = −θ̂ψ̂ = 0 (76)



2. CONSTRUCTION OF LYAPUNOV TYPE FUNCTIONALS 37

provided that the Helmholtz free energy ψ =def e − θη is calibrated in such a way that it vanishes
at the stationary spatially homogeneous state. Furthermore, using standard thermodynamical
identities

∂η(θ̂, ρ̂)
∂ρ̂

= − 1

ρ̂2

∂pth(θ̂, ρ̂)
∂θ̂

, (77a)

−pth(θ̂, ρ̂) + ρ̂2 ∂e(θ̂, ρ̂)
∂ρ̂

= −θ̂ ∂pth(θ̂, ρ̂)
∂θ̂

(77b)

we see that

ρ̂(∂η(θ̂, p̂th)
∂p̂th

− λ1
∂e(θ̂, p̂th)
∂p̂th

)−λ2
∂ρ(θ̂, p̂th)
∂p̂th

= ρ̂(∂η(θ̂, ρ̂)
∂ρ̂

− λ1
∂e(θ̂, ρ̂)
∂ρ̂

) ∂ρ(θ̂, p̂th)
∂p̂th

−λ2
∂ρ(θ̂, p̂th)
∂p̂th

= (− p̂th

ρ̂θ̂
+ λ2) ∂ρ(θ̂, p̂th)

∂p̂th
, (78)

where we have also used the formula (73) for the Lagrange multiplier λ1. Observations (78) and
(76) then allow us to rewrite the formula (75) for the Gâteaux derivative as

DLλ1,λ2(θ̂, p̂th,0)[θ̃, p̃th, ṽ] = ∫
Ω
{ρ̂(∂η(θ̂, p̂th)

∂θ̂
− λ1

∂e(θ̂, p̂th)
∂θ̂

) − λ2
∂ρ(θ̂, p̂th)

∂θ̂
} θ̃ dv

+ ∫
Ω
(− p̂th

ρ̂θ̂
+ λ2) ∂ρ(θ̂, p̂th)

∂p̂th
p̃th dv. (79)

Since we want the derivative to vanish for arbitrary p̃th, we see that we need to fix the second
Lagrange multiplier λ2 as

λ2 = p̂th

ρ̂θ̂
. (80)

With this choice of λ2 we can revisit the first integral in (79), and we see that

ρ̂(∂η(θ̂, p̂th)
∂θ̂

− λ1
∂e(θ̂, p̂th)

∂θ̂
) − λ2

∂ρ(θ̂, p̂th)
∂θ̂

= ρ̂(∂η(θ̂, ρ̂)
∂θ̂

− λ1
∂e(θ̂, ρ̂)
∂θ̂

) + ρ̂(∂η(θ̂, ρ̂)
∂ρ̂

− λ1
∂e(θ̂, ρ̂)
∂ρ̂

) ∂ρ(θ̂, p̂th)
∂θ̂

− λ2
∂ρ(θ̂, p̂th)

∂θ̂
= 0, (81)

where we have used identities (71) and (77) and the formulae for the Lagrange multiplies.
Consequently, the Lyapunov type functional for nonlinear stability analysis of stationary spa-

tially homogeneous steady state in a compressible Navier–Stokes–Fourier fluid is given by the for-
mula Veq = −∫

Ω
ρη dv + 1

θ̂
∫

Ω
(1

2
ρ ∣v∣2 + ρe − ρ̂ê) dv + p̂th

ρ̂θ̂
∫

Ω
(ρ − ρ̂) dv. (82)

Note that from the perspective of generalisation to thermodynamically open systems, see [P1], it
is convenient to use an equivalent functional Vmeq that is obtained from Veq by multiplication via

the constant value θ̂, that is

Vmeq = −∫
Ω
θ̂ρη dv + ∫

Ω
(1

2
ρ ∣v∣2 + ρe − ρ̂ê) dv + ∫

Ω

p̂th

ρ̂
(ρ − ρ̂) dv. (83)

(The term ρ̂ê can be replaced by ρê in virtue of the mass conservation constraint and the fact that
ê is a constant.) In particular, if we consider the calorically perfect ideal gas with the Helmholtz
free energy in the form

ψ(θ, ρ) =def −cV,refθ (ln
θ

θ̂
− 1) + cV,refθ (γ − 1) ln

ρ

ρ̂
− cV,ref θ̂, (84)

where cV,ref is the specific heat capacity at constant volume (a constant) and γ is the adiabatic
exponent, then the functional (83) reduces to

Vmeq = ∫
Ω
ρcV,ref θ̂ (θ

θ̂
− 1 − ln

θ

θ̂
) dv + ∫

Ω
ρ̂θ̂ (γ − 1) (ρ

ρ̂
ln
ρ

ρ̂
− ρ
ρ̂
− 1) dv. (85)
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It is straightforward to check that the functional is nonnegative, and that it vanishes if and only if
ρ = ρ̂ and θ = θ̂. See also Dostaĺık and Pr̊uša [2022] for further comments regarding leading order
approximation of the functional and the relation of the leading order approximation to the standard
linearised stability theory (infinitesimal perturbations).

2.1.4. Example. A relatively involved application of the procedure for construction of Lyapunov
type functionals outlined is Section 2.1.2 is given in our work Dostaĺık et al. [2020], where we
investigate the classical micro-macro model for compressible dilute polymeric fluids (53), see, for

example, [Öttinger and Grmela, 1997, Section III], and wherein the equation of state for the solvent
is taken from Le Métayer and Saurel [2016].

In this case the state space consists of the solvent density ρs, velocity v, temperature θs and
the configurational distribution function ϕ. If we decompose the state variables to the spatially
homogeneous stationary part Ŵ =def [v̂, ρ̂s, θ̂s, ϕ̂] and the perturbation W̃ =def [ṽ, ρ̃s, θ̃s, ϕ̃], that is

[v, ρs, θs, ϕ] = [v̂, ρ̂s, θ̂s, ϕ̂] + [ṽ, ρ̃s, θ̃s, ϕ̃] , (86)

then the functional constructed by the method outlined above reads

Vmeq( ρ̃s, θ̃s, ϕ̃, ṽ∥ ρ̂s, θ̂s, ϕ̂, v̂) =def ∫
Ω

1

2
ρs ∣v∣2 dv

+ ∫
Ω
ρscV,sθ̂s [θs

θ̂s

− 1 − ln(θs

θ̂s

)] dv + ∫
Ω
cV,s(γ − 1)θ̂s [ρs ln(ρs

ρ̂s

1 − bρ̂s

1 − bρs
) − ρs − ρ̂s

1 − bρ̂s
] dv

+ kBθ̂s ∫
Ω

⎛⎝∫DMnp,θ̂s

⎡⎢⎢⎢⎢⎣
ϕ

Mnp,θ̂s

ln
⎛⎝ ϕ

Mnp,θ̂s

⎞⎠ − ϕ

Mnp,θ̂s

+ 1

⎤⎥⎥⎥⎥⎦ dq
⎞⎠ dv

+ kBθ̂s ∫
Ω
n̂p [np

n̂p
ln(np

n̂p
) − np

n̂p
+ 1] dv, (87)

where np(t,x) =def ∫D ϕ(t,x,q)dq denotes the polymer number density again decomposed to the
spatially homogeneous stationary part and the perturbation np = n̂p + ñp, and where

Mnp,θs =def np
e
−U( 1

2
∣

q
qref

∣
2
)

kBθs

∫D e
−U( 1

2
∣

q
qref

∣
2
)

kBθs dq

(88)

denotes the Maxwellian for the given solvent temperature θs and polymer number density np; for
thorough discussion see Dostaĺık et al. [2020]. Furthermore, if we ignore quantities ϕ and np, that
is the last two terms on the right-hand side, we get the functional for the solvent only, which is
a functional for the compressible Navier–Stokes–Fourier fluid with the corresponding equation of
state.

2.2. Thermodynamically open systems.
2.2.1. Expected qualitative behaviour. More interesting class of thermodynamical systems is

the class of open systems. The open systems that can exchange energy/mass with the outside
environment, see Figure 5 for a sketch of such a system, and, typically, the dynamics of these
systems is externally forced via the interaction with outside environment.

Since these systems are forced, one can typically observe a non-trivial steady state in these
systems. (Non-trivial flow structure, non-trivial temperature distribution—Rayleigh–Bénard con-
vection or Taylor–Couette flow are good examples of such systems.) Regarding the perturbations
to the given steady state and their long-time behaviour, two scenarios are possible, see Figure 5.
Either the perturbations vanish as the time goes to infinity, and the steady state is recovered, or
the perturbations grow in time, and they destroy the original steady state and a new structure
emerges. Usually, the long-time behaviour of the perturbations depends on the strength of the
external forcing that is characterised using some dimensionless parameters such as the Rayleigh
number, the Reynolds number or the Weissenberg number.
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Figure 5. Thermodynamically open system.

2.2.2. Lyapunov type functional. The stability analysis of steady states in thermodynamically
open systems can be—from the mathematical point of view—again based on the construction of a
suitable Lyapunov functional. However, the functional must be constructed differently than in the
case of thermodynamically isolated systems. The insufficiency of the construction that worked for
isolated systems is obvious, because

(1) The steady state in an open system is typically spatially inhomogeneous, which means that,

for example, the steady temperature field θ̂ can be a function of position. Consequently,
formulae of type (62) with Lagrange multipliers (73) and (80) do not define functionals.

(2) Open systems are interacting with outside environment, and hence there are nontrivial
fluxes through the system boundary. In particular the entropy flux through the boundary
can be nontrivial, and the net entropy growth (67) can not be guaranteed at all time
instants.

The construction of a functional suitable for monitoring the progress towards the target steady
state can be addressed by the affine correction of the functional used in the case of thermodynam-
ically isolated system. This is a technique used in the theory of hyperbolic systems, see Ericksen
[1966], Dafermos [1979], Serre and Vasseur [2016] and comments in [P1]. (Note however that in
the theory of hyperbolic systems the stability usually means continuous dependence on initial state
and supply terms, not the asymptotic stability.) The construction goes as follows. If we have a
functional Vmeq suitable for the stability analysis of the spatially homogeneous stationary state in
an isolated system, we construct the functional Vneq that can serve for stability analysis of the
steady state in the corresponding open system via the formula

Vneq(W̃neq∥Ŵneq) =def Vmeq(Ŵneq + W̃neq) − Vmeq(Ŵneq) − DWVmeq(W )∣W=Ŵneq
[W̃neq] , (89)

where the symbol DWVmeq(W )∣W=Ŵneq
[W̃neq] again denotes the Gâteaux derivative of Vmeq at

point Ŵneq in the direction W̃neq, and where W = Ŵneq +W̃neq denotes the state variables decom-

posed to the steady state Ŵneq and the perturbation W̃neq with respect to the steady state.
Having identified a candidate for the monitoring of the evolution of the perturbation, we need

to find the time derivative
dVneq

dt
of the proposed functional (89). However, the time derivative

apparently forces us to work with non-vanishing surface integrals.
Indeed, we in principle need to evaluate the terms of the type dS

dt
, which can, unlike in the case

of thermodynamically isolated systems (67), contain the surface integral

dS

dt
= ∫

Ω
ξ dv − ∫

∂Ω
jη ●nds = ∫

Ω
ξ dv + ∫

∂Ω
κ
∇θ
θ
●nds, (90)
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where we have used the standard formula for the entropy flux jη = jq
θ
= −κ∇θ

θ
. If we were using the

zero heat flux boundary condition,

κ∇θ ●n∣∂Ω = 0, (91)

that is if we were dealing a with a thermally isolated system, the surface integral would vanish. But
if deal with an thermally open system, that is if we for example prescribe the boundary condition
for the temperature

θ∣∂Ω = θbdr, (92)

where θbdr is a given boundary temperature, then the product κ∇θ
θ
●n does not necessarily vanish.

More importantly, the product has no definite sign, and its sign can dynamically change during
the evolution of the system. Consequently, the “entropy growth” is lost, and it seems that time
derivatives of the net quantities lead to the presence of surface integrals that are beyond our control.

Fortunately, functionals of type (89) include terms ρθ̂η(W ) − ρe(W ), where θ̂ denotes the

(possibly spatially inhomogeneous) temperature at the target steady state. (The factor θ̂ originates

form the Lagrange multiplier in (82), see [P1] for details.) The time derivative of ρθ̂η(W )−ρe(W )
then typically involves the difference between the heat flux jq and the entropy flux jη. If both

fluxes are related through the classical formula jη = jq
θ

, then it holds

θ̂ div jη − div jq = θ̂ div ( jq

θ̂ + θ̃) − div jq = div([ θ̂

θ̂ + θ̃ − 1] jq) −∇θ̂ ● jq

θ̂ + θ̃ . (93)

Since (92) implies that the temperature perturbation θ̃ vanishes on the boundary, we see that the
first term on the right-hand side of (93) vanishes upon integration over the vessel Ω by virtue of
the Stokes theorem. On the other hand, the second term on the right-hand side does not in general
vanish. (It might vanish for example in the case of a system immersed in a thermal bath wherein
θbdr is a constant in space.) Nonetheless, the second term on the right-hand side of (93) leads to
a volumetric term in the formula for the time derivative of the functional, which makes the time
derivative of the functional tractable.

2.2.3. Examples. Particular examples of functionals constructed using the procedure outlined
in Section 2.2.2 is the functional

Vneq (W̃ ∥Ŵ ) = ∫
Ω
[ρcV,ref θ̂ [ θ̃

θ̂
− ln(1 + θ̃

θ̂
)] + 1

2
ρ ∣ṽ∣2] dv, (94)

which is the functional used in [P2] in stability analysis of motion of incompressible Navier–Stokes–
Fourier fluid in a vessel with walls kept at spatially nonuniform temperature, and the family of
functionals used in [P3] in the same setting but for a class of viscoelastic rate-type fluids.

The problem considered in [P2] and in [P3] is apparently very simple. A fluid—either an
incompressible Navier–Stokes–Fourier fluid or an incompressible viscoelastic rate-type fluid—is oc-
cupying a mechanically isolated vessel with walls kept at spatially non-uniform temperature, see
Figure 6c for a sketch. Based upon everyday experience, the fluid is in the long run expected to
reach the spatially inhomogeneous steady state. Irrespective of the initial conditions the velocity
field is expected to vanish, and the temperature field is expected to reach the steady state given by
the solution of the steady heat equation.

Interestingly, this simple observation is difficult to prove using the corresponding governing
equations. For example, the popular energy method for nonlinear stability analysis, see Straughan
[2004], fails in this setting. The main difficulties are the presence of the dissipative heating term in
the evolution equation for temperature, and, as we have already noted, the lack of control on the
heat fluxes through the boundary. The proof presented in [P2] and in [P3] basically follows the
approach outlined above, but it adds one important ingredient. The proof exploits the fact that the
stability result must not depend on the choice of temperature scale. The ambiguity in the choice of
temperature scale then allows one to construct a whole family of Lyapunov type functionals that
can be combined together in order to overcome some quantitative issues.

Furthermore, the analysis in [P2] reveals that if the wall temperature is spatially homogeneous,
that is if the vessel is immersed in a thermal bath, see Figure 6b, then all the technical difficulties
are essentially gone. In this case the spatially homogeneous boundary condition admits a spatially
homogeneous steady state θ̂, and if ∇θ̂ = 0, then all the difficult-to-handle terms vanish and the
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Figure 6. Long time behaviour under various types of temperature boundary
conditions.

proof greatly simplifies. The same holds for thermally isolated system, see Figure 6a. This obser-
vation again documents that the boundary conditions are as important as the governing equations
themselves. Depending on the choice of boundary conditions, the difficulty of stability analysis of
the given system can change considerably.

In [P4] we consider a purely mechanical problem of stability of flow of Giesekus viscoelastic
rate-type fluid. (The Giesekus model is a variant of Oldroyd-B model with a slightly stronger
dissipation.) The governing equations for mechanical variables read

divv = 0, (95a)

ρ
dv

dt
= div T, (95b)

ν1

▽

Bκp(t) = −µ [αB2
κp(t)

+ (1 − 2α)Bκp(t) − (1 − α)I] , (95c)

and the Cauchy stress tensor is given by the familiar formulae

T =def −pI + Tδ, (95d)

Tδ =def 2νD + µ(Bκp(t))δ. (95e)

The symbol α denotes a material parameter, and we consider α ∈ (0,1). For α = 0 the model reduces
to the Oldroyd-B model, but this case is not covered in the stability analysis.

The fluid is externally driven by an influx of mechanical energy, in particular we consider
flows driven by moving boundaries. This corresponds, for example, to the classical setting of flow
in between two rotating concentric cylinders (Taylor–Couette flow). The governing equations are

assumed to have a steady solution with a steady velocity field v̂ and a steady B̂κp(t) field. The task
is to investigate the nonlinear stability of such solution.

In this case the functional constructed by the method outlined above reads

Vneq (W̃ ∥Ŵ ) = ∫
Ω

1

2
ρ ∣ṽ∣2 dv + ∫

Ω

µ

2
[− ln det (I + B̂κp(t)

−1
B̃κp(t)) +Tr(B̂κp(t)

−1
B̃κp(t))] dv. (96)
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We note that the functional is again not quadratic in perturbation B̃κp(t) . In [P4] we show that the
time derivative of the functional is estimated from above as

dVneq

dt
(W̃ ∥Ŵ ) ≤ C1∥∇ṽ∥2

L2(Ω) +C2∥B̃κp(t)∥2

L2(Ω), (97)

where we denote

C1 =def − 1

Re
+CP sup

x∈Ω ∣λmin(D̂)∣ + Ξ

2
sup
x∈Ω ∣B̂κp(t)−1 − I∣ +CP Ξ

4
sup
x∈Ω ∣B̂κp(t)−1∣2 sup

x∈Ω ∣∇B̂κp(t) ∣ , (98a)

C2 =def −α Ξ

2Wi
inf
x∈Ωλmin(B̂κp(t)−1) + Ξ

2
sup
x∈Ω ∣B̂κp(t)−1 − I∣ + Ξ

4
sup
x∈Ω ∣B̂κp(t)−1∣2 sup

x∈Ω ∣∇B̂κp(t) ∣ , (98b)

and where λmin(⋅) denotes the minimal eigenvalue of the corresponding matrix and CP denotes the
domain dependent constant from Friedrichs–Poincaré inequality. The estimate holds uncondition-
ally, that is irrespective of the initial size of the perturbation. Clearly, if the Weissenberg number
Wi and the Reynolds number Re in (98) are small enough, the constants C1 and C2 are negative
and the steady flow is stable with respect to any perturbation.

On the other hand, when one of the constants is positive one can conjecture that the flow is, at
least for some perturbations, unstable. Interestingly, this observation is in line with the phenomenon
of elastic turbulence, see, for example, Groisman and Steinberg [2000]. The elastic turbulence is a
phenomenon where one can observe “turbulent flow” at extremely small Reynolds numbers. This
means that the turbulent behaviour is not due to the standard convective nonlinearity in the balance
of linear momentum whose strength is measured by the Reynolds number. The turbulent behaviour
is due to the elastic component of the fluid, which is measured by the Weissenberg number. Our
results is, however, in an opposite direction. We are able to identify the safe values—no instability—
of Weissenberg number and Reynolds number. For such values we know that the instability can
not be triggered and the transition to a turbulent state can not happen. What happens behind this
range of safe values is a question for further research.
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