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Introduction
The ever increasing demand for computer technology in modern world requires

computers to work faster and faster than before. One of the ways to increase
the computational power is to make the transistors in microchips smaller, which
increase the computational power density. This miniaturization, however, cannot
be done indefinitely because of the heat generated by the transistors, eventually
resulting in their damage. Another problem is that at nanoscale dimensions,
the electrons can more easily tunnel through thin gates of the transistors, thus
making them unreliable.

Nonentheless, there is a room for improvement elsewhere. One of the speed
bottlenecks of computers are electric wires between individual components. The
speed of the electrical signal inside the wires is significantly smaller than the speed
of light. It is not surprising that the communication speed could be improved
by replacing the wiring with optical waveguides. Furthermore, the information
could be transmitted simultaneously at multiple wavelengths at the same time,
increasing the performance even more. The goal is to scale down the existing
optical communication solutions to the microscopic scale and integrate them on
the silicon microchips.

One of the important components of such optical system is the magneto-
optical (MO) isolator. This component can be thought of as a one way for
the passing light. It plays an important role in preventing the back reflections
from the optical components going into the laser that could destabilize it and
therefore lower its performance. The principle of the MO isolator is based on the
broken time reversal symmetry of light propagation via applied magnetic field. If
circularly polarized light is passing through the magnetic material in one direction
and then is reflected back, the rotation sense of the light changes direction and
the light is exposed to different environment. This is equivalent to the reversal of
the time direction, when the clockwise propagating light changes to anticlockwise.

One of the designs of MO isolator is illustrated in Fig. 1. The magneto-

Figure 1: Structure of a non-reciprocal MO isolator. Taken from [1].

optical isolator consists of a silicon resonator on a silicon wafer with a thin SiO2

3



layer with a small window that exposes the resonator waveguide. Then a thin
layer of MO material is deposited on top. When a magnetic field is applied in-
plane and perpendicular to the light propagation, the degeneracy of clockwise and
counter-clockwise polarizations is lifted and results in a different phase shift of
the two senses. As a result, the counter-clockwise polarization experiences larger
transmission loss than the clockwise polarization (Fig. 2).

Figure 2: Spectral dependence of the transmission for two senses of circular po-
larization. Taken from [1].

One of the possible candidates for the MO film are ferrimagnetic rare-earth
garnets with the formula R3+

3Fe3+
5O2-

12, where R stands for rare-earth element.
The garnets crystallize in a cubic lattice which consists of three sites defined
by the oxygen positions: iron ions are situated in tetrahedral and octahedral
sites, while the rare-earth sits at the dodecahedral site. Their magnetic and
optical properties can be tailored by a variety of elemental substitutions. These
materials exhibit large MO activity and are already used in macroscopic optical
isolators [2]. One of the potential garnets with attractive properties is the terbium
iron garnet (TbIG). The big advantage of terbium iron garnet is that it does not
require a cladding layer for crystallization when grown on silicon substrates [3].
The effectivity of the isolation rapidly decreases with the distance of the MO film
and the waveguide.

The purpose of this thesis is a systematic study of the optical and MO prop-
erties of the non-doped TbIG and TbIG doped with Ce and Bi on gadolinium
gallium garnet (GGG) and silicon substrates. One of the goals is to separate
the contributions of the individual sublattices to the MO spectra, which would
broaden the knowledge about the complex properties of garnets.

This thesis is divided into seven chapters. The first three chapters describe
the basic theory of light, its interaction with matter and magnetism of materials.
Fourth chapter presents the measuring methods used in this thesis and a method
of preparation of the studied samples. In the fifth chapter, the studied garnets
are described in more detail. Next chapter contains the experimental results and
their discussion. The last chapter presents the conclusions about the studied
samples.
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1. Polarized light

1.1 Wave equation
Light is an electromagnetic (EM) wave that can be described by two vectors,

electric field E and magnetic induction B. Two additional vectors, electric in-
duction D and magnetic field strength H are introduced to describe EM wave
inside matter. These four vectors fulfil Maxwell equations [4]

∇ × E + ∂B

∂t
= 0, ∇ · D = ρ,

∇ × H − ∂D

∂t
= j, ∇ · B = 0,

(1.1)

where j denotes current density and ρ charge density. Another set of equations,
called material relations, that describe material response to EM fields, is needed to
uniquely determine vectors E, B, D and H . In the simple case, when medium is
linear, isotropic and homogeneous, dielectric permittivity ε, magnetic permeability
µ and conductivity σ are scalar constants and the equations are

D = ϵ0 ϵrE = ϵE = ε0E + P ,

B = µ0 µrH = µH = µ0H + M ,

j = σE.

(1.2)

Indices 0, r denote vacuum and relative constants, respectively, M medium mag-
netization, P medium polarization vectors.

A wave equation that describes the propagation of light can be derived from
equations (1.1). In the simple case described above and without sources, the wave
equation has the form

∆E − εµ
∂ 2E

∂t2
= 0, (1.3)

where ∆ denotes the Laplace operator. An analogical equation can be derived
for H . Similarly to the classical wave equation, v = 1√

εµ
is the speed at which

the wave propagates, also called phase velocity. If light propagates in vacuum,
the phase velocity v = 1√

ε0µ0
= c = 299 792 458 m · s−1, which is a fundamental

physical constant. The ratio
c

v
= √

εrµr = n (1.4)

is defined as the index of refraction.

1.2 Plane wave
One of the solutions of the wave equation (1.3) is a harmonic plane wave [5]

E(r, t) = E0 cos [ωt− k · r + δ] ,

5



where E0 denotes the electric field amplitude vector, ω angular frequency, δ phase
shift. k is the wave vector defined as

k = 2π
λ

s = ω

c
ns,

where λ denotes wavelength and s is a unit vector pointing in the direction of
wave propagation. For every instant in time, the plane wave has a constant phase
across the plane determined by r · s = const. These planes are perpendicular to
the unit vector s. For a homogeneous isotropic medium without charges and
currents, the wave is transverse, i.e. vectors s, E, B constitute a right-handed
coordinate system with relations between vectors

B = 1
v

s × E, s × B = −1
v

E. (1.5)

If the condition that the medium contains no free charges or currents is not
satisfied, the wave is not generally transverse. The equations (1.5) also imply
that the electric and magnetic vectors are always in phase. The plane wave is
one of the most important solutions to the wave equation. According to Fourier
analysis, any other waveform can be expressed as a linear combination of plane
waves.

Usually, it is more convenient for mathematical operations if the plane wave
is represented by complex numbers as

E(r, t) = 1
2
(︂
E0ei(ωt−k·r+δ) + c.c.

)︂
, (1.6)

where c.c. signifies the complex conjugate part. In the rest of this text the 1/2
and the letters c.c. will be omitted.

1.2.1 Conductive medium
For isotropic homogeneous conductive medium without charges, the wave

equation (1.3) becomes

∆E − εµ
∂ 2E

∂t2
− µσ

∂E

∂t
= 0.

Assuming harmonic wave solution (1.6), the wave equation can be written as

∆E + k̃
2
E = 0,

where complex wave number

k̃
2 = ω2

c2 µrε̃r = (kR − ikI)2 , (1.7)

and complex permittivity

ε̃r = εr + i σ
ωε0

= ε′ − iε′′
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are introduced. At optical frequencies, relative permeability µr is close to 1, so
µ = µ0. The relation between relative permittivity and refractive index (1.4)
becomes

ñ2 = ε̃r = (n− ik)2 . (1.8)
Substituting complex k̃ back into the plane wave solution (1.6), an attenuated
wave is obtained

E(r, t) = E0e−i(ωt−k̃r·s) = E0e−kIr·se−i(ωt−kRr·s).

1.3 Polarization
For a fixed coordinate in space, the vectors will point in different directions

for every instant in time. This time dependence is called polarization of the wave.
It is common to choose the electric vector for the polarization description because
the force exerted by the electric field on electrons is much larger than the force
from the magnetic field.

According to (1.5), if the direction of propagation is along the z-direction, E
has components only in the xy-plane

Ex(z, t) = E0x cos [ωt− kzz + δx] ,
Ey(z, t) = E0y cos [ωt− kzz + δy] .

Rewriting these equations leads to the equation of an ellipse (Fig. 1.1)(︄
Ex

E0x

)︄2

− 2 Ex

E0x

Ey

E0y

cos δ +
(︄
Ey

E0y

)︄2

= sin2 δ,

where δ = δy − δx. Four quantities, E0x , E0y , δx, and δy are needed to completely
describe the light polarization state.

In the case of general elliptical polarization, it is convenient to introduce
different parameters that determine the polarization [6]:

• auxiliary angle α ∈
⟨︂
0, π2

⟩︂
:

tanα = E0x

E0y

,

• the azimuth angle between the major axis of the ellipse and the x-axis
θ ∈ ⟨0,π):

tan 2θ = 2E0xE0y cos δ
E2

0x − E2
0y

= tan(2α) cos δ,

• the ellipticity angle ϵ ∈
⟨︂
−π

4 ,
π
4

⟩︂
:

tan ϵ = ∓ b

a
.
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Figure 1.1: The polarization ellipse.

Additionally, the ellipse semiaxes and the components of the electric field ampli-
tude satisfy relation a2 + b2 = E2

0 = E2
0x + E2

0y .
The electric field E can describe the ellipse in two senses. When looking

against the propagation direction, the polarization is said to be right-handed
for clockwise sense and left-handed for anti-clockwise sense. The handedness is
indicated by the sign of the ellipticity angle ϵ, i.e. positive sign indicates right-
handed polarization.

There are two special cases of light polarization of great importance (Fig. 1.2):

1. linear polarization for δ = 0 or π:

• for δ = 0: Ey = E0y
E0x

Ex

• for δ = π: Ey = −E0y
E0x

Ex

or if one component of E is equal to zero,

2. circular polarization for E0y = E0x and δ = ±π
2 where the sign indicates

right-handed circular polarization (RCP) and left-handed circular polariza-
tion (LCP) respectively.

1.3.1 Polarization representation
In physical experiments it is convenient to represent polarized light and ef-

fect of optical elements by vectors and matrices. The most used formalism for
completely polarized light is Jones formalism.

Harmonic plane wave can be written as

Ex = E0xei(ωt−kzz+δx) = Axei(ωt−kzz), where Ax = E0xeiδx

Ey = E0yei(ωt−kzz+δy) = Ayei(ωt−kzz), where Ay = E0yeiδy .
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Figure 1.2: Examples of a) linear polarization and b) LCP.

The Jones polarization vector is then defined as

J =
(︄
Ax
Ay

)︄
. (1.9)

To get the original wave, the Jones vector is simply multiplied by the phase
factor ei(ωt−kzz). The light intensity I ∼ |Ax|2 + |Ay|2 = A∗

xAx + A∗
yAy = J †J .

Jones vectors are commonly normalized, so I = 1.
Some examples of Jones polarization vectors for various polarization states

are given below:

• linear polarization along axes x, y, and rotated by arbitrary angle β with
respect to x-axis

Jx =
(︄

1
0

)︄
, Jy =

(︄
0
1

)︄
, Jβ =

(︄
cos β
sin β

)︄
,

• RCP and LCP

JRCP = 1√
2

(︄
1
i

)︄
, JLCP = 1√

2

(︄
1

−i

)︄
, (1.10)

• elliptical polarization with angle θ between major axis and x-axis and el-
lipticity angle ϵ

Jθ,ε =
(︄

cos θ cos ϵ− i sin θ sin ϵ
sin θ cos ϵ+ i cos θ sin ϵ

)︄
.

The sets of Jones vectors of linear polarizations along cartesian axes and circular
polarizations are orthogonal. Therefore arbitrary polarization can be represented
by a linear combination of two orthogonal polarization vectors forming a base.

Optical elements that modify the polarization state can be represented by
Jones matrices in the form

T =
(︄
T11 T12
T21 T22

)︄
. (1.11)

The new polarization state J ′ after interaction with the optical element is then

J ′ = T J .
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If n optical elements are arranged in a row, their respective matrices are multiplied
in the order in which they interact with light

T = Tn . . .T2T1.

Matrices for common optical elements are shown below:

1. linear polarizer along the x-axis and polarizer rotated by an arbitrary an-
gle β

Tx =
(︄

1 0
0 0

)︄
, Tβ =

(︄
cos2 β sin β cos β

sin β cos β sin2 β

)︄
,

2. phase plate, which introduces additional phase shift δ = δy − δx

Tδ =
(︄

1 0
0 eiδ

)︄
,

3. polarization rotator, which rotates the polarization plane by angle γ

Tγ =
(︄

cos γ − sin γ
sin γ cos γ

)︄
.

Often, the optical elements are rotated with respect to the coordinate system.
In that case, the Jones matrix of the element must be multiplied by the coordinate
rotation matrix and its inverse

T (α) = R−1(α)T R(α),

where

R(α) =
(︄

cosα sinα
− sinα cosα

)︄
, R−1(α) =

(︄
cosα − sinα
sinα cosα

)︄
.

A simpler description of polarized light can be used if the amplitude and
absolute phase information is not needed. Only azimuth angle θ and ellipticity
angle ε are essential to describe the state of the polarization. A new parameter
can be defined as the ratio of the components of the Jones vector [7]

χ = Ax

Ay
.

For general elliptical polarization

χ = tan θ + i tan ϵ
1 − i tan θ tan ϵ. (1.12)

By limiting the angles to ranges −1
2π ≤ θ ≤ 1

2π and −1
4π ≤ ϵ ≤ 1

4π, every
polarization state can be uniquely represented by the complex parameter χ.
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1.4 Magneto-optical angles
Materials placed in an external magnetic field become optically anisotropic

and therefore modify reflected and transmitted light. The material can be de-
scribed by Jones matrices. The coordinate system is chosen with respect to
two orthogonal linear polarizations. The polarization parallel to the plane of
incidence is called p-polarization, and the polarization perpendicular is called
s-polarization. The plane of incidence is defined by the wave vector of the in-
coming wave and the normal to the surface. The Jones matrices for the sample
transmission and reflection take the form

T =
(︄
tss tsp
tps tpp

)︄
, R =

(︄
rss rsp
rps rpp

)︄
. (1.13)

The elements of the matrices are the transmission and reflection coefficients for
the s- and p-polarizations and are described in the following chapter.

The output polarization, which will generally be elliptical, can be described
by the complex parameter χ (1.12). It is advantageous to use linear incident
polarization for which azimuth angle θ is equal to 0 or π, and ellipticity angle
is ϵ = 0. This way, it is easy to determine the change of θ and ϵ caused by
the magnetization of the sample in the resulting polarization. Additionally, if the
polarization is not chosen carefully, it can change by simple reflection or refraction
at an interface.

Usually, the angles are small and an approximation can be made

χ = tan θ + i tan ϵ
1 − i tan θ tan ϵ ≈ θ + iϵ.

The change of polarization upon reflection is called the magneto-optical Kerr
effect (MOKE) and is defined as [6]

ΦKs = −rps

rss
≈ θKs − iϵKs ,

ΦKp = rsp

rpp
≈ θKp − iϵKp ,

(1.14)

for incident s and p polarization, respectively. Similarly, the change after trans-
mission, called the Faraday effect, is defined as

ΦFs = tps

tss
≈ θFs − iϵFs ,

ΦFp = − tsp
tpp

≈ θFp − iϵFp .
(1.15)

There are three basic configurations of measuring MOKE that are defined by
the mutual orientations of the sample, magnetization M and the propagation
vector (Fig. 1.3). The M and the propagation vector are parallel to each other,
and perpendicular to the sample in the polar configuration. For the longitudi-
nal configuration, M lies in the plane of the sample and the plane of incidence.
Finally, for the transverse geometry, M is in the plane of the sample but per-
pendicular to the plane of incidence. Faraday effect is measured only in polar
configuration at normal incidence.
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Figure 1.3: Basic configurations of measuring MOKE.

12



2. Interaction of light and matter

2.1 Reflection and refraction at an interface
The interface between two media introduces an abrupt change of optical con-

stants (e.g. ε, σ, etc.). Therefore, the behaviour of the propagating wave also
has to change. This change is often exploited in physical measurements to obtain
information about the media that compromise the interface.

At the interface of two homogeneous isotropic dielectric media with different
refractive indices n1 and n2, three waves can be defined (Fig. 2.1):

• the incident wave Ei on the interface at an angle αi,

• the wave Et transmitted at an angle αt,

• the wave Er reflected at an angle αr.

Figure 2.1: Reflection and refraction at an interface, field orientations.

All three waves lie in the plane of incidence, defined by the vector ki of the
incoming wave and the normal to the surface. The angles are related through the
law of reflection

αi = αr

and Snell’s law
n1 sinαi = n2 sinαt. (2.1)

The amplitudes of transmitted and reflected waves are dictated by Fresnel
equations. They are a consequence of boundary conditions imposed on electric
and magnetic fields. The boundary conditions require the tangent components of
the fields to be continuous at the boundary. Since the magnitude of the tangent

13



component depends on the vector orientation, Fresnel equations differentiate be-
tween p-polarization (∥) and s-polarization (⊥). The reflection and transmission
coefficients take the form [5] (Fig. 2.2)

rp = Ep
r

Ep = n2 cosαi − n1 cosαt

n2 cosαi + n1 cosαt
,

rs = Es
r

Es = n1 cosαi − n2 cosαt

n1 cosαi + n2 cosαt
,

tp = Ep
t

Ep = 2n1 cosαi

n2 cosαi + n1 cosαt
,

ts = Es
t

Es = 2n1 cosαi

n1 cosαi + n2 cosαt
.

(2.2)

The reflectance and transmittance, the intensity coefficients, are given as

Rs,p = (rs,p)2 ,

T s,p = n2 cosαt

n1 cosαi
(ts,p)2 ,

and for non-absorbing medium 1 = R + T .

0 20 40 60 80

Angle of incidence αi [◦]

−1.0

−0.5

0.0

0.5

1.0

A
m

p
li
tu

d
e

co
effi

ci
en

ts

αB

rp

rs

tp

ts

0 20 40 60 80

Angle of incidence αi [◦]

−1.0

−0.5

0.0

0.5

1.0

A
m

p
li
tu

d
e

co
effi

ci
en

ts

αC

αB

rs

rp

Figure 2.2: Reflection and transmission coefficients for n1 = 1, n2 = 1.5 (left),
reflection coefficients for n1 = 1.5, n2 = 1 (right).

In the case of n1 > n2, the light overgoes total internal reflection at angles
greater than critical angle αC, i.e. all the incoming light is reflected. There is no
reflected p-polarization for both cases (n1 > n2 and n1 < n2) at the Brewster
angle (see Fig. 2.2).

2.1.1 Reflection and refraction between absorbing media
In the case of absorbing media, the situation is more complicated [8]. The

conditions for transversality of the wave (1.5) hold for the complex wave vector.
Because of this, the planes of constant phase do not coincide with planes of con-
stant amplitude. The direction of propagation is determined by the real part of
the Poynting vector S = E × H∗/2. Snell’s law (2.1) and Fresnel equations (2.2)
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imply that the angles and Fresnel coefficients are complex quantities. Conse-
quently, an incident linear polarization can change to elliptical upon reflection
and refraction at an interface.

2.2 Permittivity tensor
In the previous chapter, the permittivity was assumed to be a scalar quantity.

In general, the permittivity is a tensor of second order

ε =

⎛⎜⎝εxx εxy εxz
εyx εyy εyz
εzx εzy εzz

⎞⎟⎠ . (2.3)

The permittivity of an isotropic material can be considered a diagonal tensor
where all three diagonal values are equal. If the material is placed in an external
magnetic field, a non-zero net magnetization M is induced. The magnetization
reduces the symmetry, and off-diagonal tensor elements will be non-zero. The
external magnetic field can be treated as a small disturbance to the diagonal
permittivity tensor. The permittivity tensor can then be expanded as a series
with respect to magnetization [9]

εij = ε
(0)
ij +KijkMk + 1

2GijklMkMl + . . . ,

where Kijk and Gijkl are linear and quadratic contribution tensors. If only the
linear MO effects are discussed, including just the linear contribution tensor is
sufficient. Owing to the antisymmetric nature of the tensor, the diagonal elements
remain unchanged. Consequently, depending on the magnetization orientation
(Fig. 1.3), the diagonal permittivity tensor changes to

εP ≈

⎛⎜⎝ εxx εxy 0
−εxy εxx 0

0 0 εxx

⎞⎟⎠ , εL ≈

⎛⎜⎝εxx 0 −εxz
0 εxx 0
εxz 0 εxx

⎞⎟⎠ , εT ≈

⎛⎜⎝εxx 0 0
0 εxx εyz
0 −εyz εxx

⎞⎟⎠ .
(2.4)

The off-diagonal elements can naturally arise in anisotropic materials. In
magneto-optics, the diagonal and off-diagonal elements are sometimes labelled as
(in polar geometry, e.g.) εxx = ε1 and εxy = −iε2 to distinguish the origin in the
magnetization[10].

2.3 Wave equation in anisotropic media
The first step in describing the MO response of anisotropic media is solving

the wave equation (1.3) with general permittivity tensor (2.3) [9]

∆E − ∇ (∇ · E) = ε

c2
∂2E

∂t2
. (2.5)

Assuming plane wave solution (1.6)

E(r, t) = E0ei(ωt−k·r)
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and introducing reduced wave vector

N = c

ω
k = (Nxex +Nyey +Nzez) ,

where vectors ex,y,z denote Cartesian unit vectors, the wave equation (2.5) be-
comes

N 2E0 − N (N · E0) − εE0 = 0.
In matrix form, this can be written as⎛⎜⎝εxx −N2

y −N2
z εxy +NxNy εxz −NxNz

εyx +NyNx εyy −N2
x −N2

z εyz −NyNz
εzx +NzNx εzy +NzNy εzz −N2

x −N2
y

⎞⎟⎠
⎛⎜⎝E0x
E0y
E0z

⎞⎟⎠ = 0. (2.6)

Without loss of generality, the coordinate system can be oriented such that Nx =
0. This condition greatly simplifies the wave equation. The value of Ny can be
obtained from Snell’s law

k · ey = ω

c
Ny.

The equation system has a non-trivial solution when the determinant of the ma-
trix is zero. Solving the characteristic equation leads to four eigenvalues of Nzj

and four eigenvectors ej, j = 1, 2, 3, 4. The eigenvectors have the form [6]

ej =

⎛⎜⎜⎜⎝
−εxy

(︂
εzz −N2

y

)︂
+ εxz (εzy +NyNzj)(︂

εzz −N2
y

)︂ (︂
εxx −N2

y −N2
zj

)︂
− εxzεzx

−
(︂
εxx −N2

y −N2
zj

)︂
(εzy +NyNzj) + εzxεxy

⎞⎟⎟⎟⎠ . (2.7)

The general solution for the electric field is given by the sum of the four
eigenmodes

E =
4∑︂

j=1
E0jejei(ωt− ω

c
(Nyy+Nzjz)). (2.8)

From the Maxwell equations follows the relation for magnetic field

B = 1
c
N × E. (2.9)

2.3.1 Propagation along magnetization vector
The simplest case occurs for polar configuration. The permittivity tensor

takes the form εP as in (2.4). For normal incidence Ny = 0, wave equation (2.6)
becomes ⎛⎜⎝εxx −N2

z εxy 0
−εxy εxx −N2

z 0
0 0 εxx

⎞⎟⎠
⎛⎜⎝E0x
E0y
E0z

⎞⎟⎠ = 0.

The solutions to the characteristic equation are then

N2
z = εxx ± iεxy. (2.10)

The solutions represent effective refractive indices for propagating eigenmodes.
The eigenvectors corresponding to the eigenvalues are RCP and LCP modes and
can be described by their respective Jones vectors (1.10). The four eigenmodes
form two pairs. One pair propagates forward while the other propagates back-
wards, so the two pairs only differ in the sign of Nz.
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Non-normal incidence

The equation for polar geometry can be solved without the condition Ny = 0.
The solutions (2.10) change to

N2
z =

(︂
εxx −N2

y

)︂
± iεxy

√︄
εxx −N2

y

εxx
.

Upon taking the square roots, this becomes

Nz± = Nz0

√︄
1 ± iεxy

Nz0
√
εxx

,

where
Nz0 =

√︂
εxx −N2

y

is the z-component of the isotropic reduced wave vector.
The four roots have corresponding eigenvectors obtained from the general

solution (2.7)

ej =

⎛⎜⎜⎜⎝
−εxy

(︂
εzz −N2

y

)︂(︂
εzz −N2

y

)︂ (︂
εxx −N2

y −N2
zj

)︂
−
(︂
εxx −N2

y −N2
zj

)︂
NyNzj

⎞⎟⎟⎟⎠

2.4 Yeh formalism
One way to describe the propagation of EM waves in anisotropic multilayers

is a 4 × 4 matrix formalism developed by Yeh [11] for non-absorbing media and
later extended for absorbing media by Vǐsňovský [12]. This formalism uses the
results presented in the previous section for anisotropic media and describes the
propagation of eigenmodes through the stratified structure.

Consider a structure consisting of N anisotropic layers with thicknesses tj
and complex permittivity tensors εj, j = 1, . . . , N . The layers are separated by
parallel interfaces whose normals point in the z-direction. Semi-infinite isotropic
media labelled 0 and N + 1 surround the structure (Fig. 2.3). The components
parallel to the interfaces must be conserved for the whole structure due to Snell’s
law and continuous at the interfaces because of the boundary conditions.

According to equation (2.8), the electric field inside the n-th layer is given as

E(n) =
4∑︂

j=1
E

(n)
0j (zn)e(n)

j ei
(︂

ωt− ω
c

(︂
Nyy+N

(n)
zj (z−zn)

)︂)︂

and the magnetic field as in (2.9)

B(n) = 1
c

4∑︂
j=1

E
(n)
0j (zn)b(n)

j ei
(︂

ωt− ω
c

(︂
Nyy+N

(n)
zj (z−zn)

)︂)︂
,

where
b

(n)
j = N (n) × e

(n)
j .
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Figure 2.3: Multilayer structure consisting of N layers surrounded by 0 and N+1
half-spaces.

The boundary conditions require the tangential components to be equal at
the interface of adjacent layers n− 1 and n leading to

4∑︂
j=1

E
(n−1)
0j (zn−1)e(n−1)

j · ex =
4∑︂

j=1
E

(n)
0j (zn)e(n)

j · ex ei ω
c

N
(n)
zj tn

4∑︂
j=1

E
(n−1)
0j (zn−1)b(n−1)

j · ey =
4∑︂

j=1
E

(n)
0j (zn)b(n)

j · ey ei ω
c

N
(n)
zj tn

4∑︂
j=1

E
(n−1)
0j (zn−1)e(n−1)

j · ey =
4∑︂

j=1
E

(n)
0j (zn)e(n)

j · ey ei ω
c

N
(n)
zj tn

4∑︂
j=1

E
(n−1)
0j (zn−1)b(n−1)

j · ex =
4∑︂

j=1
E

(n)
0j (zn)b(n)

j · ex ei ω
c

N
(n)
zj tn

This set of equations can be represented by matrix multiplication as

D(n−1)E
(n−1)
0 = D(n)P(n)E

(n)
0 . (2.11)

The rows of the dynamical matrix D are constructed from components of the
eigenvectors

D
(n)
1j = e

(n)
j · ex,

D
(n)
2j = b

(n)
j · ey,

D
(n)
3j = e

(n)
j · ey,

D
(n)
4j = b

(n)
j · ex.

The exponential propagation factors through the layer are included in the diag-
onal propagation matrix P

P
(n)
ij = δijei ω

c
N

(n)
zj tn .
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For the polar configuration (εP in (2.4)), the rows of the dynamical matrix become

D
(n)
1j = −ε(n)

xy

(︂
ε(n)

zz −N2
y

)︂
,

D
(n)
2j = −ε(n)

xy

(︂
ε(n)

zz −N2
y

)︂
N

(n)
zj ,

D
(n)
3j =

(︂
ε(n)

zz −N2
y

)︂(︃
ε(n)

xx −N2
y −

(︂
N

(n)
zj

)︂2
)︃
,

D
(n)
4j = −

(︃
ε(n)

xx −N2
y −

(︂
N

(n)
zj

)︂2
)︃
N

(n)
zj ε

(n)
xx .

The matrices in equation (2.11) can be rearranged to get

E
(n−1)
0 =

(︂
D(n−1)

)︂−1
D(n)P(n)E

(n)
0 = Tn−1,nE

(n)
0 .

The transfer matrix T relates the field at the interface z = z(n−1) of the (n−1)-th
layer and field at z = z(n) in the n-th layer. By multiplying the transfer matrices
for each layer, the fields at the surrounding half-spaces can be related

E
(0)
0 =

(︂
D(0)

)︂−1
D(1)P(1)

(︂
D(1)

)︂−1
D(2)P(2) . . .

. . .
(︂
D(N−1)

)︂−1
D(N)P(N)

(︂
D(N)

)︂−1
D(N+1)E

(N+1)
0 .

The last transfer matrix consists only of the dynamical matrices since the thick-
ness is undefined

TN,N+1 =
(︂
D(N)

)︂−1
D(N+1).

The multiplication of transfer matrices can be expressed as

E
(0)
0 =

(︄
N+1∏︂
n=1

Tn−1,n

)︄
E

(N+1)
0 = ME

(N+1)
0 , (2.12)

where the matrix M describes the response of the whole structure to EM fields.

2.4.1 Eigenmodes in isotropic layers
The Yeh formalism can also be used for isotropic media. The solutions for

the anisotropic media will not work because the permittivity tensor is diagonal
εii = N2, which means that the eigenvector components (2.7) will be zero. The
isotropic eigenmodes are not defined and can be chosen arbitrarily, e.g., linearly
polarized. The wave vector has two possible orientations [6]

k± = ω

c

(︂
Nyey ±Q(n)ez

)︂
,

with the requirement Ny = const. The Ny is usually calculated for the isotropic
half-space (air) in which the sample is placed, which implies Ny = sinφ, where φ
is the angle of incidence. The parameter Q(n) is the z-component of the reduced
wave vector in the isotropic layer

Q(n) =
√︃
ε

(n)
xx −N2

y .

For the dielectric-absorptive media interface, the complex part of the refractive
index is fully included in the parameter Q(n). This means that the attenuation
of the wave only happens along the z-direction.

TheN (n)
z eigenvalues and corresponding eigenvectors are listed in the following

table.
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N
(n)
z1 = Q(n) N

(n)
z2 = −Q(n) N

(n)
z3 = Q(n) N

(n)
z4 = −Q(n)

e
(n)
1 =

⎛⎝1
0
0

⎞⎠ e
(n)
2 =

⎛⎝1
0
0

⎞⎠ e
(n)
3 =

⎛⎝ 0
Q(n)/N (n)

−N
(n)
y /N (n)

⎞⎠ e
(n)
4 =

⎛⎝ 0
Q(n)/N (n)

N
(n)
y /N (n)

⎞⎠
b

(n)
1 =

⎛⎝ 0
Q(n)

−N
(n)
y

⎞⎠ b
(n)
2 =

⎛⎝ 0
−Q(n)

−N
(n)
y

⎞⎠ b
(n)
3 =

⎛⎝−N (n)

0
0

⎞⎠ b
(n)
4 =

⎛⎝N (n)

0
0

⎞⎠
The dynamical matrix for an isotropic layer takes the form

D =

⎛⎜⎜⎜⎝
1 1 0 0

Q(n) −Q(n) 0 0
0 Q(n)/N (n) Q(n)/N (n)

0 −N (n) N (n)

⎞⎟⎟⎟⎠ .

2.5 Reflection and transmission coefficients
The matrix M introduced in equation (2.12) describes the optical response

of the structure. Consequently, this matrix can be linked to the reflection and
transmission Jones matrices (1.13) of the sample.

The eigenmodes e
(n)
1 and e

(n)
3 propagate in the positive z-direction while the

e
(n)
2 and e

(n)
4 propagate in the opposite direction. Suppose that the incident light

is in the 0 half-space. Therefore no light is hitting the sample in the N + 1 half-
space and E

(N+1)
2 = E

(N+1)
4 = 0. The elements of reflection and transmission

Jones matrices can be calculated as [9]

rss = r21 =
⎛⎝E(0)

02

E
(0)
01

⎞⎠
E

(0)
03 =0

= M21M33 − M23M31

M11M33 − M13M31
,

rps = r41 =
⎛⎝E(0)

04

E
(0)
01

⎞⎠
E

(0)
03 =0

= M41M33 − M43M31

M11M33 − M13M31
,

rpp = r43 =
⎛⎝E(0)

04

E
(0)
03

⎞⎠
E

(0)
01 =0

= M11M43 − M41M13

M11M33 − M13M31
,

rsp = r23 =
⎛⎝E(0)

02

E
(0)
03

⎞⎠
E

(0)
01 =0

= M11M23 − M21M13

M11M33 − M13M31
,

and

tss = t11 =
⎛⎝E(N+1)

01

E
(0)
01

⎞⎠
E

(0)
03 =0

= M33

M11M33 − M13M31
,

tps = t31 =
⎛⎝E(N+1)

03

E
(0)
01

⎞⎠
E

(0)
03 =0

= −M31

M11M33 − M13M31
,

tpp = t33 =
⎛⎝E(N+1)

03

E
(0)
03

⎞⎠
E

(0)
01 =0

= M11

M11M33 − M13M31
,

tsp = t13 =
⎛⎝E(N+1)

01

E
(0)
03

⎞⎠
E

(0)
01 =0

= −M13

M11M33 − M13M31
.
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2.6 Microscopic origin of optical and magneto-
optical response

2.6.1 Lorentz model
The Lorentz model is a simple classical model that describes an electron re-

sponse in dielectrics to the external electric field. This phenomenological model
is simple in nature, but it is generally sufficient and widely used for modelling
the spectral dependence of the diagonal permittivity elements. The electron is
elastically bound to an atomic core and behaves like a harmonic oscillator. The
equation of motion has the form

mr̈ = qE −mγṙ − ker,

where qE is the driving force, γ damping constant, ke elastic force, q is the charge
of the electron, m its mass and r its position. For time-harmonic driving field E
of the incident EM wave, the solution is

r = q

m

E0 e−i(ωt−k·r)

ω2
0 − iγω − ω2 ,

where ω0 =
√︂
ke/m is the resonant frequency of the electron.

The electric field induces polarization in the medium. In linear isotropic
materials, polarization is proportional to the electric field

P = ε0χeE, (2.13)

where χe is electric susceptibility. The polarization is created by the response of
N oscillators to the electric field

P = Nqr. (2.14)

With equations (2.13), (2.14) and the first equation in (1.2), a relation between
electron response and relative permittivity εr can be derived

ε̃r = 1 + χ̃e = 1 +
ω2

p

ω2
0 − iγω − ω2 , (2.15)

where
ωp =

√︄
Nq2

ε0m
(2.16)

is the plasma frequency. Typical spectral dependence of the diagonal permittivity
tensor element according to the Lorentz model is shown in Fig. 2.4.

2.6.2 Tauc- and Cody-Lorentz models
The Tauc-Lorentz and Cody-Lorentz model the absorption by the Lorentz line

shape but additionally model zero absorption under a band gap [13], [14]. The
imaginary part of the Tauc-Lorentz oscillator has the form

ε2 =

⎧⎪⎨⎪⎩
1
E

AE0γ(E−Eg)2

(E2−E2
0)2

+γ2E2
, for E > Eg,

0, for E ≤ Eg,
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Figure 2.4: Spectral dependence of the diagonal permittivity tensor element near
resonance according to the Lorentz model.

where A is the amplitude, E0 the central energy of the peak, Eg the band gap
energy and γ is the broadening.

The Cody-Lorentz oscillator additionally models the absorption under the
band gap by the Urbach exponential tail. At the onset of the absorption just
above the band gap, the imaginary part or the permittivity is proportional to
(E − Eg)2. The Cody-Lorentz model defines two additional transition energies:
Et, where the Urbach tail transitions to the absorption onset behaviour and Ep,
where the absorption onset behaviour transitions to Lorentzian behaviour.

2.6.3 Drude model
The Drude model is a special case of the Lorentz model that describes the

behaviour of free electrons in a metal. The elastic binding force is equal to zero.
The relation (2.15) becomes

ε̃r = 1 + χ̃e = 1 −
ω2

p

iγω + ω2 .

The behaviour of metals is dictated by the plasma frequency (2.16) (see
Fig. 2.5). Below ωp, the real part of the refractive index is negligible while the
imaginary part is large. This causes the incident light wave to drop exponentially
inside the metal, and most of the light is reflected. Above the plasma frequency,
the absorption is very low and the metal is transparent.

2.6.4 Magneto-optical transitions
The solution to the wave equation in anisotropic media (2.10) and the eigen-

modes suggest that the off-diagonal elements arise because the material interacts
differently with the LCP and RCP. The origin of this effect can be described by
semiclassical microscopic theory. The different interaction of the circular polar-
izations results from the splitting of the energy levels by spin-orbit coupling. The
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Figure 2.5: Spectral dependence of the diagonal permittivity tensor element ac-
cording to the Drude model.

circular polarization carries angular momentum L = 1 with projections mL = ±1.
When the circularly polarized photon excites an electron, the electronic transition
must conserve the angular momentum, i.e. the angular momentum projection of
the electron must change by ∆mL = ±1. When the spin-orbit coupling is absent,
the levels are degenerate, and there is no difference for circular polarizations. The
effect of an external magnetic field is negligible, and the MO effects mainly come
from net spin alignment (magnetization) [15].

There are two types of MO transitions that contribute to the off-diagonal
permittivity (Fig. 2.6, Fig. 2.7).

Boltzmann
population
function

LCP RCP
LCP RCP

Figure 2.6: Splitting of energy levels for a) type I and b) type II transitions.

Type I, referenced as double transition (historically known as diamagnetic),
originates in excited state splitting. Diamagnetic transitions include, among oth-
ers, charge transfer transitions [16]. The magnitude of the energy splitting of the
excited state is [17]

∆E = 2ℏ∆ωe = 2ℏ (ωe+ − ωe−) ,
where ωe± are the resonant frequencies for RCP and LCP light. The oscillator

23



strengths for right and left circular polarizations are equal and expressed as

f±e(ν) = mωe(ν)

ℏ
|⟨g|x± iy |e(ν)⟩|2 ,

where ν indexes split excited levels and ωe(ν) = 1
2 (ωe+ + ωe−).

Assuming ∆ωe ≪ Γe, where Γe is the linewidth, the spectral line shape has
the form [18]

ε2 = −Γ2
e (ε′

2)max

(ω − ωe)2 − Γ2
e + 2iΓe (ω − ωe)[︂

(ω − ωe)2 + Γ2
e

]︂2 .

In type II, referenced as single transition (historically known as paramagnetic),
spin-orbit coupling induces a difference in oscillator strengths. This is caused by
different Boltzmann occupancy of split ground levels. This transition is there-
fore strongly dependent on temperature. For example, electric-dipole-forbidden
crystal-field transitions of Fe3+ ions in O2- complexes belong to this type. The
spectral dependence of ε2 of this transition is

ε2 = −2Γe (ε2
′′)max

ω (ω2 − ω2
e + Γ2

e) − iΓe (ω2 + ω2
e − Γ2

e)
(ω2 − ω2

e − Γ2
e)

2 + 4Γ2
e

.

Figure 2.7: Two types of line shapes contributing to the off-diagonal permittivity:
a) type I (diamagnetic), b) type II (paramagnetic).

2.6.5 Kramers-Krönig relations
The microscopic models demonstrate that the dielectric permittivity is a func-

tion of frequency. Their real and imaginary parts are interrelated through so-
called Kramers-Krönig relations.

They are a consequence of the fact that the medium cannot respond to impulse
before it is applied, i.e. the response function χe(t) is zero for t < 0, and the
response is not infinitely fast. This, in turn, causes the Fourier transform χe(ω)
to be analytical over the entire complex upper half-plane. Then, through complex
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analysis, at following equations that relate the real and imaginary parts can be
arrived [19]:

Re(χ̃ (ω)) = 1
π

∞∫︂
−∞

Im(χ̃(ω′))
ω′ − ω

dω′,

Im(χ̃ (ω)) = − 1
π

∞∫︂
−∞

Re(χ̃(ω′))
ω′ − ω

dω′.

These equations, e.g., allow to calculate the refractive index from the absorption
coefficient obtained by simple measurement. They, however, apply to many other
complex quantities such as Kerr rotation and ellipticity, etc. presented in this
thesis.
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3. Magnetism
Every substance, to some degree, responds to a magnetic field. According to

their response, the materials can be divided into five groups. These groups will
be briefly presented in the following sections.

It is worthy of remark that magnetism is a purely quantum phenomenon, and
classical physics cannot describe it. Because the magnetic force on an electron is
perpendicular to its motion

F = −e(v × B),

then no work is done by the magnetic field and the electron’s energy is not mod-
ified. Therefore no change in magnetization can occur. The Bohr-van Leeuwen
theorem presents a more rigorous proof (which can be found, e.g., in [20]). Despite
this, QM treatment is not necessary, and many properties of magnetic substances
can be described using classical physics with some additional concepts.

3.1 Diamagnetism
Diamagnetism is a property of every material. However, it is so small that

any other magnetic contribution will dominate, if present. Therefore, diamag-
netism is only observable in substances whose atoms do not have a net magnetic
moment, i.e. the atoms have completely filled shells. According to Lenz’s law,
an induced magnetization opposes an external magnetic field. Also, for example,
organic molecules with delocalized electrons have large diamagnetic susceptibil-
ities. The electrons can form large current loops creating magnetic dipoles that
oppose the external field. The magnetic susceptibility is virtually independent of
temperature, magnetic field, is negative and on the order of 10−5 [21]. This type
of materials will not be studied in this thesis.

3.2 Paramagnetism
Paramagnetism manifests in materials whose atoms have a net magnetic mo-

ment. The magnetic moment comes from the intrinsic spin of an electron and
its orbital motion around an atomic core. These materials have a small positive
magnetic susceptibility on the order of 10−4, and the induced magnetization is
aligned with an external field. Upon removal of the external magnetic field, the
magnetization disappears. There are multiple theories describing paramagnetism
in various materials. Langevin theory, for example, describes noninteracting lo-
calized electrons. The magnetic moments will be randomly oriented without an
external magnetic field due to thermal excitations. The temperature dependence
of the susceptibility is known as Curie’s law

χm = C

T
,

where C is the Curie constant dependent on the material.
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Another theory, Pauli paramagnetism, describes paramagnetism due to the
free electron gas in metals. The magnetic field shifts two subbands of electron
spins, increasing the density of electrons with spin antiparallel to the magnetic
field resulting in a net magnetic moment.

3.3 Exchange interaction
The three remaining groups of materials exhibit spontaneous magnetic order.

The so-called exchange interaction enables the individual magnetic moments of
atoms to align at long distances. This interaction is a Coulomb repulsion acting
with the Pauli principle, which states that two electrons cannot be in the same
quantum state.

Consider two electrons with wavefunctions ψa and ψb with coordinates r1, r2.
The total wavefunction, a product of spin wavefunction and spatial wavefunction,
must be antisymmetric. The two possibilities are the product of spatial antisym-
metric with spin symmetric part χT (triplet state, S = 1) or spatial symmetric
with spin antisymmetric part χS (singlet state, S = 0). The wavefunctions for
the singlet state ψS and triplet state ψT can be written as [22]

ψS = 1√
2

(ψa(r1)ψb(r2) + ψa(r2)ψb(r1))χS,

ψT = 1√
2

(ψa(r1)ψb(r2) − ψa(r2)ψb(r1))χT.

The energies of the states are

ES =
∫︂
ψ∗

SĤψSdr1dr2,

ET =
∫︂
ψ∗

TĤψTdr1dr2.

The exchange integral is defined as

J = ES − ET

2 =
∫︂
ψ∗

a(r1)ψ∗
b(r2)Ĥψa(r2)ψb(r1)dr1dr2.

The exchange integral is included in the Heisenberg Hamiltonian, describing the
interaction of two neighbouring spins

Ĥex = −2JS1 · S2,

which can be generalized to a sum over all neighbouring atoms

Ĥex = −2
∑︂
i<j

JijSi · Sj,

where Si and Sj are spin operators. The sign of J determines the magnetic order,
i.e. J > 0 indicates a ferromagnetic order with neighbouring spins parallel while
J < 0 indicates antiferromagnetic order with antiparallel spins (Fig. 3.1).
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Ferromagnetism Antiferromagnetism Ferrimagnetism

Figure 3.1: Schematic illustration of various magnetically ordered materials.

3.4 Ferromagnetism
As was stated in the previous section, ferromagnetic substances display spon-

taneous magnetic order and, therefore, nonzero macroscopic magnetization in the
absence of an external magnetic field. The magnetic moments of neighbouring
atoms are aligned parallel via the exchange interaction. Magnetic order is re-
tained up to the Curie temperature TC, after which the thermal excitations over-
come the ordering, and the material becomes paramagnetic. Typical temperature
dependence of the magnetization M is shown in Fig. 3.2.
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Figure 3.2: Typical temperature dependence of the magnetization of a ferromag-
net.

The magnetization value of the magnetically ordered materials depends on the
history of an applied external magnetic field. This property is called hysteresis
(Fig. 3.3). The magnetic material can break up into magnetic domains with dif-
ferent magnetic moment alignment, and the resulting magnetization will be zero.
The applied magnetic field starts to reorient the magnetic domains parallel with
the field up to the saturation point Msat, where all the domains are aligned. Af-
ter switching off the magnetic field, the magnetization remains at the remanence
value Mr. Increasing the magnetic field into the negative values begins to reorient
the magnetic domains, and at the coercive field Hc, the magnetization is equal
to zero. Further increasing the negative magnetic field, the material saturates,
and the hysteresis loop can be reproduced again. In some materials the change in
the direction of the magnetization can be more sudden, caused by the coherent
rotation of the individual magnetic moments parallel to the external field.
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Figure 3.3: Hysteresis loop of a ferromagnet.

3.5 Antiferromagnetism
Negative exchange integral results in the antiparallel ordering of neighbouring

spins. The material can be thought of as composed of two magnetic sublattices
with equal opposite magnetic moments. An antiferromagnet has no net magnetic
moment, and consequently, only weakly interacts with an external magnetic field,
which is an attractive property, e.g., for magnetic memories [23], [24]. The tem-
perature above which the antiferromagnet becomes paramagnetic is called Néel
temperature TN. More complicated antiferromagnetic materials can be composed
of more than two noncollinear sublattices.

3.6 Ferrimagnetism
A ferrimagnetic material has two or more magnetic sublattices oriented an-

tiparallel, similar to an antiferromagnet. Nonetheless, the sublattices have un-
equal magnetic moments, resulting in a nonzero total magnetic moment. The
material thus behaves as a ferromagnet and similarly has a Curie temperature TC.
The temperature dependence of magnetization of ferrimagnets can be such that
the total magnetic moment disappears at the compensation temperature TComp
(Fig. 3.4). That is caused by the different temperature dependence of the op-
posite magnetic moments in different sublattices. Below TComp, one sublattice
dominates and is aligned with an external magnetic field. Above TComp, the sit-
uation reverses, and the second sublattice is parallel to the magnetic field. A
temperature change can therefore achieve a reversal of the magnetization. A
combination of ferro- and antiferromagnetic properties renders these materials
an attractive candidate in the field of spintronics [25], [26].

3.7 Magnetic anisotropy
The magnetization of a material points in a particular preferred direction

called the easy axis. Along this axis, the material magnetizes the easiest, and
after switching off the magnetic field, the magnetization remains at remanence
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Figure 3.4: Temperature dependence of magnetization of a ferrimagnet with two
sublattice magnetizations M1 and M2.

value Mr.
For uniaxial crystals, the easy direction is determined by the minimum of

anisotropy energy density
Ea = K1 sin2 θ,

where K1 is the anisotropy constant, and θ is the angle between the anisotropy
axis and magnetization.

There are three main contributions to the anisotropy constant K1 [21]:

• shape anisotropy, which depends on the shape of the sample and generally
lies in the plane of a thin layer sample,

• intrinsic magnetocrystalline anisotropy, which depends on spin-orbit inter-
actions of the electrons and crystallographic symmetry and aligns magne-
tization to one of the crystallographic axes,

• induced anisotropy, which can be, e.g., induced by annealing the material
in a magnetic field or by uniaxial stress.

The stress-induced anisotropy constant Ki is expressed as

Ki = 3
2λsσ∥,

where λs is the magnetostriction constant, and σ∥ is in-plane stress. If the in-
plane stress is produced by lattice mismatch between substrate and thin layer, it
can be expressed as [27]

σ∥ = E

1 − ν

dsub − dlayer

dlayer
,

where E is Young’s modulus, ν Poisson’s ratio, dsub and dlayer are substrate and
layer crystal plane spacings. This anisotropy usually forces the easy axis per-
pendicular to the sample plane. For spintronic applications, it is favourable to
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achieve out of plane magnetization, commonly termed perpendicular magnetic
anisotropy (PMA), to utilize mechanisms, such as spin-orbit torques, Rashba-
Edelstein effect, to manipulate the magnetic moment of the material. [28]

Perpendicular to the easy axis lies the hard axis. Magnetizing the material
along this axis costs energy, and the moments are less prone to orient parallel to
the field. The remanence valueMr in this direction is generally minimal. The field
value at which the value Msat is reached for this direction is called the anisotropy
field. Different behaviour of magnetization along the easy and hard axis is shown
in Fig. 3.5.
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Figure 3.5: Hysteresis loop along the easy (left), and hard (right) axis.

Hysteresis loops are also present in MO effects. Because of the antiparal-
lel alignment of sublattices, ferrimagnets can display anomalous hysteresis loops
under certain circumstances. Each sublattice can have its coercive field and
saturation magnetization. Suppose two magneto-optical transitions come from
different sublattices and overlap in a spectrum with opposite signs. In that case,
they can produce an anomalous hysteresis loop, visible in MOKE or Faraday ef-
fect (Fig. 3.6). Exploiting this anomaly, the contributions of the sublattices to
the magneto-optical spectrum can be resolved and separated.

External magnetic field

Φ
K
,F

sublattice A

sublattice B

A + B

Figure 3.6: Anomalous ferrimagnetic hysteresis loop visible in MOKE or Faraday
effect.
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4. Experimental techniques

4.1 Spectroscopic ellipsometry
Spectroscopic ellipsometry (SE) is a method that exploits the change in light

polarization upon reflection or transmission to study optical properties of surfaces,
thin layers, multilayers but also bulk samples. It is often employed to acquire
the extinction coefficient, refractive index and thickness of a layer. Because of
its high sensitivity, ellipsometry can also be used for in-situ measuring of the
growth of thin layers down to atomic thicknesses. The high sensitivity stems
from measuring the relative change between Fresnel coefficients. This ratio is
expressed as

ρ = rp

rs = tan Ψei∆, (4.1)

where Ψ and ∆ are the ellipsometric angles, which describe the amplitude and
phase change after reflection.

If a bulk sample with no surface roughness is measured, and therefore the
polarization change comes from a single interface, the optical constants of the
material can be immediately calculated by inversing relation (4.1), which yields
the relation for relative permittivity

ε1 = sin2 ϕ

⎛⎝1 + tan2 ϕ

(︄
1 − ρ

1 + ρ

)︄2
⎞⎠ ,

where ϕ is the angle of incidence. For a sample consisting of multiple layers,
a representative model has to be built with known parameters, and unknown
parameters are determined through a fitting procedure.

Ellipsometric data in this thesis were collected on commercially available ellip-
someter Woollam RC2. This spectroscopic ellipsometer employs two continuously
rotating compensators (Fig. 4.1). The two compensators rotate at a constant fre-
quency and a fixed ratio. This method allows measurement of all elements of the
Müller matrix and is therefore suitable for measuring anisotropic, depolarizing or
optically active samples. The Fourier analysis is needed to recover the elements of
the Müller matrix, or the ratio ρ. The rotating compensators method is described
in more detail, e.g., in [29].

The ellipsometer comes with the computer program CompleteEASE for data
analysis. The purpose of the analysis is to obtain unknown layer parameters, be
it optical constants or thickness or both. This is done by a model-based fitting
procedure. During the analysis, a model representing the sample structure is
built. The layers are represented by their thicknesses and optical constants. If
the model structure accurately represents the real sample, the simulated SE data
will match the measured data. Known optical constants are inserted into the
model from the program library or previous measurements. Surface roughness is
by default modelled by the Brugemann effective medium approximation (EMA),
which mixes the underlying layer with assumed 50% air content. The unknown
optical constants can be fit with standard optical models, such as the Cauchy
model or the Sellmeier model. More complicated shapes of optical constants are
fit by B-spline smooth curves [30], which are fully Kramers-Krönig consistent,
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and subsequently by line shapes based on Lorentz and Drude models. Comple-
teEASE uses the non-linear Levenberg-Marquardt algorithm for minimizing the
mean square error (MSE). Besides the MSE, the physicality of the fit parameters
is evaluated, and therefore a certain user experience is required.

Sample

Light source

Polarizer
Compensator Compensator

Analyzer

Detector

Figure 4.1: Ellipsometer setup with two rotating compensators.

4.2 Magneto-optical spectroscopies
MO spectroscopies measure quantities described in section 1.4. The rotating

analyzer technique in polar configuration was used for acquiring MO data. The
setup consists of a broad spectrum light source, polarizer, waveplate (optional),
analyzer and spectrometer (Fig. 4.2).

Figure 4.2: Rotating analyzer technique for measuring MOKE spectra. Faraday
configuration is similar, with waveplate, analyzer and detector behind the sample.

The technique is based on the older method of nearly crossed polarizers. The
optical setup, for example, in reflection configuration, can be described by Jones
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formalism as(︄
Eout

x
Eout

y

)︄
=
(︄

cos2 β sin β cos β
sin β cos β sin2 β

)︄(︄
1 0
0 eiδ

)︄(︄
rss rsp
rps rpp

)︄(︄
0
Ein

y

)︄
,

where β is the angle of the analyzer axis and δ is phase retardation. The same
equation can be written for transmission measurement. Without loss of generality,
for normal incidence, the input polarization has been chosen in the y-direction.
Using the definitions of MO angles, the output intensity can be expressed as

Iout = I inR
(︃
sin2 β +

⃓⃓⃓
ΦKp

⃓⃓⃓2
cos2 β + sin(2β) (θ cos δ − ϵ sin δ)

)︃
. (4.2)

The second quadratic term can be eliminated because the MO angles are
generally small. The first term is the classical Malus law, the intensity between
two polarizers with angle β between them. The third term is the contribution
from the sample. If the waveplate with retardance δ is left out from the setup,
only the rotation θ is measured.

In the real experiment, the output intensity is measured for a number of
discrete β values at a fixed magnetic field. It is advantageous to keep the Malus
term small for a good signal-to-noise ratio, so the experiment is usually measured
for β values from 2 to 5 and −2 to −5 degrees. The β dependence of output
intensity is fit with a function based on equation (4.2)

Iout = A sin2 β +B sin(2β) + C,

and the measured Kerr or Faraday effect is then

ΦK,F = B

A
.

This procedure is carried out for every wavelength in the spectrum. However,
the total Kerr or Faraday effect can also include contributions, not from the
sample. This can be resolved by using the parity of MO effects. Since the linear
MO effects are odd in magnetization and other contributions are usually even
(constant), the experiment is performed for a positive and negative magnetic
field. The pure effect coming from the sample can then be calculated as

Φsam
K,F = ΦK,F(B) − ΦK,F(−B)

2 .

This method has accuracy down to 1 mdeg, so even very thin layers and small
MO effects can be measured. The spectrum is acquired at once with commer-
cial OceanOptics spectrometer with a range of 1.4 eV to 6.2 eV. This allows the
measurement to be performed significantly faster than wavelength by wavelength
methods and a MO spectrum with reasonable accuracy can be obtained in a
matter of minutes.

For MOKE and Faraday measurement, 1T and 0.62T electromagnets were
used, respectively. The magnetic field can also be swept with the desired step to
measure spectral hysteresis loops.
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4.3 Pulsed laser deposition
Pulsed laser deposition (PLD) is a versatile technique for the preparation of

thin layers. It can prepare high-quality layers of various materials, including
metals, insulators, semiconductors, superconductors, and polymers. It is suitable
for growing materials with complex stoichiometries such as garnets or perovskites.

laser beam

heater

substrate

vacuum chamber

target

plasma plume

Figure 4.3: The principle of PLD. High-energy laser pulses evaporate the target
material creating a plasma plume that deposits on the heated substrate.

The basic principle of PLD is relatively simple (Fig. 4.3). A high-power laser,
typically a KrF excimer laser, produces short pulses focused on the target, made
out of the desired material. The target material instantaneously vaporizes into
ions and neutrals that create a plasma plume. Subsequently, the plasma plume
moves with an energy of ∼ 1 eV–100 eV towards the heated substrate where it
deposits. The substrate is heated to several hundred °C to improve the mobility
of the deposited atoms so that they can find the most energetically stable position.
The most significant advantage of the PLD is transferring the target stoichiometry
to the grown layer. However, during the deposition of volatile elements, the
target stoichiometry needs to be adjusted, so the desired composition of the
layer is achieved. The substrate and the target continuously rotate for better
homogeneity of deposition and ablation.

This method can operate in a range of pressures from <10−7 mbar to 1mbar
but needs a lower vacuum than, for example, molecular beam epitaxy (MBE).
Some partial gas pressure is required to slow down the plasma, so the substrate
or grown layer is not damaged. An oxygen atmosphere is needed to grow oxide
layers with good stoichiometry.

Many variables influence the resulting quality of the grown layer, such as
laser repetition rate, energy, background gas pressure, substrate temperature,
substrate distance from the target and treatment of the layer after the deposition.
Therefore they need to be finely tuned.
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5. Studied samples
In this thesis, the rare-earth ferrimagnetic garnet thin films are studied.

The garnets have one of the most complex crystal structures found in nature.
The general characteristics and some properties of this material are briefly de-
scribed in this chapter.

5.1 Ferrimagnetic garnets
Ferrimagnetic garnets crystalize in a body-centred cubic lattice with 8 formu-

las R3+
3Fe3+

5O2-
12 per unit cell, a total of 160 atoms. The oxygen ions define

three types of cation sites:

• dodecahedral (c) site, which is occupied by 24 R3+ rare-earth ions,

• octahedral (a) site, where 16 Fe3+ ions reside,

• tetrahedral (d) site, where the remaining 24 Fe3+ are located.

However, the tetrahedral and octahedral sites are not regular polyhedrons but
are slightly distorted. The dodecahedral site is an irregular hexahedron obtained
by applying torsion to a cube about the body diagonal and then distorting the
faces [31].

The cation preference of sites is determined mainly by the ionic radius of
the cation. Cation in every site can be substituted with a myriad of elements
considering the atomic radius. This allows tailoring of the magnetic and optical
properties. The Fe3+ ions in the tetrahedral site, for example, can be substituted
with Ga3+ or Al3+ ions to reduce the magnetization. The very large rare-earth
ions preferentially occupy the dodecahedral site and can be substituted, e.g., with
Nd3+ and Bi3+. In garnets, the ratio of dodecahedral ions and Fe3+ is denoted
by the composition parameter R, and for ideal garnets equals 0.6. The ratio
varies a bit in real samples and can affect physical their properties. The lattice
parameter of iron garnets changes with the ionic radius in the (c) site with the
range 12.283 Å–12.529 Å for rare-earth ions. It also, to some degree, depends on
other factors, such as the preparation technique, used substrate, stress and strain.

The total saturation magnetization of the iron garnet is

Msat = |(Md −Ma) ±Mc| ,

where the indices d, a, c label the magnetization of tetrahedral, octahedral and
dodecahedral sublattice, respectively. The octahedral and tetrahedral sites with
antiparallel magnetic moments contribute with a 2:3 ratio. Therefore the tetrahe-
dral site provides one Fe3+ uncompensated magnetic moment with the magnitude
of 5µB at 0K (µB = eℏ

2me
, Bohr magneton). The magnetic moment of lanthanides,

which is the case of this thesis, is determined by the quantum number J , but the
antiferromagnetic exchange only aligns the spin antiparallel. For the lower half of
the lanthanide series, J = |L− S|, and the magnetic moment is aligned parallel
and adds to the iron moment. For the upper half, J = |L+ S|, so the magnetic
moment is antiparallel to the Fe3+ magnetic moment.
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Figure 5.1: One octant of garnet structure, rare-earth ion (blue) in dodecahedral
site, iron ions (orange) in tetrahedral and octahedral sites.

The Curie temperature, where the garnet becomes paramagnetic, is in the
vicinity of 560 K, only weakly dependent on the rare-earth ion. On the other hand,
the compensation temperature varies extremely for each ion. Garnets with rare-
earth ions, whose magnetic moment is < 5µB, have no compensation temperature
[21] because the rare-earth magnetic moment is not big enough to cancel out the
iron magnetic moment at any temperature.

The most researched representative of ferrimagnetic garnets is yttrium iron
garnet (YIG), Y3Fe5O12. Yttrium is a diamagnetic ion which does not contribute
to magnetic or magneto-optical properties, therefore the properties of iron sites or
yttrium substituting elements can be studied. The most studied substitution for
yttrium is Bi3+ which greatly enhances MO effects in the visible region. Garnets
have a very complicated MO spectra compared to other structures, such as spinels
and perovskites.

Samples studied in this thesis are TbIG and can be divided into two groups:
non-doped Tb3Fe5O12 and Tb3Fe5O12 doped with Ce3+ and Bi3+. These thin
layers were deposited either on GGG substrate with crystallographic orientation
(111) or crystalline Si substrate. GGG has a lattice constant a = 12.383 Å, so the
samples grown on GGG are single crystals due to the good lattice match. Samples
on Si, with a = 5.431 Å, are polycrystalline due to the significant lattice mismatch.
All samples were prepared at the Massachusetts Institute of Technology in Boston,
USA, by pulsed laser deposition described in the previous chapter. The studied
samples are listed in the Tab. 5.1. The exact content of terbium and iron can
slightly vary from the nominal values.
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Non-doped samples
Sample name Sample Substrate Nominal thickness [nm]
123TbIG/G Tb3Fe5O12 GGG(111) 123
300TbIG/G Tb3Fe5O12 GGG(111) 300
123TbIG/S Tb3Fe5O12 Si 123
300TbIG/S Tb3Fe5O12 Si 300

Doped samples
Sample name Sample Substrate Nominal thickness [nm]
Ce0.7TbIG/G Ce0.7Tb2.3Fe5O12 GGG(111) 80–110
Bi0.5TbIG/G Bi0.5Tb2.5Fe5O12 GGG(111) -
Bi0.06TbIG/G Bi0.06Tb2.96Fe5O12 GGG(111) 86
Bi0.01TbIG/S Bi0.01Tb2.99Fe5O12 Si -

Table 5.1: Samples studied in this thesis, their composition, type of substrate
and nominal thicknesses. The samples will be referenced to with their respective
sample name throughout the rest of this thesis.
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6. Results and discussion

6.1 Optical properties
Investigated samples were measured on the spectroscopic ellipsometer Woolam

RC2 to acquire diagonal permittivity, thicknesses of the layers and surface rough-
ness. Since the area of the samples is small, the ellipsometer light beam diameter
was reduced with iris, but lowering the intensity increases measurement error.
For most samples, the measurements were done for three angles of incidence, 55°,
60° and 65°. For smaller samples, the angles of incidence were limited to 40°,
45° and 50° to ensure that the light beam spot was not larger than the sample
surface. Another option was to use focusing probes supplied with the ellipsometer
that reduce the spot diameter from 3 mm–4 mm to 0.3mm. The probes, however,
introduce additional error to the measurement, so for each sample, a measuring
method was chosen that resulted in the best model fit.

For the SE analysis, a model representative of the structure was built. The op-
tical constants of the Si substrate were available in the program library. The GGG
optical constants were obtained from separate SE measurement of the bare sub-
strate. The optical constants of unknown layers were firstly modelled by B-spline
curves and subsequently by a sum of Tauc- and Cody-Lorentz oscillators. Optical
constants of the sample 300TbIG/G were fit with a graded layer model consist-
ing of two layers whose optical constants differ by 8 %. This model significantly
improved the fit in terms of MSE and is supported by the MOKE measurements.
The samples on Si were modelled with thin layer of SiO2 between the substrate
and the TbIG layer, because of the expected oxidation of Si substrate in oxygen
background gas during the deposition of the garnet layer. Spectral dependences
of SE angles and oscillator fit for one sample (123TbIG/G) are shown in Fig. 6.1
and Fig. 6.2. The fit agrees well with experimental data as follows from Fig. 6.1.
The parameters of the oscillator model are listed in Tab. 6.1. The permittivity
of the 123TbIG/G sample was modelled solely by Tauc-Lorentz oscillators.
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Figure 6.1: SE data and model of the sample 123TbIG/G.

39



Figure 6.2: Decomposition of the spectral dependence of imaginary part of diag-
onal element of permittivity tensor into Tauc-Lorentz oscillators for the sample
123TbIG/G.

A [eV] E0 [eV] γ [eV]
1.77 2.53 0.26
2.01 2.77 0.26
9.31 3.20 0.65
1.38 3.43 0.38
4.05 3.79 0.73
6.46 4.37 0.83
1.64 4.79 0.73
0.55 5.05 0.46
1.86 5.49 0.86
7.40 6.06 2.16
5.80 7.85 2.34

Table 6.1: Parameters of the Tauc-Lorentz oscillators used to model the imag-
inary part of ε1 spectral dependence of the sample 123TbIG/G. A denotes the
amplitude, E0 central energy of the peak and γ the broadening of the peak. Sim-
ilar models were used for rest of the samples.

Spectral dependence of the diagonal element of permittivity tensor of non-
doped TbIG samples are shown in Fig. 6.3. The amplitude of the permittivity
of TbIG across the spectrum slightly varies from sample to sample but the peak
positions differ negligibly. Various reasons can cause this. The stoichiometry
and structure of the layers can vary for different substrates and thicknesses of
deposited layers. The 123 nm samples have R = 0.57, while the 300 nm samples
have R = 0.54. This different composition means that there is less terbium or
more iron atoms. Therefore, there may be, e.g., vacancies at the dodecahedral
sites, or they may be occupied by an iron ion. Furthermore, the Tb3+ ion is
known to form more stable Tb4+ ions in cubic materials [32] and tends to occupy
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Figure 6.3: Fit relative permittivity of the non-doped TbIG samples.

octahedral sites [33]. The presence of Tb4+ can also cause the formation of Fe2+

and Fe4+ ions. All this effects can affect the optical and other physical properties.
The spectral shape is similar to the YIG spectrum reported in literature, e.g.,

in [16] and [17]. Iron garnets have a fairly large band gap, ≈ 2.5 eV (indicated
by an onset of imaginary part of ε1 in Fig. 6.3), while the lattice absorption
starts below 0.14 eV, making them particularly attractive for MO isolators in the
infrared (IR) range. Several authors [34], [35], [36] explained the spectra at the
onset of the absorption and in the visible spectrum. In two papers [37], [38], Scott
et al. proposed that the optical transitions of YIG were assigned incorrectly and
presented different absorption mechanisms.

It was established that the absorption of garnets at the optical frequencies
mainly originates from iron ions. A decrease in absorption across the whole spec-
trum is observed when diluting the iron at the tetrahedral and octahedral sites.
The contribution of the rare-earth ions is usually only minor. Parity-forbidden
4f-4f transitions, located in the IR-visible region, become allowed in the crystal
field (CF) but are several orders weaker than iron transitions and not observ-
able [39]. The charge transfer (CT) 4f-5d transitions in ultraviolet (UV) region
are also much weaker than iron absorption bands. A stronger absorption can
arise from Tb4+ ions. Weak absorption peaks around 2 eV and at the absorption
edge were assigned to CF transitions between 6S and 4G terms that are spin and
parity forbidden in the free Fe3+ ion. The lowest peak at 2.53 eV is probably
corresponding to this type of transitions. The lowest transitions are expected to
originate in the octahedral site since the CF splitting is larger than of the tetra-
hedral site. CF transitions are present up to 3.4 eV but are not visible due to the
presence of much stronger transitions. Scott assigned absorption bands around
2.7 eV, 2.86 eV, 3.2 eV and 3.4 eV to the simultaneous CF excitation of two neigh-
bouring Fe3+ ions. These transitions should occur at the sum of the energies of
the two transitions and should have much higher oscillator strengths than single
ion transitions. The observed peaks at 2.77 eV and 3.43 eV could be attributed
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to this mechanism. CT transitions have two possible mechanisms that are hard
to discern due to their similar manifestation. According to [40], CT transitions
between O2--Fe3+ are situated at 2.9 eV and 3.16 eV. On the other hand, in [38],
8 expected transitions between 2.9 eV and 5.2 eV are assigned to CT between
octahedral and tetrahedral sites, while the first O2--Fe3+ transition is expected
above 4.4 eV. The strong peaks at 3.20 eV and 4.37 eV and also 3.79 eV observed
in the spectra of 123TbIG/G may be attributed to CT transitions. However, it is
probable that the contributions of different origins are overlapping in the spectra
and are thus represented by one peak particularly at 3.2 eV where the biexciton
CF transitions are still present. The strong transitions above 8 eV that contribute
to the real part of the permittivity were attributed to transitions between oxygen
2p and iron 4s bands [40]. Based on the mechanism of the transitions in the UV
region, the observed differences between the measured samples may be caused
by defects in oxygen positions. The determined R values do not indicate the
deficiency in iron, therefore the lower absorption should be caused by something
different. Because the oxygens mediate the CT transitions in between the iron
ions, the oxygen defects could decrease the frequency of the transitions and thus
lowering the oscillator strengths of the peaks in the UV region.

The thicknesses and surface roughness values for non-doped TbIG are pre-
sented in Tab. 6.2. Fit thicknesses for samples on Si substrates do not signifi-

Sample name tn [nm] tf [nm] rs [nm]
123TbIG/G 123 113.72 8.77
300TbIG/G 300 262.65 10.53
123TbIG/S 123 126.77 9.77
300TbIG/S 300 295.75 15.26

Table 6.2: Nominal tn and SE fit tf thicknesses and surface roughness values rs
for non-doped TbIG samples.

cantly differ from nominal values. On the other hand, the samples deposited on
GGG have smaller fit thicknesses by about 10%. This can be caused by incorrect
calibration of the PLD deposition rate, which can differ for different substrates.
The roughness is within the acceptable range for PLD prepared garnets.

Spectral dependence of the diagonal element of permittivity tensor of doped
samples compared to non-doped sample 123TbIG/G are shown in Fig. 6.4 and
Fig. 6.5.

The thicknesses and surface roughnesses are listed in Tab. 6.3. It can be im-
mediately seen that the bismuth substitution increases absorption in the whole
region above the band gap. This observation does not agree with the results
presented in [16], where the bismuth only slightly increases absorption near 3 eV.
However, the authors measured bulk-like samples whose properties can signifi-
cantly differ from thin layers. In [41], the absorption of Bi doped YIG increased
with increasing bismuth content. The spectra of bismuth samples in this thesis
with Bi contents of 0.5 and 0.06 do not substantially differ from each other de-
spite having different content of bismuth. This can be explained by the fact that
the preparation of bismuth garnets with ideal stoichiometry is challenging [42].
Therefore, the non-observed but expected absorption increase with increasing bis-
muth substitution may be compensated by decreased iron content. Additionally,
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Figure 6.4: Fit relative permittivity of the samples Bi0.5TbIG/G and
Bi0.06TbIG/G compared with sample 123TbIG/G.

Figure 6.5: Fit relative permittivity of the samples Ce0.7TbIG/G and
Bi0.01TbIG/S compared with the sample 123TbIG/G.

the proposed mechanism of enhanced absorption and MO activity of bismuth
substituted iron garnets involves transitions between Fe3+ and Bi3+ ions [43] and
therefore depends on iron concentration. The spectrum of Bi0.01TbIG/S is al-
most unchanged compared to 123TbIG/G (see Fig. 6.5), and the minor differences
can be explained by the reasons mentioned in previous paragraphs.

The Ce0.7TbIG/G spectrum exhibits increased absorption as well, compared
to the sample 123TbIG/G. It also displays increased absorption in the IR region,
around 1.4 eV. This absorption is thought to originate in intraionic electric-
dipole 4f-5d transitions in Ce3+ ion [44], [45], and is of particular interest for
MO applications. Absorption at higher energies is probably coming from higher
excited states of Ce3+ that are situated at 2.1 eV and 3.1 eV [46]. Absorption in
UV is not addressed in the literature and is possibly not connected to Ce but to
the differences in TbIG host material, probably due to higher content of iron.
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Sample name tn [nm] tf [nm] rs [nm]
Ce0.7TbIG/G 80–110 76.15 1.72
Bi0.5TbIG/G - 71.97 5.28
Bi0.06TbIG/G 86 87.53 9.87
Bi0.01TbIG/S - 86.36 19.96

Table 6.3: Nominal tn and SE fit tf thicknesses and surface roughness values rs
for doped TbIG samples.

6.2 Magneto-optical properties
The MOKE spectra were measured using the rotating analyzer technique in

polar configuration between 1.4 eV to 4.5 eV. The range was limited in the UV by
the absorption of the used optical components and in the IR by the range of the
used spectrometer. Because it is problematic to perform the MOKE measurement
at normal incidence, the experiment was carried out at around 10° angle of inci-
dence. This does not significantly impact the measurement, only the amplitude
is slightly lower, but the spectral dependence is the same [6]. This is because the
polarization change only happens for the part of the wave vector that is parallel to
the magnetization vector that creates the optical anisotropy. Optical anisotropy
perpendicular to the magnetization is equal to zero. Firstly, the samples were
measured with a polished substrate backside. Then the backside was roughened
with a diamond pen to eliminate backside reflections, and the MOKE spectra
were measured again.

The Faraday effect was measured in the same energy range, but the spec-
tra are affected by the sample absorption and have significant error above 4 eV.
Faraday effect was measured only for samples on GGG substrate since the Si is
opaque above 1.12 eV. The Faraday spectra were corrected for the paramagnetic
contribution of GGG (Fig. 6.6) and normalized to thickness. The sharp peaks
visible in the spectra are absorption peaks of Gd3+.

Figure 6.6: Faraday rotation and ellipticity of GGG.
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Figure 6.7: Measured Faraday rotation and ellipticity of non-doped TbIG on
GGG substrate.

Faraday spectra of non-doped garnet samples on GGG substrate are shown
in Fig. 6.7. The spectral dependence agrees with the literature [47], but the
magnitude is approximately two times larger in samples measured in this thesis.
The difference can be caused by different qualities of the films, as is discussed
in the article and above text. The difference between the samples can be caused
by differences in composition. The 300TbIG/G spectra above 3 eV are skewed
because of significant absorption of the sample resulting in negligible intensity and
worse sensitivity of the measurement. Furthermore, the 0.62T field produced
by the magnet was not sufficient to saturate the magnetization of the sample
300TbIG/G. This will be discussed in more detail later in the chapter.

MOKE spectra of non-doped TbIG on polished and roughened GGG substrate
are shown in Fig. 6.8 and Fig. 6.9.

The difference between the spectra for polished and roughened backside is sig-
nificant. Both samples show a notable difference in Kerr rotation and 300TbIG/G
also for Kerr ellipticity. The oscillatory behaviour below 3 eV originates in the
interference of light reflected from the surface and the layer/substrate interface.
This is more pronounced for the thicker sample. Additional rotation is produced
by the double Faraday rotation of the substrate itself, which can be greatly re-
duced by the mentioned roughening. The reflection from the bottom of the sub-
strate will then be supressed by the light scattering.

These comparisons also point to another important fact: the penetration
depth is large enough to allow the light reflected from the bottom of the layer to
reach the detector up to around 3.15 eV. This observation will become helpful in
discussion of hysteresis measurements later in this chapter. The interference is
also visible in MOKE spectra for non-doped samples on Si substrate (Fig. 6.10),
and is more pronounced because of bigger difference between layer and substrate
refractive indices than for the layer/GGG case.

Utilizing the knowledge of the spectral dependence of MOKE and Faraday
effect and diagonal element of permittivity tensor, Yeh formalism can be used
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to calculate the spectral dependence of the off-diagonal elements of the permit-
tivity tensor. The off-diagonal permittivity can be calculated both from MOKE
or Faraday spectra. The accuracy of the calculations can then be checked by
modelling the other spectra that were not used for the calculation.

Figure 6.8: Measured Kerr rotation and ellipticity of 123TbIG/G with polished
and roughened backside.

Figure 6.9: Measured Kerr rotation and ellipticity of 300TbIG/G with polished
and roughened backside.

The off-diagonal permittivity ε2 of non-doped TbIG was calculated from all
measurements of all samples. The spectral dependencies are compared in Fig. 6.11
and Fig. 6.12. The ε2 spectra calculated from Kerr measurement of the samples
123TbIG/S and 123TbIG/G significantly deviates from the rest between 2.5 eV
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and 3.2 eV. This can be caused by slightly different thicknesses across the layer,
which is common in PLD prepared samples. The thicknesses can therefore be
different from the fit thickness which results in the inaccuracy of the calculated
ε2 spectra. The 123TbIG/G MOKE spectra may be inaccurate also because

Figure 6.10: Measured Kerr rotation and ellipticity of non-doped TbIG on Si
substrate.

despite the roughening of the backside, some light might be still reflected to the
detector. The sensitivity of Yeh formalism is also noticeable because of the peak
at 2 eV in the real part of off-diagonal permittivity of the sample 123TbIG/G.
The MOKE spectra do not show any particular disturbance around this energy
(Fig. 6.8). The ε2 spectra calculated from the Faraday spectra of 300TbIG/G
have lower amplitude caused by the inability to saturate the sample at 0.62T (will
be discussed in the following text). Above 3.5 eV, this calculated permittivity is
skewed due to inaccuracy of the Faraday spectra caused by high absorption. The
inverted peaks at 4 eV are ”oversubtracted” peaks of GGG substrate. This can be
a helpful indicator of the error in Faraday rotation spectra. If the peaks are more
visible, it means that the measured Faraday rotation is lower than it is supposed
to. Other than that, the permittivities are consistent between each other. Besides
reasons already mentioned in this paragraph, the small differences between the
samples could be also caused by factors mentioned earlier in section about optical
properties. Most probable is that the stoichiometries of the samples are different
or some defects are present. Permittivities calculated from Faraday spectra will
be generally more accurate considering the Faraday effect is less sensitive to the
influence of multiple reflections at the interfaces.

The permittivity spectral shape is similar to that of YIG shown, for exam-
ple, in [17], [48] and [49], which indicates that the majority of the MO activity
originates in iron sublattices as in YIG. The Tb3+ has observable contribution
in the IR region [50], [51]. One can see that the off-diagonal permitivity has
indeed complex spectral dependence and the identification of the peaks is thus
not an easy task. Nonetheless, many peaks were identified, for example, in [48],
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Figure 6.11: Calculated real part of off-diagonal permittivity of TbIG from all
measurements of all samples. The ΦK and ΦF labels indicate which spectra were
used for calculation.

[52], [53]. The literature is consistent in explaining the permittivity dependence
entirely by paramagnetic transitions with a few exceptions. Some of the para-
magnetic transitions have been matched to peaks in absorption spectra. Some
of the peaks at the energies up to 2.5 eV were attributed to crystal field transi-
tions. There are two peaks in visible in the ε2 spectra that probably belong to
this transitions. In the range from 3 eV to 4.5 eV the transitions are thought to
be due to the biexciton excitations. This hypothesis is supported by discussion
in [49], where the spectrum is separated to individual lattice contributions, with
overlapping transitions. The transition around 2.85 eV is with high probability
charge transfer transition which exhibits diamagnetic line shape [16], [48].

The observation that the YIG ε2 spectrum is predominantly paramagnetic
is rather surprising since the ground state of Fe3+ has zero angular momentum.
Therefore, there should be no spin-orbital splitting which is required for existence
of paramagnetic transitions. It has been proposed that the ground state can
acquire nonzero orbital momentum by hybridizing its orbitals with orbitals of
spin-orbit split lowest excited term of neighbouring ion [52].

In figures Fig. 6.13 and Fig. 6.14 are shown the measured MOKE spectra
of sample Bi0.01TbIG/S and Faraday effect spectra of doped samples on GGG
substrate. One can immediately notice the giant enhancement of the Faraday
rotation and ellipticity by bismuth doping. What is interesting is that the sub-
stantial increase in bismuth doping from 0.06 to 0.5 does not translate to increase
in MO activity. The magnitude of Faraday effect only slightly increases for the
more doped sample. The sample doped with Ce also displays an increase in Fara-
day effect. Significant is the increase of Faraday rotation at the lower side of
measured spectral range. Both Bi and Ce doped TbIG are therefore promising
materials for application in MO isolators in telecommunication at IR wavelengths
[54].
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Figure 6.12: Calculated imaginary part of off-diagonal permittivity of TbIG from
all measurements of all samples. The ΦK and ΦF labels indicate which spectra
were used for calculation.

Figure 6.13: Measured MOKE spectra of the sample Bi0.01TbIG/S.

The calculated off-diagonal permitivity spectra for doped samples are shown
in Fig. 6.15 and Fig. 6.16. The ε2 spectra of samples on GGG were calculated
from Faraday effect and the permittivity of the sample Bi0.01TbIG/S was cal-
culated from MOKE. The ε2 of the sample Bi0.01TbIG/S does not visibly differ
from that of non-doped TbIG, so the effect of such small substitution is negligible.
The significant increase of Faraday effect of the Ce doped sample is caused by the
paramagnetic transition centred at around 1.4 eV. Another paramagnetic transi-
tion with negative contribution is probably located at 3.1 eV but is of no particular
interest for potential applications. The increased Faraday effect of Bi doped sam-
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Figure 6.14: Measured Faraday rotation and ellipticity spectra of doped samples
on GGG substrate.

Figure 6.15: Calculated real part of off-diagonal permittivity of TbIG from
MOKE and Faraday measurements. The ΦK and ΦF labels indicate which spec-
tra were used for calculation.

ples is mainly caused by two diamagnetic transitions at 2.6 eV and 3.15 eV and a
smaller diamagnetic transition at 3.9 eV [55]. The original spectra remain largely
unaffected. This suggests that the doping with bismuth introduces additional
mechanism to the MO activity. The additional mechanism involves spin-orbit
splitting of the excited states and covalent interactions between Fe3+ and Bi3+

[56]. It was determined that the larger peak at 3.15 eV involves transition in the
octahedral site while the other two peaks belong to tetrahedral site.
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Figure 6.16: Calculated imaginary part of off-diagonal permittivity of TbIG from
MOKE and Faraday measurements. The ΦK and ΦF labels indicate which spectra
were used for calculation.

Spectral hysteresis loops
As was discussed in previous paragraphs, the analysis of the MO spectra is a

difficult task. Current methods of assigning MO to the garnet sublattices involve
diluting the iron ions with nonmagnetic ions, which preferentially replace iron at
one of the sites, and comparing the measured spectra. Some peaks in the MO
spectra can be assigned based on the change of the shape of the spectra with tem-
perature. One possible way how to facilitate the analysis is the measurement of
spectral hysteresis loops. If the magnetic sublattices of the garnet have different
hysteresis behaviour, this should be visible in the hysteresis loops of the MO spec-
tra for transitions coming from different sublattices. This would greatly simplify
the assignment of observed peaks. The analysis of hysteresis loops was performed
on bismuth iron garnet by Deb et al. [57]. The authors observed anomalous hys-
teresis loops that were caused by two diamagnetic transitions originating in the
two sublattices with opposing magnetization.

For the purpose of this thesis, spectral hysteresis loops were measured on three
samples: 300TbIG/G, 123TbIG/G and 0.5BiTbIG/G. The spectra are shown in
figures 6.17, 6.18 and 6.19. All three samples exhibit energy dependent shape of
the hysteresis loops. This effect is most pronounced in the sample 300TbIG/G,
in which the hysteresis loops display significantly different shape in an energy
window just 0.06 eV wide. According to the [57], the hysteresis loop can be rep-
resented by an error function and thus the total Kerr hysteresis loop is expressed
as the sum of three error functions for each sublattice

θK =
3∑︂

i=1
Ai erf

(︃
B −BCi

BVi

)︃
,

where Ai is the amplitude of the Kerr effect of the sublattice, B the applied
external field, BCi the coercive field, and BVi the field at which the magnetization
of the sample is saturated. After inspection of the spectra, it was concluded that
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the observed hysteresis consists of two different shapes. Therefore, the spectra
were modelled by two error functions. Firstly, the fit parameters for the error
functions were obtained at a fixed energy. Then, the parameters BCi and BVi

were held constant and the amplitudes were fit for the whole spectrum. The two
fit error functions were sufficient to reproduce the observed hysteresis loops in
the whole spectral range.

Figure 6.17: Measured Kerr rotation spectral hysteresis loops of the sample
300TbIG/G. The top graph illustrates the spectral shape with colour coded ap-
plied external field values. The lower graphs depict slices through the spectrum
at energies E = 2.81 eV, 2.84 eV and 2.87 eV.

Example of the hysteresis loop decomposition of the sample 300TbIG/G is
shown for two energies in Fig. 6.20. The two loops have very different behaviour.
The loop labelled as loop 1 displays low remanence and has a low value of coercive
field. On the other hand, the loop labelled as loop 2, displays a hysteresis expected
for easy anisotropy axis, has remanence equal to saturation value and has a high
coercive field. It the following text it will be referenced to these loops as low HC
for loop 1 and high HC for loop 2. The spectral dependence of the amplitude of
the two loops is shown in Fig. 6.21.

The decomposition of the spectrum into two independent loops was also per-
formed for the samples 123TbIG/G, and 0.5BiTbIG/G (Fig. 6.22, Fig. 6.23). The
hysteresis shape of the two loops is basically the same as the shape of the loops
of the sample 300TbIG/G (Fig. 6.20).
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Figure 6.18: Measured Kerr rotation spectral hysteresis loops of the sample
123TbIG/G. The top graph illustrates the spectral shape with colour coded ap-
plied external field values. The lower graphs depict slices through the spectrum
at energies E = 2.38 eV, 2.8 eV and 4 eV.

The spectral dependences of the amplitude do not indicate that they represent
the Kerr contributions of the individual sublattices. For the sample Bi0.5TbIG/G
(Fig. 6.23), one would expect similar dependence to that in [57]. The contribution
to the spectra predominantly comes from the highHC loop, while the contribution
from the low HC loop is only very weak. It was also determined that the peak
around 3.15 eV originates in the octahedral site while the peak at 3.9 eV at the
tetrahedral site. The two loops, however, contribute to both of those peaks, with
different magnitude.

The spectral contributions to the Kerr rotations of the samples 300TbIG/G
and 123TbIG/G are very different but a similar behaviour would be expected
from the same material. In decomposed loop spectra of the sample 300TbIG/G,
the two loops contribute with similar strength to the spectrum up to the 3.4
eV, but above this energy, only the low HC loop contributes to the spectra. On
the other hand, the Kerr rotation of the sample 123TbIG/G is predominantly
mediated by the high HC loop while the low HC loop contribution only weakly
increases in the UV region.

Furthermore, the hysteresis shape of the two loops for the three measured
samples is very different. It is improbable that the remanence would be caused
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Figure 6.19: Measured Kerr rotation spectral hysteresis loops of the sample
Bi0.5TbIG/G. The top graph illustrates the spectral shape with colour coded
applied external field values. The lower graphs depict slices through the spec-
trum at energies E = 2.74 eV, 3.16 eV and 4 eV.

only by one sublattice (high HC loop) and that the other sublattice would ex-
hibit no hysteresis. In a material where the antiferromagnetic exchange enforces
magnetic order, a behaviour where the sublattices have similar values of coercive
field and remanence would be expected.

Because of this reasons, it was concluded that the individual contributions
of the low HC and high HC do not represent the Kerr rotation of the particular
sublattices of the studied samples. One probable explanation of the observed
effect is that the decomposed spectra represent the contributions of two layers
with different magnetic anisotropy within the TbIG layer. It is expected that the
TbIG grown on GGG would display PMA due to the compressive strain caused
by lattice mismatch between the GGG and the TbIG layer [58], and this was
indeed reported for example, in [47] and [59]. Based on the square shape of
hysteresis loops, the samples 123TbIG/G and Bi0.5TbIG/G exhibit the PMA.
The small contribution of the low HC loop in both samples is probably caused
by a thin layer at the surface that has different magnetic anisotropy than the
rest of the layer. The different properties of the surface layer may be caused for
example, by the heat treatment of the sample after the layer deposition and as a
result the stoichiometry may be different. Another possible origin of the observed
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Figure 6.20: Decomposition of the measured Kerr hysteresis loops of the sample
300TbIG/G shown at two energies E = 2.64 eV and 2.84 eV.

Figure 6.21: Spectral dependence of the amplitude of the two loops that reproduce
the measured Kerr spectrum of the sample 300TbIG/G.

phenomena is that the surface of the layer acts as a defect to the periodicity of
crystal and therefore the electronic, and consequently other physical properties,
can be different from the rest of the sample.

The decomposed spectra of the sample 300TbIG/G(Fig. 6.21) can be ex-
plained in similar way. The low HC top layer is, however, much thicker. The
thickness dependent measurements reported in [59] indicate that the PMA may
not be retained when increasing the thickness of the TbIG. The 300 nm layer
may have formed two layers while only the bottom part retained the expected
magnetic anisotropy. Above approximately 3.4 eV, light is not capable of reaching
the bottom layer due to the absorption and therefore the contribution to the Kerr
rotation originates only from the reflection at the top layer. Below 3.4 eV, the
absorption is low enough that the light also interacts with the bottom layer that
has slightly different optical properties due to the different magnetic anisotropy.
This would also explain the improvement of the SE fit when the graded layer
model was used. The thicknesses of the layers are such that the reflected light
can interfere, resulting in observed oscillations in Kerr spectrum. The penetra-
tion depth argument is supported by two figures (Fig. 6.8, Fig. 6.9), which depict
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Figure 6.22: Spectral dependence of the amplitude of the two loops that reproduce
the measured Kerr spectrum of sample 123TbIG/G. The lowHCand highHCloops
have the same hysteresis shape as for the sample 300TbIG/G (Fig. 6.20).

the difference between Kerr spectra before and after roughening of the substrate
backside. There is a difference up to around 3.3 eV indicating that light is able
to penetrate the TbIG layer to this energy. The hysteresis loops of the sample
300TbIG/G also explain one possible reason why the calculated ε2 spectra were
lower in magnitude, which is that the 0.62T field used in the Faraday measure-
ment was not sufficient to saturate the low HC layer that contributes substantially
to the spectra.

Figure 6.23: Spectral dependence of the amplitude of the two loops that repro-
duce the measured Kerr spectrum of sample Bi0.5TbIG/G. The low HCand high
HCloops have the same hysteresis shape as for the sample 300TbIG/G (Fig. 6.20).

The individual contributions of the sublattices were thus not observed in the
polar MOKE measurement. The square hysteresis shape shows that the magne-
tization of the measured section of the sample is coherently flipped at once in
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a narrow window of magnetic field values. The sublattices probably have very
similar coercive fields and fields at which the magnetic saturation is reached and
therefore the individual contributions cannot be distinguished. It is possible that
the contributions of the sublattices would be more visible in a longitudinal MOKE
configuration. The magnetic field would act in a direction of the hard axis and
the hysteresis parameters of the individual sublattices could be more pronounced.
This was probably the reason for the successful decomposition done in [57], since
the investigated sample had an in-plane easy axis and the measurement was done
in the Faraday configuration. The spectral hysteresis measurements showed that
for samples that exhibit PMA, the MOKE measured in a polar configuration may
be sensitive to different properties of the layers within the deposited layer.
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7. Conclusion
This thesis was focused on systematic investigation of the optical and magneto-

optical properties of non-doped and doped terbium iron garnet thin films.
The spectroscopic ellipsometry was used to obtain spectral dependence of

optical constants, thicknesses and surface roughness values of all samples. The
non-doped samples exhibited variations in the optical constants that could be
explained by various reasons, such as different stoichiometry, defects in the ma-
terial and different deposition parameters. The bismuth doped terbium garnets
displayed increased absorption above the band gap, compared to the non-doped
garnets, however, the increased absorption in the UV is not consistent with the
data reported in literature. This could be connected to the difficulty of preparing
stoichiometric bismuth doped garnet layers and therefore the optical properties
can differ for similar reasons as in non-doped terbium garnets. The Ce doped
terbium garnet exhibited increased absorption in the IR region caused by the
intraionic transitions of Ce3+. Higher excited states probably contribute to the
absorption in the visible region.

The measured MOKE and Faraday spectra were used for the calculation of
the spectral dependence of the off-diagonal element of the permittivity tensor.
The ε2 spectra largely resemble the spectra of YIG, and therefore the majority of
the MO activity originates from the iron ions. The terbium displays observable
MO activity in the IR region. The samples doped with Bi and Ce also exhibited
spectra similar to other garnets doped with these elements. The Ce doped garnets
display increased MO activity at around 1.4 eV. The Bi doped samples exhibit
giant increase of the MO effects in the whole measured region. The effect was
attributed to covalent interactions of Fe3+ and Bi3+. The MO transitions were
located at the same energies as reported in the literature. The ε2 spectra of the
Bi0.01TbIG/S sample did not significantly differ from that of non-doped terbium
garnets indicating that the doping level is insufficient to enhance the MO activity.

MOKE spectral hysteresis loops were measured in the polar configuration
for three samples on GGG substrate, for the purpose to separate the sublattice
contributions. The spectra were decomposed into two loops that significantly
differed in their hysteresis behaviour. One loop exhibited almost non-existent
coercive field and remanence, while the second loop had properties that would be
expected for the easy axis direction, i.e. it had high coercive value and remained at
saturation in zero external field. Based on the spectral contributions of these loops
and their hysteresis parameters, it was concluded that these spectra do not agree
with expected contributions of the garnet sublattices. Instead, it was concluded
that the different loops belong to two layers with different magnetic anisotropy
within the deposited layer. For samples 123TbIG/G and Bi0.5TbIG/G it was
concluded that the low coercivity loop belongs to the thin surface layer while the
rest of the sample is characterized by the high coercivity loop. In the 300TbIG/G
sample the low coercivity loop layer was much thicker, and due to the absorption
in the UV, the contribution to the MO spectra from the high coercivity loop
was zero. At lower energies, the penetration depth was large enough to allow the
light to interact with the bottom layer and thus contribution from both layers was
observed. The analysis therefore revealed that for the samples with PMA, the
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MOKE in polar configuration is not sensitive to the sublattice contributions, but
to the different magnetic anisotropy of regions within the deposited layer. It was
proposed that the sublattice contributions for samples with PMA could be visible
in the longitudinal MOKE measurement since the magnetic field would point in
the hard axis direction and therefore potentially revealing different sublattice
behaviour.
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