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Introduction
Physicists study matter starting from the fundamental building blocks of the

universe – elementary particles. They study how these particles interact with each
other and how they tend to combine to form something bigger. However, these
particles are tiny, so physicists depend on various instruments to detect them.
A result of such endeavors is the invention of so-called hybrid pixel detectors.

These detectors rely on segmented sensors, which, in addition to the energy
deposition in the material, provide the topology of events and have been mainly
used for tracking particles close to the interaction point and reconstructing tracks
of particles passing through the detector. With the help of computer scientists,
a lot of information from such a history of events can be inferred. This is very
useful for more complex tasks, such as determining the type of particles you are
observing and so on.

In my thesis, I will work with a two-layer Timepix3 detector setup, where
coincident tracks enable to capture more information about the registered particles.
In contrast to Timepix1 and Timepix2 detectors, Timepix3 has more advanced
features, allowing us to work with the data we get more efficiently. However, the
amount of data that these detectors produce is huge. So, we need to find a way to
process and infer new information from it without requiring too much time, and
for this reason, we need to be careful with what technologies we use to achieve
that.

Thesis Outline

This thesis aims to build a tool for analyzing data from the two-layer Timepix3
detectors. This analysis will include many features on its own, and there will
also be improvements to some methods already used on such datasets, like the
reevaluation of the labeling of clusters into coincident groups or estimating some
attributes of an event in these datasets differently from what was already done.
This will allow for recognizing any irregularities that occur in the datasets more
easily, visually representing the events, and using the datasets to get new ones by
filtering or reevaluating.

The rest of the thesis is divided into 9 more chapters:

• Chapter 1 gives an introduction to elementary particle detectors and the
clustering of particles.

• Chapter 2 explains how the datasets we get from the detector are structured.

• Chapter 3 talks about related work that has been done in this area of study.

• Chapter 4 talks about the purpose and usage of my application.

• Chapter 5 describes the implementation and the features included.

• Chapter 6 describes the incorporation of machine learning into the applica-
tion and how it affects the results.

• The conclusion describes the results that were achieved during the whole
project.
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• Appendix A contains the user documentation for the application developed
within the thesis.

• Appendix B describes the contents of the electronic attachment of the
thesis and gives a link to the GitLab repository with the source code of the
developed application and a link to sample datasets.
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1 Timepix Detectors
In this chapter, I will talk about the origin and development of particle detectors

over the years. I present notable particle detectors that were predecessors to
Timepix3, the detector used to obtain the datasets I use in this thesis. Then, I
will introduce Timepix3 in more detail, describing its important properties. I will
close this chapter by discussing the clustering process and introducing the main
types of clusters we typically see in the data.

1.1 Introduction to Elementary Particle Detec-
tion

As described in [1], the evolution of particle detectors originated when Henri
Becquerel discovered radioactivity in 1896, and Wilhelm Conrad Röntgen made
a huge discovery on the identification of X-rays shortly thereafter. The earliest
nuclear particle detectors, such as X-ray films and primitive zinc-sulfide scintilla-
tors, were very simple yet crucial in studying processes like α-particle scattering.
Shortly after Sir William Crookes’ accidental observation of light flashes from ra-
dium salt on activated zinc sulfide in 1903 led to the creation of the spinthariscope,
a particle detector still in use today for demonstrations [2]. [3] Cherenkov particle
detectors, first unknowingly observed by Madame Curie in 1919, also made huge
progress in particle physics [4].

However, scientists today do not just want to detect elementary particles. They
want to be able to get more information about the particle, like what particle it
is, how much energy and momentum it possesses, what the spatial coordinates of
the particle were in order to build a trajectory of the particle, and so on. For this,
newer and more practical detectors were developed. Spark chambers, and bubble
and cloud chambers use optical detection, and drift chambers and silicon pixel
detectors use electronic detection.

Initially, particle detectors were mainly used in cosmic rays and nuclear and
particle physics. Over time, they have also become very popular and useful in the
fields of medicine, biology, archaeology, arts, and many more. Particle detectors
have played a crucial role in advancing science. Innovative detection methods, such
as cloud chambers, bubble chambers, and others, have led to important discoveries.
Several Nobel Prizes, including those awarded to individuals like C.T.R. Wilson
and P. Cherenkov, have recognized the impact of these advancements in the field.

1.2 Hybrid Pixel Detectors
Hybrid pixel detectors are detectors that originated as a solution to the problem

of distinguishing particles that hit the linear detectors that were being used at the
time (1990s) simultaneously. Physicists and engineers proposed having pixelated
detectors where each pixel has its own electric chain, which can help determine
whether it has been “hit” by a particle. Such a detector was first described in
1988 [5]. This is how hybrid pixel detectors were born.
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These detectors have two main parts: an integrated circuit (read-out chip) and
a pixelated (semiconductor) sensor. The sensor is usually silicon, GaAs (Gallium
arsenide), or CdTe (Cadmium telluride), and its main job is to detect the incident
radiation (ionizing particles) in the form of an electron cloud or hole. On the
other hand, the read-out chip contains an electronic chain for every pixel of the
sensor. The surface of this electronic chain is the same as that of the sensor pixel
– about a hundred µm square. To connect this electronic part with the sensor,
they used a technique called bump-bonding (see Figure 1.1).

Figure 1.1 The active layer of a Timepix3 detector bump-bonded to the chip of the
Timepix3 detector where the signal is processed (source [6])

Since hybrid pixel detectors were essentially designed to detect ionizing radia-
tion, they are often also called ionizing pixel detectors. They are mainly used in
High Energy Physics (HEP) experiments, space missions, and in X-ray imaging
and CT scans [7].

1.3 The Medipix Collaboration
Improving medical diagnosis with minimal patient side effects requires an

imaging system that offers clear pictures, efficient detection, quick results, and low
radiation. X-ray digital radiography, introduced in the 1980s [8], has evolved with
technologies like CCD readout and amorphous silicon detectors [9]. To address
efficiency and contrast issues, direct X-ray conversion through semiconductor
detectors, like the “photon counting chip” (later called Medipix), was developed,
allowing for better image quality.
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In 1997, a collaboration between CERN (Conseil Européen pour la Recherche
Nucléaire) and a few universities in Freiburg, Glasgow, and Italy was created.
The first prototype (Medipix-1) had a screen of 64x64 170 µm pixels. The new
property that was introduced in Medipix detectors was a 15-bit pixel counter that
would keep a record of the individual particles that make contact with it, and an
energy threshold [10].

After the success of Medipix-1, they started working on Medipix-2, a chip of
256x256 pixels of 55 µm. Medipix-2 was the first hybrid pixel detector with a
pixel pitch below 170 µm. It was mainly designed for radiography applications.
Now, as an addition, there were two energy thresholds and a 13-bit counter, which
counts and records the number of individual photons or particles that interact
with the detector. One of the core features and benefits of Medipix-2 was the
high spatial resolution it provided, which is very important for medical and X-ray
imaging. This also became the most important attribute of the Medipix family as
a whole.

Based on the Medipix-2 detector, a new type of detector was designed. By
introducing a clock for each pixel, they now had the possibility of counting the
number of clock ticks when the energy detected at the pixel was above a particular
energy threshold (from when a particle is detected to when it goes away). Now,
two new attributes were added: Time-over-Threshold (ToT) and Time-of-Arrival
(ToA). Time-of-Arrival is calculated as the time from when a trigger goes off to
when it detects radiation amount with energy above the specified threshold. This
detector was then called “Timepix”.

The latest Medipix chip – Medipix-3 – introduced “charge summing mode”
and the ability to have numerous thresholds with individual counters each, which
makes it possible to have continuous readout (see [7]). The charge summing mode
was a solution to double counting, which was a notable problem for previous
Medipix detectors as it would so happen that a unique photon would be accounted
for by two neighboring pixels instead of just the proper one. The energy resolution
was significantly improved as a result [11].

1.4 Timepix3
Timepix has found many applications with the newly implemented timing

system. It was frame-based and used a continuous data-driven mode, where each
pixel sends data individually. However, it still had an issue. If multiple particles
hit a certain pixel in a very short period of time, then the pulses would accumulate
for the Time-over-Threshold mode. That would basically make it impossible to
differentiate between different particles since the energy recorded would just sum
up. This issue was addressed by its successor – Timepix3.

The detector I will be focusing on in this thesis is Timepix3. As opposed to
Timepix, which reads the pixel matrix as a whole, Timepix3 reads the information
about a particular particle right after the hit detection, along with the coordinates
of the pixel that was hit. As a result, instead of having a continuous stream of
large frames, we now have a continuous stream of smaller pieces of data. This
event-based continuous read-out system notably reduced the energy accumulation
issue in Timepix [10]. Timepix and Timepix3 are also 256x256 pixels, where
each pixel is a 55 µm square. Each separate hit of radiation is processed by the
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detector through the pixel counters so the detector can also be thought of as
65 535 separate counting detectors.

1.5 Timepix4
Timepix4 is the latest detector of the Timepix family. It has 448x512 pixels,

and through bump bonding, it is connected to a sensor of pixels of 55µm square.
Similarly to Timepix3, it records ToT and ToA information in data-driven mode
every time a particle registers energy higher than the defined thresholds of the
detector but with improved time resolution. Timepix4 also has photon counting
mode. The Timepix4 ASIC (Application-Specific Integrated Circuit) is possibly
the first large area, high-resolution pixel detector readout ASIC that can be tiled
on all 4 sides. This is important if we want to cover large surfaces smoothly so
that we do not implement rooftile-like structures [12].

1.6 Two-layer detectors
Two-layer detectors, also known as detectors with the ATLAS-TPX design,

are made of two Timepix detectors. This design has two sensors with a thickness
of 500 µm each [13]. These two layers are positioned to face each other. To detect
or distinguish different types of particles, we can put a layer of material between
the two layers. This is especially useful for recognizing neutrons as this layer is
made of thermal and fast neutron converters. This design takes advantage of the
fact that neutrons have no electrical charge; they may not be detected by the first
layer, but before they reach the second one, they will be converted or decomposed
into charged particles when they hit the converter layers, which makes it easier
for us to detect them. After detection, we can tell them apart from γs by looking
at the cluster type (explained in the next section) and from charged particles by
using time coincidence information.

These neutron converters define four separate regions as shown in Figure
1.2. The region behind the 1.2 mm thick polyethylene (PE) enables directional
detection of recoil protons from fast neutron interactions; the PE+Al region
reduces the number of low-energy recoil protons; the third region, covered by LiF
foil, facilitates thermal neutron detection through α-particles and tritons; and the
uncovered Si region is designated for background subtraction.

The benefits of this design (see Figure 1.3) are the possibility to track charged
particles and the observation of coincidences and anticoincidences, which is par-
ticularly useful for distinguishing between neutrons and energetic ions [14].

1.7 Clustering
When we are getting data from Timepix3, we will see that a certain particle

hitting the detector will produce a substantial number of lit-up pixels depending
on the energy it has and the path it takes. A cluster is formed by spatially and
temporally coinciding hits, representing a unified grouping of detection events.
In the original Timepix, however, only spatial information is used, which poses
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(a)

(b)

Figure 1.2 Composition of the two-layer detector (Reproduced from [14] under CC
4.0.). (a) Charged particle tracking and neutron detection (b) Layout of the converters

(a) (b)

Figure 1.3 Design of the two-layer detector (Reproduced from [13] under CC 4.0.).
(a) Side view of the fully assembled device; (b) Front view of the fully assembled design

a problem in the case of clusters overlapping in space since we cannot classify
whether they are the same or not without taking the time they first appeared
into consideration. The types of clusters, as described in [14], are: dots (one-pixel
clusters), small blobs (round clusters with at most four pixels), heavy blobs (round
clusters with at least five pixels), heavy tracks (elliptical or straight clusters with
at least three pixels), straight tracks (long straight clusters with at least 20 pixels
in length and less than three pixels in width), and curly tracks (everything else),
although more complex types of clusters can be observed that have not been
strictly classified yet. You can see it visually described in Figure 1.4. When it
comes to neutrons, they will often be found as heavy blobs and heavy tracks since
they are usually detected through low energy protons, α-particles, and tritons.
That is how the clusters are formed, and they form the basis of the datasets I will
use in this thesis.
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Figure 1.4 Cluster types classification (Reproduced from [15] under CC 4.0.)
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2 Data Format and Features
Description

In high-energy physics, the ROOT framework (see [16]) is a de facto standard
for storing data on elementary particles. Therefore, we will describe the framework
below, and our developed tools will assume input as a ROOT file and produce
some output in this format. In the following sections, I will explain the usage
of the ROOT framework and cluster design, and I will end by introducing the
concept of coincidence groups.

2.1 Using ROOT
ROOT, developed at CERN, is an open-source framework for data processing

primarily used in high-energy physics. It is mainly used to analyze data and
perform simulations. ROOT provides tools for efficient storage (compressed binary
data), manipulation, and analysis of large datasets. ROOT files thus contain data
structures and objects used for storing and retrieving complex data, often in the
form of experimental measurements and simulations.

The ROOT files that I will be using represent measurements taken in well-
defined particle beams at the Danish Center for Particle Therapy in Aarhus [17]
(protons from 80-240 MeV) and the Los Alamos Neutron Science Center (neutrons
from 1-600 MeV) [18]. The setup for these measurements is seen in Figure
2.1. These measurements show different types of particles hitting the two-layer
TimePix3 detector. Using histograms, we can display them graphically and extract
information from them that will help us arrive at various conclusions about these
particles as a whole. The particles are examined in terms of clusters, where each
cluster is a group of pixels from the detector closely tied together, which get “lit
up” when the particle goes through them.

2.2 Cluster and File Design – Definitions
Each of the ROOT files I used is organised in a TTree with many branches

that represent the attributes of a cluster, such as:
• cluster size – the amount of pixels that get lit up when a particle passes

through the detector,

• pixels in the X axis – the list of x-coordinates of the pixels that get lit
up,

• pixels in the Y axis – the list of y-coordinates of the pixels that get lit
up,

• cluster mean X – the center of the position of the cluster in terms of the
x direction,

• cluster mean Y – the center of the position of the cluster in terms of the
y direction,
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• cluster volume centroid X – the center of the position of the cluster in
the x-axis based on its energy,

• cluster volume centroid Y – the center of the position of the cluster in
the y-axis based on its energy,

• times of arrival (ToA) – the list of exact moments in time when a certain
pixel detected the particle, and this may differ very slightly between different
pixels of the cluster,

• times over threshold (ToT) – the list of time intervals in which the
voltage output stays over a threshold for each pixel of the cluster,

• min ToA – the smallest time of arrival recorded on a pixel of the cluster,

• delta ToA – the difference in time between the first and last recorded ToA
of the cluster,

• coincidence group – an ID (integer starting from 0) that identifies a group
of clusters close together in time assumed to be part of the same particle,

• coincidence group size – the number of clusters in the same coincidence
group,

• layer – the layer of the detector the cluster was detected on,

• cluster volume – the energy of the cluster in keV,

• cluster height – the maximum energy in keV of a single pixel of the cluster,

• phi – the azimuthal angle of the projection of the particle in the xy-plane,

• theta – the polar angle of the particle and the z-axis in three-dimensional
space, which also represents the deviation angle from the normal to the
surface of the detector,

• linearity – a value between 0 and 1 that represents how linear a cluster
is, where 0 means the cluster is not linear, and higher values mean more
linearity. It is defined as

Ninline

N
, (2.1)

where Ninline (inline pixel count) is the longest sequence of pixels in one line
and N represents the total number of pixels,

• roundness – a value between 0 and 1 that represents how round a cluster
is, where 0 means the cluster is not round, and higher values mean more
roundness. It is defined as

2
√

πN

lborder
, (2.2)

where lborder (border length) is the number of pixels on the border and N
represents the total number of pixels,
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• diameter – defined as
2
√

N

π
, (2.3)

where N represents the total number of pixels,

• cluster type – indicates what cluster type this cluster belongs to, according
to the classification in Figure 1.4,

• inner pixel count – counts the number of pixels that are not neighboring
with any pixel that does not belong to the same cluster,

• border pixel count – the number of pixels on the border (opposite from
inner pixels),

• cluster length – only usable for tracks with linearity above 90% and refers
to the distance between the two pixels furthest away from each other; it is
defined as √︂

(dmax × dpitch)2 + t2
sensor, (2.4)

where tsensor represents detector thickness, dpitch represents detector pixel
pitch, and dmax represents maximal distance,

• edge – true if the cluster touches the border of the pixel screen, otherwise
false,

• dx – the (max) difference along the x axis,

• dy – the (max) difference along the y axis.

2.3 Identifying Coincidence Groups
When a particle goes through the detector, more than one cluster may be

generated in the output as a result. It is important that we try to identify which
of the clusters observed are likely to belong to the same particle so that we can
attempt to distinguish between different particles. Such a set of clusters that are
believed to represent one specific particle is called a coincidence group. So far,
the usual way of assigning clusters to a coincidence group was by setting a very
small time frame and partitioning the event space into time intervals of length
equal to that time frame, so that any two events (clusters) whose time of arrival
information differs by less than the specified time frame are considered to be part
of the same coincidence group. We can look at examples of such coincidence
groups in Figure 2.2.

So, when we assign coincidence groups to clusters, we only take the time of
arrival into account. However, this is not the most accurate way to approach
this. It may often happen that we see different particles overlapping in time (they
appear in the same time frame), and by the method explained above, all of the
resulting clusters will get assigned to the same coincidence group, which should
not be the case because they do not all represent the same particle. One way
to improve this method is to also consider the spatial information, which I will
explain in the later chapters, together with all the features of my program.
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(a)

(b)

Figure 2.1 Experimental setup for the proton and fast neutron measurements.
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(a)

(b)

(c)

(d)

Figure 2.2 (a) and (b) represent two different coincidence groups for neutrons detected
in a fast neutron beam where the long tracks observed are likely electrons or photons;
(c) coincidence group for a proton approaching the detector at a perpendicular angle; (d)
coincidence group for a proton approaching the detector at an angle of 50◦ away from
the normal, where we can observe that two different particles appear as one coincidence
group.
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3 Related Work
The ROOT datasets I use in my thesis represent the sequence of events recorded

by the two-layer Timepix3 detector in terms of clusters. This is very beneficial for
me because I did not need to do clustering myself. Multiple people worked on
that before me and implemented several clustering techniques. Such techniques
are mentioned in theses and papers from Lukáš Meduna and Tomáš Čelko. Lukáš
Meduna proposed a clustering framework [19]. This framework could be used to
visualize and classify clusters, perform real-time clustering algorithms, and for data
acquisition. In his master’s thesis [20], Tomáš Čelko proposes various clustering
algorithms, some of which implement parallelization for faster processing, some
implement approximation clustering where, for runtime purposes, there is a little
less focus on the quality of clustering, and some offer partial clustering based on
requirements defined by the user.

Many people are working with the Timepix3 detector, so similar work was
done before for analyzing data. However, a big difference is the fact that most of
the work is done on one-layer Timepix3 detectors instead of two-layer ones. For
this reason, more research can be done with data from the two-layer Timepix3
detectors, where my thesis can be useful.

Notable papers to mention as related work are papers by Tomáš Čelko, Petr
Mánek, and P. Smolyanskiy. Lukáš Meduna also worked on detecting particles
on the Timepix3 detector [21]. He implemented a tool for viewing, analyzing,
and classifying particles for one-layer Timepix3 detectors. In his bachelor’s thesis
[22], Tomáš Čelko implemented a tool for cluster visualization and filtering, which
overlaps with what I do in my thesis for two-layer Timepix3 detectors. He also
used machine learning to classify clusters, a feature that could be implemented
next as an extension of my thesis.

Regarding the two-layer Timepix3 detector, the design was introduced in
a paper [13] by P. Smolyanskiy et al. It was implemented as an attempt to
distinguish charged particles from neutrons by using coincidences of clusters in
different layers and to allow more accurate computations of the impact angles,
which I take advantage of when estimating angles φ and θ in Sections 5.6 and
6.4.1.

Another important software that must be mentioned is Track Lab ([23] and
[24]), developed by Petr Mánek. Track Lab is a free and open-source application
that is used for data acquisition and analysis and has high performance. It is
extensible and used with different types of detectors and configurations. However,
Track Lab does not include the acquisition and analysis of data from two-layer
detectors. Compared to the one-layer Timepix3 detector, the two-layer Timepix3
detector at least doubles the amount of features that can be used for particle
classification. For this reason, I will be performing a similar analysis but for
two-layer Timepix3 detectors.
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4 Goals
The two-layer Timepix3 detectors capture more information about the stream

of particles than their predecessors. Therefore, being able to analyze and work
with such data is very beneficial to physicists in high-energy particle physics.
The goal is to build an application as a tool that enables users to do that. The
application will be called Analyser. This chapter will give a quick introduction to
the features of my application. In Section 4.1, I will talk about the purpose of
this application and introduce the goals (functionalities) that the application will
fulfill. In Section 4.2, I will briefly describe how the application can be used.

4.1 Purpose
The main purpose of my application is to be a tool for analyzing data from the

two-layer Timepix3 detector. This application will include many functionalities
useful for high-energy particle physicists working with such data. Users can do
local and global analyses of events in ROOT files based on coincidence groups.
As a result, they get histograms, general statistics about the coincidence groups
present, and a visual representation of the events in the file.

Another functionality is filtering clusters and coincidence groups based on
criteria specified by the user. Both for analysis and filtering, users can browse
through the coincidence groups interactively in the application. Then, there
is coincidence group reevaluation by using spatial information, attempting to
partition the clusters into coincidence groups better. This feature will improve
the current labeling of coincidence groups where only temporal information is
considered. These features are all available in the application interface.

However, when the users want to do batch processing and include multiple
ROOT files as datasets, the application can also run through the command line.
The user can perform global analysis and cluster filtering through the command
line. Additionally, three more functionalities are included: filtering out protons,
training the provided datasets for a regression model, and using a pre-trained
regression model to make predictions. Filtering out protons attempts to remove
clusters that likely belong to a proton from a dataset. This is useful for cleaning the
dataset and working with what remains to perform other tasks, such as predicting
which clusters were produced by neutrons. Training the provided datasets for
a regression model is a functionality that allows the user to learn relationships
between different attributes of the data using linear or quadratic regression. It
can be useful for simple machine learning tasks and can later be extended into
more complex techniques. Such a trained model can then be serialized and saved
into a file to be used later for testing its performance and making predictions on
certain datasets.

Since the application is built using C++, it is efficient to be used with large
files, which is very common for the datasets provided. It will still generally take
some minutes for a whole file to be processed. However, it is still faster than using
other programming languages.
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4.2 Usage
The application will have a Graphical User Interface (GUI), making it easy for

users to see all the tools they can use to analyze, filter, or reevaluate coincidence
groups in a particular file. Another way to use the application is through the
command line. This is better when the user is performing batch processing of
files. Based on the parameters specified by the user, he/she can perform global
analysis, cluster filtering, filtering out protons, training datasets on a regression
model, and using pre-trained regression models for predictions.
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5 Analyser
Analyser is a tool that takes ROOT files (datasets) from the two-layer Timepix3

detector and has many features that the user can use to analyze, filter, or modify
these datasets. In Section 5.1, I will talk about used technologies. In Section 5.2,
I will introduce the features of my application, such as analysis, filtering, and
coincidence group reevaluation of events. In Section 5.3, I will explain the analysis
of events. In Section 5.4, I will talk about filtering clusters and coincidence groups.
In Section 5.5, I will explain the implementation of coincidence group reevaluation
and how it works. In Section 5.6, I will show how to estimate the angle θ using
information from both layers. In Section 5.7, I will talk about batch processing
of ROOT datasets. In Section 5.8, I will show the results and visual output of
my application. In Section 5.9, I will analyze my application’s performance in
different tasks and input files. In Section 5.10, I will conclude this chapter by
noting some drawbacks of the application and what could be improved.

5.1 Used Technologies
My goal was to build a program with a Graphical User Interface (GUI) that

would use ROOT files as described above and process them for further analysis.
ROOT files recording clusters detected with the two-layer Timepix3 detectors are
usually gigabytes in size. To work with such large files, we need an efficient code.
Therefore, e.g., Python is not suitable, and I will be using C++ to process such
files since it is way more efficient and faster than other programming languages,
and it traditionally works well with ROOT files. For the Graphical User Interface,
I will use Qt ([25]) as it is a popular choice for C++ applications and fits well
with my project.

5.2 Features
The main features of this program will be a global and local analysis of events,

filtering of events, and coincidence group reevaluation for data from two-layer
Timepix3 detectors. Some of the analyses (mostly when it comes to processing
the whole file) can take a long time to run. It can also happen that the user wants
to work with more than one input ROOT file at once. Therefore, some of the
functionality, including additional features like batch processing of files, training
regression models, predicting datasets using pre-trained models, and filtering out
protons, will be possible to use from a command line. These features will be
implemented in an interactive GUI application or using a command line interface.
A detailed description of the features will be given in subsequent sections.

5.3 Analysis of Events
This program will be a tool for global and local analysis of events (clusters)

on the two-layer detectors. In this section, we will distinguish between analysis
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types. Section 5.3.1 describes the global analysis, while Section 5.3.2 describes
the local one.

5.3.1 Global Analysis
The global analysis will be an analysis of a whole ROOT file. It will give some

general characteristics of the file, like the number of coincidence groups and some
statistics about the types of coincidence groups encountered in the dataset.

The statistics will include information like the percentage of coincidence groups
with unequal cluster count between layers, the percentage of coincidence groups
that only appear on the second layer, the percentage of coincidence groups that
have more than 1 cluster in layer one, and the percentage of coincidence groups
containing clusters of some minimal size (minimal size to be determined by the
user).

Global analysis will also include some histograms showing cluster count and
cluster size in layers 1 and 2 of the detector. Additional histograms include
histograms about the recorded values of the angles φ and θ and their estimations,
whose computation is explained in detail in Sections 5.6 and 6.4.1. They can
be useful for seeing the distribution of such angles and deciding whether the
distribution of the estimated values shows us something the original distribution
does not. This is also helpful for seeing how pure our dataset is when it comes to
the distribution of angles φ or θ. Lastly, four more histograms are included, each
showing the cluster energy recorded in a particular region of the detector, defined
by the converters between layers 1 and 2.

During interactive viewing, along with browsing through individual coincidence
groups, the user can see estimations of the value of θ for coincidence groups with
one-to-one matches of clusters between layers. This can be helpful for recognizing
outliers or can be valuable information for evaluating the dataset.

5.3.2 Local Analysis
Local analysis of a cluster will provide the user with some general characteristics

about it. At first, the user selects a cluster she is interested in, and then she
will obtain some information about the cluster, which can include the size, the
pixels it lights up, the time of arrival for each pixel, the time over threshold for
each pixel, the coincidence group it belongs to, the detector layer it appeared on,
the cluster volume in keV (which denotes the “energy”), the φ and θ angles, the
cluster type and possibly more. Coincidence groups detect different clusters in
both layers, and the difference in properties of the clusters in different layers can
be valuable information for the user.

Local analysis can also be used for coincidence groups. The user will select
what coincidence she wants to inspect by specifying its ID (an integer starting
from 0 that represents that coincidence group). Then, the user can see a visual
representation of that coincidence group, including some information about it,
such as the total number of clusters, the number of clusters in each layer, and its
total energy in keV.
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5.4 Filtering
Filtering is producing a set of results after removing the examples we do not

want to see. There will be two types of filtering: by clusters and by coincidence
groups. They both have their own special filters the user can apply. There is also
the option of applying multiple filters at once but only within the category (so
not mixing cluster filters with coincidence group filters).

As an output, viewing the filtered results interactively or in batch mode will be
possible. By “interactively” I mean that the user will be able to view the filtered
clusters one by one, by clicking “next” or “previous”. In batch mode, the filtered
result will be displayed in a PDF file, where the maximum size of the PDF can
also be limited if the user does not want to deal with having a very big PDF file.
As an additional feature, the filtering result will also be saved as a new ROOT
file containing only the filtered clusters’ data.

Section 5.4.1 describes the filtering of clusters in more detail, while section
5.4.2 talks about the filtering of coincidence groups.

5.4.1 Filtering of Clusters
There are different types of cluster filters the user can apply. He/she can

choose to see only clusters of a certain size, or of a certain length or type (only
blobs or tracks, for example), clusters that appear for only a certain period of
time, or clusters that come from a specific angle. Even additional attributes of
the dataset can be used to filter clusters. The features not included as an option
can be added by using a cut. A cut is a string representing the condition to be
applied to the data in the tree. It can combine multiple conditions using logical
operators like && (logical AND), || (logical OR), and ! (logical NOT). You can
use parenthesis and ROOT built-in mathematical functions (such as abs(), sin(),
sqrt(), and so on), and the logical operators follow the usual precedence. After
the user filters them out, the resulting ROOT and PDF files will contain only
coincidence groups that do not contain such clusters.

5.4.2 Filtering of Coincidence Groups
When it comes to filtering coincidence groups, the user can filter them based

on whether they have multiple clusters in one layer overlapping (approximately)
in time, have unequal cluster numbers between layers, have only clusters in layer
two, or have clusters of size bigger than the minimal cluster size (the user can
specify what size is minimal before she filters). After she filters them out, the
resulting PDF will show only the remaining coincidence groups.

5.5 Coincidence Group Reevaluation
When I explained how coincidence groups are assigned, I mentioned that

that was not the most accurate grouping of clusters because it was based only
on the time of arrival and it often happened that we had cases where different
particles overlapping in time got assigned to the same coincidence group. I
will try to make this process a bit more accurate by analyzing such coincidence

25



groups with temporally overlapping clusters once more and generating one or
more coincidence groups out of it, which will be not solely based on time of arrival
but on proximity as well. In Section 5.5.1, I will talk about selecting the right
particles for reevaluation. In Section 5.5.2, I will introduce the two main ways of
doing proximity checks. In Section 5.5.3, I will talk about additional constraints
for removing bad clusters from consideration. In Section 5.5.4, I will describe the
implementation in code of the reevaluation methods.

5.5.1 Selecting the Right Particles for Reevaluation
If we look at one cluster in layer 1 and want to decide what clusters from layer

2 can be considered to be of the same particle, we must expect the particle to
behave a certain way. To be able to take proximity into account as well when we
are assigning coincidence groups to clusters, we should have some idea regarding
the patterns that a particle typically follows as it goes through the detector. For
neutrons, for example, if we see some cluster on layer 1, it is very hard to determine
where to look for in layer 2 to identify clusters that could belong to or be a result
of the same neutron. This is because when a neutron travels between the two
layers of the detector, it creates secondary particles in layer 2 that can be scattered
in any direction. In general, its behavior is very unpredictable. When it comes
to protons, however, predicting where to look in layer 2 to find corresponding
clusters is very intuitive.

When going through the detector, a proton typically produces one cluster
in layer 1, and then at a certain distance, it produces another one in layer 2.
The distance between the two clusters and the shape or length of the cluster it
produces depends on both angles θ and φ. However, in the data sets that have
been measured so far, the particles are mostly parallel to the x-axis, and then the
problem reduces to a 1-D task, where the patterns of proton clusters we observe
are mostly dependent on the angle θ at which they hit the detector.

When θ is zero, the direction of the incoming proton is normal to the detector,
the clusters it produces are in the form of small blobs, and the two clusters
between layers will appear only a few pixels in difference. On the other hand,
when θ is 90, and the protons are close to parallel to the surface of the detector,
they will appear as very long straight tracks and mostly appear in one layer only.
Sometimes, these long tracks will span most of the x axis.

Other possible values for θ from the proton datasets I have observed so far are
30◦, 50◦, 120◦, and 180◦. Due to the rotational symmetry of the device design,
the behavior of protons when θ is 180◦ is analogous to that of protons where θ
is 0◦. There is also very close alignment in the behavior of protons when θ is
equal to 50◦ and when it is equal to 120◦. These similarities make sense when you
consider the fact that the pair of θ angles 0◦ with 180◦ has the same deviation
from the normal. The pair of θ angles 50◦ with 120◦ differ by only 10 degrees in
the deviation from the normal, so the results they produce are quite similar, too.

When talking about pairs of angles that produce analogous behavior, it is
common to wonder whether we can see differences in time-of-arrival of the pixels
in layers 1 and 2 between two datasets of different angles and use this for further
analysis. Intuitively you would expect that for 0◦ ≤ θ < 90◦, since particles are
coming to the detector from the front, the time-of-arrival of pixels recorded in
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layer 1 is lower than that of pixels recorded in layer 2, and the opposite true for
90◦ ≤ θ ≤ 180◦. However, the detector’s time resolution of 2 ns is not sufficient to
resolve the particle direction of flight. Hence, no matter what value θ has, this
information on time-of-arrival for each pixel does not really show us anything
useful for analysis.

It should be noted that as the deviation from the normal grows, the clusters
that a proton produces go from small blobs to straight tracks whose length grows
along with the deviation from the normal. Another change is the expected distance
from the cluster it produces in layer 1 to the one it produces in layer 2 (calculated
as the distance between the centers of energy for each cluster), which also grows
along with the deviation.

Hence, since the pattern of protons is easier to predict, I will perform coin-
cidence group reevaluation only for protons for now (excluding those of θ = 90◦

since the clusters are very long and usually only in one layer), although I should
note the fact that after more thorough studying of the behavior of other particles,
the idea can be extended to be used for other particles, too.

5.5.2 Two Main Ideas for Checking Proximity
Considering the patterns of clusters that protons produce that we discussed in

the previous section, we should do coincidence group reevaluation in a way that
fits with what we intuitively expect to see and adjust the evaluation appropriately
according to θ. Now, going to the idea behind the implementation, we should
mention the fact that the coincidence groups are already assigned based on time
of arrival information, so I will process these already existing coincidence groups
and additionally add a proximity check to reevaluate them. In the following
subsections, I will explain the two main ideas to use for checking proximity:
neighborhoods and reevaluation ellipses.

Using Neighbourhoods

Say we select an already existing coincidence group, and we assume that it has
C = {C1, ..., Cm} clusters in layer 1 with |C| ≥ 1 and C̄ = {C̄1, ..., C̄n} clusters
in layer 2, where n = |C̄| is the total number of clusters in layer 2. We select
one cluster of layer 1; let’s denote it as Cx. Let Gx denote the coincidence group,
which includes Cx and all clusters in layer 2 that are at an appropriate distance
from Cx. I should also note that to define the x and y coordinates of a cluster,
I will consider the attributes defined in the dataset: clstrV olCentroidX and
clstrV olCentroidY . They define the center of energy of a cluster.

Now, we want to determine which clusters of C̄ are close enough in distance to
Cx to conclude that they were a result of the same particle and should therefore be
assigned to the same coincidence group. The simplest way to check the proximity
would be to use an ε-neighborhood of Cx and some distance function d between
two clusters, such that ∀C̄y ∈ C̄ : d(Cx, C̄y) < ε =⇒ C̄y ∈ Gx.

The simplest way to imagine this is by selecting the point
(Cx.clstrV olCentroidX, Cx.clstrV olCentroidY ), which denotes the center
of energy of the cluster Cx in the pixel plane, and then drawing a circle around it
whose radius is ε. Then, we can see which cluster from layer 2 lays inside this
circle (this will also be evaluated only by looking at the coordinates of the center
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of energy of the cluster) and assign it to Gx. As we can see in an example of this
in Figure 5.2b, this works well for protons with θ = 0◦ or θ = 180◦, if we decide
on an appropriately small ε. Experimentally, I saw that ε = 15 pixels was a good
enough parameter, so I have been working with that for now. Nonetheless, we
should note that this method only works for these types of protons because they
appear as small blobs and generate clusters in very close proximity to each other.

Introducing Reevaluation Ellipses

As we described earlier, the patterns of protons change as the deviation from
the normal of the detector plane changes. For this reason, we cannot count on
a neighborhood as much to help us group clusters correctly and must think of
another way. However, there is a very simple extension of the initial idea that we
can adjust according to θ, and it would do the same job. Instead of thinking of a
circle around the point (Cx.clstrV olCentroidX, Cx.clstrV olCentroidY ), we can
now think of a reevaluation ellipse with the same center. The reevaluation ellipse
(shown in Figure 5.1) will have three important parameters that need to be set:
the major, the minor, and the rotation (azimuth) angle φ.

Luckily, φ will correspond to the angle of the initial cluster Cx that we are
centering the reevaluation ellipse on. So, φ = Cx.phi. This was easy to ignore
for protons of θ ∈ {0◦, 180◦}. Since they go through the detector perpendicularly
and only leave a small blob, φ becomes quite useless and is not even determined
in the dataset. In the other types of protons, though (specifically talking about
protons with θ ∈ {30◦, 50◦, 120◦}), this feature becomes very useful. If we just
have an ellipse with no sense of direction, it becomes much harder to group clusters
correctly. This is because we should expect that if it is the same proton that
produced two clusters, the second one will appear in the same direction as the
first one, hence we must rotate the reevaluation ellipse the same way in order to
capture this relationship.

However, it is safer not to always rely on the fact that φ is given or set correctly
in all datasets. We should have some way of determining it on our own given just
the xy-coordinates of the cluster, and the user can then choose this option when
reevaluating the coincidence groups for less dependence on the accuracy of φ given
in the dataset. To calculate it ourselves, we use the “line of best fit” idea (fitting
a line through the x and y data points to determine the angle φ), which I will
explain in detail in Section 6.4.1, and ignore it for clusters with roundness > 0.8,
in which case we use neighborhoods and φ becomes useless.

Another option is for the user to set the value of φ directly, and it will then
be the same for all coincidence groups. This can generally work if the user knows
that a certain value of φ is common for a very high percentage of clusters, in
which case it will not impact the result negatively too much. Such analysis of φ
values throughout the dataset can be done during global analysis, as described in
Section 5.3.1.

The next thing we have to figure out is how to set the major and the minor
axes. The major a will determine the width of the reevaluation ellipse; meanwhile,
the minor b will determine the height. Estimating the minor and the major axes
of the reevaluation ellipse should also account for measurement errors as we deal
with experimental data. Since protons tend to follow quite a linear path, we do
not need the minor to be that high. Typically, I set b between 20 and 25. As for
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Figure 5.1 Visual representation of a reevaluation ellipse where we see how the
azimuth (φ) is defined, along with the major and the minor axes (image source [26])

the major, this depends more on the value of θ. The further θ is from the normal,
the bigger the major should be to enable considering bigger distances between two
clusters (as discussed earlier, distance can be bigger the bigger the deviation is).
For protons of θ ∈ {50◦, 120◦}, since their behavior is similar, I experimentally
decided to set a to 120, and for protons of θ = 30◦, to set it to 55.

However, it is essentially necessary to figure out a function or a relationship
between θ and the major and minor axes of the reevaluation ellipse. We need to
know how the major and minor change as the value of θ changes and to learn this
relationship so that we can use it to determine how to set the parameters of the
reevaluation ellipse based on a given value of θ without experimentally playing
with it ourselves. Here is when quadratic regression comes in handy, and I will
explain in more detail how I solved it in Section 6.4.2.

Following this idea, when we have again the cluster Cx of layer 1, and we are
checking whether clusters C̄ = {C̄1, ..., C̄n} of layer 2 can be assigned to the same
coincidence group as Cx (Gx), we say that

∀z ∈ C̄ : z ∈ Gx ⇐⇒
((zx − xx) cos φ + (zy − xy) sin φ)2

a2 + ((zx − xx) sin φ− (zy − xy) cos φ)2

b2 ≤ 1
(5.1)

where zx and zy correspond to the coordinates of the center of the cluster z defined
as (z.clstrV olCentroidX, z.clstrV olCentroidY ), xx and xy correspond to the
coordinates of the center Cx (which is also the center of the reevaluation ellipse)
defined as (x.clstrV olCentroidX, x.clstrV olCentroidY ), φ is the rotation angle
(azimuth) of the reevaluation ellipse, a is the major of the reevaluation ellipse,
and lastly b is the minor. This is essentially what we use to determine whether to
consider a cluster z ∈ C̄ to be a result of the same proton that produced Cx or
not. We can look at some examples of this working in Figure 5.2. We can also
notice that when the major equals the minor, what we get is a circle (major =
minor = ε), and we go back to the first idea of using a neighborhood for protons
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of θ ∈ {0◦, 180◦}.

(a) Reevaluation of protons of θ value 50 using a reevaluation ellipse where we see two different
coincidence groups that were originally considered to be in the same coincidence group be
reevaluated based on proximity.

(b) Reevaluation of protons perpendicular to the surface of the detector where we use a
neighborhood to test proximity and separate two different coincidence groups.

(c) Reevaluation of protons of θ value 30, where we see two different protons with different
directions φ, and see how the reevaluation ellipse rotates to capture such a relationship between
clusters correctly.

Figure 5.2 How sample reevaluation ellipses look like for different types of protons.

5.5.3 Applying Constraints
Sometimes, only checking for candidate clusters from layer 2 using a neighbor-

hood or an ellipse may not be enough. It may happen that two clusters are in close
proximity to each other, but they differ in certain attributes, so when inspecting
the visual representation manually, you might say they do not belong to the same
particle. However, since we will be processing huge amounts of data, in order to
tell the computer what attributes to look for to try and distinguish whether two
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clusters are of the same particle or not, we need to select some more important
attributes that can help us decide. Such example attributes can be cluster length,
cluster roundness, the azimuth angle φ of a cluster, and the Euclidean distance
between the two clusters.

When it comes to cluster length, we check that the difference in length between
the two clusters is less than 170 µm. For cluster roundness, we check that the
difference between the two clusters is less than 0.25. We check for both cluster
length and cluster roundness because it gives us a more accurate description of the
cluster’s shape. Since we expect both clusters to be of the same shape, checking
both attributes helps us be more exact.

For the azimuth φ, we check for the difference to be less than 0.3 radians (17.2
degrees). As for the Euclidean distance between the two clusters, we check for
a difference of less than 20 pixels compared to an estimated distance dxy that
can be calculated using the original angle θ from the first cluster. This estimated
distance is computed using the formula

dxy = tan θ∆z, (5.2)
where ∆z represents the depth between the two layers of the detector.

The reason we apply this constraint on distance on top of checking proximity
through a reevaluation ellipse is so that we can rule out clusters that are too
close compared to what is expected (usually useful for bigger values of θ for which
the distance between the two corresponding clusters between the layers increases
significantly so we need to remove candidate clusters in layer 2 that appear in very
close proximity). Another thing I have to note is the relatively large difference
boundaries for the constraints. This is because it allows the program to be robust
and prepared for slight errors that can be induced by the recorded parameters in
the datasets used.

5.5.4 Implementation
When implementing this idea in code, going through the ROOT file and

reevaluating all of the coincidence groups one by one is not the best idea because
not all need to be reevaluated, and it would not be efficient. The coincidence
groups that need reevaluating the most are those with time-overlapping clusters in
layer 1 since it cannot typically be the case that a simple proton hits the detector
at two different places at once in the same layer. However, in order to make the
algorithm more robust, I will reevaluate all the coincidence groups so that I can
also distinguish outliers (for example, clusters in layer 2 that appear alone and
far from all others). So, in order to be as efficient as possible, we will first loop
through each coincidence group once to see what clusters we have to consider,
and then, we loop through it one more time in order to reevaluate it using the
methods explained in the preceding paragraphs.

When we have a coincidence group with time-overlapping clusters, we start
with the assumption that every cluster on layer 1 is a coincidence group on its own.
Let us denote such clusters as C = {C1, ..., Cm}, where m is the total number of
clusters in layer 1, and let Gi be the new coincidence group that corresponds to
cluster Ci. Then, for each cluster Ci ∈ C, we center a reevaluation ellipse at the
center of the cluster (Ci.clstrV olCentroidX, Ci.clstrV olCentroidY ) and use the
clusters found in layer 2 to determine which of those satisfy:
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1. The center of the cluster is inside the reevaluation ellipse (equation 5.1).

2. The difference between dxy (equation 5.2) and the distance from the center
of the cluster to the center of Ci is at most 20 pixels.

3. The difference in cluster length between the given cluster and Ci is at most
170 µm.

4. The difference in cluster roundness between the given cluster and Ci is at
most 0.25.

5. The difference between the azimuth φ of the given cluster and the azimuth
φ of Ci is at most 17 degrees (precisely 0.3 radians).

Clusters specifying all the aforementioned criteria are then assigned to coincidence
group Gi. This is essentially how new coincidence groups are created out of old
ones, where proximity and additional constraints are now also considered.

5.6 Estimating θ

The angle θ, defined as the deviation angle from the normal to the surface of
the detector, is very important for analysis, coincidence group reevaluation, and
for understanding important properties of the patterns we see on the pixel screen.
Although it might not be as significant for neutrons, for example, it actually has
significant impact on the categorization of the proton signature. Because of this,
we must try to get as accurate estimations of it as possible.

In the datasets I have worked with so far, it is calculated independently for
every cluster. The good thing about this is that you can get an estimation for
every cluster regardless of whether it has a corresponding cluster in the other
layer or not. The formula used to calculate θ in degrees in the given datasets for
a single cluster is:

θ =
(︄

arctan dp

t

)︄
180
π

, (5.3)

where d represents the maximal distance between any 2 pixels of the cluster
computed as the Euclidean distance between the coordinates of the pixels, p
represents the detector pixel pitch, and t represents the detector thickness.

While this formula gives us some heuristic for θ, it is better to have some
perception of the depth or z-axis included in the formula since θ itself represents
the polar angle of the particle in three-dimensional space. However, to have a
perception of depth, we need each cluster in layer 1 to have a corresponding cluster
in layer 2. For this reason, we can improve the estimation of θ for coincidence
groups where there is a one-to-one match of clusters between the two layers.
Coincidence group reevaluation is good for generating such coincidence groups, so
they constitute a large number of coincidence groups of datasets.

An important fact to know is that the coordinate system of layer 1 is at (0,0,0),
and the two layers are not directly under each other, but there is a slight offset in
pixels. From the configuration, we know that for protons, in layer 2, the offset
given in pixels is

o⃗1→2 = (∆x, ∆y, ∆z) = (−5.3, 1.4,−47.4). (5.4)
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So now whenever we have clusters Cx ∈ C and C̄y ∈ C̄, we define

(xx, xy) = (Cx.clstrV olCentroidX, Cx.clstrV olCentroidY ),

and now we add the layer 2 offset to the coordinates of C̄y:

yx = C̄y.clstrV olCentroidX + ∆x,

yy = C̄y.clstrV olCentroidY + ∆y.

Now we calculate the changes in position as:

∆x = yx − xx,

∆y = yy − xy,

∆z = ∆z.

∆z now represents the depth between the two clusters. We calculate the hypotenuse
in xy plane (the distance the particle has traveled in the plane parallel to the
layers (ignoring the z-axis)) as

dxy =
√︂

∆x2 + ∆y2. (5.5)

Now θ is calculated like:
θ = arctan dxy

∆z
. (5.6)

This estimation of θ can be seen when viewing coincidence groups interactively
during global analysis. The results (shown by histograms in Figure 5.12) align
well with the real θ of the datasets tested.

5.7 Batch Processing Through The Command
Line

Through the graphical user interface (GUI), the user can select one dataset to
work with and then decide what he/she wants to do with it. However, sometimes,
it is more convenient to work with more than one dataset at once. This could be
for efficiency reasons or for convenience.

Using a graphical user interface to process huge datasets, such as the ones
I am working with (produced by Timepix3), will slow down the process a little.
If the dataset is relatively small, it is not noticeable; however, when just going
through the whole file takes a significant amount of time, efficiency becomes a
problem. Because of this, using the command line to analyze your datasets can
result in faster processing.

The user may also be faced with the problem of having to use the same
functionality on multiple datasets. Since you can only process one file at once on
the GUI, the user would have to manually wait for each file to be processed and
then run the next one. In situations like these, the command line can be of great
help. The user can select all the files that need processing and then choose what
to do with them.

The functionalities included in the command line are global analysis, filtering
of clusters, and three additional ones that I will describe in the subsections below.
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In Section 5.7.1, I will talk about filtering out protons. In Section 5.7.2, I will
introduce customizable linear and quadratic regressors. Lastly, in Section 5.7.3, I
will discuss using pre-trained regression models to make predictions and test the
performance.

5.7.1 Filtering Out Protons
A task that physicists working with particle detectors have been dealing with

for some time now is the possibility of recognizing which clusters in the datasets
were produced by neutrons. This task is quite hard due to the nature of detecting
neutrons. Neutrons typically produce other particles when traveling between the
layers of the detector, and these particles may be scattered in all directions. Hence,
instead of dealing with this challenging problem directly, we can reduce it to a
smaller one.

One thing we can do to reduce the problem is try to take the protons out of the
file with some degree of confidence and then work with what remains to see which
ones could be neutrons. Since, as explained in Section 5.5, we already have a way
to produce new coincidence groups for protons by taking spatial information into
account, we can now use that to filter out one-to-one matches of proton clusters
between the layers. This functionality then makes it easier for what will remain
in the dataset to be further analyzed to see what could be produced by a neutron
and what not.

5.7.2 Customizable Multivariate Linear and Quadratic Re-
gressor

Another functionality of the command line is the customizable multivariate
linear and quadratic regressor. As explained in detail in Section 6.4.3, this tool
will be useful for learning relationships between different attributes of the dataset.
On the command line, the user will specify the attributes he/she wants to test,
the output attribute, and the datasets on which the model will be trained. Since
it is used through the command line, the user can select multiple datasets for
training instead of just one. There is also the possibility of choosing between a
linear or quadratic regression model depending on the user’s requirements.

The main use of this tool at the moment is to analyze how different attributes
or features of the dataset are connected. However, as this tool is very simple, it
can be easily extended into more complex models for a wider range of applications.
One particular use case that can later be developed is a classifier for particle types,
which can be a simple extension of the regression models already developed.

After training, the model will be serialized and saved into a file with the
extension “.bat”. The user can later use this model to make predictions and test
its performance.

5.7.3 Using Pre-trained Models for Predictions
When the user has an already trained regression model, whether it be linear

or quadratic, she can use that later to make predictions on datasets of her choice.
After predictions are made, she will get a report of its performance by looking at
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the Root Mean Squared Error. This functionality is mostly to test the performance
of the model and try to find any dependence relations between different features
of the data. In the future, this feature could also be useful when we extend such
regression models to be used for particle classification. The predictions will be
saved into a CSV file that she can inspect and work with later. This CSV file will
have only three columns: cluster index, real output value, and predicted output
value.

5.8 Results and Visual Output
In this section, I will explain and provide many examples of the functionalities

of the GUI of my application. In the following subsections, you will read about
local and global analysis (Section 5.8.1 and 5.8.2), filtering of clusters (Section
5.8.3), estimating θ (Section 5.8.4), coincidence group reevaluation (Section 5.8.5),
and filtering out protons (Section 5.8.6).

5.8.1 Local Analysis

Figure 5.3 Visual representation of the selected cluster in local analysis.

For local analysis, the user will see the attributes of a cluster specified (seen
in Figure 5.4) and its visual representation on the pixel screen (seen in Figure
5.3). The pixel screen contains information about the total energy of the clusters
(represented by Elayer) and the total number of pixels (represented by Npixels).
Each pixel is colored according to its energy level (seen on the color bar on the
right of the pixel screen). It performs similarly for inspecting coincidence groups.

5.8.2 Global Analysis
In a global analysis, the user can browse through clusters interactively in two

different ways: by coincidence groups (shown in Figure 5.5) and by a specified
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Figure 5.4 Information regarding the selected cluster for local analysis.

number of clusters per frame. In Figure 5.5, we can see three pixel screens. The
first pixel screen contains all the clusters of the coincidence group regardless of
which layer they are. The clusters in layer one are shown in blue, and the clusters
in layer two are shown in red. The pixel screen also contains information about
the total energy of the clusters (represented by Etotal), the number of clusters
(represented by Ntotal or Nclusters), the average energy per cluster (represented by
Etotal/Nclusters), and the average energy per pixel (represented by Etotal/Npixels,
where Npixels represents the total number of pixels).

The second pixel screen contains information about clusters of the correspond-
ing coincidence group appearing in layer 1. Each pixel is colored according to its
energy level (seen on the color bar on the right of the pixel screen). The pixel
screen contains information about the total number of pixels (represented by
Npixels) and the total energy of the clusters in this layer (represented by Elayer).
The same idea applies to the third pixel screen on the right. The only difference
is that the third pixel screen contains only clusters appearing in layer 2.

Figure 5.6 shows a visual representation of looking at 2000 clusters per frame.
This functionality is particularly useful when the user wants to analyze the density
of clusters in some specific region of the pixel screen, which can sometimes tell
him/her about the concentration of particles in different regions. This concen-
tration tends to differ more when it comes to analyzing neutrons because of
the differences in interactions with the different neutron converters between the
detector layers. In interactive viewing for global analysis, for one-to-one matches,
the corresponding estimated θ is also shown, which is displayed in Figure 5.5.

Additional results of the global analysis are statistics and histograms. Figure
5.7 shows the statistics that will appear after analyzing a dataset of neutrons
coming from a fast neutron beam at 120 degrees containing around 80 million
clusters. The produced histograms include information about:

• cluster count (Figure 5.8a),

• cluster sizes (Figure 5.8b),
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Figure 5.5 Coincidence group displayed when browsing by coincidence group in global
analysis; the estimated θ value for this particular pair is also shown.

Figure 5.6 2000 clusters displayed when browsing by 2000 clusters per frame (as
specified by the user) in global analysis.

• cluster energy per region (Figures 5.9a, 5.9b, 5.9c, and 5.9d),

• original φ value (from the ROOT file) and estimated φ value using ”line of
best fit” (Figure 6.3),

• original θ value (from the ROOT file) and estimated θ value of one-to-one
matches in coincidence groups (Figure 5.12).

The cluster count and cluster size histograms are two-dimensional histograms,
where the axes represent the cluster count or cluster size in layer 1 and layer 2,
respectively. In Figure 5.8b, we see that the number of hits is the highest around
10 for each axis, so we can conclude that the majority of clusters in this dataset
are of size 10 pixels. We also see some symmetry between the two axes, where the
only notable difference is that there are a lot of hits recorded, with the average
size being 10 in layer 2 and 0 in layer 1, but not as many the other way around.
As we can see, the number of hits is higher along both of the axes as well, and
this accounts for coincidence groups where all the clusters were in one layer only.
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Figure 5.7 Statistics and general information are shown at the end of analyzing the
fast neutron file as a whole in global analysis.

Although the most common value for the average size was around 10 in each layer,
it can still get quite big and go up to around 50, although the number of hits will
be very low (typically just above 0). That is why we can also see some white cells
start appearing in the histogram around the edges, with no hits recorded there at
all.

The other histograms are all one-dimensional. In the histogram with cluster
energy per region, there are 4 regions defined by the neutron converters, so there
are 4 corresponding histograms for each. The φ and θ histograms are for comparing
accuracy between the angle values stored in the dataset and the newly estimated
values.
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(a) Histogram showing the cluster count within coincidence groups in layers 1 and 2.

(b) Histogram showing the average cluster sizes within coincidence groups in layers 1
and 2.

Figure 5.8 Two-dimensional histograms for cluster count and average cluster size
between the layers produced by global analysis of a proton dataset with θ = 34◦.
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(a)

(b)

(c)
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(d)

Figure 5.9 Histograms showing the cluster energy in different detector regions defined
by the neutron converters between the layers; this analysis is done for a fast neutron
dataset.

Figure 5.10 View of the filtering options in the GUI.
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5.8.3 Filtering
Filtering of clusters or coincidence groups will generate a new ROOT file

containing the filtered events, and the user can also view the result interactively.
The filtering options are shown in Figure 5.10. For clusters, the filtering is done
by applying a cut (a string representing filtering criteria by using logical operators,
built-in ROOT functions, and parentheses to create expressions). An example
of such a cut can be “clstrSize> 9” and in Figure 5.11 we can see a sample
coincidence group before and after applying such a cut. The filtering is the same
for coincidence groups as well but with different parameters, as described in
Section 5.4.

(a) Coincidence group present in the file before applying the cut.

(b) Modified coincidence group after applying the cut where only clusters of size greater than 9
appear.

Figure 5.11 A sample coincidence group before and after applying the cut “clstrSize>
9” during filtering of clusters.
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5.8.4 Estimating θ

As explained in Section 5.6, we can get more accurate estimations of the
angle θ for one-to-one matches in proton coincidence groups. When comparing
histograms of the original θ and the estimated one, the number of entries in the
latter is slightly lower than the first one. This is because it only accounts for
coincidence groups where θ can be estimated (with exactly 1 cluster in each layer).
However, this is not a problem as, by doing coincidence group reevaluation on a
dataset, we can get even more coincidence groups like that, thus decreasing the
difference in the number of entries.

In Figure 5.12, are shown comparisons of histograms of the original θ and
estimations for proton datasets of θ ∈ {0◦(+4), 30◦(+4), 50◦(+4)}. The reason for
the (+4) difference is that, in the experiment, the angles were set to a reference
position (assumed to be 0 degrees), which, in fact, was already tilted at 4 degrees
with respect to the beam. As is seen in the histograms, the mean of the histograms
with estimated θ values perfectly matches the real θ in every example. On the
other hand, the histograms with the original θ can be close but not as accurate.
The biggest difference is for the proton dataset of θ = 4◦ where in the histogram
with the original θ, the mean is 16.

From these histograms, we can observe much higher accuracy when taking
depth into account while computing θ for coincidence groups with one-to-one
matches in clusters between layers, compared to computing θ by only taking into
account the attributes available for one single cluster.

5.8.5 Coincidence Group Reevaluation
In coincidence group reevaluation, temporally assigned coincidence groups are

reevaluated by additionally considering spatial information. This can be used to
distinguish different particles appearing in the same coincidence group. Examples
of such usage are in Figures 5.13 and 5.14. On the left of the figures, you can see
the coincidence group before it gets reevaluated. In such a state, more than one
particles are observed. On the right, it is shown how the reevaluations split the
clusters so that they each represent one particle.

One important thing for reevaluation is adding some constraints on the clusters
selected to be inside the reevaluation ellipse. This is because sometimes, based
on proximity only, clusters that cannot belong to the same particle because of
certain attributes like shape, direction, and so on are still assigned to the same
coincidence group. For this reason, there is a constraint check with regard to
cluster shape, φ, and Euclidean distance based on the original angle θ.

The effect of these constraints can be seen in Figure 5.15. In the topmost
example 5.15a, the cluster on the left, which was initially (when only using the
reevaluation ellipse) considered part of the same coincidence group, is now removed
in 5.15b because its distance to the main one in layer 1 differs a lot from the
expected distance dxy. In the middle example 5.15c, the cluster resembling a dot
in layer 2 is removed in 5.15d because the cluster length differs too much from the
main one in layer 1. In the last example 5.15e at the bottom, the red cluster is
first considered to be part of the same coincidence group as the blue one based on
proximity, but when we put the constraint on the azimuth (direction) φ, it differs
a lot from the azimuth of the main cluster so they are not considered to be part
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of the same coincidence group anymore in 5.15f.
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(a) original θ saved in the dataset; protons
coming from angle θ = 4◦

(b) estimated θ; protons coming from an-
gle θ = 4◦

(c) original θ saved in the dataset; protons
coming from angle θ = 34◦

(d) estimated θ; protons coming from an-
gle θ = 34◦

(e) original θ saved in the dataset; protons
coming from angle θ = 54◦

(f) estimated θ; protons coming from an-
gle θ = 54◦

Figure 5.12 A comparison in accuracy between the original θ and the estimated one
in various proton files.
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(a) Before (two particles) (b) After (one particle) (c) After (one particle)

Figure 5.13 A temporally assigned coincidence group being partitioned into 2 new
ones using spatial information.

(a) Before (two particles) (b) After (one particle) (c) After (one particle)

Figure 5.14 A temporally assigned coincidence group being partitioned into 2 new
ones using spatial information.
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(a) Reevaluation without constraints (b) Reevaluation with constraints

(c) Reevaluation without constraints (d) Reevaluation with constraints

(e) Reevaluation without constraints (f) Reevaluation with constraints

Figure 5.15 Reevaluation of coincidence groups with and without using constraints on
cluster length, azimuth φ direction, and Euclidean distance determined by the original
angle θ.
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5.8.6 Filtering Out Protons
Filtering out protons is related very closely to coincidence group reevaluation.

It is a very beneficial step when it comes to solving a bigger problem – recognizing
neutron clusters. In Figure 5.16, it can be seen that from a neutron coincidence
group sample, a pair of matching clusters believed to be a proton is removed. In
the first example 5.16a, two matching pairs of clusters are removed in 5.16b. One
pair is seen in the bottom right region of the screen, and the other one in the
upper left corner. In the second example 5.16c, one matching pair of clusters is
removed in 5.16d(seen around the center of the screen). A whole new ROOT file
of removed proton clusters is generated as a result.

(a) The original neutron coincidence group. (b) After removing two matching pairs of clus-
ters.

(c) The original neutron coincidence group. (d) After removing one matching pair of clus-
ters.

Figure 5.16 Removing proton particles from two neutron coincidence group samples.
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5.9 Runtime analysis
We need some test files of various sizes to check the performance of Analyser

in different tasks. I will be using five proton files for testing and one neutron
file. The proton files are from the ATLAS experiments [27], and each file has a
different value of the angle θ, which is also determined in the file name. More
information about the size of each file and the number of clusters they contain
can be found in Table 5.1.

Index File File
Type

Size Number of
Clusters

1 ATLAS_Unit10_p240MeV_0de
g_200V_11cm.root

proton 2.24 GB 17 448 658

2 ATLAS_Unit10_p240MeV_30
deg_200V_11cm.root

proton 1.15 GB 7 093 959

3 ATLAS_Unit10_p240MeV_50
deg_200V_11cm.root

proton 1.4 GB 6 602 135

4 ATLAS_Unit10_p240MeV_120
deg_200V_11cm.root

proton 783.9 MB 3 478 827

5 ATLAS_Unit10_p240MeV_180
deg_200V_11cm.root

proton 649.2 MB 5 068 188

6 120_degrees_short.root neutron 7.81 GB 80 149 597

Table 5.1 Information about the ROOT files used for testing.

I will define several tasks whose performance I will analyze. I will test the main
tasks, such as global analysis, filtering of clusters, filtering of coincidence groups,
filtering out protons, coincidence group reevaluation, and training a regression
model on a dataset. However, there are also variations of some tasks. For global
analysis, I tested it from the GUI and from the command line interface. When
testing it from the command line interface, I also tried testing based on whether
a visual PDF would be produced in the end to see how that would impact the
performance. I also tested the filtering of clusters using various cuts from the
GUI and from the command line interface. Apart from the main task, I included
a task to just copy the contents of one ROOT file into another, cluster by cluster,
to be used as a baseline for comparing performance. A description and an index
for each task are found in Table 5.2.

An analysis of the runtime for each task and input file is given in Table 5.3.
All of the running times are in seconds. They were measured on a MacBook Air
laptop with 8 GB RAM, 1.6 GHz Dual-Core Intel Core i5 processor, running
macOS version 12.6.7. Now, we need to describe the results and discuss why some
tasks appear to have a much better runtime than others.

Task 1 gives us a baseline for how long a ROOT file would take to be copied
into another ROOT file cluster by cluster. The performance aligns closely with
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Task Index Description

1 Copy contents to a new ROOT file

2 Global analysis in the GUI

3 Global analysis in the command line with visual PDF as output

4 Global analysis in the command line with no visual PDF as
output

5 Filtering of clusters in the GUI using cut “clstrType== 4 &&
abs(phi-30)< 5 && layer==1”

6 Filtering of clusters in the command line interface using cut
“clusterRoundness> 0.6 && clstrType> 3”

7 Filtering of coincidence groups to show those that have clusters
only in layer two

8 Filtering protons out

9 Coincidence group reevaluation

10 Training a regression model using features clstrRoundness, clstr-
Length, and clstrType

Table 5.2 The tasks defined for runtime experiments.

File Task
1

Task
2

Task
3

Task
4

Task
5

Task
6

Task
7

Task
8

Task
9

Task
10

1 256s 1682s 1960s 117s 70s 2472s 72s 293s 422s 92s
2 130s 760s 1171s 54s 29s 1554s 44s 203s 188s 43s
3 149s 713s 821s 61s 36s 694s 63s 150s 212s 49s
4 85s 440s 385s 31s 18s 404s 33s 123s 119s 24s
5 72s 492s 448s 34s 21s 706s 20s 91s 120s 27s
6 1184s 6128s 2773s 681s 498s 9959s 491s 3926s None 529s

Table 5.3 Reported runtime for test files when performing the tasks defined in Table
5.2.

the size of each file. File 6, having the hugest size, takes the longest, and file 5,
having the smallest size, takes the shortest.

I should also note the fact that file size does not go hand in hand with the
number of clusters. An important factor is the average size of clusters in each file.
We can notice this when we compare files 2 and 3, and 4 and 5. File 2 is smaller
than file 3, yet it has half a million clusters more. File 5 is also smaller than file 4,
yet it has 1.5 million more clusters. This is because the angle θ in files 2 and 5
is much closer to the normal to the detector than in files 3 and 4. The angle θ
influences the shape of proton clusters, where the closer it is to the normal, the
smaller the cluster, so it makes sense that the smaller cluster size makes for a
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smaller file, even if there are significantly more clusters.
Tasks 2, 3, and 4 all represent global analysis. We can notice at once that the

performance of Tasks 2 and 3 is significantly worse than the performance of Task
4. This is mainly because in Tasks 2 and 3, a visual PDF is being produced on the
go, and for each cluster, its information must be saved and processed to create the
plots used for visual representation. For this reason, Task 4, which only produces
output files for statistics and histograms, has a much lower runtime for each input
file. Considering this, it is recommended that when the user wants to produce a
visual PDF representation, he/she specifies a maximum cluster count for better
runtime and also for a PDF whose size is not extreme. For fast processing of a
whole file, the user can just perform global analysis via the command line without
requesting a visual representation of the whole file. Comparing its performance to
the baseline performance of Task 1, it is around twice as good as that of Task 1.

Tasks 5 and 6 represent the filtering of clusters using two different cuts. Task
5 is performed via the GUI, and its performance is very good. Meanwhile, the
performance of Task 6, which is performed via the command line, is notably
bad. The reason behind this huge difference in performance is the way filtering is
done. When using the GUI, the user only filters one file at a time, and for such
a procedure, there is a simple built-in method for filtering using ROOT, which
takes care of the processing and filtering on its own. When using the command
line, however, we must account for more than one input file at once. The only
way to continually append to a ROOT file is to process each cluster individually.
Checking for each cluster that every filtering condition is satisfied and manually
managing the attributes of a ROOT tree when inserting into the new ROOT file
creates the performance issue. For this reason, it is recommended that cluster
filtering be performed via the GUI unless the user has more than one file to filter
at once. The performance of Task 5 is seen to be about 4 times better than that
of Task 1.

Task 7 represents the filtering of coincidence groups using the GUI. It performs
about 3 times better than Task 1, which we are using as a baseline.

Task 8 represents the filtering of protons out of files. The runtime recorded
for each input file is just a bit higher than that of Task 1. The only important
input file to consider here is file 6, which represents a neutron file, since we will
typically use this functionality on neutron files. The runtime on the neutron file
is twice as high as that of Task 1. However, this makes sense, considering that
each coincidence group must be looped over and checked twice to know what we
need to filter out and what we should preserve.

Task 9 represents the reevaluation of coincidence groups in the GUI. It has
not been tested on the neutron file since the reevaluation is intended mainly for
protons. The runtime recorded is just above the runtime recorded in Task 1 for
a similar reason to the one described in the paragraph above. Hence, this is a
reasonably good performance.

Task 10 represents training a regression model on a particular input file. Its
performance is reasonably good. The recorded runtime is 2 or 3 times lower than
that of Task 1.
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5.10 Drawbacks
When it comes to coincidence group reevaluation, it will work for all charged

particles, although it has been tested mainly on protons. For protons, it will
work for all different values of θ, except for those where θ is close or equal to
90◦, since they leave very long tracks parallel to the x-axis of the detector and
have unpredictable behavior. After more careful studying of the patterns of other
particles, I am convinced that a similar idea could be implemented in the future
as an extension of my implementation to reevaluate other types of particles.

One significant drawback of my implementation is also the fact that the same
cluster from layer 2 could visually appear in two different coincidence groups.
This happens because of the way I process clusters in a coincidence group. For
every cluster in layer 1 that I consider to be a coincidence group of its own, I
consider all clusters from layer 2 as possible candidates to be part of the same
coincidence group. And if some two clusters in layer 1 are not very close together
or have different attributes like length or azimuth φ direction, then it will be
correctly resolved. However, if they are close, they will have an overlap in possible
candidates to be considered part of their coincidence group, so such a cluster
might be assigned to more than one proton coincidence group. There is no way
to be certain which of those assignments is correct without at least looking at it
manually, so the only option for now is to leave it like that.
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6 Incorporating Machine
Learning Techniques

Machine learning techniques can contribute to better data analysis, heuristics,
and predictions, offering us deeper insight into the datasets we are working with.
I will start this chapter by giving an introduction to machine learning in Section
6.1. In Section 6.2, I will talk about the objectives of this thesis using machine
learning. In Section 6.3, I will describe the machine learning techniques I will
use, such as linear and quadratic regression. In Section 6.4, I will describe the
implementation. Lastly, in Section 6.5, I will conclude by explaining the results of
using machine learning methods in my program.

6.1 Machine Learning
Generally speaking, machine learning represents a computer program that,

given a certain input, can learn from it and make informed decisions or predictions.
The input used by the program to learn is called “training data,” and the output
(also called a target) that a program produces is generally the knowledge the
program gained from learning. If we can also come up with a performance measure,
then we can use that to evaluate and train our machine learning model. More
precisely, a machine learning model is a model that, given training data, its
performance improves the more data you feed it, and we say that such a model
learns from the training data [28].

An essential aspect of learning is the ability to predict the outcome on previ-
ously unseen input data. This is also known as generalization, and here, we define
a generalization error, which tells us how well our model can predict targets of
previously unseen data. The original input data (also called features) is often
preprocessed to become more useful or fit better into the model. Along with pre-
processing, we can choose to do normalization or standardization. Normalization
means transforming the data so every feature has normalized values between 0
and 1. Standardization means subtracting the mean and dividing by the standard
deviation so the feature values form a distribution similar to that of a standard
normal variable.

Based on the training data and what type of output you want to get from it,
there are three main types of learning: supervised learning, unsupervised learning,
and reinforcement learning. Supervised learning involves learning a function that
maps an input to an output based on example input-target pairs, so the training
data has the labels or the targets specified. The two main tasks in supervised
learning are classification and regression. When we want to assign an input vector
to a finite number of discrete categories, then we are dealing with classification.
On the other hand, when the output is continuous, the task is called regression.

In unsupervised learning, the training data has no corresponding labels or tar-
gets. Common tasks in unsupervised learning are clustering or density estimation.
In clustering, you try to categorize similar examples in the data into groups, while
in density estimation, you try to determine the distribution of the training data.

Reinforcement learning is about making an agent learn to make informed
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decisions that maximize its reward in an environment. The agent typically learns,
through trial and error, to come to the optimal solutions.

6.2 Program Objectives with Machine Learning
In my application, the goal is to use machine learning for predicting or

estimating important properties of the dataset. The datasets we work with are
huge, so plenty of learning could be done by exploiting the data we have. Because
of this, building a model for a specific task is less beneficial than building a tool
that users can use to train their data on whichever features they need and analyze
whichever feature they want as a target. Hence, I will propose a multivariate
linear and quadratic regressor tool customizable by the user, which I will explain
further in Section 6.4.3.

Machine learning (linear or polynomial regression models, in particular) can
help us learn important relationships or functions between variables. There are
two important tasks in coincidence group reevaluation where I can benefit from
such a model: estimating the angle φ of a cluster and learning a function between
θ and the major and minor axes of the reevaluation ellipse. I will explain them in
Sections 6.4.1 and 6.4.2.

6.3 Techniques to Use and Why
As a general tool for learning relationships between different features of the

data, linear and quadratic regression using stochastic gradient descent is a good
choice as a start. It is efficient and can be used to get heuristics for certain
attributes, e.g., estimating θ from cluster length and linearity. Since this model is
fairly simple, it will work for now, but more complex models can be implemented
for further and more thorough analysis.

For estimating φ, we will use the “line of best fit”, which is essentially also
just linear regression. Lastly, for setting the parameters of the reevaluation ellipse,
using the limited data I collected myself from experimentally playing around with
different datasets, I realized the relationship between θ and the parameters is not
linear so we will use quadratic regression instead, which gives us a perfect fit.

I will describe different methods and how they work in the following sections.
In Section 6.3.1, I will introduce linear regression and different implementations
of it. I will talk about quadratic regression in Section 6.3.2.

6.3.1 Linear Regression
Linear regression models are statistical methods that estimate the relationship

between a target variable and one or more input variables by fitting a linear
equation to the observed data, where the equation’s coefficients (also called
weights) represent the effect of each input variable on the dependent variable
(the target) ([28],[29]). Given input example x ∈ RD, where D ∈ N represents
the dimension of x, the goal of regression is to predict the value of one or more
continuous targets given the value of a D-dimensional input vector x. A simple
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linear regression model computes predictions by estimating the parameters (given
below as weights) of a prediction function y : RD −→ R, where:

y(x; w, b) = x1w1 + ... + xDwD + b =
D∑︂

i=1
xiwi + b = xT w + b, (6.1)

where w ∈ RD represents the vector of weights for each input feature and b ∈ R
represents the bias. Sometimes, instead of dealing with the bias separately, you
can extend the input vector by padding a value 1 and encoding the bias as the
last weight of w. In that case, we have w ∈ RD+1, x ∈ RD+1, and y : RD+1 −→ R,
defined as:

y(x; w) = x1w1 + ... + xDwD =
D∑︂

i=1
xiwi = xT w. (6.2)

Let’s define X ∈ RN×(D+1) as the training dataset of N training examples
and D features, padded by a vector 1 ∈ RN to represent the bias, and t ∈ RN

represents the vector of target values. Finding the weights is done by minimizing
some error function that measures how much our model’s predictions differ from
the real target values. Usually, mean squared error, defined below, is used as such
an error function:

MSE(w) = 1
N

N∑︂
i=1

(y(xi; w)− ti)2, (6.3)

where ti represents the real target value of the training example xi. The sum of
squares can also be used instead where we take 1

2 instead of 1
N

:

SSE(w) = 1
2

N∑︂
i=1

(y(xi; w)− ti)2, (6.4)

Our goal is to minimize this error function, hence getting the weights that give
us the most accurate predictions. When minimizing a function, we look for all
the points in the function where the partial derivatives (the slopes) with respect
to wj are 0. Such points, if they exist, give us local or global extremes of the
function. Following the calculations, that leads us to

w = (XT X)−1XT t. (6.5)

However, this equation only has a solution when XT X is regular, and we can thus
compute its inverse.

There are some techniques that can be used in regression to reduce gener-
alization errors, and these are called regularization. A well-known technique is
L2-regularization. This technique prefers models with smaller weights and tries
to achieve this by giving a penalty to models with larger weights. It uses the
following error function to achieve that:

SSE(w) = 1
2

N∑︂
i=1

(y(xi; w)− ti)2 + λ

2 ||w||
2, (6.6)

where λ > 0 denotes the strength of L2-regularization.
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Regularization can also help us with the computation of weights. As described
earlier, a solution for the weights exists only if XT X is regular. When L2-
regularization is included, calculating the partial derivatives of the error function
defined in Equation 6.6, gives us the solution:

w = (XT X + λI)−1XT t, (6.7)

and for λ > 0, XT X + λI is always regular.

Line of Best Fit

Figure 6.1 An example of finding a line of best fit to two-dimensional data illustrates
the linear relationship between input features and targets, where the dots represent
the real targets, the prediction for the same input lies on the constructed line shifted
vertically from the real target, and thus the error represents the sum of squares error
that will be computed using the difference between the real and predicted targets. [30]

The line of best fit, also known as the regression line, is a straight line that best
approximates the relationship between the independent variables (input features)
and the dependent variable (target). The line’s equation, determined through the
linear regression model, minimizes the sum of the squared differences between
the observed values and the values predicted by the model. This method involves
calculating the slope and intercept of the line in a simple linear regression or
the corresponding coefficients (weights) in multiple linear regression. As seen in
Figure 6.1, this line may pass through some of the points, none of the points, or
all of the points, depending on the data.

Stochastic Gradient Descent

When dealing with too much data continually being added, sometimes it is
better to update the weights incrementally or sequentially. Since the objective
was to minimize an error function (let us denote it as E(w)), we know that we
are looking for argmin

w
E(w). To get to such weight vector w, we can update it

using gradient descent:
w← w− α∇wE(w), (6.8)
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where ∇wE(w) is the gradient of the error function at w and α > 0 is a learning
rate that is the length of a single step we take in every iteration. Stochastic
Gradient Descent (SGD) is an iterative algorithm that estimates ∇wE(w) by
using a new random example from the training data and updating the weights on
each step until convergence.

Following this idea, by using L2-regularization and SSE(w) (defined in equation
(6.6)) as the error function, we come to the following algorithm for computing the
weights:

Algorithm 1 Linear Regression using SGD

Input Training data X ∈ RN×(D+1), target vector t ∈ RN , learning rate
α ∈ R+, L2 strength λ ∈ R+

Output Weights w ∈ RD+1 that minimize the regularized SSE(w) error
function defined in equation (6.6)

• w← 0 or initialize it randomly
• repeat until convergence (or you decide to stop):

• sample one example xi from X uniformly at random
• w← w− α(((xT

i w− ti)xi)− λw)

6.3.2 Quadratic Regression
Polynomial regression is a type of regression where the relationship between

the input features x and the target y is modeled as an n-th degree polynomial. In
linear regression, when we try to find the expected value of a target y in terms of
x, typically we use:

y = β0 + β1x + ε, (6.9)
where ε represents an unobserved random error with mean zero, and for any
increase in x by some unit, y changes by β1 units. However, we often cannot express
the relationship we are analyzing linearly, and we need to look at polynomials of
higher degrees. For n-th degree polynomial regression, to express the same thing,
we would write:

y = β0 + β1x + β2x
2 + ... + βnxn + ε. (6.10)

Quadratic regression is a special case of polynomial regression where n = 2.

Multivariate Quadratic Regression

When we are dealing with a single input feature, as explained in the above
section, we use simple polynomial regression. However, we often have more than
one input feature. In this case, we use multivariate polynomial regression [31].

Suppose we have input vector x ∈ RD. Now, in order to use the features of x
for training the model, we must first extend these features to include higher-order
terms and additionally include interaction terms between the features. In this case,
for a polynomial of degree n, to train a regression model and make predictions,
we need to consider the feature vector

x⃗ = ( 1⏞⏟⏟⏞
degree 0

, x1, . . . , xD⏞ ⏟⏟ ⏞
degree 1

, x2
1, x1x2, . . . , x1xD, x2

2, . . . , x2
D, . . . ,⏞ ⏟⏟ ⏞

degree 2

xn
1 , . . . , xn

D⏞ ⏟⏟ ⏞
degree n

)
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where “degree k” denotes the list of all terms of the form xk1
1 xk2

2 · · ·xkD
D such that∑︁D

i=1 ki = n for non-negative integers k1, . . . , kD.
In multivariate quadratic regression, you only need to include terms up to

degree 2.

6.4 Implementation
In the following sections, I will talk about implementation. I will explain

how I used the machine learning techniques I explained in the section above to
estimate the azimuth angle φ in Section 6.4.1 and to compute the parameters
of the reevaluation ellipse based on angle θ in Section 6.4.2. Lastly, in Section
6.4.3, I will describe the implementation of a customizable multivariate linear or
quadratic regressor.

6.4.1 Estimating φ

In the datasets I have been working with so far, the azimuth angle φ of a
cluster is calculated by the following formula:

φ =
(︃

arctan sizeY

sizeX

)︃ 180
π

, (6.11)

where sizeY and sizeX represent the span of pixels of the cluster in the detector
screen in the y, respectively x, axis. However, both sizeY and sizeX are positive,
and this limits the value of φ in a range between 0 and 90, which cannot always
be true because sometimes we might have clusters that lean towards the bottom,
and the direction of such clusters cannot be between 0 and 90. Hence, this is
something that needs to be fixed.

What we will use to estimate φ is the “line of best fit”. We will use the x-
coordinates of the pixels of a cluster as input and y-coordinates of the corresponding
pixels as the output. Then, we will find a function between them that best describes
the cluster, and when we do, the slope of such a function will tell us the value of
φ, which best fits the function.

The idea, as described in Section 6.3.1, will give us a straight line that best fits
the data, so naturally, this estimation will work better for mostly linear clusters.

6.4.2 Setting Parameters of the Reevaluation Ellipse Based
on θ

Knowing how to set the parameters (specifically the major and the minor
of the reevaluation ellipse) is important for getting more accurate results for
coincidence group reevaluation. So far, we are only reevaluating protons, and just
like we explained in Section 5.5.1, the patterns of protons depend on the angle
θ. As θ grows, the length of a track grows, and so does the expected distance of
corresponding clusters between the layers. With a growing distance between layers,
we should also increase the major and minor so we make sure the corresponding
cluster in layer 2 can be correctly accounted for. Hence, we can naturally assume
that the major and the minor are somehow related to the value of θ, and we
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must find a relationship between them so that we set the parameters correctly no
matter what θ we are working with.

We were testing the functionality and doing experiments with different values
for the major and minor until we got an idea of what to set them to based on θ.
We figured the following values of major a and minor b:

• for θ ∈ {0◦, 180◦} =⇒ a = b = 15,

• for θ ∈ {30◦, 150◦} =⇒ a = 55, b = 20,

• for θ ∈ {50◦} =⇒ a = 120, b = 25.

It might seem that the values for the major a are a bit too high, but that is
intentional so that the algorithm is more robust and we do not accidentally leave
out clusters that should be considered due to some small change in their patterns.

Now that we had these experimental values that seemed to work for these
datasets, we need to figure out a relationship between θ, and a and b. Looking
at the cases above, this relationship does not seem to be linear, so in this case,
we go for a quadratic relationship. After using just the few estimations observed
above, we get two functions estimating the values for the major and the minor of
the reevaluation ellipse. Both these estimating functions are depicted in Figure
6.2 in green. They are called “old” functions there. After further experiments,
it turned out that the above estimating functions could sometimes give too high
estimations, not enabling the splitting of some of the coincidence groups, where
it was possible to select smaller values of the major and the minor manually. In
stead of adjusting the estimating functions manually, we decided to use quadratic
regression.

In order to get a good quadratic regression model to approximate the re-
lationships we want, we should have some reliable training data on top of the
experiments I mentioned above. Since none of the datasets available are labeled,
we have to manually collect and label some training examples that we can use
to train our model. This will make for a more solid model with more accurate
approximations.

For this reason, I collected information from 135 different samples of coincidence
groups that had different values of the angle θ. I specifically looked at coincidence
groups with one cluster in layer one and one cluster in layer two, which, after
manually analyzing them, seemed to be of the same particle. I looked at what was
a good value for the major and the minor to make it work, and when recording
the information, I added 10 to 15 pixels for a more robust solution.

After collecting this data and re-training the quadratic model, I got functions
similar to the previous ones. The differences between the old and new functions
that were estimated by the quadratic model are shown in Figure 6.2. In the
figure on the left, we can see functions between the angle θ and the major of the
reevaluation ellipse, where the old one is shown in green while the new one is
shown in red. One notable difference is the fact that the new function for the
major rises more slowly, giving us lower values for the major than the first one.
Similarly, it holds for the function representing the minor in the picture on the
right, where the old function is shown in green while the new function is shown
in red. This tells us that in the beginning, we were using parameters that were
larger than necessary, and we can still perform well by lowering them a little.
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(a) Two functions estimated between θ and
the major of the ellipse. The old one is shown
in green; the new one is in red.

(b) Two functions estimated between θ and
the minor of the ellipse. The old one is shown
in green; the new one is in red.

Figure 6.2 Comparison of functions estimated between the angle θ and each parameter
of the reevaluation ellipse based on the training data available. The x-axis represents
the value of θ, and the y-axis represents the value of the parameter we are estimating.

6.4.3 Customizable Linear and Quadratic regressor
The datasets contain a lot of attributes that give us information about different

aspects of a cluster. They are described in detail in Section 2.2. Because there are
so many of them, there is a lot of opportunity to learn from this data, as many
relationships could be found between them. It is important, that to create the
opportunity to learn, we use something simple enough to comply with most of
the attributes and efficient enough to give us significant results.

Such a technique that can be used is multivariate linear and quadratic regression
using stochastic gradient descent. We have created a tool that uses this technique
and is able to describe different properties based on the user’s requirements. The
user will choose what attributes he/she wants to inspect as independent or input
features and what output or dependent feature he/she wants to analyze as a
result. The selected features are then normalized to fit in a range between 0 and
1 so that the algorithm is not biased towards certain features with significantly
higher values. Then, the data will continually fit into the regression model. Since
this model will be available to the user by command line, the user can even use
multiple ROOT files as training data. In the end, the user can save the model
into a file and use it later to test the model on some test data given in a separate
file and analyze its performance on the test set by looking at the RMSE (root
mean squared error) it produces. It can also make predictions on given test files
and report them to the user in a CSV file.
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6.5 Results
This section will show results on estimating the azimuth angle φ (see Section

6.5.1). In Section 6.5.2, I will further show the accuracy of coincidence group
reevaluation before and after implementing machine learning techniques to estimate
φ and the reevaluation ellipse parameters using θ for individual clusters. In Section
6.5.3, I will show examples of using trained regression models.

6.5.1 Estimating the Azimuth Angle φ

Estimating the azimuth angle φ using the “line of best fit” explained in Section
6.4.1 above is necessary for more accurate coincidence group reevaluations. This
will be particularly obvious in the next section. The original values of the azimuth
currently recorded in the given datasets are quite limited. They range only between
0 and 90 degrees (an inherent consequence of the pixelation of the detector), thus
not representing the full range of direction for a cluster in two-dimensional space.
With the new estimations, we get a more precise direction for a cluster.

One thing that could be noticed fairly quickly while manually inspecting
the proton datasets at my disposal is that most clusters are horizontal but lean
slightly to the bottom. However, we do not see such a tendency when looking
at histograms of the original azimuth φ for a particular proton dataset, which is
likely because of the limitation in the range of values. On the other hand, the
histogram showing the estimated azimuth angle φ represents this tendency very
clearly. We can see that the mean degree value of φ is also a negative number
slightly below 0. This is shown in Figure 6.3.

6.5.2 The Effect on Estimations of the Azimuth and Other
Parameters on Coincidence Group Reevaluation

I used proton datasets with θ ∈ {0◦, 30◦, 50◦} for testing. The main crite-
ria I used for testing is the number of new one-to-one matches created during
reevaluation. The reevaluation improves the accuracy of matching corresponding
clusters in both layers. While the coincidence groups in the datasets were consid-
ered matching clusters of one particle, the reevaluation splits many of them into
independent coincidence groups of matching clusters representing one or more
particles. Many of the new coincidence groups created are one-to-one matching
pairs, which is the ideal pattern we want to have, considering that a proton left
exactly one cluster in each layer it went through. The results can be seen in
Figure 6.4.

Experiment 1 shows reevaluation using “line of best fit” to estimate the azimuth
φ and updating the reevaluation ellipse parameters based on the θ angle of each
individual cluster. Experiment 2 did the same as Experiment 1 but by using the
original φ instead of estimating it. Experiment 3 also uses the original φ but fixes
the parameters of the ellipse in the beginning based on the angle θ of the dataset.
Experiment 4 estimates the azimuth φ using the “line of best fit” but fixes the
parameters of the ellipse in the beginning based on the angle θ.

From the histograms shown, it can be noticed that Experiments 1 and 4
produce similar values. This is because the only benefit adjusting parameters for

61



(a) Histogram showing the original value of the azimuth φ

(b) Histogram showing the estimated value of the azimuth φ

Figure 6.3 Histograms showing the original and estimated φ values in a proton
dataset with θ = 50◦.

each cluster brings is the ability to reevaluate even outliers well (clusters that
appear to have a significantly bigger or smaller value of θ than the main one). The
number of such outliers can be assumed to be significantly small and proportional
to the number of clusters in the dataset, hence the similarity in results.

Another thing we can notice from the histograms is that the number of one-to-
one matches reduces significantly when we use the original value of the azimuth φ
instead of estimating it. This indicates that estimating φ is helping us go on the
right track for more accurate reevaluations.
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(a) Proton dataset where main θ = 0◦

(b) Proton dataset where main θ = 30◦

(c) Proton dataset where main θ = 50◦

Figure 6.4 Histograms showing the number of new one-to-one matches in coincidence
groups produced after reevaluation for different proton files.
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6.5.3 Using Pre-trained Models for Predictions
After training a multivariate linear or quadratic regression model, the user will

want to test its performance on different datasets and make predictions. When
making predictions, a CSV file with the predicted results will be generated. The
CSV file will have three columns: the cluster index, the real output value, and the
predicted output value. In Figure 6.5, we can see an example of how the CSV file
will look for the first few instances after using a pre-trained multivariate quadratic
regression model to predict the value of attribute θ.

Figure 6.5 A snippet from a CSV file containing model predictions.
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Conclusion
The goals that were intended to be fulfilled by this application are all completed.

In the end, we built a tool for analyzing ROOT datasets for the Timepix3 detector
that has multiple functionalities such as local and global analysis, filtering of
events, coincidence group reevaluation, filtering out protons, estimation of angles
φ and θ, training regression models, and using the trained models for predictions.
Some of the features mentioned were the initial idea since the start of this project,
however, after experimenting a lot with the data and finding out about new things
we could improve, we ended up with more features than originally thought.

This application can be used by anyone who works with ROOT files (especially
those of the Timepix3 detector). It is extensible and can easily be developed further
to include additional and more complex functionalities that were not covered in
my application. The user can use the tools I have implemented interactively as a
GUI application or from the command line to process huge data files, which are
very common in high-energy physics. As the application is written in C++, it
enables the processing of gigabytes of data in a few minutes on a common laptop
computer.

There are some areas that could be worked on further and improved. One such
area is the linear or quadratic regression model implemented to find relationships
between different attributes of the datasets. There is a quite simple extension that
could be made to turn it into a classifier that can be used for detecting events in
the ROOT file caused by neutrons.

Another area is coincidence group reevaluation. It currently works mainly for
protons because their cluster pattern is more predictable and easy to parameterize.
However, I am convinced that after more thorough studying, it can be extended
to apply to other types of particles as well.
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A User Documentation
This section explains how to run and use the application developed as part of

this thesis. The application is called Analyser, and it is built to offer the processing
of ROOT files for various purposes, such as analysis, filtering, or coincidence group
reevaluation. It offers a graphical user interface and command line interface for
batch file processing. It is supported on MacOS and Linux operating systems. In
Section A.1, I will list the dependencies this program relies on. I will describe the
installation steps in Section A.2. In Section A.3, I will explain how to run the
application and the functionalities offered in the GUI and command line interface.

A.1 Dependencies
The dependencies required for this application are:

• Qt Framework (either Qt5 or Qt6), with specific components required:
Widgets, Pdf,

• ROOT (version 6.30.02),

• Eigen (version 3.4.0).

I should note that some of the dependencies listed above will take a long time to
install. It is, in particular, the case for Qt. When I tested and tried installing it
in Linux, the installation took almost an hour.

A.2 Installation
To install Analyser, you must first have all the required dependencies installed.

Then, if you are running it on MacOS or Linux, you should follow these steps:

1. Clone the git repository of the project:

git clone https://gitlab.mff.cuni.cz/smajljap/timepix3gui.git

2. Go to the cloned directory where the source files are.

3. While inside the directory with the source files, create a new directory for
building the application and go inside the new directory:

mkdir build && cd build

4. Once inside the build directory, set an environment variable called
EIGEN3_INCLUDE_DIR to the path of the Eigen dependency on your
computer (cmake checks for this environment variable to find the Eigen
dependency):

echo 'export EIGEN3_INCLUDE_DIR=/path/to/eigen' >> ~/.bashrc

5. Update the current terminal window to include the changes just made to
the ∼/.bashrc file:
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source ~/.bashrc

6. Run cmake and specify the paths to the dependencies so it can find them:

cmake .. -DCMAKE_BUILD_TYPE=Release
-DCMAKE_PREFIX_PATH=/path/to/qt6

7. Note: When specifying the path to your Qt installation:

(a) Find the Qt installation directory.
(b) Inside, select the directory named after the version of Qt you installed,

e.g., 6.5.3.
(c) Inside the version directory, you have multiple directories representing

different architectures.
(d) Select the one compatible with your system, e.g. “gcc_64” for Linux

or “macos” for MacOS, and take the path to that directory as the path
to Qt.

8. Run make to build the executable:

make

9. MacOS users, see step 10. Linux users see step 11.

10. In the build directory, a folder called Analyser is created. Now, there are
two options:

(a) If you want to use the GUI, you can do so by clicking on it or running:
open Analyser.app

(b) If you want to get to the executable directly, you can redirect to:
cd Analyser.app/Contents/MacOS

and here you can run the executable as:
./Analyser

If you do not provide any command line arguments, the GUI will
open, and if you do, then you will be running the application via the
command line for batch processing.

11. In the build directory, you will now see the executable Analyser. You can
run it as:

./Analyser

If you do not provide any command line arguments, the GUI will open, and
if you do, then you will be running the application via the command line
for batch processing.
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A.3 Running Analyser
You can run Analyser in two ways depending on the purpose of your usage.

One way is to open the application’s graphical user interface, and the other is
to use it through a command line. Batch processing of files, training a linear or
quadratic regression model, and other machine learning features are only accessible
through a command line, so if that is your intention, you should start the app
from a command line. On the other hand, if you want to process only one file and
do analysis, filtering, or coincidence group reevaluation, you should open the app
visually and use the features provided.

In Section A.3.1, I will explain how to use the GUI. In Section A.3.2, I will
explain how to use the command line interface. In Section A.3.3, I will describe
how filtering out protons works. In Section A.3.4, I will discuss how training
regression models is done. In Section A.3.5, I will talk about using pre-trained
regression models for making predictions.

A.3.1 GUI usage
When opening the app, you will be presented with a window, as seen in Figure

A.1. You must select a ROOT file to work with by providing its path. You can
click the “Select file” button, and a file dialog will open if you want to select the
file without manually typing its path. Then, you can choose how many clusters
to look at. When you specify the number of clusters, e.g., 1000, Analyser will
work with the first 1000 clusters in the input ROOT file. By not specifying it, the
app automatically decides to inspect the whole file. You should also specify the
output file name (not including any file extensions). Depending on your further
choices, the specified name will be extended with a suffix and an extension (.pdf
or .root). This extended name will then be used as the name of the generated
output files, which I will explain in the following subsections.

Analysis

In analysis, there are two main choices you can make: local or global analysis.
In local analysis, you can inspect clusters or coincidence groups. When inspecting
clusters, you can see an individual cluster regardless of which layer it was detected
on. All you need to do is put in the ID of the cluster (a unique integer starting
from 0 representing the cluster) you want to inspect. As a result, you will be
presented with a visual representation of the cluster and some information about
its attributes. The same idea applies to inspecting coincidence groups. You input
the ID of a coincidence group (a unique integer starting from 0 representing the
coincidence group). Then, you will be able to see a visual representation of the
coincidence group, including some information about it, like the number of clusters
in layer 1, the number of clusters in layer 2, and its total energy.

In global analysis, you will have three types of output: an interactive view,
a PDF file containing a visual representation of each coincidence group the app
processes (unless restricted otherwise by setting a maximum page limit), and
statistics and histograms that show information about the processed file given
in another PDF file and a ROOT file. Based on the name you provided for the
output file, the PDF file representing all the coincidence groups visually will

74



Figure A.1 The analysis options of the application.

be named “<output-file-name>.pdf”. The PDF and ROOT files representing
the statistics and histograms will be named “<output-file-name>_info.pdf” and
“<output-file-name>_info.root” respectively. All the generated files will be saved
under a directory called “generatedResults”, which will be created in the same
directory as the input file you provided. These files will all be generated after
clicking the “Run” button seen in Figure A.3 (when the processing is over). A
message will also appear after the processing is done to let you know that the
files were created and everything went well (see Figure A.4). Note that processing
large ROOT files can take several minutes.

In the interactive view, shown in Figure A.2, you can browse through the
coincidence groups that belong to this file by using the “next” and “back” buttons.
There are three pixel screens shown. The first one contains all the clusters of
the coincidence group regardless of which layer they are. The clusters in layer
one will be shown in blue, and the clusters in layer two will be shown in red.
The pixel screen also contains information about the total energy of the clusters
(represented by Etotal), the number of clusters (represented by Ntotal or Nclusters),
the average energy per cluster (represented by Etotal/Nclusters), and the average
energy per pixel (represented by Etotal/Npixels, where Npixels represents the total
number of pixels).

The second pixel screen contains information about clusters of the correspond-
ing coincidence group appearing in layer 1. Each pixel is colored according to its
energy level (seen on the color bar on the right of the pixel screen). The pixel
screen contains information about the total number of pixels (represented by
Npixels) and the total energy of the clusters in this layer (represented by Elayer).
The same idea applies to the third pixel screen on the right. The only difference
is that the third pixel screen contains only clusters appearing in layer 2.

The two additional files that will be generated, containing statistics and
histograms (a PDF file and a ROOT file), represent more or less the same
information. The ROOT file is more straightforward for developers to work with.
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Figure A.2 Interactive view of a coincidence group.

Figure A.3 Options to choose during the global analysis of a file.

Figure A.4 Message informing you that the global analysis is finished and the output
files are generated.
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You can select what statistics you want to compute, and that is precisely what
will be presented in the statistics file. Such statistics will include the number of
coincidence groups with unequal cluster count in the two layers, with more than
one cluster in layer 1, with clusters only in layer 2, or with cluster sizes above a
minimal specified size (you then determine what size to be considered minimal
and then only clusters of size bigger than that will be accounted for). Figure
A.5 gives an example of a coincidence group containing a large cluster that was
filtered in based on the cluster’s size being bigger than the specified minimal size,
25 pixels.

Figure A.5 An example of a filtered coincidence group containing a cluster of size
bigger than the minimal size specified (25 pixels).

Along with statistics, two two-dimensional histograms will be saved, one
representing cluster count and one representing cluster sizes in layers 1 and 2.
You can see examples of such histograms in Figure 5.8b. In both histograms, the
x-axis represents layer 1, and the y-axis represents layer 2.

In the first histogram, cluster count per coincidence group is recorded in both
layers. On the right, we have a color bar representing the number of hits for each
cell. We can observe that the cell with the highest number of hits (with the color
yellow) is cell (1,1), and the second and third highest number of hits are observed
in cells (0,1) and (1,0), respectively. That tells us that we had 1 cluster per layer
in most coincidence groups present in the input file. Looking at the high number
of hits in cells (0,1) and (1,0), we can also see that many coincidence groups had
only one cluster regardless of which layer it was in. These insights can also be
confirmed by looking at the means of x and y, which are just below 1.

The second histogram records the average cluster size for each coincidence
group in layers 1 and 2. On the right, we have a color bar representing the number
of hits for each cell. We can observe that the cell with the highest number of hits
(shown in yellow) is around (11,11), and then there are also cells (0,11) and (11,0)
which have a relatively high hit count. By this, we can infer that most clusters
had size 11. By referring to the first histogram, where it was shown that a lot of
coincidence groups had only one cluster, the high number of hits in cells (0,11)
and (11,0) also makes sense, keeping in mind that the most common cluster size
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was 11 and the cluster only appeared in one layer. Looking at the histogram, we
can also see that most of the cells have recorded hits, although in significantly
lower numbers (shown in purple). This tells us that the average size of clusters
can vary a lot because there can often be outliers (clusters that appear differently
than expected). We see around the edges, though, that some white cells appear
with no recorded hits, so as the size gets bigger (towards 50 and above), it gets
much rarer to see clusters of that size. This considerable diversity in size is also
expressed by the standard deviation, which is much higher than the standard
deviation of the first histogram.

Then, there are four one-dimensional histograms regarding the angles φ (the
azimuth angle representing the direction in 2D space) and θ (the angle representing
the deviation from the normal to the detector screen). Examples of such histograms
are seen in Figures 6.3 and 5.12.

In Figure 6.3, in each histogram, the value of φ is given in the x-axis, and
the number of counts for each bin is given in the y-axis. The first histogram
records the value of φ in the provided ROOT file. It can be seen that the values
are restricted between 0 and 90, which limits the possible azimuth direction of
a cluster. The second histogram shows the estimated values of φ from Analyser.
This estimation is done using the “line of best fit” method. Now, we can see a high
number of counts around -3, which makes sense after looking at the ROOT input
file manually, as you will notice most clusters tend to lean just a little toward the
bottom. This is something that the first histogram cannot tell us.

In Figure 5.12, there are experiments done in three different ROOT files, where
two histograms are produced for each, one recording the value of θ from the file,
and the second one recording estimated values of θ for coincidence groups with
one-to-one matches in clusters in layer 1 and 2. In each histogram, the value of θ
is given in the x-axis, and the number of counts for each bin is given in the y-axis.
Looking at the mean presented in each histogram, we can see that the mean of
the histogram with estimated values matches very closely with the actual value of
θ for the given file. In contrast, the mean of histograms with the original values θ
tends to differ quite a lot from the actual value.

At last, four more histograms will represent the average energy of clusters
for each region of the pixel screen defined by the neutron converters between the
layers (see Figures 5.9a, 5.9b, 5.9c, and 5.9d). In each histogram, the energy is
given in the x-axis, and the number of counts for each bin is given in the y-axis.
For each region presented, we can observe that most of the clusters have energy
below 200 keV, although the standard deviation is very high, so the range for
energy is quite large.

Filtering

Filtering, using options shown in Figure A.6, can be done according to the
properties of clusters or coincidence groups. When you filter by the properties of
clusters, there are some main attributes you can filter by, such as:

• size,

– greater than,
– smaller than, or
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Figure A.6 The filtering options available.

– equal to

an integer value representing size in pixels;

• type,

– undefined,
– dot,
– small blob,
– curly track,
– heavy blob,
– heavy track,
– straight track,

which is already determined in the source ROOT file (examples can be seen
in Figure A.7);

• time over threshold,

– greater than,
– smaller than, or
– equal to

an integer representing the time over threshold in nanoseconds (will evaluate
to true if it holds for any of the pixels of the cluster);

• time of arrival,

– greater than,
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Figure A.7 The cluster types available.

– smaller than, or
– equal to

an integer representing the time of arrival in nanoseconds (will evaluate to
true if it holds for any of the pixels of the cluster);

• φ (phi) (in degrees),

– approximately (± 5 degrees) equal to

an integer representing the value of φ in degrees;

• layer,

– 1 or
– 2;

• volume,

– greater than,
– smaller than, or
– equal to

an integer representing the volume in keV;

• extra cuts,

– a string containing a valid cut to filter by (see below for description).

However, sometimes these may not be enough, so if you want to filter by some
attribute that you know to be in the dataset but is omitted here, or if you want to
include more advanced mathematical functions built-in in ROOT (such as sqrt(),
sin(), abs(), and so on) on the attributes already available, you can use the “extra
cuts” option where you specify a filtering condition. A cut is typically a string
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representing the condition to be applied to the data in the ROOT tree. You can
combine multiple conditions using logical operators like && (logical AND), ||
(logical OR), and ! (logical NOT). You can use parenthesis and ROOT built-in
mathematical functions, and the logical operators follow the usual precedence.
E.g., “clstrRoundness>0.6 && clstrType>3” is an example of a cut, meaning that
the roundness of the cluster (attribute clstrRoundness) should be greater than
0.6 and the cluster type (attribute clstrType) should be greater than 3, which
means that the cluster should be a heavy blob, heavy track, or straight track. An
example satisfying such a cut would be the coincidence group seen in Figure A.8.

When filtering coincidence groups, you can choose filters like unequal cluster
count in layers 1 and 2, having more than 1 cluster in layer 1 (so you get clusters
overlapping in time), only appearing in layer 2, or having clusters with size bigger
than the minimal size given in pixels (if a coincidence group contains at least
one cluster of size bigger than the specified minimal size), which again remains
to be determined by you. The filters are disjunctive, so whenever any of the
filtering conditions are fulfilled, the coincidence group is considered. An example
of filtering coincidence groups by the attribute of having only clusters in layer two
is seen in Figure A.9.

Figure A.8 An example of a coincidence group with clusters satisfying the cut
“clstrRoundness>0.6 && clstrType>3” during filtering of clusters.

Figure A.9 An example of a filtered coincidence group with clusters only in layer 2.
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In the output, similarly to analysis, you will get an interactive view that you
can browse through, a PDF file of the filtered data (when clicking the “Save
PDF” button seen in Figure A.10), and a ROOT file containing only the filtered
clusters/coincidence groups (when clicking the “Save ROOT” button seen in Figure
A.10). The PDF and the ROOT file will be named “<output-file-name>.pdf” and
“<output-file-name>_out.root” respectively. These files will be generated only
after the filtering is done and a message reporting that is displayed to you (see
Figure A.11). They will also be found under a directory called “generatedResults”
in the same directory as the input file provided.

Figure A.10 Possibilities for obtaining filtering clusters or coincidence groups.

(a) (b)

Figure A.11 Messages informing you that the filtered ROOT and PDF files have
been generated.

Coincidence Group Reevaluation

This feature, shown in Figure A.12, allows for reevaluating coincidence groups
based on spatial information. You can specify the value of angle θ (theta) in
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Figure A.12 The options for coincidence group reevaluation.

degrees (the deviation of the stream of particles from the normal to the surface of
the detector), as it can be used to determine the major and minor of the ellipses
Analyser will use for reevaluation. The particles are hitting the detector at an
angle θ from the normal to the surface of the detector. Specifying θ enables one
to check the position of clusters in both layers corresponding to the same particle.
Analyser can then partition clusters into groups representing different particles if
the clusters appear too far from each other in space. This represents an additional
restriction on top of temporal information for creating coincidence groups.

Then, you have three options for determining the angle φ (phi). You can
choose to use the φ already computed in the dataset, compute it on the go for
linear tracks using the line of best fit estimation and ignore it for blobs (as the
φ direction is not important for round clusters), or set it to a certain value in
degrees that you think is appropriate and general enough to represent the dataset
well and not have a bad effect on the results.

Examples of reevaluated coincidence groups are shown in Figures 5.13 and 5.14.
Two proton particles that happened to appear at the same time are reevaluated
using spatial information and separated into two different coincidence groups.

When reevaluating a ROOT file and assigning new coincidence groups, you
can choose to save the result as a reevaluated ROOT file (when clicking the “Save
ROOT” button seen in Figure A.13), a reevaluated PDF file (when clicking the
“Save PDF” button seen in Figure A.13), or both. The reevaluated ROOT file
will contain all the clusters of the original file but with new coincidence groups
assigned based on the computations done during reevaluation. It will be named
“<output-file-name>_reeval_out.root”. The reevaluated PDF file will contain all
the reevaluated coincidence groups unless restricted by a maximum PDF page
limit that you can specify (strongly recommended so that you do not end up with
a PDF file containing hundreds of millions of pages). This file will be named
“<output-file-name>_reeval.pdf”. These files will be generated only after the
reevaluation is done and a message reporting that is displayed to you (see Figure
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Figure A.13 Output possibilities for reevaluating coincidence groups.

(a) (b)

Figure A.14 Messages informing you that the reevaluated ROOT and PDF files have
been generated.

A.14).

A.3.2 Command Line Usage
Using the command line, you can do batch processing for global analysis,

filtering clusters, training regression models, using pre-trained models to make
predictions, and filtering protons out of ROOT files. To get the desired results,
you can specify certain arguments through the command line. The provided
arguments are:

• -h, --help – used to display what parameters you can specify and what
each of them means,

• -f, --files – used to list the paths to the ROOT files (separated by
commas) that you want to use as datasets in batch processing,
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• --ga, --globalanalysis – used to specify that you want to perform global
analysis on the data,

• --fc, --filterclusters – used to specify that you want to filter clusters
from the data,

• --fp, --filterprotons – used to specify that you want to filter protons
out from the data (i.e., the output will contain clusters that are likely not
protons),

• -t, --train – used to generate a regression model with SGD (stochastic
gradient descent) where the files specified by --files are used as datasets
to train on using features given by specifying --features,

• --fe, --features – features to use for the regression model separated by
commas, where the last one represents the output (y),

• --pd, --predictdataset – used to specify that you want to predict a given
dataset using a model that was previously trained and check the model’s
performance,

• --model – the path to the model file to be used for prediction,

• --cut – a string representing a valid cut to filter clusters by (enclosed in
double quotes),

• --outfilename – the name of the output file serving a similar function as
that described in the GUI mode,

• --maxPdfSize – the maximum number of pages a resulting PDF file can
contain,

• -p, --testfile – the path to the ROOT file that will be used to test
regression model predictions,

• --lr, --linearreg – used to specify that linear regression should be used,

• --qr, --quadraticreg – used to specify that quadratic regression should
be used.

There are some restrictions on argument usage so that the program gets all
the information necessary to complete a certain task. I will give some notes on
how to use the arguments to perform the task you need:

• The five main tasks you can perform through the command line are global
analysis, filtering of clusters, filtering protons out, training a regression
model, and using a previously trained model to predict a ROOT dataset
and check its performance. For this reason exactly one of --ga, --fc, --fp,
-t, --pd needs to be set.

• --files should always be specified (unless you are performing prediction
and --pd is specified) and contain at least one file path because the program
needs at least one ROOT dataset to work with.
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• If -t is specified, you can train models. Still, more information is necessary
to continue with the task, so the following arguments are required together:

– Exactly one of --lr and --qr needs to be set, indicating the regression
type you want.

– You need to provide at least two valid features to use for training by
using the argument --features.

• --outfilename should always be specified in order to know where to save
the results (obligatory).

• If you specify one of --ga, --fc, or --fp, then you also specify:

– --maxPdfSize to set a maximum page limit for your resulting PDF
file (optional but recommended).

• When you set --maxPdfSize to 0, no PDF file will be generated.

• If your goal is global analysis, you use --ga, and no additional arguments
are required.

• If your goal is filtering clusters, then you use --fc. Additionally, you must
also set the argument --cut and define a valid nonempty cut to filter clusters
by. The cut represents the same thing as in the GUI, and you can filter by
any of the attributes available in the ROOT file.

• If your goal is filtering protons out, you use --fp, and no additional argu-
ments are required. The result will be a ROOT file with clusters that are
likely not protons.

• If your goal is predicting a ROOT file using a pre-trained model, you use
--pd and set the following arguments:

– You should give exactly one test file to test the model on via the
argument --testfile.

– You need to provide the same features you used to train the model by
using the argument --features.

– You should give exactly one file path of the pre-trained model file by
using the argument --model.

The result will be a report of the Root Mean Squared Error in the command
line and a CSV file containing the predictions.

If any condition fails to hold, the program will exit and return with an error
message indicating the problem.

I will list some example usages for the five main tasks:

• Global analysis

./TimePix3Analyser --files path/to/file1,path/to/file2
--ga --maxPdfSize 50 --outfilename "res"
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You want to perform global analysis on “file1” and “file2”, and you define
the name of the resulting files to be “res” and limit the size of the PDF file
generated to 50 pages.

• Filtering of clusters

./TimePix3Analyser --files path/to/file1,path/to/file2
--fc --outfilename "res"
--cuts "clstrRoundness>0.6&&clstrType<3"

You want to look at files “file1” and “file2” and filter them by the roundness
of clusters (attribute clstrRoundness) being bigger than 0.6 and the cluster
type (attribute clstrType) being smaller than 3, which means only clusters
that are dots, small blobs, or curly tracks. You further define the name of
the resulting file as “res”.

• Filtering protons out

./TimePix3Analyser --files path/to/file1,path/to/file2
--fp --maxPdfSize 0 --outfilename "res"

You want to look at files “file1” and “file2” and filter protons out of them.
You further define the name of the resulting file as “res” and by setting the
maximum PDF size to 0, you do not want any PDF file to be generated as
a result.

• Training a regression model

./TimePix3Analyser --files path/to/file1,path/to/file2
--features clstrLength,clstrRoundness,clstrType
--qr --train --outfilename model

You want to train a quadratic regression model using the files “file1” and
“file2” as training data. You use features clstrLength and clstrRoundness
as independent variables in training and feature clstrType as the dependent
one. You further define the name of the resulting file as “model”.

• Predicting a ROOT file using a pre-trained model

./TimePix3Analyser --testfile path/to/file1
--features clstrLength,clstrRoundness,clstrType
--pd --model path/to/model --outfilename preds

You want to test the performance of your pre-trained model on a test ROOT
file called “file1”. You get your serialized model from the file “model” and
set the same features you used to train it. You also specify that the output
CSV file with predictions should be saved as “preds.csv”.
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A.3.3 Filtering Protons Out
When filtering protons out from a ROOT dataset (performed via command

line), you should follow the steps described in Section A.3.2 for running the
application. When the processing is done, there are two files generated. One of
them is a PDF file containing visual representations of the filtered result. This
will be called “<output-file-name>_noprotons.pdf”. However, if the maximum
PDF page count is set to 0, this PDF file will not be generated at all. The other
file generated is a ROOT file containing the filtered clusters (without proton
clusters that were removed in the process). This will be called “<output-file-
name>_noprotons.root”. Both of these files will be found in the directory called
“generatedResults” created in the same directory as the first input file you provided.

A.3.4 Training Regression Models
When you want to train a regression model on the ROOT datasets you provided

via the command line, you should follow the steps described in Section A.3.2 for
running the application. During processing, the input datasets provided will be
fed into the multivariate linear or quadratic regression model one by one until
there are no more clusters to process. When the model is trained, the computed
coefficients will be printed out for you, and the model will be saved in a file called
“L_<output-file-name>.dat” if you performed linear regression, or “Q_<output-
file-name>.dat” if you performed quadratic regression. This generated file will
contain a serialization of the model you just trained. The file can later be used
for predictions.

A.3.5 Using a Pre-trained Model for Predictions
When you want to use a pre-trained model to test its performance and make

predictions, you should follow the steps described in Section A.3.2 for running
the application. Analyser will deserialize the given model you provide using the
command line via the argument model. It will use the test ROOT file you provided
to make predictions on it for testing. The program will compare these predictions
to the real ones provided in the datasets and estimate how good the performance
of this model is by computing the root mean squared error. Ultimately, it will
present this error to the user in the command line so the user can evaluate how
well this model performed.

To present the predictions to you more clearly, it will also save them into a CSV
file. The CSV file will contain three columns: the cluster index, the real output
value, and the predicted output value. The name of the CSV file will be “<output-
file-name>.csv”. It will be saved under a directory called “generatedResults”,
which will be created in the same directory as the first input file you provided. A
snippet of such a CSV file after using a previously trained model to predict the
value of θ is shown in Figure A.15.
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Figure A.15 A snippet from a CSV file containing model predictions.
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B Attachments
In the electronic attachment, the following information is included:

B.1 Analyser - Source Code
This folder includes all the source code used to build all of the tools mentioned

as part of this thesis. It contains C++ and Cmake files.

B.2 Analyser - Executables
This folder will contain two folders inside with executables for MacOS and

Linux operating systems.

B.3 Analyser - User Documentation
This folder will contain the user documentation for the application that contains

installation instructions, features, and tutorials on how to run the application.

B.4 Link to the Test Data
This folder (the dataset drive) contains some ROOT files that can be used to

test the application. There are 5 files with proton data and one file with neutron
data. Note: the size of most files is in gigabytes.

B.5 Link to GitLab Repository
The repository of the project (where the source files are) can be found at

https://gitlab.mff.cuni.cz/smajljap/timepix3gui.
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