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Introduction
Musical beat and rhythm is something that is fairly easy for people to detect.

We often see people tapping their foot when listening to a song. Dancing is also
based on rhythm and on our ability to hear it.

But in some cases we cannot use our ability to detect rhythm, we need to do it
automatically — for example in musical mobile games. For me, this problem arose
when I wanted to develop an application for automatic choreography generation
for games like Dance Dance Revolution or StepMania. These games are based on
dance pads — a square pad that people stand on that has arrows pointing in every
direction. The goal is to press these arrows with our feet (and sometimes hands)
based on the displayed choreography. There is a large database of songs that
people can choose from, but I wanted to expand the possibilities and choose songs
that are not in this database. That is why I wanted to develop an application
that would generate a choreography for any given song.

To do that, I had to first look into automatic rhythm recognition. There are
many approaches that people tried over the years, many publications, papers,
books and projects. I decided to test different approaches and see which of them
work the best or if there are some specific situations where some methods are
better than other. In this thesis, I will describe my findings.

I decided to split the task of rhythm recognition into several sub-tasks. The pro-
posed algorithm will always have the following four steps, but different approaches
in each step will be examined. The four main steps are:

1. Onset detection.

2. Tempo analysis.

3. Beat detection.

4. Rhythm detection.

Onset refers to the beginning of a musical note or other sound, so onset
detection is an obvious first step in rhythm recognition. Rhythm is usually
determined by repeating patterns in musical notes. In order to detect rhythm, we
must first detect when notes start.

Musical tempo, also known as beats per minute, defines the pace of a song. It
doesn’t have to be constant, it can change throughout the song — for example in
classical music. But in this thesis, we will focus on songs with constant tempo.

Beat is the element that drives music forward. It is often described as a
sequence of perceived pulse positions that are equally spaced in time. Beats are
considered to be the fundamental component of rhythm.

After detecting beats, we can finally move to rhythm detection. Rhythm is
the pattern of sounds, silences, and emphases in a song. It is dependent on the
dynamics of strong and weak beats, played beats and rest beats, or long and short
notes.

In this thesis we will introduce different methods for onset detection, tempo
analysis, beat detection, and rhythm detection. The first chapter will describe the
necessary theoretical background for this topic. The second chapter will provide
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an overview of related work. Then, the following four chapters will look at each
subtask of the proposed algorithm for rhythm recognition — onset detection,
tempo analysis, beat detection, and rhythm detection. Different approaches for
each subtask will be described and tested. In the last chapter, we will look at
the implementation of the proposed approaches and we will compare them by
conducting experiments.
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1 Theoretical background
What is music? Many people tried to define it, but music is a complicated

concept. Most definitions are circular or incomplete. Personally, I like this
definition:

”Music is an organized sound.” — Edgard Varèse [1]
Music is a format of art using sound. It is a combination of sounds that express

ideas and emotions through rhythm, melody, harmony and color.

1.1 Basic musical terminology
Music has many fundamental elements. In this thesis, the main focus will be

on the rhythmic part, but we will briefly introduce other elements of music. After
that, important concepts for rhythm will be introduced more thoroughly.

Sound

Sound is and acoustic wave that travels through a medium such as air. Waves
that have frequencies lying approximately between 20 Hz and 20 kHz can be
captured by human ears. Music is composed of sounds in this frequency range.

Musical tone

A musical tone is a steady periodic sound, which has many properties such as
duration, intensity, pitch, or timbre. Duration refers to the length of the sound
and intensity refers to its loudness.

Pitch is the perceived frequency of a sound. It allows us to order sounds on a
scale based on how high or low we perceive them.

Timbre, also known as tone color or tone quality, is the perceived sound quality
of a sound. It allows us to distinguish different instruments or voices that produced
the sound.

Musical note

Notes are the basic building blocks in music. They are closely related to the
concept of tone. Notes have a value, which corresponds to their relative duration.
The basic note values are: a whole note (semibreve), a half note (minim), a
quarter note (crotchet) and an eight note (quaver), where each note is half of
the duration of the previous one. There are other note values corresponding to
different fractions (or multiples) of the whole note.

Melody and harmony

Melody is a series of musical tones sounding one after another. It is often
perceived by humans as one entity.

Harmony refers to combined pitches that are sounding together at the same
time. An important harmonic concept are chords. Chord is a set of notes sounding
simultaneously. Chords play a key part in most modern music genres.

9



1.2 Important concepts for rhythm recognition
As I already mentioned, rhythm will be the main focus of this work. Rhythm

recognition will consist of these steps: onset detection, tempo analysis, beat
detection, and rhythm detection. In this section, we will describe onset, tempo,
beat, and rhythm. Specific methods used in each step will be described later.

1.2.1 Onset
Onset refers to the beginning of a musical note or other sound. It is related

to two additional musical concepts: the attack and the transient of a note. At
the beginning of a musical tone, there is often a sudden increase of energy. The
attack of a note refers to the sound build up. Transient is a short sound with high
amplitude and it typically occurs at the beginning of a sound event.

Onset refers to the single instant that marks the beginning of the transient.

1.2.2 Beat
In music, beat is the basic unit of time. It is the element that drives music

forward. It can be defined as a repeating pulse that underlies a musical pattern.
Beat is specified by two parameters: a phase and a period.

Beat is a fundamental component of rhythm. It is often the pattern that
humans tap their foot to when listening to a musical piece.

1.2.3 Tempo
Musical tempo, also known as beats per minute, defines the pace of a song. It

describes the number of beats that occur per minute in a song. It is given by the
reciprocal of the beat period. Tempo doesn’t have to be constant, it can change
throughout the song — for example in classical music.

Tempo of a musical piece can be described by a number denoting beats per
minute, or it can be described by words. There is a standardized vocabulary for this
purpose that uses mostly Italian terms — for example lento (slow, 52–108 beats
per minute) or allegro (lively, 120–156 beats per minute). But this terminology is
mostly used in classical music. Modern songs often use just a number specifying
beats per minute (BPM).

Metronome

A metronome is a device that produces a click (or some other sound) at a
regular interval. The interval can be set by the user and it is typically set in beats
per minute.

1.2.4 Rhythm
Rhythm is a fundamental part of music. It is the pattern of sounds, silences,

and emphases in a song. The pattern is usually short enough for humans to
memorize.
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As previously stated, beats are the fundamental component of rhythm. Rhythm
is dependent on the dynamics of strong and weak beats, played beats and the
inaudible but implied rest beats, or long and short notes.

Measure, tactus and tatum

Measure, tactus and tatum are three terms closely related to musical rhythm.
A measure (also known as a bar) is a defined segment of time in a musical piece.
In musical notation, it is denoted by a vertical line on each side. A measure
provides structure to music notation since it groups notes together. It is usually
defined by the number of note values it contains.

Tactus (or pulse) corresponds to the underlying pulse in music. It usually
corresponds to the quarter note levels. It sets the tempo of a musical piece,
because it defines a series of beats equally spaced in time. Not all beats need to
be audible, they can also be implied (rest beats).

Tatum is the smallest time interval between successive notes.

1.3 Audio signal processing
Audio signals are electronic representations of sound waves. Audio signal

processing is focused on electronic manipulation of those waves. It is a subfield of
signal processing.

An important feature in audio signal processing is sound loudness, which is
measured in decibels.

Decibel

Decibel (dB) is a relative unit of measurement. One decibel is equal to 0.1 bel
(B). The bel scale is logarithmic, it uses logarithm with base 10. That means that
an increase of 1 B is equal to a tenfold relative increase.

The energy of audio signal (perceived as sound loudness) is measured in decibels,
relatively to the intensity of 1 pW/m2, which is approximately the threshold of
hearing. This is useful because sensitivity of human ears is also logarithmic — if
two sounds differ in intensity by 1 B (10 dB), we will perceive the louder one as
approximately twice as loud.

But the decibel scale is used as a unit for ratio in general. That is why
throughout this thesis, we will see decibel scale portraying relative changes in
power, but it will not necessarily correspond to the classical sound scale.

1.3.1 Analog and digital signal
Analog signal

Analog signal is a continuous-time signal. Sound itself is an analog signal.
Analog recordings capture the continuous sound wave of the signal.

Analog signal typically represents sound using a changing level of electrical
voltage. The most common recording mediums are magnetic tape and vinyl
records.
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Analog signal cannot be processed by computers — that is why we need to
convert it to digital signal. Converting an analog audio to a digital format usually
requires the use of an analog-to-digital converter.

Digital signal

Digital signal is obtained from an analog signal using sampling and quantization.
Sampling is a process of making the time-axis discrete, quantization is a process
of making the value range discrete. Digital signal represents the original analog
sound sampled at regular intervals with values rounded (or truncated) to the
nearest discrete value.

1.3.2 Sampling rate
Sampling rate fs (or sample rate, sampling frequency) defines the number of

samples per second taken from a continuous (analog) signal to make a discrete
(digital) signal. It is measured in Hertz. The higher the sampling rate, the higher
frequencies can be captured in the digital representation.

In order to obtain a lossless representation of the continuous signal, we need
to use a sampling rate such that it is possible to capture the highest frequency
fmax present in the signal. The connection between the sampling rate fs and the
highest frequency fmax that can be captured is defined by the Nyquist-Shannon
sampling theorem.[2]

Nyquist-Shannon sampling theorem

The Nyquist-Shannon sampling theorem states that: Let fmax be the maximum
frequency value of the continuous-time signal xcont(t). In order to get a discrete-
time copy x(t) of xcont(t) that can be reconstructed perfectly to its original form
xcont(t), we need to use a sampling rate fs, such that:

fs > 2fmax.

The highest frequency that can be captured when using sampling rate fs is
called the Nyquist frequency:

fNyquist = 1
2fs.

Standard sampling rates

There are some standard sampling rates that are used in most places. The
first one is 44.1 kHz, or 44 100 samples per second, which is the standard for CDs
and other audio formats. This rate was chosen because it can reproduce the whole
sound frequency range audible to the human ear (because 20 kHz, which is the
highest audible frequency, is smaller than the Nyquist frequency).

Another common sampling rate is 48 kHz, or 48 000 samples per second. This
sampling rate is often used in audio for video.

12



1.3.3 Audio file formats
An audio file format is a file format used for storing digital audio. There are

several different file formats used for storing audio, each has its specifics. Some
formats use data compression to reduce the file size, other formats have higher
quality.

There are many different audio file formats, for example Waveform Audio File
Format or MPEG Audio Layer 3.

Waveform Audio File Format

Waveform Audio File Format is a lossless audio file format. It provides excellent
sound quality, but the file size is quite large. This format is used when the highest
audio quality is needed. Files of this format have an extension .wav or .wave.

This is the file format that is used in the provided Python package. Waveform
Audio File Format is used because the audio quality is high so the program can
work with complete information. Also, the conversion from other audio formats
to Waveform Audio File Format is simple.

MPEG Audio Layer 3

MPEG Audio Layer 3 is probably the most popular audio format. It uses a
lossy data compression, so the sound quality is not as high as with Waveform
Audio File Format, but it is still good. A big advantage is smaller file size. Files
of this format have an extension .mp3 (or .bit).

1.4 Audio signal domain features
Audio features capture some aspect of an audio signal. Different features

capture different aspects of the signal. After extraction, these features can be
used for audio signal processing.

1.4.1 Frame size and hop length
Frame size and hop length are two very important feature extraction parameters.

Usually, audio features are computed over some input signal and they return one
number. If this computation was applied over the whole signal, we would get only
small amount of data. That is why framing is used — the input signal is cut into
smaller frames and features are calculated over them. That way, we get more
information about the overall behavior of the signal.

Frame size specifies number of samples in a frame (number of samples per
second is specified by sampling rate). Hop length refers to the number of samples
by which we have to advance between two consecutive frames. In other words, it
determines the overlap between frames.

These two parameters are related to the temporal scope categorization in the
next section. But they are introduced sooner, because they are one of the most
important parameters in audio signal processing.

13



1.4.2 Categorization of audio signal features
Audio features can be categorized based on different properties, such as level

of abstraction, temporal scope, musical aspect, or the signal domain.

Level of abstraction

Feature categorization can be based on their level of abstraction. There are
three levels: low-level, mid-level and high-level audio features.

Low-level features are statistical features and they contain detailed informa-
tion about the signal. They make sense to computers, but they are not easily
interpretable by humans.

Mid-level features provide information about the structure and composition of
sound. They are associated with musical attributes such as pitch, beat or note
onsets. These features can be perceived by humans.

High-level features are abstract features that give us a deeper understanding
of the musical aspects of the signal. They are understood and enjoyed by humans.
These features include concepts such as chords, melody, rhythm, or tempo.

Temporal scope

In this case, feature categorization is based on the time duration over which the
feature is calculated. There are three temporal scope categories — instantaneous,
segment-level and global.

Instantaneous features contain information about the signal at a specific time
instant. They capture very short chunks of the signal, in the range of milliseconds.
The minimal temporal resolution that humans can perceive is 10 ms.

Segment-level features are calculated over segments of audio, typically in the
range of seconds.

Global features are aggregate features that summarize the information from
lower temporal resolution features. They provide information about the entire
audio signal by aggregating results from lower-level features.

Musical aspect

Feature categorization can also be related to musical aspects of the signal such
as rhythm, pitch or note onsets.

Signal domain

Feature categorization can be based on the signal domain they belong to.
There are two main categories — time domain and frequency domain features.

Time domain features are extracted directly from the audio waveform. They
provide information about the temporal characteristics of the sound. Time domain
feature extraction is considered to be simpler than frequency domain extraction,
because no transformation is required.

Frequency domain features focus on the frequency components of sound. These
features can be obtained by applying the Fourier transform to the time-domain
representation. They provide information about spectral characteristics.
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I decided to categorize features primarily by the signal domain they belong
to. In the following sections, I will introduce specific time domain and frequency
domain features and other related concepts.

1.4.3 Time domain
Time domain signal processing techniques are based on the audio waveform

observed over a period of time.

Waveform

A waveform is a graphical representation of an audio signal as it moves through
some medium over time. It displays amplitude or level changes over time.

The simplest type of waveform is a sine wave. It represents a single sound
frequency:

Figure 1.1 Sine wave

Waveforms can be both periodic and aperiodic. An example of a periodic
waveform is the previously mentioned sine wave, an example of an aperiodic
waveform is a waveform depicting some noise. The main focus of this thesis are
song waveforms, which are complex periodic waveforms. They are composed of
multiple different sine waves.

Figure 1.2 Waveform

The song used in the visualization of the waveform and all of the visualizations
in this thesis (unless specified otherwise) is Valhalla Calling Me by Miracle of
Sound.

15



Amplitude envelope

Amplitude envelope describes the maximum amplitude of an audio signal in
one frame. It is very easy to compute, but still very useful.

Mathematically, for a frame k containing samples xi1 , xi2 , . . . , xiℓ
, the amplitude

envelope is:
AE(k) = ℓmax

j=1
xij

Figure 1.3 Amplitude envelope

Zero crossing rate

Zero crossing rate is simply the number of times the signal crosses zero (the
time axis) in one frame.

Mathematically, for a frame k containing samples xi1 , xi2 , . . . , xiℓ
, the zero

crossing rate is:

ZCR(k) = |{j | i1 ≤ j < iℓ ∧ sgn xj ̸= sgn xj+1}|.

Figure 1.4 Zero crossing rate

Root mean square energy

The root mean square energy is obtained by taking the square root of the mean
of the square of all the amplitude values in a frame. The root mean square energy
contains information about the overall intensity of an audio signal by taking into
account both positive and negative excursions of the waveform. It provides an
accurate measure of the signal’s power.
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Mathematically, for a frame k containing samples xi1 , xi2 , . . . , xiℓ
, the root

mean square energy is:

RMSE(k) =

⌜⃓⃓⃓
⎷1

ℓ

ℓ∑︂
j=1

x2
ij

Figure 1.5 Root mean square energy

1.4.4 Frequency domain
In the frequency domain, the signal is represented as a function of frequency.

The audio signal is decomposed into its constituent frequencies, revealing the
amplitude and phase information associated with each frequency.

Fourier transform

The Fourier transform is a frequently used technique in signal processing. It is
the most common tool used for converting a signal from time domain to frequency
domain. It transforms a function of time xcont(t) to a function of frequency
Xcont(f). Formally, the Fourier transform equation is:

Xcont(f) =
+∞∫︂

−∞

xcont(t)e−2iπft dt

It takes a continuous signal xcont(t) as input and decomposes it into a sum of sine
and cosine waves of different frequencies each with specific amplitude and phase.
The sine and cosine waves are included in the complex exponential e−2iπft. That
can be seen with the Euler’s formula: eix = cos x + i sin x.

If we want to get back from the frequency domain to the time domain, we can
simply apply the inverse Fourier transform:

xcont(t) =
∫︂ +∞

−∞
Xcont(f)e2iπftdf

Discrete Fourier transform

Fourier transform works with a continuous signal. Since digital signal is
discrete, we need to use a discrete version of it — the Discrete Fourier transform
(DFT):

X(f) =
∞∑︂

t=−∞
x(t) · e−i2πftT
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where T is the duration of one sample (so for sampling rate fs, the duration of
one sample is T = 1/fs).

Since the time function is discrete, the resulting frequency function will also
be discrete. For an input signal of length ℓ we will get N discrete frequency bins,
where N = ℓ/T . A frequency bin ni, i ∈ {0, . . . , N − 1} covers following interval
of frequencies: ni =

[︂
fs·i
2N

, fs·(i+1)
2N

]︂
For our usage — audio signal processing — the input time function x(t) will

always be non-zero in finite number of points. That means that the infinite sum
will be computed from finite number of non–zero values, so the result will also be
finite.

Fast Fourier transform

Fast Fourier transform (FFT) [3] is an algorithm that computes the Discrete
Fourier transform of a sequence, or its inverse. Computing DFT directly from
definition is often too slow and impractical. FFT reduces this complexity from
O(N2) to O(N log N), where N is the frequency domain size. FFT is based on
the divide-and-conquer principle and it needs for frame size to be a power of 2.

Short time Fourier transform

DFT describes frequency components in the whole input signal. But sometimes
it is useful to look at shorter parts of signal separately — when we take a song,
the frequency components change over time based on which part of the song is
played. That is when Short time Fourier transform (STFT) can be used. It is
simply a sequence of Discrete Fourier transforms applied on short parts of the
input signal. In our case, STFT is applied on frames.

STFT can also be used in the continuous domain, but for the purpose of this
work, only the discrete domain is useful.

Typically, STFT uses a window function w(n) applied over a time-domain
function x(t). Two commonly used windows are the rectangular window and the
Hamming window. The rectangular window simply takes the desired part of a
signal and replaces all values but those with 0.

Figure 1.6 Rectangular window (Source: wikipedia.org)

The Hamming window applies tapers to the ends. It is part of the cosine-sum
window family, which has the following formula:
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w(n) =
K∑︂

k=0
(−1)kak cos

(︄
2πkn

N

)︄
, 0 ≤ n < N.

The parameter N specifies the length of the window. Cosine-sum windows for
case K = 1 have the form:

w(n) = a0 − (1 − a0) cos
(︃2πn

N

)︃
, 0 ≤ n < N.

If we set a0 to approximately 0.54 we will get the Hamming window.

Figure 1.7 Hamming window (Source: wikipedia.org)

Mathematically, the discrete STFT can be expressed as:

X (m, f) =
N−1∑︂
n=0

x(n + mH)w(n) · e−i2πfn/N ,

where m specifies the frame index and f is the frequency index. The maximal
frequency index is nmax = N/2 and the corresponding frequency is the Nyquist
frequency.

The frame size is specified by N and H is the hop length. w is a sampled
window function w ∈ [0 : N−1] of length N ∈ N. So x(n+mH) is the discrete-time
signal in the n-th sample of the m-th frame.

The number X (m, f) is also called the f -th Fourier coefficient for the m-th
frame. It is sometimes denoted as F(m, f).

Magnitude spectrogram

A magnitude spectrogram is a two-dimensional representation of the spectrum
of the audio signal frequencies over time. It is usually depicted as a heat map —
the x axis represents time, the y axis represents frequency bins and the loudness
(or magnitude) of a particular frequency is represented by the color of each point.
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Figure 1.8 Spectrogram

Tempogram

Tempogram indicates specific tempo relevance for each time instance in a song.
It is similar to a spectrogram, which indicates frequency relevance at each time
instance.

Mathematically, a tempogram is a function

T : R × R>0 → R≥0

depending on a time parameter t ∈ R and a tempo parameter τ ∈ R>0 measured
in beats per minute (BPM). The value T (t, τ) indicates how much the signal
contains a locally periodic pulse of tempo τ in the neighborhood of time t.

In practice, discrete time-tempo grid is used. From that, we get a discrete
tempogram

T : Z × Θ → R≥0,

where Θ ⊂ R>0 is a finite set of possible tempo values measured in BPM. The
value T (t, θ) indicates how much the signal contains a locally periodic pulse of
tempo θ ∈ Θ in the neighborhood of time t ∈ Z.

Figure 1.9 Tempogram
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2 Related work
Automatic rhythm recognition in music is a field that has been studied ex-

tensively. This chapter will provide an overview of some of the resources that
inspired this thesis.

Fundamentals of Music Processing

Fundamentals of Music Processing [4] is a book focused on the whole area of
music processing, not just rhythm recognition. It includes a whole chapter on
Tempo and Beat Tracking. This book also has additional resources — called FMP
Notebooks [5] — that show how to use the theoretical concepts from the book in
practice.

Fundamentals of Music Processing is also the main resource that I used for
this thesis. The chapters about onset detection and tempo analysis are based
mostly on information from this book.

The book offers several approaches for onset detection:

1. Energy-based approach

2. Spectral-based approach

3. Phase-based approach

4. Complex-domain approach

We will look at the first two approaches — the energy-based and the spectral-based
approach.

Fundamentals of Music Processing also describes several approaches for tempo
analysis:

1. Fourier tempogram

2. Autocorrelation tempogram

3. Cyclic tempogram

We will use the first two approaches — the Fourier tempogram and the autocorre-
lation tempogram.

Musical note onset detection based on a spectral sparsity measure

Musical note onset detection based on a spectral sparsity measure [6] is a
research paper focused on the task of note onset detection. The authors propose
a method for onset detection based on spectral sparsity. Spectral sparsity is a
frequency-domain feature which indicates how many frequencies are needed to
represent the audio signal in a particular time frame.
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A Review of Physical and Perceptual Feature Extraction Techniques
for Speech, Music and Environmental Sounds

A Review of Physical and Perceptual Feature Extraction Techniques for Speech,
Music and Environmental Sounds [7] provides a very thorough overview of different
audio signal features. It does not focus solely on musical audio features, but many
of the mentioned features are applicable for music processing.

The authors mention for example amplitude-based features, zero-crossing rate
or STFT-based features.

Music Audio Rhythm Recognition Based on Recurrent Neural Network

Music Audio Rhythm Recognition Based on Recurrent Neural Network [8] is a
research paper published in March 2022.

The paper proposes a machine learning approach for rhythm recognition. It
uses recurrent neural networks with gated recurrent units to build a short-term
music audio rhythm extraction and recognition model. It also examines the impact
of different activation functions on the model’s accuracy.

Librosa

Librosa [9] is a Python package for music and audio analysis. It provides many
tools for onset detection, tempo analysis and beat detection.

The Librosa package is used in the experimental part of the thesis. Audio file
manipulation and tempogram calculations are done using the package.

2.1 Automatic step file generators
As I already mentioned, this thesis was inspired by games such as Dance Dance

Revolution, because I wanted to create an automatic choreography generator (or
more precisely, automatic step file generator). That’s why I researched this
particular area extensively. There are some systems created exactly for this
purpose. They are closely related to the task of rhythm recognition, because
rhythm is useful for good step placement.

Dancing Monkeys

Dancing Monkeys [10] is a project for automatic step file generation from 2003.
This project was implemented in MATLAB.

Just like in this thesis, it is assumed that the input song has constant tempo.
Tempo and beat detection in this project is based mostly on the assumption that
beats are played by instruments with high energy (like bass instruments). This
approach is similar to the energy-based approach that will be introduced in this
thesis in the onset detection part.

Dance Dance Convolution

Dance Dance Convolution [11] is a machine learning conference paper from
2017 focused on the task of learning to choreograph. The authors combined
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recurrent and convolutional neural networks for step placement prediction and
long short-term memory model for step selection.

The step placement prediction starts by computing multiple-timescale STFT
using three different window lengths, because shorter window sizes contain infor-
mation related to low-level features while larger window sizes provide information
for high-level features. Then the STFT magnitude spectrum dimensionality is
reduced to 80 frequency bands.

The output of this part is then used as an input to a convolutional neural
network. After that follows a recurrent neural network with 2 layers of long
short-term memory units. The final part is a simple sigmoid unit which estimates
the probability that a step will be placed.

23



3 Onset detection
Onset refers to the beginning of a musical note or other sound. It is a single

point that marks the beginning of a transient of a note.
For onset detection, we will try two different approaches: an energy-based

approach and a spectral-based approach. Both follow the same steps, but each
one uses different signal properties. The steps are as follows:

1. Extract suitable audio features from the input signal.

2. Derive a novelty function from the extracted data.

Each approach will be tested on the same song and the resulting graphs will
be displayed, so we can see advantages and disadvantages of both approaches.

Novelty function

Before looking at the onset detection approaches, we must introduce the
concept of novelty functions. Novelty function ∆ : Z → R is a function that
denotes local changes in signal properties. When computed from certain signal
properties, peaks in novelty function should indicate note onsets.

3.1 Energy-based approach
The first approach uses root mean square energy (RMSE) audio feature. RMSE

is a time domain feature that contains information about the overall intensity or
strength of an audio signal. This approach is based on the assumption that note
onsets correspond with sudden increases in energy.

3.1.1 Extract root mean square energy
The first step is to calculate RMSE of the input signal. That will give us

information about energy changes in the signal.

Figure 3.1 Root mean square energy

3.1.2 Derive energy based novelty function
After extracting root mean square energy, we want to derive the energy-based

novelty function. In order to do that, we need to apply the following steps:
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1. Calculate the discrete derivative.

2. Apply half-wave rectification.

Discrete derivative

In order to find points with sudden energy changes, we can use the derivative
of the energy function. The function is discrete, so the easiest way to obtain a
derivative of it is to calculate the difference between two subsequent energy values
for the whole function (this operation is also called first-order difference).

Half-wave rectification

After obtaining the discrete derivative, half-wave rectification should be applied
to the result. We are only interested in energy increases, so we want to keep only
the positive differences. Negative differences are irrelevant for locating note onsets,
so they can be set to zero.

This is exactly what half-wave rectification does. For a discrete input function
f(t) it sets all its negative points to zero:

y(t) = max(f(t), 0)

Putting everything together, the energy-based novelty function is obtained by
computing

max (RMSE(k + 1) − RMSE(k), 0)

for each two consecutive frames in the input signal k and k + 1.

Figure 3.2 Comparison of root mean square energy function and the computed novelty
function

The problem with the computed novelty function is that some note onsets
do not contain nearly as much energy as other note onsets, this can depend
for example on the musical instrument. We can partially fix this by applying
logarithmic compression to the root mean square energy of the signal, so that
energy increases are amplified and it is easier to detect them.
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Logarithmic compression

Logarithmic compression is a powerful tool. Let γ ∈ R>0 be a positive constant.
Then, the logarithmic compression Lγ(x) of a positive real value x is computed as:

Lγ(x) = log(1 + γx).

The function Lγ(x) is equal to zero when x = 0, but it behaves like log(γx)
when x is large. Parameter γ, also called the compression factor, regulates the
degree of compression.

After applying logarithmic compression, we will again calculate the discrete
derivative and apply half-wave rectification. The resulting novelty function will
be:

∆RMSE(k) := max (Lγ(RMSE(k + 1)) − Lγ(RMSE(k)), 0)

If we choose a high enough compression factor γ, energy increases will be
amplified. The downside is that the logarithm can amplify noise-like sound
components, which may result in peaks that do not indicate note onsets. So we
need to choose the compression factor carefully.

Figure 3.3 Comparison of energy based novelty function before and after logarithmic
compression (γ = 10)

We can see that peaks are much more distinct when we applied logarithmic
compression. These peaks should indicate note onsets.

3.2 Spectral-based approach
The second approach is based on spectral-based novelty function, also known

as the spectral flux. It is computed from time-frequency representation of the
signal. The idea is that by tracking changes in frequency content of the signal, we
can detect note onsets.

26



3.2.1 Spectral based novelty function
Computing spectral based novelty function is more complicated than energy

based novelty function. Following steps are needed:

1. Compute spectrogram.

2. Apply logarithmic compression.

3. Compute the discrete derivative.

4. Apply half-wave rectification.

5. Sum up results across all frequency bins.

6. Subtract local average and normalize the result.

Spectrogram

First step is computing the magnitude spectrogram X .

Figure 3.4 Spectrogram

Logarithmic compression

To enhance weak spectral components, we will apply logarithmic compression
to the spectrogram X :

Y = Lγ(|X |) = log(1 + γ|X |)

By increasing γ, low-intensity components are brought out. But with too large
compression factor, irrelevant components (like noise) can be amplified as well.
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Figure 3.5 Spectrogram after logarithmic compression (γ = 10)

Discrete derivative

Just like in the previous approach, we are interested in amplitude changes,
so we need to compute the discrete derivative. But in this case, the discrete
derivative is computed for each frequency bin separately.

Half-wave rectification

Just like in the energy-based approach, we are interested only in amplitude
increases, so we need to apply half-wave rectification. Again, it should be applied
on the results of the previous step and on each frequency bin separately. We can
look at it in a way that we are computing a novelty function for each frequency
bin.

Sum up results across frequency bins

Now we need to combine the results of all frequency bins. To do that, we
need to sum up the results from the previous step at each point in time. In other
words, we take the functions for each frequency bin and we sum up their values at
the same time point.

Figure 3.6 The result of summing up novelty functions across all frequency bins
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Subtract local average and normalize the result

To enhance the properties of the spectral based novelty function, we can first
subtract local average and then apply normalization.

Subtracting local average should suppress small fluctuations in the function.
We just need to choose the number of subsequent frames M that will be used to
compute local average. After computing the local average, we subtract it from
the novelty function. If the result is less than 0, we set it to 0.

After that, we just apply simple normalization to get the normalized spectral-
based novelty function ∆Spectral

Figure 3.7 Spectral novelty function after local normalization (M = 410, fs = 44100)

Just like in the first approach, the peaks should indicate note onsets.

3.3 Comparison of approaches
When we look at the resulting novelty functions (which were both computed

on the same song part), we can see a very clear difference between the results.
Some peaks are in both novelty functions, but some are only in one of them.

Figure 3.8 Comparison of energy-based and spectral-based novelty functions

29



The energy-based approach has some disadvantages. One was already men-
tioned — some musical instruments produce sounds that do not contain as much
energy as other instruments. Fo example, bass or percussive onsets contain a lot
of energy. But if these instruments are not present, the energy-based approach
might not work well.

Another problem is that not all sounds are steady — for example a vibrato.
Wih these types of sounds, energy novelty function can look different than we
would expect and these note onsets would not be detectable.

Spectral-based approach solves these problems and works better in more
situations. Peaks are more distinct and it works better even for instruments with
non-steady sound. That does not mean that the energy-based approach is bad —
in many cases it will work great (for example in songs with very distinct drums
and bass). But spectral-based approach should generally work better.
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4 Tempo analysis
Musical tempo, also known as beats per minute, defines the pace of a song.

It describes the number of beats that occur per minute in a song. This thesis
focuses on songs with constant tempo. We will also assume that beats are aligned
with note onsets.

One problem that arises with tempo analysis is that there are various levels of
notes that contribute to the overall rhythm. We then have to decide which level is
the level where tempo should be detected. There is for example the measure level,
tactus level or tatum level. Depending on which level we choose, the resulting
tempo will be different. But generally all of the levels should result in numbers
that are multiples of one another — for example 152 BPM and 76 BPM. 152 is a
multiple of 76 and both of those numbers could be a correct tempo representation
of the same song.

Tempograms

For tempo analysis, we will use tempograms, specifically discrete tempograms:
T : Z × Θ → R≥0

Since tempograms indicate tempo relevance for each time instance in a song,
they need some input time-based signal. That is where novelty functions will be
used, because they enhance note onsets. Beats should mostly align with some
note onsets and beats and tempo are closely related.

We will try two different approaches — using Fourier tempogram and autocor-
relation tempogram. We will start with a discrete-time novelty function where
peaks indicate note onsets (or rather note onset candidates). Since spectral novelty
function should work better in more instances, it will be the novelty function used
in all of the provided illustrations. But the steps would be the same for other
novelty functions.

4.1 Fourier-based approach
The idea behind the Fourier-based approach is to detect local periodicities by

comparing the novelty function with windowed sinusoids. We need to compute
correlation between a section of the novelty function and the windowed sinusoid.
High correlation indicates a periodicity of the sinusoids frequency. To compute
this correlation, we can use short time Fourier transform (STFT).

4.1.1 Fourier tempogram
To understand the Fourier tempogram, we must first introduce the Fourier

coefficient.

Discrete Fourier tempogram

The discrete Fourier tempogram is a function
TFourier(m, τ) := |F(m, τ/60)|
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where τ is tempo value in BPM. F is the complex Fourier coefficient:

F(m, f) :=
∑︂
t∈Z

∆(t)w(t − m)e−2πift

where ∆ is the input novelty function.
In practice, the Fourier tempogram is computed only on some defined interval

of reasonable tempi, because some BPM values (too high or too low) don’t make
sense in the musical sense.

The Fourier tempogram TFourier reveals the dominant tempo over time. The
dominant tempo can be seen in the visualization of the tempogram:

Figure 4.1 Fourier tempogram

For better visualization of dominant tempi, we can also sum up the Fourier
tempogram for each BPM value and inspect this function. A higher value indicates
a more dominant tempo.

Figure 4.2 Fourier tempogram results summed up for each BPM value after normal-
ization

We can see that the dominant tempi are at 76 BPM and 152 BPM. Both of
these values make sense based on the note level we decide to use. And both are
correct for the input song.
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4.2 Autocorrelation-based approach
The second approach for tempo estimation is the autocorrelation-based ap-

proach.

4.2.1 Autocorrelation
Autocorrelation measures the similarity between a signal and a time-shifted

version of it. Mathematically, autocorrelation Axx : Z → R of a discrete-time
signal x : Z → R is defined as

Axx(ℓ) =
∑︂
m∈Z

x(m)x(m − ℓ).

This yields a function dependent on a lag parameter ℓ ∈ Z. It is maximal for
ℓ = 0 and symmetric in ℓ. The maximum in ℓ = 0 results from the fact that
the time-shift in this case is 0, so we are computing similarity of two identical
functions.

4.2.2 Short-time autocorrelation
To obtain some information about tempo, we need to apply autocorrelation

to the novelty function ∆ : Z → R locally — in the neighborhood of some time
parameter. To do that, we will use a window function w : Z → R. We need to
define a windowed version of the novelty function ∆:

∆w,n(m) := ∆(m)w(m − n),

where w is the window function and n is the time parameter.
From that, we can define short-time autocorrelation STA : Z × Z → R. We

can obtain it by computing the autocorrelation of ∆w,n:

STA(n, ℓ) :=
∑︂
m∈Z

∆w,n(m)∆w,n(m − ℓ) = ∆(m)w(m − n)∆(m − ℓ)w(m − n − ℓ)

By computing short-time autocorrelation of the novelty function ∆, we will
obtain a time-lag representation of it. The parameter n is called a frame parameter
and ℓ is a lag parameter.

4.2.3 Autocorrelation tempogram
Now, we need to convert the time-lag representation into time-tempo rep-

resentation. To do that, we have to convert the lag parameter ℓ into a tempo
parameter τ . We will need the sampling rate fs for that. The formula for
computing tempo from lag ℓ (given in frames) is then simple:

τ = 60 · fs

ℓ
BPM.

The time-lag representation can look for example like the first function in
the following visualization. Higher value indicates higher autocorrelation for the
corresponding lag value.
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Figure 4.3 Time-lag and time-tempo representation

A higher value in time-tempo representation indicates that the corresponding
tempo is more dominant. This is what is needed to obtain information about
dominant tempi, but we will still introduce the autocorrelation tempogram.

The autocorrelation tempogram TAutocorrelation is defined as

TAutocorrelation(n, τ) := STA(n, ℓ) = STA
(︄

n,
60 · fs

τ

)︄
.

Just like in the previous approach, the autocorrelation tempogram reveals
dominant tempo over time, which can be seen in the tempogram visualization:

Figure 4.4 Autocorrelation tempogram

The dominant tempo can be seen either from the tempogram visualization or
the time-tempo representation.
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Figure 4.5 Time-tempo representation (normalized)

In this case, the most dominant tempi is at 75 BPM, which is almost correct.
Then there are two other very high peaks but they are also not correct. Although
the values are very close to the correct tempi (76 and 152 BPM), there is a small
error.

4.3 Comparison of approaches
Both approaches were applied on the same song. Fourier tempogram had the

best results, because the first two most dominant tempi were correct. But the
autocorrelation-based approach also gave good results.

The autocorrelation tempogram is generally less accurate. Although the most
dominant tempo is often very close to the correct value, it is rarely completely
correct. The Fourier tempogram is more reliable. We will look into this more in
the experimental part.

Figure 4.6 Comparison of approaches
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5 Beat detection
Beat is the element that drives music forward. It is specified by two parameters:

the phase and the period. The period p is given by the reciprocal of the tempo.
The phase s then specifies a time shift. The beat function is a sinusoid with
period p shifted by s.

We will assume that beat positions align with the strongest note onsets. And
(as was previously stated), we will assume that the tempo is constant throughout
the whole song.

5.1 Period and phase

5.1.1 Period
Period specifies the duration between two consecutive beats. It can be cal-

culated directly from tempo (for songs with constant tempo). Since tempo was
already obtained in the previous step, we can easily compute the beat period p as

p = 60
τ

where τ is tempo in BPM. The duration of beat period p is specified in seconds.

5.1.2 Phase
The beat phase specifies the shift of the sinusoid from 0. Since the beat

function is a function of time, the phase s specifies a time shift. Intuitively, if we
were to start a metronome set to the previously found tempo τ after a time shift
s, its clicks would align with the song beats.

Time shift detection will be one of the main focuses of this chapter. But before
we can start calculating the time shift, we need to extract dominant peaks.

5.2 Peak picking
Peaks in novelty function should indicate note onset candidates. Because our

goal is to detect beats, we don’t need to detect all note onsets. In theory, main
beats should be indicated by more dominant peaks in novelty function.

Since we are interested primarily in beat detection, we should extract N note
onset candidates so that the number N is the same or higher than the expected
number of beats. We want to pick at least N onset candidates, where N > τ

60 · L,
where L is the song duration in seconds.

5.2.1 Strongest peaks
The first and most straightforward approach would be to just take the N

strongest peaks. But this approach has one major problem — different song
parts (for example chorus) have higher sound intensity. That would mean that
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we would pick onset candidates mostly from louder parts and we will not have
many candidates from other parts of the song.

5.2.2 Local strongest peaks
A better approach would be to partition the song into smaller sections and then

apply the first approach on each section separately. This will result in more evenly
distributed onset candidates, which should be more useful for beat detection.

The following visualization shows this approach applied to the first 15 s of
spectral novelty function using partitions of 5 s.

Figure 5.1 Detecting peaks in normalized spectral novelty function in partitions

5.3 Finding time shift
The beat phase specifies the shift of the sinusoid from 0. Since the beat

function is a function of time, it specifies a time shift.
We will try three different approaches for phase calculation — based on score,

based on score with penalty and based on the phase of tempo frequency.
We will also consider only time shifts in the interval s ∈ [0, p]. So we won’t

take into account that there might be a longer time interval before the actual
start of the song, the possible time shift values are from 0 to the duration between
two consecutive beats.

5.3.1 Based on score
The first approach is very intuitive. We will try all possible time shifts (or not

all, but those that make sense in our case), give each one a score and then pick
the one with the highest score.

We will start with 0 second time shift. Then we will start increasing the time
shift by 1 millisecond until we reach the time shift of p seconds. We will calculate
score for each of those time shifts and then pick the one with the highest score.
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Time shift

We have a finite set of time shifts that we need to go through. We will calculate
score for each time shift si, i ∈ N, i ∈ [0, p · 1000]. We multiply p by 1000, because
we consider time shifts at multiples of 1 ms.

Click track

For calculating score we will use a click track. That is an audio signal that is
0 everywhere except for click times. Those click times are periodic with period p.
So it is like a metronome set to a tempo τ .

In reality, we don’t need the actual click track, it is just much easier to picture
the calculations with it. But we will only use the click times in our calculations.
These click times will be shifted by si milliseconds and then score will be calculated.

Let’s call this click track C = C0, C1, . . . , CB−1, where B is the number of
beats that can fit in the song duration with phase 0 and period p.

Tolerance interval

We will need to define a tolerance interval of size I, that will be used to
calculate score. It will specify how close a note onset candidate needs to be to
some click time so that it gets awarded a score point.

Figure 5.2 An example of click times (not shifted) with their tolerance intervals

Score

We need to calculate a score for each time shift si. The idea is that we will
increase the click times by si milliseconds and then calculate their score Si.

We will award 1 score point to each click time Cb, b = 0, 1, . . . , B − 1 shifted
by si that is close to some note onset candidate. Then we will sum up the scores
for all click times to get score Si. After trying all possible time shifts, we will use
the one with the highest score. Mathematically:

Si,b =

⎧⎨⎩1 if |(Cb + si) − Ob| ≤ I

0 otherwise
,

where Cb is the b-th click time, Cb + si is its shifted version and Ob is the closest
note onset candidate to Cb + si. The overall score Si for a time shift si is simply
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the sum of all Si,b:

Si =
B−1∑︂
b=0

Si,b

The idea behind this approach can be seen from the following illustration,
where shifted click times that have a note onset candidate (black) in their tolerance
interval are highlighted with red:

Figure 5.3 Shifted click times

The most important parameter in this approach is the size of the tolerance
interval I. If the chosen size is too small or too big, the approach might not find
the correct time shift. A good tolerance interval is around 10–20 ms, because it
allows for some small fluctuations in beat times, but if the result is shifted by
some milliseconds, human ears should not pick up on that.

Larger tolerance interval might result in a larger error in time shift, that
would be audible to humans. Smaller tolerance interval might be too strict when
awarding score points, because some small fluctuations are almost always present
(for example because of different musical instruments).

5.3.2 Score with penalty function
The first approach is very straightforward — if there is a peak in the tolerance

interval around a time click, we increase the score by 1. But shouldn’t we award
more points when a time click is closer to a note onset candidate? It is definitely
better to have an onset candidate that is only 1 ms far than if it was 10 ms far.
And what about onset candidates that are just outside of the tolerance interval?
They are still ”better” than those that are even further, but they all get awarded
0 points.

The second approach tries to solve these problems. Instead of simply awarding
0 or 1 score point, it awards a number of points based on how far the closest note
onset candidate is from current time click. The closer the candidate is, the more
points it gets. To do that, we will use a penalty function Pp.

Score

The score S
Pp

i,b for a shifted time click Cb + si will be calculated as:

S
Pp

i,b = 1 − Pp(d),
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where d is the distance between the shifted time click Cb + si and the closest onset
candidate Ob, so

d = (Cb + si) − Ob.

The total score S
Pp

i for a time shift si will again be the sum of scores for each
shifted time click.

Penalty function

The penalty function Pp will be used to penalize each shifted click time based
on how far the closest note onset candidate is. The closer a candidate is to a
shifted click time Cb + si, the higher the score should be. The penalty function Pp

is dependent on the beat period p (that is why it has the subscript p). The function
will be even (Pp(d) = Pp(−d)) and minimal in 0, so that the smallest distance
between a time click and a candidate (0) has the lowest penalty. Larger distances
should be penalized more until some specified distance, where the penalization
will reach its maximum. The maximum penalization is 1, so that the resulting
score is never less than 0.

We could use many different penalty functions, the only requirement is that
smaller distances will get smaller penalization. This is true for example for a
quadratic function. If the distance d to the closest note onset candidate is greater
than half of the beat period p, the shifted time click will be get a penalization
of 1, so its score will be S

Pp

i,b = 1 − 1 = 0. Otherwise, it will get a penalization
Pp ∈ [0, 1]. More precisely:

Pp(d) =

⎧⎨⎩d2 · 4
p2 if d ≤ p

2
1 otherwise

The multiplication by 4
p2 will result in normalization of the penalty, so that

the value is between 0 and 1.

Figure 5.4 Penalty function

This function is clearly even, minimal in 0 and penalizes larger distances more
than smaller distances.

5.3.3 Phase of the tempo frequency
This approach is based on the assumption that a song is just a sum of different

sine waves of different frequencies. We will try to use the frequency of the already
found tempo.
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The tempo τ is defined in BPM. If we convert it to Hertz, we can find the
phase of this frequency fτ throughout the whole song and try to use it as a phase
of beats.

Unfortunately, after testing this approach, the results were not correct. One
reason for that might be that the found tempo wasn’t precise. There could be
some small error — too small to be detectable in terms of BPM, but still significant
during the phase calculation. Another reason could be that the tempo frequency
fτ often fell in the middle of some frequency bin and not at the start. Because of
that it was impossible to calculate the precise phase of it.

5.3.4 Comparison of approaches
The third approach didn’t work at all, so it is clearly the worst approach out

of the three. Because it didn’t work, it won’t be shown in the experimental part.
When we look at the first two approaches, the quadratic penalty function

should be an improvement of the first approach. The penalty function ensures
that the score given is proportional to the distance between the closest onset
candidate and a time click. So it should perform better than a simple 0 or 1 like
in the first approach and the results should be more precise.

However, the first approach works quite well if the tolerance interval is chosen
wisely. It might not find the best time shift, but if the error is so small that it
is not noticeable by human ears (for example around 10 milliseconds), then we
can say that the result is somewhat correct. We usually need the result to be
perceived as correct by humans, so a tiny error is insignificant in those cases.
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6 Rhythm detection
Rhythm is the pattern of sounds, silences, and emphases in a song. It is quite

complicated to detect rhythmic patterns automatically. So we will make the task
a little bit easier — instead of trying to find complicated patterns, we will focus
on strong note onsets that are frequently occurring after beats approximately
after the same time as other note onsets. To do this, we will again use score.

In this chapter, the song used for visualizations is Spark by Vexento, since it
has a simple rhythm.

6.1 Calculating score
We will consider peaks in novelty function and try to find peaks such that

their distance from the closest preceding beat is approximately the same as for
other peaks throughout the song. We will consider distances at multiples of 1 ms
in the interval d ∈ [0, p ∗ 1000].

Just like with beat detection based on score, we will define a tolerance interval
and we will assign one score point to all of the distances in the tolerance interval
of a currently processed distance. This tolerance interval should once again be
very small — around 10–20 milliseconds.

Figure 6.1 Very simple rhythmic pattern drawn over spectral novelty function —
beats are black, other rhythmic peaks are red

6.2 Song partitioning
Scoring will not be calculated for the whole song at once. It will be calculated

on smaller chunks of the song. We should get the best results if we calculate score
separately for verses, choruses and other parts of the song. But verse and chorus
detection is not an easy task.

6.2.1 Verse and chorus detection
One possibility for verse and chorus detection is to use root mean square

energy. But in this case, instead of computing it as an instantaneous feature (in
terms of milliseconds) we will compute it as a segment-level feature (in range of
seconds). This will give us information about energy of longer parts of the song.
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In theory, verse should have lower energy than chorus, so there should be very
clear changes in the energy function when going from a verse to a chorus.

This can be clearly seen in the following illustration. We can see a very clear
pattern, with two high-energy parts (choruses) and two low-energy parts (verses):

Figure 6.2 Result of RMSE calculated for 8 s segments

To detect the transitions between different song parts, we can compute discrete
derivative. Then we will take the absolute value of the result, because we want to
detect both verse-chorus (low-high) and chorus-verse (high-low) transitions.

Significant peaks in the derived function should indicate transitions between
different song parts:

Figure 6.3 Peaks in the discrete derivative of segment-level RMSE

If we go back to the original graph before applying discrete derivative, we can
see that our approach worked quite well:

Figure 6.4 Song divided into chorus and verse parts

It is important to mention, that in reality, songs have other parts than just
choruses and verses, like bridge. For simplicity, these were not mentioned in the
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description of this approach. But in reality, this approach should work the same
no matter what the song part is — the important thing is that each part has
significantly different energy.

Unfortunately, this approach has many flaws. It relies on the assumption
that there will be distinct energy changes between parts, but that is not always
true. That means that with songs where energy fluctuations are not distinct, this
approach will not work. In that case, we will try a different approach.

6.2.2 Parts of predefined length
If verse and chorus detection fails, we will simply divide the song into smaller

chunks of predefined length. The length shouldn’t be too small or too big, otherwise
the scoring will not give any useful information. Smaller tens of seconds should
be an optimal size.

Then, we will calculate score for each part separately and highlight peaks with
the highest scores just like in the previous approach.

6.2.3 Comparison of approaches for song partitioning
In this case, comparing the approaches does not really make sense. It should

be better to use the first approach (based on verse and chorus detection) if it
detects song parts, but that will not work in most cases. The second approach
will work for all songs, so it is more flexible.

Overall, rhythm detection is a very complicated task. The described approaches
work for songs with very simple rhythmic patterns, but they do not return good
results for more complicated songs.
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7 Experimental results
This chapter will focus on implementation and experimental results of all of

the described approaches. All of the approaches were tried out and tested on
different songs.

7.1 Implementation
The code for rhythm recognition is delivered as a Python package. For

the implementation, I extensively used the Librosa package [9], as was already
mentioned. This package is used mostly for audio file loading and for tempogram
related computations.

7.1.1 RhythmRecognition package
The provided package is called RhythmRecognition. Each step — onset

detection, tempo analysis, beat detection, and rhythm detection — is implemented
in a separate subdirectory — onset, tempo, beat, rhythm. The implemented
approaches in each step are a straightforward implementation of the approaches
described in the previous chapters.

All of the subdirectories have a very similar structure. There is base class
defining the interface and common methods for each step and then there are
classes inheriting from this base class that are implementing a specific approach.

Onset detection

Onset detection offers two approaches — energy-based and spectral-based
approach. They are implemented in EnergyNovelty and SpectralNovelty classes
with base class NoveltyFunction. The usage is very simple — after creating an
instance of the specific class, we can simply call the get() method to obtain the
computed novelty function. When creating an instance, we need to pass the audio
file name as an argument.

Tempo analysis

Tempo analysis offers Fourier-based and autocorrelation-based approach. They
are implemented in FourierTempogram and AutocorrelationTempogram classes
with base class Tempogram. Depending on if we want to get only the most
dominant tempo value or the whole tempogram, we can either call get_tempo()
or get_tempogram() on a specific tempogram instance. When creating an instance,
we need to pass a novelty function as an argument.

The get_tempo() method works as follows: it takes first few most dominant
tempo values from a tempogram (default is first 5 values) and groups them into
groups of similar values. Each value also gets assigned a weight based on how
dominant it was in the tempogram. The group with the highest weight is selected
and its weighted average is rounded to the nearest integer. This value is returned
as the most dominant tempo.
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Calculating weighted average helps in cases when the most dominant tempo
value is close to the correct value, but not completely correct. It takes into
account other dominant values, which are usually close to the correct value as
well. Rounding up to the nearest integer also helps, because tempo is usually a
natural number.

Beat detection

Beat detection offers two approaches — based on score and based on penalty.
They are implemented in classes ScoreBeatTracker and PenaltyBeatTracker
with base class BeatTracker. If we want to get the computed beat track for a
given song, we can call get_beat_track() on a beat tracker instance. If we need
just the computed time shift, we can call get_time_shift(). When creating an
instance, we need to pass a novelty function and the song tempo as an argument.

In the beat section, there are also other modules used: peak_picking.py and
click_track.py. The first module, peak_picking.py, offers methods for peak
picking, which is used for extracting note onset candidates from novelty function.
The second module, click_track.py, handles generating the click tracks that
are used for beat detection.

Rhythm detection

Rhythm detection offers two approaches — by partitioning song into equal
parts or by identifying chorus, verse and other song parts. They are implemented
in classes EqualPartsRhythmTracker and ChorusVerseRhythmTracker with the
base class RhythmTracker. If we want to obtain the computed rhythmic track, we
can call find_rhythmic_onsets() on a rhythm tracker instance. When creating
an instance, we need to pass a novelty function, the song tempo and its beat track
as an argument.

7.1.2 Wrapper methods
Since the described steps need results of the previous steps as an argument,

the usage might not be ideal. That is why there are wrapper methods provided as
well. They simply take the song file name and compute everything inside, so that
we do not have to compute each step separately. It is possible to specify which
approach should be used in each step and it is also possible to change the default
parameter values if it is needed.

These wrapper methods can be found in the file detect.py. The following
methods are offered: novelty_function(), tempo(), tempogram(),
beat_track(), beat_time_shift(), rhythm_track(). The only mandatory
argument is the audio file name.

7.1.3 Other parts
Apart from the already described contents of the package, there are also

other modules, for example a file with simple math functions (where things like
logarithmic compression are implemented) or a file with constants (containing for
example the frame size and hop length).
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7.1.4 Parameters
The provided approaches are dependent on many parameters. Everything is

written in a way that the user can change the parameters based on their needs,
but there are default values set in most cases.

7.1.5 Usage
Usage of the provided package is very simple. The installation and usage is

described in the provided README.md file. The file requirements.txt contains a
list of required packages.

Documentation and examples

There is documentation provided for the whole package. It was generated
using pdoc [12], which is an automatic documentation generator. There are also
Jupyter Notebooks showing example usages of the provided code. The notebooks
can be found in the examples directory.

7.2 Experiments
All of the described approaches were implemented and applied on different

songs. The experiments were conducted on 31 songs of different genres and tempi.
Some of the songs do not have constant tempo throughout their whole duration
(for example the beginning might be slower). In that case, a cropped version of
the song was used to satisfy the constant tempo requirement.

There will be some tables with results displayed, where there will be song name
and song artist. Sometimes, there are more artists than just the one mentioned,
but there is always just one artist mentioned for each song. This is only for better
readability of the tables.

Some of the results are easy to test automatically, others are more complicated.
Testing of the four main steps — onset, tempo, beat, and rhythm — will be
described more thoroughly in the following sections.

Parameters

As was already mentioned, the provided methods are dependent on many
parameters. I used the default values as they are set in the provided package. I
will mention the values of the most important parameters that I used:

• sampling rate — 44 100 Hz,

• frame size — 2 048 samples,

• hop length — 512 samples.

All of the steps were tested extensively with different parameters. The provided
configuration returned the best results.
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Code

The code with tests and results can be found in the tests directory.

7.2.1 Onset detection testing
There are no tests specifically for testing onset detection. The results of onset

detection are used in all other steps, so we can compare the approaches for onset
detection by comparing the number of correctly detected tempi or by listening
to found beats and rhythmic patterns. So we will decide later which of the two
approaches was better based on the results of the other steps.

7.2.2 Tempo analysis testing
Tempo is the easiest step to test out of the four main steps. Each song has

constant tempo and this value can be easily obtained — I used a combination
of online resources and tap tempo tools. So we just need to compare the correct
value with the value that the program will return.

Results

The following table shows results of testing for both tempograms and both
novelty functions. The first two columns contain the song and the artist name,
then the actual tempo in BPM is displayed and after that the results of the Fourier-
based approach and autocorrelation-based approach computed over energy-based
and spectral-based novelty functions are displayed.

Cell color indicates whether the calculated BPM was correct, close to the
correct value or completely wrong. Correct values are those that are a multiple of
the actual tempo or whose multiple is the actual tempo. They are indicated by a
green cell color.

Yellow cell color indicates values that are very close to the correct value (with
the difference of 1 or 2 BPM).

Red color indicates wrong results.
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Energy novelty Spectral novelty
Name Artist BPM Fourier Autocorr. Fourier Autocorr.
Alone Alan Walker 97 194 48 194 185
Around the World ATC 132 132 128 132 129
Baby Shark Pinkfong 115 115 113 115 112
Beautiful Life Ace of Base 135 135 131 152 67
Believer Imagine Dragons 125 125 122 125 122
Call Me Maybe Carly Rae Jepsen 120 120 117 180 117
Can’t Stop the
Feeling!

Justin Timberlake 113 113 111 113 111

Don’t Speak No Doubt 76 75 75 152 147
Faded Alan Walker 90 180 88 180 89
Fight Song Rachel Platten 176 176 44 176 86
Firework Katy Perry 124 124 121 124 121
Hollaback Girl Gwen Stefani 110 82 72 165 72
I’m Still Standing Elton John 177 178 87 178 87
It’s My Life Bon Jovi 120 120 59 120 117
Love You Like a
Love Song

Selena Gomez 117 117 114 117 114

Mambo No. 5 Lou Bega 174 174 86 174 167
On My Way Sabrina Carpenter 170 127 42 128 42
Seven Nation Army The White Stripes 124 123 121 124 61
Shake It Off Taylor Swift 160 120 105 160 79
Shape of You Ed Sheeran 96 144 48 144 127
Spark Vexento 117 117 115 117 58
Stereo Hearts Gym Class Heroes 90 180 89 180 45
Temple of Love The Sisters of

Mercy
166 166 82 166 82

The Nights Avicii 126 126 122 190 62
Thunder Imagine Dragons 168 105 55 168 42
Thunder Gabry Ponte 135 135 131 135 133
Uptown Funk Mark Ronson 115 115 113 115 113
Valhalla Calling Me Miracle of Sound 152 152 149 152 75
We Will Rock You Queen 81 163 40 163 40
Without You Avicii 134 134 131 134 131
Y.M.C.A. Village People 127 127 124 127 63

Table 7.1 Most dominant tempo obtained from the two tempogram approaches
computed over energy-based novelty and spectral-based novelty functions.

The results are very clear — the Fourier tempogram detected the correct tempo
(or almost the correct tempo) in most cases. The autocorrelation tempogram did
not work in many cases. The most dominant tempo value was often very close to
the correct value, but there was usually a small error.

The following table compares the results of the two tempograms computed
over the two different novelty functions.

Tempogram Correct results
energy novelty

Correct and
almost correct
results energy
novelty

Correct results
spectral novelty

Correct and
almost correct
results spectral
novelty

Fourier 22/31 26/31 23/31 25/31
Autocorrelation 2/31 15/31 2/31 16/31

Table 7.2 Comparison of tempogram approaches computed over different novelty
functions.

When we look at the number of correct results, we can see how much more
precise the Fourier tempogram is in comparison with the autocorrelation tem-
pogram. It is the clear winner in all cases. Since it gives the best results, Fourier
tempogram will be used in beat detection testing and rhythm detection testing.

49



When we look at novelty functions results, it is harder to decide which one
was better. Both novelty functions performed very similarly. That means we will
have to use both novelty functions in the following steps and compare the results
once again.

7.2.3 Beat detection testing
Beat detection testing is more complicated than the previous step. But since

the testing is done on a small amount of songs, I decided to conduct beat detection
testing by simply listening to the song with the generated beat track over it. Small
errors in the range of milliseconds are not detectable by human ears, so I was not
able to detect these errors. But it does not matter, because the results should be
used by humans anyway so even if there was a slight error, no one would notice.

Beat detection is dependent on the given song tempo. Just for the beat testing
phase, we will use the correct known tempo even if the tempo analysis approaches
could not find the correct value.

The following table contains results of the conducted testing. There are three
possible values: ok, half and no. “ok” means that the beat track was aligned with
the song beats, “no” indicates that the beat track was shifted completely wrong.
The last option, “half”, indicates that the beat track was shifted in a way that it
was right between the song beats. That is not correct, but it sometimes happened
with songs that had twice as high tempo detected in tempo analysis. If the beat
track was computed using the found tempo, it would be aligned correctly. That is
why I decided to add this third category, because it is not correct but it might be
correct if the calculated tempo value was used.
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Energy novelty Spectral novelty
Name Artist Score Penalty Score Penalty
Alone Alan Walker half yes half half
Around the World ATC half half half half
Baby Shark Pingfong yes half yes yes
Beautiful Life Ace of Base yes yes yes half
Believer Imagine Dragons yes yes yes yes
Call Me Maybe Carly Rae Jepsen yes yes yes half
Can’t Stop the Feeling! Justin Timberlake yes yes yes yes
Don’t Speak No Doubt yes yes yes yes
Faded Alan Walker yes yes half yes
Fight Song Rachel Platten yes yes yes yes
Firework Katy Perry yes yes yes half
Hollaback Girl Gwen Stefani yes yes yes yes
I’m Still Standing Elton John yes yes yes yes
It’s My Life Bon Jovi yes yes yes yes
Love You Like a Love Song Selena Gomez yes yes yes yes
Mambo No. 5 Lou Bega yes yes yes yes
On My Way Sabrina Carpenter yes yes yes yes
Seven Nation Army The White Stripes yes no no half
Shake It Off Taylor Swift yes no yes half
Shape of You Ed Sheeran half half yes no
Spark Vexento yes yes yes yes
Stereo Hearts Gym Class Heroes yes yes yes yes
Temple of Love The Sisters of Mercy yes yes yes yes
The Nights Avicii yes yes half half
Thunder Imagine Dragons yes yes yes yes
Thunder Gabry Ponte half half yes yes
Uptown Funk Mark Ronson yes yes yes yes
Valhalla Calling Me Miracle of Sound yes yes yes yes
We Will Rock You Queen half half no yes
Without You Avicii yes yes yes yes
Y.M.C.A. Village People half half half yes

Table 7.3 Results of beat detection approaches computed over different novelty
functions.

The following table compares the results of the two beat detection approaches
computed over the two different novelty functions:

Beat tracking
approach

“ok” results
energy novelty

“ok” and “half”
results energy
novelty

“ok” results
spectral novelty

“ok” and “half”
results spectral
novelty

Score 25/31 31/31 24/31 29/31
Penalty 23/31 29/31 22/31 30/31

Table 7.4 Comparison of beat detection approaches computed over different novelty
functions.

We can see that the score-based approach gave better results. As for differences
between novelty functions, they again performed very similarly.

7.2.4 Rhythm detection testing
Rhythm detection testing was very similar to beat detection testing. Once

again, I listened to the generated rhythmic track played over the song.
There were significant inconsistencies at the song start, especially if there is

a silent part at the beginning. The program just randomly added some clicks
before the song melody even started. A similar problem sometimes occurred at
the start and end of each part. There were sometimes longer sections without any
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clicks, probably because the song theme changed during that part and the scoring
system did not give enough points to these small sections.

Overall, the approach with equal song partitioning worked better. It worked
even for songs with significant energy fluctuations, where the verse and chorus
tracking could have been used. Equal parting is also more flexible, so I would say
it is the better approach out of the two.

It is almost impossible to classify the results of rhythm detection, since different
people might have different opinions on the results. I personally think that the
results are good if the song has a very simple rhythmic pattern. An example of a
simple rhythmic pattern is when beats are on quarter notes and all eighth notes
are played as well. In this case, the program correctly identifies the eight notes
and generates a rhythmic track with a click on each eighth note.

But if the song has a complicated rhythm, the described rhythm detection
does not give good results.

7.2.5 Discussion
In this chapter, the described approaches for onset detection, tempo analysis,

beat detection and rhythm detection were applied on different songs. The results
show that many approaches work well.

In onset detection, both approaches worked well. The results for both novelty
functions were very similar, so there is no clear winner. The best tempogram
approach was the Fourier tempogram. With beat detection, the score-based
approach was slightly better, but both approaches worked quite well. And for
rhythm detection, equal song partitioning was better.

The fact that the energy-based approach for onset detection worked so well was
very surprising for me. I expected that the spectral-based novelty function would
perform significantly better. I also expected the penalty-based beat tracking to
work better than the score-based approach.

As for tempo analysis, I expected the Fourier tempogram to work better, so
that was not surprising.

Overall, the proposed rhythm recognition algorithm works well. Especially
for the first three steps (onset detection, tempo analysis and beat detection) —
the results are very good and the algorithm detects beats correctly in most cases.
The rhythm detection step is not working as well as the previous three steps, but
it still gives good results in many cases.
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Conclusion
Automatic rhythm recognition in music is a very complex task. We have

introduced an algorithm for rhythm recognition in songs with constant tempo.
The proposed algorithm always has the same four basic steps: onset detection,
tempo analysis, beat detection, and rhythm detection.

We have researched several approaches in each of these steps. For onset
detection, we described two different approaches — using the energy-based and
the spectral-based novelty function. Each of these functions aims to enhance
certain signal properties in order to bring out note onsets. Both novelty functions
gave similar results in the experimental part.

For tempo analysis, we computed a tempogram over a novelty function. We
tried two tempograms — Fourier-based and autocorrelation-based tempogram.
The Fourier-based tempogram returned the best results.

To detect beats in a song, we tried two approaches — based on score and
based on penalty. Both of these approaches aimed to find the best time shift so
that the beat track would align with the song’s beats. The score-based approach
was slightly better in the end.

Finally, for the rhythm detection step, we tried two approaches — based on
partitioning song into equal parts and based on detecting choruses, verses and
other song parts. The equal song partitioning was better, mainly because it was
more flexible and worked on all types of songs.

Based on the research, a Python package called RhythmRecognition was
created. It is very flexible and it offers methods for each step separately or several
steps combined.

Known limitations
The first limitation is, that the algorithm might not work in some cases. There

are many complicated computations and if only one is incorrect, the result is not
usable. This can be easily detected by listening to the results and it might be
possible to change some of the parameters to get better results.

Another limitation is that the algorithm only works on songs with constant
tempo. Unfortunately, many songs do not fulfill this requirement.

Rhythm detection also works only on songs with a simple rhythm. If a song
has a complicated rhythm, the algorithm might not return good results.

Future work
To improve rhythm detection, it might help to use some machine learning

approach. Right now, the programme computes an independent rhythm track
each time. But it would definitely be useful if there were some precomputed
rhythm tracks that could serve as a template for future rhythm track generation.

Another improvement could be to consider songs with fluctuating tempo. If
the algorithm would work on this type of songs as well, the applicability would
increase significantly.
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A Attachments
The implementation of the described rhythm recognition algorithm is provided

as a zip file. The file contains the RhythmRecognition package, documentation,
examples, tests and installation files. The implementation is also available on
GitHub [13].

A.1 RhythmRecognition package
The Python package implementing the rhythm recognition algorithm is located

in the RhythmRecognition directory.

A.2 Documentation
Documentation can be found in the directory documentation. It is in HTML

format.

A.3 Examples
There are Jupyter Notebooks provided that show example usages of the

RhythmRecognition package.They are located in the examples directory.

A.4 Tests
Tests used in the experimental part can be found in the tests directory. The

test results are also located there.

A.5 Installation files
There are two files provided for installation. README.md contains installation

instructions and requirements.txt contains a list of required packages.
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