
BACHELOR THESIS

David Zeman

Approximate Techniques for Dynamic
Vehicle Routing Problems

Faculty of Mathematics and Physics

Supervisor of the bachelor thesis: prof. RNDr. Roman Barták, Ph.D.
Study programme: Computer Science

Study branch: General Informatics

Prague 2024

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

I wish to thank my supervisor prof. Barták for his guidance and support during
the work on this thesis.

ii

Title: Approximate Techniques for Dynamic Vehicle Routing Problems

Author: David Zeman

Department of Theoretical Computer Science and Mathematical Logic: Faculty
of Mathematics and Physics

Supervisor: prof. RNDr. Roman Barták, Ph.D., Department of Theoretical
Computer Science and Mathematical Logic

Abstract: This thesis studies the capacitated dynamic vehicle routing problem
with changing vehicle availability. We are motivated by the increasing demand for
fast and reliable delivery services in recent years. First, we analyze the problem
and build its formal model. Then, we propose several policies to process dy-
namically appearing orders. Next, we implement exact and heuristic algorithms,
such as insertion heuristics, mixed integer programming, evolutionary algorithms,
and ant colony optimization. Finally, we compare the algorithms with different
policies and parameters on Kilby’s dataset.

Keywords: vehicle routing optimization on-line

iii

Contents

Introduction 3

1 Vehicle routing problem 4
1.1 Traveling salesman problem . 4
1.2 Vehicle routing problem . 5
1.3 Dynamic VRP . 7

2 Related work 10
2.1 Heuristics . 10
2.2 Exact methods . 11
2.3 Meta-heuristics . 12
2.4 Kilby’s dataset . 14

3 Problem formulation and its analysis 15
3.1 Properties . 15
3.2 Formal model . 16
3.3 Solution and objective function 16
3.4 Optimality upper bound . 17
3.5 Optimality problems . 18
3.6 Policies . 18

4 Optimization algorithms 20
4.1 Mixed integer programming . 20
4.2 Insertion heuristic . 21
4.3 Evolutionary algorithm . 23
4.4 Ant colony optimization . 26

5 Experiments 30
5.1 Parameter tuning . 30
5.2 Kilby’s dataset . 37
5.3 Distribution of orders . 51
5.4 Runtime . 51
5.5 Conclusion of experiments . 52

Conclusion 54

Bibliography 55

List of Figures 58

List of Tables 60

A Attachments 61
A.1 Implementation . 61

A.1.1 Specification . 61
A.1.2 Algorithms and data structures 61
A.1.3 User interface . 62

1

A.2 attachments.zip file . 64

2

Introduction
The vehicle routing problem (VRP) is a well-known combinatorial optimization
problem studied extensively in the literature. The VRP involves designing a set
of optimal routes for a fleet of vehicles to service a set of customers, subject
to various constraints such as vehicle capacity, time windows, and travel time.
The VRP can consider several objectives, including minimizing the total travel
distance, the number of vehicles used, or the travel time. The original VRP is a
static problem, meaning all the required data are known in advance. However, in
practice, the data for the VRP can be dynamic and change over time.

That is usually called the dynamic vehicle routing problem (DVRP). Dy-
namism in the DVRP can arise from several factors, such as customer demands,
travel times, vehicle availability, and changes in the operating environment. In
recent years, the demand for fast and reliable delivery services has increased, so
the DVRP has become an essential problem in logistics and transportation and
has many applications.

This thesis studies a version of the DVRP with vehicle capacity constraints,
orders revealing over time, and changing vehicle availability. The changing vehicle
availability is assumed simplified - the vehicle can become unavailable after the
delivery of an order. However, the number of vehicles is unlimited so that all
orders can be delivered. The objective of CDVRP is to minimize the total travel
distance and satisfy capacity constraints. Since the VRP is known to be NP-hard,
the CDVRP is even more challenging to solve. Because of that, we do not focus
only on exact algorithms but also study heuristic and meta-heuristic algorithms.

The goal of this thesis is to implement several algorithms for the CDVRP
with changing vehicle availability, use them with a policy, and compare their
performance under different scenarios.

Structure of the thesis
In the first chapter, we introduce the problem and motivation for the study. In
the second chapter, we provide a literature review of the VRP and DVRP and
briefly discuss the algorithms and approaches used to solve these problems. The
third chapter defines the problem precisely, including the mathematical formu-
lation and constraints. It also discusses problems with optimality in dynamic
environments. Then, we propose several policies on how to deal with dynamism.
The fourth chapter presents the algorithms used to solve the CDVRP, includ-
ing exact, heuristic, and meta-heuristic algorithms. The last chapter presents the
results of the experiments and compares the algorithms for different periods, poli-
cies, and order distributions. Finally, we conclude the thesis and discuss possible
directions for future research.

3

1. Vehicle routing problem

1.1 Traveling salesman problem
The vehicle routing problem (VRP) is a generalization of the traveling salesman
problem (TSP), which was already known in the 19th century. It was first for-
mulated probably by W.R. Hamilton in 1859, who also defined the Hamiltonian
cycle on graphs. The goal of the classical TSP is to find the shortest closed route
that visits all places. Since it is known to be NP-hard, there is a lot of research
on approximation algorithms and heuristics.

Formulations
A TSP can be naturally formulated using graph theory. Let G = (V, E) be a
graph. Then the set of vertices V = {v1, v2 . . . vn} corresponds to places, and the
set of edges E ⊆

(︂
V
2

)︂
corresponds to connections between them. Usually E =

(︂
V
2

)︂
is assumed, so G ∼= Kn. Finally, let d : V 2 → R be a distance function. If d is
symmetric, the problem is known as symmetric TSP; if d is a metric, it is called a
metric TSP. The task is to find cycle C ⊆ E that visits each vertex and ∑︁

e∈C d(e)
is minimal. If G is complete, then it is equivalent to finding a permutation of
vertices p that ∑︁

vi,vi+1∈p d(vi, vi+1) is minimal.
The TSP can also be formulated as an integer program. Two main formu-

lations exist. The first one was introduced in Dantzig et al. [1954], often called
the Dantzig–Fulkerson–Johnson (DFJ) formulation. The second formulation was
introduced in Miller et al. [1960], which is called Miller–Tucker–Zemlin (MTZ)
formulation. Both formulations come with decision variables xij ∈ {0, 1}, which
indicate whether an edge between vertices i and j is used. The objective is then:

min
n∑︂

i=1

n∑︂
j=1

d(i, j)xij

Figure 1.1: MIP objective for TSP

The main difference between these formulations is that DFJ formulation states
exponentially many constraints to avoid cycles. That is very impractical since
even processing the program requires exponential time. The MTZ formulation
solves this issue using additional integer variables u1 . . . un that keep values of
order visits.

Approximation algorithms
The TSP is known to be NP-hard but not NP-complete. It is not NP-complete
because it can be reduced to the problem of finding the Hamiltonian path, which
is not NP-complete since even its decision version is. Because of its hardness,
we should be motivated to look for approximation algorithms. No approximation
algorithm can exist in non-symmetric TSP since its optimum may be 0, meaning

4

that any approximation with approximation ration k algorithm must find the
optimal solution.

Two main deterministic approximation algorithms for metric TSP exist. The
first one finds a minimum spanning tree S and then “walks it around”. Let H
denote the optimal solution of TSP on a graph G ∼= Kn. Since the d(S) ≤ d(H),
then the length of the path around S is at most 2d(S) ≤ 2d(H). If d is metric,
where triangular inequality holds, we can even shorten the path by not going
back to the same vertex but directly to the next one.

The second algorithm comes from Christofides [1976]. It is a little more so-
phisticated, and it is called the Christofides algorithm. It starts the same as
the previous one but then improves a solution, finding minimum-weight perfect
matching M on vertices of odd degrees. The first algorithm can use each edge from
S at most twice, but the Christofides uses each edge from S at most once, and
then it uses edges from minimum-weight perfect matching. Since d(M) ≤ d(H)/2
then d(S) + d(M) ≤ 3

2d(H). Both minimum weight spanning tree and minimum
weight perfect matching can be found in polynomial time.

1.2 Vehicle routing problem
The VRP is a natural generalization of TSP where multiple vehicles are available,
so multiple routes can be planned. The VRP was first formally described in
Dantzig and Ramser [1959]. Many generalizations and variants of VRP with
different constraints and objectives exist. This section introduces some classical
ones. Several excellent surveys were already written, like Caceres Cruz et al.
[2014] or Ojeda Rios et al. [2021].

Variants and constraints
The specific variant of VRP determines constraints that a solution must hold.
Generally, two types of constraints are distinguished, hard and soft. Hard con-
straints must be satisfied in every feasible solution. On the other hand, soft
constraints do not have to hold every time. There are many known techniques to
handle soft constraints, like penalty functions or constraint hierarchies.

Typical hard constraints guarantee connectivity of roads or sufficient capacity
of a vehicle, while soft constraints may deal with time windows, service quality
or response time.

In the capacitated vehicle routing problem (CVRP), each vehicle has a limited
amount of resources it can carry. The capacity may be equal for all vehicles or
not. Also, each customer may require a specific amount of resources. When it
is impossible to serve all customers, we may allow multiple trips for one vehicle.
We can also assume partial deliveries, meaning part of the customer’s order is
delivered by one vehicle and the rest by another.

In the vehicle routing problem with time windows (VRPTW), each customer
must be served only in the specific time window. We also may take service
time into account. Working with a time dimension here is essential, making the
problem much harder and more difficult to model.

If there are multiple depots, each with its fleet of vehicles, then it is called
a multi-depot vehicle routing problem (MDVRP). Each depot may also have

5

limited resources to distribute among customers. The fleet of vehicles may be
heterogeneous, meaning each vehicle has a different capacity or capabilities.

In some real-life scenarios, the resource source may not be a depot, but we
must transport resources between nodes. That is called the pickup and delivery
vehicle routing problem (PDVRP). In PDVRP, we can also allow transfers of
resources between depots.

If the information needed for solving VRP reveals or changes over time, it
is called the dynamic vehicle routing problem (DVRP). One variant of DVRP
is called the dial-a-ride problem (DARP), a dynamic version of the pickup and
delivery vehicle routing problem.

One recent variant of VRP is the green vehicle routing problem (GVRP),
which focuses on minimizing environmental impact. On the other hand, it tries
to keep the service reliable and profitable. To minimize environmental impact,
we may want to use routes that avoid heavy traffic areas, or we may prioritize
electric vehicles or public transport usage.

It is not exactly a variant, but a similar problem is the vehicle reschedul-
ing problem (VRSP) that solves the task of updating the current schedule on
unexpected occasions. It was studied in Li et al. [2007].

Finally, if there are some uncertainties in the environment or the results of
actions are probabilistic, then we call it the stochastic vehicle routing problem
(SVRP).

The variants above are just the most essential ones, and most real-life VRP-
like problems combine them. For example, let’s think about meal delivery service
in a city. We definitely have to use capacity and time-window constraints. Then,
there are multiple resources to deliver that are located in different places. Also,
orders for delivery reveal over time, and the city environment is rather stochastic
than deterministic. And lastly, delivery couriers may start and end their shifts
unexpectedly.

The more constrained the problem is, the more difficult it is to find a feasible
solution. That is a huge difference from classical VRP, where any permutation
of vertices is feasible. It causes complications in, e.g., evolution-based algorithms
where a large amount of random valid solutions must be generated in the begin-
ning, which is usually hard. If they are generated with some greedy heuristic, it
often leads to low diversity and a degenerated population.

Objective function
Another important part of any vehicle routing problem variant is its objective
function. It is a function that takes the solution and returns real value propor-
tional to solution quality. Some techniques, like mixed integer programming or
gradient descent, require the objective function to be in special (linear) form, or its
derivative must exist. The objective function also directs meta-heuristics-based
algorithms toward better solutions, like in ant colonies, evolutionary algorithms,
or advanced search algorithms. Here, it is often called the fitness function be-
cause many of those algorithms are inspired by nature, where an individual’s
fitness determines their chance to survive, respectively, to be a good solution.

The simplest objective for classical VRP is minimizing total distance or cost.
This is the same as the objective of the integer program formulation of TSP.

6

Another common objective is to minimize total number of vehicles needed. To
achieve that, we may minimize the number of vehicles directly or set up vehicle
usage costs. In some pickup and delivery variants, the total waiting time or
lateness may be minimized. Sometimes, it is easier to maximize total profit than
to minimize total costs, e.g., when we are not required to serve all customers. For
such complicated scenarios, we may use multi-objective optimization, where we
try to find a trade-off between multiple objectives.

In the stochastic vehicle routing problem, the objective is usually considered
an expected objective value over probabilistic distribution.

1.3 Dynamic VRP
Dynamic vehicle routing problem extends classical VRP with information re-
vealed over time. It usually means that customer orders come as time passes.
Another dynamic component can be travel time affected by real-time traffic, un-
expected travel costs, or vehicle availability. In many dynamic scenarios, it is
necessary to deal with time since orders can be served only in a specific time
window. There is also more pressure on algorithm speed since a customer often
requires a response as soon as possible, which is not the case in static VRP, where
a plan is created before execution.

Measuring dynamism
Measure degree of dynamism may help us better understand the problem’s essence
and select the optimal solution method. Lund et al. [1996] defined the degree of
dynamism as ratio of orders added over time nd and total number of orders n.
This measure is very simple and does not tell us much about the problem.

δ = nd

n

Another approach was introduced in Larsen [2000] as the effective degree of
dynamism. It is the average of orders O disclosure times to normalized by a
number of all orders n. The value δe increases with more orders revealed later,
but does not consider their distribution.

δe = 1
n

∑︂
o∈O

to

T

The δe can also be extended for dynamic vehicle routing problems with time
windows where lo denotes the end of the time window of order o ∈ O. The
formula is then extended as follows:

δe = 1
n

∑︂
o∈O

lo − to

T

The difference lo− to corresponds to reaction time, so orders with longer reaction
time contribute to a total degree of dynamism less than orders with short reaction
time.

7

Policy
A policy is a set of rules on when and how to update a plan when new information
is revealed. There are two general policies mentioned in Pillac et al. [2013].

The first policy is periodic policy. It stores new orders in a buffer and period-
ically solves static instances of a problem. The main advantage is that standard
solution techniques from static VRP can be used. On the other hand, it does
not support immediate response. This method is great for DVRP instances with
relatively low levels of dynamism.

The second one is online policy, which updates a plan every time a new order
arrives. It holds the plan in memory, and every time a new order arrives, it
exploits current knowledge and inserts the new order into existing routes. Usually,
the physical vehicle knows just its following target since the route changes over
time. The advantage is that we do not have to solve the whole instance repeatedly,
but it is more challenging to implement. For implementing continuous policy, we
need an algorithm that can hold one or more possible solutions in memory and
adapt them to new information. This method is great for DVRP, where the level
of dynamism is relatively high.

Practical aspects
There are several practical aspects of the dynamic vehicle routing problem. At
first, we need to communicate with vehicles and customers in real-time, which
may be a challenge. This is usually possible via the Internet or other networks in
populated areas, but it may be a problem in the countryside or rural countries.
Second, it is necessary to have reliable information about the vehicle’s location
and possibly about the current traffic situation. Last, we should be able to deal
with unexpected situations like crashes or traffic jams.

Applications
The dynamic vehicle routing problem has numerous applications across various
industries and sectors, reflecting its relevance to real-world logistics and trans-
portation challenges. Some of these applications include last-mile delivery, on-
demand transportation, emergency response, and waste collection, among others.

In the context of last-mile delivery, as e-commerce continues to grow, efficient
last-mile delivery has become increasingly important. DVRP can help optimize
the routing of delivery vehicles, taking into account real-time changes in customer
demands, traffic conditions, and vehicle availability. By addressing these dynamic
factors, DVRP algorithms can improve delivery efficiency, reduce transportation
costs, and enhance customer satisfaction.

On-demand transportation has gained prominence with the rise of ride-hailing
services and on-demand transit systems. This creates a need for dynamic routing
algorithms that can handle fluctuating customer orders and traffic conditions.
DVRP can be used to optimize vehicle dispatching and routing in these systems,
ensuring that customers are picked up and dropped off in a timely and efficient
manner.

Emergency response is another critical application area for DVRP. In situa-
tions such as natural disasters, medical emergencies, or search and rescue oper-

8

ations, the ability to quickly adapt to changing circumstances is crucial. DVRP
algorithms can help optimize the routing and dispatching of emergency vehicles
and resources, taking into account real-time information about the locations of
incidents, traffic conditions, and the availability of resources.

Waste collection is yet another application where DVRP can be beneficial.
Municipalities and waste management companies need to efficiently plan and ex-
ecute waste collection routes, considering factors such as varying waste generation
rates, vehicle capacities, and traffic conditions. DVRP can help optimize waste
collection routes, minimize the distance traveled, and reduce operational costs
while ensuring timely service to all customers.

Overall, the DVRP plays a vital role in addressing the real-world challenges
of various industries and sectors. By developing and applying effective DVRP
algorithms, significant improvements can be achieved in the efficiency and per-
formance of logistics and transportation systems, ultimately leading to better
services, reduced costs, and enhanced sustainability.

9

2. Related work
Due to its importance in various real-world applications, the dynamic vehicle
routing problem has gained significant research attention over the years. In this
chapter, we review the related work on DVRP, focusing on the different problem
variants, modeling approaches, and solution methodologies proposed and ana-
lyzed in the literature.

One key aspect of DVRP research is the various problem variants that have
been studied. These variants often arise from the combination of dynamic features
with well-known VRP extensions already mentioned above.

Modeling approaches for DVRP have been diverse, including mathematical
programming formulations, constraint programming, and agent-based models.
These approaches often aim to capture the complexity and uncertainty associ-
ated with the dynamic nature of the problem while ensuring the reliability and
computational efficiency of the resulting models.

Solution techniques for DVRP have ranged from classical heuristics and meta-
heuristics, such as local search, tabu-search, and evolutionary algorithms, to
more recent approaches that leverage machine learning and artificial intelligence
techniques. Researchers have also explored hybrid methods that combine the
strengths of different algorithms and strategies and parallel and distributed com-
puting frameworks to address the computational challenges of DVRP.

Several brilliant reviews on DVRP already exist, like Pillac et al. [2013] and
more recent Ojeda Rios et al. [2021].

2.1 Heuristics
Heuristics are usually based on simple rules to update a solution. They are quite
popular in dynamic problems since they usually provide both good quality so-
lutions and short runtime. A heuristic can be strictly deterministic, or ϵ-greedy
approach can be used to generate multiple solutions and select the best one.
Heuristics can also be used to generate initial solutions for evolution-based algo-
rithms.

Insertion heuristics
Insertion heuristics construct a solution by adding nodes according to a rule.
Randall et al. [2022] have introduced five insertion heuristics for the capacitated
dynamic vehicle routing problem. The Sequential insertion inserts requests greed-
ily to a route until no order can be inserted. Then it creates a new route and
repeats the process. The Quasi-sequential insertion tries to insert a new request
into any route instead of just into the current one. The Naive parallel insertion
tries to insert a new request into every route and select the best option. The
Parallel insertion with seeds behaves the same as the naive version, but first m
requests, where m is a number of vehicles, are “seeded” into m different routes
to avoid degeneration. The fifth heuristic is called Sum of squares insertion. It is
similar to the naive approach but minimizes squared route lengths instead. The
minimization of squared route lengths causes all routes to be similarly long.

10

Reoptimization heuristics
In the reoptimization heuristic, a solution is updated each time a new request ar-
rives. One such approach was introduced in Steever et al. [2019]. The authors cre-
ated the MIP model that may be solved exactly using standard branch-bound or
branch-cut methods. However, the time required to solve large instances of DVRP
makes this direct approach unusable. Instead, they introduced two auction-based
methods that solve the problem for each vehicle separately, and overlapping routes
are then adjusted by auction results. The first method is called Myopic variant
and uses just the highest bid auction, where a request is assigned to the vehicle
with the highest bid. The height of a bid is proportional to the vehicle’s objective
function. The second method, called Proactive variant, uses the same auction,
but it also takes measures of decentralization or dispersion into account.

2.2 Exact methods
Exact methods ensure the optimal or near-optimal solution in the static vehicle
routing problem. But in a dynamic environment, it is not that clear what optimal
solution is. One point of view may be that the optimal solution of DVRP is a
subset of the static VRP solution with all information. Another possibility is to
define optimally concerning currently known information. Most of the authors
use the second variant since it is more practical to evaluate solutions over time.

Mixed integer programming
The most common exact method used is mixed integer programming (MIP).

The advantages of MIP are that the formulations offer great modeling flexi-
bility, as they can easily incorporate complex constraints and relationships. This
allows for the modeling of various DVRP variants, including those with time
windows, stochastic requests, and multiple depots. This flexibility enables re-
searchers to adapt the model to a wide range of practical applications. Addi-
tionally, MIP methods can provide optimal or near-optimal solutions, depending
on the solver’s stopping criteria. This feature is particularly useful when bench-
marking heuristics or meta-heuristics, as the MIP solution serves as a reference for
evaluating their performance. Moreover, there are several powerful commercial
solvers available, such as SCIP, CPLEX, and Gurobi, designed to efficiently solve
MIP problems, which can take advantage of advanced algorithms and parallel
computing capabilities

Authors in Liu [2019] introduced the MIP model with an online dispatch
algorithm for drone delivery. A similar approach was used in Gaul et al. [2022]
for the dial-a-ride problem. They created a MIP model and used a rolling event-
based horizon algorithm. Every time a new request arrives, MIP is solved within
a fixed time limit, and the request is either accepted or declined.

One major disadvantage of MIP methods for DVRP is their computational
complexity. As the problem size increases, the number of decision variables and
constraints in the MIP formulation can grow exponentially, leading to long com-
putation times and high memory requirements. This limits the applicability of
MIP methods to small or moderately sized DVRP instances. Another disadvan-

11

tage is the difficulty in incorporating real-time information and dynamic changes
in the problem. Traditional MIP methods are designed for static optimization
problems and may require significant modifications or resolving the problem from
scratch when new information becomes available. This can be computationally
expensive and impractical for highly dynamic scenarios where quick response is
essential.

2.3 Meta-heuristics
In Sörensen and Glover [2013], a meta-heuristic is defined as a high-level and
problem-independent algorithmic framework that provides guidelines or strategies
to develop heuristics for specific optimization problems.

They are particularly useful for combinatorial optimization problems, where
the solution space is large, and exact methods may be computationally infeasible.
Meta-heuristics must balance the trade-off between exploration and exploitation
to converge toward the global optimum. Exploration means searching for new
regions of the solution space, and exploitation stands for improving the solu-
tions within the current region. This is especially important for problems where
information is revealed over time since previous solutions can be exploited.

Swarm algorithms
Swarm algorithms are a family of mostly nature-inspired optimization techniques
that rely on collective intelligence. These algorithms mimic the behavior of social
insects, bird flocks, or fish schools to solve optimization problems. The main
principle of swarm algorithms is to allow a population of simple agents to interact
with each other and their environment, following simple rules to achieve global
optimization.

ACO

Ant colony optimization (ACO) is a nature-inspired meta-heuristic optimization
algorithm based on the foraging behavior of ants. They search the solution space
iteratively and deposit and follow pheromones on paths depending on how good
a solution is. It was first proposed in the early 1990s, e.g., in Colorni et al. [1991],
where it was used for solving the TSP.

There exist many variants based on ACO. In ant colony systems (ACS), ants
place pheromones on trails in real time, not only at the end of a run. In the min-
max ant systems (MMAS), the minimum and maximum amount of pheromone
on the path is bounded by constants. Also, elitism can be used to preserve the
best solutions over generations.

Schyns [2015] introduced an algorithm based on the ant colony system to
solve the capacitated dynamic vehicle routing problem with time windows. They
adapted the classical ACO algorithm for static VRP to a dynamic version and
added constraints for capacities and time windows. One of their goals was to
provide a response as soon as possible, and their experiments showed that ACO
made it possible.

12

PSO

Particle Swarm Optimization (PSO) is a population-based meta-heuristic op-
timization algorithm inspired by the social behavior of bird flocking and fish
schooling. Introduced by Kennedy and Eberhart [1995], PSO has gained sig-
nificant popularity for its simplicity, ease of implementation, and effectiveness.
The algorithm represents each candidate solution as a particle in a multidimen-
sional search space, and particles iteratively update their positions based on their
own best-known positions and the best-known positions of other particles in the
swarm. Through this process, particles explore the search space, converging to-
ward the optimal or near-optimal solution.

A PSO-based approach was introduced by Okulewicz and Mańdziuk [2019].
The paper tested a hypothesis that the selection of proper search space is more
important than the choice of solving technique. The authors compared PSO and
differential evolution (DE) in two different continuous search spaces with classi-
cal discrete implementation with GA and showed that continuous representation
outperformed discrete one.

Evolutionary algorithms
Evolutionary algorithms (EAs) are a family of optimization algorithms inspired
by natural evolution and have been successfully applied to various optimization
problems, including the dynamic vehicle routing problem (DVRP). The general
structure of EAs consists of initialization, evaluation, selection, variation, replace-
ment, and termination stages.

In the context of DVRP, evolutionary algorithms can be designed to handle
dynamic changes in the problem environment, including new customer requests,
travel times, or vehicle breakdowns. Techniques like incorporating memory struc-
tures, using adaptive variation operators, or employing multi-objective optimiza-
tion approaches can be used to balance conflicting objectives, such as minimizing
travel time and maximizing customer satisfaction.

Although evolutionary algorithms have shown promising results in solving
DVRP instances of varying complexity, they may require careful tuning of al-
gorithm parameters and problem-specific heuristics to achieve high-quality solu-
tions within reasonable computational times. EAs offer a robust and adaptable
approach to solving dynamic vehicle routing problems, making them a popular
choice among researchers and practitioners.

There are also several problems related to EAs. At first, they need a large and
diverse population of solutions in the beginning, which may not be easy to create,
especially in hardly constrained problems. Second, it is hard to design genetic
operators that do not break any constraints, so we usually need to deal with
infeasible solutions. Those infeasible solutions may be thrown away or repaired
with procedures generally called repair operators.

Hanshar and Ombuki-Berman [2007] proposed genetic algorithm for dynamic
vehicle routing problem. An event scheduler runs the algorithm on static VRP
every time an event occurs. The algorithm uses variable chromosome lengths with
two types of genes. The first type, represented by a positive integer, corresponds
to the customer that has not been assigned to any vehicle yet. The second type,
represented by a negative integer, corresponds to a group of clustered customers

13

that have already been committed to a vehicle. Authors proposed a specific
crossover called best-cost route crossover that generates valid chromosomes. Next,
they used common inversion mutation, k-tournament selection, and 1% elitism.

Tabu-search
Tabu-search was developed by Glover [1986]. It is a meta-heuristic optimization
algorithm designed to solve combinatorial optimization problems across various
domains. It uses memory structures, known as tabu lists, to guide the search
process by avoiding cycling and promoting exploration of the solution space. The
algorithm starts from an initial solution and iteratively explores the neighborhood
of the current solution. Balancing exploration and exploitation is achieved by
adjusting the tabu tenure parameter and incorporating other search strategies or
heuristics.

The success of tabu search in solving a wide range of optimization problems is
attributed to its ability to escape local optima and effectively explore the solution
space. However, the algorithm requires careful tuning of parameters, such as the
tabu tenure and neighborhood structure, to achieve optimal performance. Addi-
tionally, tabu search can be computationally expensive, particularly for large-scale
problems.

Ferrucci and Bock [2016] proposed a tabu search for the dynamic vehicle rout-
ing problem with soft time windows constraints. They evaluated the algorithm
on a real dataset and showed that it found the near-optimal solution in a very
short time.

2.4 Kilby’s dataset
One of the most popular datasets for DVRP is the Kilby dataset introduced
in Kilby et al. [1998]. Source files are now available in Okulewicz [2021] with
additional information; original source does not work anymore. The dataset is
based on static VRP instances, and availability times are generated uniformly
randomly. Since the dataset is very popular and optimal or near-optimal values
are known, we will also use it for our experiments.

14

3. Problem formulation and its
analysis
In this chapter, we precisely define the version of the capacitated dynamic vehicle
routing problem with changing vehicle availability. First, we list its most essential
properties and create a formal model and notion that will be used in the following
algorithms for clarity. Second, we state the constraints of a feasible solution and
the objective function of the problem. Next, we show the solution cost upper
bound for dynamic TSP in relation to static TSP and briefly mention problems
with defining optimality in DVRP. Last, we propose several policies that can deal
with dynamically revealing orders and changing vehicle availability.

3.1 Properties
In this work, we will examine the dynamic vehicle routing problem with the
following properties:

• Single depot

• Orders reveal over time

• Homogenous fleet of vehicles with fixed capacity and constant speed

• Availability of vehicles changes over time

• Metric space

We assume a single-depot variant, but most of the presented algorithms can
be easily extended to a multi-depot version.

The first dynamic component of the problem is the revelation of orders over
time. Each order must be served completely by one vehicle. We assume the orders
are served immediately, so we do not include additional service time. That is not
very realistic, but all algorithms can be easily extended to consider it, and the
omission simplifies the implementation. As time passes, vehicles are on the way.
So, with new orders revealed, the algorithm cannot change the parts of routes
with already served orders.

The second dynamic component is the changing availability of vehicles. More
precisely, after a vehicle serves an order, it may become unavailable, so it cannot
serve any other orders. The event is not known in advance. However, the total
number of vehicles in the depot is not limited, so all orders can be served. All
vehicles have a fixed capacity and a constant speed of one distance unit per tick.
Last, we want all vehicles to return to the depot at the end of the planning period.

All algorithms and support procedures assume metric space where distances
are symmetric, and the triangular inequality holds.

Since the problem is dynamic, we need to deal with time. That is done by a
policy - a strategy that decides when to run the optimization procedure.

15

3.2 Formal model
In this section, we describe a formal model for the capacitated dynamic vehicle
routing problem with changing vehicle availability. We have V homogenous ve-
hicles with capacity C that are located in a single depot in the beginning. The
depot is a node with an index 0. Let O denote the set of orders to be scheduled
and served. Orders are indexed from 1 to n. The set O is updated every time a
new order is revealed. Each order o ∈ O has its requested amount of a resource
noted r(o). Next, we have a distance matrix D, which provides distances be-
tween orders and the depot. Finally, we define P as the probability that a vehicle
becomes unavailable after serving an order and u(v) as the time when it happens.

• t ∈ N - current time

• T ∈ N - total time of planning

• V ∈ N - number of vehicles

• C ∈ N - capacity of a vehicle

• O = {1, 2 . . . n} - set of orders to be scheduled

• r(o) ∈ N - requested amount of a resource by order o ∈ O

• a(o) ∈ N - time when an order o ∈ O is placed

• s(o) ∈ N - time when an order o ∈ O was or will be served

• N = O ∪ {0} - set nodes, where 0 is the depot

• D ∈ R|N |×|N | - distance matrix

• d(i, j) := Dij - distance function

• R - set of routes, each route is an ordered tuple of nodes

• P ∈ [0, 1] - probability that vehicle becomes unavailable

• Rf - set of finished routes, where vehicle became unavailable

• u(v) ∈ N - time when vehicle v became unavailable, default ∞

3.3 Solution and objective function
Next, we describe a solution we expect and how to measure its feasibility and
quality. We will use the following constraints in optimization algorithms to check
the solution feasibility and the objective function to evaluate its quality.

The solution S consists of a set of routes R where the following constraints
hold.

∀R ∈ R :
∑︂
o∈R

r(o) ≤ C (3.1)

16

∀o ∈ O : a(o) ≤ s(o) (3.2)

(∀Rv ∈ R)(∀o ∈ Rv) : s(o) ≤ u(v) (3.3)
The constraint 3.1 ensures that the capacity of the vehicle on every route is

not exceeded. The constraint 3.2 says that each order must be served after it is
revealed. The constraint 3.3 ensures that unavailable vehicles do not serve any
orders.

Last, the objective 3.4 is to minimize the total length of all routes.

min
∑︂

R∈R

|R|−1∑︂
i=0

d(Ri, Ri+1) (3.4)

In dynamic CVRP, we also need to be able to decide whether an order oi ∈ O
on route R = (o1 . . . oi−1, oi . . .) can be rescheduled or not at time t. That can
be done by checking if t ≤ s(oi−1). If it holds, the order can be rescheduled.
Otherwise, the vehicle from oi−1 is already on the way to oi, so we cannot schedule
oi to another vehicle.

The delivery time s(oi) of an order oi ∈ R is given by the following recursive
formula:

s(oi) = max{s(oi−1), a(oi)}+ d(oi−1, oi) (3.5)

3.4 Optimality upper bound
This section shows how the number of orders revealed at a time influences the
optimality of the dynamic vehicle routing problem compared to the static one.
We use a simple VRP model with one depot, one vehicle, no capacities, and no
other constraints and with n orders in metric space, which is de facto the metric
TSP model. We also allow returns to the depot.

First, note OPTs as the length of the optimal tour for static TSP. Second,
assume the same input for dynamic TSP with one order revealed at the time.
In the worst case, we will plan n tours for each order separately, and the length
of each tour is bounded by OPTs. So the total solution length is bounded by
n ∗ OPTs, which means the solution for dynamic TSP is at most n times worse
than for static one. Finally, assume dynamic TSP with m orders revealed at the
time. In the worst case, we will plan n

m
tours separately, and the length of each

tour is still bounded by OPTs. So the total length of all tours is bounded by
n
m
∗OPTs. Observe that as m→ n, the optimality ratio tends to 1.
We can formulate the following observation:

Observation 1. The route length of dynamic TSP with m orders revealed at the
time and n orders in total is at most n

m
OPTs where OPTs is the optimal route

length of the static problem.

We have shown that the more information we have at the time, the better the
solution can be expected.

17

3.5 Optimality problems
The concept of optimality is not well defined in the dynamic vehicle routing
problem. If we consider the optimal solution as the one the static problem would
produce, then the optimal solution is usually not achievable in the dynamic case.
On the other hand, if we consider the optimal solution to be the one that mini-
mizes the total length with respect to current information, then other problems
appear. For example, the algorithm may make a bad decision with respect to
current information, but it shows up to be great with respect to future orders.
Because of that, the optimal algorithm for the dynamic vehicle routing problem
should be non-deterministic, but then the solution would be the same as for the
static problem.

Regardless of those problems, our objective remains to minimize the total
length of all routes. We may not be able to say whether the results are optimal,
but we can still compare different algorithms and approaches.

3.6 Policies
This section introduces policies for CDVRP. The main task of the policy is to
deal with dynamically revealed orders and changing vehicle availability and decide
when to run the optimization procedure. They are inspired by Pillac et al. [2013].
The first policy is based on an online approach, where the algorithm reacts to new
orders immediately. The second policy is based on a periodic approach, where
the algorithm reacts to newly revealed orders and vehicle availability changes
periodically. Last, we briefly mention other possible options.

Online policy
First, we introduce an online policy. The algorithm consists of a loop that runs
the optimization procedure every time a new order is revealed. Then it checks
whether a vehicle becomes unavailable after serving an order. If so, it disables
the vehicle and reschedules its orders to other vehicles.

Algorithm 1 CDVRP online policy
1: S ← ∅ ▷ Initial solution
2: for t← 1 . . . T do
3: if order o received then
4: Optimize(S, {o})
5: end if
6: if order o on route Rv served at time t then
7: if Rand(0, 1) < P then
8: Rf ← Rf ∪Rv ▷ Vehicle becomes unavailable
9: X ← {o : o ∈ Rv ∧ s(o) > t}

10: Optimize(S, X) ▷ Reschedule remaining orders
11: end if
12: end if
13: end for

18

Periodic policy
Second, we introduce a periodic policy with period Tp. Observe that the period
parametrizes the response delay and the amount of information available to the
optimization procedure. As we have shown in observation 1, the longer the inter-
val is, the better solution can be expected. In fact, the online policy is a special
case of the periodic policy with Tp = 1.

Algorithm 2 CDVRP periodic policy
1: S ← ∅ ▷ Solution
2: Q← ∅ ▷ Queue of orders
3: for t← 1 . . . T do
4: if order o received at time t then
5: Enqueue(Q, {o})
6: end if
7: if order o on route Rv served at time t then
8: if Rand(0, 1) < P then
9: Rf ← Rf ∪Rv ▷ Vehicle becomes unavailable

10: X ← {o : o ∈ Rv ∧ s(o) > t}
11: Enqueue(Q, X) ▷ Enqueue remaining orders
12: end if
13: end if
14: if t mod Tp = 0 then ▷ Period Tp

15: Optimize(S, Q)
16: Q← ∅
17: end if
18: end for

Other policies
The online and periodic policies are not the only possible ways how to deal
with incoming orders. We may also consider a cumulative policy that runs an
optimization procedure after a fixed number of orders are revealed. Other policies
may run the optimization procedure only if the total demand is high enough, so
the vehicle can be fully utilized. The algorithm then looks the same as the periodic
policy, but the condition on the row 14 for running the optimization procedure
is different. We will test several policies in the experiments.

19

4. Optimization algorithms
This chapter describes several optimization algorithms for the capacitated dy-
namic vehicle routing problem with changing vehicle availability. First, we im-
plement a mixed-integer program to obtain the exact solution for smaller in-
stances or at least feasible solutions for larger ones. Second, we implement an
insertion heuristic based on Randall et al. [2022] and extend it. Next, we use
meta-heuristic approaches based on evolutionary algorithms and ant colony opti-
mization. All algorithms are modified to deal with dynamic orders and changing
vehicle availability.

All the algorithms solve the static problem. They are not online by nature.
To solve the dynamic problem, we will use them with some policies described in
the previous chapter. The policy then handles the dynamism, and decides, when
to run the optimization algorithm.

4.1 Mixed integer programming
First, we create a mixed integer programming model to obtain the optimal or at
least feasible solutions. We base the MIP formulation on the one from Munari
[2016] for CVRP, which is based on MTZ formulation from Miller et al. [1960].
The program uses binary decision variables xij to indicate whether the edge be-
tween nodes i ∈ N and j ∈ N is used. Next, it uses real variables yi for each
i ∈ N corresponding to cumulated demand on the route to deal with vehicle
capacities. Current time is denoted t.

min
∑︂
i∈n

∑︂
j∈n

xijDij (4.1)

s.t.
∑︂
j∈N
i ̸=j

xij = 1 ∀i ∈ O (4.2)

∑︂
i∈N
i ̸=j

xij = 1 ∀j ∈ O (4.3)

∑︂
i∈O

xi0 ≤ V (4.4)

yj ≥ yi + r(j)xij − C(1− xij) (∀i ∈ O)(∀j ∈ N) (4.5)
yi ≥ r(i) ∀i ∈ O (4.6)

s(oi−1) < t =⇒ xoi−1,oi
= 1 (∀R ∈ R)(∀oi ∈ R) (4.7)

xoi−1,oi
= 1 (∀Rf ∈ Rf)(∀oi ∈ Rf) (4.8)

xij ∈ {0, 1} (∀i ∈ N)(∀j ∈ N) (4.9)
yi ∈ ⟨0, C⟩ ∀i ∈ N (4.10)

The program has O(n2) variables and O(n2) constraints. That is significantly
better than the original Dantzig formulation, where the number of constraints
grows exponentially concerning the number of nodes. The 4.1 is the objective
function that minimizes the total distance traveled. The 4.2 and 4.3 ensure that
the number of incoming and outgoing edges equals one for each order node so that

20

every order is served exactly once. The 4.4 states that the number of incoming
routes into the depot is, at most, the total number of vehicles. Since routes are
connected, it also bounds the number of outgoing routes. The 4.5 and 4.6 ensure
that the vehicle’s capacity is not exceeded and all demands are satisfied. The
constraint 4.7 ensures that the order is rescheduled only if it has not been served
yet or the vehicle is not already on the way to it. Last, the constraint 4.8 sets all
already finished routes, where a vehicle became unavailable. Those routes cannot
be changed anymore.

4.2 Insertion heuristic
The insertion heuristic algorithm gets an order or a set of orders and then tries
to insert or append them into existing routes with minimal cost. If there is no
suitable route, then it adds a new one. The insertion heuristic is excellent for use
in online policy since it usually runs very fast. But it can also be used in periodic
policy. Then, it iterates over new orders, and in each iteration, it adds the one
that increases the cost least. The following algorithm is based on Randall et al.
[2022]. Specifically, it is slightly modified parallel insertion.

Algorithm 3 Insertion heuristic
1: while O ̸= ∅ do
2: i∗, j∗, k∗ ← 0 ▷ Store the best order, route and position
3: x∗ ←∞ ▷ The smallest cost increase
4: for all oi ∈ O do
5: for all Rj ∈ R \ Rf do
6: if r(Rj) + r(oi) ≤ C then
7: for all ok ∈ Rj where s(ok−1) ≥ t do
8: x← d(ok, oi) + d(oi, nk+1)− d(ok, ok+1)
9: if x ≤ x∗ then

10: x∗ ← x
11: i∗, j∗, k∗ ← i, j, k
12: end if
13: end for
14: end if
15: end for
16: end for
17: insert oi∗ into route Rj∗ between ok∗ and ok∗+1
18: O ← O \ {oi∗}
19: end while

The algorithm can be improved using seeding, also proposed in Randall et al.
[2022]. That means inserting m empty routes at the beginning. That prevents
the algorithm from building routes in a sequential manner.

The algorithm’s time complexity is O(n3) for n = |O| since at each round, it
iterates over all orders, selects the best one, and inserts it. The inner loop, which
inserts the best order, runs in O(n2), and we insert at most n orders.

21

ϵ-greedy
The algorithm’s most straightforward improvement may be using the ϵ-greedy
approach. Instead of always inserting an order with the smallest cost increase,
we do so with probability 1− ϵ where ϵ determines the probability that the local
best option is omitted. Since the algorithm runs fast, we iterate it multiple times
and select the best solution. For the first iteration, we set ϵ ← 0 to guarantee
that the solution is as good as the deterministic one.

Minimum-weight matching
The previous insertion algorithm is greedy since it always inserts the order with
the smallest total cost increase. However, if we want to use it in a periodic
manner, where we insert multiple orders at a time, this may be a drawback. We
try to overcome it using minimum-weight matching.

First, we compute the cost increase for all new orders and all possible inser-
tions, obtaining a cost tensor C. New orders can be inserted only after orders
have already been served, so we do not need to consider all possible insertions.

Cijk =
⎧⎨⎩cost increase order i inserted on position k on route j

∞ otherwise

Then, we will find minimum weight matching between orders i and insertion
positions (j, k) where j stands for the route index and k for the position in the
route. We do so using the following MIP formulation. On denotes the set of new
orders.

min
∑︂
i,j,k

xijkCijk (4.11)

s.t.
∑︂
j,k

xijk = 1 ∀i ∈ On (4.12)
∑︂

i

xijk ≤ 1 (∀j ∈ {1 . . . |R|})(∀k ∈ Rj) (4.13)∑︂
i,k

xijkr(i) ≤ C − r(Rj) (∀j ∈ R) (4.14)

xijk ∈ {0, 1} (∀i ∈ On)(∀j ∈ {1 . . . |R|})(∀k ∈ Rj)(4.15)

The program has O(n3) integer decision variables xijk, where xijk = 1 if order
i is inserted on position k on route j. The 4.12 ensures that each order is inserted
exactly once. The 4.13 ensures that each position is filled at most once. The
4.14 ensures that the vehicle’s capacity is not exceeded, where r(Rj) is the total
demand of route j.

Note that insertion into routes must be done carefully since insertion positions
are valid for original routes. But if we insert multiple orders into a route, the
insertion positions change after each insertion. We solve this by inserting orders
in the order of insertion positions and increasing by one for all following positions
after each insertion.

Also note, that finding the minimum-weight matching is a well-known prob-
lem, and there are many algorithms to solve it in polynomial time, which MIP
does not guarantee.

22

4.3 Evolutionary algorithm
In this section, we describe and build an evolutionary algorithm (EA) for solving
dynamic CVRP with changing vehicle availability. The algorithm is inspired
by Puljić and Manger [2013], which proposes simple EA and compares different
mutations and crossovers for VRP.

Encoding
Encoding is an essential aspect of any EA. We use simple permutation encoding
known from EAs for TSP, where an individual is represented via a permutation of
nodes. Unlike TSP, VRP considers multiple vehicles, and we also need to consider
capacities. We do so by building routes sequentially, one after another, and adding
a new one when the capacity of the current is exceeded. The advantage of such
encoding is that it is possible to reuse known genetic operators that transform
permutations into permutations.

5 7 2 4 11 6 131 8 19...

greedy procedure

5 7 2 4 11 13 8 19...
route 1 route 2 route 3

individual

Figure 4.1: Permutation encoding

Since the problem is dynamic, each route has its past and future parts. The
past part cannot be changed anymore, and the future part can. Whether an
order oi belongs to the past or future part is determined by the current time t.
If the previous order oi−1 on the same route is served before the current time, so
s(oi−1) < t holds, then oi belongs to the past part. It is because the vehicle is
already on the way to oi. Otherwise, oi belongs to the future part.

The idea is shown in the following figure. The current time is t = 20. Orders
were or will be served at time s(o). The orders in first rectangle belong to the
past part, and remaing ones to the future part. Observe that the order 4 also
belongs to the past part, since the vehicle is already on the way to it.

1
s(1)=5

t=20

past part future part

vehicle
position

s(2)=12 s(3)=19 s(4)=28 s(5)=31 s(6)=39
2 3 4 5 6

Figure 4.2: Future and past parts of a route

23

Only orders from the future part are considered in the chromosome. However,
for fitness evaluation and the final solution, orders from the chromosome are
sequentially connected to past parts of existing routes. The following procedure
describes how it is done. It iterates over past parts of routes and appends parts
of chromosomes to them.

The procedure has to be run for each fitness evaluation, so we must keep its
computational complexity as low as possible. The following one has linear time
complexity O(n). The function r(R) denotes the total demand of route R ∈ R.
The set Rs contains only past parts of existing routes. For simplicity, we assume
that Rs also contains enough empty routes.

Algorithm 4 Procedure to build routes from an inidivdual
1: R← Next(Rs) ▷ Existing routes
2: for all o ∈ I do ▷ For each order in the individual
3: if r(R) + r(o) ≤ C then
4: Append(R, o)
5: else ▷ Capacity exceeded
6: R← Next(Rs)
7: end if
8: end for
9: return R

Note that orders from finished routes Rf are not included in the individual
and are not considered while building routes or evaluating fitness. They are only
appended to the final solution.

Fitness function
The fitness function is the total distance all vehicles travel, so we must minimize
it. Since we do not have any soft constraints, we do not have any penalization
factors.

min f(I) =
∑︂

R∈R(I)

|R|−1∑︂
k=1

d(Rk, Rk+1)

Figure 4.3: Minimize the fitness function of an individual I

Selection
The next important part of any EA is a parental selection which selects individuals
for crossover operators. Two well-known approaches exist, roulette wheel selection
and tournament selection. Since we minimize the fitness, we use a k-tournament
selection; a tournament of k individuals where the one with the best (lowest)
fitness is selected with high probability. Observe that the larger the value of k,
the stronger the environmental pressure on individuals.

We may also use an environmental selection. There are two common strategies
called (λ, µ) and (λ + µ), where µ stands for the number of offspring and λ for

24

the number of parents. In (λ, µ), we choose the µ best of λ offsprings to next
generation. While in (λ + µ), we choose µ best of λ + µ offsprings and parents.
As in environmental selection, we use k-tournament.

Crossovers
The crossover is a genetic operator that takes two or more individuals and pro-
duces new ones. It is inspired by the mating of individuals in nature, and the
motivation is to combine high-fitness solutions into new ones, also with high fit-
ness. Several crossovers were precisely described and tested in Puljić and Manger
[2013]. We implemented two that performed the best - the ordered crossover
(OX) and the heuristic version of the alternating edges crossover (AEX) called
HGreX. Next, we briefly describe OX and HGreX. A more detailed description
with examples is available in Puljić and Manger [2013].

The ordered crossover (OX) first randomly selects two positions within the
chromosome. Those positions are the same for both parents. Then it copies part
of the first parent into the first offspring and then constructs the remaining part
by following node order in the second parent. Then it does so for the second
offspring.

The alternating edges (AEX) crossover creates one offspring by alternately
choosing arcs from the first and second parent. First, it chooses a random edge
from the first parent and inserts it into the offspring. Then it chooses the next
edge from the second parent, and so on. If an edge from the parent cannot
be selected, it is chosen uniformly randomly from the remaining options. The
HGreX crossover works similarly, but it always chooses the shorter feasible edge
from both parents instead of alteration. Again, if no feasible edge exists, it selects
an edge randomly.

Mutations
The mutation operator should help and support crossover to escape from local
minima. It mainly drives the exploration of new solutions. We use three simple
mutations mentioned in Puljić and Manger [2013].

The first one is inversion mutation (IM) which takes a part of an individual
and reverses it. The second, reinsertion mutation (RM), removes a random node
and reinserts it into a new random position. Last, the swap mutation (SM)
randomly selects two nodes and swaps them.

Algorithm
Finally, we describe the whole evolutionary algorithm and its parameters.

• G ∈ N - generations number

• N ∈ N - population size

• C = (co, cx) - vector of crossover probabilities

– co ∈ [0, 1] - ordered crossover probability

25

– cx ∈ [0, 1] - HGreX crossover probability

• M = (mi, mr, ms) - vector of mutation probabilities

– mi ∈ [0, 1] - inversion mutation probability
– mr ∈ [0, 1] - reinsertion mutation probability
– ms ∈ [0, 1] - swap mutation probability

Algorithm 5 EA for dynamic CVRP
1: input: S solution ▷ solution with already served orders
2: P ← InitPopulation(S)
3: E ← ∅ ▷ elite
4: for g ← 1 . . . G do
5: ComputeFitness(P , S)
6: E ← Elity(P)
7: O ←Mate(P , C)
8: Mutate(O, M)
9: P ← EnviromentalSelection(P ,O)

10: P ← P ∪ E
11: end for
12: B ← arg minI∈E f(I) ▷ best individual
13: return B

4.4 Ant colony optimization
Last, we describe and implement an algorithm based on the ant colony optimiza-
tion technique. It is based on Colorni et al. [1991] but modified for capacitated
DVRP with changing vehicle availability.

Solution representation
In ACO, each ant usually represents one complete problem solution. Again, we
need to deal with dynamism. Similarly to EA, we consider each route to have
two parts: past and future. The ant then starts from the ends of the past parts
and builds routes. The route is terminated when we run out of available nodes
or vehicle capacity is exceeded. Routes are built for one ant in a parallel manner.
Each time, we select an order to insert into any route concerning pheromone and
attractiveness.

The idea is shown in the following figure. The solid nodes are past parts of
routes except the ends. The dashed nodes are initially the ends of past parts of
routes. The bolted nodes are initially the orders to be scheduled - new ones and
from future parts. The algorithm always selects one edge between the dashed
and bolted sets with respect to pheromone and attractiveness. Then the dashed
node becomes solid and the bolted node dashed. The process is repeated until
all orders are scheduled.

26

0

1

3

5

4

2

6

7

9

10

8

Figure 4.4: Building the solution by an ant

Pheromone and attractiveness
The attractiveness of an edge between nodes i and j will be proportional to the
inverse of its distance. The closer nodes are, the more likely the ij-edge will be
selected.

Aij = 1
d(i, j)

Figure 4.5: Attractiveness of an ij-edge

The pheromone is initially usually set to 1 and updates over generations. The
amount of pheromone on better trails increases, and on worse ones decreases. How
the pheromone is updated depends on the setup. We introduce three pheromone
update modes. In the first one, all ants update pheromones at the end of a
generation. In the second, only the best ant updates pheromones. Last, in the
third one, each ant updates pheromones right after it finishes the trail.

The ρ is the evaporation coefficient, and Q is the pheromone update intensity
coefficient.

Pij = (1− ρ)Pij +
∑︂
A∈A

δA
ij

δA
ij =

⎧⎨⎩Q/d(S) if ant S uses ij-edge
0 otherwise

Figure 4.6: Pheromone update

The probability of selecting an edge ij is then computed as follows. The P
stands for pheromone, A for attractiveness, and α and β are parameters that
determine the importance of pheromone and attractiveness.

27

Pr(ij) = P α
ijA

β
ij

Figure 4.7: Probability of selecting ij edge

Overview
Finally, we describe the whole ACO algorithm and its parameters.

• G ∈ N - number of generations

• N ∈ N - number of ants

• α - pheromone coefficient

• β - attractiveness coefficient

• M - pheromone update mode

– all - all ants update pheromone at the end of generation
– best - only best ant updates pheromone at the end of the generation
– instant - each ant updates the pheromone instantly

• ρ ∈ [0, 1] - evaporation coefficient

• Q ∈ R - pheromone update intensity coefficient

28

Algorithm 6 ACO for dynamic CVRP
1: input: S solution ▷ solution
2: X ← OrderToPlan(S) ▷ orders from future parts and new ones
3: Y ← StartingPoints(S) ▷ ends of past parts of routes
4: P ← InitPheromone()
5: D ← InitAttractiveness()
6: B ← null ▷ best ant
7: for g ← 1 . . . G do
8: A ← ∅ ▷ set of ants
9: for a← 1 . . . N do

10: A← PastPartsOfRoutes(S)
11: while X ̸= ∅ do
12: E ← PossibleEdges(X, Y, A) ▷ possible edges w.r.t. capacity
13: (r, of , ot)← SelectEdge(E, P, D, α, β) ▷ (route, from, to)
14: X ← X \ {ot}
15: Y ← Y ∪ {ot} \ {of}
16: ExtendRoute(A, r, ot)
17: end while
18: A ← A∪ A
19: P ← UpdatePheromone(P, A, M)
20: end for
21: P ← UpdatePheromone(P,A, M)
22: B ← arg minA∈A d(A)
23: end for
24: return B

29

5. Experiments
The goal of the experiments is to show how the period length, changing vehicle
availability and policy influence the objective - the total length of all routes. First,
we tune the hyperparameters for the ACO and the Evolutionary algorithm. Then
we run the algorithms on Kilby’s dataset and randomly generated datasets and
compare the results of individual algorithms and the influence of setups. Last,
we measure the runtime of the algorithms.

The objective is to minimize the total length of all routes. If not stated
otherwise, values in tables and figures are the total lengths of all routes in the
solution.

5.1 Parameter tuning
In this section, we run the hyperparameter tuning experiments on the EVO, ACO
and Insertion heuristic algorithms. We run them on some of Kilby’s datasets,
compare the results, and choose the best setups. Then, we use the setups in the
following experiments.

Note that the goal of this section is to find some reasonable values of hyper-
parameters to obtain good-quality solutions. We do not tune each algorithm for
the best possible results. If we wanted to do so, we would have to run a grid
search, which would be very time-consuming.

Evolutionary algorithm
First, we tune up the parameters for the Evolutionary algorithm. We use the
periodic policy with period 50. That means the algorithm accepts new orders and
runs the optimization procedure every 50 ticks. We do not tune up the population
size and the number of generations since we expect the more individuals and
generations, the better the results. The population size is fixed to 200 individuals,
and the number of generations is at most 1000. If the solution does not improve
for 100 generations, the algorithm terminates.

Mutations

First, we try to find the best probabilities for mutation operators. For that, we
fix the probabilities for the crossover operators to 0.3 for both types, ordered
crossover and HGreX. We also assume that all mutations are equally important.
We use four different setups and run them on every instance 10 times to get the
average results.

• m1: InversionMut = 0.01, ReinsertionMut = 0.01, SwapMut = 0.01

• m2: InversionMut = 0.05, ReinsertionMut = 0.05, SwapMut = 0.05

• m3: InversionMut = 0.1, ReinsertionMut = 0.1, SwapMut = 0.1

• m4: InversionMut = 0.2, ReinsertionMut = 0.2, SwapMut = 0.2

30

In the following table, we see the results of proposed setups on some of Kilby’s
instances. We can see that the best results are achieved with the m3 and m4
setup, where the probabilities for all mutations are set to 0.1 and 0.2. However,
the m3 setup has a smaller standard deviation, so we will use it in the following
experiments since it is more stable.

mean std
name m1 m2 m3 m4 m1 m2 m3 m4
instance
c100 1533 1469 1441 1453 66 42 59 65
c50 937 936 927 927 27 36 20 29
c75 1441 1420 1427 1424 45 44 30 31
f71 416 408 404 397 17 21 17 18
tai100a 3296 3094 3026 3171 142 211 208 211
tai100b 2962 3002 3068 2935 125 102 82 135
tai75a 2504 2532 2506 2529 89 125 43 73
tai75b 2556 2550 2550 2532 81 26 44 17
All 1955 1926 1919 1921 966 948 947 953

Crossovers

Next, we search for the best probabilities of crossover operators. We fix the
probabilities for the mutation operators to 0.1 for all types since we have shown
that the value guarantees the best results. We use three different setups and run
them on every instance 10 times.

• cx1: CXOrdered=0.7, CXHGreX=0

• cx2: CXOrdered=0. CXHGreX=0.7

• cx3: CXOrdered=0.3, CXHGreX=0.3

We can see in the following table that the best results are achieved with the cx3
setup, where the probabilities for both crossovers are set to 0.3. The CXHGreX
crossover alone also performed quite well. Regardless, we will use the cx3 setup
in the following experiments.

mean std
name cx1 cx2 cx3 cx1 cx2 cx3
instance
c100 1511 1449 1412 55 68 59
c50 944 924 939 33 32 27
c75 1432 1417 1426 39 43 33
f71 401 413 411 12 23 18
tai100a 3225 3221 3284 132 104 312
tai100b 3016 2983 2963 111 127 187
tai75a 2554 2522 2476 73 76 63
tai75b 2560 2546 2544 115 14 18
All 1955 1947 1932 969 964 975

31

Diversity

In the evolutionary algorithms, maintaining diversity is the key factor to effective
exploration. We try to do so by preferring unique individuals using modified
fitness fm. Instead of the total length of all routes, we use the following formula.

fm(I) = (1− F ∗ uniqueness(I))f(I)

Figure 5.1: Modified fitness of an individual

The f(I) is the original fitness function - the total length of all routes. The
uniqueness(I) is the normalized average distance of the individual to all other
individuals in the population. The F is the uniqueness factor, which we tune-up.
In the modified fitness function, the individuals with the higher uniqueness have
a lower fitness value, which means that they are preferred in the selection process.

We use three different setups and run them on every instance 10 times to get
the average results. We also allow at most 5000 generations to see the influence
of the uniqueness factor on the algorithm’s performance. If the solution does not
improve for 200 generations, the algorithm stops.

• uniq1: UniquenessFactor=0

• uniq2: UniquenessFactor=0.05

• uniq3: UniquenessFactor=0.15

We can see that the setup uniq2 worked the best, although the differences are
not very significant. We can also see, that a high uniqueness factor can lead to
worse results because good solutions are often not selected for the next generation.

mean std
name uniq1 uniq2 uniq3 uniq1 uniq2 uniq3
instance
c100 1455 1402 1462 40 44 39
c50 928 929 918 19 28 21
c75 1421 1419 1411 44 29 50
f71 397 394 406 13 20 16
tai100a 3139 3155 3177 228 206 218
tai100b 2997 2974 2976 72 162 180
tai75a 2559 2503 2530 71 60 66
tai75b 2551 2558 2548 44 53 13
All 1931 1917 1929 960 960 962

The following figure shows the average population uniqueness for dataset c100
at time 250. The uniqueness of an individual is the average number of differences
in a chromosome compared to others. We can see that in setup uniq1, the popula-
tion diversity is very low. That leads to the early degeneration of the population.

32

0 100 200 300 400
generation

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
None,time,uniq

(min, 250, 0.0)
(min, 250, 0.05)
(min, 250, 0.15)

Figure 5.2: Average population uniqueness for dataset c100 at time 250

Conclusion

In previous experiments, we have shown that the best results are achieved with
setups m3 and cx3, where the probabilities for mutations are set to 0.1 and
for crossovers to 0.3. We also tried to maintain diversity in the population by
preferring unique individuals in the selection process, which helped a little; setup
uniq2 worked the best, but the differences were not very significant.

Ant colony optimization
Next, we tune up the parameters for the Ant colony optimization algorithm. We
use the periodic policy with period 50, 200 ants, and at most 1000 generations.
The evaporation coefficient is set to 0.2. As in the Evolution algorithm, if the
solution does not improve for 100 generations, the algorithm stops. We run each
setup 10 times on every instance to get the average results.

Pheromone update mode

First, we try to find the best pheromone update mode. In the ACO algorithm
in 4.4, we have proposed three update modes - all, best and instant. In the all
mode, the pheromone is updated for all ants, in the best mode, the pheromone is
updated only for the best ant, and in the instant mode, the pheromone is updated
instantly after each ant. We test three different setups.

• acoAll: PheromoneUpdateMode=All, PheromoneUpdateCoef=0.1

• acoBest: PheromoneUpdateMode=Best, PheromoneUpdateCoef=1

• acoInst: PheromoneUpdateMode=Instant, PheromoneUpdateCoef=0.1

33

In the following table, we see the results of the proposed setups. We can see
that the best results are achieved with the acoAll setup, where the pheromone is
updated by all ants with the update coefficient set to 0.1.

mean std
name acoAll acoBest acoInst acoAll acoBest acoInst
instance
c100 1608 1699 1645 73 77 62
c50 931 943 926 45 35 50
c75 1407 1429 1402 49 45 51
f71 380 405 391 22 26 17
tai100a 2717 2716 2708 112 92 98
tai100b 2711 2752 2752 63 97 79
tai75a 2267 2285 2280 87 84 94
tai75b 1779 1832 1853 61 144 86
All 1749 1758 1745 788 783 788

Pheromone and attractiveness

Second, we try to find the best pheromone and attractiveness coefficients, usually
denoted as α and β. Since we have shown that the best results are achieved with
the acoAll setup, we will use it in this experiment. We will use three different
setups.

• acoAttr: α = 1, β = 2

• acoBoth: α = 1, β = 1

• acoPhe: α = 2, β = 1

The results are in the following table. We can see that the best results are
achieved with the acoAttr setup, where the attractiveness coefficient β is set to 2
and the pheromone coefficient α is set to 1. Since the attractiveness is the inverse
value of the distance, the higher exponent makes it even smaller. That means
that the algorithm prefers the pheromone over the distance, which is a good sign.

mean std
name acoAttr acoBoth acoPhe acoAttr acoBoth acoPhe
instance
c100 1345 1608 1545 38 61 53
c50 896 929 1011 29 49 70
c75 1362 1396 1437 45 97 80
f71 363 364 425 10 18 35
tai100a 2581 2774 2859 37 69 98
tai100b 2686 2759 2771 26 52 104
tai75a 2231 2245 2276 80 128 82
tai75b 1859 1858 1924 92 131 129
All 1638 1732 1762 774 805 800

34

Pheromone persistence

Each time the optimization procedure is run, the pheromone is initially set to 1
and updated during the run. However, the optimization procedure is run on the
same problem multiple times, only with some new orders revealed. That means
that the pheromone from the previous run can be used in the next run. We
examine two setups - with and without pheromone persistence. In the persistence
setup, the pheromone at the beginning is set to the value from the previous run.
On the new edges is set to 1.

In the following table, we can see that pheromone persistence does not help at
all. The best results are achieved with the noStore setup, where the pheromone
is not stored between runs.

mean std
name noStore store noStore store
instance
c100 1365 1375 44 32
c50 901 893 29 29
c75 1349 1363 32 34
f71 360 361 12 14
tai100a 2612 2594 92 59
tai100b 2687 2696 35 43
tai75a 2228 2234 103 99
tai75b 1854 1855 82 68
All 1670 1671 777 775

Conclusion

In previous experiments, we have shown that the best results are achieved with
the setups acoAll and acoAttr, where the pheromone is updated by all ants with
the update coefficient set to 0.1 and α = 1, β = 2. We have also shown that
pheromone persistence does not help find better solutions.

Insertion heuristic
Last, we tune up the Insertion heuristic. In section 4.2, we have proposed two
strategies. One inserts orders sequentially, and the other inserts orders in parallel
using minimum-weight matching. In this experiment, we want to find the better
one. In sequential insertion, we use the ϵ-greedy approach with ϵ = 0.1 and 100
iterations. The first iteration is done with ϵ = 0, so the solution is guaranteed to
be as good as the deterministic one. We do not tune up these parameters since
we expect that the more iterations, the better the results. We will run each setup
10 times on every instance to get the average results.

In the following table, we can clearly see that the sequential insertion works
better on almost all datasets except the instance c75. The parallel insertion usu-
ally inserts equally many orders to each route, which is usually not very effective.
However, in the c75 instance, the new orders appear in circles with a center in

35

the depot, so inserting one order into each route works quite well. Regardless,
we will use sequential insertion in the following experiments.

mean std
name match seq match seq
instance
c100 1947 1695 0 33
c50 1245 994 0 36
c75 1458 1548 0 32
f71 1354 439 0 4
tai100a 5567 3105 0 156
tai100b 4822 3183 0 92
tai75a 3485 2598 0 80
tai75b 2461 2527 0 126
All 2792 2011 1566 945

36

5.2 Kilby’s dataset
In this section, we run the algorithms on Kilby’s dataset from Okulewicz [2021].
We try several periods and probabilities of vehicle availability change to show the
influence of these parameters on the algorithms. The objective is to minimize
the total length of all routes in the solution. We use the following optimization
algorithms with the best parameter setups found in the previous section:

• MIP: runtime limit 30 s

• EVO: m3, cx3, uniq2, 1000 gens, 200 individuals

• ACO: acoAll, acoAttr, noStore, 1000 gens, 200 ants

• Insertion: seq, ϵ-greedy, ϵ = 0.1, 100 iterations

Period length
First, we show the influence of the period length. We use periods 1, 20, 50,
100, and 200. For period 1, which is equivalent to the online policy, only the
Insertion algorithm is used. It is because the runtime of the other algorithms
would be too long since the algorithm would be run for every new order. For the
longer periods, all algorithms are used. We want to test the hypothesis that the
longer the period, the better the results should be. It is a generalization of the
observation 1, which concerns TSP only.

The table 5.1 shows the average objective for every instance, algorithm, and
period. Each algorithm is run 10 times for every period and instance to obtain
average results. We can see that the longer the period, the better the results are.
That is in accordance with the hypothesis and the observation 1. The best results
are achieved with the ACO algorithm and the MIP. This is probably because the
ACO algorithm was originally designed for VRP-like problems, so it can search
solution space quite effectively. The MIP, on the other hand, works with an
abstract model and does not know anything about the problem. However, the
power of the effective solver CP-SAT is enough to find good solutions.

37

mean
period 1 20 50 100 200
name ins-o aco evo ins-p mip aco evo ins-p mip aco evo ins-p mip aco evo ins-p mip
instance

c100 1748 1462 1590 1710 1382 1377 1410 1649 1363 1200 1307 1478 1211 1205 1196 1380 1055
c100b 1163 1077 1223 1127 1246 948 1158 1203 1019 951 1076 1221 984 972 1171 1299 912
c120 1262 1366 1404 1420 1439 1448 1354 1571 1716 1176 1184 1653 1451 1267 1246 1449 1395
c150 2639 2146 2240 2535 1901 1983 2039 2402 1862 1830 1877 2244 1664 1827 1833 1776 1419
c199 3566 2568 2820 3167 2255 2456 2526 2903 2270 2343 2379 2489 2074 2424 2553 2157 1847
c50 1179 1006 953 1093 944 901 925 1078 928 773 832 925 844 749 694 835 690
c75 1878 1447 1544 1786 1442 1345 1411 1689 1324 1242 1281 1554 1261 1138 1112 1354 1027
f134 20756 20632 21750 20865 22235 20226 21370 20811 22647 20163 21299 22843 23100 21033 21069 21381 22834
f71 408 412 432 415 422 359 407 440 386 311 355 357 370 309 354 357 332
tai100a 3192 2802 3397 3029 2826 2591 3166 3213 2678 2511 2701 3300 2507 2482 2610 3251 2540
tai100b 3207 2831 3086 3294 2495 2681 2966 3227 2498 2474 2664 3359 2617 2370 2477 3292 2377
tai100c 2344 2174 2554 2363 1928 1983 2568 2540 1780 1962 2373 2727 1917 1767 1937 2785 1721
tai100d 3204 2445 2992 3026 2468 2435 3019 3077 2367 2260 2601 3013 2382 2038 2108 2794 2007
tai150a 5156 3942 5172 4674 4348 3959 4971 5244 4143 4119 4404 5910 4313 3849 3965 5960 3965
tai150b 4454 3597 4537 4568 3380 3412 3986 4327 3327 3332 3928 4787 3562 3249 3477 4636 3244
tai150c 4221 3303 4748 4160 3076 2934 4245 4292 2998 3008 3556 4604 2916 2994 3423 5157 3084
tai150d 4435 3758 4856 4890 nan 3581 4631 4596 3503 3471 4211 5310 3579 3314 3549 5253 3481
tai75a 2448 2311 2727 2334 2160 2224 2474 2641 2269 2017 2222 2601 2069 1845 1956 2417 1919
tai75b 2158 1981 2348 2238 1985 1822 2498 2119 2066 1786 2255 2040 1970 1688 1906 2115 1838
tai75c 2122 2001 2426 2060 2091 1892 2079 2103 1838 1730 2108 2251 1935 1686 1667 2329 1651
tai75d 1859 1946 2422 2356 nan 1802 2045 2093 2022 1710 1821 2183 1977 1642 1667 2277 1705
All 3495 3105 3593 3481 3159 2969 3393 3487 3095 2875 3163 3659 3081 2850 2951 3536 2907

Table 5.1: Average objectives for different periods.

38

Influence of the period length

The following figures show average objectives (total lengths of all routes) for
different periods for each algorithm. We show only the results for tai* datasets
for better clarity. For the ACO and EVO algorithms, we see that the longer the
period, the better the results usually are. This is because both algorithms can
exploit longer planning horizons and thus can build routes more efficiently. The
same applies to the MIP algorithm, but the results are not that clear on large
instances. It is probably caused by the 30s time limit, which may not be enough.
On the other hand, the Insertion algorithm sometimes works better for shorter
periods. It is probably because the algorithm cannot handle too many orders in
one run. After all, it always chooses a locally optimal solution and does not look
ahead in any way. It seems that the order of orders in the dataset actually helps
the Insertion algorithm to find better solutions. Surprisingly, even the online
policy with the Insertion algorithms provides the shortest total distance for some
datasets like tai150d or tai75d.

ta
i1

00
a

ta
i1

00
b

ta
i1

00
c

ta
i1

00
d

ta
i1

50
a

ta
i1

50
b

ta
i1

50
c

ta
i1

50
d

ta
i7

5a

ta
i7

5b

ta
i7

5c

ta
i7

5d

instance

0

500

1000

1500

2000

2500

3000

3500

4000 None,name,period
(mean, aco, 20)
(mean, aco, 50)
(mean, aco, 100)
(mean, aco, 200)

Figure 5.3: ACO

ta
i1

00
a

ta
i1

00
b

ta
i1

00
c

ta
i1

00
d

ta
i1

50
a

ta
i1

50
b

ta
i1

50
c

ta
i1

50
d

ta
i7

5a

ta
i7

5b

ta
i7

5c

ta
i7

5d

instance

0

1000

2000

3000

4000

5000 None,name,period
(mean, evo, 20)
(mean, evo, 50)
(mean, evo, 100)
(mean, evo, 200)

Figure 5.4: EVO

ta
i1

00
a

ta
i1

00
b

ta
i1

00
c

ta
i1

00
d

ta
i1

50
a

ta
i1

50
b

ta
i1

50
c

ta
i1

50
d

ta
i7

5a

ta
i7

5b

ta
i7

5c

ta
i7

5d

instance

0

1000

2000

3000

4000

5000

6000 None,name,period
(mean, ins, 1)
(mean, ins, 20)
(mean, ins, 50)
(mean, ins, 100)
(mean, ins, 200)

Figure 5.5: Insertion

ta
i1

00
a

ta
i1

00
b

ta
i1

00
c

ta
i1

00
d

ta
i1

50
a

ta
i1

50
b

ta
i1

50
c

ta
i1

50
d

ta
i7

5a

ta
i7

5b

ta
i7

5c

ta
i7

5d

instance

0

1000

2000

3000

4000
None,name,period

(mean, mip, 20)
(mean, mip, 50)
(mean, mip, 100)
(mean, mip, 200)

Figure 5.6: MIP

Figure 5.7: The period length’s influence on each algorithm’s results.

39

Comparison of algorithms

The following figures show the comparison of average objectives (total lengths
of all routes) of algorithms for each period separately. We can see that the best
results are usually achieved with the ACO algorithm and the MIP. The Inser-
tion algorithm performs similarly well for shorter periods, especially for smaller
instances. However, as the period length increases, the results of the Insertion
heuristic are much worse. We have mentioned the reason before - the algorithm
always chooses the locally best order to insert, so it cannot handle too many or-
ders in one run. The EVO algorithm behaves the opposite. Its results are terrible
for shorter periods, but for longer ones, they are almost as good as ACO or MIP.

ta
i1

00
a

ta
i1

00
b

ta
i1

00
c

ta
i1

00
d

ta
i1

50
a

ta
i1

50
b

ta
i1

50
c

ta
i1

50
d

ta
i7

5a

ta
i7

5b

ta
i7

5c

ta
i7

5d

instance

0

1000

2000

3000

4000

5000 None,name
(mean, aco)
(mean, evo)
(mean, ins)
(mean, mip)

Figure 5.8: T = 20

ta
i1

00
a

ta
i1

00
b

ta
i1

00
c

ta
i1

00
d

ta
i1

50
a

ta
i1

50
b

ta
i1

50
c

ta
i1

50
d

ta
i7

5a

ta
i7

5b

ta
i7

5c

ta
i7

5d

instance

0

1000

2000

3000

4000

5000
None,name

(mean, aco)
(mean, evo)
(mean, ins)
(mean, mip)

Figure 5.9: T = 50

ta
i1

00
a

ta
i1

00
b

ta
i1

00
c

ta
i1

00
d

ta
i1

50
a

ta
i1

50
b

ta
i1

50
c

ta
i1

50
d

ta
i7

5a

ta
i7

5b

ta
i7

5c

ta
i7

5d

instance

0

1000

2000

3000

4000

5000

6000 None,name
(mean, aco)
(mean, evo)
(mean, ins)
(mean, mip)

Figure 5.10: T = 100

ta
i1

00
a

ta
i1

00
b

ta
i1

00
c

ta
i1

00
d

ta
i1

50
a

ta
i1

50
b

ta
i1

50
c

ta
i1

50
d

ta
i7

5a

ta
i7

5b

ta
i7

5c

ta
i7

5d

instance

0

1000

2000

3000

4000

5000

6000 None,name
(mean, aco)
(mean, evo)
(mean, ins)
(mean, mip)

Figure 5.11: T = 200

Figure 5.12: Comparison of algorithms for different periods.

Another surprise is the dataset c120, where the Insertion heuristic with online
policy worked really well. This is probably because the dataset c120 has a specific
structure - orders are revealed in small clusters that are far from each other. Each
cluster can be served by one vehicle, so even the online policy can handle it quite
well.

40

1 20 50 10
0

20
0

period

0

250

500

750

1000

1250

1500

1750 None,name
(mean, aco)
(mean, evo)
(mean, ins)
(mean, mip)

Figure 5.13: Objectives for c120
Figure 5.14: c120 structure

Conclusion

In this section, we have shown the influence of the period length. The results are
in accordance with the observation 1 - the longer the period, the better the results
should be for TSP. From the results, we can say that the same holds for DVRP.
However, only for the ACO, EVO, and MIP algorithms. Those algorithms are
able to exploit the advantage of the long planning horizon, explore many possible
solutions and avoid local optima. The Insertion heuristic provides better results
for shorter periods and smaller instances. It is because it is just a straightforward
local search.

Changing vehicle availability
In this section, we show the influence of changing vehicle availability on the
objective - total length of all routes. We use the same algorithms and setups as
in the previous section with period T = 50. We use the following values of P
- the probability that a vehicle becomes unavailable after serving an order. We
expect that the higher the value of P , the worse the results will be.

• P = 0

• P = 0.05

• P = 0.1

• P = 0.25

The table 5.2 shows the objective values for each instance, algorithm, and
value of P . We see that the higher the value of P , the worse the results are,
which is reasonable. This is because each time a vehicle becomes unavailable,
the remaining vehicles have to serve more orders, or a new vehicle has to be sent
from the depot. That leads to longer total route distances in general.

41

mean
P 0 0.05 0.1 0.25
name aco evo ins-p mip aco evo ins-p mip aco evo ins-p mip aco evo ins-p mip
instance

c100 1377 1410 1649 1363 1420 1456 1621 1357 1443 1446 1721 1367 1569 1597 1793 1480
c100b 948 1158 1203 1019 1020 1202 1275 1169 1095 1304 1368 1096 1279 1406 1582 1269
c120 1448 1354 1571 1716 1625 1652 1899 1872 1890 1799 2289 2200 2182 2454 2662 2677
c150 1983 2039 2402 1862 2020 2118 2410 1884 2124 2133 2565 1931 2377 2280 2555 2013
c199 2456 2526 2903 2270 2575 2659 2918 2338 2678 2776 2949 2527 3008 2950 3179 2598
c50 901 925 1078 928 934 945 1096 982 964 965 1094 971 1015 983 1113 1090
c75 1345 1411 1689 1324 1369 1448 1696 1253 1395 1506 1707 1453 1510 1530 1738 1513
f134 20226 21370 20811 22647 22251 24517 23751 25353 24639 25172 25596 30733 33643 31318 33053 43303
f71 359 407 440 386 365 429 490 427 397 446 511 390 443 451 535 430
tai100a 2591 3166 3213 2678 2855 3307 3591 2989 3084 3490 3882 3264 3977 3980 4382 4347
tai100b 2681 2966 3227 2498 2772 3160 3447 3022 2920 3332 3553 2642 3778 3846 4220 3738
tai100c 1983 2568 2540 1780 2156 2435 2695 2093 2264 2725 2749 2074 2669 2982 3379 2681
tai100d 2435 3019 3077 2367 2486 2961 3084 2492 2673 3004 3349 2623 3135 3202 3615 3321
tai150a 3959 4971 5244 4143 4596 5291 5558 4572 4858 5513 5945 5704 6002 6301 7262 6241
tai150b 3412 3986 4327 3327 3770 4405 4749 4330 4237 4780 4955 4365 5652 5548 6451 5767
tai150c 2934 4245 4292 2998 3413 4088 4662 3329 3872 4432 5036 4442 4450 4916 5515 4799
tai150d 3581 4631 4596 3503 3855 4658 5288 3892 4347 4970 5294 4498 5150 5345 6336 5184
tai75a 2224 2474 2641 2269 2418 2619 2810 2394 2503 2665 2831 2279 2872 3041 3354 3067
tai75b 1822 2498 2119 2066 1951 2449 2131 2164 2056 2580 2358 2099 2288 2448 2702 2313
tai75c 1892 2079 2103 1838 1959 2184 2443 2013 2047 2296 2460 2243 2412 2441 2589 2467
tai75d 1802 2045 2093 2022 1967 2018 2240 2022 2190 2153 2414 2304 2523 2669 2531 2497
All 2969 3393 3487 3095 3227 3619 3796 3426 3508 3785 4030 3867 4378 4371 4653 4895

Table 5.2: Average objectives for different values of P .

42

Influence of changing vehicle availability

The following figures show the average objectives for each algorithm and the value
of P . The results are apparent - the higher the value of P , the worse they are.
Also, all algorithms seem to be affected by the changing vehicle availability very
similarly.

ta
i1

00
a

ta
i1

00
b

ta
i1

00
c

ta
i1

00
d

ta
i1

50
a

ta
i1

50
b

ta
i1

50
c

ta
i1

50
d

ta
i7

5a

ta
i7

5b

ta
i7

5c

ta
i7

5d

instance

0

1000

2000

3000

4000

5000

6000 None,name,P
(mean, aco, 0.0)
(mean, aco, 0.05)
(mean, aco, 0.1)
(mean, aco, 0.25)

Figure 5.15: ACO
ta

i1
00

a

ta
i1

00
b

ta
i1

00
c

ta
i1

00
d

ta
i1

50
a

ta
i1

50
b

ta
i1

50
c

ta
i1

50
d

ta
i7

5a

ta
i7

5b

ta
i7

5c

ta
i7

5d

instance

0

1000

2000

3000

4000

5000

6000
None,name,P
(mean, evo, 0.0)
(mean, evo, 0.05)
(mean, evo, 0.1)
(mean, evo, 0.25)

Figure 5.16: EVO

ta
i1

00
a

ta
i1

00
b

ta
i1

00
c

ta
i1

00
d

ta
i1

50
a

ta
i1

50
b

ta
i1

50
c

ta
i1

50
d

ta
i7

5a

ta
i7

5b

ta
i7

5c

ta
i7

5d

instance

0

1000

2000

3000

4000

5000

6000

7000
None,name,P
(mean, ins-p, 0.0)
(mean, ins-p, 0.05)
(mean, ins-p, 0.1)
(mean, ins-p, 0.25)

Figure 5.17: Insertion

ta
i1

00
a

ta
i1

00
b

ta
i1

00
c

ta
i1

00
d

ta
i1

50
a

ta
i1

50
b

ta
i1

50
c

ta
i1

50
d

ta
i7

5a

ta
i7

5b

ta
i7

5c

ta
i7

5d

instance

0

1000

2000

3000

4000

5000

6000
None,name,P
(mean, mip, 0.0)
(mean, mip, 0.05)
(mean, mip, 0.1)
(mean, mip, 0.25)

Figure 5.18: MIP

Figure 5.19: The P ’s influence on each algorithm’s results.

Comparison of algorithms

The following figures show the comparison of average objectives (total lengths of
all routes) for different values of P for each algorithm separately. We see that
the best results are for every value of P achieved with the ACO algorithm and
the MIP. The increasing value of P leads to worse results for all algorithms.

43

ta
i1

00
a

ta
i1

00
b

ta
i1

00
c

ta
i1

00
d

ta
i1

50
a

ta
i1

50
b

ta
i1

50
c

ta
i1

50
d

ta
i7

5a

ta
i7

5b

ta
i7

5c

ta
i7

5d

instance

0

1000

2000

3000

4000

5000
None,name

(mean, aco)
(mean, evo)
(mean, ins-p)
(mean, mip)

Figure 5.20: P = 0

ta
i1

00
a

ta
i1

00
b

ta
i1

00
c

ta
i1

00
d

ta
i1

50
a

ta
i1

50
b

ta
i1

50
c

ta
i1

50
d

ta
i7

5a

ta
i7

5b

ta
i7

5c

ta
i7

5d

instance

0

1000

2000

3000

4000

5000

None,name
(mean, aco)
(mean, evo)
(mean, ins-p)
(mean, mip)

Figure 5.21: P = 0.05

ta
i1

00
a

ta
i1

00
b

ta
i1

00
c

ta
i1

00
d

ta
i1

50
a

ta
i1

50
b

ta
i1

50
c

ta
i1

50
d

ta
i7

5a

ta
i7

5b

ta
i7

5c

ta
i7

5d

instance

0

1000

2000

3000

4000

5000

6000 None,name
(mean, aco)
(mean, evo)
(mean, ins-p)
(mean, mip)

Figure 5.22: P = 0.1

ta
i1

00
a

ta
i1

00
b

ta
i1

00
c

ta
i1

00
d

ta
i1

50
a

ta
i1

50
b

ta
i1

50
c

ta
i1

50
d

ta
i7

5a

ta
i7

5b

ta
i7

5c

ta
i7

5d

instance

0

1000

2000

3000

4000

5000

6000

7000
None,name

(mean, aco)
(mean, evo)
(mean, ins-p)
(mean, mip)

Figure 5.23: P = 0.25

Figure 5.24: Comparison of algorithms for different values of P .

Conclusion

In this section, we have shown the influence of changing vehicle availability for
different values of P . We have shown that the higher the value of P , the worse
the results are, which is reasonable. The best results are achieved with the ACO
algorithm and the MIP. We did not find any significant differences between the
algorithms in this case.

44

Policies
In this section, we examine the following policies: online, periodic, demand-based,
and order-based. In the online policy, the optimization procedure is run every
time a new order is revealed. Because of the runtime, we use only the Insertion al-
gorithm with the online policy. In the periodic policy, the optimization procedure
is run every Tp = 50 ticks. In the demand-based policy, the optimization proce-
dure is run every time the total demand of all orders exceeds a certain threshold,
specifically C ∗ 3/4. In the order-based policy, the optimization procedure is run
every time the number of orders is ≥ 10.

The following table shows the average objective values (total lengths of all
routes) for each instance, algorithm, and policy. Most of the best results are
achieved with the demand-based policy and the ACO algorithm. However, good
results are also achieved with the MIP algorithm with the order-based policy.

45

mean
name aco evo ins mip
policy dem ord per dem ord per dem onl ord per dem ord per
instance
c100 1363 1429 1377 1456 1348 1410 1588 1748 1631 1649 1313 1187 1363
c100b 1075 1066 948 1190 1388 1158 1279 1162 1167 1203 1107 952 1019
c120 1172 1274 1448 1253 1359 1354 1405 1262 1435 1571 1352 1698 1716
c150 2049 1856 1983 2150 2138 2039 2455 2649 1567 2402 1912 1908 1862
c199 2562 2502 2456 2833 3056 2526 3216 3556 2069 2903 2355 2398 2270
c50 917 877 901 925 887 925 1063 1179 1004 1078 933 828 928
c75 1381 1343 1345 1450 1462 1411 1740 1880 1687 1689 1514 1418 1324
f134 18228 17689 20226 20792 19480 21370 23350 20756 16874 20811 18582 15712 22647
f71 349 371 359 386 385 407 435 408 405 440 411 378 386
tai100a 2464 2604 2591 3065 2831 3166 3223 3268 3226 3213 2653 2773 2678
tai100b 2462 2501 2681 2767 2738 2966 3301 3233 3082 3227 2417 2652 2498
tai100c 1888 1988 1983 2065 2075 2568 2424 2386 2813 2540 1860 1809 1780
tai100d 2190 2403 2435 2513 2293 3019 2983 3342 2694 3077 2332 1817 2367
tai150a 3808 4164 3959 4566 4861 4971 5460 5156 4803 5244 4005 4186 4143
tai150b 3271 3756 3412 4198 5238 3986 4563 4450 4560 4327 3335 3902 3327
tai150c 3083 3395 2934 3879 4552 4245 4547 4213 4233 4292 3069 3497 2998
tai150d 3438 3392 3581 4295 4243 4631 5017 4429 4610 4596 3800 3857 3503
tai75a 2032 1989 2224 2170 2135 2474 2423 2448 2567 2641 2061 2224 2269
tai75b 1640 1686 1822 1942 2134 2498 2128 2157 2157 2119 1863 1829 2066
tai75c 1723 1794 1892 1894 1770 2079 2005 2138 2412 2103 1902 1740 1838
tai75d 1694 1707 1802 1650 1893 2045 2036 1944 2136 2093 1883 1895 2022
All 2799 2847 2969 3211 3251 3393 3650 3513 3197 3487 2889 2793 3095

Table 5.3: Average objectives for different policies.

46

Influence of policy

The following figures show the comparison of average objectives for each algorithm
for different policies. The ACO algorithm works best with the demand-based
policy, which runs the optimization procedure when the total demand of new
orders exceeds C ∗ 3/4. For other algorithms, the results are not very clear. It
seems that the objective value depends heavily on the dataset. For example, in
datasets c150 and c199, the best results are achieved with the Insertion algorithm
and the order-based policy and all other algorithms work very badly. The order-
based policy may be a good choice for the Insertion heuristic since we have shown
that it works better for fewer orders at a time.

ta
i1

00
a

ta
i1

00
b

ta
i1

00
c

ta
i1

00
d

ta
i1

50
a

ta
i1

50
b

ta
i1

50
c

ta
i1

50
d

ta
i7

5a

ta
i7

5b

ta
i7

5c

ta
i7

5d

instance

0

500

1000

1500

2000

2500

3000

3500

4000
None,name,policy

(mean, aco, dem)
(mean, aco, ord)
(mean, aco, per)

Figure 5.25: ACO

ta
i1

00
a

ta
i1

00
b

ta
i1

00
c

ta
i1

00
d

ta
i1

50
a

ta
i1

50
b

ta
i1

50
c

ta
i1

50
d

ta
i7

5a

ta
i7

5b

ta
i7

5c

ta
i7

5d

instance

0

1000

2000

3000

4000

5000
None,name,policy

(mean, evo, dem)
(mean, evo, ord)
(mean, evo, per)

Figure 5.26: EVO

ta
i1

00
a

ta
i1

00
b

ta
i1

00
c

ta
i1

00
d

ta
i1

50
a

ta
i1

50
b

ta
i1

50
c

ta
i1

50
d

ta
i7

5a

ta
i7

5b

ta
i7

5c

ta
i7

5d

instance

0

1000

2000

3000

4000

5000

None,name,policy
(mean, ins, dem)
(mean, ins, onl)
(mean, ins, ord)
(mean, ins, per)

Figure 5.27: Insertion

ta
i1

00
a

ta
i1

00
b

ta
i1

00
c

ta
i1

00
d

ta
i1

50
a

ta
i1

50
b

ta
i1

50
c

ta
i1

50
d

ta
i7

5a

ta
i7

5b

ta
i7

5c

ta
i7

5d

instance

0

500

1000

1500

2000

2500

3000

3500

4000
None,name,policy

(mean, mip, dem)
(mean, mip, ord)
(mean, mip, per)

Figure 5.28: MIP

Figure 5.29: The policy’s influence on each algorithm’s results.

Comparison of algorithms

The following figures compare algorithms’ average objectives for different policies.
We see that for all policies, the best results are achieved with the ACO algorithm
with the demand-based policy followed by the MIP algorithm with the order-
based policy. Also, the Insertion algorithm with the order-based policy works
well for some datasets.

47

ta
i1

00
a

ta
i1

00
b

ta
i1

00
c

ta
i1

00
d

ta
i1

50
a

ta
i1

50
b

ta
i1

50
c

ta
i1

50
d

ta
i7

5a

ta
i7

5b

ta
i7

5c

ta
i7

5d

instance

0

1000

2000

3000

4000

5000

None,name
(mean, aco)
(mean, evo)
(mean, ins)
(mean, mip)

Figure 5.30: Demand-based policy

ta
i1

00
a

ta
i1

00
b

ta
i1

00
c

ta
i1

00
d

ta
i1

50
a

ta
i1

50
b

ta
i1

50
c

ta
i1

50
d

ta
i7

5a

ta
i7

5b

ta
i7

5c

ta
i7

5d

instance

0

1000

2000

3000

4000

5000
None,name

(mean, aco)
(mean, evo)
(mean, ins)
(mean, mip)

Figure 5.31: Order-based policy
ta

i1
00

a

ta
i1

00
b

ta
i1

00
c

ta
i1

00
d

ta
i1

50
a

ta
i1

50
b

ta
i1

50
c

ta
i1

50
d

ta
i7

5a

ta
i7

5b

ta
i7

5c

ta
i7

5d

instance

0

1000

2000

3000

4000

5000

6000 None,name
(mean, aco)
(mean, evo)
(mean, ins-p)
(mean, mip)

Figure 5.32: Periodic policy

Figure 5.33: Comparison of algorithms for different policies.

Conclusion

In this section, we have shown the influence of different policies on the objective -
total length of all routes. It appears that different policies work best for different
datasets. It does not seem that one policy outperforms the others in general.

In practice, every policy has its advantages and disadvantages. The online
policy is the most computationally demanding, but it can provide an immediate
response to the customer. The periodic policy is computationally less demand-
ing, but the response time is slower, and it barely achieves the best results. The
demand-based and order-based policies have even greater problems with the re-
sponse time since we do not know when the threshold will be exceeded. Maybe,
the combined approach with the period, order count, and demand threshold could
work the best to guarantee quick response and good solutions.

Convergence of the algorithms
In this section, we compare the rate of convergence of ACO and EVO algorithms.
We would like to see how fast the algorithms converge to the best solution. The

48

period is fixed to T = 50 and P = 0. The setups for both algorithms are the
same as in the previous section. We run experiments on datasets c100b and c150.

In the following figures, we can see the convergence of the algorithms at each
time. On the x-axis is the number of generations, and on the y-axis is the objective
value of the best solution - the total length of all routes.

We can see that in the beginning, when the number of orders is low, the EVO
algorithm converges faster than the ACO algorithm and provides better solutions.
However, when the number of orders increases, the ACO algorithm is able to find
a better solution very fast. Although the ACO does not improve the first good
solution a lot, it is usually better than any solution found by EVO. We can also
see that although the maximum number of generations is set to 1000, the ACO
algorithm usually finds the best solution in the first couple of hundreds. The
figures show only the runs at times 100 to 300 for better clarity.

0 25 50 75 100 125 150 175 200
generation

200

300

400

500

600

700
None,time,algo

(min, 100, ACO)
(min, 100, EVO)
(min, 150, ACO)
(min, 150, EVO)
(min, 200, ACO)
(min, 200, EVO)
(min, 250, ACO)
(min, 250, EVO)
(min, 300, ACO)
(min, 300, EVO)

Figure 5.34: Convergence of ACO and EVO on dataset c100b.

0 100 200 300 400 500 600
generation

600

800

1000

1200

1400

1600

1800

2000

None,time,algo
(min, 100, ACO)
(min, 100, EVO)
(min, 150, ACO)
(min, 150, EVO)
(min, 200, ACO)
(min, 200, EVO)
(min, 250, ACO)
(min, 250, EVO)
(min, 300, ACO)
(min, 300, EVO)

Figure 5.35: Convergence of ACO and EVO on dataset c150.

49

Comparison with literature
Many papers have used Kilby’s dataset to test their algorithms. However, it is
hard to compare with them since we use the dataset in a different manner. We
assume that vehicles are already on the way during the planning process, so old
orders cannot be rescheduled, which worsens the results significantly. On the
other hand, we did not assume service times.

In the following table, we can see the comparison of all algorithms with period
50 and P = 0.05 compared to the best results in the dataset. The results are
the minimal total lengths of all routes. For some datasets, we have run the MIP
with unlimited runtime to see the ”optimal” results. We have not done so for
all datasets because the runtime, especially for larger ones, would be too long.
Optimal is quoted since we have mentioned the problems with optimality in 3.5.

The first column shows the average results of all algorithms for each dataset
with T = 50 and P = 0. The second column shows the best results from the
Okulewicz [2021]. The third column shows the best results we found by the MIP
solver with unlimited runtime.

instance P = 0.05, T = 50 Best MIP
c100 1502 953 1391
c100b 1165 828 -
c120 1716 1084 -
c150 2187 1164 -
c199 2733 1444 -
c50 997 570 928
c75 1508 923 1250
f134 23478 12813 -
f71 428 280 386
tai100a 3233 2178 -
tai100b 3126 2140 -
tai100c 2412 1490 -
tai100d 2849 1820 -
tai150a 5131 3273 -
tai150b 4312 2861 -
tai150c 4037 2512 -
tai150d 4551 2861 -
tai75a 2603 1778 -
tai75b 2176 1396 -
tai75c 2185 1122 -
tai75d 2064 1391 -

Table 5.4: Comparsion with literature.

Although the results are worse than the best ones, the goal of this thesis was
rather to compare implemented algorithmic approaches and show the influence
of period length, changing vehicle availability and policy. We did not have an
ambition to try to achieve the best results.

50

5.3 Distribution of orders
Now, we randomly generate datasets with different location distributions of or-
ders, and we try to find the best algorithm for each distribution. We use three
different distributions - uniform, clustered and quadrants. In the uniform distri-
bution, orders are distributed uniformly on the map. In the clustered distribution,
orders are distributed in small clusters that can be served by a single vehicle. In
the quadrants distribution, each next order is generated in the next quadrant of
the map. Each distribution is examined in 3 variants numbered 1,2 and 3. Vari-
ants vary in the average number of orders per tick. Variant 1 has 0.05 orders per
tick, variant 2 has 0.1 orders per tick, and variant 3 has 0.25 orders per tick. We
use the same setups as in the previous section with period 50 and P = 0 to avoid
distortion. The period length is 720 to simulate the 12-hour working day. The
capacity of the vehicle C is set to 50. Each algorithm is run 10 times, and a new
dataset is generated for each run.

The average lengths of all routes for different order distributions can be seen
in the following table. We can see that the ACO algorithm works best for almost
all distributions. We can also see that MIP works very badly for instances with a
few orders, especially for the clustered1 and uniform1 distribution. On the other
hand, for instances with many orders, MIP works quite well. The total distance
in clustered distribution is usually the smallest, which is reasonable since clusters
are served by a single vehicle.

mean
name aco evo ins-o ins-p mip
instance
clustered1 294 348 401 433 718
clustered2 498 585 717 584 815
clustered3 1191 1588 1612 2056 1641
quadrants1 702 900 718 894 797
quadrants2 1162 1374 1468 1264 1307
quadrants3 2443 2466 3224 2935 2310
uniform1 807 761 752 637 1178
uniform2 1249 1229 1474 1349 1258
uniform3 2072 2429 2758 2530 2109
All 1158 1304 1458 1409 1348

Table 5.5: Results for different order location distributions.

5.4 Runtime
Since we handle a dynamic problem, the runtime of the algorithm may be crucial
in practice. However, our experiments are just simulations Our implementation
is also not optimized for runtime but for simplicity and clarity. Because of that,
we did not focus on the runtime in previous experiments.

In this section, we measure the runtime of the algorithms. We use the identical
setups as in the previous section with the periodic policy, period T = 50 and

51

P = 0. ACO and EVO are terminated after 200 generations of stagnation. The
experiment was done on CPU Intel Core i7-12700K with 32GB RAM. The CP-
SAT solver used for solving MIP is parallelized, so it uses all available threads.
Insertion, ACO and EVO are not parallelized, so they use only one thread.

The following table shows the average runtime of the algorithms for each
dataset in seconds. Note that since the period is 50, each algorithm is run multiple
times to solve the whole problem. It is clear that the Insertion algorithm is
the fastest one and has the best objective-runtime ratio. Surprisingly, the best
average runtime is achieved with the MIP algorithm. It is probably thanks to
the effective model and the parallelization of the solver. We believe that a more
efficient and parallelized implementation of the ACO and EVO algorithms would
lead to similar or even better results. The highlighted values are the second-best
ones for each dataset. The first one is always the Insertion algorithm.

instance ins mip evo aco
0 c100b 0.04 40.36 10.32 11.54
1 c100 0.00 27.26 11.48 20.02
2 c120 0.01 27.65 14.71 28.16
3 c150 0.01 39.00 40.16 49.99
4 c199 0.01 41.85 78.63 72.80
5 c50 0.00 1.42 2.07 5.52
6 c75 0.00 10.68 5.17 10.77
7 f134 0.07 9.54 96.66 532.06
8 f71 0.01 20.43 4.62 10.52
9 tai100a 0.01 22.98 15.41 20.52
10 tai100b 0.01 19.80 16.53 20.54
11 tai100c 0.01 5.99 18.50 28.30
12 tai100d 0.00 7.61 15.04 26.97
13 tai150a 0.01 67.47 58.88 73.65
14 tai150b 0.01 40.00 60.85 77.81
15 tai150c 0.01 51.29 52.09 78.73
16 tai150d 0.01 50.29 41.73 56.97
17 tai75a 0.00 14.66 6.80 11.79
18 tai75b 0.00 5.78 8.30 15.13
19 tai75c 0.00 1.07 9.08 12.78
20 tai75d 0.00 6.16 7.88 13.25

Table 5.6: Average runtime of algorithms in seconds.

5.5 Conclusion of experiments
This chapter aimed to measure the influence of different parameters and compare
implemented algorithms. Our measure was the total length of all routes, which
we tried to minimize.

Initially, we fine-tuned parameters for the EVO, ACO, and Insertion algo-
rithms. We tried several setups on a subset of datasets and chose the best ones.
We first found the best probabilities for genetic operators for the Evolutionary

52

algorithm. Then, we used the modified fitness function to maintain diversity in
the population. That helped to improve the results, and we have shown that the
diversity of the population was preserved. For the ACO algorithm, we first found
the best pheromone update mode, which was to update pheromone trails by all
ants. Then, we found the best α and β parameters, determining the importance
of pheromones and attractiveness. The algorithm preferred pheromone to attrac-
tiveness. Last, we tried to store the pheromone between runs, but it did not help
because the problem changed a lot between runs. Last, we compared the sequen-
tial and parallel insertion heuristics. The parallel heuristic uses minimum-weight
matching to insert orders into routes in a parallel manner. We found that the
sequential insertion works better on most datasets.

Then, we run experiments on Kilby’s dataset to show the influence of the
period length, changing vehicle availability, and policy on results. First, we ran
algorithms for five different periods and showed that the longer the period, the
better the results are. That is in accordance with the hypothesis and the ob-
servation 1. We also compared the performance of individual algorithms. The
best results on most of the datasets were achieved with the ACO algorithm and
the MIP. One exception was dataset c120, where the Insertion algorithm with
the online policy also worked well since the dataset has a specific map structure.
Second, we showed the influence of changing vehicle availability, represented by
the parameter P , which is the probability that a vehicle becomes unavailable
after serving an order. As expected, the higher the value of P , the worse the
results were. Again, the best results were achieved using ACO and MIP algo-
rithms. However, for higher values of P , the Insertion algorithm with the online
policy worked quite well for some datasets. Last, we examined the influence of
different policies. We used the online, periodic, demand-based, and order-based
policies. The best results were achieved with the demand-based policy and the
ACO algorithm. However, the results were not very clear, and it seems that the
best policy depends heavily on the dataset. The comparison with the literature
was difficult since we used Kilby’s dataset differently. However, we showed that
although our approach leads to worse results than the best ones, they are close
to the ”optimal” ones found by the MIP solver.

Next, we tried to find out whether the distribution of orders on the map
affected the results. We used three different distributions - uniform, clustered
and quadrants with varying numbers of orders per tick. We showed that the
results are best for the clustered distribution where clusters are served by a single
vehicle. Furthermore, we also showed that the ACO algorithm works best for
almost all distributions.

Last, we measured the runtime of individual algorithms. We showed that the
Insertion algorithm is the fastest one since it is straightforward. However, all
remaining algorithms also had reasonable runtimes and could be used in practice
with some optimization.

The best algorithm in terms of solution quality is the ACO. It is very flexible
and works well for short and long periods, with different values of P , policies, and
distributions of orders on a map. The ACO is followed by the MIP, which works
well for instances with many orders. Surprisingly, for high values of P and some
clustered datasets, the Insertion algorithm with the online policy works quite
well, and it is always the fastest one.

53

Conclusion
In this thesis, we studied the capacitated dynamic vehicle routing problem (CD-
VRP) with changing vehicle availability. The objective was to minimize the total
travel distance. The goal was to implement several algorithms for the CDVRP
and compare their performance under different circumstances.

First, we went briefly through the history of the vehicle routing problem and
showed some classical mathematical models and approximation algorithms. We
also discussed possible constraints and objectives in the VRP. Then, we moved
to the dynamic VRP and discussed the challenges and approaches to solve it.

Then, we precisely defined the version of CDVRP studied in the thesis. We
considered vehicle capacities, orders revealing over time, and changing vehicle
availability. We also introduced the set of constraints that must be satisfied in
any feasible solution. Next, we proposed several policies on how to deal with the
dynamism in the CDVRP. We considered the online and periodic policy, order-
based policy, and demand-based policy.

The most important part of the thesis was the description and implemen-
tation of optimization algorithms to solve the CDVRP using some policy. We
implemented a mixed-integer programming model, insertion heuristic, evolution-
ary algorithm, and ant colony optimization. All algorithms considered vehicle
capacities and changing vehicle availability.

Last, we run several experiments. We used all algorithms with different poli-
cies and parameters and compared them. We showed that the best algorithm
w.r.t. the total travel distance is the ACO algorithm. However, the results al-
ways depend on the policy, the parameters of the algorithm, and the dataset itself.
We also showed that in some scenarios, like clustered orders or high probably of
vehicle unavailability, the Insertion heuristic with online policy may be a good
choice.

Future work
The first direction for future research is to extend the algorithms for more con-
straints, like time windows, multiple depots, or heterogeneous fleet. We can
also consider another objective, like minimizing delivery time or maximizing the
number of served orders.

The second thing may be to improve the implementation itself. Especially
the evolutionary algorithm and ant colony optimization can be optimized and
parallelized to achieve better runtimes.

Last, we can extend the experiments. We may try to do better parameter
tuning using grid search and more possible values of hyperparameters. We can
also try to generate more datasets with different characteristics and compare the
algorithms on them. For example, we could study the changing vehicle availability
with different periods and different policies.

54

Bibliography
Jose Caceres Cruz, Pol Arias, Daniel Guimarans, Daniel Riera, and Angel Juan.

Rich vehicle routing problem: Survey. ACM Computing Surveys, 47:1–28, 12
2014. doi: 10.1145/2666003.

Nicos Christofides. Worst-case analysis of a new heuristic for the travelling sales-
man problem. Operations Research Forum, 3, 1976.

Alberto Colorni, Marco Dorigo, Vittorio Maniezzo, et al. Distributed op-
timization by ant colonies. In Proceedings of the first European con-
ference on artificial life, volume 142, pages 134–142. Paris, France,
1991. URL https://www.researchgate.net/publication/216300484_
Distributed_Optimization_by_Ant_Colonies.

G. Dantzig, R. Fulkerson, and S. Johnson. Solution of a large-scale traveling-
salesman problem. Journal of the Operations Research Society of America, 2(4):
393–410, 1954. ISSN 00963984. URL http://www.jstor.org/stable/166695.

G. B. Dantzig and J. H. Ramser. The truck dispatching problem. Manage-
ment Science, 6(1):80–91, 1959. ISSN 00251909, 15265501. URL http:
//www.jstor.org/stable/2627477.

Francesco Ferrucci and Stefan Bock. Pro-active real-time routing in applica-
tions with multiple request patterns. European Journal of Operational Re-
search, 253(2):356–371, 2016. ISSN 0377-2217. doi: https://doi.org/10.1016/j.
ejor.2016.02.016. URL https://www.sciencedirect.com/science/article/
pii/S0377221716300364.

Daniela Gaul, Kathrin Klamroth, and Michael Stiglmayr. Event-based milp mod-
els for ridepooling applications. European Journal of Operational Research,
301(3):1048–1063, 2022. ISSN 0377-2217. doi: https://doi.org/10.1016/j.
ejor.2021.11.053. URL https://www.sciencedirect.com/science/article/
pii/S0377221721010043.

Fred Glover. Future paths for integer programming and links to artificial in-
telligence. Computers and Operations Research, 13(5):533–549, 1986. ISSN
0305-0548. doi: https://doi.org/10.1016/0305-0548(86)90048-1. URL https:
//www.sciencedirect.com/science/article/pii/0305054886900481. Ap-
plications of Integer Programming.

Franklin Hanshar and Beatrice Ombuki-Berman. Dynamic vehicle routing us-
ing genetic algorithms. Appl. Intell., 27:89–99, 06 2007. doi: 10.1007/
s10489-006-0033-z.

J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings of
ICNN’95 - International Conference on Neural Networks, volume 4, pages
1942–1948 vol.4, 1995. doi: 10.1109/ICNN.1995.488968.

Philip Kilby, Patrick Prosser, and Paul Shaw. Dynamic vrps: A study of scenar-
ios. University of Strathclyde Technical Report, 1(11), 1998.

55

https://www.researchgate.net/publication/216300484_Distributed_Optimization_by_Ant_Colonies
https://www.researchgate.net/publication/216300484_Distributed_Optimization_by_Ant_Colonies
http://www.jstor.org/stable/166695
http://www.jstor.org/stable/2627477
http://www.jstor.org/stable/2627477
https://www.sciencedirect.com/science/article/pii/S0377221716300364
https://www.sciencedirect.com/science/article/pii/S0377221716300364
https://www.sciencedirect.com/science/article/pii/S0377221721010043
https://www.sciencedirect.com/science/article/pii/S0377221721010043
https://www.sciencedirect.com/science/article/pii/0305054886900481
https://www.sciencedirect.com/science/article/pii/0305054886900481

A. Larsen. The Dynamic Vehicle Routing Problem. PhD thesis, Department
of Mathematical Modelling, The Technical University of Denmark, Building
321, DTU, DK-2800 Kgs. Lyngby, 2000. URL http://www2.compute.dtu.
dk/pubdb/pubs/143-full.html.

Jing-Quan Li, Pitu B. Mirchandani, and Denis Borenstein. The vehicle reschedul-
ing problem: Model and algorithms. Networks, 50(3):211–229, 2007. doi:
https://doi.org/10.1002/net.20199. URL https://onlinelibrary.wiley.
com/doi/abs/10.1002/net.20199.

Yanchao Liu. An optimization-driven dynamic vehicle routing algorithm for
on-demand meal delivery using drones. Computers and Operations Re-
search, 111:1–20, 2019. ISSN 0305-0548. doi: https://doi.org/10.1016/j.
cor.2019.05.024. URL https://www.sciencedirect.com/science/article/
pii/S0305054819301431.

K. Lund, O.B.G. Madsen, J.M. Rygaard, Danmarks Tekniske Universitet. Institut
for Matematisk Modellering, and Technical University of Denmark. Institute of
Mathematical Modelling. Vehicle Routing Problems with Varying Degrees of
Dynamism. IMM-REP. IMM, Institute of Mathematical Modelling, Technical
University of Denmark, 1996. URL https://books.google.cz/books?id=
jwiBYgEACAAJ.

Clair E Miller, Albert W Tucker, and Richard A Zemlin. Integer programming
formulation of traveling salesman problems. Journal of the ACM (JACM), 7
(4):326–329, 1960.

Pedro Augusto Munari. A generalized formulation for vehicle routing prob-
lems. ArXiv, abs/1606.01935, 2016. URL https://api.semanticscholar.
org/CorpusID:14459897.

Brenner Humberto Ojeda Rios, Eduardo C. Xavier, Flávio K. Miyazawa, Pe-
dro Amorim, Eduardo Curcio, and Maria João Santos. Recent dynamic
vehicle routing problems: A survey. Computers and Industrial Engineer-
ing, 160:107604, 2021. ISSN 0360-8352. doi: https://doi.org/10.1016/j.
cie.2021.107604. URL https://www.sciencedirect.com/science/article/
pii/S0360835221005088.

Michal Okulewicz. Dvrp kilby’s instances for dynamic vehicle routing prob-
lem. Mendely data, 2021. doi: 10.17632/3fwc3twwn6.5. URL https:
//data.mendeley.com/datasets/3fwc3twwn6/5.

Michal Okulewicz and Jacek Mańdziuk. A metaheuristic approach to solve
dynamic vehicle routing problem in continuous search space. Swarm and Evo-
lutionary Computation, 48, 03 2019. doi: 10.1016/j.swevo.2019.03.008.
URL https://www.researchgate.net/publication/331870708_A_
metaheuristic_approach_to_solve_Dynamic_Vehicle_Routing_Problem_
in_continuous_search_space.

Victor Pillac, Michel Gendreau, Christelle Guéret, and Andrés L. Medaglia. A
review of dynamic vehicle routing problems. European Journal of Operational

56

http://www2.compute.dtu.dk/pubdb/pubs/143-full.html
http://www2.compute.dtu.dk/pubdb/pubs/143-full.html
https://onlinelibrary.wiley.com/doi/abs/10.1002/net.20199
https://onlinelibrary.wiley.com/doi/abs/10.1002/net.20199
https://www.sciencedirect.com/science/article/pii/S0305054819301431
https://www.sciencedirect.com/science/article/pii/S0305054819301431
https://books.google.cz/books?id=jwiBYgEACAAJ
https://books.google.cz/books?id=jwiBYgEACAAJ
https://api.semanticscholar.org/CorpusID:14459897
https://api.semanticscholar.org/CorpusID:14459897
https://www.sciencedirect.com/science/article/pii/S0360835221005088
https://www.sciencedirect.com/science/article/pii/S0360835221005088
https://data.mendeley.com/datasets/3fwc3twwn6/5
https://data.mendeley.com/datasets/3fwc3twwn6/5
https://www.researchgate.net/publication/331870708_A_metaheuristic_approach_to_solve_Dynamic_Vehicle_Routing_Problem_in_continuous_search_space
https://www.researchgate.net/publication/331870708_A_metaheuristic_approach_to_solve_Dynamic_Vehicle_Routing_Problem_in_continuous_search_space
https://www.researchgate.net/publication/331870708_A_metaheuristic_approach_to_solve_Dynamic_Vehicle_Routing_Problem_in_continuous_search_space

Research, 225(1):1–11, 2013. ISSN 0377-2217. doi: https://doi.org/10.1016/j.
ejor.2012.08.015. URL https://www.sciencedirect.com/science/article/
pii/S0377221712006388.

Krunoslav Puljić and Robert Manger. Comparison of eight evolutionary crossover
operators for the vehicle routing problem. Mathematical Communications, 18,
11 2013. URL https://www.researchgate.net/publication/268043232_
Comparison_of_eight_evolutionary_crossover_operators_for_the_
vehicle_routing_problem/citations.

Matthew Randall, Ahmed Kheiri, and Adam N Letchford. Insertion
heuristics for a class of dynamic vehicle routing problems. 2022.
URL https://optimization-online.org/wp-content/uploads/2022/11/
dynamic-insertion.pdf.

M. Schyns. An ant colony system for responsive dynamic vehicle routing. Eu-
ropean Journal of Operational Research, 245(3):704–718, 2015. ISSN 0377-
2217. doi: https://doi.org/10.1016/j.ejor.2015.04.009. URL https://www.
sciencedirect.com/science/article/pii/S0377221715002817.

Zachary Steever, Mark Karwan, and Chase Murray. Dynamic courier routing for a
food delivery service. Computers and Operations Research, 107:173–188, 2019.
ISSN 0305-0548. doi: https://doi.org/10.1016/j.cor.2019.03.008. URL https:
//www.sciencedirect.com/science/article/pii/S0305054819300681.

Kenneth Sörensen and Fred Glover. Encyclopedia of Operations Research and
Management Science, chapter Metaheuristics, pages 960–970. Springer, 01
2013. ISBN 978-1-4419-1137-7. doi: 10.1007/978-1-4419-1153-7 1167.

57

https://www.sciencedirect.com/science/article/pii/S0377221712006388
https://www.sciencedirect.com/science/article/pii/S0377221712006388
https://www.researchgate.net/publication/268043232_Comparison_of_eight_evolutionary_crossover_operators_for_the_vehicle_routing_problem/citations
https://www.researchgate.net/publication/268043232_Comparison_of_eight_evolutionary_crossover_operators_for_the_vehicle_routing_problem/citations
https://www.researchgate.net/publication/268043232_Comparison_of_eight_evolutionary_crossover_operators_for_the_vehicle_routing_problem/citations
https://optimization-online.org/wp-content/uploads/2022/11/dynamic-insertion.pdf
https://optimization-online.org/wp-content/uploads/2022/11/dynamic-insertion.pdf
https://www.sciencedirect.com/science/article/pii/S0377221715002817
https://www.sciencedirect.com/science/article/pii/S0377221715002817
https://www.sciencedirect.com/science/article/pii/S0305054819300681
https://www.sciencedirect.com/science/article/pii/S0305054819300681

List of Figures

1.1 MIP objective for TSP . 4

4.1 Permutation encoding . 23
4.2 Future and past parts of a route 23
4.3 Minimize the fitness function of an individual I 24
4.4 Building the solution by an ant 27
4.5 Attractiveness of an ij-edge . 27
4.6 Pheromone update . 27
4.7 Probability of selecting ij edge . 28

5.1 Modified fitness of an individual 32
5.2 Average population uniqueness for dataset c100 at time 250 33
5.3 ACO . 39
5.4 EVO . 39
5.5 Insertion . 39
5.6 MIP . 39
5.7 The period length’s influence on each algorithm’s results. 39
5.8 T = 20 . 40
5.9 T = 50 . 40
5.10 T = 100 . 40
5.11 T = 200 . 40
5.12 Comparison of algorithms for different periods. 40
5.13 Objectives for c120 . 41
5.14 c120 structure . 41
5.15 ACO . 43
5.16 EVO . 43
5.17 Insertion . 43
5.18 MIP . 43
5.19 The P ’s influence on each algorithm’s results. 43
5.20 P = 0 . 44
5.21 P = 0.05 . 44
5.22 P = 0.1 . 44
5.23 P = 0.25 . 44
5.24 Comparison of algorithms for different values of P 44
5.25 ACO . 47
5.26 EVO . 47
5.27 Insertion . 47
5.28 MIP . 47
5.29 The policy’s influence on each algorithm’s results. 47
5.30 Demand-based policy . 48
5.31 Order-based policy . 48
5.32 Periodic policy . 48
5.33 Comparison of algorithms for different policies. 48
5.34 Convergence of ACO and EVO on dataset c100b. 49
5.35 Convergence of ACO and EVO on dataset c150. 49

58

A.1 Graphical interface of the CDVRP application. 63

59

List of Tables

5.1 Average objectives for different periods. 38
5.2 Average objectives for different values of P 42
5.3 Average objectives for different policies. 46
5.4 Comparsion with literature. 50
5.5 Results for different order location distributions. 51
5.6 Average runtime of algorithms in seconds. 52

A.1 Parameters of the runalgo command. 63

60

A. Attachments

A.1 Implementation

A.1.1 Specification
For running the experiments, we have implemented an application in C#. The
application is divided into three projects. The first project CDVRP contains the
data structures and implemented algorithms. The second project CDVRPConsole
is the console interface for running the experiments. The third project CDVRPUI is
the graphical interface for visualizing the results. The application is implemented
in C# using .NET 8. Windows Forms framework is used for the graphical in-
terface. Since .NET is a multiplatform, the console application can be run on
Windows, Linux, and macOS. The graphical interface is only available on Win-
dows or Linux with Wine.

A.1.2 Algorithms and data structures
The algorithms and data structures are in the CDVRP project. Algorithms im-
plementations are stored in the CDVRP.Algorithms namespace. Data structures
implementations are stored in the CDVRP.DataStructures and utility classes are
stored in the CDVRP.Helpers.

DataStructures.Instance

The Instance class represents an instance of the CDVRP. Every algorithm re-
quires an instance of the CDVRP in the input. It contains the orders, demands,
distance matrix, vehicle capacity, availability times, and the probability of a vehi-
cle becoming unavailable. It has CloneAtTime(int time) method that returns
a clone of the instance with only the orders that are available at the given time.
The method is used to create instances for the CDVRP over time.

The instance can be loaded from a file using the InstanceReader class. The
class has a ReadKilbyFile(string path) method that reads the instance from
a file in the format described in Okulewicz [2021]. The method computes the
distance matrix considering the Euclidean metric and returns the Instance.

The instance can also be generated randomly using the InstanceGenerator
class according to the given parameters. The class can generate datasets with
various order distributions, vehicle capacities, and availability times.

The InstanceWriter class can save the Instance object to a file in the format
described in Okulewicz [2021]. It is used to save generated instances for further
experiments.

DataStructures.Solution

The Solution class represents a solution to the CDVRP. Every algorithm returns
a solution to the problem. It contains the set of routes, the set of finished routes,
where the vehicles became unavailable, and the total distance of the solution. It
has several methods for computing the total distance, the route demand, and the

61

delivery times of orders. The method ThrowIfIncomplete() is used to guarantee
valid solutions. It also has OrdersToPlan(int time) method that returns orders
from the solution that may be rescheduled.

Algorithms.AlgorithmManager

The AlgorithmManager class is responsible for running the algorithms in the
dynamic environment. It has a Run method that runs the algorithm on the
given instance and returns the solution. The method iterates over time and runs
the optimization algorithm according to the given policy. It has parameters for
the problem instance, the algorithm and its parameters, the policy settings, and
output writers. It returns the final solution and a list of its snapshots stored
during the run.

To be able to pass an algorithm to Run method, each algorithm must im-
plement the IAlgorithm interface. Also, each algorithm parameters class must
implement the IAlgorithmParams interface.

A.1.3 User interface
Console interface

The console interface is in the CDVRPConsole project. It is a simple console
application that allows experiments to be run from the command line. It can
also read and run experiment setups from a file. The application can be run on
Windows, Linux, and macOS. The console interface has the following commands:

• exit - exits the application

• help - prints available commands

• runalgo - runs the algorithm on the instance

• runfile - executes commands from a file in parallel

The runfile command just executes all commands from a file in parallel, so
the order is not guaranteed. The most important command is runalgo, which
runs the algorithm. The command has the following parameters:

62

parameter description
runalgo the command
name user-defined name of run
numOfRuns number of runs
outputfile path to output file with results
logfile path to log file
algoFile path to telemetry log of the algorithm
instance path to the instance in *.vrp format
algorithm the name of algorithm class, e.g. ACO
policy-period AlgorithmPolicy.Policies value-Period value
probVehicleUnavailable probability of vehicle becoming unavailable
–algorithmParamsProps Parameters of IAlgorithmParams class of the

Table A.1: Parameters of the runalgo command.

The file with the experiment can be run in the following way. Ensure, that
the paths in the file are correct.

./CDVRPConsole.exe runfile evo_params_tuning.txt

Graphical interface

The graphical interface is in the CDVRPUI project. It is a Windows Forms appli-
cation, so it can be run on Windows only. It should also run on Linux with Wine,
but it was not tested.

The application has just one window that is able to run experiments and
visualize the results. The application is not meant to be used by the end user.
Sections of the window are visualized in the following figure and described below.

1 5

6

4

2

3

Figure A.1: Graphical interface of the CDVRP application.

63

In section 1, the user selects a directory with instances in *.vrp format. The
application then reads all instances using InstanceReader from the directory
and displays them in the list. The user can select an instance from the list to run
experiments on.

In section 2, the user selects an algorithm to run on the instance. More algo-
rithms and setups can be added in source code only in method LoadAlgorithms
in FormMain.cs class.

In section 3, the user selects the number of runs and can run experiments
using the Run button. All experiments are run in parallel.

Section 4 displays the selected solution from section 5. The solution is visu-
alized on the map with the routes of the vehicles. The depot is colored in blue,
the served orders are colored in green, and the unserved orders are colored in red.
Each route is colored differently. Below the map is a time slider, so the user can
see the solution at different times. At the bottom is a text representation of the
solution.

In section 6 users select the output directory. The application saves the results
of the experiments in the selected directory in *.csv files for further processing.
Below is AlgorithmManager log.

A.2 attachments.zip file
The attachments to this thesis are available in the attachments.zip file. The file
contains the following directories:

• Experiment results - raw data from the experiments

• Experiment setups - configuration files for the experiments

• Implementation - source code of the implemented algorithms, graphical and
console interface.

• Kilby - Kilby’s instances used in the experiments

64

	Introduction
	Vehicle routing problem
	Traveling salesman problem
	Vehicle routing problem
	Dynamic VRP

	Related work
	Heuristics
	Exact methods
	Meta-heuristics
	Kilby's dataset

	Problem formulation and its analysis
	Properties
	Formal model
	Solution and objective function
	Optimality upper bound
	Optimality problems
	Policies

	Optimization algorithms
	Mixed integer programming
	Insertion heuristic
	Evolutionary algorithm
	Ant colony optimization

	Experiments
	Parameter tuning
	Kilby's dataset
	Distribution of orders
	Runtime
	Conclusion of experiments

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	Attachments
	Implementation
	Specification
	Algorithms and data structures
	User interface

	attachments.zip file

