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Abstract: The ability to only define the physics of an environment in classical
planning tasks has been a long-standing obstacle in practical applications of such
an approach. Current generic planners are typically capable of finding a solution
to a given problem, but their inability to consider domain-specific constraints
is often mirrored in a significant performance gap when compared to domain-
specific algorithms. Remedying this gap would prove invaluable in making classical
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Abstrakt: Schopnost definovat pouze možnosti prostředí v úkolu klasického
plánování je dlouhodobou překážkou pro praktické aplikace tohoto přístupu.
Moderní obecné plánovače jsou typicky schopné nalézt řešení daného problému,
ale jejich neschopnost využít informací specifických pro doménu se často projeví
ve výrazném rozdílu výkonu oproti algoritmům přizpůsobeným dané doméně. Pro
použitelnost obecných plánovačů v produkčních prostředích je tudíž klíčové tento
výkonostní rozdíl dohnat.
V této práci nejprve představíme téma klasického plánování a krátce shrneme
běžné přístupy k řešení plánovacích problémů. Poté popíšeme princip Attributed
Transition-Based Domain Control Knowledge, což je technika pro zakódování
kontextuálních informací do domény a problému. Nakonec odprezentujeme naší
implementaci spolu s experimentálními výsledky.

Klíčová slova: Znalostní inženýrství; Klasické plánování; Doménové kontrolní
znalosti



Contents

Introduction 7

1 Classical Planning 8
1.1 Classical representation . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Motivating example . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3 Planners in practice . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.1 Algorithms for classical planning . . . . . . . . . . . . . . 14
1.3.2 Planning Domain Definition Language . . . . . . . . . . . 16
1.3.3 Planning complexity . . . . . . . . . . . . . . . . . . . . . 17

2 Attributed Transition-Based Domain Control Knowledge 18
2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Encoding of ATB-DCK into Domains . . . . . . . . . . . . . . . . 22

2.2.1 The encoding algorithm . . . . . . . . . . . . . . . . . . . 25
2.3 Encoding of ATB-DCK into Problems . . . . . . . . . . . . . . . . 26
2.4 Extracting a solution . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 ATB-DCK editor 29
3.1 Vue.js . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Developer dependencies . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Firebase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4 The encoding process . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4.1 The data structure . . . . . . . . . . . . . . . . . . . . . . 30
3.4.2 Encoding to domains . . . . . . . . . . . . . . . . . . . . . 31
3.4.3 Encoding to problems . . . . . . . . . . . . . . . . . . . . 31

3.5 User interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.5.1 Management of files . . . . . . . . . . . . . . . . . . . . . . 32
3.5.2 File editor . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.5.3 ATB-DCK form . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6 Workflow example . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Experimental evaluation 37
4.1 Domain description . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 ATB-DCK design . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3 ATB-DCK experimental evaluation . . . . . . . . . . . . . . . . . 40

Conclusion 43

Bibliography 44

List of Figures 47

List of Tables 48

6



Introduction
Attributed Transition-Based Domain Control Knowledge is a technique meant

to improve the performance of planners solving domain independent classical
planning problems. In attempting to find a sequence of actions as efficiently as
possible, the commonly used formalisms describing only physics of an environment
can sometimes allow planners to perform nonsensical sequences of actions. Such
sequences can sometimes lead to expansive branches of computation that needlessly
inflate the branching factor.

These issues are currently being adressed through either more nuanced plan-
ning techniques, classical planning extensions, or through simply discarding the
feature of domain independence in favour of domain-specific planning techniques.
The dominance of domain-specific planners in terms of performance hinders the
development of domain independent planners and planning techniques, thus slow-
ing down development and research in the area of classical planning as a whole,
instead resulting in a confusing mix of techniques and approaches that are only
sometimes beneficial to classical planning as a whole.

Improving the performance of domain independent planning is difficult. Im-
proving search techniques can only take us so far, seeing as they can either
be utilized by domain-specific planners as well, or fail to measure up to the
performance gains of domain-specific approaches. It then becomes key to find
ways of encoding domain-specific contextual information into planning tasks in
a domain-independent way, so as to allow domain experts to enjoy both good
performance, and the wider variety of tools available to domain-independent
planning. ATB-DCK attempts to do just that.

ATB-DCK is a technique of encoding additional contextual information into
planning tasks inspired by modelling the internal logic of domains using finite
automata. The domain expert needs to only choose a domain, determine what
inefficiencies are present in the domain definitions and cause the greatest hurdles
during the planning process, use this knowledge to model an ATB-DCK, which
represents the internal logic which sequences of actions in a given domain should
follow in order to avoid these pitfalls, and define the logical rules used to infer the
initial situation of this new logic.

This thesis first summarizes key features, properties, and definitions of clas-
sical planning, briefly ellaborates upon existing DCK techniques, reherses the
original description of ATB-DCK as done by Chrpa and Barták[1], ellaborates on
implementation details of encoding ATB-DCK, presents the software created to
illustrate ATB-DCK encoding in practice. Finally, a new ATB-DCK for a specific
domain is designed and experimentally evaluated, in order to illustrate how the
ATB-DCK design migh work in practice and what performance changes can be
expected.
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1 Classical Planning
Classical planning[2] aims to find a sequence of steps an agent should take if

he intends to transform the world from its initial state, into its desired state. It
presumes that the environment is static, fully observable, and deterministic. In a
static environment, an agent has any amount of time to deliberate the best possible
action. A static environment doesn’t change independently of the agent’s actions.
An observable environment gives the agent access to any relevant information
about itself. This information may describe objects present in the environment,
or their relationships, as well as any other special properties the environment
may have. In a deterministic environment, the agent knows how the environment
changes and reacts to every action the agent could take [2, 3].

Even so, meeting all of the environmental constraints is no guarantee that the
planning problem is computationally achievable. While the search for a plan might
be fairly straightforward in principle, nearly all planners struggle with controlling
the combinatorial explosion associated with large and complex environments[3].
To illustrate, the problems of plan existence and determining the length of the
plan both fall into the PSPACE class - a class larger than NP referring to problems
that can be solved by a deterministic Turing machine with a polynomial amount of
space[2, 4]. Nonetheless, real-world implementations of planners and planning uses
rarely concern themselves with such possibly unsolvable problems. In practice,
planners employ several clever techniques and helpful additional constraints to
maximize their speed and robustness for specific kinds of problems. The most
important of these planners for this thesis will be generic planners.

Note that most definitions are either directly quoted or paraphrased from
the book Artificial Intelligence: A Modern Approach (both 2016 and 2021 edi-
tions)[4, 3], the book Automated Planning: Theory and Practice[2], or the paper
Attributed Transition-Based Domain Control Knowledge for Domain-Independent
Planning[1].

1.1 Classical representation
The classical representation describes the environment using a language L

composed of first-order logic predicates PL. To properly describe an environment,
we first need to describe what objects we are working with (constant symbols),
what relationships any possible objects can have (atoms with variable symbols),
and finally what specific relationships hold for which objects (grounded atoms).

Definition 1 (Terms, atoms, grounded atoms). A term is either a variable
symbol, or a constant symbol. Variable symbols are constructs used to generalize
predicates. Constant symbols represent objects within a given environment.

An atom is a predicate of the form p(t1, ...), where p ∈ PL and ti are only
terms. An atom or its negation is also called a literal. An atom p(t1, ...) is
grounded if ti is a constant symbol for all i. Grounded atoms are sometimes also
called instances of atoms.
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Example (Terms, atoms, grounded atoms). terms← {
constant symbols: Mark, Alice
variable symbols: x, y } ▷ As we can see, constant symbols refer to specific
entities, while variable symbols are generic standins.
atom← likes(x, y) ▷ Object x likes object y
grounded atom← likes(Mark, Alice) ▷ Mark likes Alice

Once possible objects and relationships are defined, a formalism describing
the states of the world (state), how the agent can change the world (planning
operator), and specific instances of these changes (actions) are needed. These
concepts combined provide us with a powerful tool of modelling the relevant parts
of the world, which will allow us to manipulate the world easier.

Definition 2 (State, planning operator, action). A state is a finite set of grounded
atoms.

A planning operator, is a tuple a = (name(a), preconditions(a), effects(a)).
name takes the form name(a) = op_name(v1, ..., vn), where op_name is a unique
identifier and v1, ..., vn are variable symbols. preconditions(a) are sets of literals
(positive or negative) that must hold true for the operator to be applicable. effects(a)
are sets of predicates which shall hold true once the operator is applied.

An action is a planning operator, where all predicates found in preconditions
or effects have had all variable symbols substituted for constant symbols. In other
words, an action is a fully grounded instance of a planning operator.

It can sometimes be advantageous to split effects(a) or preconditions(a) into
positive and negative predicates, denoted as effects(a) = (effects(a)+ ∪ effects(a)−)
and preconditions(a) = (preconditions(a)+ ∪ preconditions(a)−) respectively.

*Note that we adopt the closed world assumption, meaning that any predicates which
aren’t either explicitly mentioned or aren’t a logical consequence of the stated predicates do not
hold.

In the following example, an agent is working with a world where Mark likes
Alice, and both Alice and Mark are single. The agent can then transform the
world by either having a person x who likes person y ask out person y, and
then having the person y either accept or reject said proposition while similar
preconditions hold. Since there is no operator to make person y like person x, if
person y doesn’t already like person x, the only possible outcome is rejection.

Example (State, planning operator, action). State← { likes(Mark, Alice),
single(Alice), single(Mark) } ▷ Both Mark and Alice are currently single. Mark
also likes Alice.
Operators← {
ask_out← {
name: ask_out(x, y)
preconditions: likes(x, y) ∧ single(x)
effect: asked_out(x, y) }

accept← {
name: accept(x, y)
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preconditions: likes(x, y) ∧ single(x) ∧ asked_out(y, x)
effect: dating(x, y) }

reject← {
name: reject(x, y)
preconditions: ¬likes(x, y) ∧ asked_out(y, x)
effect: sad(y) } } ▷ Notice a state doesn’t need to explicitly state false

predicates, due to the closed world assumption.
Actions← {
ask_out← {
name: ask_out(Mark, Alice)
preconditions: likes(Mark, Alice) ∧ single(Mark)
effect: asked_out(Mark, Alice) }

reject← {
name: reject(Alice, Mark)
preconditions: ¬likes(Alice, Mark) ∧ asked_out(Mark, Alice)
effect: sad(Mark) } } ▷ For the accept action, preconditions don’t hold.

*Note that there may be deviations in implementations, such as only describing what values
changed since the last state, but those nuances are irrelevant to our use case.

The definitions of actions naturally lead to the question of action application.
Actions would be useless without us being able to know when they can and can
not be applied to a state and how they transform the state.

Definition 3 (Applicable action). An action
a = (preconditions(o)+, preconditions(o)−, effects(o)+, effects(o)−) in a plan-

ning state S is applicable if and only if preconditions(o)+ ⊆ S∧(preconditions(o)−∩
S) = ∅. If the applicable action is chosen, it transforms the state S in the following
way: (S \ effects(o)−) ∪ effects(o)+.

A domain is simply a formalism giving the agent all the tools mentioned in
the previous definitions in a unified manner. Note that it only describes what is
possible in a given world, not who these possibilities apply to or what specific
world the agent is working with.

Definition 4 (Domain). A Domain is typically defined as a tuple (Preds, Ops),
where Preds are predicates and Ops are operators available within the domain.

Example (Domain). Domain← {
Predicates: { asked_out(y, x), single(x), likes(x, y), dating(x, y)}
Operators: {
ask_out← {
name: ask_out(x, y)
preconditions: likes(x, y) ∧ single(x)
effect: asked_out(x, y) }

accept← {
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name: accept(x, y)
preconditions: likes(x, y) ∧ single(x) ∧ asked_out(y, x)
effect: dating(x, y) }

reject← {
name: reject(x, y)
preconditions: ¬likes(x, y) ∧ asked_out(y, x)
effect: sad(y) }

give_roses← {
name: give_roses(x, y)
preconditions: likes(x, y)
effect: likes(y, x) } }

}

Finally, given a specific domain, the agent is able to tackle specific situations.
He is provided with the possibilities (domain), a specific state of the world (initial
state and objects), and a description of how the world should look after the agent
is finished. Classical planning is then the act of an agent finding a series of steps
(consecutive applications of actions) to achieve the desired goal state given all of
this information.

Definition 5 (Problem). A Problem is a tuple of (Obj, Init, Goal), where Obj
are objects (or constant symbols) to which predicates can be applied, Init is the
initial state, and Goal is a set of predicates which need to hold true in a given
state for the problem to be solved.

Example (Problem). Problem← {
Objects: { Mark, Alice } Init: { likes(Mark, Alice), single(Alice), sin-

gle(Mark)}
Goal: { likes(Mark, Alice), likes(Alice, Mark), dating(Mark, Alice) }

}

Since both a problem and a domain are required in order for us to be able to
utilize planning in a meaningful way, any planning task has to contain both.

Definition 6 (Planning task). A Planning task is then simply a tuple of our
already defined (Domain, Problem) = (Preds, Acts, Obj, Init, Goal). The purpose
of this planning task is to find a sequence of actions, such that by following this
sequence, we can transform the Init State into a state S which satisfies the Goal.
A given state S satisfies the goal if Goal+ ⊆ S ∧ (Goal− ∩ S) = ∅.

During planning, the concept of reachable states becomes relevant. Sometimes,
a planning problem may ask the impossible, meaning we need to be able to identify
an impossible task.

Definition 7 (Reachable State). A Reachable State simply indicates whether
there exists an ordered sequence of actions - a plan - which transforms the current
State into this new Reachable State.
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The intended output of a planning agent is a specific sequence of steps com-
plying with the logic defined in a domain solving the specific problem.

Definition 8 (Solution). A solution is simply an ordered sequence of actions
that if executed, transforms the initial state into the desired goal state.

Example (Solution to the example problem). 1. give_roses(Mark, Alice)
2. ask_out(Mark, Alice)
3. accept(Alice, Mark)
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1.2 Motivating example
To better illustrate how ATB-DCK introduced later transforms the Domain

and a problem, we will be using a running example. For this purpose, we shall be
using the classic Blocks world[5] domain. This simple example typically models
a robotic arm that is attempting to stack several blocks on top of a platform or
on top of one another.

Figure 1.1 A simple blocks world example

Example (Domain predicates apply to specific objects at a given point in time).
free(x) ▷ The object x has no other object on top of it. This predicate could
be considered redundant, but it eases checking for availability of x for stacking
significantly.
on(x, y) ▷ Object x is on top of object y.
holding(x) ▷ The robotic arm is holding the object x.
arm_empty ▷ Similar to free(x), simply indicates if the arm is holding
something.
on_table(x) ▷ Object x is placed on the table.

Example (Planning problem simply defines the initial state and the goal state).
initial← on_table(a) ∧ on_table(b) ∧ on(c, a) ∧ arm-empty
goal← on_table(a) ∧ on(b, a) ∧ on(c, b)

Example (Planning operators). stack ← {
name: stack(x, y)
preconditions: holding(x) ∧ free(y)
effect: arm_empty ∧ on(x, y) ∧ ¬holding(x) ∧ ¬free(y) ∧ free(x) } ▷ Places
object x on top of object y, if and only if there isn’t anything on top of y and
our arm is holding x.
unstack ← {
name: unstack(x, y)
preconditions: arm_empty ∧ free(x)
effect: ¬arm_empty ∧ ¬on(x, y) ∧ free(y) ∧ holding(x) ∧ ¬on_table(x) } ▷
Pick up an object x which is on top of y if and only if the arm is empty and
the object is free.
pickup← {
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name: pickup(x)
preconditions: arm_empty ∧ on_table(x)
effect: ¬arm_empty ∧ holding(x) ∧ ¬on_table(x) } ▷ Take object x from the
table if it is there.
putdown← {
name: putdown(x)
preconditions: holding(x)
effect: arm_empty ∧ ¬holding(x) ∧ on_table(x) } ▷ Place object x down on
the table if we are currently holding it.

1.3 Planners in practice
For a proper understanding of the inner workings, weaknesses, and strengths

of classical planning, we shall provide a brief overview of algorithmic techniques
used by planners. We shall then proceed to provide context on the technology
most often used to represent domains and problems in practice. Afterward, a
brief look into the computational complexity associated with planning will be
presented.

1.3.1 Algorithms for classical planning
Many techniques used to search for a solution are based on searching through

the set of possible states reachable from the current state. Since most plans
have multiple steps, this search can be represented using a tree-like graph. This
so-called state space search often exhaustively applies all possible actions to the
current state, until a desired state is found. Such approaches have the advantage
of being guaranteed to find a solution if it exists but typically run into issues with
computational achievability due to their large branching factors.

Forward state space search This is indeed the most straightforward state
space search possible. It searches through states with grounded atoms, treating
the goal state as a state with all atoms grounded and positive. The applicable
actions are determined by testing if the preconditions of each available action
schema hold in a given state. If preconditions hold, the action is applicable. The
order of actions tried can then either be random or use heuristics. This often
quickly leads to a combinatorial explosion in its branching factor.[3]

Backward state-space search Also known as regression search, it takes the
opposite approach to Forward search. As the name would suggest, Backward
search starts with the goal state. It then retroactively seeks out states that might
have resulted in the current state by finding so-called relevant actions. Relevant
actions differ from applicable actions in that it attempts to unify the effect of an
action with one of the goal literals, instead of its preconditions. In practice, this
approach generally reduces the branching factor in comparison to Forward search,
seeing as it eliminates a greater number of irrelevant actions. However, it also
makes finding a good heuristic more difficult, which is why it isn’t universally
favored.[3]
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Planning as Boolean satisfiability Much like in many subfields of AI, classical
planning problems are translatable into a propositional form. This translation
propositionalizes actions by grounding each of its variables. It then adds axioms
that make individual actions mutually exclusive and axioms corresponding to
action preconditions. Finally, the translation propositionalizes the goal and adds
succesor-state axioms, which represent the evolution of a plan over time. The
obvious disadvantage of utilizing propositional logic is the significant increase
in description size[3, 6]. This does, however, allow us to utilize SAT solvers.
These solvers are excellent at finding the shortest possible plans, searching for the
plans in a parallel manner, and in being highly efficient from a computational
perspective[7]. SAT solvers in planning are now popular in both IPC[8, 9] and
SAT competitons[10].

Planning graphs Planning graphs have originally been proposed along with the
Graphplan algorithm[11]. This algorithm may have fallen out of favor today, but
the planning graph data structure has proven useful in several other ways. The
planning graph is fast to construct, polynomial in size, and excels at representing
constraints inherent to the problem in an explicit manner[11]. These useful
properties allow us to more easily identify and remove symmetries in search space,
prune needlessly long branches, or develop smart heuristics[12]. Planning graphs
are a useful tool for many modern planners and techniques[13, 14, 15].

Other planning approaches Other techniques utilized in classical planning,
be it for algorithms, developing heuristics, or use of specific data structures include
but are not limited to:

• Constraint satisfaction programming - A less popular formalism used in a
wide variety of ways[16, 17, 15].

• Situation calculus - Similar to SAT planning, but relies on first-order logic
instead[3].

Many other variations or combinations of existing approaches and emerging
practices are constantly being developed. Categorizing these techniques is often
highly speculative, as they belong to existing branches in the eyes of some, or into
categories of their own in the eyes of others. The situation becomes even murkier
once extensions to classical planning are introduced, which we will address in
Chapter 2.

Heuristics While the mentioned algorithms are certainly capable of solving a
planning task by themselves, any algorithms are bound to struggle with notable
subsets of problems, with which any guidance of planning can lead to huge
performance gains. This is achieved through heuristic functions. A heuristic
function h(s) estimates the distance from state s to the goal. The function needs
to be admissible, meaning the function never overestimates the true distance
from the goal. Naturally, a large number of different heuristics exist, many of
which are domain-specific, but heuristics can notably improve domain-independent
planning as well. Seeing as ATB-DCK isn’t strictly speaking a heuristic technique,
having more in common with the HTN approach, only a brief listing of some
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popular heuristics and heuristic construction techniques will be provided with
links to works containing more details.

• Ignore-preconditions is a very simple heuristic that simply ignores action
preconditions[3, 18].

• Ignore-delete-lists deletes all negative literals from action effects, thus allow-
ing the solution search to make monotonic progress[19, 3, 20].

• Pattern databases store optimal solutions for abstracted states, giving a sort
of heuristic lookup table, rather than being a specific method to estimate
the distance from a goal[21, 19].

• Symbolic Pattern Databases are an expansion of Pattern databases making
them more memory-efficient through the use of boolean
functions[22, 19].

Heuristics can be found by hand, but numerous methods for automated
heuristic construction (sometimes directly implemented in specific planners) also
exist. These include but are not limited to:

• Hill-climbing search attempts to optimize a function through only local
changes improving an objective
function[20, 23, 24].

• LPG is a local graph search utilizing Temporal Action Graphs to identify
inconsistencies[25, 19, 26].

Needless to say, we are unable to mention all or even a representative fraction
of available heuristic approaches and ideas. For the sake of brevity, we shall refer
the reader to a paper from Macdonald and Enright[19], which goes into more
detail.

1.3.2 Planning Domain Definition Language
Created over 20 years ago, the Planning Domain Definition Language (PDDL)

has become the de-facto standard in domain-independent planning. The language
is intended to only describe the physics of a domain. The authors went as far as
describing the languages’ commitment to neutrality in its features as ‘perverse‘[27].
Its roots lie in the STRIPS[28] language, which itself was massively influential
in the early days of classical planning. The use of PDDL in the International
Planning Competition and planners developed for it had made PDDL nearly
synonymous with classical planning. Its syntax is nearly identical to the factored
(classical) representation mentioned above. To allow for easier modification and
increased customizability, PDDL is factored into individual subsets of features
(also called requirements), which can be used or ignored at will. This clever feature
allows for planners that have been created with only specific features in mind to
simply skip any domains or problems using unfamiliar syntax.

Example (Comparison of classical representation with PDDL syntax). In clas-
sical representation: stack(x, y)← {
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name: stack(x, y)
preconditions: holding(x) ∧ free(y)
effect: arm_empty ∧ on(x, y) ∧ ¬holding(x) ∧ ¬free(y) ∧ free(x) }

In PDDL:
(: action stack

:parameters (?x - block ?y - block)
:precondition (and (holding ?x) (free ?y))
:effect (and (not (holding ?x))

(not (free ?y))
(free ?x)
(arm_empty)
(on ?x ?y)

)) ▷ This snippet was originally used in [1].

The extensions most relevant for this thesis are typing and STRIPS. These are
perhaps the most basic requirements, as they only add very basic negation and
typing of variables. These requirements are used by the most widely supported
PDDL version - version 1.2. This support isn’t strictly necessary for the ATB-DCK
technique introduced later in this thesis. ATB-DCK can be used in any PDDL
version, these requirements and version were simply chosen to present ATB-DCK
in the most straightforward manner possible.

1.3.3 Planning complexity
A detailed description of planning complexity is presented in the book ‘Auto-

mated Planning: theory and practice‘ by M. Ghallab, N. Dau, and
P. Traverso[2]. In general, the issues of plan existence and plan length are relevant
to the field of classical planning. As they aren’t directly relevant to the subject
of this thesis and serve more for context, let us simply mention that the issue of
Plan existence falls into the EXSPACE-complete class, while the issue of plan
length is NEXPTIME-complete.
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2 Attributed Transition-Based
Domain Control Knowledge

Let us briefly recall the simple example of a planning task where Mark likes
Alice, both are single, and the planning agent is supposed to find a way to make
them date using the operators ask_out, accept, reject, and give_roses.

Example (Problem). Problem← {
Objects: { Mark, Alice } Init: { likes(Mark, Alice), single(Alice), sin-

gle(Mark)}
Goal: { likes(Mark, Alice), likes(Alice, Mark), dating(Mark, Alice) }

}

The obvious solution to this problem would be to first give Alice roses, and
then proceed to ask her out, followed by her inevitably accepting due to the
definitions of our operators. This would indeed be the optimal solution, but notice
that nothing is stopping the agent from asking out Alice before she likes Mark,
possibly repeatedly. Such a solution is a valid solution, no matter how many
rejections and pointless propositions it involves, it only needs to result in dating
by the end.

For classical planning in its base form, the only line of defense against this
kind of suboptimal action sequences are algorithms or heuristics implemented by
individual planners, which can only do so much to prevent this from happening in
more complicated problems. The key issue here is that the planning agent has
no real way of guessing which sequences of actions might lead to a solution (or
which sequences certainly won’t lead to a solution) from just the domain and
problem definitions. Knowing that an accepted date proposition can only occur
after the proposer is already liked is not the same as knowing that there is no
point in asking out someone who doesn’t like the proposer in the first place(An
unsolvable problem for all of teenagekind). It is precisely this shortcoming of
classical planning (and PDDL), that ATB-DCK aims to remedy.

Transition-based DCK as introduced by Chrpa and Barták[29], was later
expanded into Attributed Transition-based (ATB) DCK in a follow-up paper[1].
Using states and associating specific planning operators with transitions between
states provides us with a way of representing the ordering of operators in any
particular solution. Adding Attributes to these states then allows us to track
specific objects, easing the elimination of actions that can not lead to a solution,
or knowing when specific subgoals have been achieved. In terms of our running
example, ATB-DCK could be used to keep track of which blocks do not need
to be moved, and which do, or which blocks are already part of their intended
structure, and which aren’t. 1

1Note that we shall be borrowing examples for our definitions from (Chrpa, Barták, Vodrážka,
Vomelová 2020)[1]
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2.1 Definitions
As mentioned above, for the blocksworld domain, we use Attributed states

to prune computational branches causing the robot arm to destroy its previous
correct work. Specifically, this takes the form of the state goodtower, which is
used to prevent the agent from moving blocks that are already in their intended
position, badtower, which indicates the block will need to be moved before a
solution can be reached, and dck_holding, as a transition state between the two
while the block is being manipulated. How these states are utilized will become
clear by the end of this chapter.

Not to be confused with a planning State, an Attributed state is meant to be
used as a predicate defined in the domain. It aims to capture certain attributes
of one or more objects that are not strictly relevant from an action planning
perspective but are relevant from an action ordering perspective.

Definition 9 (Attributed state). An attributed state s is composed of a unique
identifier, and a set of variable symbols representing attributes. Formally: s =
uid(var1, ..., varn)

Just like a problem needs to specify which predicates are true for which objects
in its initial state, attributed states (and later attributed memory) can also already
be true for certain objects. Seeing as the initialization will need to be problem-
specific, it is more practical to define initialization rules in the form of Horn
clauses as proposed by the original paper[1]. These clauses (also initialization or
inference rules) take the form

Rp(ak1 , ..., akm)← Fp(a1, ..., an)

where Rp(ak1 , ..., akm) can be either a memory predicate or an attributed state,
while Fp(a1, ..., an) is a conjunction of literals which can contain:

• An initial state query I:p(a1, ..., az)

• An goal state query G:p(a1, ..., az)

• An initial DCK memory or state query p(a1, ..., az)

• A cardinality query p(a1, ..., az)

Initialization and goal queries simply check for information already present in
the problem definition, looking at its goal state and initial state. DCK state
and memory queries check if the queried atoms can be derived using their own
initialization rules. A cardinality query is a special function counting the number
of satisfied queries, which are provided to the function as arguments. The specifics
of this function will be explored later while discussing the software created to
complement this thesis. Once these rules are defined and a specific problem is
provided, their truth values are determined by substituting variables present in
the query for problem-specific objects. 2

2Shortcut predicates (conjunctions of the above rules) will also ocassionally be used to
enhance readability and shorten examples.
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In a given problem, the initial attributed state (if any) of an object can be
determined using a logical formula. This formula can use additional predicates not
present in the original domain definition that can be deduced from problem-specific
goal state, or even predicates found in the ATB-DCK definition itself. These goal
predicates shall typically be denoted as starting with ’G’.

Example (Attributed state). Attributed States← { DCK_holding(?x), good-
tower(?x), badtower(?x) } ▷ Distinction between an object not needing to
move for the rest of the plan, needing to move, or if it is currently being moved.
Note that holding would be duplicit without the DCK prefix.
Initialization rule goodtower(?x)← (ontable(?x)∧(Gontable(?x)∨¬Gon(?x, ?y)∧
¬Gontable(?x)))∨ (on(?x?y)∧ (Gon(?x?y)∧ goodtower(?y))∨ (¬Gon(?x, ?y)∧
¬Gontable(?x) ∧ ¬Gon(?y, ?x) ∧ ¬Gclear(?x) ∧ goodtower(?y))))
Initialization rule badtower(?x) ← (ontable(?x) ∧ Gon(?x?y)) ∨ (on(?x?y) ∧
(Gontable(?x) ∨ (Gon(?x?z)∧?y ̸=?z) ∨ (Gon(?z?y)∧?z ̸=?x) ∨ badtower(?y)))

DCK memory takes on a similar form to attributed states, only really being
split to better distinguish the roles they take on in the planning task. Unlike
Attributed states, DCK memory models certain facts about either landmarks we
have achieved in the planning process, temporary attributes that can’t be used to
determine the ordering of actions by themselves or information about the goal.

Before defining transitions, we also need to define what a DCK memory is:

Definition 10 (DCK memory). A DCK memory for a domain is a set of
predicates distinct from the domain predicates.

Example (DCK memory). Memory predicates← { Gontable(?x), Gon(?x ?y),
Gclear(?x) } ▷ These can either be especially defined, or deduced from the
information present in the problem

Before moving on, let us define a helper function var(x), which denotes possible
variants of some predicate p. A variant of predicate p is created by renaming
the variable symbols of p. As an example, one possible variant of the predicate
p = on(?x, ?y) would be var(p) = q = on(?z, ?g). Since Attributed states also
take the form of predicates during planning, the var function can be extended to
include them as well without change.

Attributed states are used in tandem with transitions. Together, they form the
2 fundamental building blocks of ATB-DCK. Transitions connect different states,
are associated with planning operators, additional constraints, or modify the
memory. They serve as a mechanism by which we can transfer between attributed
states. During the encoding process, every individual transition is encoded as a
separate operator, modifying the original associated operator in a specific way,
which will be explored in a later section.

Definition 11 (DCK transition). An DCK transition is a tuple (s, o, C, P, s′)
where
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• Let us denote domain predicates as D, DCK memory as M , and DCK states
as S

• var(s), var(s′) ∈ S

• s and s′ are attributed states.

• o ∈ planning operators ∪ empty operator

• C is a set of constraints of the form:

– p such that var(p) ∈ (D ∪M) ∨ S

– ¬p such that var(p) ∈ D ∪M

• P is a set of modifiers:

– +p ∨ −p such that var(p) ∈M

Additionally, let us mention that transitions can also be associated with a
dummy "empty operator" (⊥), which allows us to simplify ATB-DCK definitions
by making it possible to modify DCK memory or move between attributed states.
This operator will be removed from solutions, has no effects or preconditions, and
serves only as a tool to make the definitions of ATB-DCK more compact. Let

us imagine a block ?x is currently in a tower from which it has to be moved in
order to achieve the goal - a badtower. To solve this issue, we need to perform
the action ’pickup(?x)’ (operator ’unstack’ needs a special transition instance). In
addition to the action preconditions, ?x needs to be positioned on some object ?y
in the goal, which is also free (or clear(?y) needs to hold true). Once the transition
is used, the attributed state badtower(?x) will be replaced by DCK_holding(?x)
Example (DCK transitions). Initial state ← { badtower(?x) }

Associated operator(s) ← { pickup(?x) }
Constraint ← { Gon(?x, ?y), clear(?y), goodtower(?y) } ▷ Notice we utilize
the DCK memory (Gon), the domain predicates (clear), and attributed states
(goodtower)
No DCK memory is being modified in this instance
Target state ← { holding(?x) }

Finally, for Attributed Transition-based DCK (ATB-DCK) simply combines
the above definitions into one structure.

Definition 12 (Attributed Transition-based DCK). Attributed Transition-
based DCK is a tuple (Dom, S, M, T ) where

• Dom = (P, O) is a domain as defined earlier.

• S is a set of attributed states.

• M is DCK memory.
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• T is a set of DCK transitions.

There is nothing new about this definition, it simply couples all the information
needed to define a planning task with ATB-DCK into one structure. ATB-DCK
for the Blocksworld domain would be defined as follows:

Example (ATB-DCK for Blocksworld). Dom = the Blocksworld domain com-
posed of predicates and operators we mentioned earlier
S ← { badtower(?x), goodtower(?x), dck_holding(?x) }
M ← { Gontable(?x), Gon(?x ?y), Gclear(?x) }
Transitions ← {

• { Initial state← { badtower(?x) }, Associated operator← { pickup(?x)
}, Constraint ← { Gon(?x, ?y), clear(?y), goodtower(?y) }, No DCK
memory is being modified in this instance Target state ← {
dck_holding(?x) }, }

• { Initial state ← { dck_holding(?x) }, Associated operator ← {
put_down(?x) }, Constraint ← { Mstacked(?y) }, No DCK memory
is being modified in this instance Target state ← { badtower(?x) },
}

• ... (the other transitions follow the same schema as depicted in 2.1)
}

Figure 2.1 Blocksworld ATB-DCK

2.2 Encoding of ATB-DCK into Domains
If defined properly, an ATB-DCK can be added into any domain by simply

adding predicates representing attributed memory or states, while properly re-
defining planning operators to behave as ATB-DCK transitions. Predicates are
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only added, but if an operator is associated with a transition, it gets replaced,
possibly with multiple copies if it is associated with multiple transitions. The
redefinition extends preconditions by transition constraints, extends effects by
the modifiers, adds the target state into the positive effects of the operator, and
adds the origin state into the positive preconditions and negative effects of the
operator. Naturally, in order to do this, individual attributed states and memory
will need to be translated into unique predicates and the variables in the redefined
operators will need to be correctly named and synchronized with what objects
are having their state modified.

Much like the definition of a domain allows a problem to create specific
grounded atoms to create a planning state in a given planning task, a configuration
represents the grounded atoms created out of the defined attributed states and
memory. In other words, a configuration can be thought of as an ATB-DCK
equivalent of a state in an ordinary planning task. A configuration could be
thought of as an extension of the definition of a state, since the planner indeed
does not differentiate between the two once encoded, but it is important to make
the distinction during the encoding process.

Definition 13 (Configuration). Let D = (Dom, S, M, T ) be ATB-DCK. A con-
figuration is a pair Dc = (Sc, M c) such that Sc ⊆ {sc|sc is instance of s ∈ S} and
M c ⊆ {mc|mcis instance of m ∈ M}. Instances of both memory and attributed
states are determined using problem-specific objects and DCK memory objects.

Example (Configuration - For a problem outlined in Example 7). Instantiated
attributed states← { goodtower(a), badtower(b), badtower(c) } ▷ Object a will
be able to stay where it is until the problem is solved, unlike the other objects.
Instantiated attributed memory ← { Gon(b, a), Gon(c, b), Gontable(a) }

To better understand both the configuration and the following attributes of a
transition, recall the state and the applicability of an action. A configuration could
be considered an extension of a planning state. The applicability of a transition is
an extension of the concept of action applicability. It demands a specific initial
(attributed) state, and its associated operator (if any) to be applicable in its initial
state, and additionally supports applicability constraints on other attributed
states, ordinary atoms, or memory. The application of the transition then modifies
the configuration in a way comparable to how an action modifies a state.

As eluded to at the start of this section, this definition formalizes how a
transition behaves after being added to an operator. It highlights the added
constraints on a planning state in the form of attributed memory and state
predicates, and describes how an operator modifies the planning state, attributed
state, and attributed memory after the operator with which the transition is
associated is applied.

Definition 14 (Transition attributes). Let D = (Dom, S, M, T ) be ATB-DCK,
t = (st, ot, Ct, Pt, s′

t) be a transition t ∈ T and f(st) be a substitution function
from variables in T to objects in some problem of a planning task. Lastly, let sp
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be a state in some planning task within a domain Dom and Dc = (Sc, M c) be a
configuration of D.

An applicable transition t:

• f(st) ∈ Sc

• f(ot) is applicable in sp

• ∀p ∈ Ct : f(p) ∈ sp ∪M c

• ∀¬p ∈ Ct : f(p) /∈ sp ∪M c

• ∀p ∈ Ct, var(p) ∈ S : f(p) ∈ Sc

Result of transition t is s′
p and D′c = (S ′c, M ′c):

• s′
p = (sp \ f(effects(ot)−)) ∪ f(effects(ot)+)

• S ′c = (Sc \ {f(sp)}) ∪ {f(s′
p)}

• M ′c = (M c \ {f(p)| − p ∈ Pt}) ∪ {f(p)|+ p ∈ Pt}

This allows us to extend the definition of a planning task into an ATB-DCK
planning task.

Definition 15 (ATB-DCK planning task). The current task definition of
(Domain, Problem) simply gets extended by an ATB-DCK C and its initial con-
figuration CI into (Domain, Problem, C, CI).

For brevity, we shall not describe an entire planning task with ATB-DCK,
but an illustration of how the unstack operator might change after its associated
transition is encoded will be provided.

Example (ATB-DCK unstack operator). old_stack ← {
name: stack(x, y)
preconditions: holding(x) ∧ free(y)
effect: arm_empty ∧ on(x, y) ∧ ¬holding(x) ∧ ¬free(y) ∧ free(x) } ▷ Places
object x on top of object y, if and only if there isn’t anything on top of y and
our arm is holding x.
new_stack ← {
name: new_stack(x, y)
preconditions: holding(x)∧ free(y)∧goodtower(y)∧Gon(x, y)∧dck_holding(x)
effect: arm_empty∧on(x, y)∧¬holding(x)∧¬free(y)∧free(x)∧¬dck_holding(x)∧
goodtower(x) } ▷ Places object x on top of object y, if and only if there isn’t
anything on top of y and our arm is holding x.
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2.2.1 The encoding algorithm
The algorithm used for extending a domain is then fairly straightforward.

Domain predicates are extended by the new memory and ATB state predicates
with appropriate amounts of variables, the operator definitions are extended by
new positive or negative preconditions and effects (Possibly creating multiple
copies of an operator if it is associated with multiple transitions, or creating a
new operator in case of an empty transition).

Algorithm 1 Encoding ATB-DCK to domain
Require: Dom = (P, O), ATB = (Dom, S, M, T )
Ensure: Domc = (P c, Oc)

procedure EncodeDckToDomain(P, O, S, M, T )
P c ← P ∪M ∪ encodePreds(S)
Oc ← ∅
for all t = (st, ot, Ct, Pt, s′

t) ∈ T do
preconditions(ot)− ← preconditions(o)− ∪GetNegPrecs(s, Ct)
preconditions(ot)+ ← preconditions(o)+ ∪GetPosPrecs(Ct)
effects(ot)− ← effects(o)− ∪GetNegativeEffects(s′, Pt)
effects(ot)+ ← effects(o)+ ∪GetPositiveEffects(s, Pt)
Oc ← Oc ∪ {ot}

end for
end procedure
procedure GetPosPrecs(initial_state, Constraint)

return {p|p ∈ Constraint} ∪ encodePreds(initial_state) ∪
encodePreds(Constraint)
end procedure
procedure GetNegPrecs(Constraint)

return {p|¬p ∈ Constraint}
end procedure
procedure GetPositiveEffects(target_state, Memory)

return {p|p ∈ Constraint} ∪ encodePreds(target_state) ∪ {m| + m ∈
Memory}
end procedure
procedure GetNegativeEffects(initial_state, Memory)

return {p|p ∈ Constraint} ∪ encodePreds(initial_state) ∪ {m| − m ∈
Memory}
end procedure
procedure encodePreds(AttributedStates)

Converts all input attributed states or attributed states in a constraint into
predicates of the desired format ▷ Assume the input can be both a single state
and a set of states
end procedure

As the algorithm is essentially just a single loop over all transitions within
which it simply unifies preconditions and effects in constant time, it is easy to see
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that the algorithm runs in O(|T |) time where T are transitions.

Example (Encoding of predicates). Predicates before encoding ← { free(x),
on(x, y), holding(x), arm_empty, on_table(x) }
Predicates after encoding ← { free(x), on(x, y), holding(x), arm_empty,
on_table(x), goodtower(x), badtower(x), DCK_holding(x), Gontable(x), Gon(x,
y), Gclear(x) }

Example (Encoding to operators - We list only a single operator for brevity).
Operator pickup before encoding ← {
name: pickup(x)
preconditions: arm_empty ∧ on_table(x)
effect: ¬arm_empty ∧ holding(x) ∧ ¬on_table(x) }
Operator pickup after encoding ← {
name: badtower_pickup_DCK_holding(x, y)
preconditions: arm_empty∧on_table(x)∧badtower(x)∧Gon(x, y)∧goodtower(y)∧
clear(y)
effect: ¬arm_empty∧holding(x)∧¬on_table(x)∧DCK_holding(x)∧¬badtower(x)
}

It can be observed that the change in the operator illustrates DCK-ATB
utility perfectly. Rather than letting the planner attempt to find a sequence of
actions including picking up a block we cannot possibly put in the correct place
and subsequently having to drop the entire branch of computation, ATB-DCK
prevents it entirely by modifying the definition of operators.

2.3 Encoding of ATB-DCK into Problems
One area in which the original work could be expanded for better clarity is

a clear and explicit discussion on the topic of encoding ATB-DCK into problem
instances, or more accurately, finding initial configuration. In its short form, the
process can indeed be summarized as follows:

Prob′ = (Obj ∪Obj′, Init ∪M I ∪ {encPred(s)|s ∈ SI}, Goal)

where Obj′ are problem-specific objects, SI and M I come from some initial
configuration, and the original problem is defined as (Obj, Init, Goal). In symbolic
terms, this description shall suffice, yet for implementation purposes, one major
question remains unanswered - How exactly are problem-specific objects obtained?

Recall our definition of initialization rules for individual attributed memory
or state predicates. Once given a problem instance with an initial state and
objects, we can use these objects and possibly initial predicates to substitute
any variables present in a given initialization rule for objects. We refer to these
substitutions as variable assignments. Once a variable assignment that satisfies
a given initialization rule (taking the form of a Horn clause) is found, a new
predicate with found objects can be encoded into the initial state. The problem
arises when we want to allow problem-specific objects.
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Problem-specific objects arise as a natural consequence of one of the possible
initialization rules - a cardinality query. A cardinality query takes the form

count(c, bi, F (b1, ..., bq)), (1 ≤ i ≤ q)

where c represents the counted amount of instances of the formula F (b1, ..., bq)
which hold true for any fixed variable bi. This rule can result in a variable
assignment containing numbers, which weren’t present in the original problem
definition. Depending on the rule specifics, these new numbers can result in new
objects for which some of our new predicates hold in the initial state. As such,
the definition of ATB-DCK and its initialization rules allows attributed states or
memory to take the form of counters or utilize numbers in some way. For some
problems, modeling counters may greatly improve efficiency, such as making sure
a truck only moves with a certain amount of objects, so as to prevent inefficient
trips.Similarly, these rules may also contain a user-defined constant. For both of
these cases, problem-specific objects need to be created.

The process of finding problem-specific objects can be combined with finding
the initial states of attributed states or memory. In short, existing problem objects
along with initial state predicates of a problem are treated as a knowledge base.
The inference rules of our states and memory are then added to this knowledge
base, after which we can trigger the inference mechanism by querying all of our
attributed state and memory predicates. The inference process generates all
possible variable assignemnts for a given query. These variable assignments to a
given predicate (represented by the query) can then be encoded into the problem.
In case a number or a constant previously not present in the list of problem objects
appears in the variable assignment, they are encoded into the list of objects as
well. Logical programming[30] are suited particularly well to this inference.

It can be observed that, unlike objects in regular problem definition, problem-
specific objects in enhanced problems can only appear if and only if they occur
in the initial state for some predicates. Allowing ones that don’t occur provides
no guarantee that these new objects will only be used by attributed memory or
states (or at all for that matter), thus changing the problem, rather than just
providing control information to be removed from the plan later.

To illustrate how a knowledge base might be assembled, our blocksworld
planning problem from the first chapter1.2 might have a knowledge base that
looks as in the figure 2.2 after implemented in Prolog.

This knowledge base would then infer goodtower(a), badtower(b), badtower(c),
gon(b, a), gon(c, b), mStacked(b), mStacked(c) (We omit possible freeBot and free-
Top, since those predicates only serve as helper predicates to shorten the rules.
Prefixes like ’init_rule’ were also omitted).

2.4 Extracting a solution
Finally, it remains to show that these algorithms and modifications will not

only result in a valid planning task, but also generate only valid solutions, which
can then be decoded into a valid solution for the original planning task.
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Figure 2.2 Blocksworld Knowledge Base

Definition 16 (ATB-DCK planning task solution). Let PT C = (DomP T , P robP T , C, CI)
be an enhanced ATB-DCK planning task with initial state I and T being a set of
transitions defined in C. A sequence of grounded transitions t1, ..., tn ∈ T solves
PT C if and only if their consecutive application starting in I and CI results in a
planning state satisfying the goal defined in ProbP T .

Furthermore, any such solution to an ATB-DCK planning task can be trans-
formed into a solution using only the original operators by simply removing any
steps involving empty operators, replacing transitions with their associated oper-
ators, and possibly reducing the number of arguments to their original amount
for corresponding operators (Any such reduction will need to either know the
variable mapping or use the ordering of variables to determine which should be
cut). Seeing as transitions can only expand the preconditions of actions, while only
modifying the effects by memory or attributed state predicates, it then follows
that such a solution will be a valid solution to the original problem. In short,
ATB-DCK planning task may not always entail all valid solutions to the original
problem, but any solution valid in the ATB-DCK planning task is also a valid
solution to the original problem.
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3 ATB-DCK editor
The core objective of this thesis was to create a tool that allows the user to

design and programmatically encode ATB-DCK into domains and problems using
a visual interface. The associated work is currently available online at https:
//aiplanner-29862.web.app/. This chapter shall describe the used technologies,
user options, and data structure of the application.

3.1 Vue.js
The entire user interface of the web app utilizes the javascript[31] framework

Vue.js[32]. A popular framework allowing us to organize code into views and
components, as well as significantly easing many rendering, responsivity, and
reactivity issues. Where possible, we also utilized Typescript[33], a Javascript
syntax extension allowing for better type safety, making projects more readable and
less error-prone. Lastly, The visual library Vuetify[34] and the local development
server Vite[35] proved invaluable during development as well.

3.2 Developer dependencies
During development, Node.js[36] runtime for javascript was used. To manage

our dependencies, we used the npm[37] registry and CLI tools. Other than that,
prettier[38], mitt[39], lodash[40], eslint[41], and pinia[42] were all used to either
ease development, or create various utilities invisible to the user, but nonetheless
crucial.

3.3 Firebase
Firebase[43] is a cloud service created by Google. The development platform

is responsible for our database - a document database called Firestore - our API
endpoints, their secure exposure, and calling. Furthermore, a Google-provided
cloud backend provides the project with easy and secure access to the user’s Google
account necessary for the management of multiple domains and problems in the
database. Another invaluable feature provided by Firebase are backend emulators,
which allow us to locally run all functionality provided by the Firebase servers
with only minor differences. A feature that significantly sped up development.
Lastly, as of today, Firebase provides all server functionality with a sizable free
tier, making the development and maintenance costs non-existent.

3.4 The encoding process
Luckily for us, the definition of ATB-DCK is already mostly usable by an

application, requiring minimal changes. This section will briefly highlight where
our application-specific implementation differs from the definition and where it
stays the same.

29

https://aiplanner-29862.web.app/
https://aiplanner-29862.web.app/


3.4.1 The data structure
During the definition of ATB-DCK, a single root object associated with one

specific domain is created. This root object closely resembles the definition of
ATB-DCK in that it contains an array of initialization rule objects and a string
representing these rules in the Prolog language, as well as an object representing the
domain for which it was assembled. Attributed state and memory objects contain

Figure 3.1 ATB-DCK structure

nothing peculiar, they simply ask the user to specify the number of variables and
name, possibly also holding a list of specific variable names to ease the autofilling of
names during ATB-DCK definition process. Attributed Transitions are somewhat

Figure 3.2 Attributed state structure

more complicated, seeing as they contain objects representing both the origin
and the target state, the associated action, and an array of constraints. These
constraints simply hold the name of a predicate, possibly its negation, variables
to be used with the predicate, and a flag indicating the predicate being an effect
of a transition or a precondition.

Figure 3.3 Attributed transition structure

The design of Attributed Initialization rules was without a doubt one of
the greater challenges during the development process, seeing as it needed to

30



encompass all the expressivity of Horn-clauses, pair the information up to actual
predicates and variables, allow for the use of constants or cardinality rules, all
while shielding the user from the need to utilize what could essentially be the
complexity of programming those rules by hand in some language. The resulting

Figure 3.4 Initialization rules structure

structure is fairly simple. It contains a possible simple default value for the
predicate (constant, true for all objects, false for all objects), Predicate being
initialized, and a nested object structure of logical or rules containing arrays of and
rules, possibly allowing the user to add predefined logical functions (Such as the
cardinality rule). These rules are subsequently compiled into a representation of
rules in the Prolog language, which is offered to the user for editing and debugging
(In a one-way manner), since some users might get confused by large chunks of
logic being hidden behind a series of adaptive menus, preferring to utilize their
existing Prolog expertise instead.

3.4.2 Encoding to domains
A very straightforward process that can mostly be summed up using the earlier-

defined algorithm of encoding ATB-DCK to the domain. Once our language parser
detects relevant parts of the domain raw text, these parts are either extended
(the predicates section) or replaced (actions for one or multiple transitions with
corresponding associated operator). Any precondition or effect modifications
are solved by simply wrapping the existing rules in an "and" rule and adding
transition-specific ones.

3.4.3 Encoding to problems
A more difficult process driven mostly by the steps of our algorithm for encoding

into problems defined earlier. It only uses initialization rules and their prolog
representation. The key is to continually generate all possible solutions using an
in-built Prolog engine included in the trealla[44] package. These solutions are then
encoded in the PDDL format into their corresponding sections. This encoding
also keeps track of newly generated variables, so as to not create duplicate objects.
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3.5 User interface
In designing the visual interface, an emphasis was put on keeping it as simple

as possible. As such, the interface can be broken down into only a few distinct
components.

3.5.1 Management of files

Figure 3.5 Domain and problem selection/creation/deletion

Should the user choose to log in using his Google account, a simple interface
allows him to create and edit multiple different domains, delete them at will,
associate problems with them, and keep a separate ATB-DCK for each of them.
The provided functionality is fairly basic, only emulating the bare necessities of
working with multiple files, but it allows the user to easier experiment with and
change different ATB-DCK for different domains. Features of reverting file contents
to one currently stored in a database or branching into a new domain/problem
are also supported using the top bar.

Figure 3.6 Domain utility bar
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Figure 3.7 Problem utility bar

3.5.2 File editor
Powered by codemirror[45] and its associated lezer parser[46], a code editor

for the PDDL language is a key component of the user interface. Custom-written
grammar for the language allows the application to decompose domains and
problems into individual relevant parts, respond to user changes by changing
selection options in ATB-DCK, and output a complete domain/problem with
ATB-DCK encoded as needed. Syntax highlighting is supported for all basic
features of PDDL[27].

Figure 3.8 Code editor

3.5.3 ATB-DCK form
A series of adaptive menus corresponding to the data structure mentioned in

one of the previous sections. The options offered to the user in every menu change
dynamically once the source domain file is changed.

Attributed states form simply asks for a name and the number of variables of
the attributed state. More can be defined, existing ones can be deleted, and any
changes made can become available in all other relevant forms upon saving.

Figure 3.9 Attributed state form
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Attributed memory form differs from the attributed state form only mildly.
One important difference is the option to not encode a predicate to a problem.
Such predicates simply serve to enhance the expressiveness of initialization rules,
seeing as the user would need to define them in a purely DNF form composed
of only basic predicates otherwise. These extra predicates may be necessary to
significantly shorten the length of individual rules and increase readability.

Figure 3.10 Attributed memory form

Attributed transitions form is slightly more complicated. It allows the
selection of the origin and target state, along with the associated operator. The
user can further add individual constraints specifying preconditions or effects of
the transition, which can also be negated. It is up to the user to specify the
names of individual variables and synchronize them with the associated action
predicates. A dummy empty operator is also added to the list of possible operators.
Constraints can come in the form of attributed states or memory, or ordinary
domain predicates.

Figure 3.11 Attributed transition form

State initialization rules form can be somewhat obscure at first glance. There
is exactly one rule for each attributed state or memory predicate. Each rule can
either hold a simple value (constant/true for all objects/false for all objects), or
value derived from some logical formula in a DNF form. This logical formula can
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contain attributed states, memory predicates, ordinary predicates, queries for goal
states or negations can contain ’any’ variables (variables whose assignment does
not matter, it is enough that an assignment exists), all of which can be added into
individual ’AND’ clauses. These ’AND’ clauses are enclosed within ’OR’ clauses,
thus mimicking the structure of DNF. Individual rules can also contain function
predicates, which is a set of predefined functions to which the user simply needs to
provide a series of arguments (possibly nested predicates) and extract the result.
These functions include min, max, and count.

Figure 3.12 Initialization rule form

Prolog editor is primarily meant to provide the user with a debugging tool.
Any changes made in the above-mentioned forms will rewrite the contents of this
Prolog code, but the contents of this page will be used as rules for generating
possible answers for queries when encoding to a problem, allowing for quick
changes, as well as simply giving those versed in Prolog a better insight into how
their initialization rules are used to encode into problems.

Figure 3.13 Prolog rule editor

3.6 Workflow example
In this section, we will demonstrate a basic workflow while using the application.

As the usage of the tool expands, account and file management features might
need to be used, but we will stick to only the bare minimum workflow for now.
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• The first step will always be to input a domain. This can be done either on
the domain tab (if not logged in), or by selecting the domain of choice from
a dropdown in the menu (possibly creating a new one). This can be done
using the left menu bar as seen in figure 3.5.

• Once the domain is defined in the code editor from figure 3.8, the top utility
bar allows us to edit the ATB-DCK using a toggle button.

• The ATB-DCK editor offers several tabs. In general, it is best to first edit
attributed states and memory as can be seen in figures 3.9 and 3.10, then
proceed to editing the transitions as seen in figure 3.11. Once this is done, a
valid ATB-DCK domain can be encoded, if only the domain is needed, the
next step can be skipped.

• Editing the rules in the ’State initialization rules’ tab can be somewhat
tricky, as it’s easy to make mistakes. Variable names need to be synchronized
across predicates, and the rules need to be defined in the correct order, since
they are translated into Prolog code after. Individual or (disjunction) rules
can be added, which consist of and (conjunction) rules. ’Any’ variables can
be added to a special field, which correspond to Prolog ’_’ symbol. Variables
start with ’?’, while constants don’t. An example of rule definitions can be
seen in figure 3.12.

• The code compiled from the rules can be viewed in the Prolog editor tab.
Whatever is in this tab once we leave to encode will be used for inference.

• Once our ATB-DCK is done, we can switch back over to the editor, where
a button in the upper right corner allows us to encode ATB-DCK into a
domain/problem.
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4 Experimental evaluation
This chapter aims to design an ATB-DCK for a new domain and then test

its effects on the performance of plans. The effects would be demonstrated on
the Blocksworld domain, but it had already been tested in the original paper,
along with several other domains[1]. For this reason, we shall refer the reader to
the original paper in case a more detailed analysis of performance is desired. An
important finding to highlight is that ATB-DCK is only effective for some domains,
seeing as it can potentially introduce too many new predicates, causing additional
preprocessing overhead which might outweigh potential performance improvements.
Additionally, many different variations of ATB-DCK and associated initialization
rules may exist for any particular domain, only some of which may be effective.

4.1 Domain description
The chosen domain for our new ATB-DCK is called Transport, which was

taken from IPC 2014[9], where it served to evaluate competing planners on the
sequential planning track. The domain was chosen for its similarity to Blocksworld
in its abstract model, but it holds one unique feature over Blocksworld - its
planning tasks attempt to minimize the cost of traveled roads.

The domain uses even fewer operators than Blocksworld:

• drive

• pick-up

• drop

As the names of operators suggest, the domain concerns itself with finding a
plan for one or more vehicles to transport a number of objects between different
locations. In addition, the domain contains several predicates:

• road - which connects different locations

• at - informing us of which object is at what location

• in - is a version of at, only telling us the presence of objects in vehicles,
rather than locations

• capacity - a predicate indicating which vehicle can carry how many objects

• capacity-predecessor - a numeric predicate serving as a counter for increasing
or decreasing the occupied capacity of vehicles

Summarizing the preconditions and effects of actions is then very simple. Drive
requires a road and a vehicle to be in one of the road-connected locations before
moving both the vehicle and any object it’s carrying in between locations, pick-up
requires the car to not be at capacity and for an object to be present at a location
before loading it to the car, and drop simply leaves the specified object held by a
vehicle at its current location. Full PDDL description of the domain can be seen
in the figure 4.5.

37



Figure 4.1 Transport domain

Overall, the abstract model of the Transport domain is simpler than that of
blocksworld, do note, however, that it utilizes counters and the domain specification
as used by IPC 2014 measures and minimizes the total cost of the solution, which
is why it will be interesting to see not only how the runtime is affected, but also
whether ATB-DCK can somehow help or harm the overall metric.
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4.2 ATB-DCK design
In the process of designing ATB-DCK for this domain, several variants were

attempted. In the end, only a simplified version of our Blocksworld ATB-DCK
had proven viable. Attempts were made to create an ATB-DCK counting the
numbers of packages at specific locations and to make car trips more efficient, but
any use of such counters for both cars and objects that had been tried proved
to be unrealistically large after being encoded to a problem. Since problems
for this particular domain tend to contain a fair amount of objects and a large
number of predicates in the initial state, most of the tried ATB-DCK bloated
the problem description exponentially, which was a problem for both our encoder
(which at the time of writing runs on only a free-tier of hardware while being
subjected to browser memory and processing limitations), and planners, for which
viable ATB-DCK using location or object counters either negated any performance
improvements due to size or worsened it. It may be possible such an ATB-DCK
exists, but none was found during our attempts.

After moving back to simpler designs, an ATB-DCK very similar to our
Blocksworld running example naturally arose. Any package can either be at a
bad location, currently loaded, or at a good location. The only way for a package
to be at a good location is for it to either already be there, or to be dropped off
by a vehicle. A package can never move from a good location. Packages can get
away from a bad location by being unloaded, but since we might want to allow
the passing of packages in between vehicles or temporary dropoffs, it can also be
dropped at a bad location.

In order to drop a package at a good location, the only additional constraint
is for the package to have it as a goal location, which we shall encode using ATB-
memory. Both other transitions (To and from bad location) will contain the same
constraint, only negated. In addition to the new goal location memory predicate,

Figure 4.2 ATB-DCK 1

we also introduce additional shortcut predicate for use in the initialization rules.
Notably the ’iscar’ predicate, whichprevents the encoder from assigning badloc to
vehicles. The initialization rules shall be as follows:

• gloc(?p, ?l)← goal_at(?p, ?l)
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Figure 4.3 Transport state definition

Figure 4.4 Transport memory definition

Figure 4.5 A transition definition example

• goodloc(?p)← gloc(?p, ?l) ∧ at(?p, ?l)

• DCK_loaded(?p)← in(?p, ?v)

• iscar(?p)← capacity(?p, ?x)

• badloc(?p)← gloc(?p, ?l) ∧ ¬at(?p, ?l) ∧ ¬iscar(?p)

We shall refer to this ATB-DCK as ATB-DCK 1. After performing the
experiments, a variation of this ATB-DCK was tried and to astonishing results.
Simply deleting the option of dropping a package at a badloc - denoted as
ATB-DCK 2 - had drastically pruned the search tree. For design of our second
ATB-DCK, see figure 4.7.

4.3 ATB-DCK experimental evaluation
For experimentation, a publicly available docker image of the lapkt[47] planning

toolkit had been used. The toolkit had been selected for its variety of supported
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Figure 4.6 A badloc rule example

Figure 4.7 ATB-DCK 2

planners and supporting updated versions of planners which were used in the IPC
2014[47], from which our domain and problems were taken as well. Most notably,
the planner BFS_F had been selected for both its good overall performance and
support of the solution cost metric. BFS_F stands for Greedy Best First Search
algorithm with f(n) = novelty(n) as described in [48]. Experiments were run on
a 12th Gen Intel(R) Core(TM) i7-12700H 2.70 GHz processor with 32GB RAM.
A total of 10 problem instances were measured with degrees of nodes being 4,
minimal distance equal to 100, size of 1000, and 4 trucks. The problem instances
vary in size, but mostly in how the nodes are arranged, both within a city (a
cluster of connected nodes), and among cities.

As can be observed from the presented results, ATB-DCK can have an impact

Packages Cities Nodes Original time Original cost ATB-DCK 1 time ATB-DCK 1 cost ATB-DCK 2 time ATB-DCK 2 cost
25 1 50 25.13s 246 29.85s 202 0.49s 184
30 1 53 66.36s 294 72.82s 271 0.96s 260
25 1 53 35.49s 242 39.85s 232 0.61 221
25 2 68 1297.38s 563 452.99s 532 1.53s 524
30 2 67 360.55s 763 1421.97s 826 2.12s 627
25 2 68 1293.43s 563 457.09s 532 1.56s 524
25 3 68 426.57s 379 519.91s 393 1.68s 363
30 3 67 805.40s 502 897.74s 431 2.49s 411
25 3 68 434.39s 379 525.26s 393 1.59s 363
25 3 66 261.98s 472 756.55s 390 1.80s 357

Table 4.1 Comparison of runtimes and costs
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on both performance and solution cost. Paradoxically, while ATB-DCK 1 is
primarily meant as a technique to improve the performance of planners, it mostly
introduces a minor slowdown compared to the original encoding, but interestingly,
a fairly consistent improvement in solution cost can be observed. This starkly
contrasts with ATB-DCK 2, which majorly speeds up planning time and minimizes
solution costs. For every problem instance, ATB-DCK 2 improves the planning
time more than ten times, which brings us to an interesting observation.

Designing an ATB-DCK is difficult and might not yield any results. Even
minor changes might lead to significant speedups, performance losses, or even
prevent finding a solution at all, as reinforced by the observations in the original
paper[1]. One area of research waiting to be explored is ATB-DCK design. At
the moment, any design relies on the creativity of a domain expert. Much like
the field of heuristic research, finding more general ATB-DCK designs or ways of
automatic ATB-DCK generation could prove vital in improving classical planning
as a whole. Our results also contain one other interesting finding.

At the time of writing, very little research had been done in regards to improving
quality of plans or other planning metrics using ATB-DCK, but as our results
demonstrate the plan cost (which is a metric to be minimized during planning for
this domain) had been improved in seven out of ten cases for ATB-DCK 1, and
all cases for ATB-DCK 2. A well-designed ATB-DCK for the right domain might
have a significant impact on not only its performance during planning.
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Conclusion
After defining and introducing the topic of classical planning along with

touching upon historical and contemporary developments in the field, this thesis
reitorated the original definition of ATB-DCK. It then expanded this defini-
tion by more detailed description of encoding ATB-DCK into problems, and
proceeded to briefly describe the software created to supplement this thesis.
The described project can be found in the following GitHub repository: https:
//github.com/Neathac/AIPlanner and available at the web address https:
//aiplanner-29862.web.app/. The project intends to provide a simple text
editor allowing users to try out the process of creating and encoding ATB-DCK
for themselves without any development setup needed. It also aims to illustrate
how practical ATB-DCK encoders might work for possible future projects. Finally,
we designed a new ATB-DCK and illustrated its effects on a few experiments,
which led to some interesting results, pathing the way to possible future research.
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