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and targeted data redundancy. ArangoDB presents a versatile option capable of handling
multiple data models but might require further investigation into its performance compared
to Neo4j.
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Abstrakt: Pŕıchod Vělkých Dát poukázal na obmedzenia relačných databáz pri spracovańı
vělkých datasetov, čo viedlo k nárastu NoSQL databáz. Z tohto dôvodu sa DBMS
benchmarking stal ǩlúčovým pre hodnotenie výkonnosti a celkový rozhodovaćı proces. Táto
práca porovnáva relačné (MySQL, SQLite), grafové (Neo4j, ArangoDB), dokumentové
(MongoDB) a st́lpcovo-orientované (Cassandra) databázy. Analyzujeme vyjadrovaciu silu
ich dopytovaćıch jazykov a efektivitu počas behu pri rôznych vělkostiach dát. Dospeli sme k
záveru, že neexistuje žiadne riešenie ”č́ıslo jeden” pre všetky pŕıpady použitia. Výber záviśı
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modelmi, ale pre hlbšie porovnanie s Neo4j sa môže vyžadovať ďaľśı výskum ich výkonu.
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Contents

Introduction 7

1 Related work 9

2 Static Analysis 10
2.1 Selected Database Management Systems . . . . . . . . . . . . . . . 10
2.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Individual Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 MySQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 SQLite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.3 Neo4j . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.4 ArangoDB . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.5 Cassandra . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.6 MongoDB . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 ETL 33
3.1 Data Domain and Data Models . . . . . . . . . . . . . . . . . . . . 33
3.2 Data Generation (Export) . . . . . . . . . . . . . . . . . . . . . . . 41
3.3 Data Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4 Data Loading (Import) . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.5 ETL Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 Dynamic Analysis 52
4.1 Testing Environment . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.4 Summary and Recommendations . . . . . . . . . . . . . . . . . . . 60

4.4.1 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . 66

Conclusion 69

Bibliography 70

List of Figures 76

List of Tables 77

List of Listings 78

5



List of Abbreviations 79

Glossary 81

A Attachments 82
A.1 Project Directory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

A.1.1 Repository Structure . . . . . . . . . . . . . . . . . . . . . . 82
A.1.2 Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
A.1.3 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
A.1.4 Installation, Configuration, and Initialization . . . . . . . . . 86
A.1.5 Legacy Generator . . . . . . . . . . . . . . . . . . . . . . . . 90
A.1.6 Query Testing . . . . . . . . . . . . . . . . . . . . . . . . . . 90

A.2 Source Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6



Introduction
At the beginning of the 1970s, the relational data model, introduced by E. F.
Codd [1] became the universal standard for database systems. However, advance-
ments in science and technology and the need to store and process massive amounts
of data, have led to the development of new data models and Database Management
Systems (DBMSs).

NoSQL databases (i.e. non-relational databases) [2], which were introduced
to address the limitations of relational databases, have increased in popularity in
recent years. NoSQL databases were designed based on the new data management
requirements, that is to handle the three Vs of Big Data, i.e. volume (huge
amount), velocity (generated fast), and variety (un/semi-/structured data). Such
databases are created with scalability, availability, and performance in mind, and
they are often used in social networks, IoT, e-commerce, and other applications
that exceed the capabilities of traditional RDBMSs.

Nowadays, the variety requirement has split the NoSQL world into several
categories based on the underlying data model, i.e. key-value, document, column-
family, graph and array data models. Furthermore, each of these models requires a
query language to define data structures (DDL) and to retrieve and manipulate
data (DML) [3].

Performance is a pivotal aspect of any software system, influencing the user
experience and its competitiveness among other systems. The DBMS performance
benchmark is often evaluated based on the query execution time [4], which is
influenced by many factors, such as hardware, data model, distributed environment,
DBMS and OS parameters, physical database design, and more [5].

Usually, the query performance can be significantly improved, but at the cost
of a less expressive query language. For that reason, the concept of an aggregate
was formed. By having a single data unit or a collection of related objects that are
treated as a single unit, it allows NoSQL databases to store data in a duplicated
form and speed up data retrieval [2].

With that in mind, we can classify the current state of DBMSs further.
Aggregate-ignorant systems, such as relational, graph, and array databases, use
strict schema (schema-first, data-later) approach and prioritize data consistency and
transaction ACID properties. On the contrary, aggregate-oriented systems, such as
key-value, document, and column-family databases, use aggregates and a schema-
less (data-first, schema-later) approach allowing them to be more performant,
available and scalable, but at the cost of an increasing data redundancy [6].

Goals The goal of this thesis is to focus on various data models (i.e. relational,
graph, column-oriented, and document) and to compare typical query languages
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for these data models in terms of expressive power and run-time efficiency, taking
into account scalability with varying numbers of stored data.

We will analyze the current state of knowledge. Then, we will select six
databases, i.e. relational (MySQL, SQLite), graph (Neo4j, ArangoDB), column-
family (Cassandra) and document (MongoDB), which represent the most popular
open-source representatives of their underlying data models. Next, we will statically
compare their individual features and supported query languages. Next, based
on the static comparison, we will propose query scenarios and perform dynamic
query comparison over the selected database systems using the proposed queries.
Finally, we will suggest appropriate recommendations in querying over various data
representations.

Outline The rest of the thesis is structured as follows: In chapter 1, we present
the related work on the topic of database querying and performance benchmark-
ing. In chapter 2, we select DBMSs for comparison, and for each, we perform a
static analysis of their capabilities and limitations that we use in the subsequent
experiments. In chapter 3, we choose the data domain, propose queries used for
testing, and for each chosen DBMS, we design a data model and perform ETL
process, i.e. generate, process, and import data that will be used in the subsequent
experiments. In chapter 4, we perform a dynamic analysis (experiments) of the
DBMSs based on the proposed queries and present the results in the form of tables
and charts. Afterward, we provide recommendations for choosing the best DBMS
in proposed scenarios. Finally, we summarize the findings and suggest future work
in Conclusion.
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1. Related work
Firstly, we would like to mention the work of Taipalus [5] who created a clear and
concise systematic literature review of various DBMS benchmarks and helped us
understand common mistakes in DBMS benchmarking. Taipalus was inspired by
the work of Raasveldt et al. [7], who proposed a checklist for fair DBMS performance
testing, which we also tried to follow in this thesis.

The current state of knowledge in the field of database performance testing is
diverse and covers many databases implementing different data models, utilizing
various query languages, and providing different levels of scalability. TPC-H [8] and
other benchmarks by the Transaction Processing Performance Council (TPC) are
well-known in the field and one of the most respected benchmarks in the relational
domain. For NoSQL databases, there is the Yahoo! Cloud Serving Benchmark
(YCSB) [9], a framework with different workloads for R/W operations, that can be
used to evaluate the performance of NoSQL databases. Namely, YCSB is used in the
work of Abramova and Bernardino [10] to compare the performance of MongoDB
and Cassandra, showing that Cassandra outperforms MongoDB in almost all tested
scenarios. UniBench (Zhang and Lu [11]), a benchmarking tool for Multi-Model
DBMSs, can be used to evaluate the performance of, e.g. ArangoDB. Gunawan
et al. [12] compares document-oriented databases, showing that MongoDB is faster
in query performance, but slower in create operations than ArangoDB.

Furthermore, the work of Győrödi et al. [13] compares SQL to a NoSQL system,
recommending MongoDB over MySQL “if the application is data intensive and
stores many data and queries lots of data”. In-memory databases, such as SQLite
compared to MongoDB and MySQL in the work of Wang et al. [14], showing
that the in-memory processing is faster than disk-based processing of MySQL or
MongoDB.

In the context of highly connected data as in social networks, the paper by
Almabdy [15] shows that Neo4j is better suited for such cases than MySQL. On
the other hand, Sholichah et al. [16] claims that Neo4j is slower overall and has
higher memory usage than MySQL, but conversely also has bigger flexibility than
MySQL.

9



2. Static Analysis
In this chapter, we will select DBMSs for comparison and perform a static analysis
of their capabilities and limitations based on the official documentation and other
research studies.

First, we will present the selected DBMSs in section 2.1 and explain their
primary selection criteria. Then, we will define our objectives in section 2.2 and
describe what will be the scope of our research in the individual analysis of each
DBMS in section 2.3. Finally, we will summarize the analysis in respective tables
in section 2.4.

2.1 Selected Database Management Systems
For this thesis, we have selected the following DBMSs: MySQL1, SQLite2, Neo4j3,
ArangoDB4, Cassandra5, and MongoDB6. The main reason for this selection was
to compare different types of DBMSs in terms of their underlying data models used
for logical data representation and various query languages used for data querying.
We wanted to compare traditional SQL with more novel NoSQL databases and, for
that reason, we chose data models that are widely used in practice and research,
such as Relational, Document, Graph, and Wide-column data models. Based
on the Goals of this thesis, we selected two representatives from the Relational
domain (MySQL 2.3.1, SQLite 2.3.2), two from the Graph domain (Neo4j 2.3.3,
ArangoDB 2.3.4), and one from Wide-Column (Cassandra 2.3.5) and Document
(MongoDB 2.3.6) domain.

The subsequent selection is mainly based on the popularity of the systems pre-
sented by a well-known DBMS ranking website DB-Engines7. The selected systems
are widely used in various domains and have different features and capabilities and
as such are scalable to different extents. The selection criteria have also emphasized
their open-source nature and having a large community of users, developers, and
researchers. The selected systems are also used in various research studies and
have been compared in different research papers. The primary selection criteria
are summarized in table 2.1.

1Version 8.1.0: https://dev.mysql.com/doc/refman/8.0/en/
2Version 3.42.0: https://www.sqlite.org/docs.html
3Version 5.12.0: https://neo4j.com/docs/
4Version 3.11.3: https://docs.arangodb.com/3.11/
5Version 4.1.3: https://cassandra.apache.org/doc/4.1/
6Version 7.0.2: https://www.mongodb.com/docs/v7.0/
7https://db-engines.com/en/ranking
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The popularity ranking presented by DB-Engines is based on the number of
mentions on websites, general interest in the system, frequency of discussions about
the system, and more.8

Table 2.1: DBMS primary selection criteria

# Inclusion Criterion
1 Data model
2 Popularity ranking
3 Supported features
4 Research citations

2.2 Objectives
The main objectives of the static analysis are to:

• Analyze the selected DBMSs in terms of Consistency, Scalability, Shard-
ing, Replication, Schema, Aggregates, Entity types, Relations, and the used
representation of the Absence of value.

• Evaluate the Data Definition Language (DDL) features of the selected systems.

• Assess the Data Manipulation Language (DML) features of the selected
systems.

• Compare the individual features, DDL, and DML between the selected
systems.

• Summarize the analysis in respective tables (2.3, 2.4, 2.5).

The analysis will be based on the official documentation of the systems and
information from other research studies. The analysis will be presented in the
following sections.

2.3 Individual Analysis
In this section, we will analyze the selected DBMSs based on the objectives defined
in section 2.2. Each subsection will focus on an individual DBMS, i.e. MySQL
in section 2.3.1, SQLite in section 2.3.2, Neo4j in section 2.3.3, ArangoDB in

8https://db-engines.com/en/ranking_definition
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section 2.3.4, Cassandra in section 2.3.5, and MongoDB in section 2.3.6. Further,
each paragraph will analyze one aspect of the system that influences its performance,
scalability, and expressive power of the query language.

2.3.1 MySQL
MySQL [17] is an open-source Relational Database Management System (RDBMS)
that is widely used in various domains. It is developed and maintained by the
Oracle Corporation. Ranked 2nd on DB-Engines ranking (March 2024), MySQL is
a popular choice for web applications and is used by many high-profile websites.
Furthermore, it is also used in various research studies and has been compared
with other DBMSs [5]. The system is known for its high performance, reliability,
and ease of use. It is also scalable and can be used in various environments, from
small applications to large-scale enterprise systems.

MySQL requires a server to run since it uses a client-server architecture and
needs to interact over a network. The server allows multiple user access and provides
access control, user management, and strong security out of the box. Furthermore,
since the DBMS offers an extensive set of features, the DBMS size can exceed 600
MB and the initial setup might require a more detailed configuration, than for
example, SQLite (2.3.2).

Supported data types include, e.g.: Int, Bigint, Numeric, Timestamp, Date-
time, Char, Varchar, Blob, Text, Enum, or Set. Additionally, the JSON [18, 19]
data type is supported in a format that allows storing, querying and performing
operations on JSON documents.9 Interestingly, since version 8.0.17 MySQL sup-
ports Multi-Valued indexes, which allow indexing values of a JSON array stored in
a column.10

Consistency MySQL is an ACID-compliant system, which means that it supports
Atomicity, Consistency, Isolation, and Durability properties. [20]

Scalability MySQL is a Vertically scalable system. It can be scaled up by adding
more resources to the existing server. It supports various clustering and replication
features that enable it to be used in large-scale environments.

Sharding MySQL does not support sharding out of the box, but it can be
implemented using various third-party tools and plugins. Oracle also provides
customers with MySQL NDB Cluster [21], their “distributed database combining

9https://dev.mysql.com/doc/refman/8.0/en/json.html
10https://dev.mysql.com/doc/refman/8.0/en/create-index.html#create-index-mul

ti-valued
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linear scalability and high availability”, that supports sharding and is designed for
mission-critical applications.

Replication MySQL supports Master-Slave (that is, “Source-Replica”) repli-
cation. [22]

Schema MySQL is a fully Schema based system. It requires a schema to be
defined before data can be inserted into the database. It supports various data
types and constraints that can be used to define the schema of the database.

Aggregates MySQL is an aggregate-ignorant system.

Entity types MySQL is a Relational DBMS, so it supports Relations as entity
types.

Relations MySQL supports Foreign Key constraints that can be used to define
relations between tables.

Absence of value MySQL uses NULL as a “metavalue” to represent the absence
of a value.

Query language MySQL uses Structured Query Language (SQL) [23] as its
query language. SQL is the primary query language used in all RDBMSs. It is
extremely robust when it comes to expressive power and very powerful when it
comes to querying and manipulating data. The relational data model [1], the data
model behind MySQL, is based on relational algebra and relational calculus [24],
and SQL is the language that is used to interact with the data stored in the
database. The schema or structure of the database is fixed. The data is stored in
tables, and the tables are related to each other using foreign keys. SQL supports
all traditional Create, Read, Update, Delete (CRUD) operations.

MySQL follows the ANSI/ISO standards (with the newest one being SQL-
2023 [25, 26]) and has been extended to support various other features such as
Stored Procedures, Triggers, Views, and User-Defined Functions. It differs from the
standard in some aspects [27], but it is mostly compliant with the standard.

The DDL features include CREATE TABLE, ALTER TABLE, and DROP TABLE state-
ments to manipulate tables and their schema, and INSERT INTO, UPDATE, and
DELETE FROM statements to manipulate data (rows).

The DML features include the use of SELECT, FROM, WHERE as the main clauses
for projection, source (tables/s), and selection of data. Integral to joining tables
(entities) based on foreign keys (relationships) is the use of JOIN clause and
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OUTER JOIN for optional relationships. Aggregation of data (maximum, minimum,
average, count) is done using the GROUP BY (properties) HAVING (condition)
statement. It also supports various other set operations (operations on sets of rows)
such as UNION, INTERSECTION, EXCEPT, and DISTINCT11. Furthermore, the ORDER
BY, LIMIT, OFFSET, and AS clauses are used for sorting, limiting, and skipping the
results and aliasing the tables/columns.

The WITH RECURSIVE clause is used for unlimited traversal. It can perform
the joining of a table with itself if a recursive condition is met. It allows for the
execution of recursive queries within a Common Table Expression (CTE). A CTE
is a named temporary result set that can be referred to within the context of other
expressions. It can be used to traverse hierarchical data, graph-like data, or to
perform recursive calculations on a table.

Also, the nesting of queries is supported using the SELECT statement within
another SELECT statement. The MapReduce [28] operation can be expressed using
the GROUP BY ... HAVING clause, but it is not a native feature of MySQL. It is a
feature that is supported by the Hadoop12 ecosystem and is used for distributed
data processing.

2.3.2 SQLite
SQLite [29] is an open-source RDBMS available in the public domain (not owned
by anyone). Developed by Dwayne Richard Hipp and ranked 10th on DB-Engines
(March 2024), SQLite is a popular choice for many web browsers, operating systems,
mobile phones, and embedded systems.

SQLite operates as a server-less, self-contained, zero-configuration database,
commonly known as an embedded database. It is lightweight (about 250 kB in size)
and uses a single file to store data and schema. It can also work as an in-memory
database13, where the entire database persists in primary memory to speed up
access to the data (i.e. to avoid the I/O operation in transaction processing [14]).
However, as the data requirements grow, performance optimization can get more
complex, than in MySQL for example.

SQLite does not offer user management, access control, or authentication
(features common in client-server DBMSs like MySQL). Instead, it relies on the
host operating system’s file access permissions to control access. Interestingly,
“SQLite is the only known server-less DB that allows multiple applications to access
the same database at the same time.”14

11Not technically a set operation, but a feature of a set itself
12https://hadoop.apache.org/
13https://sqlite.org/inmemorydb.html
14https://www.sqlite.org/serverless.html
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Supported data types (“Storage Classes”)15 include: NULL, INTEGER, REAL, TEXT,
BLOB. Common data types from other SQL DBs, e.g. VARCHAR, NUMERIC, DATETIME,
BOOLEAN, fall into so-called “Affinity Types”, that are used to describe column
types and are stored as one of the five storage classes. As SQLite is a “flexibly
typed” database, it does not enforce data types. It allows any type of data to be
stored in any column, regardless of the declared type. “This is a feature of SQLite,
not a bug.”16

Consistency SQLite is an ACID-compliant system, and thus all changes made
in a transaction either succeed or fail together, even in the event of a program
crash, an OS crash, or a computer power failure. To maintain exclusive access
for a single write at any given time, the database utilizes a locking mechanism
that encompasses the entire DB when a lock is required. While this approach may
pose a limitation for high volumes of write operations, it proves to be efficient for
applications of smaller to moderate sizes.17 To enhance performance, SQLite takes
advantage of shared locks implemented at the level of the OS’s disk cache, rather
than directly on the hard drive. What’s important, is that SQLite emphasizes the
significance of minimizing disk I/O to optimize transaction commit time.18

Scalability SQLite is not designed to be scalable. It can be horizontally scalable,
but only to a certain extent, and only via third-party solutions.19 Vertical scalability
can be achieved by adding more resources (CPU, RAM, etc.) or by using a more
powerful machine.

Schema SQLite is a fully Schema based system. Apart from “flexible typing”
mentioned before, some other features are worth mentioning. The use of AUTOIN-
CREMENT keyword can get quite computationally expensive as it requires extra CPU,
memory, disk space, and I/O to process, so the documentation advises against
using it.20 “In SQLite, table rows normally have a 64-bit signed integer ROWID
which is unique among all rows in the same table.” Special clause WITHOUT ROWID
can be used to create tables without the ROWID21 column, that use a clustered index
as the primary key and requires less disk space and I/O to process.

Some notable information: SQLite allows the use of double-quoted string literals,
SQLite strings can contain NUL characters, and non-aggregate result columns in

15https://www.sqlite.org/datatype3.html
16https://www.sqlite.org/quirks.html
17https://www.sqlite.org/atomiccommit.html
18https://www.sqlite.org/atomiccommit.html - Chapter 7. Optimizations
19https://rqlite.io/
20https://sqlite.org/autoinc.html
21https://sqlite.org/withoutrowid.html
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aggregate queries that are not in the GROUP BY clause are allowed.

Aggregates SQLite is an aggregate-ignorant system.

Entity types SQLite supports Relations as entity types.

Relations SQLite supports Foreign Key constraints, though they are not enforced
by default. It is possible to enable them using the PRAGMA foreign keys=122

command.

Absence of value SQLite uses NULL as a “metavalue” to represent the absence
of a value.

Query language SQLite uses SQL as its query language. Supports all traditional
CRUD operations and follows the ANSI/ISO standards. Some features from the
standard are omitted23, and some are changed or added (see 2.3.2).

The DDL features are the same as in MySQL (2.3.1). The only caveat may
be that ALTER TABLE does not support some clauses like ALTER COLUMN, or ADD
CONSTRAINT, etc.

The DML features include the same features as in MySQL (2.3.1). The notable
difference is the limit imposed on the number of tables that can be joined in a
single query, which is not more than 64.24 This limitation also affects the WITH
RECURSIVE recursive queries.

2.3.3 Neo4j
Neo4j [30] is an open-source Graph DBMS (or GDBMS) developed by Neo4j, Inc.
and is ranked 23rd on DB-Engines (March 2024). Neo4j is widely used in domains
that require interconnectedness and complex relationships between entities, such
as social networks, recommender systems, fraud detection, network analysis, or
quite novel applications in Machine Learning (ML), Artificial Intelligence (AI), and
Internet of Things (IoT).

Neo4j utilizes a Labeled Property Graph (LPG) model [31] to represent data.
The model consists of nodes (vertices), relationships (edges), and properties (key-
value pairs). Path, retrieved from a traversal result is a sequence of one or more
nodes connected by relationships. In DBMS, paths and relationships are first-class
citizens. Nodes and relationships can have properties, and labels are used to group

22https://www.sqlite.org/pragma.html#pragma_foreign_keys
23https://sqlite.org/omitted.html
24https://sqlite.org/limits.html - 4. Maximum Number Of Tables In A Join
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them into logical sets. Such a simple, yet efficient, data model allows invoking
straightforward graph traversals (e.g. depth-first search, breadth-first search) to
complex graph algorithms (e.g. shortest path, minimum spanning tree, etc.).

Neo4j is a client-server-based DBMS. Communication can be done via HTTP
endpoint, or via the Bolt protocol, which is a binary protocol designed for high-
performance communication. There exist various drivers for many programming
languages, though originally Neo4j was developed in Java.

The supported (property) data types are either simple, i.e. STRING, INTEGER,
FLOAT, BOOLEAN, structural, i.e. LIST, MAP, temporal, i.e. DATE, LOCAL DATETIME,
DURATION, LOCAL TIME or spatial POINT.

Consistency Neo4j is an ACID-compliant system.

Scalability Neo4j Community (open-source) Edition is a vertically scalable
system. It can be scaled up by adding more resources to the existing server.

It also supports clustering and sharding, but these features are available only
in the Enterprise (commercial) version of the DBMS.25

Neo4j Clustering provides Fault Tolerance (FT) and High Availability (HA) via
a master-slave architecture. Causal consistency, achieved by Neo4j’s clustering,
guarantees that causally related operations are observed in the same order by every
instance in the cluster. As a result, clients are assured of reading their own writes,
and it does not matter which instance they interact with. The server can be run in
two modes (or both):

• Primary mode - Allows read and write operations. A database can be
hosted by one or more primary hosts. HA in Primary nodes is accomplished
through the replication of all transactions using the Raft protocol. This
protocol guarantees the secure durability of data by requiring a transaction
to be acknowledged by a majority of primaries in a database (N/2+1) before
confirming its commit.

• Secondary mode - Database secondaries are asynchronously replicated from
primaries via transaction log shipping. Periodically, they poll an upstream
server for any new transactions and then proceed to have them transferred.
They can be used for read-only operations.

Sharding Neo4j Enterprise Edition supports sharding via so-called Composite
databases.26 This technique divides a single logical database into several smaller

25https://neo4j.com/product/neo4j-graph-database/scalability/
26https://neo4j.com/docs/operations-manual/5/database-administration/composit

e-databases/concepts/
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databases (shards).

Replication Neo4j Enterprise Edition supports automatic replication in a
cluster.27

Schema Neo4j is a schema-free system. It does not enforce a schema, but it
allows for the definition of a schema using Constraints, which can be used to enforce
the uniqueness or existence of a property.

Aggregates Neo4j is an aggregate-ignorant system.

Entity types Neo4j supports Nodes as entity types.

Relations Neo4j supports Relationships as relations.

Absence of value Neo4j does not have a special representation for the absence
of value. null in Neo4j means a missing or an unknown value. Interestingly, null =
null yields null and not true, because two unknown values do not necessarily
mean that they are the same.

Query language Neo4j uses Cypher as its query language. Cypher is a declarative
(that is, we describe what we want) query language that is designed to be human-
readable. It is based on pattern matching and is used to query and manipulate
graph data. The language features all CRUD operations, but by not requiring
a schema to be defined, it allows for more flexibility in data representation and
querying. Additionally, APOC (Awesome Procedures on Cypher) serves as an
extension library for Neo4j, offering an extensive collection of additional procedures
and functions.

The DDL features include clauses like CREATE to create nodes and relationships,
and DELETE/DETACH DELETE to delete them. The MERGE clause can be used to
create nodes and relationships if they do not exist yet. Properties or labels can be
modified using the SET clause, and the REMOVE clause can be used to remove them.

The DML features revolve around the MATCH clause to find nodes and relation-
ships followed by a graph specification of a path/nodes/relationships to be matched
in a traversal. Next, WHERE is used to filter/select the resulting properties, and
finally RETURN to return/project the results (paths, nodes, relationships, properties,
etc.). Also, the OPTIONAL MATCH statement can be used to optionally match entities
in a traversal.

27https://neo4j.com/docs/operations-manual/current/clustering/introduction/
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Optionally, we can use ORDER BY, SKIP, LIMIT to sort, skip, and limit the
results. The WITH clause can be used to pass the results of one query to another
query. The UNION and WHERE NOT (SQL EXCEPT alternative) clauses can be used to
perform set operations on the results, including the apoc.coll.intersection()
intersection function from the APOC library. The CALL clause can be used to
call user-defined/external functions. The FOREACH clause can be used to perform
operations on a list of items. Additionally, subqueries are supported as well using
the CALL {MATCH ...} combination.

By default, Neo4j matches all nodes and relationships matching the graph
specification, so there is no special clause for “MATCH *”. This also implies that
aggregation is oriented towards the graph specification, and not the properties
themselves. An aggregating expression is a statement that contains one or more
aggregating functions. The collect() aggregating function can be used to collect
the results of a query into a list, and the count(), min(), max(), avg(), sum()
functions can be used to perform aggregation on the results.

2.3.4 ArangoDB
ArangoDB [32] is an open-source Multi-Model DBMS (MMDBMS) made by
ArangoDB GmbH and is ranked 84th on DB-Engines (March 2024). ArangoDB’s
flexibility supports a wide array of applications, from social networking to real-time
analytics, recommendation systems, fraud detection, and more. It is also available
commercially, deployable on-premises, or as a managed cloud service through
ArangoGraph Insights Platform28.

ArangoDB is classified as a MMDBMS [33, 34, 35], that supports three data
models – Document, Graph, and Key-Value in a single core. The Document model
is based on the JSON [19, 18] model, and the Graph model is based on the Labeled
Property Graph model. The Key-Value model is based on simple key-value pairs.

It accommodates various data types through its schema-free nature, primarily
working with JSON-formatted data stored in a binary format called VelocyPack29

internally. Values in documents can be of a primitive type (null, boolean, number,
string) that represents one value or of a compound type (array, object) that
can contain multiple values.30

Internally, ArangoDB uses RocksDB storage engine – embeddable, persistent,
key-value, log-structured store [36] optimized for fast storage. It is designed to be
scalable to large datasets and is optimized for fast storage and retrieval of data (by
using caches and indexes). It employs document-level locks allowing for concurrent

28https://arangodb.com/arangograph-insights-platform/
29https://github.com/arangodb/velocypack
30https://docs.arangodb.com/3.11/aql/fundamentals/data-types/
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writes without blocking reads and uses a write-ahead log to ensure durability.31

Consistency ArangoDB ensures ACID properties using a single instance or, in a
cluster, using OneShard32 deployments, offering snapshot isolation and key-level
pessimistic locking for write-write conflict detection. “This is more than many other
NoSQL database systems support. In cluster mode, single-document operations
are also fully ACID.”33 On the other hand, transactions are mostly optimized for
short-running and small-volume operations, while long-running transactions can
lead to performance degradation. Furthermore, the recommended document size is
50-75 kB.

Scalability ArangoDB is Vertically and Horizontally scalable.34 The DBMS
server will automatically use more threads if more CPUs are present, so scaling up
is just adding more resources.

Sharding Sharding in ArangoDB is achieved via Master-Master replication.35

Each server instance can host multiple shards as local collections, of which one
is always the leading shard and the others are replicas of their respective leading
shards stored in different servers. The replication factor number controls the
number of replicas and the Shard key is used to distribute the collections across
the shards via the use of hashing functions. “Not all use cases require horizontal
scalability. In such cases, consider the OneShard feature as alternative to flexible
sharding.”

Replication Replication in ArangoDB can be done synchronously and asyn-
chronously.36 Synchronous replication, used for clusters, stores copies of a shard’s
data on another server and keeps them in sync (see Sharding 2.3.4). Asynchronous
replication, used for Active Failover37 setups, achieves eventual consistency by
applying changes from the Leader ’s (read/write instance) log to the Followers
(read-only) at a later time.

31https://docs.arangodb.com/3.11/components/arangodb-server/storage-engine
32https://docs.arangodb.com/stable/deploy/oneshard/
33https://docs.arangodb.com/3.11/develop/transactions/limitations/#in-clusters
34https://docs.arangodb.com/stable/deploy/architecture/scalability/
35https://docs.arangodb.com/stable/deploy/architecture/data-sharding/
36https://docs.arangodb.com/stable/deploy/architecture/replication/
37https://docs.arangodb.com/stable/deploy/active-failover/
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Schema ArangoDB is a schema-free system. It supports optional schema valida-
tion via JSON Schema [37] for documents.38

Aggregates ArangoDB is an aggregate-oriented system.

Entity types ArangoDB supports Documents as entity types.

Relations ArangoDB supports intra-document relations, inter-document rela-
tions, and relationships via Edges collection in the LPG model. Intra-document
relations are achieved by embedding documents within documents, and inter-
document relations are achieved by referencing documents from other documents.

Absence of value ArangoDB uses null to represent the absence of value.

Query language ArangoDB uses ArangoDB Query Language (AQL), a declar-
ative query language able to query multiple data models at once, regardless of
whether one is dealing with documents, graphs, or key-value pairs. AQL is fully
equipped to handle all CRUD operations.

The DDL features start with the creation of collections using the db. create
(collection,...) function from the db object of the JavaScript [38] API39, using
the WEB Interface or HTTP API. The db. createEdgeCollection() function
is used to create an Edges collection used in the Graph model. db. update()
and db. remove(collection) functions can be used to update the collection’s
options/properties and drop collections, respectively. Afterward, the documents can
be modified using the INSERT, UPDATE, and REMOVE statements, including REPLACE
and UPSERT operations.

The central part of DML involves the use of FOR doc IN docs RETURN doc
statement. RETURN {attr1:val1,attr2:...} allows to specify document projec-
tion, including the RETURN DISTINCT for unique projection of documents. FILTER
allows restricting/selecting documents with given properties and supports a huge
variety of (logical) operators and functions.

AQL shines in aggregating data, as showcased by its COLLECT ... INTO (or
WINDOW) operation, which enables grouping by arbitrary criteria with optional
aggregation, facilitating sophisticated analytical queries and data summaries.40

38https://docs.arangodb.com/stable/concepts/data-structure/documents/schema-v
alidation/

39https://docs.arangodb.com/stable/develop/javascript-api/@arangodb/db-object/
40https://docs.arangodb.com/stable/aql/examples-and-query-patterns/grouping/#

aggregation
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SORT, LIMIT offset, count clauses are used for sorting, limiting, and skipping
the results. The LET clause is used to define variables (or aliasing documents).
Also, there is no special AQL clause for set operations, but rather the clever use of
FILTER statements in different ways.41

AQL supports quite a straightforward declaration of a document join, whether
it be between One-To-Many or Many-To-Many types of entity relationships. The
use of FOR doc2 IN coll2 within another FOR doc1 IN coll1 (and so on) is a
typical example of a One-To-Many join.

FOR doc1 IN coll1
FOR doc2 IN coll2

FILTER doc1._id == doc2._id
RETURN {doc1, doc2}

Many-To-Many join can be modeled by using Embedded Lists of (other) docu-
ment IDs inside our document and then subquerying (similarly to the One-To-Many
situation) and filtering on the document ID.

FOR doc1 IN coll1
LET joined = (FOR id2 IN doc1.embeddedList

FOR doc2 IN coll2 FILTER id2 == doc2._id)
RETURN {doc1, joined}

Another example of a join, tested extensively in the Chapter 4 of this thesis, is
the use of Edge Collections, which is a more efficient approach to model Many-To-
Many relationships in the graph model. What’s more, outer joins can be achieved
by previous methods and then filtering on zero-length arrays.42

AQL supports Graph traversals by using

FOR vertex[, edge[, path]] IN [min[..max]]
INBOUND/OUTBOUND/ANY startVertex
GRAPH graphName

statement (more in Chapter 4).43 Unlimited graph traversals are also supported
but limited to the setting of the max parameter of the initial query.

A comparison of graph model terminology between AQL and Neo4j’s Cypher
(section 2.3.3) graph query language can be seen in table 2.2.44

41https://docs.arangodb.com/stable/aql/examples-and-query-patterns/diffing-t
wo-documents/

42https://docs.arangodb.com/stable/aql/examples-and-query-patterns/joins/#out
er-joins

43https://docs.arangodb.com/3.11/aql/graphs/traversals
44https://arangodb.com/learn/graphs/comparing-arangodb-aql-neo4j-cypher/

22

https://docs.arangodb.com/stable/aql/examples-and-query-patterns/diffing-two-documents/
https://docs.arangodb.com/stable/aql/examples-and-query-patterns/diffing-two-documents/
https://docs.arangodb.com/stable/aql/examples-and-query-patterns/joins/#outer-joins
https://docs.arangodb.com/stable/aql/examples-and-query-patterns/joins/#outer-joins
https://docs.arangodb.com/3.11/aql/graphs/traversals
https://arangodb.com/learn/graphs/comparing-arangodb-aql-neo4j-cypher/


Table 2.2: Comparison of AQL and Cypher terminology.

AQL Cypher
vertex node
edge relationship
collection (group of nodes)
document (node with properties)
document collection node label
edge collection relationship type
attribute property
depth hops
array list
object map

2.3.5 Cassandra
Cassandra [39] is a DBMS of the Wide-Column (columnar, column-oriented) family
developed originally by Avinash Lakshman and Prashant Malik at Facebook [40],
later open-sourced and now maintained by Apache Software Foundation. The
current DB-Engines ranking gives Cassandra 12th place (March 2024). Cassandra
is widely used in domains that require High Availability, Fault Tolerance, such as
event logging, messaging, e-commerce, content management systems, and other
applications that require fast writes and reads.

The system uses the Wide-Column model for data representation. The model
is based on the concept of Column Families (tables) that contain Rows (records)
and Columns (fields). Columns are the basic units of data storage, each consisting
of a name-value (key-value) pair stored with a timestamp (for TTL, conflict
resolution, etc.). Rows are key-linked collections of columns, and Column Families
are collections of ”similar” rows. All encompassed in a Keyspace (similar to a
database in RDBMS) of a Cluster. The data is distributed across the cluster using
a partitioner and a replication strategy.45

Cassandra inherits the majority of design introduced in Amazon Dynamo46

and Google Bigtable47 systems. Its storage engine is based on the Log-Structured
Merge-Tree [36] data structure, which is optimized for write-heavy workloads.48

As Cassandra is a typed language, it supports everything from native types
45https://cassandra.apache.org/doc/4.1/cassandra/architecture/overview.html
46https://aws.amazon.com/dynamodb/
47https://cloud.google.com/bigtable
48https://cassandra.apache.org/doc/4.1/cassandra/architecture/dynamo.html
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(strings, numbers, booleans, date/times, etc.), to collections (lists, sets, maps),
user-defined types (UDTs), and tuples. Notably, the use of collection types can
lead to performance issues – as they are not indexed internally, access can lead to
full scans of the data. It is also advised to use Sets over Lists, as writes to Sets are
idempotent and never incur read-before-write penalties.49

Consistency Cassandra is a BASE storage system. It supports eventual consis-
tency with tunable consistency levels which allow Cassandra to trade-off between
availability and consistency.50 Cassandra ensures atomicity and isolation at the
row level. Writes are durable, recorded in memory as well as in a commit log on
disk, and the system uses client-side timestamps to resolve conflicts, with the most
recent update prevailing. The database can be customized to offer full consistency
for particular operations, datacenters, or clusters.51 It can also support lightweight
transactions with linearizable consistency using the Paxos protocol.52

Scalability It is a Vertically, but mostly Horizontally scalable system. The
system is designed to be fault-tolerant and highly available, with no single point of
failure.

Sharding Since Cassandra is highly distributed, the data is stored across
a cluster of nodes, distributed internally by the partitioner. It can be set to
Murmur3Partitioner (default), RandomPartitioner, and OrderPreservingPartitioner.
It uses each table’s primary key, which consists of a partition key and clustering
columns/keys, to determine the distribution. The partition key is hashed to
determine the actual node in the cluster, and the clustering keys are used to sort
the data within the partition (to speed up range queries).53

Replication Cassandra replicates all partitions to numerous nodes through-
out the cluster via Multi-Master replication according to the replication strategy
defined in the keyspace. The replication strategy can be set to SimpleStrategy (for
single datacenter deployments) or NetworkTopologyStrategy (for multi-datacenter

49https://cassandra.apache.org/doc/4.1/cassandra/cql/types.html
50https://cassandra.apache.org/doc/4.1/cassandra/architecture/dynamo.html#tuna

ble-consistency
51https://docs.datastax.com/en/cassandra-oss/3.x/cassandra/dml/dmlTransactions

Differ.html
52https://cassandra.apache.org/doc/4.1/cassandra/architecture/guarantees.html#

lightweight-transactions-with-linearizable-consistency
53https://cassandra.apache.org/doc/4.1/cassandra/data_modeling/intro.html
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deployments).54 Additionally, the replication factor can be set to control the
number of replicas per range.

Schema Cassandra is a schema-optional system. Schema must be optimized
for querying, so unlike in RDBMS, data must be denormalized and duplicated to
support different queries.

Aggregates Cassandra is an aggregate-oriented system.

Entity types Cassandra supports Tables (Column Families) as entity types.

Relations Since Cassandra does not support the concept of foreign keys, relations
between entities (tables) are modeled with data denormalization and the use of
User-Defined Types (the concept of super column families have been deprecated
and is no longer recommended).

Absence of value The NULL constant denotes the absence of value.

Query language Cassandra uses Cassandra Query Language (CQL) as its query
language. CQL’s resemblance to SQL syntax makes it easy for developers to learn
and use. It provides a rich set of features for CRUD operations, querying, batch
operations, and more. The language is designed to be simple and intuitive, with a
focus on performance and scalability. It is also designed to be extensible, allowing
developers to add custom functions and data types.

DDL operations in Cassandra are very similar to that of SQL. First, one must
create keyspace using the CREATE KEYSPACE statement and define its mandatory
option of replication strategy with its replication factor discussed above. After
its creation, ALTER KEYSPACE and DROP KEYSPACE can be used to further modify
and delete the keyspace, respectively. Next, tables can be created using the CREATE
TABLE statement, which must include the PRIMARY KEY with its partition and
clustering parts. Additionally, a column can be declared STATIC, which makes it
shared among all rows in the partition. Furthermore, table options can be set with
the most notable being CLUSTERING ORDER BY to sort the data within the partition
ascending or descending (since the use of ORDER BY is limited to the selected
clustering columns ordering – and its reverse).55 The use of right Compaction

54https://cassandra.apache.org/doc/4.1/cassandra/architecture/dynamo.html#mult
i-master-replication-versioned-data-and-tunable-consistency

55https://cassandra.apache.org/doc/4.1/cassandra/cql/ddl.html
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strategy can also be beneficial for further performance tuning.56 Finally, the table
can be altered/dropped using the ALTER TABLE/DROP TABLE statements.

Rows can be inserted into the table using the INSERT statement, updated using
the UPDATE statement, and deleted using the DELETE statement. Unlike in SQL,
each primary key uniquely identifies a row, so inserting a new one with the same
primary key will UPSERT the existing one. JSON [18, 19] values are also supported,
but limited.57 USING TTL can be used to expire the row after a certain time. The
BATCH statement can be used to group multiple DML operations into a single request
operation, where all operations belonging to a given partition key are performed in
isolation.58 Batches are not meant to be the same as SQL transactions.

DML operations in Cassandra support the use of SQL’s SELECT, FROM, WHERE
clauses with important differences.59 Selecting results using WHERE is limited to
the partition key, clustering columns, and (secondary) indexed columns. First, the
partition key has to be specified (by equality), and only then clustering columns
can be restricted in contiguous order. The use of ALLOW FILTERING can be used to
allow filtering on non-indexed columns, but it is discouraged due to unpredictable
performance costs. It performs a full scan of all partitions, where the query
performance is proportional to the amount of data returned. Results can be further
grouped with GROUP BY, but only in groups sharing the primary key values in a
defined order (partition key/s > clustering key/s), and then aggregated using the
standard aggregate functions or user-defined aggregates.60 Ordering can be done
using ORDER BY on clustering columns, but only in specific order. The use of LIMIT
and PER PARTITION LIMIT can be used to further limit the number of returned
rows.

The most notable characteristic of CQL is that it does not support joins between
tables. That is why the Query-Driven architecture is employed and data must
be denormalized and duplicated to enable complex queries (spanning multiple
relationships between entities/tables). This is a trade-off for the High Availability
and Fault Tolerance that Cassandra provides.61

MapReduce is also supported using the Hadoop integration, which allows for
the distributed processing of large data sets across clusters of nodes.

56https://cassandra.apache.org/doc/4.1/cassandra/operating/compaction/index.ht
ml

57https://cassandra.apache.org/doc/4.1/cassandra/cql/json.html
58https://cassandra.apache.org/doc/4.1/cassandra/cql/dml.html#batch_statement
59https://cassandra.apache.org/doc/4.1/cassandra/cql/dml.html#select-statement
60https://cassandra.apache.org/doc/4.1/cassandra/cql/functions.html
61https://cassandra.apache.org/doc/4.1/cassandra/data_modeling/data_modeling_r

dbms.html
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2.3.6 MongoDB
MongoDB is a document-based DBMS developed by MongoDB Inc. and is ranked
5th on DB-Engines (March 2024). The primary use cases are content management,
real-time analytics, high-speed logging, etc. It is available as a self-hosted open-
source Community Edition and a commercial Enterprise Advanced server managed
locally, or using Software as a Service (SaaS) solution through MongoDB Atlas.62

MongoDB is a document-oriented DBMS that stores JSON-based [19, 18]
documents with flexible schema. Internally, BSON (Binary JSON) is a binary
representation of JSON documents (with a maximum size of 16 MB), which allows
for more efficient storage and retrieval of data.63 Each MongoDB instance can
contain a database (like RDBMS’s schema) which in turn consists of collections
(like tables in RDBMS) that group related documents together. Document is a set
of key-value pairs, where the keys are represented as strings and the values are
either of BSON data type or another document/array. Documents can be nested,
allowing for complex aggregates to be stored in a single document.

BSON supports all JSON data types, i.e. strings, numbers, null, arrays, and
objects, with additional types like datetimes, or geospatial types, all of them
represented in a binary format.

MongoDB uses a WiredTiger storage engine by default, which is optimized
for most workloads, offering a document-level concurrency model, checkpointing,
compression, and more. The Enterprise version also supports the In-Memory
storage engine.64 Certain use cases might require the use of an appropriate storage
engine.

Consistency MongoDB’s consistency model allows choosing between data re-
dundancy and normalization, leveraging both BASE and ACID properties for
different use cases (thus making it ACID-complaint65). For the majority of cases,
where the application always reads and updates related data (aggregates) as one,
data that is accessed together should be stored together. A write operation is
atomic on the level of a single document, thus denormalization using (related)
document embeddings (documents within a document) is encouraged. However,
for cases where the related document is accessed often independently, or it changes
frequently, or when the document sizes become unmanageable, normalization using
inter-document references can be used.66

62https://www.mongodb.com/products
63https://bsonspec.org/
64https://www.mongodb.com/docs/manual/core/storage-engines/
65https://www.mongodb.com/databases/acid-compliance
66https://www.mongodb.com/docs/manual/data-modeling/data-consistency/
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Furthermore, when the application must always return up-to-date data, Mon-
goDB also supports multi-document transactions since version 4.0, allowing for
multiple operations to be grouped and executed atomically.67 On the other hand,
the performance cost of a distributed transaction is typically higher than that
of a single document (aggregate) write, so efficient schema design should not be
overlooked (see Chapter 4 for further experimental comparison).68

Scalability MongoDB is a Vertically and Horizontally scalable system. While
it is possible to scale up by increasing the processing power of a single node or
cluster, sharing load across multiple nodes is more common in NoSQL systems.69

Sharding Partitioning distributes data across multiple shards (replica sets -
see Replication) based on a shard key, either using “hashed” or “ranged” sharding
strategy, which determines the shard it belongs to. The mongos (or query routers),
interfaces for client applications, are then used to route queries to the appropriate
shards. The Config Servers store cluster metadata, which also contain ranges for
shard keys and the location of individual data.70

Replication Master-slave replication is achieved using replica sets, which
are groups of mongod (server) instances that maintain the same data set. The
primary node (master) accepts write operations, while the secondary nodes (slaves)
replicate the primary’s operations. Read requests can then be distributed across all
nodes (controlled by Read Preference setting). If the primary fails (writes become
unavailable), an election takes place to determine a new one out of all secondaries.
The Write Concern can be set to control the number of nodes that must acknowledge
a write operation before it becomes committed. Also, all primary’s operations are
recorded in the oplog (operations log) to ensure durability.71

Schema MongoDB is a schema-free system. Optional document schema valida-
tion can be enforced using JSON Schema [37] or using MQL’s query operators.72

Aggregates MongoDB is an aggregate-oriented system.

Entity types MongoDB supports Documents as entity types.
67https://www.mongodb.com/docs/manual/core/transactions/
68https://www.mongodb.com/docs/manual/core/write-operations-atomicity/
69https://www.mongodb.com/basics/scaling
70https://www.mongodb.com/docs/manual/sharding/
71https://www.mongodb.com/docs/manual/replication/
72https://www.mongodb.com/docs/manual/core/schema-validation/
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Relations As discussed in Consistency, relationships are modeled using intra-
document relations which are achieved by embedding documents within documents,
and inter-document relations that are achieved by referencing documents from
other documents.73

Absence of value MongoDB uses null to represent the absence of a value.

Query language MongoDB provides its Query API (further referenced as Mon-
goDB Query Language (MQL)), which serves as a foundation for all CRUD and
aggregation operations. The language is optimized to work with JSON [19, 18]
and JavaScript [38] in mind, though it offers many embeddings in a variety of
other programming languages (Java, Python, C#, etc.), including the MongoDB
Compass GUI tool and the MongoDB Shell (mongosh) (used in this thesis).74

The DDL operations start with the creation of a database using the mongosh’s
use command, which switches to the specified database or creates a new one
if it does not exist yet. Afterward, collections are created by any document
“insert” operation or can be explicitly created using the db.createCollection()
method, which also allows setting options for capped (insertion order preserved),
clustered collections, or custom validation. After, the .drop() method is used to
drop the collection. Collection update is not present, since the system does not
enforce schema like in RDBMS’s tables. Documents can be inserted using the
.insertOne() or .insertMany() methods, updated using the .updateOne() or
.updateMany() methods, and deleted using the .deleteOne() or .deleteMany()
methods. All documents must contain the id (indexed primary key) field of type
ObjectId, which is unique within the collection and is automatically generated if
not provided.75

The DML operations revolve around the db.collection.find({attr1:val1,
attr2:val2}) method, used to query the collection for documents based on pro-
vided query operators (criteria). Comparison, logical, element, evaluation, geospa-
tial, bitwise and array operators can be used.76 Extending find method with
.sort(), .limit(), .skip() methods can be used to sort, limit, and skip the
results. Furthermore, .count() return collection size and the .distinct() re-
turns an array of unique values for a field across the collection (these are simple
single-collection aggregation methods per se).

The db.collection.aggregate() method can be used to run complex aggre-
gation operations on the collection using the Aggregation Pipeline array of stages,

73https://www.mongodb.com/docs/manual/data-modeling/concepts/embedding-vs-ref
erences/

74https://www.mongodb.com/docs/mongodb-shell/
75https://www.mongodb.com/docs/manual/tutorial/insert-documents/
76https://www.mongodb.com/docs/manual/reference/operator/query/
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each stage transforming the documents in some way.77 Main stages are $match
and $project similar to find operation. Minimum, maximum, average, sum, and
count operations can be performed using the $group stage. Set operations like
$unionWith/$setUnion, $setIntersection and $setDifference stages are also
supported.

The most interesting of aggregation stages are the $lookup stage, used to
perform a left outer join between two collections (running slow multi-document
transactions where required), and the $graphLookup stage used to perform recursive
graph queries (or unlimited traversals with caveats) on multiple collections. Nesting
queries can also be expressed using lookups, since they allow running an additional
pipeline on the joined document.78 These lookups have been studied extensively in
Chapter 4 of this thesis, comparing them to the traditional denormalized joins.

MapReduce is also supported using the .mapReduce() method (deprecated since
5.0), though it is advised to use the aggregation pipelines now since they provide
better performance and usability.79

2.4 Summary
This section summarizes the analysis presented in the previous sections by comparing
the DBMS’s individual features, DDL, and DML of the selected systems.

Table 2.3 compares individual features of DBMSs in terms of Consistency,
Scalability, Sharding, Replication, Schema, Aggregates, Entity types, Relations,
and the used representation of an Absence of value. Table 2.4 shows the Data
Definition Language (DDL) features and Table 2.5 [41] shows the Data Manipulation
Language (DML) features of individual DBMSs.

77https://www.mongodb.com/docs/manual/aggregation/
78https://www.mongodb.com/docs/manual/reference/operator/aggregation/lookup/
79https://www.mongodb.com/docs/manual/core/map-reduce/
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Table 2.3: Comparison of individual features of Database Management Systems
(DBMS)

SQLite MySQL Neo4j ArangoDB Cassandra MongoDB

Consistency ACID ACID ACID BASE /
ACID
(OneShard)

BASE BASE /
ACID

Scalability ”V” V / H V / H V / H V / H V / H

Sharding N Y1 Y2 Y Y Y

Replication N Y Y Y Y Y

Schema full full free free free free

Aggregates ignorant ignorant ignorant oriented oriented oriented

Entity
types

Relation Relation Vertex Document Table Document

Relations Foreign Key Foreign Key Edge Reference /
Embedded
Doc; Edges
collection

Denormali-
zation +
UDTs

Reference /
Embedded
Doc

Absence of
value

metavalue metavalue -3 metavalue metavalue metavalue

1 MySQL NDB Cluster 2 Neo4j Enterprise 3 Absence of a property

Table 2.4: Data Definition Language (DDL) features of individual Database Man-
agement Systems

SQLite
(SQL)

MySQL
(SQL)

Neo4j
(Cypher)

ArangoDB
(AQL)

Cassandra
(CQL)

MongoDB
(MQL)

CREATE CREATE
TABLE

CREATE
TABLE

-1 db. create2 CREATE
TABLE /
TYPE

create-
Collection

ALTER ALTER
TABLE

ALTER
TABLE

-1 -1 ALTER
TABLE

-1

DROP DROP
TABLE

DROP
TABLE

-1 -1 DROP
TABLE

drop

INSERT INSERT
INTO

INSERT
INTO

CREATE /
MERGE

INSERT ..
INTO

INSERT insertOne,
insertMany,
save

UPDATE UPDATE UPDATE SET /
REMOVE

UPDATE ..
IN,
REPLACE ..
IN

UPDATE ..
SET

updateOne,
updateMany

DELETE DELETE
FROM

DELETE
FROM

DELETE REMOVE ..
IN

DELETE deleteOne,
deleteMany

1 Schema-free 2 Not part of AQL
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Table 2.5: Data Modeling Language (DML) features of individual Database Management Systems

SQLite
(SQL)

MySQL
(SQL)

Neo4j
(Cypher)

ArangoDB
(AQL)

Cassandra
(CQL)

MongoDB
(MQL)

Projection SELECT SELECT RETURN RETURN
{attr1:val1,attr2:val2}

SELECT $project,
find(attr1:val1,attr2:val2)

Source FROM FROM graph specification FOR doc IN docs FROM db.[collection name]
Selection WHERE WHERE WHERE FILTER WHERE $match, find()
Aggregation GROUP BY ...

HAVING
GROUP BY ...
HAVING

count, min, max, avg COLLECT ... INTO;
WINDOW

GROUP BY aggregation pipeline

Join JOIN JOIN - FOR a IN b
FOR c IN d
FILTER a.cId == c. id
RETURN

- $lookup

Graph Traversal JOIN 4 JOIN MATCH FOR v IN IN-
BOUND/OUTBOUND
...

- $graphLookup

Unlimited
Traversal

WITH RECURSIVE WITH RECURSIVE 1 FOR v IN 0..MAX - - ($graphLookup$ with
limitations)

Optional OUTER JOIN OUTER JOIN OPTIONAL MATCH ”outer joins” - -
Union UNION UNION UNION [42] - $unionWith, $setUnion

(aggregation)
Intersection INTERSECTION INTERSECTION apoc.coll.intersection [42] - $setIntersection

(aggregation)
Difference EXCEPT EXCEPT WHERE NOT [42] - $setDifference

(aggregation)
Sorting ORDER BY ORDER BY ORDER BY SORT ORDER BY sort
Skipping OFFSET OFFSET SKIP LIMIT offset, count - skip
Limitation LIMIT LIMIT LIMIT LIMIT LIMIT limit
Distinct DISTINCT DISTINCT DISTINCT RETURN DISTINCT DISTINCT db.docs.distinct( ... )
Aliasing AS AS AS LET doc = (...) AS ”alias” : ”$field”
Nesting (SELECT ...) (SELECT ...) CALL {MATCH . . . } FOR d IN docs FOR u

IN d ...
- -

MapReduce - (GROUP BY ...
HAVING)

- (GROUP BY ...
HAVING)

- 2 - (COLLECT ...
INTO)

GROUP BY .mapReduce3; aggregation
pipeline

1 everything is matched by default with no limitation 2 everything is aggregated by default 3 deprecated 4 maximum of 64 tables

32



3. ETL
ETL stands for Extract, Transform, Load. It is a process in which data is extracted
from various sources, transformed into a format that is suitable for analysis, and
then loaded into data storage, e.g. DBMS. In this chapter, we will discuss the
ETL process used to generate, process, and import data used in the subsequent
dynamic analysis in more detail (see Chapter 4). We will also discuss the tools and
technologies used in the process.

We will start by choosing the data domain and specific data models used for
testing in section 3.1. Afterward, we create an ER diagram for all tested data
models, either normalized (i.e. relational and graph data model) or denormalized
(i.e. columnar and document data model) based on chosen queries. For each of
the tested DBMSs we present an individual UML diagram, which will include all
entities, relationships, keys, attributes, and their data types.

After we know what we are doing, we will start by generating relational data
using a pseudo-random generator script in section 3.2. Next, in section 3.3, we will
use a series of processes, pipelines, and tools to transform data into their required
data models and database-specific forms. This will be the most complex step.

Lastly, in section 3.4, we will import the data using vendor-recommended
import tools or other open-source utilities. Afterward, in section 3.5, we will
include dataset sizes (entity/relationship counts) in tables 3.1, 3.2, 3.3, and 3.4, as
well as approximate database sizes on disk in table 3.5. We will also try to record
transformation and import times, and then present them in table 3.6.

3.1 Data Domain and Data Models
The data domain used in the ETL process is an e-commerce platform inspired by
the multimodel benchmark UniBench [11]. The platform is an e-shop consisting of
products, their vendors in certain industries, orders, customers, and a social network
part that includes people, that can write posts (”reviews”), can have interest in
some topics (tags), and can make relationships (friends) with other people. We
tried to achieve as many real-life e-commerce aspects and data as possible, and
that is why the model is so complex, encompassing most of the nowadays high
variety, velocity, and data volume requirements.

Figure 3.1 can be used to express most of the reality we try to model in the
databases. It is an extended relational ER diagram, that is a high-level logical data
model defining the relationships between entities and their attributes, but with
additional entities to represent 1:N or M:N relationships.

33



Figure 3.1: Relational ER diagram of an e-commerce platform.
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VENDOR_CONTACTS

long vendorId

long typeId

string value

INDUSTRY

string vendorId

string typeId

TYPE

long typeId

string value

PRODUCT

string productId

string asin

string title

decimal price

string brand

string imgUrl

ORDER_PRODUCTS

string orderId

string productId

int quantity

CUSTOMER

string customerId

string personId

ORDER

string orderId

uuid orderUuid

string customerId

PERSON

string personId

string firstName

string lastName

string gender

datetime birthday

string street

string city

string postalCode

string country

ORDER_CONTACTS

long orderId

long typeId

string value

POST

string postId

string personId

string imageFile

datetime creationDate

string locationIP

string browserUsed

string language

string content

long length

PERSON_TAGS

string personId

string tagId

PERSON_PERSON

long personId1

long personId2

POST_TAGS

string postId

string tagId

TAG

long tagId

string value

manufactured has

belongs_to

is_of

is_of

ordered

is

contains has

is_of

has_created
has_interest

knows

has_tag
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Next, we convert the relational schema into a graph schema in figure 3.2. Since
the graph data model is a superset of the relational data model, the conversion can
be quite straightforward. Entities are converted into nodes, and relationships are
converted into edges.

Figure 3.2: Graph ER diagram of an e-commerce platform.
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Subsequently, we will model the data in a Cassandra-specific columnar data
model and a (MongoDB-specific) document data model. Both, the columnar and
document models should be based on domain-specific and/or application-specific
queries, hence the name — Query-driven database architecture. So before we dig
into these models, we need to choose the queries that will be used to model the
data.

When choosing the queries, we need to consider all query ”types” presented in
table 2.5 to cover all possible data access patterns. We want to be able to compare
the expressive power of individual query languages, so we want to be as query
language agnostic as possible. We will use the queries presented in the following
list.
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List of Queries

1. Selection, Projection, Source (of data)
1.1 Non-Indexed Columns: Select vendor with the name ’Bauch - Dene-

sik’.
1.2 Non-Indexed Columns — Range Query: Select people born be-

tween 1980-01-01 and 1990-12-31.
1.3 Indexed Columns: Select vendor with the ID 24.
1.4 Indexed Columns — Range Query: Select people born between

1980-01-01 and 1990-12-31.
2. Aggregation

2.1 COUNT: Count the number of products per brand.
2.2 MAX: Find the most expensive product per brand.

3. Joins
3.1 Non-Indexed Columns: Join vendor and order contacts on the type

of contact.
3.2 Indexed Columns: Join all products with their orders.
3.3 Complex Join 1: Retrieve all order details.
3.4 Complex Join 2: Retrieve all people having more than 1 friend.

4. Unlimited Traversal
4.1 Neighborhood search: Find all direct and indirect relationships

between people up to a depth of 3.
4.2 Shortest path: Find the shortest path between two people.

5. Optional Traversal: Get a list of all people and their friend count (0 if
they have no friends).

6. Union: Get a list of contacts (email and phone) for both vendors and
customers.

7. Intersection: Find common tags between posts and people.
8. Difference: Find people who have not made any orders.
9. Sorting

9.1 Non-Indexed Columns: Sort products by brand.
9.2 Indexed Columns: Sort products by brand.

10. Distinct: Find unique combinations of product brands and the countries of
the vendors selling those products.

11. MapReduce: Find the number of orders per customer (only those who have
made at least 1 order).
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Now, that we have all the queries, we can start designing Cassandra columnar
data model based on their own documentation tutorial1. The resulting schema,
modeled using Chebotko notation2 [43], is shown in figure 3.3. How these column
families (tables) relate to the queries above can be seen in cassandra/query.cql
file in the attached project folder (appendix A.1). Notably, queries 4.1, 4.2 and
9.1 have been skipped in Cassandra testing, since they are either impossible or
extremely impractical to model with the columnar model (see the listing A.1 and
source code comments for more information).

Figure 3.3: (Cassandra-specific) columnar UML Diagram of an e-commerce plat-
form.

Order /* Order information */

asin: text
birthday: date
brand: text
city: text
firstname: text
gender: text
imageurl: text
lastname: text
personcountry: text
personid: bigint
postalcode: text
price: double
quantity: bigint
street: text
title: text
vendorcountry: text
vendorname: text

🔑orderid: bigint       K

🔑customerid: bigint       K

🔑productid: bigint       K

🔑vendorid: bigint       K

contact /* Contact information */

entityname: text
entitytype: text

🔑entityid: bigint     K

🔑contacttype: text     K

🔑contactvalue: text     K

orders_by_customer /* Orders by customer */

🔑customerid: bigint       K

🔑orderid: bigint       C↑

orders_by_person /* Orders by person */

firstname: text
lastname: text

🔑personid: bigint       K

🔑orderscreated: frozen<set<bigint>>       C↑

orders_by_product /* Orders by product */

asin: text
brand: text
imageurl: text
price: double
quantity: bigint
title: text

🔑productid: bigint K

🔑orderid: bigint C↑

person /* Person information */

birthday: date
city: text
country: text
firstname: text
gender: text
lastname: text
postalcode: text
street: text

🔑personid: bigint K

🔑friendcount: bigint C↑

person_by_birthday_indexed /* People by birthday - clustering index on birthday */

city: text
country: text
firstname: text
gender: text
lastname: text
postalcode: text
street: text

🔑personid: bigint       K

🔑birthday: date       C↑

product /* Product information */

asin: text
brand: text
imageurl: text
price: double
title: text

🔑productid: bigint      K

products_by_brand /* Products by brand */

asin: text
imageurl: text
price: double
title: text

🔑brand: text K

🔑productid: bigint C↑

tag /* Tag information */

value: text

🔑tagid: bigint        K

🔑interestedpeople: frozen<set<bigint>>     C↑
🔑poststagged: frozen<set<bigint>>        C↑

vendor /* Vendor information */

country: text
name: text

🔑vendorid: bigint    K

vendor_contacts_by_order_contact /* Order and Vendor contacts by Order Contact type */

🔑typeid: bigint      K

🔑orderid: bigint      K

🔑ordercontactvalue: text      K

🔑vendorid: bigint      C↑
🔑vendorcontactvalue: text      C↑

vendor_countries_by_product_brand /* Vendor countries by product brand */

🔑brand: text      K

🔑country: text      C↑

1https://cassandra.apache.org/doc/stable/cassandra/data_modeling/intro.html
2K represents Partition Key part, whereas C↑/C↓ represents Clustering Column sorted by

ASCending or DESCending order respectively
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Finally, we will create DB schema for MongoDB’s document data model, the
results of which are seen in the next figure 3.4.

Figure 3.4: (MongoDB-specific) document ER Diagram of an e-commerce platform.

Notably, during MongoDB data import and query testing we ran into certain
issues that needed to be addressed by slightly modifying the schema and respective
queries. The modifications were necessary to avoid migration errors in the MongoDB
Relational Migrator tool (section 3.3), which was used to import the data into
MongoDB. The modified queries – 3.1 and 3.3 and some special mentions can be
found in the listing A.2. The modified schema is shown in the figure 3.5.
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Figure 3.5: Modified MongoDB schema due to reasons mentioned in listing A.2.

For completeness, we also present the UML diagram of the MySQL database
with all entities, foreign keys and attributes in figure 3.6. SQLite differs from
MySQL only slightly in the data types (“affinity types” — see section 2.3.2), so we
will omit its UML diagram for brevity.
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Figure 3.6: Relational UML diagram of the MySQL database used in the ETL
process.
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3.2 Data Generation (Export)
The data generation process is the first step in the ETL process. Using Type-
Script [44] (i.e. JavaScript [38]) language, and Node.js (v20.8) [45] as its runtime,
we created a script that generates pseudo-random relational data. The script source
files are located in the common/data-generator NPM [46] package directory. The
documentation and instructions can also be found there. For detailed information
about the entire project structure, see the appendix A.1.

The run.sh <entity count> BASH script takes the base number of entities
to generate as a reference point (since some entities like Customers, Orders, and
Types can be of different count). The output folder then contains CSV file for each
table (or a single SQL dump from the old generator – see below).

An example of the Vendor entity generator function can be found in the
listing A.3. The script uses the Faker.js NPM module [47], which is a JavaScript
library that generates fake data for testing purposes. We also utilize the Scramjet
framework [48] for parallel data streaming and processing using pipelines and
Node.js Stream API3. The script is designed to be easily extendable and modifiable
for other data model transformations and use cases. To be able to reproduce the
datasets used in our experiments, we set a constant seed for the Faker’s random
number generator and subsequently, we call each generator function in a specific
sequential order. For that reason, parallelization is only used for the data streaming
and writing to the file system, not for the data generation itself.

The generator project was initially implemented in pure JavaScript, without any
parallel streaming or pipelines, handling and storing raw strings of SQL clauses into
main memory and thus quickly outgrowing server RAM memory limits, Node.js
maximum heap size and JavaScript internal string and array length limits. The
ScramJet framework was then used to solve these issues by streaming data from
the generator to the file system using a series of parallel pipes, thus reducing the
memory footprint and increasing the performance of the generator. Additionally,
we increased the Node.js default heap size to 16 GB with node --max-old-spac ⌋

e-size=16384 flag. Furthermore, CSV files replaced the previously used singular
SQL dump (for all tables).

We also decided to limit the maximum number of products to be equal to
the <entity count> parameter, as the increasing number of products caused
MongoDB to crash during the ETL process. For reasons of reproducibility, we
include the old version of the generator in the common/data-generator/data-g
enerator-old.js file, ran with the common/data-generator/run-old.sh script.
To showcase what was changed, we include a diff in the listing 3.1. This difference
is also reflected in the section 3.5 and subsequently in the execution times for

3https://nodejs.org/docs/latest-v20.x/api/stream.html
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queries 3.3 and 10 in the Chapter 4.
Also, we would like to mention that due to the little changes in the Vendor-

Products generator function, the generated data attributes are not consistent with
lower-record datasets (e.g. first 1k vendors in 256k generation are not the same as
the first 1k vendors in 512k generation in terms of attribute values). This is due to
the random nature of the Faker.js library and the seed setting. This only reflects in
query 1.1, where the ’Bauch - Denesik’ vendor name is not present in the 512k
dataset (and further), but is present in the 1k, 4k, 128k and 256k datasets. Since
the non-indexed property (vendor name) does not exist, the query will return an
empty result set.

Listing 3.1: Omitted part of code from the Vendor-Products generator.

1 // With probability of 0.7 assign some previous Products to Vendor
2 productsAssigned !== 0 && faker.helpers.maybe(() => {
3 let productIds = Array.from({ length: productsAssigned - 1 }, (value,

index) => index + 1);↪→

4 let productCountPerVendor = faker.number.int(
5 { min: 0, max: 5 < productsAssigned ? 5 : productsAssigned - 1 }
6 );
7 for (let j = 0; j < productCountPerVendor; j++) {
8 const randomIndex = faker.number.int({ min: 0, max: productIds.length - 1

});↪→

9 const chosenProductId = productIds[randomIndex];
10

11 vendorProducts.push(`(${vendorId}, ${chosenProductId})`);
12 const brandCountry = brandVendorsByProductId[chosenProductId];
13 countriesByBrand[brandCountry.brand].add(brandCountry.vendorCountry);
14

15 productIds.splice(randomIndex, 1);
16 }
17 }, { probability: 0.7 });

3.3 Data Transformation
The data transformation process is the most complex step of the ETL process. It
involves converting the generated relational data into the required data models for
each DBMS. The whole process is visualized in figure 3.7, with some detailed steps
described in appendix A.1.

For the sake of reproducibility, isolation, and simplicity, Docker (v25.0.3)4 and
4https://www.docker.com/
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Docker Compose (v2.24.5) have been utilized to create a containerized environment
for the whole ETL process and testing. The Docker Compose YAML specification
is declared in the docker-compose.yml file in the project root directory. The
file defines services for MySQL5, SQLite6, Neo4j7, ArangoDB8, Cassandra9, and
MongoDB10. Each service is based on an official Docker image distribution created
by their respective vendors and published on Docker Hub11 (except for SQLite,
which is published by the community). The database folders are mounted as volumes
to the containers, including the internal database files and configuration files. The
docker compose up command is used to jump-start the whole environment. The
file content is shown in the listing A.4.

5https://hub.docker.com/layers/library/mysql/8.1.0/images/sha256-c458b26f2f9
f9fe086ed75d1f8db8e2dde371801403f2c7da9be4fb228a2944a [Accessed: 29 April 2024]

6https://hub.docker.com/layers/keinos/sqlite3/3.42.0/images/sha256-cc7aa975b
234eb06ddccdc6d2debd1e401f1d1447c6e352aa5fbab519a36acb8 [Accessed: 29 April 2024]

7https://hub.docker.com/layers/library/neo4j/5.12.0/images/sha256-56182061dba
6477e38b38fab9228a8d8b3fd379bb54e9000924285aaa15f1ae2 [Accessed: 29 April 2024]

8https://hub.docker.com/layers/library/arangodb/3.11.3/images/sha256-085b45e
8c56d5d4114e409482694d40fc8d1678c6b5d98d774bab31193034d6a [Accessed: 29 April 2024]

9https://hub.docker.com/layers/library/cassandra/4.1.3/images/sha256-02e877c
29ebb8e11fbdc5b30c372769f7efa1cc3db4f9837218ccc881318ff86 [Accessed: 29 April 2024]

10https://hub.docker.com/layers/library/mongo/7.0.2/images/sha256-075e0577e29
89efee25f8e6cd615ae1ce84da1f8c79adc3557aaf253dbf7a5e0 [Accessed: 29 April 2024]

11https://hub.docker.com/
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Figure 3.7: ETL process flowchart.
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Before we start the individual transformations, we need to install and set up
the necessary tools and libraries. Some of them have to be installed and set up
manually, while others are already downloaded and set up in the project folder for
the reader’s convenience. CLI tools like mysql, sqlite3, cypher-shell, arangosh
cqlsh, and mongosh are already included in the used Docker images. That also
includes the mongoimport, mongodump and mongorestore utilities for MongoDB,
arangoimport for ArangoDB, and neo4j-admin for Neo4j (which can also be
installed separately, see below). The external tools and libraries that need to be
installed and set up are:

• Neo4j ETL Tool CLI (v1.6.0): A tool for extracting, transforming and
loading data from relational databases (i.e. MySQL) into Neo4j [49]. Config-
uration files (including mapping) are located in the neo4j/neo4j-etl-tool
directory.

• neo4j-admin (v5.12.0): A CLI utility for managing Neo4j databases, espe-
cially bulk loading Big Data. [50]. Provided in the Neo4j Docker image.

• MongoDB Relational Migrator (v1.5.0): An enterprise-grade tool for
migrating/syncing schema and relational data from e.g. MySQL to Mon-
goDB [51]. Mapping files are located in the mongodb/relational-migrator
directory.

• DataStax Bulk Loader (dsbulk) (v1.11.0): A CLI utility for loading,
counting (and unloading) large amounts of data into Cassandra [52].

These tools must be configured and initialized according to the official doc-
umentation. For convenience, most of the tools are already pre-configured by
running their respective scripts (see figure 3.7). Neo4j ETL Tool CLI is already
set up via neo4j/mysql_ecommerce_mapping.json by using the neo4j/neo4
j-etl-tool/import.sh script. On the other side, MongoDB Relational Mi-
grator has to be configured manually, by importing project file mongodb/rela
tional-migrator/ecommerce-mapping.relmig (for < 128k experiments) or
mongodb/ecommerce-modified-orders-types-persons.relmig (for ≥ 128k
experiments) into the Relational Migrator GUI when creating a new project.

The arrows and horizontal layers in figure 3.7 represent the data flow and the
(possibly parallel) transformation steps. Note, that some *.sh scripts have to be
manually modified before execution (e.g. setting up the data dump directory or
entity count). The comments in the scripts should guide the user further through
the process.

Notably, Neo4j ETL Tool and neo4j/neo4j-etl-tool/import.sh was
initially configured not to use neo4j-admin database import, but rather use the
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cypher:fromSQL method, which exports relational data to CSV in batches and
transactions (listing 3.2). This method turned out to be extremely slow, where
4k dataset entity volumes took more than 2 weeks to process. The neo4j-admin
method was established in 256k volume experiments.

Listing 3.2: Old and ineffective version of neo4j/neo4j-etl-tool/import.sh
setup.

./neo4j-etl-cli-1.6.0/bin/neo4j-etl export \
--mapping-file mysql_ecommerce_mapping.json \
--rdbms:password test \
--rdbms:user test \
--rdbms:url "jdbc:mysql://localhost:3306/ecommerce?autoReconnect=true&useSSL=false \

&useCursorFetch=true&allowPublicKeyRetrieval=true" \
--options-file import-tool-options.json \
--using cypher:fromSQL \
--unwind-batch-size 1000 \
--tx-batch-size 10000 \
--neo4j:url neo4j://localhost:7687 \
--neo4j:user neo4j \
--neo4j:password neo4j

3.4 Data Loading (Import)
The data loading process is the final step in the ETL process. In the case of
MongoDB and Neo4j, the MongoDB Relational Migrator and Neo4j ETL Tool +
neo4j-admin take care of the loading phase as well. For MySQL and SQLite we
use either the init.sh or csv init.sh script, depending on the output from the
data generation process (section 3.2). The data must be in the required directories
set in the script variables.

Notably, Cassandra’s cassandra/init.sh singular CQL dump import using
cqlsh -f ./queries/"$data_file".cql was initially used up to 256k entity vol-
umes. The CQL file contained single row INSERT INTO statements without any
bulk loading setup. Even the 4k dataset took more than 1 day to import, so we
switched to the dsbulk utility instead.

During the loading process (including the transformation and possibly extract
phase), we also measure the time it takes to import the data into the database.
The time is measured in seconds, and results are stored in the logs/ directory.
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3.5 ETL Statistics
In this section, we present the results of the ETL process. We tried to scale the
datasets to different sizes to see how the DBMSs behave with increasing data
volumes. Initially, we started with smaller datasets (1k, 4k, and 128k entities) to
build the ETL pipelines and tweak the tools, configurations and scripts to work
with the data. Afterward, we scaled the datasets to 256k, 512k and 1M24k entities
to see how the DBMSs behave with larger data volumes.

First, we present the generated datasets and their sizes. The dataset sizes for
each entity and relationship are presented in subsequent tables 3.1, 3.2, 3.3, and
3.4.

Next, we determine rough estimates of database file sizes on disk using var-
ious tools and methods. The results are presented in table 3.5. The sizes are
measured in megabytes and are rounded to the nearest integer. Notably, Neo4j
does not provide any direct way to measure the database size on disk, so we
used the du -hc /var/lib/neo4j/data/databases/neo4j/*store.db command
to measure the size of the whole database directory. Furthermore, Cassandra
provides the nodetool tablestats command to get a rough estimate of the entire
keyspace from the Space used (total) property.12 For MongoDB we use the
db.stats().totalSize database command (which should be more accurate).13

For SQLite, we use the sqlite3 analyzer utility (included in the project di-
rectory) with Bytes of user payload stored property.14 For MySQL we use
just a simple query found in mysql/queries/table_sizes_in_mb.sql uti-
lizing the information schema database.15 And lastly, for ArangoDB we use
coll.figures().documentsSize property summed for each collection invoked by
the arangodb/get_collection_sizes.sh script.16

In the end, we show approximate measurements of the import and/or processing
times for each DBMS in table 3.6. The times are measured in seconds and are
rounded to the nearest integer. Note, that the times may be variably inaccurate
due to mostly using BASH’s date command, which measures the time of the whole
process start and end. For MySQL and SQLite, we included integrity constraints
(foreign keys) in the schema definition so the SQL dump import using init.sh can
be influenced by integrity constraint checking. On the other hand, the csv_init.sh

12https://docs.datastax.com/en/cassandra-oss/3.x/cassandra/tools/toolsTablesta
ts.html

13https://www.mongodb.com/docs/manual/reference/command/dbStats/
14https://www.sqlite.org/sqlanalyze.html
15https://dev.mysql.com/doc/mysql-infoschema-excerpt/8.0/en/information-schem

a-introduction.html
16https://docs.arangodb.com/3.11/develop/javascript-api/@arangodb/collection-o

bject/#collectionfiguresdetails
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explicitly turns it off. Other systems do not include any schema constraints and
they are not checked during import or are automatically disabled by the ETL tools
used. The testing environment is discussed in the section 4.1.
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Table 3.1: Dataset sizes for SQLite and MySQL.

Dataset / Table Customer1 Industry1 Order1 Person Post Product Tag Type Vendor

1k 774 1499 1568 1000 1000 1000 1000 13 1000
4k 2071 5978 4097 4000 4000 4000 4000 13 4000
128k 90031 191869 180319 128000 128000 128000 128000 13 128000
256k 170627 383829 341365 256000 256000 256000 256000 13 256000
512k 371187 1023699 742467 512000 512000 512000 512000 13 512000
1M24k 953371 2047593 1905923 1024000 1024000 1024000 1024000 13 1024000
Dataset / Table Order Contacts2 Order Products2 Person Person2 Person Tags2 Post Tags2 Vendor Contacts2 Vendor Products2

1k 4704 4777 5140 4790 5026 2037 2719
4k 12291 12212 20114 20192 19699 8005 11212
128k 540957 541120 641403 639129 640300 256090 352397
256k 1024095 1025494 1279600 1281585 1279277 511961 702504
512k 2227401 2225484 2561390 2557056 2562686 1023509 512000
1M24k 5717769 5717344 5125904 5113446 5118511 2048689 1024000
1 The entity count is higher/lower than the base entity count to reflect a real-world ecommerce platform (e.g. Orders are the most important in an e-shop, so we have more, etc.) (section 3.1)
2 The relationship count is higher/lower than the base entity count to reflect real-world M:N relationships between entities in an e-commerce platform (section 3.1)

Table 3.2: Dataset sizes for Cassandra.

Dataset / Table Products by brand Vendor countries by product brand Orders by customer Vendor contacts by order contact Product Vendor Person

1k 1000 1949 1568 3194016 1000 1000 1000
4k 4000 8070 4097 0 4000 4000 4000
128k 128000 241167 180319 0 128000 128000 128000
256k 256000 70295 341365 0 256000 256000 256000
512k 512000 131735 742467 0 512000 512000 512000
1M24k 1024000 234906 1905923 0 1024000 1024000 1024000
Dataset / Table Tag Orders by person Person by birthday indexed Orders by product Contact Order

1k 1000 1000 1000 4777 6741 12950
4k 4000 4000 4000 12212 20296 34140
128k 128000 128000 128000 541120 797047 1487271
256k 249404 256000 256000 1025494 1535754 1025494
512k 512000 512000 512000 2225484 3250910 2225484
1M24k 1024000 1024000 1024000 5717344 7766458 5717344
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Table 3.3: Dataset sizes for Neo4j and ArangoDB.

Dataset / Nodes Customer / customers Product / products Post / posts Vendor / vendors

1k 774 1000 1000 1000
4k 2071 4000 4000 4000
128k 90031 128000 128000 128000
256k 170627 256000 256000 256000
512k 371187 512000 512000 512000
1M24k 953371 1024000 1024000 1024000

Dataset / Nodes Type / types Tag / tags Order / orders Person / persons

1k 13 1000 1568 1000
4k 13 4000 4097 4000
128k 13 128000 180319 128000
256k 13 256000 341365 256000
512k 13 512000 742467 512000
1M24k 13 1024000 1905923 1024000

Dataset / Edges
IS PERSON /
isPerson

CREATED BY /
createdBy

ORDERED BY /
orderedBy

HAS TAG /
hasTag

HAS INTEREST /
hasInterest

1k 774 1000 1568 5026 4790
4k 2071 4000 4097 19699 20192
128k 90031 128000 180319 640300 639129
256k 170627 256000 341365 1279277 1281585
512k 371187 512000 742467 2562686 2557056
1M24k 953371 1024000 1905923 5118511 5113446

Dataset / Edges
KNOWS /
knows

CONTAINS PRODUCTS /
containsProducts

MANUFACTURED BY /
manufacturedBy

CONTACT TYPE /
contactType

INDUSTRY TYPE /
industryType

1k 5140 4777 2719 6741 1499
4k 20114 12212 11212 20296 5978
128k 641403 541120 352397 797047 191869
256k 1279600 1025494 702504 1536056 383829
512k 2561390 2225484 512000 3250910 1023699
1M24k 5125904 5717344 1024000 7766458 2047593
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Table 3.4: Dataset sizes for MongoDB.

Dataset / Collection orders persons products tags types

1k 1568 1000 1000 1000 13
4k 4097 4000 4000 4000 13
128k 180319 128000 128000 128000 13
256k 341365 256000 256000 256000 13
512k 742467 512000 512000 512000 13
1M24k 1905923 1024000 1024000 1024000 13

Table 3.5: Approximate database sizes on disk measured in MBs.

DB Size [MB] SQLite1 MySQL2 Neo4j3 ArangoDB4 Cassandra5 MongoDB6

1000 1 2 4 2 5 2
4000 5 10 14 19 13 7
128000 167 441 494 229 502 216
256000 333 850 923 631 620 285
512000 451 1398 1638 831 1262 861
1024000 968 3005 3584 1774 3107 1867
1 sqlite3 analyzer – ”Bytes of user payload stored” 2 mysql/queries/table sizes in mb.sql
3 df -hs, includes indices, extremely inaccurate 4 coll.figures().documentsSize
5 cassandra/table stats.sh – ”Space used (total)” 6 db.stats().totalSize, compressed, docs + indices

Table 3.6: Approximate import times for individual load or processing stages
measured in seconds.

Import
time [s]

SQLite MySQL Neo4j
ETL
Tool

neo4j-
admin
database
import

ArangoDB Cassandra MongoDB
Relational
Migrator

1k 1 1 1 5 3 106 1 11
4k 1 2 2 5 5 62 60
128k 14 60 19 13 65 144 300
256k 35 126 42 17 98 222 600
512k 50 290 86 23 151 234 1500
1M24k 115 610 166 43 300 454 4860

1 The time includes the import of massive Vendor_contacts_by_order_contact table, which is not present in larger
datasets.
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4. Dynamic Analysis
In this chapter, we will dynamically analyze the performance of the selected DBMSs
described in section 2.1. We will run a series of experiments by testing queries
chosen in section 3.1, modeled using underlying data models and individual query
languages.

Firstly, we will describe the testing environment in section 4.1. Then, we will
discuss the methodology and statistics we will use to demonstrate findings in
section 4.2. Subsequently, we will measure the execution times of these queries,
and present the results in the form of tables 4.1 and 4.2, and in the form of charts
4.3, 4.4, 4.5, and 4.6. We will also analyze the results, draw conclusions and present
recommendations based on the performance of the DBMSs in section 4.3.

4.1 Testing Environment
The experiments will be performed on a virtual machine running on the VMWare1

infrastructure with the following hardware specifications:

• OS: Ubuntu 20.04 LTS

• CPU: Intel(R) Xeon(R) Gold 6348 CPU @ 2.60GHz (8 core)

• RAM: 32 GB

• Storage: 80 GB SSD

As already mentioned in section 3.3, we are using Docker and Docker Compose
to set up the testing environment. The docker-compose.yml attached in listing A.4
shows the definition of the used services. We are using the vendor-recommended
official Docker images found on the Docker Hub (SQLite being an exception). The
database configuration was kept as close to the default as possible, with some
exceptions where we had to adjust the configuration to fit the requirements of
the ETL process or queries. The configuration was either set as environment
variables or as mounted configuration files (kept in <dbms>/data directories). For
all systems, we are using default single-node deployments.

1https://www.vmware.com/
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4.2 Methodology
For each DBMS we modeled our chosen queries in the respective query language
using the knowledge we gathered in the chapter 2. The queries were created in a
way to show the capabilities, expressive power and efficiency of the query languages.
We tried to cover most of the DML features, query types, access patterns and
clauses/expressions presented in table 2.5.

Across DBMSs, the queries were designed to be as similar as possible to ensure
a fair comparison, while still taking into account their unique features. Logically,
the data retrieved should be the same, though the format of the output may differ
(e.g. MongoDB’s embedded document vs SQL’s joined tables). The queries were
designed to be as simple as possible, utilizing as few features as possible (or only
the necessary) and trying to use vendor-recommended query modeling practices
found in the documentation.

If a query uses additional index or other optimization hints, it is explicitly
stated in the query description (comment). Most of the systems enforce the use of
primary keys, i.e. the data is indexed by default. MySQL and SQLite use classic
primary keys on columns. Notably, Neo4j uses auto-generated LOOKUP INDEX2 for
each node/relationship label, whereas ArangoDB automatically indexes each id,
key fields for all documents and also from, to fields for edges.3 To conclude,

MongoDB uses the id4 field as a collection’s primary key and Cassandra has its
primary key concept defined in the schema (see section 2.3.5). For complete schema
information, check section 3.1.

For query testing, we disabled query caching and/or cleared the cache before
each query execution. MySQL has it off by default.5 SQLite doesn’t support the
concept of query caching, only page caching for the whole database.6 Neo4j has it
off by default, but to ensure its absence, we added certain environment variables7

into the docker-compose.yml file. ArangoDB Docker image has it off by default,
but the cache can also be explicitly disabled.8 Cassandra allows caching partition
keys and rows differently9, so we disabled both directly in the schema definition.

2https://neo4j.com/docs/cypher-manual/current/indexes/search-performance-ind
exes/managing-indexes/#create-lookup-index

3https://docs.arangodb.com/3.11/index-and-search/indexing/basics
4https://www.mongodb.com/docs/manual/indexes/#default-index
5https://dev.mysql.com/doc/refman/5.7/en/query-cache-configuration.html
6https://www.sqlite.org/pragma.html#pragma_cache_size
7https://neo4j.com/docs/cypher-manual/current/query-caches/
8https://docs.arangodb.com/3.11/aql/execution-and-performance/caching-query

-results/
9https://docs.datastax.com/en/cassandra-oss/3.x/cassandra/operations/opsSetCa

ching.html

53

https://neo4j.com/docs/cypher-manual/current/indexes/search-performance-indexes/managing-indexes/#create-lookup-index
https://neo4j.com/docs/cypher-manual/current/indexes/search-performance-indexes/managing-indexes/#create-lookup-index
https://docs.arangodb.com/3.11/index-and-search/indexing/basics
https://www.mongodb.com/docs/manual/indexes/#default-index
https://dev.mysql.com/doc/refman/5.7/en/query-cache-configuration.html
https://www.sqlite.org/pragma.html#pragma_cache_size
https://neo4j.com/docs/cypher-manual/current/query-caches/
https://docs.arangodb.com/3.11/aql/execution-and-performance/caching-query-results/
https://docs.arangodb.com/3.11/aql/execution-and-performance/caching-query-results/
https://docs.datastax.com/en/cassandra-oss/3.x/cassandra/operations/opsSetCaching.html
https://docs.datastax.com/en/cassandra-oss/3.x/cassandra/operations/opsSetCaching.html


Lastly, MongoDB supports only query plan caching10, so to be sure nothing is
cached, we used .clear() on the query plan cache before each execution.

Furthermore, we set a specific timeout threshold to 300 seconds (5 minutes) for
each query execution. If a query hit the threshold or Did Not Finish (DNF) in
general (an exception occurred), the query was terminated, and the execution time
was set to 300 seconds. Some DBMSs have a specific setting on how to handle
timeouts but for those that do not, custom methods had to be implemented. For
instance, sqlite3 had to be called with external timeout 300 shell command. For
MongoDB, simple queries utilize the .maxTimeMS() method, but for aggregation
pipelines we had to use setTimeout() function in JavaScript.

To eliminate bias and ensure accuracy, we ran each query 20 times. Some
extremes (i.e. minimum and maximum) for each testing cycle were discarded, and
the average was calculated. The processing and filtering script can be found in
common/filter_results.ipynb as a Jupyter notebook11 using Pandas12 and
NumPy13 packages. The results are presented in the subsequent section.

4.3 Results
In this section, we will present the results of the experiments. We will show
the measured statistics of the queries executed on the selected DBMSs. The
visualization is done in the form of tables 4.1 and 4.2, and in the form of charts
4.3, 4.4, 4.5, and 4.6 to provide a clear comparison of the average execution times
in seconds and to show which DBMS performed better for each query type (lower
execution time is better). Note that, the query names are hyphened instead of
dot-separated.

10https://www.mongodb.com/docs/manual/reference/method/js-plan-cache/
11https://jupyter.org/
12https://pandas.pydata.org/
13https://numpy.org/
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Figure 4.1: Table visualization of the query execution times for record volumes 1k, 4k and 128k.
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Figure 4.2: Table visualization of the query execution times for record volumes 256k, 512k and 1M24k.
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Figure 4.3: Logarithmically scaled visualization of the average execution time per
record volume for queries 1.1 — 2.2.
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Figure 4.4: Logarithmically scaled visualization of the average execution time per
record volume for queries 3-1 — 4-2
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Figure 4.5: Logarithmically scaled visualization of the average execution time per
record volume for queries 5 — 9-2
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Figure 4.6: Logarithmically scaled visualization of the average execution time per
record volume for queries 10 and 11

4.4 Summary and Recommendations
In this section, we will give some insights into the experimental results in section 4.3
and conclude what performs better in which context (data access pattern). For
each query as in section 3.1, we will provide a brief summary of the results, the
best and worst performing DBMS for that query and the possible reasons behind
such performance. At the end in section 4.4.1, we will provide recommendations
on how to choose the best DBMS for a given scenario.

1. Selection, Projection, Source (of data) (figure 4.3)

1.1 Non-Indexed Columns: Select vendor with the name ’Bauch - Denesik’.
Best: SQLite, (ArangoDB, MongoDB, Neo4j, MySQL) — This one does

not have a clear winner.
Worst: Cassandra — Since we must use ALLOW FILTERING for non-indexed

columns, Cassandra performed a full table scan. Note that, after 256k
experiments we modified the generator slightly and the ’Bauch - Denesik’
vendor name was not present in the dataset. Even so, Cassandra had to
scan the entire cluster for the non-indexed column and thus performed
the worst.

1.2 Non-Indexed Columns — Range Query: Select people born between
1980-01-01 and 1990-12-31.
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Best: Cassandra — Cassandra is optimized for range queries, but the use
of ALLOW FILTERING could still be a bottleneck if the range is too large.

Worst: Inconclusive
1.3 Indexed Columns: Select vendor with the ID 24.

Best: All
Worst: Inconclusive — Neo4j performed the worst, but the difference from

other systems was not significant.
Comments: Since the ID is indexed in all systems, the performance was

similar across all systems. MongoDB profiling seems to always output 0
seconds for this query, but the real execution time could be comparable
to other systems.

1.4 Indexed Columns — Range Query: Select people born between 1980-
01-01 and 1990-12-31.
Best: Cassandra — As already said, Cassandra is heavily optimized for

range queries. However, if the dataset is small, the performance is similar
to other systems.

Worst: Inconclusive

2. Aggregation (figure 4.3)

2.1 COUNT: Count the number of products per brand.
Best: All, (Cassandra)
Worst: None

2.2 MAX: Find the most expensive product per brand.
Best: All, (Cassandra)
Worst: None

3. Joins (figure 4.4)

3.1 Non-Indexed Columns: Join vendor and order contacts on the type of
contact.
Best: MySQL — The performance difference was considerable, as MySQL

seems to be optimized for large cross-product joins.
Worst: ArangoDB, Neo4j — Finding cross-products in graph databases

seems not to be efficient even with small datasets.
Comments: Note that this query is the most data volume intensive in

the whole tested set. To put it into perspective, the 4k dataset included
more than 6 GB of table data to be imported into Cassandra, and since
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it became unmanageable for us to store such data, we dropped it from
the Cassandra testing even though it was the best performer in 1k testing
by a large margin.
Interestingly, the performance of SQLite was not as expected. Seemingly,
SQLite is not optimized for heavy joins between non-indexed columns.
To conclude, more experiments are needed with higher timeout thresholds
to get a clearer picture of the performance.

3.2 Indexed Columns: Join all products with their orders.
Best: Cassandra, MongoDB — Both systems performed well here using

purely denormalized schemas. Cassandra seems to handle bigger data
better and, comparatively, MongoDB may be better at handling lower
data volumes.

Worst: Neo4j, ArangoDB — Both compared, Neo4j is worse in higher data
volumes than ArangoDB since it timeouts in 1M24k testing. Both use
similar indexes on Node/Edge labels or document fields, the queries are
similar and in their simplest form, with notable differences being Neo4j’s
pure graph data model and ArangoDB’s document-centered graph data
model.

Comments: It’s important to mention that having a denormalized schema
for this type of query consumes a lot of disk space, but it’s a trade-off
for performance. On the other hand, MySQL and SQLite performed
reasonably well with much smaller memory footprints.

3.3 Complex Join 1: Retrieve all order details.
Best: Cassandra
Worst: SQLite — As previously said, SQLite performs poorly when it

comes to having to join multiple tables.
Comments: This query requires the most direct joins out of all queries

tested. Special mention goes to MySQL, which performed well in this
query, even though it was not the best performer. MySQL’s performance
was consistent across all join queries (3.1 – 3.4). Compared to Cassandra’s
columnar model, storing wide tables of this kind may not be ideal in most
situations, so choosing between the two would depend on the use case
and domain. Also, ArangoDB seems to be consistent in joins as well, but
the performance is worse than MySQL’s overall.
Note that, since we modified MongoDB’s schema to include less infor-
mation in the orders collection (figure 3.5), we needed to perform more
$lookup queries, which influenced performance considerably. Also, since
even in the prior schema (figure 3.4) we used one $lookup query, the
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performance degraded a bit compared to Cassandra, so this has to be
taken into account as well when comparing the two.

3.4 Complex Join 2: Retrieve all people having more than 1 friend.
Best: Cassandra, SQLite
Worst: ArangoDB — The comparison between ArangoDB and Neo4j is

interesting, as both graph queries are logically the same. The multi-model
approach of ArangoDB may be the reason for the performance difference
in this case.

Comments: Note that Cassandra doesn’t include the full scope of infor-
mation in the schema (the exact friend IDs), only the count of friends.
MongoDB, on the contrary, includes an array – knowsPeople with the
exact friend IDs and uses summation to get the count and self $lookup
to get the person details. This difference in expressive power has to be
taken into consideration. That’s also why we include SQLite as another
best performer alongside Cassandra.
Also, note that SQLite seems to be better at handling one-join queries
better than MySQL even in higher data volumes.

4. Unlimited Traversal (figure 4.4)

4.1 Neighborhood search: Find all direct and indirect relationships between
people up to a depth of 3.
Best: SQLite, Neo4j — Inconclusive
Worst: ArangoDB, (MySQL) — Inconclusive
Comments: Note that MongoDB should not be considered for comparison

as it doesn’t include the full result set and should be seen only as a
demonstration of MongoDB’s neighborhood (graph) search capabilities.
Interestingly, SQLite performed quite well for a graph traversal query via
the use of recursive common table expressions, but it may become a bot-
tleneck if the joined table count increases to more than 64 (section 2.3.2).
Comparing Neo4j and ArangoDB as the only GDBMSs tested, Neo4j
performed unexpectedly better in this graph traversal query.

4.2 Shortest path: Find the shortest path between two people.
Best: ArangoDB, Neo4j — Both have direct methods/functions for finding

the shortest path and are highly optimized for it.
Worst: SQLite, MySQL — The recursive queries are terrible at handling

graph traversals, especially at higher depths. Even the 1k dataset was
too much for both to handle.
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Comments: Note that MongoDB should not be considered here, as it
doesn’t output one shortest path but only performs breadth-first search
till it finds the target person (listing A.2). Also, Cassandra doesn’t support
graph traversals, so it’s not included in this comparison, but it has to be
said that it would require a lot of work and data duplication to achieve
the same result (listing A.1).

5. Optional Traversal: Get a list of all people and their friend count (0 if they
have no friends). (figure 4.5)

Best: Cassandra, MongoDB — Both systems performed well, even with higher
data volumes. Again, in a lower data count, Cassandra is comparable to all
other systems.

Worst: MySQL, Neo4j
Comments: Interestingly, ArangoDB outperforms Neo4j here by some non-

negligible margin. ArangoDB may be better suited for querying on possibly
non-existent relationships.
SQLite seems to perform relatively consistently across all volumes.

6. Union: Get a list of contacts (email and phone) for both vendors and cus-
tomers. (figure 4.5)

Best: Cassandra, SQLite — SQLite performed quite well even when having a
normalized schema.

Worst: Neo4j — Unexpected timeout in 1M24k testing even with multiple
reruns.

Comments: Interestingly, MySQL performance was unexpectedly poor relative
to SQLite and overall. The SQLite query optimizer might be better at handling
union queries, or lower amount of joins as seen previously. ArangoDB seems
to have a very similar performance to MySQL.
Special mention goes to MongoDB which handled this type of query surpris-
ingly well, even by using an inter-collection join/union operation between
vendors and orders, which could have deteriorated performance.

7. Intersection: Find common tags between posts and people. (figure 4.5)

Best: Cassandra, MongoDB — Again, lower data volume seems to be better
for MongoDB (and other systems).

Worst: Neo4j — Neo4j perform very poorly in ≥4k datasets. The use of
apoc.coll.intersection could be a bottleneck.
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Comments: SQLite seems to again outperform MySQL in another set operation
utilizing only 2 independent joins for this query. ArangoDB’s performance in
intersection queries is worse than that of relational databases but better than
Neo4j’s.

8. Difference: Find people who have not made any orders. (figure 4.5)

Best: Cassandra, MongoDB, SQLite
Worst: ArangoDB, MySQL
Comments: There seems to be a decrease in MySQL’s performance in the

1M24k dataset, but still the difference is not as significant. More data is
needed to make a clear distinction.

8.1 MongoDB’s $lookup Special Mention: Comparing to MongoDB’s Query
8.2 (shown in column 8 of figure 4.1 or 4.2) which doesn’t use $lookup, we
can notice the sheer difference in performance where even the 128k testing
timed out. Interestingly, a smaller 4k dataset is still close to 0 seconds.

9. Sorting (figure 4.5)

9.1 Non-Indexed Columns: Sort products by brand.
Best: All (except Cassandra) — All systems perform remarkably well in

sorting by non-indexed columns.
Worst: None
Comments: It is worth mentioning that since Cassandra doesn’t support

sorting by non-clustering columns, and thus such a query pattern is
impossible to execute in Cassandra.

9.2 Indexed Columns: Sort products by brand.
Best: Cassandra, All — All perform well, with Cassandra having an almost

unnoticeable performance advantage.
Worst: None

10. Distinct: Find unique combinations of product brands and the countries of the
vendors selling those products. (figure 4.6)

Best: Cassandra, (all except ArangoDB)
Worst: ArangoDB
Comments: It is hard to say which one performed the worst in higher volumes,

as we had to limit the amount of Vendor-Products relationships (section 3.2)
resulting in an execution time drop across all systems as seen in the figure 4.6.
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11. MapReduce: Find the number of orders per customer (only those who have
made at least 1 order). (figure 4.6)

Best: Cassandra
Worst: Inconclusive
Comments: This query could be considered as another variant of aggregation

and so the measured execution times are almost the same as in 2.1 and 2.2.
The difference is only in the utilized join operation, and so we cannot deem
Cassandra as the best performer here because of the lack of join operation
and higher volume of denormalized data required. Interestingly, MySQL’s
performance has degraded again in the 1M24k testing just like in Query 8.
Here it is worth mentioning that we wanted to test the possible MapReduce
applications in all systems, so the best performers should be the ones that
can be easily scaled horizontally to support such operations, i.e. Cassandra
and MongoDB.

4.4.1 Recommendations
Based on the results of the experiments, we can provide some recommendations
on how to choose the best DBMS for a given scenario. The recommendations are
based on the performance of the DBMSs in the experiments and the static analysis
presented in chapter 2.

Selection, Projection, Source (of data) Query category 1 includes the most
fundamental query patterns in any database system. All databases perform well in
this category. Out of all, Cassandra is the best performer in range queries, whether
they are using clustering or non-clustering columns, using the same number of
records in an aggregate as in all tested DBMSs and thus winning both in query
performance and disk space requirements.

For querying on exact values, it depends on whether we have a prior index set
up or not and so the recommended system depends on the schema. Overall, all
systems are recommended for this query pattern, but when we don’t know the
exact schema, or we are not sure how the data will be queried, aggregate-ignorant
systems like SQLite, MySQL, Neo4j, or multi-model DB like ArangoDB should be
preferred (and that applies to all query patterns as well).

Aggregations Simple one-entity aggregations in Query category 2 are handled
well by all systems. All tested aggregations seem to be consistent in execution
times across all tested systems so distinguishing the best and worst performers
here would not be fair.
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Notably, Cassandra supports GROUP BY operation the same as other systems
with the same amount of data in the used aggregate and still holds near zero
execution times even in higher data volumes, for which reason Cassandra could be
deemed as the best recommendation for this query pattern. However, all systems
are recommended for aggregations, and when the aggregations are combined with
other operations, such as joins, other systems may be more suitable.

Possibly special case of aggregation in query 11 could be considered as a
MapReduce operation, and so the best performers should be the ones that scale
for the use case as already mentioned, i.e. Cassandra and MongoDB.

Joins When the business strategy requires joining and connecting many entities
as in Query category 3, the decision of the best DBMS falls between the amount of
data stored and the complexity of the queries. For example, query 3.1 places an
exponential load on the system, as the record count increases the cross-product
count increases exponentially. This amount of data has to be accounted for when
importing into e.g. Cassandra and that is why we don’t recommend denormalized
systems for querying cross-products but rather normalized DBMS system, i.e.
MySQL.

That accounts for queries 3.2 and 3.3 as well, where the amount of data stored
and joined is the most important decision factor. When disk space is not an issue,
Cassandra and MongoDB are the best candidates for query pattern 3.2. On the
contrary, when the disk space is limited, SQLite is the best candidate for small
aggregate joins, and MySQL for more complex joins (query 3.3). Note that the prac-
tice of querying all Order details (joining more than 5 other entities/relationships)
at once in Cassandra might be only common in situations requiring a lot of data to
be stored and queried at once (dashboard, reporting, backups, administration, etc.)
and since it will not be utilized often in the application, it’s not the best suitable
system for pattern 3.3 in production use cases.

For pattern 3.4, the best candidate could be SQLite as it scales well, outperforms
mostly all systems, supports joins and with SQL has bigger expressive power than
Cassandra and its CQL (section 2.3.5).

Optional traversal, or ”outer join” query 5 don’t change the previous recommen-
dations much as they are quite similar to how they process data. Notably, this query
provides an interesting opportunity to showcase how one query can be understood
and logically modeled differently across systems to speed up performance and utilize
less disk space. To put into perspective, in Cassandra, friendCount property in
Person table removes the need for another Person Person table as in e.g. MySQL,
but conversely, puts higher pressure on the application layer to count friends and/or
handle more complex operations. For that reason, aggregate-ignorant system like
SQLite, or multi-model system like ArangoDB may be more suitable for this exact
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query pattern.

Unlimited Traversal (graph traversals) The queries in the category 4 are
typical patterns for querying vastly interconnected data. Both tested GDBMSs –
Neo4j and ArangoDB (graph DB) – are best suited for the use cases. Notably, 4.1’s
neighborhood search was an interesting example where Neo4j and SQLite might
be better utilized compared to ArangoDB, but more research has to be done to
confirm SQLite’s performance in this type of access pattern.

Set (Union, Intersection, Difference) and Distinct Operations The set
operations in queries 6, 7, and 8 are typical cases for querying data in a set-like
manner. As in the previous categories, data aggregation volume plays a significant
role in the decision process between Cassandra/MongoDB and others.

In union query 6 we should take into account how often we merge two sources
(query results) and if it’s really necessary to have them in one table. SQLite could
be the best if we don’t do it often, Cassandra if we do, and MongoDB if we want
to do both (though more research has to be done to see how $unionWith scales).

Next, in intersection query 7, by comparing Cassandra/MongoDB to other
systems, we have a similar situation as in query 5, where we need to process
possibly a lot of data in real-time in the application layer to create arrays/sets
used for intersection. The query could be modeled differently (maybe without
arrays), but with this approach, if we don’t want to strain our server with real-time
synchronization, one can also resort to SQLite, which scales better than MySQL.

To proceed, finding a difference as in query 8, one can choose any system,
but with Cassandra, MongoDB, and SQLite being possible favorites. Again, joins
utilized in relational databases, are replaced by an array in Cassandra or one
attribute in MongoDB, which also puts another requirement on the server to handle
synchronization and denormalization.

Lastly, to find distinct values in the result set as in query 10, we can choose
any system, and it would be a good choice. Especially, if inserting a row into
Cassandra we don’t need to think about any logic in the application layer, since
by using PRIMARY KEY ((brand), country) any duplicates are automatically
upserted (discarded in this case). Even then, SQLite could be the best choice for
this query pattern based on the performance in the experiments.

Sorting To decide which system is the best in terms of sorting as in query 9,
a decision has to be made during schema definition. If we are okay to set up a
clustering column in Cassandra, it is the best system for sorting. If we are not sure
how the data will be queried, Cassandra cannot be used if not set up properly, and
all other systems are recommended.
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Conclusion
With the onset of the 21st century, the variability, velocity, and volume of data
have increased exponentially. This has led to the development of new Big Data
organization and management solutions, such as the NoSQL databases. Since that
time, the NoSQL database market has grown to include many types of databases
and vendors offering various solutions for different use cases. For this reason, DBMS
benchmarking is a crucial factor in the decision-making process.

In this thesis, we have concentrated on the comparison of MySQL, SQLite, Neo4j,
ArangoDB, Cassandra, and MongoDB databases. We have analyzed the individual
capabilities of these databases and later performed experiments to compare their
performance. We conclude, that MySQL, SQLite, and ArangoDB have the most
expressive query languages, but they are not as performant as Cassandra and
MongoDB when it comes to querying large datasets. Neo4j and ArangoDB are
the best choices for traversing interconnected data, though ArangoDB is more
expressive and capable of handling more data models than Neo4j. ArangoDB
seems to outperform Neo4j in many cases, but more research has to be done to
find out why. Cassandra and MongoDB are the clear winners in performance and
horizontal scalability, but Cassandra outperforms MongoDB in terms of speed,
while MongoDB is more expressive and offers more features.

When the data count increases, one has to decide between the possibility of
joins and flexibility, or targetted data redundancy and speed. SQLite scales the
best for a few joins, while MySQL is the only choice for a high number of joins and
offers more complex features. SQLite outperforms MySQL in terms of speed, but
more experiments have to be done to confirm this. On the other hand, Cassandra
and MongoDB require more disk space to scale and possibly more data processing
in the application layer, but the speed is unmatched. Cassandra wins in range
queries and simple aggregations but loses when we need to scan the entire cluster
for a single record or to sort without index as opposed to, e.g. MongoDB.

When unknown how the data will be structured or queried, one should use an
aggregate-ignorant database like MySQL, SQLite, Neo4j or opt for a more versatile
multi-model system like ArangoDB. Conversely, aggregate-oriented databases like
Cassandra and MongoDB require more planning and aggregate design and then
monitoring of how the data is queried to adapt the schema to the queries and future
requirements, but the speed benefits may outweigh the additional complexity.

Future work might follow up on the surprising inconsistencies in the results,
especially in the case of Neo4j and ArangoDB, SQLite and MySQL, or MongoDB
overall. Additionally, experiments could be repeated with more data, a higher
timeout threshold, and less complex queries or could be horizontally scaled to see
how the databases perform in a distributed environment.
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A. Attachments

A.1 Project Directory
The current state of the entire project source code and additional data is attached
to this thesis in the form of a ZIP archive. For future updates of the project, please
consult the GitHub repository at https://github.com/corovcam/Query-Langu
ages-Analysis-Thesis (attached ZIP project is at commit with hash 1fda966).

In this section, we also include a slightly modified project’s README text
that describes the structure of the project, scripts, configuration, prerequisites,
instructions, and other relevant information.

A.1.1 Repository Structure
The top-level repository structure contains folders for all databases used in the
thesis, structured as follows:

• docker-compose.yml - Docker Compose file for setting up all services, vol-
umes, environment variables, and networks

• common/ - common files and scripts for all databases
– docs/ - extra documentation files (e.g. schema diagrams)
– thesis-dummy-data-generator/ - TypeScript NPM project for generat-

ing pseudo-random relational data using Faker.js1 and Scramjet2 framework
– count table rows.sql - for MySQL and SQLite
– filter results.ipynb - Jupyter Notebook for filtering and processing

experiment results
– results.csv - a combined CSV file containing all results from experiments

with a header: db,record volume,query,iteration,time in seconds
– db sizes.csv - a CSV file containing database sizes in MB for each

database system and record volume
– filtered results.csv - post-processed CSV file

• mysql/ - MySQL database files and scripts
– data/ - configuration files mounted to the MySQL container
– dumps/ - MySQL SQL and/or CSV dumps copied from generated common/

thesis-dummy-data-generator/data <entity count>* folder
– exports/ - contains (denormalized) exported data from MySQL database

(later imported into Cassandra)
– queries/ - SQL queries for MySQL

1https://fakerjs.dev/
2https://docs.scramjet.org/category/framework
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∗ testing/ - individual files with individual queries used for testing
∗ query.sql - complete list of queries and their descriptions (check com-

ments for more details)
∗ schema.sql - complete schema of the MySQL database (check comments

for more details)
• sqlite/ - SQLite database files and scripts (is similar to MySQL structure,

so only differences are mentioned)
– data/ - database file (ecommerce.db) mounted to the SQLite container
– sqlite3-analyzer 3 - binary for analyzing SQLite database and gen-

erating statistics about tables called with sqlite3-analyzer data/
ecommerce.db outside the container, inside sqlite/ folder

• neo4j/ - Neo4j database files and scripts
– arangodb-json-transform/ - NPM package for transforming exported

JSON data from Neo4j to ArangoDB JSON format
– dumps/ - Neo4j database dumps (entire database files in compressed binary

format)
– exports/ - exported JSON documents from Neo4j (later transformed to

ArangoDB JSON format)
∗ edges/ - each file inside this folder contains JSON Lines of edges (rela-

tionships) generated by export to json.sh
∗ nodes/ - each file inside this folder contains JSON Lines of nodes (ver-

tices) generated by export to json.sh
– neo4j-etl-tool/ - Neo4j ETL tool4 files for importing data from CSV

files (tested with version 1.6.0)
∗ neo4-etl-cli-1.6.0/ - release files downloaded from above GitHub

repository
· bin/neo4j-etl - binary for running ETL tool

– queries/ - Cypher queries for Neo4j
∗ query.cypher - complete list of queries and their descriptions (check

comments for more details)
• arangodb/ - ArangoDB database files and scripts

– dumps/ - ArangoDB database dumps (copied from exported neo4j/
exports folder)

– queries/ - AQL queries for ArangoDB
∗ query.js - definition of AQL queries and their descriptions (check

comments for more details)
∗ query testing.js - entire testing script with error handling for running

AQL queries and generating logs
3https://www.sqlite.org/sqlanalyze.html
4https://neo4j.com/labs/etl-tool/
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• cassandra/ - Cassandra database files and scripts
– data/ - configuration file cassandra.yaml mounted to the Cassandra

container
– dsbulk/ -DataStax Bulk Loader (dsbulk)5 JAR file for loading and counting

data in Cassandra (tested with version 1.11.0)
– dumps/ - Cassandra CQL dumps or CSV files copied from exported mysql/

exports folder
– queries/ - CQL queries for Cassandra

∗ query.cql - complete list of queries and their descriptions (check com-
ments for more details)

∗ schema.cql - complete schema of the Cassandra database (check com-
ments for more details)

• mongodb/ - MongoDB database files and scripts
– dumps/ - MongoDB database dumps (generated with dump.sh)
– queries/ - MongoDB queries for MongoDB

∗ query.js - complete list of queries and their descriptions (check com-
ments for more details)

∗ query testing.js - entire testing script with error handling similar to
ArangoDB

– relational-migrator/ - installation and configuration files for MongoDB
Relational Migrator
∗ mongodb-relational-migrator 1.5.0 amd64.deb - installation file for

Debian based systems (NOTE: GIT LFS is required to download this
file!)

∗ ecommerce-mapping*.relmig - these are configuration files used to
setup MongoDB Relational Migrator6 tool (tested with version 1.5.0)

Folders and files common to most of the database directories:
• logs/ - all logs generated from scripts

– queries/ - logs from query testing invoked by run queries.sh
• queries/ - queries for each database system

– testing/ - individual files with individual queries used for testing
• stats/ - final statistics generated from queries, imports, and exports (later

used for analysis)
• dumps - database dumps or exported data from other databases (used for

importing data)
5https://github.com/datastax/dsbulk
6https://www.mongodb.com/docs/relational-migrator/
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A.1.2 Scripts
Some scripts are common for all databases, some are specific to a particular
DBMS. Some like init.sh and run queries.sh require manual variable edit-
ing to select required data directories (see NOTES inside scripts before exe-
cution!). If not explicitly specified otherwise (see script comments), scripts
must be run inside respective Docker containers, i.e. with docker exec -it
query-languages-analysis-thesis-<service name>-1 bash or docker exec
-it query-languages-analysis-thesis-<service name>-1 sh.

Common scripts:
• /run queries.sh - convenience script for running all queries for selected

databases (in parallel)
• /init.sh - convenience script for inializing all databases (creating schemas,

importing data, etc.) for selected databases (in parallel)
• /<dbms>

– run queries.sh, /init.sh - individual scripts for running queries or
initializing (see comments for more details)

Notable scripts and flows:
• common/thesis-dummy-data-generator/run.sh - run with ./run.sh <en-

tity count> to generate CSV files with <entity count> number as reference
count for top-level entities

• mysql
1. Initialization scripts:

– csv init.sh - initialize with CSV files as source of data
– init.sh - initialize with SQL dump as source of data (older method

used with small datasets - see Legacy generator in A.1.5)
2. cassandra export to csv.sh - transform MySQL tables to denormal-

ized CSV files for importing into Cassandra
• neo4j

1. neo4j-etl-tool/
– import.sh - automatically run Neo4j ETL tool CLI and subsequently

import data using neo4j-admin database import full command
2. export to json.sh - export Neo4j vertices and relationships to JSON

Lines format
3. arangodb transform json.sh - transform exported JSON Lines to

ArangoDB JSON format
• cassandra

1. Initialization scripts:
– dsbulk init.sh - initialize Cassandra with CSV files as source of

data
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– init.sh - initialize with CQL dump as source of data (older method
used with small datasets - see Legacy generator in A.1.5) - NOTE:
Very slow for large datasets.

2. count table rows.sh - count rows in each table in Cassandra using
dsbulk count

3. table stats.sh - generate statistics for each table in Cassandra using
nodetool tablestats

A.1.3 Prerequisites
Tools and software required for running the experiments:

• Docker (tested with v25.0.3)
• Docker Compose (tested with v2.24.5)
• Node.js (v20.8+)
• NPM
• Java (tested with OpenJDK 11.0.22)
Tools that need to be (downloaded and) installed manually: (for reproducibility,

binaries and installation files are already included in the respective folders)
• Neo4j ETL Tool (v1.6.0) - download link: https://github.com/neo4j-con

trib/neo4j-etl/releases/tag/1.6.0
• DataStax Bulk Loader (dsbulk) (v1.11.0) - download link: https://github

.com/datastax/dsbulk/releases/tag/1.11.0
• MongoDB Relational Migrator (v1.5.0) - download link: https://migrat

or-installer-repository.s3.ap-southeast-2.amazonaws.com/index
.html#1.5.0/

Tools and software required for filtering the results:
• Python 3
• Pandas, NumPy
• Jupyter Notebook

A.1.4 Installation, Configuration, and Initialization
1. Clone the repository:

git clone
https://github.com/corovcam/Query-Languages-Analysis-Thesis.git↪→

cd Query-Languages-Analysis-Thesis

2. If not already done, download and install the required tools and software and
place them in the respective folders.
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• MongoDB Relational Migrator’s installation file7 at mongodb/
relational-migrator/mongodb-relational-migrator 1.5.
0 amd64.deb should be installed on the host machine using any
Debian package manager (e.g. sudo apt install ./mongodb-
relational-migrator 1.5.o amd64.deb).

3. Run the generator script to generate dummy data for MySQL and SQLite
databases:
cd common/thesis-dummy-data-generator
./run.sh <entity_count>

where <entity count> is the number of entities to generate (e.g. 1000, 4000,
128000, etc.)

4. Copy the generated data to MySQL and SQLite directories:

cp -r data_<entity_count>_<timestamp> ../mysql/dumps/data_<entity_count>
cp -r data_<entity_count>_<timestamp>

../sqlite/dumps/data_<entity_count>↪→

5. Run the following command in the root project directory to build and start
the Docker container/s:

docker-compose up -d --build <service_name>

6. For most databases (starting with SQLite and MySQL), check init.sh script
for initializing the database, change required variable parameters, and then
run the script inside the respective Docker container:

docker exec -it query-languages-analysis-thesis-<service_name>-1 bash
./init.sh

or if bash is not available:
docker exec -it query-languages-analysis-thesis-<service_name>-1 sh
./init.sh

• NOTE: For MySQL and SQLite, you can use csv init.sh script to
initialize the database with CSV files as source of data, which comes
default from the generator (see Legacy Generator in A.1.5).

• NOTE: For Cassandra, you can use dsbulk init.sh script to initialize
the database with CSV files as source of data.

7https://www.mongodb.com/docs/relational-migrator/installation/install-on-a
-local-machine/install-ubuntu/
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7. For Cassandra, you must generate the CSV files from MySQL data using the
cassandra export to csv.sh script:

1. Export the MySQL query outputs to CSV files: (as denormalized tables
for Cassandra import)
docker exec -it query-languages-analysis-thesis-mysql-1 bash
./cassandra_export_to_csv.sh

• NOTE: The script will generate CSV files in the exports/ folder,
where each CSV represents one table in the Cassandra database.

2. Copy the exported CSV files to the Cassandra container:
cp -r exports/ ../cassandra/dumps/data_<entity_count>

3. Initialize the Cassandra database using the dsbulk init.sh script (in-
side the Cassandra container):
docker exec -it query-languages-analysis-thesis-cassandra-1 bash
./dsbulk_init.sh

• NOTE: Change the required variable parameters in the script before
running it!

• NOTE: You can also use the init.sh script to initialize the database
with CQL dump as source of data (which is generated by the legacy
generator script - see Legacy generator in A.1.5).

8. For MongoDB, you must proceed according to the official documentation8.
1. After installation, run the binary:

cd /opt/mongodb-relational-migrator/bin
./mongodb-relational-migrator

• NOTE: The tool will start a GUI interface accessible at
http://localhost:8278/

2. You must configure the tool using the provided configuration files, i.e.
mongodb/relational-migrator/ecommerce-mapping*.relmig.

• NOTE: ecommerce-mapping.relmig was used for less than 256k
record volume experiments and ecommerce-mapping-modified-
orders-types-persons.relmig for 256k+ record volume experi-
ments.

3. Import the config file by following offical guide9.
4. Run the Sync Job by following official guide10.

8https://www.mongodb.com/docs/relational-migrator/installation/install-on-a
-local-machine/install-ubuntu/

9https://www.mongodb.com/docs/relational-migrator/projects/import-project/
10https://www.mongodb.com/docs/relational-migrator/jobs/creating-jobs/
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• NOTE: Both, the MySQL and MongoDB containers must be run-
ning before running the sync job.

• NOTE: Use the default settings for the sync job. Use root as
username and password for MySQL and leave defaults for MongoDB.

• NOTE: Drop destination collections before migration
must be checked to avoid conflicts with existing data!

5. Check the import stats and logs for any errors or warnings.
9. For Neo4j, you can use neo4j-etl-tool/import.sh script to automatically

run the ETL tool and import data into Neo4j.
1. Run the script inside the Neo4j container:

docker exec -it query-languages-analysis-thesis-neo4j-1 bash
cd neo4j-etl-tool
./import.sh

• NOTE: MySQL and Neo4j containers must be running before
running the script. (conversely, neo4j database instance must be
stopped before running neo4j-admin commands - use neo4j stop
inside neo4j container).

• NOTE: After running the script, you must manually start the Neo4j
database instance using neo4j start inside the Neo4j container or
by restarting the container to proceed.

10. For ArangoDB, you must do the following:
1. Export the Neo4j data to JSON format using export to json.sh script

(inside the Neo4j container).
docker exec -it query-languages-analysis-thesis-neo4j-1 bash
./export_to_json.sh

• NOTE: The script will generate two directories: nodes/ and edges/
in the exports folder containing JSON Lines files for each node and
edge type.

2. Transform the exported JSON data to ArangoDB JSON format using
arangodb transform json.sh (outside the Neo4j container).
cd neo4j
./arangodb_transform_json.sh

• NOTE: The script will generate the exports/
transformed <timestamp>/ directory containing JSON Lines files
for each node and edge type in ArangoDB format.

3. Copy the transformed data to the ArangoDB container:
cp -r exports/transformed_<timestamp>

../arangodb/dumps/data_<entity_count>↪→
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4. Initialize the ArangoDB database using the init.sh script (inside the
ArangoDB container).
docker exec -it query-languages-analysis-thesis-arangodb-1 sh
./init.sh

• NOTE: Change the required variable parameters in the script before
running it!

A.1.5 Legacy Generator
The legacy generator script is used to generate SQL dumps for MySQL and SQLite
databases and CQL dumps for Cassandra database. It was used for generating
data for experiments with record volumes up to 256k (included). The script is
located in the common/thesis-dummy-data-generator folder and is named data-
generator-old.js. To run the script, use the following command:

cd common/thesis-dummy-data-generator
./run-old.sh <entity_count> <sql_dump_dir> <cql_dump_dir>

where <entity count> is the number of entities to generate (e.g. 1000, 4000,
128000, 256000), <sql dump dir> and <cql dump dir> are the directories where
the generated SQL and CQL dumps will be saved.

A.1.6 Query Testing
1. Run the following command in the root project directory to start the Docker

container/s:

docker-compose up -d <service_name>

2. Either run the run queries.sh <service name> in the root project directory
to run all queries for the selected database systems or run the individual
scripts for each database system inside the respective Docker container:
docker exec -it query-languages-analysis-thesis-<service_name>-1 bash
./run_queries.sh

or if bash is not available:
docker exec -it query-languages-analysis-thesis-<service_name>-1 sh
./run_queries.sh

• NOTE: Change the required variable parameters in the script before
running it!
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A.2 Source Codes

Listing A.1: Special mentions for Cassandra’s omitted queries followed by their
respective schema definitions.

-- Query 3.1: Return all Orders and Vendors sharing the same Contact typeId
-- This one was intentionally left out for 4k+ experiments because it takes a lot of disk space
-- (more than 6 GB of disk space during 4k experiments) and it is impractical for ETL purposes
-- (also it is not very useful in real-world scenarios)

SELECT * FROM Vendor_Contacts_By_Order_Contact;

CREATE TABLE Vendor_Contacts_By_Order_Contact (
typeId BIGINT,
orderId BIGINT,
orderContactValue TEXT,
vendorId BIGINT,
vendorContactValue TEXT,
PRIMARY KEY ((typeId, orderId, orderContactValue), vendorId, vendorContactValue)

);

-- Query 4.1.: Find all direct and indirect relationships between people (up to depth of 3)
-- Using only CQL constructs, its highly inneficient (exponential complexity) to model a

neighbourhood↪→
-- search in Cassandra. The application layer would have to handle all possible paths recursively
-- (up to depth of 3) for each person

SELECT * FROM Person_Relationships;

CREATE TABLE Person_Relationships (
sourcePersonId BIGINT,
relatedPersonId BIGINT,
depth INT,
PRIMARY KEY ((sourcePersonId), depth, relatedPersonId)

);

-- Query 4.2. (Shortest path): Find the shortest path between two people
-- Only by explicitly inserting each and every shortest path between all tuples of (person1id,

person2id)↪→
-- in a specific table, e.g. Shortest_Paths_By_Person
-- We find it highly ineffective to use Cassandra for calculating shortest paths this way
-- (due to reasons mentioned above)

-- 9.1 Non-Indexed Columns: Sort products by brand.
-- In Cassandra, ORDER BY (ordering) is only allowed on the clustering columns of the PRIMARY KEY
-- therefore, the following query is not allowed.

SELECT * FROM Product ORDER BY brand;

CREATE TABLE Product (
productId BIGINT PRIMARY KEY,
asin TEXT,
title TEXT,
price DOUBLE,
brand TEXT,
imageUrl TEXT

);
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Listing A.2: Special mentions for MongoDB query design decisions.

1 // Query 3.1 Non-Indexed Attributes - Join vendorContacts and orderContacts on the type of contact
(the same document)↪→

2
3 // 3.1 hit the !BSONObj size not supported! error with `BSONObj size: 16806194 (0x1007132) is

invalid. Size must be between 0 and 16793600(16MB)` with 256k volume import↪→
4 // Solution could be not to embed both arrays in the same document, but to split them into

separate documents and use $lookup to join them in the query and that is why we have two
queries for 3.1 below

↪→
↪→

5
6 // < 256k volume experiments
7 db.types.aggregate([
8 {$unwind:"$orderContacts"},
9 {$unwind:"$vendorContacts"},

10 {$project:
11 {orderContact:{orderId:"$orderContacts.orderId",value:"$orderContacts.value"},
12 vendorContact:{vendorId:"$vendorContacts.vendorId",value:"$vendorContacts.value"}}}
13 ]);
14
15 // This one also hit the `MongoServerError: Too much memory for single array` which is 16MB as

well, more in Dynamic Analysis section↪→
16 // >= 256k volume experiments
17 db.types.aggregate([
18 {$lookup:{from:"orders",localField:"_id",foreignField:"contacts.typeId",as:"orderContacts"}},
19 {$lookup:{from:"vendors",localField:"_id",foreignField:"contacts.typeId",as:"vendorContacts"}},
20 {$unwind:"$orderContacts"},
21 {$unwind:"$vendorContacts"},
22 {$project:
23 {orderContact:{orderId:"$orderContacts.orderId",value:"$orderContacts.value"},
24 vendorContact:{vendorId:"$vendorContacts.vendorId",value:"$vendorContacts.value"}}}
25 ]);
26
27 // Query 3.3 - Complex query with "lookup" to retrieve order details
28
29 // Cannot embed "vendor" in "orders.containsProducts" because MongoDB Relational Migrator fails to

migrate it (probably due to circular reference) - so the following query is not possible:↪→
30 // db.orders.find();
31
32 // Need to join "vendors" and "orders" on "containsProducts.productId" and

"manufacturesProducts.productId" respectively↪→
33 // < 256k volume experiments
34 db.orders.aggregate([
35 {$unwind:"$containsProducts"},
36 {$lookup:
37 {from:"vendors",localField:"containsProducts.productId",foreignField:"manufacturesProducts.pr ⌋

oductId",as:"containsProducts.vendors"}},↪→
38 {$unset:["containsProducts.vendors.manufacturesProducts","containsProducts.vendors.contacts"]}
39 ]);
40
41 /*
42 Enormous waiting time for MongoDB Relational Migrator to migrate orders.containsProducts array
43 - Waiting time: almost 74 hours with 4 retries and various errors:
44 - `java.io.EOFException: Can not read response from server. Expected to read 4 bytes, read 0

bytes before connection was unexpectedly lost.`↪→
45 - `java.net.SocketTimeoutException: Read timed out`
46 - First run took 2 weeks, and the entire testing server froze (due to memory leak and

unrestricted page swapping)↪→
47 - Problem turned out to be in MySQL halting the connection unexpectedly
48 - Solution: remove orders.containsProducts array
49 */
50 // >= 256k volume experiments
51 db.orders.aggregate([
52 {$lookup:{from:"products",localField:"_id",foreignField:"products.inOrders.orderId",
53 as:"containsProducts"}},
54 {$unwind:"$containsProducts"},
55 {$lookup:{from:"vendors",localField:"containsProducts.productId",
56 foreignField:"manufacturesProducts.productId",as:"containsProducts.vendors"}},
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57 {$unset:["containsProducts.vendors.manufacturesProducts","containsProducts.vendors.contacts"]}
58 ]);
59
60 // 4.1 Find all direct and indirect relationships between people up to 4 (0, 1, 2, 3) levels deep
61
62 // This query is the best possible approximation of neighborhood search in MongoDB
63 // It does not reflect the same results in higher volume datasets as in all other DBMSs and should

not be↪→
64 // taken into consideration when comparing with other systems. Take it only as a demonstration of

MongoDB's↪→
65 // graph traversal capabilities.
66 db.persons.aggregate([{
67 $graphLookup:
68 {from:"persons",startWith:"$knowsPeople",connectFromField:"knowsPeople",connectToField:"_id",
69 as:"relationships",maxDepth:3,depthField:"depth"}},
70 {$unwind:"$relationships"},
71 {$project:{_id:0,sourcePersonId:"$_id",relatedPersonId:"$relationships._id"}}
72 ]);
73
74 // Query 4.2 Find the shortest path between two persons using $graphLookup
75
76 // This one stops traversing in BFS until it finds the target person (not necessarily the shortest

path)↪→
77 // The target person in not included in the result
78 // The result set is not the same as in other tested DBMSs, but the path is included in the result
79 // It basically performs BFS until it finds the target person, stops and prints each visited node
80 // The backtracking is not possible in mongoDB, but can be done in application layer
81 db.persons.aggregate([
82 {$match:{_id:1}},
83 {$graphLookup:
84 {from:"persons",startWith:"$_id",connectFromField:"knowsPeople",connectToField:"_id",
85 as:"relationships",depthField:"depth",restrictSearchWithMatch:{_id:{$ne:10}}}},
86 {$unwind:"$relationships"},
87 {$project:{_id:0,relationships:1}},
88 {$replaceRoot:{newRoot:{$mergeObjects:["$relationships","$$ROOT"]}}},
89 {$addFields:{knowsPeople:"$relationships.knowsPeople"}},
90 {$unset:["relationships"]},
91 {$sort:{depth:1}}
92 ]);
93
94 // Query 8 Difference - Find people who have not made any orders
95
96 // 8.1 Using Lookup (not recommended for large datasets)
97 // All people
98 db.persons.aggregate([
99 {$lookup:{from:"orders",localField:"_id",foreignField:"customer.person.personId",as:"orders"}},

100 {$match:{orders:{$eq:[]}}},
101 {$project:{firstName:1,lastName:1}}
102 ]);
103
104 // 8.2 Without Lookup
105 // Match only people with no customer attribute (and thus no orders)
106 db.persons.find({customer:{$exists:!1}},{firstName:1,lastName:1});
107
108 // Query 11 MapReduce - Find the number of orders per customer (only those who have made at least

1 order)↪→
109
110 // 11.1. - Using the deprecated mapReduce() method:
111 db.orders.mapReduce("function() { emit(this.customer.customerId, 1); }", "function(key, values) {

return Array.sum(values); }",↪→
112 {out:{inline:1}});
113
114 // 11.2. - Using the simpler (this case at least), more efficient and recommended aggregation

pipeline:↪→
115 db.orders.aggregate([{$group:{_id:"$customer.customerId",orderCount:{$sum:1}}}]);
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Listing A.3: An example of a TypeScript generator function for generating pseudo-
random Vendor and Product entities using the Faker.js library.

1 export function* generateVendorsProducts(
2 vendorCount = 100,
3 productCount = 1000,
4 industryTypes: IndustryType[],
5 contactTypes: ContactType[]
6 ): Generator<Vendor> {
7 logger.info(`Generating data for ${vendorCount} vendors and ${productCount} products`);
8 let productsAssigned = 0;
9 for (let i = 0; i < vendorCount; i++) {

10 const vendorId = i + 1;
11 const vendorName = faker.company.name().replace(/'/g, "''");
12 const vendorCountry = faker.location.country().replace(/'/g, "''");
13
14 const vendor: Vendor = { vendorId, name: vendorName, country: vendorCountry,
15 products: [], industries: [], contacts: [] };
16
17 // Assign Products to Vendor
18 let productsPerVendor = faker.number.int({ max: MAX_VENDOR_PRODUCTS });
19 const productsAssignable = productCount - productsAssigned;
20 if (productsPerVendor > productsAssignable) {
21 productsPerVendor = productsAssignable;
22 }
23
24 for (const product of generateProductsForVendor(
25 vendor, productsPerVendor, productsAssigned
26 )) {
27 vendor.products.push(product);
28 }
29
30 // Update productsAssigned count
31 productsAssigned += productsPerVendor;
32
33 // Assign Industries to Vendor
34 faker.helpers.arrayElements(industryTypes, { min: 1, max: 3 })
35 .forEach(type => vendor.industries.push(type));
36
37 // Assign Contacts to Vendor
38 const chosenContactTypes = faker.helpers.arrayElements(contactTypes);
39 chosenContactTypes.forEach(type => {
40 const chosenContactValue = chooseContactValue(type.value);
41 const contact = { typeId: type.typeId, value: chosenContactValue,
42 type: { value: type.value } };
43 vendor.contacts.push(contact);
44 });
45
46 if (i % logger.batchSizeToLog === 0) {
47 logger.info(`Generated ${i + 1} vendors and ${productsAssigned} products`);
48 }
49
50 yield vendor;
51 }
52 logger.info(`Generated data for ${vendorCount} vendors and ${productsAssigned} products`);
53 }
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Listing A.4: A Docker Compose file that defines the DBMS services for the project.

1 version: "3.8"
2 services:
3 sqlite:
4 image: keinos/sqlite3:3.42.0
5 volumes:
6 - ./sqlite:/sqlite
7 restart: always
8 working_dir: /sqlite
9 stdin_open: true

10 tty: true
11 mysql:
12 image: mysql:8.1.0
13 ports:
14 - 3306:3306
15 environment:
16 MYSQL_ROOT_PASSWORD: root
17 MYSQL_DATABASE: ecommerce
18 MYSQL_USER: test
19 MYSQL_PASSWORD: test
20 volumes:
21 - mysql_data:/var/lib/mysql
22 - ./mysql:/mysql
23 - ./mysql/data/conf.d:/etc/mysql/conf.d
24 restart: always
25 working_dir: /mysql
26 neo4j:
27 image: neo4j:5.12.0
28 ports:
29 - 7474:7474
30 - 7687:7687
31 environment:
32 NEO4J_AUTH: none
33 NEO4J_PLUGINS: '["apoc"]'
34 NEO4J_apoc_export_file_enabled: true
35 NEO4J_apoc_import_file_enabled: true
36 NEO4J_apoc_import_file_use__neo4j__config: false
37 NEO4J_dbms_security_procedures_unrestricted: apoc.*
38 NEO4J_server_db_query__cache__size: 0 # Disable query cache to not cache queries -

DEPRECATED↪→

39 NEO4j_server_memory_query__cache_per__db__cache__num__entries: 0 # Disable query cache to
not cache queries↪→

40 # https://neo4j.com/developer/kb/understanding-transaction-and-lock-timeouts/
41 NEO4J_db_transaction_timeout: 5m # Set query timeout to 5 minutes
42 NEO4J_db_lock_acquisition_timeout: 5m # Set query timeout to 5 minutes
43 volumes:
44 - neo4j_data:/data
45 - ./neo4j:/neo4j
46 # Enable for Neo4j ETL Tool MySQL link
47 # links:
48 # - mysql
49 restart: always
50 working_dir: /neo4j
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51 arangodb:
52 image: arangodb:3.11.3
53 ports:
54 - 8529:8529
55 environment:
56 ARANGO_NO_AUTH: 1
57 ARANGODB_DOCKER_TTY: true
58 volumes:
59 - arangodb_data:/var/lib/arangodb3
60 - arangodb_apps_data:/var/lib/arangodb3-apps
61 - ./arangodb:/arangodb
62 - ./arangodb/data/arangod.conf:/etc/arangodb3/arangod.conf
63 restart: always
64 working_dir: /arangodb
65 cassandra:
66 image: cassandra:4.1.3
67 ports:
68 - 9042:9042
69 environment:
70 CASSANDRA_CLUSTER_NAME: ecommerce
71 volumes:
72 - cassandra_data:/var/lib/cassandra
73 - ./cassandra:/cassandra
74 - ./cassandra/data/cassandra.yaml:/etc/cassandra/cassandra.yaml
75 restart: always
76 working_dir: /cassandra
77 mongodb:
78 image: mongo:7.0.2
79 ports:
80 - 27017:27017
81 environment:
82 MONGO_INITDB_DATABASE: ecommerce
83 volumes:
84 - mongodb_data:/data/db
85 - ./mongodb:/mongodb
86 restart: always
87 working_dir: /mongodb
88

89 volumes:
90 mysql_data:
91 neo4j_data:
92 arangodb_data:
93 arangodb_apps_data:
94 cassandra_data:
95 mongodb_data:
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