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Abstract: With the increasing popularity of the agent-based simulation technique
in various scientific fields, there is a demand for an all-in-one framework for
modeling agent-based simulations. Although there are numerous agent-based tools
available, these in most cases feature complex syntax and language structures or
are aimed to be used in specific domains only. In response this thesis presents a
new approach to modeling agent-based simulations by developing a brand new
agent-based framework - AgentLang. The framework features a programming
language with a unified and simple syntax for defining agents and their properties.
Moreover, it provides a web-based interface with a spreadsheet module for manip-
ulating agents and their values using the familiar spreadsheet format as well as a
visualisation module for rendering the simulation in real-time. These three features
of the AgentLang framework aim to introduce a new way to modeling agent-based
simulations and attempt to make agent-based modeling more accessible to people
of all scientific fields.
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Abstrakt: S rastúcou popularitou techniky agentovo orientovaného modelovania v
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simulácií. Aj keď je na trhu dostupné množstvo nástrojov na agentovo orientované
modelovanie, vo vačšine prípadov sa vyznačujú zložitou jayzkovou syntaxou a
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na tieto nevýhody táto práca poskytuje nový pohľad na agentovo orientované
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Introduction
Simulations and predictions of future events play a significant role in many scientific
fields nowadays. This is especially true in economics, stock markets or housing
markets [1], where there is a need for accurate predictions of future developments.
Moreover, simulations are also commonly used in epidemiology or sociology,
where the evaluation of the dynamics of a sociological group cannot be tested on
real-world entities due to ethical and practical reasons. As our understanding
of complex systems deepens, the demand for sophisticated tools to model and
analyse the dynamics of simulations increases. This is where agent-based modeling
comes into play, offering a more straightforward, bottom-up approach for handling
complex simulations.
Agent-based models are built on top of agents, which represent the fundamental
units of the given system, such as people in an epidemic or birds in a flock. To
build such models, there is a need for tools or languages that provide constructs
for representing agents, their behaviour and decision-making logic. Such tools
already exist and are widely used to model agent-based simulations [2], such
as NetLogo, GAMA or AgentScript [3, 4, 5]. These tools are powerful and can
handle large volumes of agents. However, with their performance comes the cost of
complexity of usage and inaccessibility to people with little to none programming
knowledge. They are often difficult to learn, since they are based on modern
programming languages, restricting the use case to developers only. And since
the demand for agent-based models can be seen in non-technical scientific fields
such as epidemiology or sociology, there is a need for simpler tools and languages.
AgentLang aims to provide a new approach to modeling agent-based simulations.
This is possible on the one hand due to the simplicity of the language itself, since
it features straightforward syntax and only the necessary constructs for modeling
a wide range of simulations. On the other hand, the language is integrated into a
specialised web-based interface, which offers a code editor, a visualisation module
and most importantly, a spreadsheet interface, which allows the user to edit agent
properties and values manually during the runtime of the simulation. These above
features of the AgentLang framework provide all the necessary tools to model
agent-based simulations and get a hands-on experience with the language itself.
The structure of AgentLang is straightforward. We define the individual agents
and for each agent, we define its behaviour using a set of properties.

1 agent snowflake 500 {
2 const speed = random (10, 20);
3
4 property x: random (0, width ()) = x;
5 property y: random (0, height ()) = (y + speed ) % height ();
6 }

The above example generates a set of 500 snowflakes, each with a random falling
speed and lets them fall on the ground by incrementing their vertical coordinates
by their speed. The fact that the agent is defined as a sequence of properties
recalculated in each step of the simulation makes the language conceptually simple
and fits well with the spreadsheet interface discussed later in the thesis.
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In conclusion, the main intention behind the creation of AgentLang is to make
agent-based modeling available to all scientific domains, regardless of their technical
background, allowing for a shallow learning curve and usability using the following
benefits:

• simplistic language syntax designed for easy conversion to the spreadsheet
representation

• spreadsheet interface for almost no-code modeling

• built-in visualisation module for better understanding of the simulation

The thesis first dives into the important theoretical concepts behind AgentLang,
where it introduces the benefits and use cases of agent-based modeling as well
as provides a brief look into the idea behind language interpreters and parsers.
Then, we will look at and compare existing agent-based tools to define the main
goals AgentLang aims to achieve. Furthermore, we will provide the AgentLang’s
language specification and dive deeper into the implementation of its interpreter.
Then, we will briefly look at the web-based interface of the AgentLang framework
and provide several simulation examples as well as compare them with other
agent-based tools to see if the goals were achieved. Finally, we will reflect back
on the project and depict its main limitations and talk about future work and
improvements.
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1 Theoretical Background
Before diving into the language specification, it’s important to introduce and
briefly explain the theoretical background behind the most important concepts
used in AgentLang. The following chapters aim to provide an introduction to
agent-based modeling, its use cases and real-world applications as well as an
overview of language interpreters and parsers.

1.1 Agent-based Modeling
AgentLang is a domain-specific language designed exclusively for modeling agent-
based simulations. Therefore it is necessary to understand the motivation behind
the agent-based modeling technique and its increasing popularity in the recent
years as well as to demonstrate its power and applications on several use cases
and real-world examples.

1.1.1 Introduction
Agent-based modeling is a simulation technique used in many scientific fields to
model and understand complex simulations. In an agent-based model, a system is
modeled using a set of autonomous entities called agents. An agent represents
a fundamental meaningful unit of a system, such as a person in an epidemic or
a bird in a flock. Each agent individually assesses the current situation, both of
itself as well as of other agents and makes decisions based on a set of defined rules.
It’s important to note that agent-based modeling is more of a mindset than a
technology. The main idea behind it is to describe a system from the perspective
of its constituent units. If we can assess and understand the behaviour of a
fundamental unit of the system, we can define the model or structure of this
unit, generate a set of these units and let their behaviour and interaction among
themselves determine the outcome of the simulation. The advantage of such
models is their simplicity in terms of understanding and implementation. However,
even a simple agent-based model can portray complex behavioral patterns and
provide insights into the dynamics of the system that it emulates.

1.1.2 Benefits of Agent-based Models
Agent-based modeling offers numerous advantages when compared to other math-
ematical models and simulation techniques.
First and foremost, the approach of agent-based modeling allows us to uncover
novel emergent phenomena within the system, such as complex emergent behav-
ioral patterns in sociology or economy, phenomena that were previously unknown
or considered improbable. When we establish and define the rules governing the
behaviour of agents, the anticipated actions of individual agents seem straight-
forward, given the simplicity and predictability of these rules. However, upon
executing an agent-based model involving numerous interacting agents, the sys-
tem’s behavior often proves to be surprisingly complex. Even slight changes to
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the agents’ behaviour may have a profound impact on the overall outcome of
the system, a phenomenon that can be seen for instance in sociology, where the
collective behavior of a group can be significantly influenced by subtle changes in
the behavior of an individual.
Furthermore, agent-based modeling is particularly well-suited for simulation
domains involving individual behavioral entity types and their mutual interactions.
This is especially true in scenarios requiring the analysis of human interaction,
understanding principles behind bird flocking, or predicting traffic jam occurrences
on certain city roads. These situations pose challenges for other mathematical
models, which may not explicitly consider and model the fundamental units of
the system, rather the system as a whole.
Last but not least, agent-based models are flexible and extensible. We can easily
introduce new agents to the system or increase the quantity of existing agents.
Modifying the model’s behavior is as simple as remodelling the decision-making
logic within one agent model, which may lead to a whole new behaviour of the
whole system. This degree of flexibility and extensibility implies the usage of
agent-based models in scenarios where the level of complexity of the simulation is
either highly unpredictable or unknown in advance, making it easy to fine-tune
the simulation without the need for making too many adjustments.

1.1.3 Use Cases
Agent-based modeling is used in numerous scientific areas and systems. Let’s dive
deeper into some of the major classifications of its usage, which are:

1. flows

2. markets

3. organizations

Flows

Flows are the first area of expertise suitable for closer analysis using the agent-
based modeling technique [6]. To describe the idea behind flows, let’s consider
the evacuation of people. The behaviour of a crowd in a sudden or unexpected
dangerous situation often leads to panic and chaos. These situation usually arise
during mass events such as concerts, sporting events and demonstrations, where
there is high density of people on a certain area. In case of fire or other disasters
of such nature, people in panic are governed by short-term personal interests
uncontrolled by social and cultural constraints.
To prevent uncontrolled behaviour and maximize the chances of successful evacu-
ation, we need to design venues and their escape exits in the best way possible.
This is a typical scenario suitable for agent-based modeling. "In agent terms,
collective panic behaviour is an emergent phenomenon that results from relatively
complex individual behaviour patterns and interactions between individuals, such as
mutual excitation of a primordial instinct, chain reaction or social facilitation" [7].
Based on prior historical observations, statistics and sociological studies, we can
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fairly accurately define the behaviour of a person in such situations and observe
the reaction of masses during evacuation.

Markets

Another typical usage of agent-based models is in economics, where the dynamics
of the stock market or the housing market results from the behaviour of many
interacting agents, leading to the aforementioned emergent phenomena that are
best understood by using a bottom-up approach - agent-based modeling.
In a study published in 2018 [1], a consortium of three scientists and academics -
Marco Pangallo, Jean-Pierre Nadal, Annick Vignes, studied the housing market,
leveraging an agent-based model with the aim to analyse the relation between
income segregation, income inequality and house prices. Through the specification
of the buyer-seller dynamics and the price formation mechanisms, the study
concluded two primary insights:

1. a more unequal income distribution lowers the prices globally, but implies
stronger segregation

2. a spike of the demand in one part of the city increases the prices all over
the city

Figure 1.1 Schematic representation of the model by Marco Pangallo, Jean-Pierre
Nadal and Annick Vignes

The model is a fairly simple grid on a Cartesian plane, where a specific point in
the grid represents a specific location and space is defined by different levels of

12



attractiveness, a variable subsuming exogenous intrinsic features and endogenous
social characteristics. In this model, prospective buyers, drawn from external
locations engage in the metropolitan housing market seeking accommodation,
whereas households already living in the city decide to put their housing on sale
based on a certain probability. Such households are referred to as the sellers. The
buyers with heterogeneous incomes bid a certain amount of money proportional
to their income in order to secure a property. The sellers, on the other hand
determine the price they ask by employing an aspiration level heuristic. At each
location in the grid, buyers and sellers are matched through a continuous double
auction mechanism. Successful buyers take residence in the location where they
searched and succeeded, whereas sellers leave the city. Finally, market prices at
each location are derived as the mean value of successful transactions, thereby
illuminating price dynamics.
All of the standalone entities, such as locations, buyers and sellers are represented
using agents with defined set of rules and interaction logic, providing a model of
the simulation capable of capturing emergent phenomena, such as the relation of
income inequality and income segregation in the context of the housing market.

Organisations

Another promising area of application for agent-based modeling is organisational
simulation [8]. Operational risk poses a constant threat to various sectors, such as
financial institutions, stemming from potential issues such as inadequate business
information systems, fraud or unforeseen catastrophes, all of which can lead to
unexpected financial losses. In banking, operational risk, as defined by the Basle
Committee on Banking [7], encompasses breakdowns in internal controls and
corporate governance, potentially resulting in financial losses due to errors, fraud
or failure to perform in a timely manner or compromises to the bank’s interests
caused by staff members exceeding their authority or conducting business in
an unethical or risky manner. This risk is increasingly recognized as the most
prominent and significant challenge faced by banks.
In contrast to market risks, operational risks predominantly arise internally within
organisations, lacking a straightforward mathematical or statistical correlation
between individual risk factors and the magnitude and frequency of operational
losses. The lack of historical data on operational losses and their causes further
complicates risk assessment, as large losses occur infrequently, leaving many banks
without a sufficient time series of relevant data. This leads to uncertainty about
which factors are important arising from the absence of a direct relationship
between the risk factors.
Given all of these characteristics of operational risks within organisations, it is
obviously difficult to quantify. Therefore, a bottom-up simulation to assess the
probabilities of operational risks looks like a promising approach, since what is
needed is a framework that includes the possibility of non-linear effects because
of interactions among sub-units and to cascading events. Modeling the bank’s
agents, such as their workflow and risk factors that could potentially impact their
activities and performance is the first step. Then, external factors, such as the
bank’s customers, markets and regulators are modeled to simulate the bank’s
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environment. Using this approach, we can observe the emergent phenomena in
form of cascading failures and analyse the operational risks of an organisation in
a more straightforward way, without the knowledge of any direct relationships
between failures and the bank’s inner workings in advance. (see [7])

1.2 Interpreters
AgentLang is an interpreted language, which poses various advantages as well as
disadvantages in terms of implementation and performance. This chapter provides
a brief introduction into the inner workings of interpreters and language parsers
and describe the main concepts used in their implementation.

1.2.1 Compilers vs. Interpreters
In order to better understand the main advantages and disadvantages of inter-
preters, let’s introduce and compare the two primary approaches to developing
programming languages - compilers and interpreters.
Compilers and interpreters are the fundamental building blocks of programming
languages. They are responsible for reading the source code of the target language
and executing its instructions. They both work in a slightly different way, each
boasting its own set of strengths and weaknesses.
A compiler translates the source code of a program into machine instructions
or an intermediate representation of the code before execution. The process
of reading, analysing and transforming the source code involves several stages,
including lexical analysis, semantic analysis, optimisations and code generation.
Once compiled to machine code, the resulting executable can run independently
of the original source code. Since compilers transform the source code to direct
machine instructions, they tend to offer high performance, however, they are
difficult to understand, implement and debug.
In contrast, an interpreter processes the source code line by line, translating
and executing each instruction in real-time as the line is being read. However,
interpreters also feature lexical and semantic analysis used to statically analyse the
code before execution. For this, they usually produce and validate an intermediate
representation of the source code known as the abstract syntax tree (AST), which
is then evaluated instruction by instruction during runtime. For these reasons,
interpreters usually tend to be slower than compilers, however, they provide higher
flexibility and ease of debugging [9].

1.2.2 Workflow
Interpreters are usually implemented in a manner similar to the pipeline architec-
tural style. During the process of interpretation, the source code is transformed
through several processors before finally being executed by the interpreter’s run-
time.
Firstly, the source code is read by the lexer, which produces an array of tokens. A
token is a single basic unit of the language, such as an identifier, a keyword or a
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numeric literal. The lexer has a set of defined, language-specific rules for producing
the tokens, such as recognizing and classifying reserved language keywords or
special characters. This step is called the lexical analysis.
The array of tokens is then passed to the parser, which based on a set of defined
rules of the target language’s grammar analyses sub-sequences of tokens, validates
their integrity and produces a semantic representation of the program. This
representation is also called the abstract syntax tree (AST), since it is a tree-like
structure holding the semantics of the program. It can be understood as an
intermediate code representation, which is validated and ready to be passed to
and evaluated by the runtime module. This step is called the semantic analysis.
Finally, the abstract syntax tree is passed to the interpreter’s runtime, which
traverses the AST using a certain traversal algorithm, such as the depth-first search
algorithm and evaluates the program instruction by instruction. Therefore, the
instructions of the target language are evaluated and executed by the programming
language in which the interpreter is implemented in.

1.2.3 Parsers
Although each part of the process of transforming the source code and generating
the program’s output is interesting and worth explaining in greater detail, the
parser is one of the most interesting parts of an interpreter. The main responsibility
of a parser is to evaluate the stream of tokens coming from the lexer, validate
these tokens against the production rules of the target language’s grammar and
produce the semantic representation of the program - the abstract syntax tree.
Parser is usually implemented as a push-down automaton (PDA). This is because
the syntax of a language can be defined by a set of production rules called the
syntax grammar. This automaton accepts the language’s grammar, therefore is
able to validate the correctness of the input source code. The automaton reads
a stream of tokens from the lexer. The evaluation starts at the initial state and
based on the next token, it decides which state it goes to next. In case it comes
across a token which cannot be pushed to a new state, since such state does not
exist, it is redirected to the fallback state. This scenario is called a semantic
error and in such case, the interpreter throws an exception. This aforementioned
approach, however, is specific to top-down parsing only. There are various parsing
techniques, each suitable for different use cases. (see [10])

Top-down vs. Bottom-up Parsing

There are two primary techniques in parsing language grammars: top-down parsing
and bottom-up parsing.
In top-down parsing, the parsing starts from the root of the parse tree, which is
the start symbol of the language grammar and proceeds towards the leaf nodes of
the parse tree, attempting to match the current input token against the production
rules of the grammar. This technique is relatively easy to implement, since it
corresponds well to the way humans tend to think about parsing.
In contrast, bottom-up parsing starts from the input string and proceeds by
identifying sequences of terminals and non-terminals in the input string that match
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the right-hand side of some production rule in the grammar. These sequences are
then replaced by the corresponding non-terminal symbol. The parser iteratively
attempts to match the terminals and newly created non-terminals against the
production rules of the grammar, eventually resulting in the entire input string
being replaced by the start symbol of the grammar. The advantage of bottom-up
parsing is that it can handle a wider class of language grammars than top-down
parsing, including left-recursive grammars and is in many cases more efficient
than top-down parsing. However, it is much more difficult to implement and
understand conceptually. (see [10] paragraph Two Strategies)

Recursive Descent Parsing

One of the more popular top-down parsing techniques is recursive descent parsing,
also used and implemented in the AgentLang’s interpreter. In recursive descent
parsing, each non-terminal in the grammar corresponds to a function in the
parser module. These functions call each other to parse different parts of the
input source code. When parsing a program from the beginning, the parser
calls the parseProgram function, which further calls parseVariableDeclaration and
parseObjectDeclaration functions, based on the type of the token in the stream.
This goes all the way to the parsePrimaryExpression function, which parses low-
level expressions, such as numeric or string literals. (see [10] paragraph Recursive
Descent Parsing)
The idea behind the implementation of such push-down automaton is that the
stack of the automaton is implemented using the call-stack of the language in
which the interpreter is implemented. When the function calls nest into each
other, they are stored onto the call-stack, preserving their state. We are pushing
non-terminals onto the stack, processing them, producing parts of the AST and in
case of correct input eventually ending up back in the initial state with an empty
stack, having the AST of the program produced and validated.
The technique of recursive descent parsing is used in the implementation of the
AgentLang’s parser. This is due to the simplicity of the language’s syntax grammar
and is a good starting point for implementing a simple parser such as that of
AgentLang.
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2 Analysis
The previous chapter covered the most important theoretical concepts and terms
that will be used throughout the thesis and that are the main building blocks
of the AgentLang framework. This chapter explores the motivation behind the
creation of AgentLang, analysis and comparison with existing agent-based tools
and finally outlines the main goals that this thesis strives to achieve.

2.1 Motivation
First and foremost, it is useful to distinguish two kinds of programming languages.
On the one hand, general-purpose languages, renowned by their versatility and
widespread adoption among developers offer a broad set of concepts, therefore
developing a general-purpose programming language introducing innovation in
rather challenging. On the other hand, domain-specific languages serve as more
of niche tools for tackling challenges with domain-specific tasks. As technology is
on the rise these days, new domains emerge that need specific tools to handle the
tasks they pose. One of such domains is agent-based modeling.
Agent-based modeling, although being a simulation technique with a long history,
continues to reveal variety of new applications and use cases across numerous
scientific fields and domains. There are many agent-based specific tools that
allow for modeling agent-based simulations, each boasting its set of strengths
and weaknesses. Despite their power and extensive feature set, these tools often
feature complex syntax and language constructs, limiting their usage to technical
scientific domains only. Moreover, many of these tools are tailored to specific
domains only, such as NetLogo for social and natural sciences. Hence the idea
of AgentLang emerged, aiming to offer a unified language and environment for
agent-based simulations of any nature, accessible to all scientific fields, regardless
of their technical proficiency.

2.2 Existing Agent-based Tools
Before outlining the primary goals of this thesis, it is important to mention some
of the existing agent-based tools to highlight the main differences between existing
agent-based frameworks and AgentLang.

2.2.1 NetLogo
Perhaps one of the most wide-spread agent-based modeling software is NetLogo
[3]. It is a multi-agent programmable modeling environment with its own domain-
specific language as well as a web-based modeling interface. NetLogo’s primary
simulation domains are social and natural sciences, for which ti provides a rich
library of simulation models and examples. It was first introduced and released in
1999 by Uri Wilensky, a professor at the Northwestern University in Illinois, US
and is inspired by the functional programming language Logo introduced in 1967
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by the company BBN. Nowadays, it is used by hundreds of thousands of students,
teachers and researches all among the world.
Below is a NetLogo simulation modeling the spreading of fire in a forest [11].

1 globals [
2 initial -trees
3 burned - trees
4 ]
5
6 breed [fires fire]
7 breed [ embers ember]
8
9 to setup

10 clear -all
11 set -default -shape turtles " square "
12 ask patches with [( random -float 100) < density ]
13 [ set pcolor green ]
14 ask patches with [pxcor = min -pxcor ]
15 [ ignite ]
16 set initial - trees count patches with [ pcolor = green ]
17 set burned -trees 0
18 reset -ticks
19 end
20
21 to go
22 if not any? turtles
23 [ stop ]
24 ask fires
25 [ ask neighbors4 with [ pcolor = green ]
26 [ ignite ]
27 set breed embers ]
28 fade - embers
29 tick
30 end
31
32 to ignite
33 sprout -fires 1
34 [ set color red ]
35 set pcolor black
36 set burned -trees burned -trees + 1
37 end
38
39 to fade - embers
40 ask embers
41 [ set color color - 0.3
42 if color < red - 3.5
43 [ set pcolor color
44 die ] ]
45 end

NetLogo is a powerful tool capable of handling thousands of agents and their
complex behavioural patterns. However, the expressivity of the language results in
a steep learning curve. The language is notably specific, which may be unfamiliar
for developers and data analysts, not to mention scientists of non-technical scientific
fields.
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2.2.2 GAMA
Another popular modeling and simulation framework is GAMA [4]. It is designed
to handle spatially explicit agent-based simulations, such as urban mobility, climate
change adaptation, epidemiology, disaster evacuation strategies or urban planning.
Its advantages include the generality of the framework and openness to user-defined
plugins as well as the possibility to use GAMA externally in custom software or in
different programming languages. One of the most important strengths of GAMA
is the availability to non-technical scientists. It is quite easy and straightforward
to create and run the first simulation in the matter of minutes. However, GAMA
is a large and rich environment with a steep learning curve if the aim is to use it
regularly and in non-trivial ways. Moreover, as well as in NetLogo, its language is
specific in design and structure, making it difficult to learn, even for people of
technical scientific domains.
Below is a GAMA simulation model representing the behaviour of people (resting,
working) [12].

1 species people skills : [ moving ] {
2
3 reflex time_to_work when: current_date .hour =
4 start_work and objective = " resting " {
5 objective <- " working " ;
6 the_target <- any_location_in ( working_place );
7 }
8
9 reflex time_to_go_home when: current_date .hour =

10 end_work and objective = " working " {
11 objective <- " resting " ;
12 the_target <- any_location_in ( living_place );
13 }
14 }

2.2.3 AgentScript
Finally, another agent-based framework utilising an existing programming language
is called AgentScript [5]. AgentScript is more of a library rather than a framework.
It provides a set of JavaScript classes and methods used to create and run agent-
based models in the browser. AgentScript is heavily inspired by NetLogo, thus
its main building blocks consist of three actors: turtles, patches and links. The
user defines the behaviour and interaction logic of these three actors and the
library takes care of the rest, such as real-time simulation visualisation or agent
manipulation. Although the whole concept of AgentScript is familiar, easily
understandable and usable by JavaScript developers, it poses challenges for people
with limited programming and JavaScript skills. JavaScript, as many other
programming languages has its structure and rules, which the user needs to know
apart from the AgentScript semantics itself.
Below is an AgentScript simulation modeling bird flocking using the Boids algo-
rithm [13].

1 export default class FlockModel extends Model {
2 population = 100
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3 vision = 3
4 speed = 0.25
5 maxTurn = 3.0
6 minSep = 0.75
7
8 constructor ( worldDptions ) {
9 super( worldDptions )

10 }
11
12 setup () {
13 this. turtles . setDefault (’speed ’, this. speed )
14 this. patches . cacheRect (this. vision )
15 util. repeat (this. population , () => {
16 this. patches . oneOf (). sprout ()
17 })
18 }
19
20 step () {
21 this. turtles .ask(t => {
22 this.flock (t)
23 })
24 }
25
26 flock (t) {
27 const fm = this. turtles . inRadius (t, this.vision , false )
28 if (fm. length !== 0) {
29 const n = fm. minOneOf (f => f. distance (t))
30 if (t. distance (n) < this. minSep ) {
31 this. separate (t, n)
32 } else {
33 this.align (t, fm)
34 this. cohere (t, fm)
35 }
36 }
37 t. forward (t.speed )
38 }
39
40 separate (t, n) {
41 const h = n. towards (t)
42 this. turnTowards (t, h)
43 }
44
45 align (t, fm) {
46 this. turnTowards (t,
47 this. averageHeading (fm))
48 }
49
50 cohere (t, fm) {
51 this. turnTowards (t,
52 this. averageHeadingTowards (t, fm))
53 }
54
55 turnTowards (t, heading ) {
56 let turn = t. subtractHeading ( heading )
57 turn = util.clamp (turn ,
58 -this.maxTurn , this. maxTurn )
59 t. rotate (turn)
60 }
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61
62 averageHeading (fm) {
63 // implementation
64 }
65
66 averageHeadingTowards (t, fm) {
67 // implementation
68 }
69
70 flockVectorSize () {
71 // implementation
72 }
73 }

2.3 Comparison
Below is the comparison of the aforementioned agent-based tools and AgentLang.
The criteria upon which the agent-based frameworks are analysed are the following:

• general-purpose - whether the framework can be used generally to model
any type of simulation (sociological, economical, organisational, ...)

• ease of learning - whether the framework is easily understandable and
usable by newcomers

• language simplicity - whether the framework provides a language that is
easy to learn by people with little to none prior programming experience

• web-based - whether the framework provides a web-based modeling inter-
face for use without any further manual installation

The below table represents the comparison of the NetLogo, AgentScript, GAMA
and AgentLang frameworks using the above criteria.

NetLogo AgentScript GAMA AgentLang
General-purpose Yes Yes Yes Yes
Ease of learning No No Yes Yes

Language simplicity No No No Yes
Web-based Yes Yes No Yes

2.4 Goals
By analysing the above existing agent-based tools, we come to the following
conclusions. Firstly, each of these tools is either directly based on an existing
general-purpose programming language, such as AgentScript or provides its own
domain-specific language, which is distinct in terms of syntax and structure, such
as NetLogo or GAMA. The former requires the understanding of the underlying
programming language, whereas the latter requires to learn a brand new language.
Moreover, these tools are often complex and offer a wide range of features, which
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at one hand is useful for agent-based specialised scientists, but on the other
hand discourages the rest by their steep learning curves. In response to these
characteristics, AgentLang aims to fulfil the following goals:

1. provide a unified language with simple and straightforward syntax and
structure

2. offer only the necessary, essential core library of features

3. allow for an alternative way of simulation modeling using a familiar approach
in form of spreadsheet representation
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3 Language Specification
The following chapters focus on the detailed language specification of AgentLang,
describing its structure, syntax, data types as well as its standard library and
core functionality.

3.1 Introduction
AgentLang is an interpreted programming language and its interpreter is written
in TypeScript. Its syntax is simple and straightforward, yet it may resemble some
modern general-purpose programming languages such as Python, establishing
a nice balance between the ease of use for non-technical scientists as well as
familiarity for developers.
The structure of AgentLang is natural in terms of the way humans tend to think
about agent-based models. The user defines one or multiple agents and for each
agent a set of their properties. An agent can be viewed as a class in an object-
oriented programming language and a property can be understood as a member
variable of this class. Apart from the declarations of agents and their properties,
AgentLang supports the declarations of global variables, which are constant values
that can be reused among all agents. User-defined functions with parameters are
however not supported in order to keep the language simple and allow for easy
conversion to the spreadsheet interface.
Each agent property has a strictly inline value defined by an expression. The
language does not allow for code blocks with multi-statement definitions, except
for the agent body.
Since AgentLang is an interpreted language, the program is evaluated in an
incremental manner, agent by agent, property by property. Although this would
imply that a property cannot be accessed unless defined earlier, it is not so,
since the interpreter has a built-in topological property sorting mechanism, which
determines the order in which properties are evaluated during runtime. However,
more about this concept will be discussed in later chapters. The output of the
interpreter is an array of agents and the current values of their properties. This
gives the developer the flexibility to analyse and use the output in any way they
need.

3.2 Syntax Grammar
The AgentLang’s syntax grammar A.1 represents the production rules of the
formal syntax grammar of the language. Terminal symbols are enclosed in double
quotes and non-terminal symbols are represented by identifiers written in snake
case.
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3.3 Declarations
Declarations are the top-level constructs of the AgentLang language. They are
used to declare agents, properties and global variables.

3.3.1 Agents
Agent is the main building block of a simulation. It represents an agent model
and its properties and is used for generating a set of agents for the simulation.
Agents are always declared in the top-level program scope and they cannot be
nested. Defining multiple agent models is also supported.
To declare an agent, we use the following production rule:
1 agent_declaration :
2 | "agent" identifier agent_count "{" "}"
3 | "agent" identifier agent_count "{" agent_body "}"

Below is an example of an agent declaration.
1 agent car 20 {
2 ...
3 }

AgentLang also supports multiple agent model declarations. To define multiple
agent models, declare them one after another in the program scope.
1 agent car 20 {
2 ...
3 }
4
5 agent pedestrian 60 {
6 ...
7 }

Note that the agent_count parameter does not have to be a numeric literal explicitly.
We can define a global variable with a numeric value and use this variable’s
identifier as the agent_count parameter.
1 define car_count = 20;
2
3 agent car car_count {
4 ...
5 }

More about global variables will be explained later in this chapter.
After defining agent models, AgentLang will generate the corresponding number
of agents for each agent model and evaluate their properties at runtime.

3.3.2 Properties
Properties are essential in defining the behaviour of an agent model. They can
be understood as variables with a value defined based on some inline expression.
Agents can have any number of properties, either independent or dependent on
each other. AgentLang supports two types of properties, which are property and
const, each having its specific use case.
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Const

Property of type const is a special kind of property, which holds a constant value
during the entire runtime of the simulation. It is calculated only once as the agent
is generated.
To declare a const property, use the following grammar production rule:

1 property_declaration :
2 "const" identifier "=" expression ";"

Below is an example of a const declaration holding a numeric value.

1 const max_speed = 260;

Properties of type const are used in cases when we need to for instance generate
random initial coordinates of agents, since they are calculated only once at the
beginning of the simulation.

1 const x_spawn = random (100 , 200);
2 const y_spawn = random (100 , 200);
3
4 property x: x_spawn = x + 1;
5 property y: y_spawn = y + 1;

Property

Property of type property is the most commonly used type of property in Agent-
Lang. It is recalculated in each step of the simulation for every agent, based on
the most current values.
To declare a property property, use the following grammar production rule:

1 property_declaration :
2 " property " identifier "=" expression ";"

Below is an example of a property declaration that holds a random numeric value
between 5 and 10 in each step of the simulation.

1 property current_speed = random (5, 10);

However, what if we want to set the property to some initial value and use this
property’s value in its own declaration?

1 property x = x + 1;

In the above example, it is not possible. The x property is incremented by 1 in
each step of the simulation, however, it is not set to any default value to start
with. That is why AgentLang supports default property values.
To declare a property with a default value, we use the following production rule.

1 property_declaration :
2 " property " identifier ":" expression "=" expression ";"
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The expression after the semicolon is used to initialise the property to some default
value in the first step of the simulation. In each next step, the second expression
is used to recalculate its value.

1 property x: 15 = x + 1;
2 property y: 5 = y * 2;

A better example would be the earlier example with the current speed. We want
the agent to accelarate, so we increment its speed by one.

1 const initial_speed = 0;
2 property speed : initial_speed = speed + 1;

In this way, the speed is set to 0 in the first step and is incremented by 1 in each
following step, producing values 1, 2, 3, 4 and so on.
However, this is not the only use case of default property values. Suppose the
following exaggerated example, where we have two properties, where each depends
on the other.

1 property a = b + 1;
2 property b = a + 2;

This example would throw an error, since there is a cycle in the property declara-
tions. In order to fix this issue, we need to assign a default value to one of the
properties, so that the interpreter knows which property will be evaluated first, so
that the other property can calculate its value based on the first property.

1 property a = b + 1;
2 property b: 0 = a + 2;

The above example would work, since at least one of the properties is initialised
with a default value. This topic, however, concerns the topological sorting
mechanism implemented in the AgentLang’s interpreter, which will be explained
later in this thesis.

3.3.3 Global Variables
Apart from agent and property declarations, AgentLang supports the declaration
of global variables which can be reused among all agent models as constant
values. Global variables are always declared in the top-level program scope and
the best practice is to declare them before all agent declarations. However, it
is not necessary, since the AgentLang interpreter has a built-in mechanism for
declaration reordering, so that the global variables are always evaluated before
agent declarations.
To declare a global variable, we use the following production rule.

1 define_declaration :
2 " define " identifier "=" expression ";"

Below is an example of usage of global variable declarations.
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1 define person_count = 120;
2 define default_speed = 5;
3
4 agent person person_count {
5 const speed = default_speed / 2;
6 }
7
8 agent car 10 {
9 const speed = default_speed * 3;

10 }

Note that global variables cannot contain any identifiers or function calls in their
definitions. They are plain constant values which can only hold numeric or boolean
literals.

3.4 Data Types
There are five data types that AgentLang supports, which are numeric literals,
boolean literals, AgentList instances, AgentObject instances and Null values.

3.4.1 Numeric Literal
Numeric literal is one of the two primitive data types in AgentLang. A numeric
literal represents either an integer or a decimal number. Decimal numbers can
have any number of decimal places, however, they are always rounded to up to
eight decimal places in the simulation’s output.
Numeric literals can be used in many ways, either as raw numeric values or in
any numeric expression, such as binary or unary expressions or as parameters to
function calls.

1 const integer_value = 3;
2 const decimal_value = 12.8;
3 const binary_expression = 6.5 * 2 / integer_value ;
4 const random_value = random (10, 20);

3.4.2 Boolean Literal
Boolean literal is the second of the two primitive data types in AgentLang. It
represents a binary value, which can either be true or false.
Boolean literals can be expressed either explicitly, using the true or false keywords,
or they can be the result of some expression, such as the relational expression
(more on relational expression later).

1 const is_active = false;
2 const is_first = index () == 0;
3
4 property temperature : 10 = temperature + random (-3, 3);
5 const is_cold = temperature <= 9;
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3.4.3 AgentList
AgentList is a special data type representing an array of agent instances. This
array cannot be defined explicitly, cannot be indexed and it only results from
various built-in function calls.
The easiest way to retrieve an array of agent instances is to use the agents function,
which returns the current array of agent instances of the specified type.

1 agent prey 10 {
2 ...
3 }
4
5 agent predator 5 {
6 property preys = agents (prey);
7 }

The preys property holds an array of agent instances of type prey with their most
recent values.
There are numerous built-in functions used for retrieving or manipulating values
of type AgentList, which will be described later in this chapter.

3.4.4 AgentObject
AgentObject is a special data type representing one specific agent instance and
its properties. It can be used to retrieve the property values of an agent and use
them in later calculations.
Similarly to AgentList, AgentObject can only be retrieved by using specific built-in
function calls, such as min.

1 agent person 10 {
2 property x = ...;
3 property y = ...;
4
5 property closest_person = min( agents ( person ) | p -> dist(p.x,

p.y, x, y));
6 }

The above example uses the min function together with a set comprehension
expression to retrieve an agent instance of type person which is closest to the
current person. We can now use the closest_person property to retrieve the agent’s
property values.

1 agent person 10 {
2 property x = ...;
3 property y = ...;
4
5 const is_married = prob (0.5);
6 property closest_person = min( agents ( person ) | p -> dist(p.x,

p.y, x, y));
7
8 property closest_is_married = closest_person . is_married ;
9 }
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3.4.5 Null
Null is a special data type that represents an undefined or missing value. It is
tightly bound to the AgentObject data type. Note the following example.

1 define range = 65;
2
3 agent person 10 {
4 property x = ...;
5 property y = ...;
6
7 property people = agents ( person );
8 property close_people = filter ( people | p -> dist(p.x, p.y, x

, y) < range );
9 property close_person = min( close_people | c -> dist(c.x, c.y

, x, y));
10 }

The close_person property attempts to find an agent that is closest to the current
agent, but is also in the visual range of 65. If there are no agents in this visual
range, the close_person searches an empty array and cannot retrieve a specific
agent instance. Therefore, it is assigned a Null value.
A problem with Null values, however, is that we cannot use it in other properties.
More specifically, we cannot retrieve the agent’s properties, since it does not hold
any agent instance, rather a Null value. That is why AgentLang supports the
otherwise operator, which tackles issues with Null values. The otherwise operator
will be discussed later in this chapter.

3.5 Expressions
The following chapters introduce all expression types supported by AgentLang,
from the most basic ones such as binary or relational expressions to more complex,
language-specific expressions such as otherwise expressions or set comprehension
expressions.

3.5.1 Binary Expression
Binary expression is the most basic expression in AgentLang. It consists of
two numeric operands and one binary operator. The operator can be of type
addition, subtraction, multiplication, division or modulo. These expressions can
be arbitrarily nested and parenthesised.

1 const add_expr = 2 + 3;
2 const sub_expr = 6 - 2;
3 const mul_expr = 12 * 4;
4 const div_expr = 8 / 3;
5 const mod_expr = 16 % 6;
6
7 const complex_expr = 2 + 3 * 4 - 8 / 14;
8 const parenth_expr = (2 + 3) * 4 - (12 + 2);

Note that implicit conversions with other operand data types are not supported
and result in a runtime error.
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3.5.2 Unary Expression
Unary expressions consist of one numeric or boolean operand together with a
unary operator. There are two unary operators, one for numeric unary expressions
and the other for boolean unary expressions.

Numeric Unary Expression

Numeric unary expression is used to convert a positive number to a negative
number using the minus ‘-‘ operator. The operand can either be a plain numeric
literal or an identifier holding a numeric value.

1 const value = 12.6;
2 const neg_basic = -12.6;
3 const neg_ident = -value ;

Boolean Unary Expression

Boolean unary expression is used to negate a boolean value using the emphasis ‘¡
operator. The operand can either be a plain boolean literal (‘true‘ or ‘false‘) or
an identifier holding a boolean value.

1 const value = false;
2 const neg_basic = !false;
3 const neg_ident = !value ;

3.5.3 Logical Expression
Logical expressions are expressions operating on boolean literals and always return
a boolean value as the result. They are special types of binary expressions which
use the and and or operators together with two boolean operands.

1 const bool_value = false;
2
3 const log_expr_and = true and bool_value ;
4 const log_expr_or = true or bool_value ;

3.5.4 Relational Expression
Relational expressions are special types of binary expressions that operate on
either numeric or boolean operands and always return boolean results. They use
relational operators, such as ==, !=, >, >=, < and <=.
The == and != operators can be used with either numbers and booleans, since they
check for value equality. The rest of the relational operators operate on numeric
values only.

1 const bool_1 = true;
2 const bool_2 = false;
3
4 const bool_expr_1 = bool_1 == bool_2 ;
5 const bool_expr_2 = bool_1 != bool_2 ;
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6
7 const num_1 = 1.5;
8 const num_2 = 8.4;
9

10 const num_expr_1 = num_1 == num_2 ;
11 const num_expr_2 = num_1 != num_2 ;
12 const num_expr_3 = num_1 > num_2 ;
13 const num_expr_4 = num_1 >= num_2 ;
14 const num_expr_5 = num_1 < num_2 ;
15 const num_expr_6 = num_1 <= num_2 ;

Note that other types of operands are not supported and result in a runtime error.

3.5.5 Conditional Expression
Conditional expressions are used to control the flow of property evaluation. They
decide between two alternatives based on some condition. The condition is always
a boolean expression and the results can be of any type, based on the data type
of the given property.
We use the following production rule for defining a conditional expression:

1 conditional_expression :
2 | "if" expression "then" expression "else" expression

The if keyword marks the start of a conditional expression. It is followed by
a boolean expression denoting the condition upon which the structure decides.
Then comes the then keyword followed by an expression representing the value
to be evaluated if the condition is met (is true). Finally comes the else keyword
followed by an expression representing the value to be evaluated if the condition
is not met (is false).

1 define max_speed = 10;
2
3 agent person 5 {
4 property speed : 5 = if abs( speed ) >= max_speed then speed

else speed + random (-1, 1);
5 }

The above example controls the maximum value of speed using the max_speed global
variable. If it overflows, it keeps the max_speed value, otherwise it is randomly
incremented or decremented.

3.5.6 Otherwise Expression
The otherwise expression is a language-specific type of expression used to handle
issues with Null values. It is a binary expression that uses the otherwise operator
between the two operands.
The left-hand side of the otherwise expression consists of any expression containing
a value of type AgentObject. The right-hand side consists of any expression that
does not contain a value of type AgentObject. When the otherwise expression is
being evaluated, AgentLang checks whether the value of type AgentObject on the
left-hand side is Null. If not, it evaluates the left-hand side expression. On the
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other hand, if the value is Null, it instantly switches to the right-hand side of the
expression and evaluates it.
Otherwise expressions serve as guards for Null values, for we can only tell if the
value of type AgentObject is Null or not Null during runtime.
1 define range = 60;
2
3 agent person 120 {
4 property x = x + x_move ;
5 property y = y + y_move ;
6
7 property people = agents ( person );
8
9 property in_proximity = filter ( people | p -> dist(p.x, p.y, x

, y) <= range );
10 property closest = min( in_proximity | p -> dist(p.x, p.y, x,

y));
11
12 property x_move = ( closest .x - x) / 10 otherwise 0;
13 property y_move = ( closest .y - y) / 10 otherwise 0;
14 }

The above example finds all people in some visual proximity to the current person
and selects the closest person from the list. It then calculates the direction in
which the current person should move in order to approach the closest person.
However, we cannot be certain that we will find any people in the given proximity.
If that’s the case, the in_promixity property will be an empty array and the closest
property will therefore result in a Null value. That is why we need to use the
otherwise operator to ensure that if no such person is found, we will use values 0
for x_move and y_move properties.

3.5.7 Set Comprehension Expression
While being classified as expression, the set comprehension expression is rather a
syntactical structure that an expression. It cannot be used on its own, only as a
parameter to set comprehension-specific built-in functions. They are mainly used
for traversing arrays of agent instances and manipulating them in some way. Use
cases include filtering of agents, summing certain agent properties or finding a
specific agent instance based on some condition.
There are several built-in functions that take set comprehension expression as
their parameter, some of which are filter, sum, min and max.
To define a set comprehension expression, we use the following production rule:
1 set_comprehension_expression :
2 | expression "|" identifier "->" expression

We start with an expression holding a value of type AgentList, followed by a
divider |. Then, we declare the set comprehension parameter name, which is any
identifier we choose, such as item followed again by an arrow ->. This parameter
is used to access each agent instance in the array, one by one. The final part of
the set comprehension expression is an expression representing a condition based
on which to manipulate the agent instances.
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1 define range = 60;
2
3 agent person 120 {
4 property x = x + random (-1, 1);
5 property y = y + random (-1, 1);
6
7 property people = agents ( person );
8 property in_proximity = filter ( people | p -> dist(p.x, p.y, x

, y) <= range );
9 }

The filter function takes a set comprehension expression as a parameter. We
use the p parameter to access each individual agent instance and their properties.
Finally, the right-hand side of the set comprehension expression is used for filtering
the agent array based on the proximity of each agent instance to the current agent.
The result of in_proximity property is a filtered array of agents of type person.

3.6 Core Library
The AgentLang’s core library consists of several built-in functions necessary for
agent manipulation as well as mathematical calculations. Below is the complete
list of built-in functions and their usage.

3.6.1 Mathematical Functions
sqrt(number): number - calculates the square root of a numeric value.
abs(number): number - calculates the absolute value of a numeric value.
floor(number): number - calculates the floor value of a decimal numeric value.
ceil(number): number - calculates the ceil value of a decimal numeric value.
round(number): number - calculates the rounded value of a decimal numeric value.
sin(number): number - calculates the sine value of a numeric value.
cos(number): number - calculates the cosine value of a numeric value.
tan(number): number - calculates the tangent value of a numeric value.
atan(number): number - calculates the arc tangent value of a numeric value.
pi(): number - returns the value of Pi (3.14...).

3.6.2 Agent Manipulation Functions
filter(SetComprehension): AgentList - takes a comprehension argument with a
boolean expression as its value and returns a filtered list of agents based on this
value.
sum(SetComprehension): number - takes a set comprehension argument with a nu-
meric expression as its value and returns a sum of these values (from all agents).
min(SetComprehension): AgentObject - takes a set comprehension argument with a
numeric expression as its value and returns an agent object with the minimum
corresponding value.
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max(SetComprehension): AgentObject - takes a set comprehension argument with a
numeric expression as its value and returns an agent object with the maximum
corresponding value.

3.6.3 Utility Functions
agents(identifier): AgentList - returns the list of all agents of the provided type.
count(AgentList): number - takes an AgentList value as a parameter and returns
the number of this AgentList value.
empty(): AgentList - returns an empty array of agents and is used primarily in
defining default property values in case of topological errors.
prob(number): boolean - takes a decimal numeric value between 0 and 1 representing
a probability ratio and returns a boolean value based on this probability. If we
use prob(0.8), we have a 80% chance of getting a true value and a 20% change of
getting a false value as a result.
dist(number, number, number, number): number - calculates the distance between
two points in a two-dimensional space. The parameters represent x1, y1, x2 and
y2 values.
find_by_coordinates(AgentList, number, number): AgentObject - returns an Agen-
tObject holding an agent whose coordinates match the two numeric x and y
values.

3.6.4 Special Functions
width(): number - returns the current width of the visualisation grid, which was
provided in the interpreter’s configuration.
height(): number - returns the current height of the visualisation grid, which was
provided in the interpreter’s configuration.
index(): number - returns the numeric index of the current agent, starting from 0.
step(): number - returns the value of the current step, starting from 0.
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4 Implementation
The following chapters describe the most important concepts in the AgentLang
interpreter’s implementation and point out the most interesting parts of its
architecture and functioning.

4.1 Overview and Architecture
The AgentLang’s interpreter is written in TypeScript. The choice of this specific
language resulted from various reasons. First and foremost, we needed good
compatibility and integrability with the web-based interface, which is the primary
environment where AgentLang is intended to be used. Furthermore, there was
no primary need for high performance, since AgentLang is intended mainly for
simple simulations, as a proof of concept of the language itself. Since modern web
applications are written mainly in JavaScript frameworks and we opted for the
TypeScript-based Next.js framework for the web-based interface, TypeScript felt
like a natural choice.
The interpreter itself follows an architecture resembling the pipeline architectural
style.

Figure 4.1 Interpreter Architecture

The interpreter consists of five main parts, which are:

1. symbolizer - produces an array of symbols together with their positions in
the source code

2. lexer - produces an array of language-specific tokens together with their
positions in the source code

3. parser - produces an abstract syntax tree holding the semantic structure of
the program
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4. runtime - traverses and evaluates the abstract syntax tree instruction by
instruction and produces the program’s output

5. interpreter - holds all of the above parts together and provides a public
API for starting, pausing, resuming, stopping and resetting the simulation

4.1.1 Symbolizer
Symbolizer is a simple module responsible for one task only - to convert the source
code into individual symbols and produce metadata for each symbol, such as
its position in the source code. Although it is usually part of the lexer module
itself, we decided to put it to a standalone module for better modularity and code
readability.
The primary and only method in the symbolizer module is the symbolize method,
which reads the source code character by character and produces an array of
symbols.

1 public symbolize (): Symbol [] {
2 const symbols : Symbol [] = [];
3 const position : Position = { line: 1, character : 1 };
4
5 for (const character of this. sourceCode . split ("")) {
6 symbols .push ({
7 value : character ,
8 position : { ... position }
9 });

10
11 position . character ++;
12
13 if ( character === "\n") {
14 position .line ++;
15 position . character = 1;
16 }
17 }
18
19 return symbols ;
20 }

Each symbol consists of its string value, which is strictly one character only and
its position in the source code. The position contains the line number and the
character number.

1 export interface Symbol {
2 value: string ;
3 position : Position ;
4 }
5
6 export interface Position {
7 line: number ;
8 character : number ;
9 }

36



4.1.2 Lexer
As opposed to the symbolizer module, the lexer module performs a slightly more
complicated task. It contains language and syntax-specific logic for correctly
recognizing and classifying tokens supported by the language. It groups together
symbols sequentially and produces corresponding tokens with correct types. For
instance, it distinguishes user-defined identifiers from language-specific, reserved
keywords, so that the parser can then handle these tokens accordingly. Apart
from the program’s keywords, the lexer adds a special token at the end of the
token array, called the end-of-file token. This token serves as an indicator to the
program’s end.
A token is based on a simple interface, holding its type, raw value and position
in the source code. The position of a token is defined by the position of its first
character.

1 export interface Token {
2 type: TokenType ;
3 value: string ;
4 position : Position ;
5 }

There are many token types, some of which are:

1 export enum TokenType {
2 Identifier = " Identifier ",
3 Number = " Number ",
4 Boolean = " Boolean ",
5
6 OpenParen = " OpenParen ",
7 CloseParen = " CloseParen ",
8
9 Colon = "Colon",

10 Semicolon = " Semicolon ",
11
12 // ...
13 }

The tokenize method is the main method of the lexer module. It traverses the
input array of symbols and checks their value, based on which it decides which
token type to generate. Finally, it returns the array of generated tokens.

1 public tokenize (): Token [] {
2 while (this. hasNext ()) {
3 switch (this. getNext (). value ) {
4 case "(":
5 this.token ( TokenType . OpenParen );
6 break;
7 case ")":
8 this.token ( TokenType . CloseParen );
9 break;

10 // ...
11 default : {
12 // tokenize identifiers
13 // tokenize language - specific keywords
14 // tokenize numeric literals
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15 throw new ErrorLexer ("...");
16 }
17 }
18 }
19
20 this.token ( TokenType .EOF);
21 return this. tokens ;
22 }

In case the current symbol is not recognized, it throws an exception and the
interpreter stops the process.

4.1.3 Parser
The parser module is without doubt one of the most interesting parts of the inter-
preter. It represents a push-down automaton accepting the language’s grammar
and producing an AST representing the semantic structure of the program. The
structure of the parser module looks like the following:

1 class Parser {
2 private tokens : Token [];
3
4 constructor ( tokens : Token []) {
5 this. tokens = tokens ;
6 }
7
8 public parse (): Program {}
9

10 private parseStatement (): Statement {}
11
12 private parseObjectDeclaration (): ObjectDeclaration {}
13
14 private parseVariableDeclaration (): VariableDeclaration {}
15
16 private parseExpression (): Expression {};
17
18 // rest of the parsing methods
19 }

Each parse... method represents one non-terminal of the language’s grammar
and parses the corresponding non-terminal based on the grammar rules. When
we begin parsing the program, we call the parse method of the parser module.

1 public parse (): Program {
2 const program : Program = {
3 type: NodeType .Program ,
4 body: [],
5 position : {
6 line: 0,
7 character : 0
8 }
9 };

10
11 while (this. notEndOfFile ()) {
12 const statement = this. parseStatement ();
13 program .body.push( statement );
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14 }
15
16 return program ;
17 }

The method iteratively parses statements one by one until it reaches the end-of-file
(EOF) token. Finally, it returns the root node of the AST called Program.
Let us revisit a part of the language’s formal grammar for the top-level constructs:

1 program :
2 | declaration
3 | declaration program
4
5 declaration :
6 | define_declaration
7 | agent_declaration

The program is defined recursively and parses any number of declarations, which
are statements. A declaration is either of type define_declaration representing a
global variable declaration or agent_declaration representing an agent declaration.
Now let’s take a look at the parseStatement method called by the parse method.

1 private parseStatement (): Statement {
2 switch (this.at ().type) {
3 case TokenType . Define :
4 return this. parseDefineDeclaration ();
5 case TokenType .Agent :
6 return this. parseObjectDeclaration ();
7 default :
8 throw new ErrorParser ("...");
9 }

10 }

We can see that it abides by the grammar rules of statements (declarations). A
global variable declaration always starts with the define keyword, whereas an
agent declaration always starts with the agent keyword. If the current token is
of any of these two types, we parse the corresponding declaration by calling the
parseDefineDeclaration or parseObjectDeclaration methods respectively. In case of
other token types, the parser throws an exception, since other token types do not
abide by the grammar rules of the language.
These two above parsing methods are simple, since the right-hand side of their
grammar rules are simple. Let us look at a more explicit example of an agent
declaration, defined by the following grammar rule.

1 agent_declaration :
2 | "agent" identifier agent_count "{" "}"
3 | "agent" identifier agent_count "{" agent_body "}"
4
5 agent_count :
6 | numeric_literal
7 | identifier
8
9 agent_body :

10 | property_declaration
11 | property_declaration agent_body
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The corresponding parsing function is implemented as following:

1 private parseObjectDeclaration (): ObjectDeclaration {
2 const { position } = this. assert ( TokenType .Agent , "...", this

. position ());
3 const identifier = this. assert ( TokenType .Identifier , "...",

this. position ()).value ;
4
5 this. assertMulti ( TokenType .Number , TokenType .Identifier , "...

", this. position (), false );
6
7 const count = this. parseExpression ();
8
9 this. assert ( TokenType .OpenBrace , "...", this. position ());

10
11 const body: VariableDeclaration [] = [];
12
13 while (this. isNotOf ( TokenType . CloseBrace )) {
14 switch (this.at ().type) {
15 case TokenType . Property :
16 case TokenType . Const :
17 const declaration = this. parseVariableDeclaration ();
18 body.push( declaration );
19 break;
20 default :
21 throw new ErrorParser ("...");
22 }
23 }
24
25 this. assert ( TokenType .CloseBrace , "...", this. position ());
26
27 return {
28 type: NodeType . ObjectDeclaration ,
29 identifier , count , body , position
30 };
31 }

The parsing of an agent declaration starts by checking if the current token is of type
Agent. If yes, we save its position denoting the start of the agent declaration for
future debugging purposes. The next token in the right-hand side of the grammar
rule is an identifier. Therefore, we check if the current token is of type Identifier
and if yes, we save its value. Following the identifier, we expect the next token
to be either of type Number or Identifier denoting the agent_count non-terminal.
Then, we expect an open brace. Now comes the interesting part. Based on the
agent_body non-terminal, an arbitrary number of property declarations follows.
Hence, we parse the list of property declarations until we reach the close brace
token. Then we know that we reached the end of the agent declaration and can
return the AST node representing the agent declaration with all its important
metadata.
It is also important to mention, that the order in which these parser methods call
themselves is of high importance, especially in parsing expressions. This is due
to the mathematical concept of operator precedence. Let’s illustrate this on an
example of two parsing methods responsible for parsing additive and multiplicative
binary expressions.
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1 private parseAdditiveExpression (): Expression {
2 let left = this. parseMultiplicativeExpression ();
3
4 while (this.at (). value === "+" || this.at ().value === "-") {
5 const token = this.next ();
6 const operator = token .value ;
7 const position = token . position ;
8
9 const right = this. parseMultiplicativeExpression ();

10
11 left = {
12 type: NodeType . BinaryExpression ,
13 left ,
14 right ,
15 operator ,
16 position
17 } as BinaryExpression ;
18 }
19
20 return left;
21 }

A binary expression consists of three main parts - the left operand, the right
operand and a binary operator. Since the parser has no token lookahead, we can
only consider the current token. Since evaluation of the AST is done using a
depth-first search algorithm, we know that the lower in the AST a node is, the
sooner it will be evaluated. Based on the operator precedence, more specifically
the superiority of multiplication over addition, in case our expression consists
of both additive and multiplicative operators, we must parse the multiplicative
binary expressions first. Due to this reason, we first evaluate the left-hand side of
the potential additive binary expression as a multiplicative expression, so that it
lies lower in the AST than the potential additive expression we are trying to parse.
Then two possible scenarios can happen - either we find an additive operator (+
or -) after the multiplicative expression or not. In the former case, we parse the
right-hand side of the additive binary expression as a multiplicative expression for
the same reasons that we parse the left-hand side of the additive expression as a
multiplicative expression. In the latter case, however, we return the left-hand side
representing a multiplicative binary expression.
To better illustrate the concept behind this way of parsing, let us look at the
following two examples:

1 const a = 5 * 2;
2 const b = 5 * 2 + 3;

In the case of a we parse the left-hand side as a multiplicative binary expression,
only to find out that it is not followed by an additive operator. In that case,
we return the multiplicative binary expression from the parseAdditiveExpression
method, which is the desired output. In the case of b, we again parse the left-hand
side as a multiplicative binary expression. Then, we come across an additive binary
operator +, so we parse the right-hand side of the additive binary expression. The
result of the parseAdditiveExpression in this case is an additive binary expression
with the left-hand side holding a multiplicative binary expression and the right-
hand side holding a numeric literal. Since the parseMultiplicativeExpression works
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in the same way as the parseAdditiveExpression, it further nests into more and
more low-level expressions, finally reaching the parsePrimaryExpression responsible
for parsing numeric literals, boolean literals and identifiers. That is why the
right-hand side of b returns a numeric literal.
Finally, to better understand the resulting AST structure of the parser module,
let’s look at the following AgentLang code.

1 agent person 1 {
2 const age = 28;
3 const is_employed = false;
4 }

It is a simple program containing one agent declaration with two const properties.
The program is syntactically valid and after evaluation, the parser returns the
following AST.

1 {
2 "type": " Program ",
3 "body": [
4 {
5 "type": " ObjectDeclaration ",
6 " identifier ": " person ",
7 "count": {
8 "type": " NumericLiteral ",
9 "value": 1,

10 },
11 "body": [
12 {
13 "type": " VariableDeclaration ",
14 " variableType ": "const",
15 " identifier ": "age",
16 "value": {
17 "type": " NumericLiteral ",
18 "value": 28,
19 },
20 },
21 {
22 "type": " VariableDeclaration ",
23 " variableType ": "const",
24 " identifier ": " is_employed ",
25 "value": {
26 "type": " BooleanLiteral ",
27 "value": false ,
28 },
29 }
30 ],
31 }
32 ],
33 }

The top-level unit (root node) is the program itself. It has a body, which is an
array of statements (declarations). In our example program, the only statement is
an agent declaration with identifier person. This agent declaration also has a body,
which is an array of property declarations. The first property declaration has a
value of a numeric literal, whereas the second property declaration has a value of
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a boolean literal. Each node should also have the position property holding the
line number and character of the corresponding node in the source code, which is
useful for providing the user a detailed description of potential errors. However,
for the sake of this AST showcase, the position properties are omitted. This above
AST is a real example of the AgentLang parser’s output, which is then passed to
the runtime module for the real-time AST evaluation.

4.1.4 Runtime
The runtime module is the final step in the process of interpreting AgentLang’s
source code. It’s main responsibility is traversing the valid AST structure, evalu-
ating it in real-time and producing the final program’s output. This technique is,
however, specific to interpreters only. Interpreters depend on the implementation
language, in this case TypeScript, that merely recognizes the intentions of the
AgentLang’s program instructions and performs calculations of the AgentLang’s
program using its own data types, structures and mechanisms.
The runtime module works fundamentally in a similar way to the parser module,
as far as the structure and recursive evaluation is concerned. The structure of the
runtime module looks like the following:

1 class Runtime {
2
3 private program : Program ;
4 private output : InterpreterOutput = {
5 type: ValueType .Output ,
6 step: 0,
7 agents : []
8 };
9

10 constructor ( program : Program ) {
11 this. program = program ;
12 }
13
14 public run(step: number ): RuntimeValue {}
15
16 private evaluateProgram ( program : Program ): RuntimeValue {}
17
18 private evaluateObjectDeclaration ( declaration :

ObjectDeclaration ): void {}
19
20 private evaluateVariableDeclaration ( declaration :

VariableDeclaration ): void {}
21
22 private evaluateBinaryExpression ( expression : BinaryExpression

): RuntimeValue {}
23
24 // rest of the evaluating methods
25 }

Whereas in the parser module each method returned a part of the AST as the
descendant of the ParserValue interface, the runtime module uses an abstract
interface called RuntimeValue representing the actual value of each data type, such
as a numeric literal or a boolean literal. Notice that the evaluateObjectDeclaration
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and evaluateVariableDeclaration methods are of type void and they do not return
anything. That is because both object declaration and variable declaration are
statements. In the objectDeclaration method, the final step is to save the evaluated
agent to the output: InterpreterOutput variable, which after the evaluation of the
program is returned by the run method.
The runtime module is not responsible for stepping through the simulation. The
run method takes the step as the parameter and performs one evaluation of a single
simulation step. The stepping functionality is implemented in the interpreter
module discussed in following chapters.
To better understand the evaluation of expressions from the AST, below is the
implementation of the evaluateBinaryExpression method:

1 private evaluateNumericBinaryExpression (
2 expression : BinaryExpression
3 ): RuntimeValue {
4 const { operator , left , right } = expresssion ;
5 const lhs = this. evaluateExpression (left);
6 const rhs = this. evaluateExpression ( right);
7
8 let result = 0;
9

10 if ( operator === "+") {
11 result = lhs.value + rhs.value ;
12 } else if ( operator === "-") {
13 result = lhs. value - rhs.value ;
14 } else if ( operator === "*") {
15 result = lhs. value * rhs.value ;
16 } else if ( operator === "/") {
17 if (rhs.value === 0) {
18 throw new ErrorRuntime ("...");
19 }
20
21 result = lhs.value / rhs.value ;
22 } else {
23 if (rhs.value === 0) {
24 throw new ErrorRuntime ("...");
25 }
26
27 result = this. customModulo (lhs.value , rhs.value );
28 }
29
30 return {
31 type: ValueType .Number ,
32 value : result
33 } as NumberValue ;
34 }

First, the runtime module needs to evaluate both operands of the binary expression.
The resulting values should be numeric literals. Then, based on the operator of
the binary expression, we perform mathematical calculations to get the resulting
value of the binary expression and we return this result as an instance of the
RuntimeValue interface.
The result of the program is a descendant of the RuntimeValue interface called
RuntimeOutput:
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1 export interface RuntimeOutput extends RuntimeValue {
2 type: ValueType . Output ;
3 step: number ;
4 agents : RuntimeAgent [];
5 }
6
7 export interface RuntimeAgent {
8 id: string ;
9 identifier : string ;

10 variables : Map <string , RuntimeValue >;
11 }

The output emits an array of agents with their current property values as well as
the number of the current step.
After every evaluation of the current step, the resulting array of agents is cached
by the runtime module to a variable called previousAgents: RuntimeAgent[]. This
needs to be done because the values of properties in the next step are always
calculated based on their previous values (values in the last step). This is to ensure
the avoidance of problems with sequential interpreting. Since agents are evaluated
one by one, it could happen that an agent’s property is dependent on the previous
agent’s property. This would result in a chain of unwanted values in the same
step. Therefore, new values are always calculated based on previous values. Step
0 is therefore a special case of step, where not only const properties are initialised,
but also default initial values are calculated and saved to the previous output.
Perhaps the most important and most used method in the runtime module is
the evaluateRuntimeValue method, which is used every time we need to evaluate
an expression of any kind. It routes the input AST node to the corresponding
evaluator method and returns its result:

1 private evaluateRuntimeValue (node: ParserValue , id: string ):
RuntimeValue {

2 switch (node.type) {
3 case NodeType . Identifier :
4 return this. evaluateIdentifier (node as Identifier , id);
5 case NodeType . NumericLiteral :
6 return this. evaluateNumericLiteral (node as NumericLiteral

);
7 case NodeType . BooleanLiteral :
8 return this. evaluateBooleanLiteral (node as BooleanLiteral

);
9 case NodeType . BinaryExpression :

10 return this. evaluateBinaryExpression (node as
BinaryExpression , id);

11 case NodeType . UnaryExpression :
12 return this. evaluateUnaryExpression (node as

UnaryExpression , id);
13 // other evaluating methods
14 default :
15 throw new ErrorRuntime ("...");
16 }
17 }
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4.1.5 Interpreter
The interpreter module is a place where all of the above modules are used from and
controlled by. The main responsibility of the interpreter module is to provide a
public API for developers to integrate and use the interpreter in external projects.
The input to the interpreter module is a plain string representing the source code
of an AgentLang’s simulation and the output is the simulation’s output itself,
returned by the runtime module. For controlling the simulation’s runtime, the
interpreter module uses the RxJS [14] library for of its extensive functionality with
observables and subscriptions.
The structure of the interpreter module looks as below:

1 class Interpreter {
2
3 public get( sourceCode : string , config :

InterpreterConfiguration ): Observable < InterpreterOutput > {}
4
5 private build ( sourceCode : string , config :

InterpreterConfiguration ): void {}
6
7 public start (): void {}
8 public pause (): void {}
9 public resume (): void {}

10 public reset (): void {}
11 public step (): void {}
12 }

The interpreter module contains a set of public control methods used for controlling
the interpretation process. These include:

1. start - starts the interpreter

2. pause - pauses the interpreter

3. resume - resumes paused interpreter, so it will continue at the step it left off
on

4. reset - resets the current step to 0 to start from the beginning

5. step - can be called when the interpreter is paused and will emit the output
of the next step on each call

Then there is the get method, which the user subscribes to to retrieve the current
output every time it is emitted by the interpreter. It accepts two parameters,
which is the source code and the configuration. The source code is a plain string
containing the AgentLang program’s source code. The configuration is an object
defined as below.

1 export interface InterpreterConfiguration {
2 steps: number ;
3 delay: number ;
4 width: number ;
5 height : number ;
6 }
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When we start the simulation, a new subscription is created using the RxJS library:

1 private subscribe (): void {
2 this. subscription = interval (this. config .delay ).pipe(
3 takeWhile (() => this. currentStep == this. config .steps ),
4 ). subscribe (() =>
5 this. dataSubject .next(this. getInterpreterOutput (this.

currentStep ++)));
6 }

It utilises the delay and steps parameters to ensure the emitting of the interpreter’s
output for steps times with the delay between each step defined by the delay
parameter. On every emit, we push a new value to the dataSubject variable. The
getInterpreterOutput ensures the evaluation of the current step by the runtime
module:

1 private getInterpreterOutput (step: number ): InterpreterOutput {
2 try {
3 const value : RuntimeValue = this. runtime !. run(step);
4 return this. getRuntimeOutput (value as RuntimeOutput );
5 } catch ( error ) {
6 return this. getRuntimeError (error as ErrorRuntime )
7 }
8 }

The getRuntimeOutput and getRuntimeError are plain mapper functions that ensure
correct mapping from the raw input to a desired output for the user.

4.2 Interesting Concepts
The following chapters describe some of the interesting, non-trivial concepts used
in the implementation of the AgentLang’s interpreter, such as the topological
property sorting or the automatic source code formatting.

4.2.1 Topological Property Sorting
When modeling an AgentLang simulation, there are often numerous dependencies
between the agents’ properties. Sometimes two properties can depend on each
other respectively, which poses a significant problem to the evaluation process of
their values. Although the properties can be assigned a default value which is a
constant calculated at the beginning of the simulation, it often does not make
sense to use default values for each property. Moreover it poses bad development
experience if the user needs to declare properties in the order in which they should
be evaluated by the interpreter. Fortunately, there is a way to solve such issues in
a general way using topological sort.
Topological sort is a sorting mechanism that operates on directed acyclic graphs
(henceforth referred to as DAGs). It is a linear ordering of the graph’s vertices
such that for every directed edge from vertex u to vertex v, vertex u comes before
vertex v in the ordering. This algorithm does not work on cyclic graphs, since
there is no linear ordering. In other words, the vertices would depend on each
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other in a cyclic manner, not allowing the algorithm to determine which vertex to
start with and which vertex to finish with.
In terms of programming language interpreters, topological sort is a useful tech-
nique for tackling issues with variable dependencies. Interpreters read and evaluate
source code line by line, instruction by instruction. This mechanism implies that
before we can access a variable by its identifier, we first need to define it. That is
fine by most general-purpose programming languages, since they feature various
other complex language structures to work around this problem. However, Agent-
Lang is designed in a specifically variable-oriented way, therefore the issues with
the ordering of variable evaluation needs to be handled. And that is where the
topological sorting mechanism can be used.
In AgentLang, topological sort is used to reorder property declarations in agents
so that they are evaluated in the order on which they are dependent on each other.
This means, that if property a is dependent on property b, but property b is not
dependent on any other property, we first need to evaluate b before evaluating a,
even if a has been declared before b. The first step to this technique is to retrieve
all property identifiers in an agent. For each such property declaration, we need
to retrieve all other property identifiers that this property uses in its declaration.
From these two sets of information, we can construct a directed graph, where
each node represents one agent property and the edges coming from this node
are directed to the property nodes on which this property is dependent on. As a
result, we get a directed graph structure.
However, we do not know at this point whether this graph is cyclic or not. We
need to discover this information, in order to say whether the simulation can be
evaluated or not. We pass this directed graph to a topological sort algorithm,
where there are two possible outputs. It either topologically sorts the graph if
it is acyclic and returns an array of property identifiers in the order in which
they should be evaluated, or it throws an exception if the graph is cyclic and the
topological sorting of the graph’s nodes is not possible. In the former case, we
reorder the property declarations in the AST and can forward this updated AST
to the interpreter’s runtime. In the latter case, the program cannot be evaluated
and the user needs to fix the cyclic property dependencies in the source code of
the AgentLang simulation.
In the AgentLang’s implementation, the directed acyclic graph is a simple hash
map of nodes and their dependencies:

1 export type DependencyGraph = { [key: string ]: Node };
2
3 export class Node {
4 public identifier : string ;
5 public dependencies : Node [] = [];
6
7 constructor ( identifier : string ) {
8 this. identifier = identifier ;
9 }

10
11 public addDependency (node: Node): void {
12 this. dependencies .push(node);
13 }
14 }
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Such graph structure can be passed to the topological sorting algorithm depicted
below:

1 function topologicalSort ( graph : DependencyGraph ): Node [] {
2 const visited : { [key: string ]: boolean } = {};
3 const recursionStack : { [key: string ]: boolean } = {};
4 const result : Node [] = [];
5 let containsCycle = false ;
6
7 const isSelfLoop = (node: Node): boolean =>
8 node. dependencies .some(dep => dep === node);
9

10 function visit (node: Node) {
11 if ( recursionStack [node. identifier ]) {
12 containsCycle = true;
13 return ;
14 }
15
16 if ( visited [node. identifier ]) return ;
17
18 visited [node. identifier ] = true;
19 recursionStack [node. identifier ] = true;
20
21 for (const dependency of node. dependencies ) {
22 if ( dependency && ! isSelfLoop ( dependency ))
23 visit ( dependency );
24 }
25
26 recursionStack [node. identifier ] = false ;
27 result .push(node);
28 }
29
30 for (const key in graph) visit (graph [key ]);
31
32 if ( containsCycle ) throw new ErrorParser ("...");
33
34 return result ;
35 }

This algorithm iterates over the agent’s property declarations and for each decla-
ration, it recursively visits each node to which a directed edge from the current
node exists. Moreover, it saves the visited nodes in a hash map. If we come to a
node which was already visited in one iteration, we know there is a cycle in the
graph. In that case, we throw an exception. Otherwise, the graph is acyclic and
we can return the resulting ordering of the graph’s nodes representing the order
in which the agent’s properties should be evaluated by the interpreter.

4.2.2 Source Code Formatter
Although AgentLang’s syntax is not dependent on indents or other whitespace
characters, it is a good practice to follow specific syntactical rules or recommen-
dations for the given language. Therefore, the interpreter features a source code
formatter, which formats the source code in the language-specific way on the
simulation startup.
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The code formatter works in a straightforward way. First, it parses the source
code and produces an AST representing the semantics of the program. Then,
it passes this AST into a function which recursively traverses the structure and
produces plain source code equivalent to the input source code, formatted to the
specific way defined by a set of rules.
However, producing a semantically equivalent source code is not as straightfor-
ward as it may appear. More specifically, a great problem arises with complex
parenthesised expressions, where the code formatter must correctly assess the
expression tree and parenthesised it in way that the resulting evaluation of the
formatted expression is semantically equivalent to the user-defined expression in
the input source code.
One of the most important concepts in AgentLang source code formatting is the
operator precedence in binary expressions. Each operator has a certain level of
precedence represented by a numeric value. The higher this level of precedence is,
the sooner the sub-expression must be evaluated. Moreover, parentheses surpass
the operator precedence, rendering the whole sub-expression more important than
a non-parenthesised expression.
In AST, parentheses are completely omitted. Instead, the tree structure is
composed in a way it abides by the user parenthetisation. Suppose the following
two examples:

1 const a = 5 + 2 * 3;
2 const b = (5 + 2) * 3;

The result of a is 11, since 2 * 3 is evaluated sooner. However, the result of b is
21, since the additive binary expression is evaluated first becuase of the paren-
thetisation. Let’s look at the resulting AST of these two property declarations.
1 {
2 "type": " VariableDeclaration ",
3 " variableType ": "const",
4 " identifier ": "a",
5 "value": {
6 "type": " BinaryExpression ",
7 "left": {
8 "type": " NumericLiteral ",
9 "value": 5,

10 },
11 "right": {
12 "type": " BinaryExpression ",
13 "left": {
14 "type": " NumericLiteral ",
15 "value": 2,
16 },
17 "right": {
18 "type": " NumericLiteral ",
19 "value": 3,
20 },
21 " operator ": "*",
22 },
23 " operator ": "+",
24 },
25 }
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1 {
2 "type": " VariableDeclaration ",
3 " variableType ": "const",
4 " identifier ": "b",
5 "value": {
6 "type": " BinaryExpression ",
7 "left": {
8 "type": " BinaryExpression ",
9 "left": {

10 "type": " NumericLiteral ",
11 "value": 5,
12 },
13 "right": {
14 "type": " NumericLiteral ",
15 "value": 2,
16 },
17 " operator ": "+",
18 },
19 "right": {
20 "type": " NumericLiteral ",
21 "value": 3,
22 },
23 " operator ": "*",
24 },
25 }

Each binary expression in the AST has a left and right value as well as the
operator value. We can see that the declaration of a represents a binary expression,
where the left value is of type NumericLiteral and the right value is of type
BinaryExpression. That is due to the operator precedence, where multiplication
has higher precedence that addition. Since ASTs are evaluated using a depth-first
search algorithm, the right value will be evaluated sooner than the left value,
resulting in a correct evaluation of the expression. However, in the declaration
of b, the left value is of type BinaryExpression and the right value is of type
NumericLiteral. This happens due to the fact that the additive sub-expression has
been parenthesised. Therefore, the AST knows to evaluate the left-hand side of
the expression sooner than the right-hand side.
This proves that although the AST does not explicitely hold any information
about user-defined parentheses, it holds this information using its structure and
semantics. This implies that we can reconstruct the parenthetisation from the AST
itself, proving that the source code formatter can truly produce a semantically
equivalent source code from the AST alone.
The source code formatter formats the source code recursivelly by calling one
function called nodeToSourceCode. This function takes any generic AST node as
its input, in our case the Program node and recursively evaluates each node of the
tree, producing a new source code during its runtime. Below is an example of
producing a correctly parenthesised binary expression:

1 public static nodeToSourceCode (ast: ParserValue ): string {
2 let sourceCode = "";
3
4 switch (ast.type) {
5 case NodeType . BinaryExpression : {
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6 const expression = ast as BinaryExpression ;
7 const { operator } = expression ;
8
9 let left = Formatter . nodeToSourceCode ( expression .left);

10 let right = Formatter . nodeToSourceCode ( expression .right );
11
12 // handle left parentheses
13 if ( expression .left.type === NodeType . BinaryExpression ) {
14 const needsParen = Formatter . precedence [ operator ] >

Formatter . precedence [( expression .left as BinaryExpression ).
operator ];

15 left = needsParen ? ‘(${left })‘ : left;
16 }
17
18 // handle right parentheses
19 if ( expression . right.type === NodeType . BinaryExpression )

{
20 const needsParen = Formatter . precedence [ operator ] >

Formatter . precedence [( expression .right as BinaryExpression )
. operator ];

21 right = needsParen ? ‘(${right })‘ : right ;
22 }
23
24 sourceCode += ‘${left} ${ operator } ${right }‘;
25 break;
26 }
27 // rest of the cases
28 }
29
30 return sourceCode ;
31 }

This function checks the binary precedence defined by the below rules and based
on it parenthesises the resulting expression:

1 const precedence : { [key: string ]: number } = { "+": 1, "-": 1,
"*": 2, "/": 2, "%": 2 };

The source code formatter serves as a tool to achieve code readability across all
AgentLang simulations, forcing the user to abide by the syntactical rules defined
by the AgentLang project.

4.3 API Reference
The AgentLang interpreter can be integrated into any TypeScript-based project
and used using its public API. The public API contains three main exports:

1. Interpreter - the interpreter class with all its functionality

2. InterpreterConfiguration - an interface representing the interpreter’s config-
uration structure

3. InterpreterOutput - an interface representing the interpreter’s output struc-
ture
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The following example demonstrates the usage of the AgentLang interpreter in a
TypeScript-based project:

1 import {
2 Interpreter ,
3 InterpreterConfiguration ,
4 InterpreterOutput
5 } from "./ agent -lang - interpreter ";
6
7 const sourceCode = readFileSync (" sourceCode .txt", "utf -8");
8 const interpreter = new Interpreter ();
9 const configuration : InterpreterConfiguration = {

10 steps : 1000 ,
11 delay : 100,
12 width : 500,
13 height : 500
14 };
15
16 interpreter .get(sourceCode , configuration ). subscribe ((

interpreterOutput : InterpreterOutput ) => {
17 const { status , output } = interpreterOutput ;
18 // do something with the output
19 });
20
21 interpreter .start ();

The get method returns an Observable object to which the user can subscribe to
to capture the outputs of individual simulation steps. The start method starts
the interpreter and the simulation.
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5 Web Interface
Apart from the AgentLang’s language interpreter, the thesis provides a web-based
interface serving as the main environment for trying out AgentLang in practice.
The web application features a code editor for modeling AgentLang simulations,
a visualisation view for quick visual rendering of the simulations and last but not
least, a spreadsheet interface for manipulating agent property declarations and
values during runtime.

5.1 Motivation
The motivation behind the creation of the web-based interface as the primary
environment for AgentLang is deeply connected to the motivation behind the
creation of the AgentLang programming language itself. As mentioned earlier,
AgentLang aims to provide a brand new approach for handling and modeling
agent-based simulations. On the one hand this is possible due to the simplicity
of the language and its syntax itself. However, on the same level of importance
lies the possibility to manipulate the simulation using a visual, interactive tool
- the spreadsheet interface, which allows for quick and simple fine-tuning of the
simulation during its runtime.
In order to create and use the spreadsheet interface as a tool to manipulate
AgentLang simulations, a user interface of some kind is required, preferably one
which is easily portable and usable everywhere without the need for any kind of
manual installation. For these reasons, we opted for a web-based environment
integrating both the interpreter and the spreadsheet interface, enabling to create,
model and run user-defined AgentLang simulations all in one place.
Since AgentLang interpreter is written in TypeScript, it became also the most
natural choice as the implementation language for the web-based interface. More
specifically, the web application is written in the TypeScript-based Next.js frame-
work by Vercel Inc [15]. These choices allow for easy integration and seamless
usage of the interpreter in the web application.
Additionally, since AgentLang is primarily intended for simple simulations as a
proof of concept of the language itself, it felt natural to also provide a visualisation
module for quick and easy analysis of the simulation in real-time. The simulation
module consists of a panel capable of rendering simulations suitable for visualisation
on a two-dimensional Cartesian plane, such as the flocking, forest fire or epidemic
simulations.
These aforementioned features of the AgentLang project are complementary to
each other and together provide an all-in-one suite of tools to model and analyse
AgentLang simulations.

5.2 Code Sandbox
The code sandbox is the main page of the AgentLang web interface. It is a
place where the user can create projects, model simulations using the AgentLang
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language, run the simulations and finally see their results in the visualisation
module and the spreadsheet interface.

Figure 5.1 Code Sandbox Page

On the left-hand side of the screen, there is a vertical scrollable list of all user-
defined projects. The user can create new projects, edit existing projects or remove
existing projects. After clicking on any of the projects, the project code and the
simulation configuration is loaded into the code editor on the right-hand side of
the screen.
On the top-right side of the screen, there is a control panel with the current
project’s name, two input fields for updating the steps and delay configuration
parameters of the selected simulation and a set of buttons used for handling the
start, stop, pause, resume and reset of the current simulation. These buttons
directly use the public API of the AgentLang interpreter, more specifically the
start, stop, pause, resume and reset methods.

5.2.1 Code Editor
The code editor is a place where the user inputs the AgentLang source code in
order to model an agent-based simulation. The code editor features basic syntax
highlighting and line numbering, supporting all AgentLang syntactical constructs
and concepts. However, it does not provide code completion or code suggestions.
The most recent source code updates are saved automatically to the browser’s
local storage on every key press without the need to press the save button located
in the upper control panel. The save button serves mainly for saving the latest
steps and delay parameters, which are not saved automatically upon changing.
After modeling the simulation, the user can start the simulation by clicking on
the start button located in the control panel.
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On every simulation startup, the AgentLang code is parsed and run by the
interpreter. In case of syntactical or semantic errors, the interpreter raises an
exception, which is caught by the web interface and shown to the user using a
popup message appearing on the bottom of the screen. In such case scenario,
the simulation is not started and the user must fix the errors first. In case of
correct source code, however, a success popup message is shown to the user and
the simulation starts.

5.2.2 Spreadsheet Interface
The spreadsheet interface is initialised and filled with data as soon as the user
starts the simulation. Otherwise a "No data" message is shown in the spreadsheet
view.

Figure 5.2 Spreadsheet Interface

The spreadsheet interface consists of one spreadsheet for each agent model. A
spreadsheet contains columns representing individual agent properties defined in
the source code and rows representing individual agent instances. The spreadsheet
cells represent current values of the agent’s properties. Moreover, the spreadsheets
are recalculated and provided with new data in each step of the simulation.

Updating Property Definition

The first feature of the spreadsheet interface is the update of an agent properties’
definitions. To update the definition of a property, the user needs to pause the
simulation and then click on the desired property name located in the table header.
A code editor with the definition of the given property is displayed above the
list of spreadsheets. The user can redefine and save the property’s new definition
by clicking the save button under the code editor. The new property definition
is updated, the interpreter rebuilds the simulation and the user can resume the
simulation by clicking the resume button located in the upper toolbar.
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Figure 5.3 Agent Property Update in Spreadsheet

Updating Property Value

The second primary feature of the spreadsheet interface is the update of a specific
property’s value in an agent instance. To update a property value, click on the
given cell in the spreadsheet. An input field will appear inside the corresponding
cell where the user can input the new property value and save the new value
by clicking the save button next to the input field. The new property value is
updated and the user can resume the simulation by clicking the resume button
located in the upper toolbar.

5.2.3 Visualisation
The visualisation module is used to visualise the simulations agents in real time
on a two-dimensional plane.
The visualisation of agent’s depends on a set of standards - each agent that should
be visualised needs to have the following properties:

• x - a numeric value representing the x coordinate of the agent

• y - a numeric value representing the y coordinate of the agent

• w - a numeric value representing the width of the agent

• h - a numeric value representing the height of the agent

• c - an rgb value representing the colour of the agent (using the built-in
function rgb)

After starting the simulation, the user is redirected to the visualisation panel by
default, where they can observe the agent’s positions, dimensions and colour.
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Figure 5.4 Agent Value Update in Spreadsheet

Figure 5.5 Visualisation
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6 Evaluation
This chapter evaluates the AgentLang programming language, its design and
ease of use using specific simulation examples and their comparison with existing
agent-based frameworks. Although the below examples require rather long code
blocks, their purpose is to highlight the key differences between AgentLang and
other agent-based frameworks and to point out the advantages of using AgentLang
to model agent-based simulations.

6.1 Flocking
The first example is the flocking simulation using the Boids algorithm. This model
simulates bird flocking, where each bird in the flock steers towards a certain point
using a set of three defined rules - separation, alignment and cohesion.

• separation steers the bird to avoid birds in close proximity

• alignment steers the bird to align their heading with the average heading
of their flock mates

• cohesion steers the bird to fly towards the average position of their flock

Although the below examples all work in a similar way, based on the concepts
used in the Boids algorithm, they may differ in details, configuration parameters
or some values.

6.1.1 AgentScript

1 export default class FlockModel extends Model {
2 population = 100
3 vision = 3
4 speed = 0.25
5 maxTurn = 3.0
6 minSep = 0.75
7
8 constructor ( worldDptions ) {
9 super( worldDptions )

10 }
11
12 setup () {
13 this. turtles . setDefault (’speed ’, this. speed )
14 this. patches . cacheRect (this. vision )
15 util. repeat (this. population , () => {
16 this. patches . oneOf (). sprout ()
17 })
18 }
19
20 step () {
21 this. turtles .ask(t => {
22 this.flock (t)
23 })
24 }
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25
26 flock(t) {
27 const fm = this. turtles . inRadius (t, this.vision , false )
28 if (fm. length !== 0) {
29 const n = fm. minOneOf (f => f. distance (t))
30 if (t. distance (n) < this. minSep ) {
31 this. separate (t, n)
32 } else {
33 this.align (t, fm)
34 this. cohere (t, fm)
35 }
36 }
37 t. forward (t.speed )
38 }
39
40 separate (t, n) {
41 const h = n. towards (t)
42 this. turnTowards (t, h)
43 }
44
45 align(t, fm) {
46 this. turnTowards (t,
47 this. averageHeading (fm))
48 }
49
50 cohere (t, fm) {
51 this. turnTowards (t,
52 this. averageHeadingTowards (t, fm))
53 }
54
55 turnTowards (t, heading ) {
56 let turn = t. subtractHeading ( heading )
57 turn = util.clamp (turn ,
58 -this.maxTurn , this. maxTurn )
59 t. rotate (turn)
60 }
61
62 averageHeading (fm) {
63 // implementation
64 }
65
66 averageHeadingTowards (t, fm) {
67 // implementation
68 }
69
70 flockVectorSize () {
71 // implementation
72 }
73 }

In the above AgentScript flocking simulation, the step function is called in each
step of the simulation and handles the flocking semantics of each agent. The
flock method calls the three main methods corresponding to the rules of the
Boids flocking algorithm - separate, align and cohere. While this approach is very
straightforward and convenient for JavaScript developers, it may pose challenges
to scientists of non-programming background, since the simulation is directly
dependent on the JavaScript language.
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6.1.2 NetLogo

1 turtles -own [
2 flockmates
3 nearest - neighbor
4 ]
5
6 to setup
7 clear -all
8 create - turtles population
9 [ set color yellow - 2 + random 7

10 set size 1.5 ;; easier to see
11 setxy random -xcor random -ycor
12 set flockmates no - turtles ]
13 reset -ticks
14 end
15
16 to go
17 ask turtles [ flock ]
18 repeat 5 [ ask turtles [ fd 0.2 ] display ]
19 tick
20 end
21
22 to flock
23 find - flockmates
24 if any? flockmates
25 [ find -nearest - neighbor
26 ifelse distance nearest - neighbor < minimum - separation
27 [ separate ]
28 [ align
29 cohere ] ]
30 end
31
32 to find - flockmates
33 set flockmates other turtles in - radius vision
34 end
35
36 to find -nearest - neighbor
37 set nearest - neighbor min -one -of flockmates [ distance myself ]
38 end
39
40 to separate
41 turn -away ([ heading ] of nearest - neighbor ) max -separate -turn
42 end
43
44 to align
45 turn - towards average -flockmate - heading max -align -turn
46 end
47
48 to - report average -flockmate - heading
49 let x- component sum [dx] of flockmates
50 let y- component sum [dy] of flockmates
51 ifelse x- component = 0 and y- component = 0
52 [ report heading ]
53 [ report atan x- component y- component ]
54 end
55
56 to cohere
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57 turn - towards average -heading -towards - flockmates max -cohere -
turn

58 end
59
60 to - report average -heading -towards - flockmates
61 let x- component mean [sin ( towards myself + 180)] of

flockmates
62 let y- component mean [cos ( towards myself + 180)] of

flockmates
63 ifelse x- component = 0 and y- component = 0
64 [ report heading ]
65 [ report atan x- component y- component ]
66 end
67
68 to turn - towards [new - heading max -turn]
69 turn -at -most (subtract - headings new - heading heading ) max -turn
70 end
71
72 to turn -away [new - heading max -turn]
73 turn -at -most (subtract - headings heading new - heading ) max -turn
74 end
75
76 to turn -at -most [turn max -turn]
77 ifelse abs turn > max -turn
78 [ ifelse turn > 0
79 [ rt max -turn ]
80 [ lt max -turn ] ]
81 [ rt turn ]
82 end

The NetLogo version of the flocking simulation works fundamentally in a similar
way to the AgentScript model. It contains three main procedures - separate, align
and cohere, which are invoked by the main flock procedure. Although NetLogo
provides a new, specific language for agent-based modeling, it is expressive and
verbose and the understanding of this language and its structures poses a steep
learning curve for its users.

6.1.3 AgentLang

1 define visual_range = 100;
2 define avoid_range = 20;
3 define centering_factor = 0.0005;
4 define avoid_factor = 0.005;
5 define matching_factor = 0.05;
6
7 define s_max = 8;
8 define s_min = 6;
9

10 agent boid 100 {
11
12 const w = 10;
13 const h = 10;
14
15 const x_init = random (100 , width () - 100);
16 const y_init = random (100 , height () - 100);
17
18 property x: x_init = (x + x_vel_limit ) % width ();
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19 property y: y_init = (y + y_vel_limit ) % height ();
20
21 property x_vel : choice (-2, 2) =
22 x_vel + x_sep + x_align + x_coh ;
23 property y_vel : choice (-2, 2) =
24 y_vel + y_sep + y_align + y_coh ;
25
26 property s_sqrt = sqrt( x_vel * x_vel + y_vel * y_vel );
27 property s = if s_sqrt == 0 then 1 else s_sqrt ;
28
29 property x_vel_limit = if s > s_max then x_vel / s * s_max

else if s < s_min then x_vel / s * s_min else x_vel ;
30 property y_vel_limit = if s > s_max then y_vel / s * s_max

else if s < s_min then y_vel / s * s_min else y_vel ;
31
32 property boids_ar : empty () = filter ( agents (boid) | b -> dist(

b.x, b.y, x, y) < avoid_range );
33 property boids_vr : empty () = filter ( agents (boid) | b -> dist(

b.x, b.y, x, y) < visual_range );
34 property bvrc = count( boids_vr );
35
36 # separation #
37 property x_sep =
38 sum( boids_ar | b -> x - b.x) * avoid_factor ;
39 property y_sep =
40 sum( boids_ar | b -> y - b.y) * avoid_factor ;
41
42 # alignment #
43 property x_align =
44 if bvrc > 0 then
45 (sum( boids_vr | b -> b.x_vel ) / bvrc - x_vel) *

matching_factor else 0;
46 property y_align =
47 if bvrc > 0 then
48 (sum( boids_vr | b -> b.y_vel ) / bvrc - y_vel ) *

matching_factor else 0;
49
50 # cohesion #
51 property x_coh =
52 if bvrc > 0 then
53 (sum( boids_vr | b -> b.x) / bvrc - x) * centering_factor
54 else 0;
55 property y_coh =
56 if bvrc > 0 then
57 (sum( boids_vr | b -> b.y) / bvrc - y) * centering_factor
58 else 0;
59 }

Analysing the AgentLang’s version of the flocking simulation, it is noticeable
that the model requires less lines of code. Moreover, due to the structure of
the language, it is straightforward in a way that the agent model is nothing
but a sequence of property definitions, each having a human-readable name and
definition, upon which the property is evaluated. The x and y coordinates are
incremented by the x_vel and y_vel values, which are the sum of the separation,
alignment and cohesion properties defined at the bottom of the agent model.
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6.2 Forest Fire
The second example is a forest fire simulation which analyses the spread of fire in a
forest. The trees are points in a two-dimensional Cartesian grid. Each tree can be
in either of the three states - idle, burning or dead. If an idle tree has a neighbour
which is burning, it becomes burning based on some probability. Moreover, if a
tree is burning for a specified period of time, it becomes dead. A dead tree can no
longer spread fire to its neighbours.
The spread of fire in a forest varies based on several factors. These include the
percentage of probability based on which the fire spreads as well as the period of
time a tree can be in the burning state. The longer a tree is burning, the higher
the chance is for the neighbouring trees to start burning too.
Although the below examples all function based on the same concepts, they may
differ in details, configuration parameters or some values.

6.2.1 AgentScript

1 export default class FireModel extends Model {
2 density = 60
3
4 constructor ( worldDptions = World . defaultOptions (125)) {
5 super( worldDptions )
6 }
7
8 setup () {
9 this. patchBreeds (’ fires embers ’)

10
11 this. patchTypes = [ /* patch types */ ]
12 this. dirtType = this. patchTypes [0]
13 this. treeType = this. patchTypes [1]
14 this. fireType = this. patchTypes [2]
15
16 this. patches .ask(p => {
17 if (p.x === this.world .minX) this. ignite (p)
18 else if (util. randomInt (100) < this. density ) p.type =

this. treeType
19 else p.type = this. dirtType
20 })
21
22 this. burnedTrees = 0
23 this. initialTrees = this. patches . filter (p => this. isTree (p)

). length
24 }
25
26 step () {
27 this.fires .ask(p => {
28 p. neighbors4 .ask(n => {
29 if (this. isTree (n)) this. ignite (n)
30 })
31 p. setBreed (this. embers )
32 })
33 this. fadeEmbers ()
34 }
35
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36 isTree (p) {
37 return p.type === this. treeType
38 }
39
40 percentBurned () {
41 return (this. burnedTrees / this. initialTrees ) * 100
42 }
43
44 isDone () {
45 return this.fires . length + this. embers . length === 0
46 }
47
48 ignite (p) {
49 p.type = this. fireType
50 p. setBreed (this. fires )
51 this. burnedTrees ++
52 }
53
54 fadeEmbers () {
55 this. embers .ask(p => {
56 const type = p.type
57 const ix = this. patchTypes . indexOf (type)
58 if (type === ’ember0 ’) p. setBreed (this. patches )
59 else p.type = this. patchTypes [ix + 1]
60 })
61 }
62 }

Similarly to the flocking simulation, the use of JavaScript results in several
JavaScript-specific structures and core library functions the user needs to know in
order to model AgentScript simulations. Although the code is simple and readable
for JavaScript developers, its usage is limited to programmers only.

6.2.2 NetLogo

1 globals [
2 initial -trees
3 burned - trees
4 ]
5
6 breed [fires fire]
7 breed [ embers ember]
8
9 to setup

10 clear -all
11 set -default -shape turtles " square "
12 ask patches with [( random -float 100) < density ]
13 [ set pcolor green ]
14 ask patches with [pxcor = min -pxcor ]
15 [ ignite ]
16 set initial - trees count patches with [ pcolor = green ]
17 set burned -trees 0
18 reset -ticks
19 end
20
21 to go
22 if not any? turtles
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23 [ stop ]
24 ask fires
25 [ ask neighbors4 with [ pcolor = green ]
26 [ ignite ]
27 set breed embers ]
28 fade - embers
29 tick
30 end
31
32 to ignite
33 sprout -fires 1
34 [ set color red ]
35 set pcolor black
36 set burned -trees burned -trees + 1
37 end
38
39 to fade - embers
40 ask embers
41 [ set color color - 0.3
42 if color < red - 3.5
43 [ set pcolor color
44 die ] ]
45 end

Although the NetLogo model of the forest fire simulation is clear and concise, the
verbosity of the language is rather inconvenient and requires deeper understanding
of the language abstractions and syntax.

6.2.3 AgentLang

1 define forest_size = 400;
2 define burn_time = 10;
3 define burn_prob = 0.08;
4
5 define IDLE = 1;
6 define BURN = 2;
7 define DEAD = 3;
8
9 agent tree forest_size {

10 const fs = floor(sqrt( forest_size ));
11
12 const offset = 0;
13 const size = height () - 2 * offset ;
14 const spacing = floor(size / fs);
15
16 const w = spacing ;
17 const h = spacing ;
18
19 const x = offset + floor(index () % fs) * spacing ;
20 const y = offset + floor(index () / fs) * spacing ;
21
22 property trees = agents (tree);
23
24 property tree_t =
25 find_by_coordinates (trees , x, y - spacing );
26 property tree_b =
27 find_by_coordinates (trees , x, y + spacing );
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28 property tree_l =
29 find_by_coordinates (trees , x - spacing , y);
30 property tree_r =
31 find_by_coordinates (trees , x + spacing , y);
32
33 const ii = index () == round( forest_size / 2 + fs / 2);
34 const initial_burn = if ii then BURN else IDLE;
35
36 property burn_remaining : burn_time =
37 if state == BURN then
38 burn_remaining - 1
39 else burn_time ;
40
41 property state : initial_burn =
42 if state == IDLE and should_burn then
43 BURN
44 else
45 if state == BURN then
46 if burn_remaining == 0 then
47 DEAD
48 else BURN
49 else state ;
50
51 property burn_t = tree_t .state == BURN otherwise false;
52 property burn_b = tree_b .state == BURN otherwise false;
53 property burn_l = tree_l .state == BURN otherwise false;
54 property burn_r = tree_r .state == BURN otherwise false;
55
56 property should_burn : false =
57 ( burn_t or burn_b or burn_l or burn_r )
58 and prob( burn_prob );
59
60 property c = if state == IDLE then
61 rgb (48, 107, 64)
62 else if state == BURN then
63 rgb (230 , 66, 41)
64 else rgb (92, 53, 47);
65 }

The AgentLang forest fire simulation is quite straightforward. The agents try
to find trees to the top, bottom, right and left side of themselves using the
find_by_coordinates function. If any of these trees exists and is currently burning,
the current tree starts to burn based on some probability. The code provides easy
readability and understanding and is more convenient for scientists of non-technical
background.

6.3 Discussion
Based on the above simulation examples, we can observe several differences
between AgentScript, NetLogo and AgentLang.
First and foremost, AgentScript is built upon an existing programming language -
JavaScript, which poses several advantages as well as disadvantages to its users.
On the one hand, it does not require of the users to learn a new, domain-specific
language, its semantics and usage. JavaScript developers can simply integrate
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AgentScript into their application and model agent-based simulation with no
problems. On the other hand, users with no prior knowledge of JavaScript need to
learn the language and its whole functioning, even beyond the realm of agent-based
modeling, in order to understand how to model an AgentScript simulation.
Although NetLogo provides its own language designed exclusively for agent-based
modeling, its structure and semantics is rather challenging to understand and poses
a steep learning curve for its users. The language is rather verbose and expressive
and poses a challenge even for scientists with prior programming knowledge.
In AgentLang, the simulation is modeled using a sequence of properties for each
agent model. Currently, the language does not offer any complex structures such
as code blocks, loops or user-defined functions, each property has a strictly inline
value. This is both readable and easily understandable for the users regardless
of their technical background. The AgentLang programming language combines
both the familiarity for developers, since its syntax resembles several widely-used
programming languages and simple structure and semantics for newcomers, which
is easily understandable even by users with no prior programming experience.
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7 Limitations & Future Work
The following chapters describe the most significant and critical limitations of the
current state of AgentLang and provide a list of possible future improvements.

7.1 Limitations
At the moment, AgentLang is a limited language serving primarily as a proof of
concept of the new approach to agent-based modeling it aims to provide. Therefore,
it has several significant limitations worth mentioning.

7.1.1 Performance
The most significant bottleneck of the AgentLang’s interpreter is its performance.
With the rising number of agents, the simulation slows down quadratically. The
problem is most visible when there are numerous properties manipulating AgentList
values, for those operations are costly. Since agents of the same type are evaluated
the same way using the same model, with the rising number of agents also rises
the number of agent instances in properties holding AgentList values. If we
generate 10 agents, each of them needs to iterate over 9 other agents, resulting in
90 iterations. However, with only 10 times more agents, which is 100 total agents,
the iteration count rises to 9900 (100 * 99), which is 110 times more iterations
than with 10 agents.
Moreover, the evaluation of agents of the same type is handled greedily. That
means that for each agent type, the entire model is reevaluated by the runtime
module for each agent of that type. Although this problem seems easy to solve by
caching mechanisms for example, it is defacto quite non-trivial. As far as caching
is concerned, there are not many cases where caching is as straightforward as
saving the intermediate results of expressions to a cache. This is due to the fact
that in AgentLang, almost all properties have dependencies on other properties,
whose values vary from agent to agent. Caching such values would thus be of no
use to other agent instances.
The issue of low performance is also affected by the choice of TypeScript as the
implementation language of the interpreter. TypeScript as such is an interpreted
language, often slower than most compiled languages such as C++. The fact
that the interpreter is integrated into a web-based environment running in a web
browser slows down the overall performance even more, resulting in a chain of
performance downfalls. Moreover, the choice of TypeScript does not allow for true
parallelism. Evaluation of agent instances by running threads in parallel would
help in improving the overall performance of the evaluation.
However, by experimenting with various simulations and models, it has been
proven that AgentLang is able to handle simple to mid-sized simulations and a few
hundreds of agents without slowing down significantly, not affecting performance
to a noticable degree. With more complex simulations and higher agent volumes,
however, the delay in evaluation of each step rises, rendering the simulation slower
than desired.

69



7.1.2 Language Constructs
Currently, AgentLang is in a limited state of development, providing only the
necessary set of built-in function and language constructs. Although one of
the primary goals of AgentLang is simplicity and ease of use, the core library
is currently not entirely sufficient for semantically more complex economical,
sociological or organisational simulation needs. For instance, AgentLang does not
support the generation of new agents and the deletion of existing agents during
the runtime of the simulation. This would benefit the overall control over the
simulations and provide the user with more flexibility. Moreover, AgentLang does
not support parameterised functions with multi-statement bodies for reusing code
blocks for more complex and frequently used calculations. Although this would
introduce more complexity to the language, it would benefit the overall usability
and extendability of the simulation models.
Although the current state of AgentLang is fully capable to model most simulations,
with simulations of more complex nature, such as flows, organisations or economic
markets, the lack of some complex structures and core functionality is visible and
results in a more robust and less readable code base.

7.2 Future Work
This chapter describes the possible future improvements in AgentLang, such as
performance optimisations or the support of additional useful language structures.

7.2.1 Performance Optimisations
One of the biggest pitfalls of the current state of AgentLang is its performance.
There are numerous ways how to optimize the runtime part of the interpreter, so
that it could handle greater numbers of agents and more complex mathematical
calculations.

Parallel Computing

One of the most significant bottlenecks of the AgentLang’s performance is the
iterative evaluation of agent instances by the runtime module. The generation
and evaluation of agents is implemented by a single for loop iterating through
the number of agents defined in the source code.

1 for (let i = 0; i < count .value ; i++) {
2 const id = this. generateAgentId ( declaration .identifier , i);
3 this. evaluateObjectDeclaration ( declaration , id);
4 }

For each agent, we generate its unique identifier and evaluate its entire property
list. The performance of this sequential evaluation is proportional to the number
of agents to be evaluated, rendering the simulation slower the more agents we
generate.
One of the potential solutions to a more efficient and higher-performant runtime
is to utilise parallelism. The workload of evaluating agents could be distributed
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among available threads, speeding up the evaluation process. This is mainly
possible due to the fact that the runtime module evaluates a new generation of
agents based on the values of agents from the previous step. Each agent could
therefore be evaluated separately, since agents do not depend on each other during
the runtime of the simulation. This results in a straightforward parallel algorithm,
where each thread evaluates a portion of the agents.

Implementation in a Compiled Language

Another quite straightforward step to optimizing AgentLang’s performance is
choosing a compiled language for the interpreter’s implementation. Compiled
languages, when used correctly, tend to offer higher-performant programs.
Implementation in a compiled language is also tied to the parallel evaluation
of agents, since compiled languages such as C++ or Java offer true parallelism
mechanisms. Although Node.js provides parallelism using worker threads, the
overhead of creating these workers and managing them is rather big, resulting in
slower evaluation and less readable codebase.

7.2.2 Extended Core Functionality
At the current state of AgentLang’s development, the language provides the
minimal set of essential functions and language constructs to be capable of modeling
a wide range of simulations. However, this set of supported functionalities is not
sufficient for more complex economical or organisational simulations. These types
of simulations require non-trivial complex mathematical calculations and data
types. There are numerous aspects in which AgentLang can be extended of new
functionality, described in the following chapters.

User-defined Functions

The most important language constructs AgentLang currently lacks are user-
defined parameterised functions. In many cases, the user needs to perform the
same calculations but on different sets of data. This is a typical use case of reusable
code blocks with a custom set of parameters. Such functionality is especially
important in economical or market simulations, where mathematics play a huge
role. Therefore, a possible improvement to the AgentLang language would be a
new void statement, which would allow for parameterised multi-line code blocks
with return statements, aiming to endorse code reusability across agents.

Wider Core Library

Moreover, the core library of AgentLang’s built-in set of functions is quite stripped.
It consists of the essential mathematical functions to provide the necessary tools
to perform calculations upon agents. Moreover, it has the necessary set of agent
manipulation functions to provide agent interaction capabilities across different
agent models. However, more complex calculations need to be done manually,
resulting in bigger code base and thus slower performance. Therefore, a possible
improvement to the AgentLang core library would be a new set of functions
capable of handling frequently used and needed calculations internally, without
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the need to introduce multiple helper properties and overburden the runtime
module with further calculations.
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Conclusion
The main goal of AgentLang stated at the beginning of the thesis was to introduce
a framework which provides a new approach to the agent-based modeling technique.
Let us revisit the primary goals of AgentLang outlined in chapter 2.3.

1. provide a unified language with simple and straightforward syntax and
structure

2. offer only the necessary, essential core library of features

3. allow for an alternative way of simulation modeling using a familiar approach
in form of spreadsheet representation

First and foremost, the language simplicity was achieved by the straightforward
structure of the language that aligns with the way humans tend to think about
agent-based models. This was achieved by limiting the language to only the
necessary declarations of agents, properties and global variables. The set of the
language’s syntactical constructs is also stripped down to the essential minimum
necessary to be capable of modeling almost any simulation. Moreover, the core
library provides all the fundamental mathematical and agent manipulation and
interaction functions with human-readable names and natural usage. Last but not
least, the spreadsheet interface built on top of the interpreter provides an easy
and elegant way to modify the agent models and values of individual runtime
agent instances. Although the AgentLang framework is limited at its current
state of development, it is built in a way to be extensible to future work and
improvements, allowing for the possibility to become a fully-usable agent-based
modeling language.
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A Attachments
A.1 AgentLang Syntax Grammar

1 program :
2 | declaration
3 | declaration program
4
5 declaration :
6 | define_declaration
7 | agent_declaration
8
9 define_declaration :

10 | " define " identifier "=" define_value ";"
11
12 define_value :
13 | numeric_literal
14 | boolean_literal
15
16 agent_declaration :
17 | "agent" identifier agent_count "{" "}"
18 | "agent" identifier agent_count "{" agent_body "}"
19
20 agent_count :
21 | numeric_literal
22 | identifier
23
24 agent_body :
25 | property_declaration
26 | property_declaration agent_body
27
28 property_declaration :
29 | " property " identifier "=" expression ";"
30 | " property " identifier ":" expression "=" expression ";"
31 | "const" identifier "=" expression ";"
32
33 expression :
34 | "(" expression ")"
35 | identifier
36 | numeric_literal
37 | boolean_literal
38 | function_call
39 | conditional_expression
40 | relational_expression
41 | binary_expression
42 | unary_expression
43 | logical_expression
44 | otherwise_expression
45
46 identifier :
47 | [a-zA -Z\_]+
48
49 numeric_literal :
50 | ([0 -9]+) |([0 -9]+.[0 -9]+)
51
52 boolean_literal : "true" | "false"
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53
54 function_call :
55 | identifier "(" ")"
56 | identifier "(" argument_list ")"
57
58 argument_list :
59 | argument
60 | argument "," argument_list
61
62 argument :
63 | expression
64 | set_comprehension
65
66 set_comprehension :
67 | expression "|" identifier "->" expression
68
69 conditional_expression :
70 | "if" expression "then" expression "else" expression
71
72 relational_expression :
73 | expression relational_operator expression
74
75 relational_operator : "==" | " >=" | " <=" | ">" | "<"
76
77 binary_expression :
78 | expression binary_operator expression
79
80 binary_operator : "+" | "-" | "*" | "/" | "%"
81
82 unary_expression :
83 | unary_operator identifier
84 | numeric_unary_operator numeric_literal
85 | boolean_unary_operator boolean_literal
86
87 unary_operator : "!" | "-"
88
89 logical_expression :
90 | expression logical_operator expression
91
92 logical_operator : "and" | "or"
93
94 otherwise_expression :
95 | expression " otherwise " expression
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