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1 Introduction
Hypergraphs generalize the notion of a graph by allowing edges to connect

more than two vertices. Formally, a hypergraph (V, E) is a structure composed of
a finite set of vertices V and a set of edges E. Each edge e ∈ E is a set of at least
two vertices and we say that the vertices in this set are connected by the edge e.
Given a hypergraph H, we use V (H) to denote its set of vertices and E(H) the
set of edges.

We call a hypergraph H r-uniform if and only if each edge contains precisely r
vertices. For brevity, we shorten r-uniform hypergraph to r-graph. In particular,
2-graphs are just ordinary graphs.

Further, we extend the notion of completeness from graphs to hypergraphs.
An r-graph is said to be complete, if it contains all possible edges. In particular,
the edge set of a complete r-graph with n-vertices has cardinality

(︂
n
r

)︂
.

For k ≥ r, k-partite r-graphs are such hypergraphs, whose vertex set can
be partitioned into k disjoint partition classes such that no edge contains more
than one vertex from the same partition class. A complete k-partite r-graph is
a k-partite r-graph containing all edges, which have at most one vertex in each
partition class.

Hypergraphs have been objects of extensive study in extremal combinatorics,
a field of mathematics, which aims to answer how big a combinatorial object has
to be for it to certainly possess a given property or how small a combinatorial
object possessing a certain property can be. Some examples of famous theorems
of extremal combinatorics are Turán’s theorem and the Erdős-Ko-Rado theorem.

Turán’s theorem states that there does not exist graph with n vertices not
containing Kk+1 as a subgraph with more edges than the Turán graph T (n, k).
The Turán graph T (n, k) is a complete k-partite graph on n vertices, with the
vertices divided into partitions as evenly as possible.

The Erdős-Ko-Rado theorem concerns hypergraphs. It states, that an r-graph
on n vertices, in which n ≥ 2r and each two edges have at least one vertex in
common has at most

(︂
n−1
r−1

)︂
edges.

In this thesis we study another extremal problem. Weak saturation was first
defined by Bollobás in 1968 [1]. Given hypergraphs P , G and another hypergraph
H, such that G is a subgraph of H on the same vertex set, we say that G is weakly
P -saturated in the host hypergraph H with respect to the pattern hypergraph P ,
if the edges E(H)\E(G) can be added sequentially in such a way, that addition of
every edge creates a new copy of P . This sequence of edges e1, e2, ..., e|E(H)\E(G)|
is called the P-saturation process of G in H. Define the weak saturation number
of P in H, denoted by wsat(H, P ), to be the smallest possible number of edges
in a weakly P -saturated hypergraph G. To practice the definition, note that
wsat(Kn, K3) = n − 1 for all n and the smallest weakly K3-saturated graphs in a
copy of Kn are precisely all trees. The search for exact values of this function is a
challenging problem, both combinatorially and algorithmically.

To see why it is so, consider the following algorithmic problem, a natural
extension of the example above, which is a considerable simplification of the
general problem as we use r = 2 and P = K3.

Problem. Given a host graph H on n vertices, determine if wsat(H, K3) = n − 1.
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Having studied this problem, we could not find any kind of monotonicity in
the host graphs. Note that, the addition of a single edge can drastically change
the structure of the graph with respect to this problem. Such an example can be
seen in Figure 1.1.
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5
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5

Figure 1.1 left: the graph does not have a weakly K3-saturated subgraph with 4
edges, right: dashed lines mark the weakly K3-saturated subgraph

As is common in extermal combinatorics, we instead concentrate on the
asymptotic growth of the function wsat(H, P ) as the size of H grows. In doing so,
it is a natural setup to work within a "nice" class of host graphs such as complete
partite hypergraphs.

There has been a lot of study of wsat(Kr
n, H), where Kr

n is a complete r-graph
of order n. In the paper [1] first introducing the concept of weak saturation,
Bollobás proved for 3 ≤ k ≤ 7 and all n ≥ k that

wsat(Kn, Kk) = (k − 2)n −
(︄

k − 1
2

)︄
.

This result was later proved for all k by Frankl [2] and, independently, Kalai
[3] [4] with tools from algebra and geometry, however no purely combinatorial
proof is known to date.

In [2] Frankl introduced the skew version of Bollobaś Two Families Theorem
and the result follows as its application.

In 1984 Kalai proved it in [3] by showing that an embedding of weakly K(d+2)-
saturated graph into Rd, such that its vertices are in general position is rigid and
in 1985 in [4] by using tools from exterior algebra.

Continuing with graphs, but moving towards asymptotic results, in 1985 Alon
[5] proved that for every graph P there exists a constant CP such that

lim
n→∞

wsat(Kn, P )
n

= CP .

Alon’s proof estabilishes that the sequence {wsat(Kn, P )}∞
n=|P | is subadditive and

subsequently applies Fekete’s lemma. Extending this proof towards r ≥ 3 does
not seem easy, as for most graphs P , wsat(Kn, P ) is of order at least n2 and we
do not have an appropriate version of Fekete’s lemma.

A first asymptotic result for hypergraphs has been obtained by Tuza. To state
the result, we first need to introduce the following parameter. The sparseness of
an r-graph P , denoted s(P ), is the size of the smallest vertex set contained in
exactly one edge of P . Since a set of r vertices can be contained in at most one
edge, 1 ≤ s(P ) ≤ r always holds. Notice, that s(P ) = 1 generalizes the familiar
notion of a graph containing a leaf, that is, a vertex of degree 1, to hypergraphs.
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It has been proved by Tuza [6] that for every r-graph P with sparseness s, there
exist two constants 0 < c′

P ≤ C ′
P , such that

c′
P · ns−1 ≤ wsat(Kr

n, P ) ≤ C ′
P · ns−1.

A full extension of Alon’s theorem to all r ≥ 3 was obtained in 2021 by Shapira
and Tyomkyn [7], who proved, that for every r-graph P with sparseness s there
exists a constant CP > 0, such that

lim
n→∞

wsat(Kr
n, P )

ns−1 = CP .

Note that, as 1 ≤ s ≤ r, for every r-graph P this gives a constant C∗
P ≥ 0, such

that
lim

n→∞

wsat(Kr
n, P )

nr−1 = C∗
P .

An analogous result for multipartite host graphs In this thesis, we prove
an analogous result for another natural class of host graphs. Namely, the class
of r-partite r-graphs with all partitions of the same size n; we use the notation
Kr

r×n to denote this r-graph. Our main theorem is

Theorem 1.1. For every r-partite r-graph P of sparseness s, there is a
constant CP > 0, such that

lim
n→∞

wsat(Kr
r×n, P )

ns−1 = CP .

As 1 ≤ s ≤ r, we get the following corollary.

Corollary 1.2. For every r-partite r-graph P , there exists a constant C∗
P ≥ 0,

such that
lim

n→∞

wsat(Kr
r×n, P )

nr−1 = C∗
P .

To prove Theorem 1.1, we follow the methodology used in [7], although we
have to jump through some complications, such as applying Rödl’s Approximate
Designs Theorem in the setting of multipartite hypergraphs.
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2 Notation and proof overview
Proof and thesis overview To prove Theorem 1.1 we first define Template
saturation in Chapter 3. It is a tool which provides us a way to bound the weak
saturation numbers wsat(Kr

r×n, P ) from above for all pattern r-graphs P with
certain parameters (sparseness, the size of the biggest partition class). It will be
then extensively used to prove that various graphs are weakly P -saturated for
all pattern r-graphs P with the given parameters. At the start of Chapter 4 we
show that for all pattern r-graphs P with sparseness s, there exists a constant
cP > 0 such that wsat(Kr

r×n, P ) ≥ cP · ns−1. We set CP to be the limes inferior
of the sequence {wsat(Kr

r×n, P )/ns−1}∞
n=1 and in the rest of the chapter 4, we

prove that for all ε > 0, there exists a threshold n0 such that for all n ≥ n0,
wsat(Kr

r×n, P ) ≤ (CP + 4ε) · ns−1. To do this, for all ε > 0, we construct such
weakly P -saturated graphs with few edges for large enough n. The tools used are
Rödl Approximate Designs Theorem and template saturation. In this chapter
we introduce some key definitions used throughout the proof and demonstrate
their usage by extending Alon’s proof for complete host graphs towards complete
bipartite host graphs. In other words, we prove Corollary 1.2 for r = 2.

Notation The notation G ∼= H denotes that G is a copy of H. The vertex sets
V1(H), V2(H), ..., Vr(H) are the partition classes of an r-partite r-graph H (so if
H ∼= Kr

r×n, then |Vi(H)| = n for all i). The symbol ⊔ denotes disjoint union.
For an r-partite r-graph we use s(P ) to denote the spareseness of P and p(P ) to
denote the size of the biggest partition class of P .
Definition 2.1 (Division into clusters). Define division of H into m clusters, as
a collection of sets C1, C2, ..., Cm, satisfying⨆︂

1≤i≤m

Ci = V (H)

and
|Ci ∩ Vj(H)| = |Ci ∩ Vk(H)| for all 1 ≤ i ≤ m, 1 ≤ j, k ≤ r.

Denote Ci ∩ Vj(H) as Ci,j and call it the j-th partition of i-th cluster.

Definition 2.2 (Uniform division into clusters). Assuming m divides n, a division
of H into m clusters C1, C2, ..., Cm is defined to be uniform if

|Ci ∩ Vj(H)| = n

m
for all 1 ≤ i ≤ m, 1 ≤ j ≤ r.

Definition 2.3 (Rigid and loose vertices). Given p ≥ 1, a hypergraph H and a
division of H into m clusters, such that |Ci|/r ≥ p for all 1 ≤ i ≤ m, take an
arbitrary set of p vertices Ri,j ⊆ Ci,j for each 1 ≤ i ≤ m and 1 ≤ j ≤ r, and call
these vertices rigid. Let R = ⋃︁

Ri,j be the set of all rigid vertices. We call all
other vertices loose. Let Li,j = Ci,j \ Ri,j be the set of all loose vertices in j-th
partition of i-th cluster and let L = ⋃︁

Li,j.

To practice the definitions, let us prove Corollary 1.2 for r = 2 using subadditivity
and Fekete’s lemma, similarly to how Alon proved it in [5] for complete graphs.
Notice that if r = 2, the host graph is a complete bipartite graph. We state the
simplified theorem
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Theorem 2.4. For every bipartite graph P , there is a constant CP ≥ 0, such that

lim
n→∞

wsat(Kn,n, P )
n

= CP .

To prove Theorem 2.4, we first define subadditivity and state Fekete’s lemma.

Definition 2.5 (subadditivity). A sequence {an}∞
n=1 is called subadditive if for

all n, m ≥ 1
an+m ≤ an + am.

Proposition 2.6. (Fekete’s Lemma [8]) For every subadditive sequence {an}∞
n=1,

the limit limn→∞
an

n
exists and is equal to the infimum inf an

n
.

Lemma 2.7. Given a bipartite graph P , let p ≥ 1 be the size of its vigger partition
class. Then for all 1 ≤ p ≤ m ≤ n

wsat(Kn+m,n+m, P ) ≤ wsat(Kn,n, P ) + wsat(Km,m, P ) + 2p2 (2.1)

Proof. Partition the host graph H, a copy of Kn+m,n+m, into two clusters C1, C2,
such that |C1|/2 = n and |C2|/2 = m. Place a copy of the graph G1 witnessing
wsat(Kn,n, P ) on C1 and a copy of the graph G2 witnessing wsat(Km,m, P ) on
C2. Run the saturation process within each of the clusters to add all the edges
contained in precisely one cluster to the saturation process.

It remains to add the edges with endpoints in different clusters. Designate
p rigid vertices in each partition of each cluster of H. Place a copy of Kp,p on
the vertex sets R1,1 ∪ R2,2 and R1,2 ∪ R2,1. We prove that the resulting graph is
weakly H-saturated.

Note that we have added all edges with both rigid endpoints to the saturation
process already. Let us show how to add all edges with one loose and one rigid
endpoint. Without loss of generatility, assume that the edge uv we aim to add,
has endpoints u ∈ R1,1 and v ∈ L2,2. Let D ⊆ R2,2 be a set of arbitrary p − 1
vertices. Notice that the vertex set R1,1 ∪ D ∪ {v} induces a Kp,p except the edge
uv is missing. When we add this edge, a new copy of Kp,p is created and thus
also a new copy of P is created. This way, all edges with one rigid and one loose
endpoint can be added.

Assume edges with less than two loose endpoints have been added and we show
how to add edges with both endpoints loose. Without loss of generality, assume
edge uv is missing with endpoints u ∈ L1,1, v ∈ L2,2. Let D1 ⊆ R1,1, D2 ⊆ R2,2
be arbitrary sets of p − 1 vertices. The vertex set D1 ∪ D2 ∪ {u, v} induces a Kp,p

except the edge uv is missing. Similarly to before, adding uv creates a new copy
of Kp,p and thus also a new copy of P . All edges with both loose endpoints can
be added this way.

We have constructed a weakly P -saturated graph with at most wsat(Kn,n, P )+
wsat(Km,m, P ) + 2p2 edges and its saturation process.

As a corollary of Lemma 2.7, we obtain the subadditivity of the sequence
{wsat(Kn,n, P )+2p2}∞

n=p. To prove this, add 2p2 to the both sides of the inequality
(2.1).
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Thus the limit of ((wsat(Kn,n, P ) + 2p2)/n)∞
n=p exists by Proposition 2.6. And

so, the limit of ((wsat(Kn,n, P ))/n)∞
n=1 also exists, and

lim
n→∞

wsat(Kn,n, P )
n

= lim
n→∞

wsat(Kn,n, P ) + 2p2

n
.

The proof of Theorem 2.4 is thus finished.
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3 Template saturation
Template saturation is a tool defined and extensively used in [7]. Given

k ≥ r ≥ s ≥ 1, it provides a way to bound the weak saturation numbers
wsat(Kr

n, P ) from above for all r-graphs P of order k and sparseness s, in that we
in some sense pick the worst possible r-graph P . This allowed the authors of [7]
to group the pattern graphs by their sparseness and prove that the same bound
holds for all graphs from each group.

As this is a tool we need to use as well, we extend the concept of template
saturation to the multipartite setting. That is, template saturation will provide
us a way to bound the weak saturation numbers wsat(Kr

r×n, P ) from above for all
r-partite r-graphs P with sparseness s and the size of the biggest partition class p.

Template saturation is considered with respect to some special graph T de-
scribed below. The difference between the template saturation defined in [7] and
the one defined here is the graph we build T from is Kr

r×p where p is the biggest
partition class of P . Let us proceed with the formal definition.

Given 1 ≤ s ≤ r ≤ m, let T −
s,r,m be an r-graph obtained from F ∼= Kr

r×m, by
selecting a set X ⊆ V (F ), such that |X| = s and |Vi ∩ X| ≤ 1 for all i, and
deleting all edges containing X as a subset. Let Ts,r,m be an r-graph formed from
T −

s,r,m by adding back one of the deleted edges. Call this added edge f marked.
Note that whichever set X we choose to remove and whichever edge f we add
back, the graphs will be isomorphic to each other. Proof of this fact is given in
Lemma 3.1.

Define the Ts,r,m-template saturation process of an r-graph G in host hypergraph
H ∼= Kr

r×n, as an ordering of edges e1, e2, ..., e|E(H)\E(G)| satisfying the following
conditions:

1. for all i, there exists a copy of Ts,r,m in G ∪ {e1, e2, e3, ..., ei} in which ei

plays the role of the marked edge f

2. G ∪ {e1, e2, ..., e|E(H)\E(G)|} = H

A graph G is Ts,r,m-template saturated in H if it admits a Ts,r,m-template saturation
process.

Lemma 3.1. Let F ∼= Kr
r×m. Let X1, X2 ⊆ V (F ) be sets of size s such that

|Vi ∩ X1| ≤ 1 and |Vi ∩ X2| ≤ 1 for all i. Let T1 and T2 be r-graphs formed
from F by removing all edges containing X1 and X2 except some edges f1 and f2
respectively (f1 is the marked edge of T1 and f2 is the marked edge of T2). Then
there exists an isomorphism Φ : V (T1) ↦→ V (T2) which maps f1 to f2.

Proof. We construct such map Φ. To construct Φ, map bijectively X1 to X2,
f1 \ X1 to f2 \ X2 and V (T1) \ f1 to V (T2) \ f2, such that if two vertices are in the
same partition class of T1, their images are in the same partition class of T2. Φ is
a well-defined bijection, as the sets X1, f1 \ X1, V (T1) \ f1 have the same sizes of
partition classes as X2, f2 \ X2, V (T2) \ f2 respectively.

The marked edge f1 is mapped to f2 by Φ as required. To prove Φ is an
isomorphism, consider an arbitrary edge e ∈ E(T1). If e = f1, then e is mapped
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to f2 ∈ E(T2). Otherwise e does not contain X1 as a subset and is thus mapped
to h ⊆ V (T2), such that h does not contain X2 as a subset and does not contain
two vertices in the same partition. Thus h ∈ E(T2) and we have proved that any
edge e ∈ E(T1) is mapped to some edge h ∈ E(T2). As |E(T1)| = |E(T2)|, Φ is an
isomorphism.

Notice, that for any r ≥ s∗ ≥ s ≥ 1 and m ≥ 1 the graph Ts,r,m is a
subgraph of Ts∗,r,m. To see this, let Ts,r,m be constructed from F ∼= Kr

r×m by
removing all edges containing subset X = {v1, v2, ..., vs}, where vi ∈ Vi(F ) and
adding back an edge f = {v1, v2, ..., vs, us+1, us+2, ..., ur} for some ui ∈ Vi(F ).
The r-graph formed from F by removing all edges containing as a subset Y =
{v1, v2, ..., vs, us+1, us+2, ..., us∗} and adding back f is Ts∗,r,m. As Y ⊇ X, all edges
containing Y also contain X. Thus all edges removed from F in the formation of
Ts∗,r,m have also been removed in the formation of Ts,r,m. This shows Ts∗,r,m is a
supergraph of Ts,r,m. By Lemma 3.1, the choice of subsets of vertices X and Y
and which edges we choose we choose to leave in the graph does not matter, as
the resulting graphs are all isomorphic to each other.

By a similar argument, albeit much simpler, as we can ignore the part of
the proof concerning marked edges, for any r ≥ s∗ ≥ s ≥ 1, m ≥ 1, T −

s,r,m is a
subgraph of T −

s∗,r,m.

3.1 Monotonicity of template saturation
In this section we precisely describe how to use template saturation to bound

weak saturation numbers from above. To do this, we first show how to embed an
r-partite r-graph P into Ts,r,p with appropriate parameters.
Lemma 3.2. Let P be an r-partite r-graph with s(P ) = s and p(P ) = p. By the
definition of sparseness, there exists S ⊆ V (P ) with |S| = s contained in exactly
one edge. Let e be the edge containing S. Then there exists an embedding Φ of P
into a T , a copy of Ts,r,p, such that Φ maps e to the marked edge f of T .
Proof. The proof is similar to the proof of Lemma 3.1. We construct the map Φ
as follows. Map the vertices of e to the marked edge f , such that S is mapped
to X, where X is the set chosen in definition of Ts,r,p. Afterwards map the rest
of V (P ) to V (T ) arbitrarily, under the condition, that if two vertices are in the
same partition class of P , their images are in the same partition class of T and no
two vertices of P are mapped to the same vertex of T . Φ is an embedding. To
prove this, consider an arbitrary edge c ∈ E(P ). If c = e, then the image of c is
f ∈ E(T ). Otherwise c does not contain S as a subset. Such edge c is mapped to
some h ⊆ V (T ), such that h does not contain X as a subset and does not contain
two vertices from the same partition class. Thus h ∈ E(T ) and we have proved
that Φ is an embedding.

We now use the Lemma 3.2 [just estabilished] to prove the anticipated Lemma,
which allows us to bound weak saturation numbers from above by template
saturation.
Lemma 3.3. Suppose the host graph H ∼= Kr

r×n for some n ≥ 1 and P is an
r-partite r-graph with sparseness s(P ) = s and p(P ) = p. If an r-graph G is
Ts,r,p-template saturated in H, then G is also weakly P -saturated in H.
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Proof. We show that whenever an edge creating a new copy of a Ts,r,p is added,
such that the newly added edge can be mapped to the marked edge f , also a new
copy of P is created.

Let e1, e2, ...e|E(H)\E(G)| be the Ts,r,p-template saturation process of G in H and
let Ti be the copy of Ts,r,p created in the i-th step of the process. By the definition
of sparseness, there exists S ⊆ V (P ) with |S| = s contained in exactly one edge.
Let e be the edge containing S. By Lemma 3.2 we can embed P into Ti, such
that e is mapped to the marked edge f of Ti. Thus G ∪ {e1, e2, ..., ei} contains a
copy of P (subgraph of Ti) containing the edge ei.

The following lemmas allow us to construct weakly/template saturated graphs
iteratively, that is, we start from an empty graph and then repeat adding some
edges and running the saturation process within some part of the graph we built
so far, until we get to the host graph, just like we did in the proof Theorem 2.4.
For this, we prove that if we add edges to a weakly/template saturated graph G
with respect to some graph P in H, it remains weakly/template saturated.

Lemma 3.4. For any r-graphs G ⊆ G′ ⊆ H on the same vertex set and an
r-partite r-graph P , if G is weakly P -saturated in H, then so is G′.

Proof. We get a saturation process of G′ in H from the saturation process of G
in H by ignoring the edges already in G′.

Lemma 3.5. For any r-graphs G ⊆ G′ ⊆ H on the same vertex set, if G is
Ts,r,p-template saturated in H, then so is G′.

Proof. Exactly the same as Lemma 3.4.

Lemma 3.6. Let H ∼= Kr
r×p. For all r ≥ s∗ ≥ s ≥ 1 and r-graphs G ⊆ H, if G

contains T −
s∗,r,p as a subgraph then G is Ts,r,p-template saturated in H.

Proof. The graph T −
s,r,p is Ts,r,p-template saturated in Kr

r×p. To see this, let f be
an arbitrary missing edge from T −

s,r,p. There is an isomorphism between T −
s,r,p ∪ f

and Ts,r,p such that f is mapped to the marked edge of Ts,r,p. Thus any sequence
of the missing edges forms a valid Ts,r,p-template saturation process.

As T −
s,r,p is a subgraph of T −

s∗,r,p and G, in turn, contains T −
s∗,r,p as a subgraph, G

also contains T −
s,r,p as a subgraph. Applying Lemma 3.5 with T −

s,r,p and G playing
the role of G and G′ respectively, we conclude that G is Ts,r,p-template saturated
in H.

3.2 Small increases in host graph size
In this section, we show that small increases in host graph size lead to small

increases in the weak saturation numbers.

Lemma 3.7. Let r ≥ s ≥ 2, a ≥ b ≥ 1 and a ≥ p ≥ 1. Let H ∼= Kr
r×(a+b). Suppose

V = A ⊔ B is the vertex set of H and |Vi(H) ∩ A| = a and |Vi(H) ∩ B| = b for all
i. Let E be the set of all edges e ∈ E(H) with e ⊆ A (that is, (A, E) is complete
r-partite). Then there exits a set of edges E ′ ⊆ E(H) with |E ′| ≤ rs−1bas−2pr−s+1

such that (V, E ∪ E ′) is Ts,r,p-template saturated.
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Proof. We first describe the construction of E ′ and prove that (V, E ∪E ′) is indeed
Ts,r,p-template saturated in H. Then we prove the bound on |E ′|.

Let C ⊆ A be a set of p · r vertices, such that |Vi(H) ∩ C| = p for all i. Let

E ′ = {e ∈ E(H) \ E : |e \ C| ≤ s − 1}.

We show that G = (V, E ∪ E ′) is Ts,r,p-template saturated in H. For an edge
f ∈ E(H), define λ(f) = |f \ C|. Note that edges with λ(f) ≤ s − 1 are already
included in G. To see this, note that edges with λ(f) ≤ s − 1 are either included
in E, or they are not in E. In the latter case they are in E ′ as the set E ′ is defined
precisely to contain all edges f not in E with λ(f) ≤ s − 1.

We show that there exists a Ts,r,p-template saturation process of (V, E ∪ E ′)
in H by induction on λ, where λ ≤ s − 1 is the base case discussed above.

Consider an arbitrary edge f with λ(f) ≥ s and assume, that all edges with
λ < λ(f) have been added to the process already. We show that f can be added
as well. For each i ≤ r, let Di ⊆ (Vi(H) ∩ C) \ f , be a set of arbitrary p − 1
vertices. Such sets exist as for each Vi(H), f intersects Vi(H) ∩ C in at most one
vertex and thus

|(Vi(H)∩C)\f | = |Vi(H)∩C|−|f ∩Vi(H)∩C| ≥ |Vi(H)∩C|−|f ∩Vi(H)| ≥ p−1.

Take D = ⋃︁
i≤r Di. We prove that the subgraph induced by D∪f is Ts,r,p-template

saturated in Kr
r×p. All missing edges e ⊆ D ∪ f , including f can thus be added

to the saturation process of G in H, proving the statement. To see this, note that
we can take the Ts,r,p-template saturation process of the subgraph induced by
D ∪ f in Kr

r×p and append it to the saturation process of G in H we are currently
constructing.

To prove that the subgraph induced by D ∪ f is Ts,r,p-template saturated in
Kr

r×p, note that all edges e not yet added to the process must contain f \ C as
a subset. This holds by induction hypothesis. If an edge e ⊆ D ∪ f does not
contain f \ C as a subset then λ(e) < λ(f) since D \ (f \ C) ⊆ C. The subgraph
induced by D ∪ f is thus isomorphic to a supergraph of T −

λ(f),r,p and as λ(f) ≥ s,
by Lemma 3.6 it is Ts,r,p-template saturated in Kr

r×p.
We have shown that there exists the Ts,r,p-template saturation process of

(V, E ∪ E ′) in H.

Now we turn to proving the bound on |E ′|. Define

E ′
i = {e ∈ E(H) \ E : |e \ C| ≤ s − 1 ∧ |e ∩ B| = i}

and let us bound |E ′
i|. Each edge intersects every partition class of H precisely

in one element. There are
(︂

r
r−s+1

)︂
=
(︂

r
s−1

)︂
ways to choose in which partitions an

edge e ∈ E ′ is guaranteed to intersect C satisfying the condition |e \ C| ≤ s − 1
and once we fix them, there are pr−s+1 ways to select the vertices in which e
intersects them. The rest s − 1 of the vertices in the edge e can intersect the
vertex set anywhere in the not yet chosen partitions, under the condition that
|e ∩ B| = i and this can be done in at most

(︂
s−1

i

)︂
as−1−ibi ways. We get

|E ′
i| ≤

(︄
r

s − 1

)︄
pr−s+1

(︄
s − 1

i

)︄
as−1−ibi.
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We continue by using the bound on |E ′
i| to bound |E ′|. Note, that E ′

0 is a subset
of E, as each edge e ∈ E ′

0 is a subset of A. Since

E ′ =
⨆︂

1≤i≤s−1
E ′

i,

we obtain

|E ′| =
∑︂

1≤i≤s−1
|E ′

i|

≤
∑︂

1≤i≤s−1

(︄
r

s − 1

)︄
pr−s+1

(︄
s − 1

i

)︄
as−1−ibi

≤
∑︂

1≤i≤s−1

(︄
r

s − 1

)︄
pr−s+1

(︄
s − 1

i

)︄
as−2b

=
(︄

r

s − 1

)︄
pr−s+1as−2b

∑︂
1≤i≤s−1

(︄
s − 1

i

)︄
≤ rs−1pr−s+1as−2b

proving the desired bound.

Corollary 3.8. Let p ≥ r ≥ s ≥ 2 and P be an r-partite r-graph with maximum
size of a partition class p and sparseness s. Then for every k2 ≤ k1 we have

wsat(Kr
r×(k1+k2), P ) ≤ wsat(Kr

r×k1 , P ) + rs−1pr−s+1ks−2
1 k2

Proof. To show the inequality, we create a weakly P -saturated graph in H ∼=
Kr

r×(k1+k2). Take a minimal weakly P -saturated graph G1 in Kr
r×k1 and place its

copy on the vertex set of H such that after running the saturation process within
this copy, some vertex set Z ⊆ V (H) induces Kr

r×k1 . Add the remaining edges as
described in Lemma 3.7 with Z playing the role of A and V (H) \ Z playing the
role of B. The resulting graph G2 is Ts,r,p-template saturated by Lemma 3.7. By
Lemma 3.3 we know that G2 is also weakly P -saturated. Therefore, the graph G
formed from the copy of G1 placed on Z and the edges added by Lemma 3.7 is a
weakly P -saturated graph in H with at most wsat(Kr

r×k1 , P ) + rs−1pr−s+1ks−2
1 k2

edges.
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4 Proof of Theorem 1.1
4.1 Using the clusters

First we prove that for any r-partite r-graph P with sparsenss s, the sequence
{wsat(Kr

r×n, P )/ns−1}∞
n=1 is bounded from below by some constant greater than

0. Then we prove the existence of the limit of the sequence above.
Lemma 4.1. For every r-graph P with s(P ) = s, there exists a constant c′

P > 0,
such that

wsat(Kr
r×n, P ) ≥ c′

P · ns−1.

Proof. Let H be the host graph, a complete r-partite r-graph of order n. Every
set X ⊆ V (H) of s − 1 vertices with |X ∩ Vi(H)| ≤ 1 for all i has to be included in
at least one edge of any weakly P -saturated r-graph. As there are ns−1 such sets
X and an edge can cover at most

(︂
r

s−1

)︂
such sets, the smallest weakly P -saturated

graph has at least ns−1/
(︂

r
s−1

)︂
edges. The constant c′

P = 1/
(︂

r
s−1

)︂
thus satisfies the

statement.
To prove that every such set has to be covered by an edge, suppose that there

is a weakly P -saturated r-partite r-graph G in H and a set X ⊆ V (H) of s − 1
vertices, such that |X ∩Vi(H)| ≤ 1 for all i, and there is no edge in G containing X
as a subset. As |X ∩ Vi(H)| ≤ 1 for all i, there exists at least one edge f ∈ E(H)
such that X ⊆ f . Let

F = {f ∈ E(H) : X ⊆ f}.

As G is weakly P -saturated in H it has a saturation process e1, e2, ..., e|E(H)\E(G)|.
All edges in F have to be added as a part of this process. Let

k = min{j : ej ∈ F}.

Now, by the definition of weak saturation, G ∪ {e1, e2, ..., ek} contains a copy of
P such that the edge ek is mapped to an edge z ∈ E(P ). The set X is mapped
to W ⊆ z. As ek is the only edge in E(G) ∪ {e1, e2, ..., ek} containing X, z is the
only edge in E(P ) containing W . We have found a set W of size s − 1 contained
in exactly one edge of P , contradicting the assumption that sparseness of P is
s.

We continue by stating Rödl’s Approximate Designs Theorem. When the
host graph H is a complete r-graph of order n, given a pattern r-graph P with
s(P ) = s and two integers n ≥ u such that u | n, the authors of [7] divided V (H)
into disjoint clusters of size u and shown how to find a small set of edges E, using
Rödl’s Theorem such that all edges contained in at most s − 1 clusters can be
generated by a weak P -saturation process starting from E.

It is not immediately clear how to do this in a multipartite setting. While it is
natural to expect that some multipartite version of Rödl’s Theorem is required,
we show that using uniform partitions into clusters as defined in Definition 2.2
allows us to stay with the classical version of Rödl’s Theorem.
Proposition 4.2. (Rödl [9]). For every k ≥ t ≥ 1 and δ ≥ 0 and for all
N ≥ N0(k, t, δ) the following holds. There exists a set family F ⊆

(︂
[N ]
k

)︂
of size at

most (1 + δ)
(︂

N
t

)︂
/
(︂

k
t

)︂
such that every A ∈

(︂
[N ]

t

)︂
is a subset of some FA ∈ F .
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In the following lemma, we show how to do find such set of edges E in the
multipartite setting. Let the host graph H ∼= Kr

r×n and let P be an r-partite
r-graph with s(P ) = s. Given two integers n ≥ u such that u | n we uniformly
divide H into n/u clusters as defined in Definition 2.2 and show how to find a
small set of edges E such that starting from E all edges contained in at most s − 1
such clusters can be generated by a P -saturation process. We bound the set with
respect to a variable m dependent on u as it will give us a bound we can directly
apply later on in the proof.

Lemma 4.3. Let H ∼= Kr
r×n and P be r-partite r-graph with S(P ) = s. Given

m > 0 such that m is a perfect (s − 1)-st power, u = m1/(s−1), δ > 0, and a
uniform division into n/u clusters of H, define E+ ⊆ E(H) to be a set of edges
intersecting at most s − 1 clusters. Then for sufficiently large n (n ≥ n0(m, s, δ))
satisfying u | n, there exists a set of edges E ⊆ E(H) such that

1.
|E| ≤ (1 + 2δ) ns−1

ms−1 wsat(Kr
r×m, P ).

2. The r-graph (V (H), E) is weakly P -saturated in (V (H), E+).

Proof. Let C1, C2, ..., Cn/u be a uniform division into n/u clusters of H. Apply
Proposition 4.2, with m/u,s − 1 and δ playing the role of k,t and δ, respectively
with the ground set [n/u]. For sufficiently large n, we get a set family F with

|F| ≤ (1 + δ)

(︂
n/u
s−1

)︂
(︂

m/u
s−1

)︂ = (1 + δ)(n/u)!(m/u − s + 1)!(s − 1)!
(m/u)!(n/u − s + 1)!(s − 1)!

= (1 + δ) (n/u)(n/u − 1)...(n/u − s + 2)
(m/u)(m/u − 1)...(m/u − s + 2)

= (1 + δ) (n/u)s−1 + o((n/u)s−1)
(m/u)s−1 + o((m/u)s−1)

≤ (1 + 2δ) ns−1

ms−1 , (4.1)

and every A ∈
(︂

[n/u]
s−1

)︂
is contained in some FA ∈ F .

Let G be the r-partite r-graph witnessing wsat(Kr
r×m, P ). For every F ∈ F ,

take the vertex set
DF =

⋃︂
i∈F

Ci.

and notice that for each j ≤ r

DF ∩ Vj(H) = (m/u)u = m.

Place a copy of G on every DF , and let E be the union of sets of edges added this
way. As the subgraph induced by DF is weakly P -saturated, we run the weak
P -saturation process within each DF . Afterwards, each DF induces a copy of
Kr

r×m. The sequence formed by concatenating all of these saturation processess
and removing all occurences of an edge except the first is the saturation process
of the r-graph (V (H), E) in (V (H), E+) satisfying condition 2. We only need to
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prove that all edges f contained in at most s − 1 clusters have been added as a
part of some saturation process. To this end, take an arbitrary such edge f . Let

B = {i : f ∩ Ci > 0}.

As |B| ≤ s − 1, there exists a set A ∈
(︂

[n/u]
s−1

)︂
such that B ⊆ A. Furthermore,

there exists FA ∈ F containing A as a subset and thus f ⊆ DFA
. After running

the saturation processes within DF for all F ∈ F , DF induces Kr
r×m and thus f

is either in E or has been added in the corresponding weak P -saturation process
within DFA

.
Now, by inequality (4.1),

|E| ≤ |F|wsat(Kr
r×m, P ) ≤ (1 + 2δ) ns−1

ms−1 wsat(Kr
r×m, P ).

Given an r-partite r-graph P with s(P ) = s and a uniform division into
clusters of H ∼= Kr

r×n, and an edge set E such that all edges intersecting at most
s − 1 clusters can be generated as a part of a P -saturation process, the next two
lemmas describe a construction of an edge set E∗, such that (V (H), E ∪ E∗) is
weakly P -saturated and E∗ does not contain too many edges.

The first lemma describes a construction of such edge set E∗ described above,
assuming the host graph H is partitioned into exactly s clusters. The set is
denoted by E ′. The proof is rather long, but it contains three distinct parts, which
can be understood one by one.

We designate p rigid vertices in each partition of each cluster of H as defined
in Definition 2.3, aiming to show the existence of Ts,r,p-template saturation process
of (V (H), E ∪ E ′). The first part of the proof shows how to add missing edges
with exactly s − 1 loose vertices to the saturation process. The second part of
the proof shows how to add missing edges with at least s loose vertices to the
saturation process assuming all other edges have been added already. The third
part proves a bound on the size of E ′.

Lemma 4.4. Given n ≥ p ≥ 1, s ≥ 2 satisfying s | n and n/s ≥ p, let
C1, C2, ..., Cs be a uniform division of H ∼= Kr

r×n, into s clusters. Let the set
E ⊆ E(H) contain all edges intersecting at most s − 1 clusters. Designate p rigid
vertices in each partition of each cluster of H as defined in Definition 2.3. Let

E ′ = {e ∈ E(H) \ E : |e ∩ L| ≤ s − 2.}

Then (V (H), E ∪ E ′) is Ts,r,p-template saturated and

|E ′| ≤ sr

(︄
r

s − 2

)︄(︃
n

s

)︃s−2
pr−s−2.

Proof. We show that there exists a Ts,r,p-template saturation of the r-graph
(V (H), E ∪ E ′) in H. First note that edges f ∈ E(H) with at most s − 2 loose
vertices are already contained in E ∪ E ′. To see this, consider an edge f with at
most s − 2 loose vertices. If f ∈ E then it has been added already. If f /∈ E then
f ∈ E ′ as E ′ is defined to contain precisely all edges not in E with at most s − 2
loose vertices.
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Next, let us show how to add to the saturation process edges with exactly
s − 1 loose vertices. Consider such an edge f . By pigeonhole, there exists a cluster
Ci, such that f does not contain a loose vertex from this cluster and thus we can
define

ρ(f) = min
1≤i≤s

{|(
⋃︂

1≤j≤r

Ri,j) ∩ f | : |(f ∩ Ci) ∩ L| = 0}.

as the set we take minimum over is nonempty.
We now aim to show, by induction on ρ, that every edge with exactly s − 1

loose vertices can be added to the saturation process. Edges f with ρ(f) = 0 are
missing one of the clusters and are thus in E. So, we can treat ρ(f) = 0 as the
base case. For the induction step, consider an arbitrary edge f with ρ(f) > 0 and
suppose that all edges with smaller ρ are already present. Let γ(f) be the index
of the cluster attaining minimum in the definition of ρ and i be an arbitrary index
of a cluster, such that i ̸= γ(f). For all z ≤ r, let Dz ⊆ Ri,z \ f be a set of p − 1
vertices. For all z ≤ r, the sets Dz are well-defined, as

|Ri,z \ f | = |Ri,z| − |Ri,z ∩ f | ≥ |Ri,z| − 1 = p − 1.

Let D = ⋃︁
1≤z≤r Dz. We show that the subgraph induced by D ∪ f is Ts,r,p-

template saturated. For this, note that missing edges e ⊆ (f ∪ D) must contain
(f ∩ L) ∪ (Cγ(f) ∩ f) as a subset. This is because missing edges have to contain
both all loose vertices in D ∪f as edges with at most s−1 loose vertices have been
added already, and all vertices from (Cγ(f) ∩ f) as ones that do not contain them,
have lower ρ and have been added by inductive assumption. The sets (f ∩ L)
and (Cγ(f) ∩ f) are disjoint, |(f ∩ L)| = s − 1 and |(Cγ(f) ∩ f)| = ρ(f) > 0. Thus
|(f ∩ L) ∪ (Cγ(f) ∩ f)| = s − 1 + ρ(f) ≥ s.

Define s′ = s − 1 + ρ(f). The graph Ts′ obtained from the subgraph induced
by vertices D ∪ f by removing all edges containing (f ∩ L) ∪ (Cγ(f) ∩ f) as a
subset is isomorphic to T −

s′,r,p and as s′ ≥ s, the subgraph induced by D ∪ f is
Ts,r,p-template saturated by Lemma 3.6. All missing edges contained in D ∪ f ,
including the edge f can thus be added to the process, as the Ts,r,p-template
saturation process of the subgraph induced by D ∪ f can be appended to it.

We continue by adding edges with at least s loose vertices to the process.
Consider such an edge f and define λ(f) = |f ∩ L|. We show that every edge
with at least s loose vertices can be added to the process by induction on λ. Let
λ(f) = s − 1 be the base case of the induction.

For the induction step, consider an arbitrary edge f with λ(f) ≥ s and suppose
that all edges with λ < λ(f) have been added to the process already. For all
z ≤ r, let Dz ⊆ R1,z \ f be a set of p − 1 vertices. For all z ≤ r, the sets Dz are
well-defined, as

|R1,z \ f | = |R1,z| − |R1,z ∩ f | ≥ |R1,z| − 1 = p − 1.

Let D = ⋃︁
z≤r Dz. We show that the subgraph induced by D ∪ f is Ts,r,p-template

saturated. For this, note that missing edges e ⊆ (D ∪ f) must contain f ∩ L as
a subset otherwise e intersects L in fewer than |f ∩ L| = λ(f) vertices and thus
already has been added to the process by inductive assumption. The r-partite
r-graph Tλ(f) obtained from the subgraph induced by D ∪ f by removing all edges
containing f ∩ L is isomorphic to T −

λ(f),r,p and as the subgraph induced by D ∪ f
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is supergraph of Tλ(f) and λ(f) ≥ s, it is Ts,r,p-template saturated by Lemma 3.6.
All missing edges contained in D ∪ f , including the edge f can thus be added to
the process.

Finally, let us prove the bound on |E ′|. To this end, note that an edge e ∈ E ′

intersects each partition precisely once. There are sr ways to choose the mapping
Φ : {1, 2, ..., r} ↦→ {1, 2, ..., s} which asserts that e intersects the i-th partition in
cluster CΦ(i). Once this map has been chosen, there are

(︂
r

r−s+2

)︂
ways to choose

which partitions e must intersect in rigid vertices, and for each of those, there are
pr−s+2 ways to choose which rigid vertices it intersects and (n

s
)s−2 ways to choose

which vertices it intersects in the other partitions – they can be either rigid or
loose. We have counted some edges with more than r − s + 2 rigid vertices more
than once, but the important thing is we have counted each edge at least once.
We get the desired bound

|E ′| ≤ sr

(︄
r

s − 2

)︄(︃
n

s

)︃s−2
pr−s−2.

The following lemma uses Lemma 4.4 to construct the desired set E∗, even
when the host graph is divided into more than s clusters.

Lemma 4.5. Given n ≥ u ≥ p ≥ 1, u | n, let C1, C2, ..., Cn/u be a uniform
division of H ∼= Kr

r×n, into n/u clusters and let the set E ⊆ E(H) contain
all edges intersecting at most s − 1 clusters. Then there exists a set of edges
E∗ ⊆ E(H) such that (V (H), E ∪ E∗) is Ts,r,p-template saturated and

|E∗| ≤
(︄

n/u − 1
s − 1

)︄
sr

(︄
r

s − 2

)︄
us−2pr−s−2.

Proof. Designate p rigid vertices in each partition of each cluster of H. Let

E∗ =
⋃︂

Q∈({2,3,...n/u}
s−1 )

E ′(Q ∪ {1}),

where for a set M ⊆ {1, 2, ..., n/u} of size s − 1, E ′(M) ⊆ E(H) denotes the set
of all edges e containing at most s − 2 loose vertices satisfying e ⊆ ⋃︁

i∈M Ci. The
construction of E ′(M) is exactly the same as the construction of E ′ in Lemma 4.4.
We now show that (V (H), E ∪ E∗) admits a Ts,r,p-template saturation process in
H.

We have constructed E∗, such that each subgraph induced by a set of s clusters
containing cluster C1 is Ts,r,p-saturated by Lemma 4.4, thus all edges contained in
exactly s clusters can be added to the process as long as one of the clusters is C1.

Now, for any edge f define Λ(f) = f \ C1 and λ(f) = |Λ(f)|. We show that
we can add to the process the remaining missing edges by induction on λ(f). Let
λ(f) ≤ s − 1 be the base case, as these edges are in E.

Consider an edge f with λ(f) ≤ s and suppose that all edges e with λ(e) < λ(f)
have been added already. For all z ≤ r let Dz ⊆ (C1,z \ f) be arbitrary set of p − 1
vertices and D = ⋃︁

z≤r Dz. For all z ≤ r the sets Dz are well-defined as

|C1,z \ f | = |C1,z| − |C1,z ∩ f | = u − |C1,z ∩ f | ≥ p − 1.
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All edges e′ ⊆ D ∪ f not yet added must have Λ(f) as a subset, otherwise e′

contains fewer vertices outside of C1 and is already added by induction hypothesis.
The r-partite r-graph Tλ(f) formed from the subgraph induced by D ∪ f by
removing all edges containing Λ(f) is isomorphic to T −

λ(f),r,p. As the subgraph
induced by D ∪ f is a supergraph of Tλ(f) and λ(f) ≥ s, it is Ts,r,p-saturated by
Lemma 3.6. All edges e′ ⊆ D ∪ f , including the edge f can thus be added to the
process. To finish the proof, let us bound |E∗|. As

E∗ =
⋃︂

Q∈({2,3,...,n/u}
s−1 )

E ′(Q ∪ {1})

and for each E ′(Q ∪ {1}) in the formula, the bound from Lemma 4.4 for |E ′| holds
with u · s playing the role of n, we get

|E∗| ≤
∑︂

Q∈({2,3,...,n/u}
s−1 )

|E ′(Q ∪ {1})|

≤
∑︂

Q∈({2,3,...,n/u}
s−1 )

sr

(︄
r

s − 2

)︄(︃
us

s

)︃s−2
pr−s−2

≤
(︄

n/u − 1
s − 1

)︄
sr

(︄
r

s − 2

)︄
us−2pr−s−2,

proving the bound as desired.

4.2 Putting it all together
In this section we combine everything we have proven to complete the proof of

Theorem 1.1.
First, assume s(P ) = 1. We show that the sequence {wsat(Kr

r×n, P )}∞
n=p is

non-increasing. Hence, as it is bounded from below by Lemma 4.1, it is convergent.
To do so, we show that for any n2 ≥ n1 ≥ p, we can build a weakly P -saturated
graph in H, a copy of Kr

r×n2 , with wsat(Kr
r×n1 , P ) edges. For this, place the graph

G witnessing wsat(Kr
r×n1 , P ) on a vertex set Z formed by taking arbitrary n1

vertices from each partition class of H. Then run the saturation process within Z.
By the definition of sparseness, there exists a vertex u ∈ V (P ) contained in

exactly one edge f ∈ E(P ). Now it’s possible to pick any vertex v ∈ V (H) \ Z
and add all edges e ⊆ Z ∪ {v}, by mapping u to v, f to e and the rest of the
vertices of P to Z, such that if two vertices of P are in the same partition class,
their images are in the same partition class of H. We have embedded a P into
Z ∪ {v} such that the only missing edge of P is f . Thus e can be added as a part
of the P -saturation process. Subsequently, repeat this for each vertex to obtain
the complete saturation process.

Let us now prove that the Theorem 1.1 holds for sparseness s(P ) > 1. Let

CP = lim inf
n→∞

wsat(Kr
r×n, P )

ns−1 .

It follows by Lemma 4.1 that CP > 0. We now claim that the limit in Theorem
1.1 exists and equals CP .
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Let ε > 0. First, we show that there exist arbitrarily large perfect (s − 1)-st
powers m, such that

wsat(Kr
r×m, P ) ≤ (CP + 2ε) · ms−1.

Lemma 4.6. Let m0 > 0 and let m = ⌈m
1/(s−1)
0 ⌉s−1 be the next largest perfect

(s − 1)-st power. Then

wsat(Kr
r×m, P ) − wsat(Kr

r×m0 , P ) = o(ms−1).

Proof. By the binomial theorem,

m − m0 ≤ ⌈m
1/(s−1)
0 ⌉s−1 − ⌈m

1/(s−1)
0 − 1⌉s−1

= ⌈m
1/(s−1)
0 ⌉s−1 − (⌈m

1/(s−1)
0 ⌉ − 1)s−1

= ⌈m
1/(s−1)
0 ⌉s−1 −

s−1∑︂
i=0

(−1)s−1−i

(︄
s − 1

i

)︄
⌈m

1/(s−1)
0 ⌉i

=
s−2∑︂
i=0

(−1)s−i

(︄
s − 1

i

)︄
⌈m

1/(s−1)
0 ⌉i

= O(m(s−2)/(s−1)).

Hence, using Corollary 3.8, with m0,m − m0 playing the role of k1,k2 respectively,
we get

wsat(Kr
r×m, P ) ≤ wsat(Kr

r×m0 , P ) + rs−1pr−s+1ms−2
0 (m − m0)

= wsat(Kr
r×m0 , P ) + O(ms−2m(s−2)/(s−1)).

Rearranging,

wsat(Kr
r×m, P ) − wsat(Kr

r×m0 , P ) = O(ms−2m(s−2)/(s−1)) = o(ms−1).

By the properties of limes inferior, there exist arbitrarily large values of m0,
such that

wsat(Kr
r×m0 , P ) ≤ (Cp + ε)ms−1

0 .

By Lemma 4.6, there exists a threshold m1, such that for all m0 ≥ m1,

wsat(Kr

r×⌈m
1/(s−1)
0 ⌉s−1 , P ) − wsat(Kr

r×m0 , P ) ≤ ε⌈m
1/(s−1)
0 ⌉s−1.

We can thus pick arbitrarily large m0 ≥ m1 satisfying the first condition and then
getting the desired perfect (s − 1)-st power by taking m := ⌈m

1/(s−1)
0 ⌉s−1. We get

wsat(Kr
r×m, P ) ≤ (wsat(Kr

r×m, P ) − wsat(Kr
r×m0 , P )) + wsat(Kr

r×m0 , P )
≤ εms−1 + (CP + ε)ms−1

0

≤ (CP + 2ε)ms−1. (4.2)

Fix such m, satisfying m > g(ε, H), where g is a function to be specified later.
We continue by proving the following lemma.
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Lemma 4.7. Let n0, u > 0 and let n = u⌊n0/u⌋. Then

wsat(Kr
r×n0 , P ) − wsat(Kr

r×n, P ) = o(ns−1).

Proof. It follows from Corollary 3.8, that

wsat(Kr
r×n0 , P ) ≤ wsat(Kr

r×n, P ) + rs−1pr−s+1ns−2(n0 − n)
≤ wsat(Kr

r×n, P ) + rs−1pr−s+1ns−2

= wsat(Kr
r×n, P ) + o(ns−1)

By rearranging, we get

wsat(Kr
r×n0 , P ) − wsat(Kr

r×n, P ) = o(ns−1).

By Lemma 4.7, given some constant u, there exists n1, such that for all n ≥ n1

wsat(Kr
r×n, P ) − wsat(Kr

r×u⌊n/u⌋, P ) ≤ ε(u⌊n/u⌋)s−1 ≤ εns−1.

We can thus choose some u and it suffices to prove that there exists n2, such
that for all n ≥ n2 − u satisfying u | n,

wsat(Kr
r×n, P ) ≤ (CP + 3ε) · ns−1.

Then it will follow that for all n ≥ max(n1, n2),

wsat(Kr
r×n, P ) ≤ (CP + 4ε) · ns−1,

proving Theorem 1.1.
Let us do just that. Pick u = m1/(s−1) (recall that m is a perfect (s − 1)-st

power satisfying (4.2)). We shall prove that for all n large enough, such that u | n,

wsat(Kr
r×n, P ) ≤ (CP + 3ε) · ns−1.

We may assume that n is large enough to satisfy the requirement of Lemma
4.3 with m, ε/CP playing the role of m, δ respectively. For such n satisfying u | n,
H ∼= Kr

r×n and a uniform division into n/u clusters of H, it provides us with an
edge set E such that (V (H), E) is weakly P -saturated in (V (H), E+), where E+

is a set of edges intersecting at most s − 1 clusters, satisfying

|E| ≤ (1 + 2ε/CP ) ns−1

ms−1 wsat(Kr
r×m, P )

≤ (1 + 2ε/CP ) ns−1

ms−1 (CP + 2ε)ms−1

≤ (CP + 2ε)ns−1.

Now, we can use Lemma 4.5 with n,u and p playing the role of n,u and
p respectively. It provides us with a set E∗, precisely constructed, such that
(V (H), E+ ∪ E∗) is Ts,r,p-template saturated in H and

|E∗| ≤
(︄

n/u − 1
s − 1

)︄
sr

(︄
r

s − 2

)︄
us−2pr−s−2 = O((n/u)s−1us−2) = O(ns−1/u). (4.3)
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By Lemma 3.3, (V (H), E+ ∪ E∗) is a fortiori weakly P -saturated in H. Since
(V (H), E+∪E∗) is weakly P -saturated, (V (H), E∪E∗) is too, as E+ was generated
from E by sequentially adding edges which give rise to a new copy of P . The
precise saturation process of (V (H), E ∪ E∗) is formed by concatenating the
sequence generating E+ from E given by Lemma 4.3 and the saturation process
of (V (H), E+ ∪ E∗).

To finish the proof, we need to show E ∪ E∗ is small.

|E ∪ E∗| ≤ |E| + |E∗|
≤ (CP + 2ε)ns−1 + O(ns−1/u)
= (CP + 2ε)ns−1 + O(ns−1/m1/(s−1))
≤ (CP + 3ε)ns−1.

We get the last inequality by specifying g(ε, H) in such a way that for m > g(ε, H)
the function bounding |E∗| (4.3) is at most ε · ns−1 (recall that u = m1/(s−1) in
(4.3)).
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Conclusion
In this thesis, we investigated the limiting constant behaviour of weak satura-

tion processes in complete multipartite host hypergraphs.
Our main contribution is the proof of Theorem 1.1, an extension of a related

result in complete hypergraphs [7].
Further result we would like to see is an analysis of Problem 1. Is there a

polynomial time algorithm or can we prove that it is NP-complete? Does some
property of the host graph, such as planarity, make the problem easier?

In [10], the authors proved that the sequences {wsat(Kn,n, P )/2n}∞
n=1 and

{wsat(Kn, P )/n}∞
n=1 converge to the same finite limit for any bipartite graph

P . Is it possible to appropriately extend this theorem to r-uniform r-partite
hypergraphs with r > 2?
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