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Introduction

Computer simulations are programs that use mathematical models to mimic

processes in the real world. We can differentiate three main purposes for which

they are typically used: understanding, predicting, and explaining [1].

To illustrate the difference between the three purposes, consider the following

example. Imagine we were to simulate the atmosphere above a Midwestern plain.

The simulation could be used to understand the structure of a severe thunderstorm,

forecast weather, or serve as a tool to explain why storms sometimes split in

two [1].

One of the areas that heavily relies on computer simulations is computational

epidemiology. In simple terms, computational epidemiology develops and uses

simulation models of synthetic social contact networks to understand and control

the spread of disease in populations [2]. The results of these simulations are then

analyzed when making decisions about public policies. Epidemiological models

focus on accurate use of data and complex mathematical algorithms to obtain the

most realistic results possible.

However, it is also possible to imagine a different approach to simulations,

one where we focus more on the user experience and less on the accuracy of the

data. One of the possibilities is to create a simulation that encourages critical

thinking. In Explorable Explanations [3], Victor mentions a few ideas on how to

change people’s relationship with text. He introduces the concepts of reactive

documents, explorable examples, and contextual information. In some aspects,

these designs can be applied to simulations as well.

Some examples of simulations that encourage critical thinking can be found in

Washington Post’s article [4] Why outbreaks like coronavirus spread exponentially,
and how to “flatten the curve”, or R2D3’s article [5] Making sense of COVID19
through simulations. We will discuss these examples and how they’re designed in

more detail in the following chapters.
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Contributions
The goal of this thesis is to create an interactive pandemic simulation that encour-

ages critical thinking rather than an attempt to create an accurate model of the

spread of COVID-19. In order to achieve that, we analyze various design goals

and visualisation options, compare them against existing simulations, and then

design our own model. The environment of our simulation strives to inspire our

reader to be an active one. An active reader is someone who isn’t just passively

sponging up information, but asks questions, considers alternatives, and questions

the author and their assumptions [3].

The contributions of this thesis are as follows:

1. We analyze various design goals and visualization options for pandemic

simulations.

2. We design an interactive pandemic simulation that encourages critical

thinking.

3. We implement a prototype of the simulation.

Chapters 1 and 2 cover the analysis of simulations and the design goals we

want to set for our own simulation. Chapter 3 describes the design of our simula-

tion from a high-level perspective as well as the details of our implementation.

Final thoughts and possible future improvements are discussed in Chapter 4.
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Chapter 1

Background

This chapter provides a theoretical foundation for the rest of the thesis. We

define simulations and visualizations, explore the impact they have on education

and critical thinking, and discuss their trustworthiness. This is followed by an

overview of available interactive simulation tools and libraries used in this thesis.

In the rest of the thesis, we draw from existing simulations and visualizations

reviewed in this chapter to create our own interactive simulation that encourages

critical thinking.

1.1 Simulations
We have already briefly touched upon the topic of computer simulations in the

introduction, where we established that computer simulations are programs that

use models to mimic real life. However, if we look at different sources, we discover

that definitions can vary. Let us look at the definition from a different perspective

to ensure that we have a clear understanding of what a computer simulation is. In

order to do that, we need to take a step back and consider simulations in general.

Figure 1.1 A simple simulation of fire spreading in NetLogo [6].

5



A simulation is a system with dynamical behavior that mimics another system.

It does so in a way where we can learn something about the mimicked system

while observing the simulation [1]. However, matching the simulation with real-

world reality is not always possible. A good example is mentioned in the book An
introduction to computer simulation [7] where the authors mention simulations of

nuclear weapons. Testing nuclear weapons in real life is not only dangerous, but

also damages the environment, hence computer simulations have been developed

as a safer alternative. That way new weapons can still be tested without actually

detonating them.

Thus if we first define a simulation as mentioned above, an alternative def-

inition of computer simulations is also possible: a simulation carried out by a

computer program [1].

1.1.1 Simulations in Education
Once a simulation is placed in a specific context, the definition can be further

modified. In the book Games and simulations in online learning: research and
development frameworks [8] one of the definitions of a computer simulation

introduced by the authors includes the following: “..., which the student has to

act upon.” Since we are trying to encourage critical thinking, having the user

interact with the simulation and act upon what they see is crucial. Let us explore

simulations in education further to gauge their relevance to what we’re trying to

achieve.

As we have already mentioned, simulations can be used for explanatory

purposes, through which they can become powerful tools that help students

understand complex systems. Many of the “explorable explanations” [3] created

so far are actually of a pedagogical nature, although that wasn’t Victor’s intention.

Figure 1.2 An educational simulation of a nucleus by PhET.
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One of the applications of simulations in education are simulation games. In

“Simulation in education and training” [9] the authors set certain criteria for a

simulation game to be considered educational and help students learn. The game

must be interactive, have theoretical grounding and have some random elements

so that it can be replayed multiple times with different experiences. They have

also identified specific examples of simulation games, such as “SimCity” and

“Microsoft Flight Simulation 98.”

Multiple authors also studied the effects of simulation on learning. The re-

sponses are varied. Research has shown that using simulations as a supplementary

teaching tool impacts critical thinking and reasoning in a positive way. The way

students interact with simulations leads to a more active reception of knowl-

edge [10] and is also associated with improvements in motivation and class

attendance [9]. However, some professionals disagree. In the book Simulation and
its discontents [11] we’re faced with opinions such as “simulations allow students

to get answers without understanding the underlying principles.” This suggests

that students aren’t actively thinking about the simulation, but rather blindly

trusting it.

1.1.2 Trustworthiness of Simulations
Computer simulations are rapidly gaining popularity in various fields. With

their growing importance and usage, the concerns about their trustworthiness

grow as well, especially when it comes to simulations that are used to further

our knowledge of something. The core of the issue is whether the results are

accurate enough to be trusted [1]. This so called “can you trust it?” problem is

most prevalent in socio-technical systems. These systems are defined by having

both physical and human parts, e.g., a city, or a road system [12].

It is clear that students of architecture and planning will be one of the people

using simulations based on socio-technical systems. Let us circle back to Simu-
lation and its discontents [11] where they summarize the opinions of professors

in these fields. They argue that students have no other choice than to trust the

simulations, consequently trusting the programmers who wrote them. This is not

ideal, as it does not encourage critical thinking at all.

An example of the lack of critical thinking is included in the book as well.

Albeit not a student of architecture or planning, a thirteen-year-old player of

“SimCity,” one of the simulation games we mentioned earlier, thought that since

raising taxes in the game led to riots, it must be the same in real life. If the player

had thought critically about the simulation game, they would have questioned

the rule and perhaps even compared it against historical data of real cities.

As we can see, we definitely can’t fully trust everything we see in simulations

to be applicable in real life. However, that doesn’t mean we shouldn’t trust
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simulations at all. “If you do not trust a carefully executed simulation, you

probably have less reason to trust anything else, including the way you currently

make decisions.” [12] Simulations that ensure the users are actively thinking about

the results and questioning them are the middle ground that we believe we should

strive for.

1.2 Visualizations
Visualizations can be defined as mappings between data and a visual represen-

tation. Similarly to simulations, alternative definitions can be found in different

media, as it is more of an umbrella term for several areas such as information vi-

sualization, scientific visualization, information design, etc., rather than a specific

field [13].

While visualizations often go hand in hand with simulations, they aren’t

restricted to each other. Visualizations can be used to represent all kinds of data.

So while we can use them for simulation results, we can also use them for data

we’ve collected from real life and simply want to present in a more digestible way.

An example of this is shown in figure 1.3, where we can see a visualization of

deaths due to COVID-19 over time. The visualization is in the form of a simple

line graph. It is easy to understand for the general public, but doesn’t provide any

room for critical thinking.

Figure 1.3 A visualization of deaths due to COVID-19 [14].
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1.2.1 Visualizations and Critical Thinking
According to Ge, Cui, and Kay [15], badly designed visualizations, whether on

accident or on purpose, can easily lead to misinformation. They even mention

examples, one of which is shown in figure 1.4. It depicts a visualization of COVID-

19 cases by the Departmen of Public Health of Georgia.

Instinctively, we would assume that the visualization is sorted chronologically.

However, it is sorted by the number of cases in descending order, leading to a

false impression of the situation at the time. This is one of the many reasons why

it is important, necessary even, to actively think about the visualizations we see

and question them.

Figure 1.4 A visualization misinformation of COVID-19 cases by Georgia DPH.

There’s only so much we can do to prevent others from creating misleading

visualizations. But if more authors prompted their readers to think critically

about their visualizations, we could potentially encourage them to question other

visualizations as well. We’ve already mentioned some concepts from Explorable
Explanations [3] in the introduction. Now let’s look at some concrete examples.

One of the mentioned concepts was a reactive document. Victor’s own creation

Ten Brighter Ideas? An Explorable Explanation [16] serves as a good example of

this. It allows the reader to change certain parameters and see how their changes

affect the results in real time. Another example, this time of an entirely different

concept that we haven’t mentioned yet, can be found in the article Accounting
for democracy [17]. There, the authors let the reader guess the graphs before

revealing them. This forces the reader to actively think about the data.
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A visualization alone can encourage critical thinking, but for our purposes,

that isn’t enough. The spreading of a virus is more complex, doesn’t behave the

same way every time, and can’t be represented statically. We need to combine it

with a simulation to fully showcase its behavior.

1.2.2 Visualizations with Simulations
Visualizations of simulations need to map the model, the simulation itself, and

its output onto a visual representation in context of the real world system being

simulated. The success of the simulation often depends on how the visualization

is designed [18]. A good visualization can help the user see important patterns

and trends, which leads to a better understanding of the simulated system [19].

Poorly designed visualizations can be the result of focusing too much on the

simulation and leaving the visualization as an afterthought, not adhering to the

principles of good visualization design, etc. This can lead to misunderstandings

and misinterpretations of the simulation results [18].

Figure 1.5 An example of a social network from a COVID-19 simulation [5].

Once we start the simulation from figure 1.5, the nodes change colors depend-

ing on their state. We’re supposed to see the virus spread through the network,
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see how many people need to be hospitalized, how many recovered, died, etc. But

due to the complexity of the network, it’s difficult to distinguish their connections

and the simulation becomes hard to follow. It might have been more useful to

simplify the network. This is why we need to think about the design of the

visualization in the context of what we’re trying to highlight to our audience.

1.3 Interactive Simulations
Interactive simulations are simulations that allow the user to interact with them

in some way. This can be done by changing parameters, moving objects, etc.

Ideally, such interactions receive immediate feedback, allowing the user to see

the results of their actions in real time.

The goal of this thesis is to create an interactive simulation that encourages

critical thinking. After researching simulations and visualizations separately, we

have a better understanding of how they work best, what possible problems we

might face, and how we can use them to prompt critical thinking. Now we need

to look at how we can combine them efficiently.

For simulating the spread of a virus, agent-based simulations are often used.

Agent-based simulations have agents as the main entities. Each agent has its

own set of local rules that it follows. The agents then interact with each other

and their environment based on these rules [1]. Among some of the options are

NetLogo [20], AgentScript [21], and MASON [22].

1.3.1 NetLogo
In “Netlogo: A simple environment for modeling complexity” [23] the authors

introduce NetLogo, a multi-agent programming language and modeling environ-

ment. It is simple enough for non-professional students and researchers to use

and is designed with both teaching and research in mind.

There are several agents in NetLogo - turtles, patches, and the observer. Turtles

move around and interact with each other. Different variables and behaviors can

be assigned to them, creating unique “breeds” of turtles, as the authors call them.

Patches are the environment in which the turtles move in. We can also change

them to our liking. Only one observer exists in the simulation and usually issues

commands to the other agents.

NetLogo has an extensive open source library of models from which we can

draw inspiration. One of the examples is a virus spreading simulation, as seen in

figure 1.6. We have considered using NetLogo for our simulation, but it doesn’t

allow for the level of interactivity we’re aiming for. In addition, it’s not very

user-friendly for the general public.
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Figure 1.6 An interactive simulation of virus spreading in NetLogo.

1.3.2 AgentScript
According to their website [21], AgentScript is an open source JavaScript library

for creating agent-based simulations inspired by NetLogo. It is designed to be

minimalistic and uses the MVC pattern.

Similarly to NetLogo, AgentScript also has three types of agents. Two of them

are the same - turtles and patches. Turtles are the agents that move around and

patches are the environment. The third type isn’t an observer, but links. Links

are connections between turtles. This can be useful for example for networks.

Figure 1.7 An example of a flocking simulation in AgentScript.

12



From the examples provided on their website, it appears that AgentScript is

focused on the movement of the agents rather than the connections between them.

That is not what we’re looking for, so we have decided not to use AgentScript.

1.3.3 MASON
MASON is introduced in “Mason: A multiagent simulation environment” [22]

as an open source simulation toolkit and visualization library. The main idea

behind MASON are swarm multi-agent simulations. It is designed mainly for

professional researchers and developers.

Its computational entities are called agents. If they are in the environment,

they are referred to as embodied agents. However, MASON doesn’t require agents

to be in the environment. Fields are optional and associate objects or values with

locations in the environment.

MASON doesn’t meet the criteria we’re looking for either. It is a minimal

model library and in order to create the social network simulation we’re aiming for,

we would need to use an existing extension or make it ourselves. As mentioned,

MASON is designed mainly for research. It isn’t user-friendly for the general

public and lacks the desired interactivity.

Figure 1.8 An example of a wetlands visualization in MASON.
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1.4 Libraries
To best showcase the spreading of a virus, we need a visualization of a social

network. A graph where the nodes represent people and the edges represent

connections between them is the most suitable for this purpose. Ideally, we would

like to have the option to easily deploy the simulation on the web. We have

chosen D3.js [24] as the library for this task.

1.4.1 D3
Bostock, Ogievetsky, and Heer [25] define D3 (short for Data-Driven Documents)

as a non-traditional visualization library. It is an open source software focused

mainly on the generation and efficient manipulation of web documents with data.

The basic functionalities of D3 include selecting elements, binding data to said

elements, modifying elements based on the data, and transitioning elements in

response to user input.

The library itself is quite complex. It is more of an ecosystem of modules that

can be used together than a monolithic library. This makes it more difficult to

create simple visualizations, as it requires more code than people might expect.

On the other hand, it allows for more flexibility and customization [24].

Figure 1.9 An example of a D3 visualization.

D3 also has an extensive library of examples. One of them is shown in figure 1.9.

It is a good place for beginners to start and explore the possibilities of D3. That
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is what we did as well. We have taken the code from one of the examples and

played around with it to learn how certain parts of D3 work. The conclusion is

that D3 is the best choice for our purposes.

1.4.2 Alternatives
While searching for a suitable library, we came across several possible alterna-

tives. Two of them were taken from Interactive data visualization for the web: an
introduction to designing with D3 [26] - Arbor.js [27] and Sigma.js [28]. The last

one is El Grapho [29].

Arbor.js uses web workers and jQuery. The framework is much simpler than

D3, but it didn’t seem to have any outstanding features that would convince us to

use it. It lacked the flexibility and customization that D3 offers. After studying

the documentation, we have decided that D3 is the better choice.

Sigma.js uses WebGL. It has some attractive features, such as letting the users

create and manipulate graphs or letting them explore the neighbouring nodes

by hovering over a node. However, on their website [28], they mention that the

library is more fit for larger graphs and that custom rendering is more difficult.

We will be working with smaller networks and more customization, so we have

decided not to use Sigma.js.

El Grapho also uses WebGL. From the examples they provided, it seems that

the library has a lot of potential, but faces the same issues as Sigma.js, meaning it

is more fit for larger graphs and doesn’t offer as much customization as D3. Thus

we have decided not to use El Grapho either.
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Chapter 2

Requirements Analysis

In this chapter, we will analyze and define the requirements for our simulation.

We will start by defining the main design goals and then we will discuss how to

apply them to our simulation. In the last part of this chapter, we will analyze how

existing simulations meet these requirements.

2.1 Design Goals
From what we’ve learned about interactive simulations in Chapter 1, we concluded

that there are three main design goals that we want to set for our simulation.

Empowerment The user should be empowered to change the simulation. This

will allow them to test their assumptions as well as the assumptions of the author

of the simulation.

Explanation The simulation should provide insight into how the virus spreads.

This will help the user understand the dangers of pandemics and the consequences

of their actions.

Understanding The simulation should be easy to understand and use. This

will allow the user to focus on the main questions and not get lost in the details

of the simulation.

Combining these three design goals will help us create a simulation that fulfills

our main purpose. However, we have to be careful with how we implement them.

We need to find a balance between providing the user with enough information

to understand and benefit from the simulation, but not overwhelming them with

too much information and too many options.
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2.2 Implementation Principles
Burton and Obel [30] talk about how important it is to understand the questions

our simulation should answer before we start designing it. The simulation model

should not be overly complex, instead, it should remain as simple as possible

while still addressing the main questions.

In order to do that, we need to identify some implementation principles

for our simulation. These principles will help us understand what we need to

focus on and what we can disregard later on. Since we are building a simulation

that encourages critical thinking, we need to make sure that we test the user’s

assumptions. We concluded that the following three implementation principles

are the most important for our purposes:

1. Visual Representation The simulation should be visually appealing and

easy to understand. The user should know what is happening in the simulation

at all times. If the user doesn’t understand the simulation, they won’t be able to

think about it critically.

2. Interactivity The user should be able to interact with the simulation. They

should be able to test out different scenarios. This should encourage them to

think about the different possibilities and outcomes.

3. Immediate Feedback The user should see the results of their actions imme-

diately. This should help them understand the consequences of their decisions.

Additionally, it should prompt them to question whether certain actions truly

have the depicted effects.

We’ve decided to omit accuracy from our implementation principles. The

intention behind this simulation is not to present a realistic model of what hap-

pened during the pandemic, but rather let the user explore different situations

and gain a better understanding of how viruses spread.

2.2.1 Applying the Implementation Principles
The principles we’ve identified so far are quite high-level. They don’t provide us

with a clear idea of how to implement them in our simulation. This subsection will

focus on analyzing possible implementation strategies for each of the principles.

A crucial part of 1. Visual Representation is the visualization of people and

their connections. The spreading of a virus is a complex process. Choosing to

make an equally complex visualization that shows as many details as possible

might result in the user getting overwhelmed. We need to keep the visualization
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simple and the simulation slow enough for the user to see the spread of the virus

clearly. The main information we need to convey is the health status of each

person and the connections between them. We can achieve this by choosing the

right shapes and colors.

Figure 2.1 A visualization that might be hard to read for color-blind users [31].

We have decided to represent people as circular nodes and their connections

as lines (edges) between them. The color of the node represents the health status

of the person. We use two colors: gray for healthy people and red for infected

people. It may appear more natural to use green for healthy people, but it could

cause similar problems as in figure 2.1. Red-green color blindness is the most

common form of color blindness and affects around 8% of the population [31].

Figure 2.2 Our representation of healthy and infected people.

The connections between people are also colored. Green connections are

family members, purple are friends, blue are coworkers/classmates, and gray are

strangers. This way the user can see how the virus spreads through different

types of relationships. Additionally, we thicken the lines of infected individuals

to make the spread of the virus easier to follow. In figure 2.3, you can see that

the gray connection (stranger) is further away from the infected person than the

rest. By pushing weaker connections to the background, we can make the graph

easier to read.
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Figure 2.3 All types of connections.

To fullfill the 2. Interactivity principle, we need to provide the user with a

set of tools that allow them to change the simulation. The two main points of

interaction are the ability to modify the social network and the ability to change

how the virus spreads.

There are many different options for how the user can change the simulation.

We have decided to let the user modify the amount of nodes in the graph and the

initial number of infected people. This allows them to understand the spreading

of the virus in communities of different sizes.

The user can also choose the aggressiveness of the virus and modify the

spreading probabilities through different types of regulations. Each regulation

has a different effect on the spread. The user can see a brief summary of the

regulation’s effect when they hover over the text. This allows them to see how

different actions can affect the spread of the virus. It also gives them the space to

think critically about whether the author’s assumptions about the effects of the

regulations are correct.

We give the user the option to choose from a set of predefined scenarios or

create their own. This challenges the user to think about how the virus spreads

under various conditions.

All of these interactions are done through a simple user interface that meets

the 1. Visual Representation principle. We use sliders, radio buttons, checkboxes,

and dropdown menus to make the interaction as intuitive as possible.

Figure 2.4 The user interface for the simulation.

3. Immediate Feedback is achieved by giving the user a visual confirmation

of their actions. When the user changes something in the simulation, they can
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check the results immediately. Changes made to the social network should be

reflected in the graph. Adjusting how the virus spreads should be visible in the

number of infected people. This helps the user understand the consequences of

their actions.

We have decided to generate a new graph every time the user changes the

social network. Modifying the graph in real-time would also be possible, but it

would be more difficult to implement. To help the user see the number of infected

people, we display a chart below the simulation graph. This chart shows the

number of newly infected people over time. Comparing the chart of two different

scenarios makes it easier for the user to analyze the trends and identify what

caused them.

2.3 Existing Simulations
We have chosen three existing simulations to analyze and compare against our de-

sign goals. Both The Washington Post’s simulation [4] and R2D3’s simulation [5]

are used in articles that attempt to educate the public about the spread of the

virus. The third simulation is from the Imperial College team [32]. It was used to

make predictions and played a role in the policy-making process in the UK.

The Washington Post’s simulation is the simplest of the three. As can be

seen in figure 2.5, the agents do not have any connections between them. They

spread the virus by randomly moving around the screen. There are no interactive

elements in the simulation, forcing the user to rely on the author’s assumptions.

However, thanks to its simple design, it is easy to understand. It shows different

scenarios and explains how certain decisions can affect the spread of the virus.

The user can clearly see how the virus spreads through the population.

Figure 2.5 The Washington Post’s simulation.
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R2D3’s simulation is more complex. It is the only one of the three that allows

the user to interact with the simulation. The user can change some parameters of

the simulation, such as which connections should abide by social distancing rules.

It also provides the user with explorable examples [3], such as a chart where the

user can adjust the start date of social distancing. This allows the user to build an

intuition about how different actions can affect the spread of the virus. However,

the visualization of the simulation is complex. It is hard to see the connections

between people and the simulation is quite fast, making it difficult to follow the

spread of the virus.

Figure 2.6 R2D3’s simulation.

The Imperial College simulation is the most complex of the three, as it strives

to predict the spread of the virus accurately. It does not have a visualization of
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the spread of the virus and is not interactive. The user can only see the results of

the simulation, which offer little insight into how the virus spreads. An example

can be seen in figure 2.7.

Figure 2.7 Diagrams from the Imperial College. [33]

After summarizing the analysis of the existing simulations in table 2.1, we

can see that each simulation fulfills different design goals, but none of them fulfill

all three. This supports our claim that current simulations do not provide the

user with the right tools to think critically about the spread of the virus during a

pandemic.

Simulation Empowerment Explanation Understanding
The Washington
Post

No Yes Yes

R2D3 Yes Yes Partially

Imperial College No Partially No

Table 2.1 Three existing simulations and their fulfillment of the design goals.
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Chapter 3

Designing a Simulation

This chapter describes the design of the simulation. It is divided into two main

sections: the model and the implementation. In the first part, we define what

components are present in the simulation and how their states change, what the

configuration options are, and the main functionalities. In the second part, we

describe the implementation of the simulation, including the structure of the code,

the use of D3 for visualization, and the development tools used.

3.1 Model
Models are used to represent real-world systems in a simplified way. In our case,

we are modeling the spread of a virus in a population. That is best done by a

discrete event simulation, which is a simulation where the state of the system

changes at discrete points in time [34]. Our model is made up of two main

components: agents (nodes) and edges, each of which has its own attributes that

define its state, as shown in figure 3.1.

The model is purposefully kept simple to make it more accessible for non-

programmers, as our goal is to create a tool that may be used by the general

public. However, possible extensions are later mentioned in section 4.3. We will

discuss what each of the components represents and how their states change in

the next subsection.
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The state of the Model consists of:

• Collection of Nodes

• Collection of Edges

Node consists of:

• Infected (Boolean)

Edge consists of:

• Source Node

• Target Node

• Edge Type

Edge Type can be one of the following:

• Family

• Friend

• Classmate or Coworker

• Stranger

Figure 3.1 The state of the model.
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3.1.1 State of the Model
The model is a representation of the population. Nodes represent individuals

in the population, while edges represent connections between them. Figure 3.1

shows that the state of the model is defined by the state of the nodes and edges.

It changes at each tick, which represents the passage of time.

Nodes The state of a node is represented by a boolean value, which determines

whether the node is infected or not. The state of a node can only change from not

infected to infected. This change can happen under the condition that at least

one of its connected nodes is already infected.

Edges The state of an edge is represented by three attributes: source node,

target node, and edge type. The source and target nodes are the nodes connected

by the edge and do not change. The type of the edge determines the probability

of being infected by the neighbouring node and does not change.

3.1.2 Configuration
The user has the option to modify the configuration of the simulation. The user can

set the number of nodes in the graph and configure their initial state by changing

the percentage of infected nodes. The user can also adjust the probability of the

success of the spreading event. This probability is made up of two components:

the spreading probabilities for each edge type and the spreading rate.

Spreading probabilities have a base value depending on how close the relation-

ship between the nodes is. The user can modify these probabilities by choosing

different restrictions. The probabilities are recalculated each time the simulation

is started.

The spreading rate is the aggressiveness of the virus. The higher the spreading

rate, the more likely the virus is to spread. The user has three options to choose

from: low, normal, and high. The spreading rate is recalculated each time the

simulation is started.

3.1.3 Main Functionalities
The most important functionalities of the simulation are data creation and virus

spreading. We will outline the basic steps through pseudocode. A more detailed

description of our implementation can be found in the next section.
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For the simulation to work, we need to create the necessary data. If the user

doesn’t provide their own data for the graph creation, a random number of nodes

is generated. The default percentage of infected nodes is 10%. The edges are then

created by randomly connecting the nodes. The type of the edge is also randomly

assigned. If some nodes happen to have no connections after the edge creation,

they are removed.

Algorithm 1 Pseudocode for the data creation.

if nodeCount is 0 then
nodeCount← random number between 10 and 100

end if

for i = 0 to nodeCount do
state← state based on percentageOfInfected

create new Node with state

nodes← nodes with new Node

end for

for i = 0 to linksAmount do
sourceNode← random node

targetNode← random node different from sourceNode

type← random type

value← value based on the states of nodes

create new Link with sourceNode, targetNode, type, value

links← links with new Link

end for

call deleteUnlinkedNodes

The core of the simulation is the spreading of the virus. Once the simulation

is started, the virus attempts to spread until all nodes are infected. We iterate over

the edges of infected nodes and check if the virus can spread to the neighbouring

node. If the conditions are met, we try to infect the node based on the spreading

probabilities and the spreading rate.
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Algorithm 2 Pseudocode for the spreading of the virus.

if all nodes are infected then
stop the simulation

end if

infectedLinks← links with an infected node

newlyInfectedNodes← empty array

for link in infectedLinks do
if link node is infected and link node not in newlyInfectedNodes then

call tryInfect with other link node

if successful then
newlyInfectedNodes← newlyInfectedNodes with other link node

end if
end if

end for

3.2 Implementation
The simulation is a simple web application written in JavaScript that uses the

D3 library for its visualizations and number generation. As there is no need for

a backend, the simulation can be run locally. There are three main files in the

project: index.html, style.css, and main.js. The index.html file contains

the structure of the page, the style.css file contains the styling, and the main.js
file contains the implementation of the simulation. We will focus mostly on the

main.js file.

3.2.1 Structure of the Code
The code is divided into several classes, each of which represents a different

part of the simulation. They are not strictly mapped to the components of the

model, as we don’t need a separate class for edges, for example. We tried to keep

the names as descriptive as possible to make the code more readable. Edges are

represented as links in D3, which is why we chose to use that term throughout

the code for consistency.

The class GraphNode represents a node in the graph. The constructor takes a

boolean value infected as an argument, which determines whether the node

is infected or not. It has no methods, as the simulation later mutates the nodes.

Calling methods on the mutated nodes would result in errors, since they are no

longer instances of the GraphNode class. That is why the function tryInfect
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must remain outside the class.

The function tryInfect is used to try to change the state of a node. If the

node is already infected, we return false, as re-infecting a node is not possible

in our model. If the node is not infected, we use the randomBernoulli(p)
function from D3. This function returns true with probability p and false with

probability 1 - p. In our case, the probability is calculated as p = probability
* spreadRate. If the function returns true, we infect the node and return true.

Otherwise, we return false.

Listing 1 Node representation and state changing function.

// === NODES ===

// Represents a node in the graph
class GraphNode {

constructor ( infected )
}

// Tries to infect a node with a given probability
// and spread rate
function tryInfect (node , probability , spreadRate )

The class Simulation represents the simulation itself. The only property of

the class is infectedAmounts, which is an array that stores the number of newly

infected nodes after 5 ticks. This array starts with helper values {x:0, y:0},
{x:5, y:0}. This ensures that the chart starts at 0 and displays the first value

after 5 ticks. The class has a considerable number of methods, as it is responsible

for the main functions of the simulation.

Listing 2 Simulation representation.

// === SIMULATION ===

// Represents the simulation
class Simulation {

...
}

We need to create the data for the graph first, which is done by the

createData method. This method calls the decideNodeCount, createNodes,

and createLinks methods.

The decideNodeCount method takes the nodeCount parameter from the user

input. If the parameter is 0, the method generates a random number of nodes
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between 10 and 100. This ensures that the graph is neither too small to properly

display the spreading of the virus nor too large to confuse the user.

The createNodes method is implemented as a simple for loop that creates

nodesAmount instances of the GraphNode class and pushes them into the nodes
array. It uses the same probability function as tryInfect, but this time it is used

to determine the initial state of the node. Hence p = percentageOfInfected.

The createLinks method creates approximately nodesAmount * 2 edges.

The source and target nodes are chosen randomly. We have to ensure that they are

not the same, as we don’t want self-connections. It could cause unconnected nodes

to stay in the graph, as they would not be removed by the deleteUnlinkedNodes
method. The type is generated randomly.

The deleteUnlinkedNodes method is used to remove nodes that have no

connections. This is done to make the graph easier to read. We create an array

of node indexes. By iterating over the edges, we delete the indexes of connected

nodes from the array. We then reverse the array and delete the nodes with the

indexes from nodes. Reversing the array is necessary, as it would cause index

shifting otherwise.

Listing 3 Data creation methods.

// === DATA CREATION ===

class Simulation {
...

// Creates the data for the graph
createData (nodeCount , percentageOfInfected )

// Decides the number of nodes in the graph
decideNodeCount ( nodeCount )

// Creates the nodes of the graph
createNodes (nodes , nodeCount , percentageOfInfected )

// Creates the edges of the graph
createLinks (links , nodes , nodeCount )

// Deletes nodes that have no connections
deleteUnlinkedNodes (nodes , links )

...
}

After the deletion of unlinked nodes, we need to reindex the rest. This is done
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by two methods: reIndexNode and reIndexLinkNodes. The first method counts

how many unlinkedIndexes are lower than currentIndex. We subtract this

number from currentIndex to get the new index. The second method simply

calls the first method for both the source and target nodes of the edges.

Listing 4 Node reindexing methods.

// === NODE REINDEXING ===

class Simulation {
...

// Reindexes a single node
reIndexNode ( currentIndex , unlinkedIndexes )

// Reindexes the source and target nodes of the links
reIndexLinkNodes (links , unlinkedIndexes )

...
}

The spreadInfection method is the core of the simulation. We iterate over

the edges of infected nodes and try to infect the neighbouring nodes. To not

spread the virus too quickly, we must create a new array for the newly infected

nodes and exclude them from the current spreading. After the loop is finished,

we update the links of the newly infected nodes, the infectedAmounts array for

the chart, and reheat the simulation to force it to tick.

Listing 5 Virus spreading method.

// === VIRUS SPREADING ===

class Simulation {
...

drawSimulation (nodeCount , infectedPercentage ) {
...

// Spreads the virus
function spreadInfection (intervalID , probabilities ,

spreadRate )
}
...

}
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The Chart class is used to create the chart. As it has no methods other than

ones related to visualizing the chart, we will leave the description of this class for

the next section.

Listing 6 Chart representation.

// === CHART ===

// Represents the chart
class Chart {

...
}

The Data class stores data for the simulation and handles user input. The

constructor sets the default values of the simulation, creates the Simulation
instance, and binds events to the DOM elements from the index.html file. The

most notable event listener is the one for the start button. It schedules the repeated

execution of the spreadInfection method every 1000 ms. The rest of the event

listeners call simple methods of the Data class that change selections in the user

interface, disable or enable elements, etc.

Listing 7 Class for data and user input.

// === DATA AND USER INPUT ===

// Represents the data and user input
class Data {

// Initializes the data , simulation ,
// and binds events to the DOM elements
constructor ()

...
}

3.2.2 D3 for Visualization
We use D3 to create the graph and the chart for the simulation. The visualization

part of the code is mostly taken from the examples provided on the D3 website

and modified to fit our needs.

The visual representation of the graph is created by the drawSimulation
method of the Simulation class, which we saw in listing 5. It pertains mostly to

the visualization, which is why we have not discussed it in the previous subsection.
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We first create a force simulation out of our nodes and edges. This includes

creating the force that pushes the nodes with stranger connections further away.

An SVG container is then created, and the nodes and edges are appended to it

with their respective attributes visualized, such as color or width. Functions for

dragging and ticking are also located in this method.

Listing 8 Simulation visualization.

// === SIMULATION VISUALIZATION ===

drawSimulation (nodeCount , infectedPercentage ) {
...

// Create a simulation with several forces
const simulation = d3f. forceSimulation ( nodes )

. force ("link"), d3f. forceLink (links )

...

// Create an SVG container
const svg = d3sel . create ("svg")

.attr(’width ’, width )

...

// Append the links to the SVG container
// and set their attributes
const link = svg. append ("g")

. selectAll ()

...

// Append the nodes to the SVG container
// and set their attributes
const node = svg. append ("g")

. selectAll ()

...

// Recalculates the positions of nodes and edges
function ticked ()

// Functions for dragging nodes
function dragstarted ()
function dragged ()
function dragended ()

}

The SVG elements are appended to the page in the index.html file through

the createSVG and modifySVG methods. The difference between the two is that
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the former creates the initial random graph, while the latter removes the old

graph and creates a new one based on the user input.

Listing 9 SVG handling methods.

// === SVG HANDLING ===

class Simulation {
...

// Create SVG element with a random graph
createSVG ()

// Replace SVG element with a graph based on user input
modifySVG (nodeCount , infectedPercentage )

...
}

An example of how the graph looks can be seen in figure 3.2.

Figure 3.2 An example of a graph from the simulation.

The chart is created by the drawChart method of the Chart class. It uses the

infectedAmounts array to create a line chart. We create an SVG element and

append the x-axis and y-axis to it. We then create a line generator and append the

generated line to the SVG element as well. The chart is updated every 5 ticks, as

we want to show the sum of newly infected nodes from the last 5 ticks. The chart

is appended to the page in the index.html file through the createSVG method.
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Listing 10 Chart visualization.

// === CHART VISUALIZATION ===

class Chart {
static drawChart ( infectedAmounts ) {

// Create an SVG element
const svg = d3sel . create ("svg")

.attr(’width ’, width )

...

// Add the x-axis and y-axis
svg. append ("g")

...
avg. append ("g")

...

// Create a line generator
const line = d3shp .line ()

...

// Append the line to the SVG element
svg. append ("path")

...
}

// Create SVG element with a chart
static createSVG ( infectedAmounts )

}

An example of how the chart looks can be seen in figure 3.3.

Figure 3.3 An example of a chart from the simulation.
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3.2.3 Development Tools
We used Vite [35] to create the project and run it locally. It has many attractive

features, such as NPM dependency resolving and pre-bundling. It also updates the

page automatically after changes are made to the code, which makes the develop-

ment process significantly faster. Vite supports both JavaScript and TypeScript

out of the box. We contemplated using TypeScript, but decided against it due to

problems further discussed in section 4.2.

The simulation was developed using Visual Studio Code as the main editor.

We used Git for version control and GitLab for remote repository hosting.
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Chapter 4

Results and Discussion

In this chapter, we first present the results of our work and how they match the

goals we set in chapter 2. We then discuss the difficulties we encountered during

the implementation and how we solved some of them. Finally, we suggest possible

improvements and future work that could be done to enhance the simulation

even further.

4.1 Results
Through a thorough analysis of interactive and educational simulations, we

identified design goals that were necessary for creating a successful interactive

pandemic simulation that encourages critical thinking. We then implemented a

prototype by adhering to these goals.

The three main design goals we set for our implementation were empowering

the user to experiment with the simulation, providing insight into the spreading

of a pandemic, and doing so in a clear and concise manner. We believe that our

implementation has met these goals. Let us discuss each of them separately.

Empowerment We have created a simulation that allows the user to exper-

iment with various parameters, from the initial graph to the spreading of the

virus. The user can try different scenarios, test their hypotheses, and question

the author.

Explanation The user can see how the virus spreads through different relation-

ships and the impact of restrictions on the spreading. An explanation of how each

restriction affects the spreading is provided. This should build an understanding

of how a pandemic spreads in a community and how different restrictions affect

the spreading.
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Understanding We have given the user enough options to experiment with the

simulation without overwhelming them. The simulation is minimalistic and only

shows the most important information. It is slow enough to follow the spreading

of the virus, but fast enough to not bore the user. While it is not the most visually

appealing simulation, it doesn’t take away from the user’s experience and could

be fixed if we involved a designer in the process.

Note that the simulation is not perfect and is not meant to be a complete

solution to the problem of pandemic simulations. It is a prototype that shows

how future models can be made more socially beneficial and how they can be

used to educate the public.

4.2 Difficulties with D3
Unexpected difficulties arose when using the D3 library in our implementation.

We have encountered several very specific technical problems that are part of a

larger issue with the library’s documentation. The documentation is spread across

several versions, making it difficult and sometimes impossible to find relevant

information. We will discuss some of the issues to illustrate the problems we

faced along with the solutions we found.

We started by playing around with one of the many examples available on

their website. Our intention was to get hands on experience with the library

and to understand how it works. We quickly realized that simply copying and

pasting the code would not be enough. It appears that the examples don’t show

the entirety of the code, and some parts are left out. We had to figure out what

to change ourselves. The solution was rather simple, as we only needed to wrap

the code in a function instead of assigning it to a variable. However, this was not

immediately obvious, and we believe it would be beneficial to have examples that

don’t need to be modified locally in order to work.

JavaScript has some drawbacks that preprocessors aim to solve, TypeScript

being one of the best options [36] [37]. That is why after we gained a basic

understanding of how D3 works, we decided to explore the possibility of using

it with TypeScript. We didn’t find any official documentation on this. Once

we installed the necessary packages and rewrote the code in TypeScript, errors

from within the D3 library started appearing upon compilation. For example, the

library mutated the types of nodes and edges in its functions. Such errors were

solved by adding //@ts-ignore comments to the code, but it was not an ideal

solution. Due to the tedious nature of solving all the errors, we decided to revert

back to JavaScript.

Another issue we encountered was the tick handler. Instinctively, we assumed
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that the tick handler simulation.on(’tick’, ticked) would be called every

time the simulation updated. However, this was not the case. It was only called

if the nodes in the simulation were moving. This caused the simulation to stop

updating after a while, even though the nodes were still internally changing.

We tested this by waiting for the simulation to stop updating, letting several

spreading cycles pass, and then moving the nodes manually. The simulation

updated and most of the nodes were infected. This would be impossible in a

single spreading cycle, so it confirmed our suspicion. We solved this by having the

setInterval() function call the spreading function. At the end of the spreading

function, we reheat the simulation by calling simulation.restart(). This

forces the simulation to tick and update.

4.3 Future Work
The work presented in this thesis has many areas that could be improved upon.

Generating Relationships The type of the edges is fully randomized as of

now. Assigning a probability to each relationship type would allow for a more

realistic model of a community.

States The current model only supports two states - infected and not infected.

This could be expanded upon to include more states depending on the direction we

want to take. Examples of possible states include recovered, dead, and vaccinated.

While this would allow for a more detailed simulation, it would also make the

graph harder to read during a running simulation. It would require a more

complex visualization system to display the simulation in a clear and concise

manner.

Graph Visualization A possible solution to the problem above and a general

improvement to the current system would be to implement a visualization system

where the user can choose by which parameters they want to group the nodes

by. Grouping them by their connections would allow for interesting insights into

how different restrictions affect different relationships, while grouping them by

their state would make the speed of the spread more apparent.

Interactivity Various interactive features could be added to the simulation.

This includes more customability of the initial graph, adding restrictions, and the

ability to change how strongly a restriction affects the spreading probabilities.

This would encourage critical thinking even more, as the user would have many

more tools to experiment with.
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User Interface The current user interface is very basic. A more polished

interface would make the simulation more attractive to a wider audience. This

mostly contains visual improvements, such as better color schemes and more

intuitive controls.
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Conclusion

The goal of this thesis was to create an interactive pandemic simulation that en-

courages critical thinking. We believe that through our design, we have achieved

this goal.

We have successfully applied the knowledge from our analysis to design

a simulation and implemented a prototype that fulfills all of our design goals.

The final simulation is interactive, engaging, and encourages the reader to think

critically about the spread of a virus. While our implementation isn’t fully polished,

it serves as a proof of concept for our design and a starting point for future

improvements.

It should be noted that the simulation is not a replacement for accurate epi-

demiological models. It is not meant to be used for making decisions about public

policies or predicting the spread of a virus. Instead, it is designed to be a tool for

education and critical thinking. We believe that based on our design, a simulation

that journalists could use to explain the spread of a virus to the general public

could be created.

In conclusion, we believe that our simulation design is a success. We hope that

our work will serve as a step towards creating more socially beneficial models

that help people understand complex topics such as the spread of viruses.
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Appendix A

Using the Simulation

To compile and run the simulation locally, you only need to have Node.js installed.

You can download it from https://nodejs.org/en/download/. The rest is

handled by the package manager npm, which comes with Node.js.

Dependencies
The simulation uses several D3 packages, Vite, and JSDoc. You can easily install

them by running the following command in the root directory of the project:

npm install

Generating Documentation
The simulation uses JSDoc to generate documentation. You can do so by running

the following command in the root directory of the project:

npx jsdoc src/main.js

Running the Simulation
Once you have all the dependencies installed, you can run the simulation by

running the following command in the root directory of the project:

npx vite

This will start a local server. The default address is http://localhost:
5173/. If the port is already in use, Vite will automatically choose the next

available port. The correct address will be printed in the terminal. You can access

the simulation by opening this address in your browser.
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Navigating the Simulation
The simulation has an intuitive user interface. It includes an explanation of

the representation of the simulation, as well as the controls. You can configure

the parameters of the simulation and run it by pressing the start button. The

simulation will then run until you stop it or until all the nodes are infected.
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