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Introduction
In the GPU based realtime rendering, we want to achieve a correct result no

matter the order in which objects in a 3D scene are rendered. Hence, we render a
new pixel only if it is closer to the camera than the pixel already present on the
screen. This way, only the objects closest to the camera will be visible in the final
image. For this a depth buffer[1] is used — a 2D texture in size of the window
we are rendering into in which a distance from the camera for each pixel on the
screen is stored.

If we try to render a new pixel onto a screen we first have to compare it’s
distance from the camera to the distance stored inside the depth buffer. Only
if the pixel is closer than the already stored value we render it and update the
distance in the depth buffer. This process is called depth testing. Thanks to
the depth testing, we can render objects in a scene in any particular order. This
gives us an option to, for example, render objects in such an order that expensive
state changes in the GPU will be minimized, which increases the performance of
rendering[2].

However, when rendering a transparent surface we want to be able to see the
objects occluded by it as well. Therefore, the color of each transparent pixel has
to be blended with its background.

Modern GPU hardware supports blending of transparent surfaces, yet, the
resulting image happens to be dependent on the rendering order of the transparent
objects, because we can always keep only the last rendered pixel. During blending
of a transparent pixel, the color of the covered pixel must already be pre-computed.
If we render an object closer to the camera before an overlapping object that is
further away, then all sorts of visual artifacts will be present in the final image as
can be seen in figure 1.

Enabling depth write during transparent object rendering would cause all
farther transparent objects not to be visible. On the other hand, not writing to
the depth buffer may cause those objects to overlap with foreground, producing
incorrect results. As a result, it is necessary to render transparent objects from
back to front.

Figure 1 An example of image rendered with randomized ordering of transparent
objects(left). Notice the green smoke in the background covering multiple balls that are
much closer to the camera. Image rendered with correct ordering(right)
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Rendering transparent objects from back to front might not be always straight-
forward, as multiple transparent objects might overlap, or we can render a complex
non-convex transparent 3D object (such as a glass statue), or the entire 3D scene
might be transparent.

We might then decide to sort individual triangles which the objects are made
of and render those in the correct order. Not only would this approach be
incredibly computationally inefficient (objects might be composed of thousands or
even millions of triangles), but the issue would still remain present as 2 or more
triangles might overlap.

Rendering of a transparent geometry is hence not a simple task. Over the years,
multiple approaches to rendering without a need of sorting have been invented,
many of which have found use in commercial software[3][4]. This class of rendering
algorithms is called Order Independent Transparency (OIT)[5].

As a part of the thesis, we created a C++ program capable of rendering
semi-transparent scenes with multiple OIT algorithms.

The rest of the thesis is organized as follows: chapter 1 contains the state of the art
of OIT methods focusing more on the ones we’ve picked up for closer examination
and comparison and also a slight introduction to the blending equation. Chapter
2 describes detailed implementation of the algorithms we chose, followed by a
chapter 3 where we discuss the results.
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1 Transparency Rendering
Here, we describe a several approaches used for rendering transparent geometry

in order independent manner. First, let us explain a few technical terms and how
alpha blending works.

1.1 Blending
Blending Equation

The blend equation introduced by Alvy Ray Smith and Ed Catmull in 1970[6]
dictates the color of the final pixel in a following manner

Cf = Cs · αs + (1− αs) · Cd (1.1)

where Cf = (Rf , Gf , Bf ) denotes the red, green and blue components of the final
color and αs denotes a transparency of the given pixel. Cs and Cd are colors of
the transparent pixel and covered pixel. All color components are in range [0, 1].

Blending of Consecutive Surfaces

If multiple transparent objects are covered by each other then the equation 1.1
recursively unfolds into

Cf = C1 · α1 + (1− α1) · (C2 · α2 + (1− α2) · ... · (Cn · αn + (1− αn) · C0) (1.2)

where C1..Cn and α1..αn denote colors and alphas of n transparent consecutive
pixels and C0 is a color of solid background (with α0 = 1).

Coverage

The equation 1.2 can be unfolded into the following form

Cf = C1 ·α1+(1−α1)·C2 ·α2+(1−α1)(1−α2)·C3 ·α3+...+(1−α1)·...·(1−αn)·C0
(1.3)

If we rewrite it, we get

Cf =
n∑︂

i=1
Ci · αi · Ti(α1, ..., αn) (1.4)

where
Ti(α1, ..., αn) =

∏︂
j<i

(1− αj) (1.5)

Function Ti(α1, ..., αn) is a Coverage of surface i and it is a product of reversed
alphas of all surfaces closer to the viewport then surface i. Coverage is a measure
of how visible the given transparent surface is on the screen.

Notice that coverage function is non-increasing and if we know it in advance
for some n surfaces then we can convert blending of these surfaces into a sum as
shown in equation 1.4.

Coverage of a solid background by transparent surfaces (C1, α1), ..., (Cn, αn) is
simply ∏︁n

i=1(1− αi).
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1.2 Explanation of OpenGL Technical Terms
This section explains technical terms required to understand the implementa-

tion of algorithms.
Framebuffer is a set of multiple textures of the same resolution onto which we

render using GPU. It consists of a depth buffer and at least one color attachment.
We denote all framebuffers as F = (C1, ..., Cn, D), where C1 .. Cn are different
color attachments (each might be of a different format and might have different
number of channels) and D is the depth buffer.

Render buffer is a type of depth buffer that can be used if we do not intend
to read from it manually. It performs faster than classical depth buffers in some
cases.

Color attachment is a texture into which we render during render pass. It
can have up to 4 color channels and each channel can have different bit precision.
Common types of color attachments include[7]:

• RGBA8 - color attachment with 4 channels, each composed of 8 bits. All
values range in [0, 255], but we usually treat them as normalized in interval
[0, 1]

• RGBA16F/RGBA32F - 4 channels, each is a signed unclamped floating
point number with 16/32bit precision

• R16F/R32F - one signed floating point channel with 16/32bit color precision

During one render pass the GPU can write into only one framebuffer, however,
if the framebuffer contains multiple color attachments then we can render into all
of them in parallel. This is called rendering into multiple render targets.

During one render pass, we can write into only one framebuffer, but can read
from multiple textures (this includes color attachments of different framebuffers).
For example, we can render our scene into a texture in one step and then later
read from the given texture during another render pass. It is forbidden to read
from texture which is bound to the framebuffer we are rendering into.

We are not able to read from a texture we are writing to at the same time,
however, modern rendering APIs allow us to use blending. If blending is enabled,
then the color currently in a texture is not overwritten by the new source color,
but instead blended with it by a certain blend operation.

We show some blending operations that are possible. Cf denotes the final
color of the given pixel after the blending operation ends, Cd denotes the current
(destination) color of the pixel and Cs (source) is the color we are writing into the
pixel during rendering. We can also use alpha of the source color Cs.a and alpha of
the destination color Cd.a. These are some of the possible blending operations[8]

• Cf = Cd · 1 + Cs ·1

• Cf = Cd · 0 + Cs ·Cs.a

• Cf = Cd · (1− Cs.a) + Cs · Cs.a

• Cf = Cd · (1− Cs.a) + Cs · (1− Cd.a)
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A separate blending operator can be configured for a render target, or even for
some channels of texture. For example, we can have one blending operation for
the RGB channels of a color component and another for the A channel.

During rendering, we can disable depth testing. If depth testing is disabled,
then pixels of all objects will be rendered into the framebuffer no matter their
distance from the screen. Also, no pixels will be written into the depth buffer. It
is possible to only disable depth write.

That way, the depth testing will be still enabled and only the pixels closer to
the camera then the content of the depth buffer will be written. However, the
values in depth buffer will not be updated. We can use this for rendering the solid
background and keeping the depth buffer around. During transparent rendering
we will not write to it, but we will compare all transparent pixels to the values
stored to it and therefore no objects that are occluded will be rendered.

Shaders are a simple programs written in GLSL language that run on the
GPU. OpenGL supports multiple types of shaders, but we will limit ourselves
here only to fragment shaders. These allow us to decide how is the color of the
rendered object calculated. We will denote all of our shaders as functions that
output one or more color values. An example of a shader might be S : C → Z×A,
which receives some value C (might be RGBA color, floating point value or other)
and outputs values Z and A into first and second render target respectively.

1.3 Overview of the current OIT methods
Multiple approaches to solving a problem with rendering of a transparent

geometry have been developed, like the alpha buffer used in Pixar Reyes[9] for
instance, which stores all transparent pixels sorted by their depth and then blends
them in a correct order. Nonetheless, we will limit ourselves only to the ones that
can be used in realtime graphics, where the performance is crucial. Now, lets
finally get to the OIT rendering methods and their description.

Depth Peeling

We will start with the depth peeling[10], which is an OIT rendering approach
proposed in 2001. It renders the transparent geometry in multiple iterations and
produces sorted like results (as if the geometry has been rendered in a sorted
order).

In each iteration, the algorithm renders all of transparent geometry and
collects (”peels”) the front most rendered layer of transparent pixels, which are
then blended into a separate buffer. For this 2 depth buffers are used - one which
stores the distance to the furthest peeled layer and the second one which denotes
distance from closest solid surface. Depth peeling renders all objects in range
between these 2 depth buffers and then moves the first depth buffer forward before
the next iteration.

In each pass, only the closest non-rendered layer of transparent pixels is ren-
dered and therefore we achieve an ordering. The number of passes is proportional
to the number of transparent layers and in each pass all transparent objects have
to be rendered, which puts the upper complexity bound of the algorithm in O(n2)
region, where n is the number of transparent layers.
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Depth peeling produces sorted like result(if we run it for a sufficient number of
passes) for a cost of more rendering passes and a lower performance.

It was further improved by dual depth peeling algorithm [11], which peels 2
layers of transparent surfaces in each iteration and multi layer depth peeling[12],
which can peel 4 layers per iteration.

We decided to implement this method ourselves to compare image results of
other methods against it.

Stochastic Transparency

This technique[13] introduced in 2011 treats all transparent pixels as opaque
and discards some of them in the fragment shader. The number of discarded pixels
is proportional to transparency of a surface. Follow up technique, depth-based
stochastic transparency, introduced in the same paper takes more rendering passes
and in turn produces more realistic image for a cost of a higher runtime.

Stochastic transparency and depth-based stochastic transparency turn trans-
parency problem into rendering of solid geometry. Similar approach was used in
the video game GTA5[14] for rendering of a distant vegetation.

It overall produces much more convincing results then weighted sum technique
and has better runtime than depth peeling.

Adaptive Transparency and Multi Layer Alpha Blending

Adaptive transparency[15] and multi layer alpha blending[16] are approaches
which store fixed amount of samples per pixel (in the first case only the trans-
parency and the depth of a fragment are stored, in second one we store also the
color).

If the number of transparency layers exceeds the fixed amount then two samples
are merged into one. The first approach uses 2 transparent geometry passes,
collecting and merging the samples in the first one and then later approximating
coverage function for individual transparent pixels in the second pass. The second
technique requires only one transparency rendering pass.

These techniques produce a sorted-like result for a scenes with a small amount
of transparent surfaces, yet require more memory than other approaches listed.

Weighted Sum

Weighted sum introduced by Meshkin in 2007[17] takes a rather different
approach at rendering transparency. Instead of trying to achieve a ground truth
result it strives for simplicity and only estimates the final image by summing up
the non-order-dependent members of the blending equation 1.2.

The produced results are rarely correct if multiple layers of transparent geom-
etry are present and weighted sum often produces brighter colors because colors
of the transparent surfaces are summed instead of interpolated.

However, it makes up for this disadvantage by a great run time, as it requires
only one transparent geometry pass and produces convenient results for a geometry
with low transparency values. It is the first Blended OIT[18] algorithm and it lay
the ground for further improvements in the field over the years.
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Weighted Average

Weighted average[11], which was introduced together with the dual depth
peeling[11] in 2008 is another Blended OIT algorithm and it builds upon weighted
sum in multiple ways.

It averages the color and alpha values of all transparent objects into a separate
buffer. Then, in a full screen pass the coverage of background is approximated
from the averaged alpha channel and the averaged transparent colors are blended
with solid background.

Similar to weighted sum, the resulting image is correct if there is only one layer
of transparent surfaces. For any higher number of surfaces the algorithm does not
produce a correct result.

Also, due to averaging colors of all transparent surfaces without putting
any significance to their distance from viewpoint, it produces visible artifacts if
objects with a low transparency are covered by a high-transparency geometry.
This problem is further explored and improved by the weighted blended OIT [18]
algorithm.

Nonetheless, it is particularly accurate at rendering transparent geometry with
similar transparency across the whole scene and the final image looks much more
convincing then the weighted sum.

Weighted Blended OIT - WBOIT

Weighted Blended OIT [18] algorithm builds on the ideas of weighted average
approach mentioned above, but improves its blending functionality in multiple
ways. The background coverage is calculated precisely in all cases by multiplying
alphas of all consecutive transparent pixels. Similar to the weighted average, it
averages all transparent surfaces, but this time multiplies them with weights,
assigning more importance to certain surfaces over others.

The weight function tries to approximate the coverage function 1.4. The paper
itself proposes multiple ways to calculate weights, often based upon transparency
levels and distance of individual surfaces.

The resulting image looks very appealing and it is a significant improvement
over weighted average for similar runtime and memory consumption. It requires
less memory or rendering passes then adaptive transparency and depth-based
stochastic transparency, yet falls short in certain corner cases.

Moment Transparency - MBOIT / MOMENT OIT

Moment based OIT [19] or moment OIT [20], introduced in 2018 independently
by different authors, improves upon WBOIT by introducing a new, more precise
weights function.

The new weight function is computed during the runtime of the algorithm in
a separate transparent geometry pass using HamburgerMSM algorithm used in
moment shadow mapping[21]. During this pass the optical depth of the transparent
geometry with depth moments is stored into a separate framebuffer. In the next
rendering pass the coverage function is approximated from the stored data and
used as a weight function for individual surfaces. This approach found its use in
the game Alan Wake 2 released in 2023[3].
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For brevity, we will use the name MBOIT to denote both of these methods.
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2 Implemented Transparency
Rendering Algorithms in Detail

We decided to implement and investigate the following OIT algorithms in
detail. We picked all Blended OIT methods (WBOIT, weighted average, weighted
sum, moment transparency) and we also implemented the depth peeling algorithm
for the ground truth(sorted like) comparison.

In this chapter we intent to describe both the implementation and theoretical
details of the chosen algorithms and also the implementation of the application
capable of rendering the scene using these algorithms. For rendering one frame of
a scene, the currently used algorithm receives:

• a list of opaque and transparent objects. Each object is represented as a
set of vertices in 3D space, indices, which connect individual vertices into
triangles and a texture.

• Position and a rotation of the camera in the scene for the current frame
and its perspective matrix. Using these two, a world-to-view matrix can be
calculated, which can transform positions of individual vertices in a world
space onto a screen space.

• A set of stable data that persist between the frames. These can be compiled
GPU programs used for rendering, additional framebuffers or other type
of data that is required by the algorithm but does not necessary have to
change between frames.

It would be possible to use one algorithm for rendering of the solid background,
as each of the algorithms has to do this step, and then using a second algorithm
to only add the transparent objects to the result. We decided not to use this
approach and instead let each of the algorithms render opaque objects by itself, as
this solution gives us more flexibility in implementation of individual algorithms.

2.1 Depth Peeling
Depth peeling algorithm produces an accurate result for a cost of higher

run time. In practice, it must render transparent geometry in multiple passes,
collecting (”peeling”) some layers of transparent geometry away and storing them
in an accumulation buffer.

The algorithm uses two depth buffers to find transparent geometry closest to
the camera which was not yet rendered. In each pass we collect only the geometry
closest to the front buffer. Hence, the number of passes is proportional to number
of transparent layers present. Depth testing using multiple depth buffers is usually
not supported by the hardware and therefore we have to emulate one depth test
inside the fragment shader, where we discard pixels manually. This can be seen in
step 7 of the algorithm pseudocode 1.

Depth peeling algorithm has seen a further improvement since 2001 in a form
of dual depth peeling[11] and multi layer depth peeling[12], which introduce a way
to peel more than one layer of transparent surfaces per render pass.
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Our implementation ”peels” only one layer of transparent surfaces each pass
and runs in predetermined number of iterations. This is the basic version of the
algorithm as stated in the source paper [10] and it does not use any optimizations
from later proposals [12][11].

See algorithm 1 for overview of the basic depth peeling implementation.

Algorithm 1 Depth Peeling pseudocode
Require: Framebuffers F1 = (C1, D1), F2 = (C2, D2) and F3 = (C3, D3) with
RGBA8 color components C1, C2, C3 and depth buffers D1, D2, D3. F1 stores the
color and depth of the opaque background, F2 keeps around the depth and color
of the last peeled layer, which is then accumulated at the end of each iteration
into F3
Output: Final scene rendered in F1 framebuffer

// Cleanup the framebuffers after the previous frame
1: C3 ←(0, 0, 0, 1), D3 ←0
2: C1 ←background color, D1 ←1
3: Render all solid geometry and depth into C1 and D1
4: for number of iterations do

// Copy the depth of the opaque objects
5: D2 ←D1

// Cleanup after previous iteration
6: C2 ←(0, 0, 0, 0)

// The closest layer of geometry that is further from camera than D3 and
closer to the camera then D2 will be rendered

7: Render all transparent geometry into C2 and D2 without blending as
if it was solid. Read and write depth using D2 with hardware support.
Simultaneously use D3 as a texture and discard all pixels that are closer to
the camera than distance in D3
// Now, we need to blend the closest layer into an accumulator

8: Enable blending
9: Set separate blending operator for RGB channels as Cf = Cs · αd + Cd · 1

10: Set separate blending operator for alpha channel as Cf = Cs ·0+Cd ·(1−αs)
11: Do a full screen pass and blend C2 into C3
12: Disable blending

// Save the distance to the closest layer of transparent geometry so that we
do not render it again in next iteration

13: D3 ←D2 (might be omitted in the last iteration)
14: end for

// Merge the color of transparent objects from accumulator with the opaque
background

15: Enable blending and set blending operator to Cf = Cs · 1 + Cd · αs

16: Do a full screen pass and blend accumulated color in C3 into C1
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2.2 Weighted Sum
The weighted sum algorithm calculates the final color Cf in the following way

Cf =
n∑︂

i=1
Ciαi + C0

(︄
1−

n∑︂
i=1

αi

)︄
(2.1)

Where Cf is the final color, C1...Cn are colors of individual transparent surfaces
and αi...αn their alphas. C0 is the color of the opaque background.

The algorithm requires one solid pass, one transparent pass and one full screen
pass at platforms where blending of negative values is not possible.

Notice that the right part of the equation might produce values that are higher
than 1 or negative. In OpenGL, clamping of values into an interval [0, 1] or [−1, 1]
occurs[8] for 8bit unsigned and signed colors respectively. However, the floating
point colors of accuracy F16 or F32 are not clamped. Using these, it would be
possible to implement weighted sum algorithm using only one framebuffer with
color accuracy F16.

Meshkin algorithm produces plausible results for objects with low opacity and
ground truth results if there is only one layer of transparent objects . However, in
scenes with higher alpha values the sum of the alphas and colors produces large
values that are displayed in the final image as oversaturated towards the color of
transparent pixels as can be observed in figure 2.1.

Figure 2.1 Smoke particles in Sponza scene. Weighted sum(left) and depth peel-
ing(right)

An implementation of weighted sum might look like algorithm 2. This im-
plementation does not use the optimization with only one framebuffer of F16
type mentioned above. Instead, we use one RGBA8 framebuffer for the solid
background and one RGBA16F for transparent geometry.
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Algorithm 2 Possible implementation of weighted sum
Require: Framebuffers F1 = (C1, D1), F2 = (C2, D2) and F3 = (C3, D3). F1 and
F3 have RGBA8 colors, F2 has RGBA16F color. F1 is used for storing the
opaque background, F2 as an transparency accumulator. We merge these two
results in the final step into the F3 framebuffer.
Output: Final scene rendered in F3 framebuffer

// Cleanup after the previous frame
1: C1 ←background color
2: D1 ←1
3: Render all opaque geometry into C1 and D1

// Cleanup the framebuffer into which we sum up the colors
4: C2 ←(0, 0, 0, 0)
5: D2 ←D1
6: // We want to turn depth writing so that we render all layers of transparent

geometry, not just the closest one
7: Turn off depth writing, but still use D2 for depth testing
8: Enable blending with blend operator Cf = Cs · 1 + Cd · 1
9: Render all transparent geometry into C2

10: Turn off blending
11: Do a full screen pass into C3. Use C1 and C2 as textures and calculate the

final color Cf = C2.rgb + C1.rgb · (1− C2.a)

2.3 Weighted Average
At GDC 2008 Bavoid and Myers[11] presented (together with dual depth peeling

mentioned above) an OIT method of their own. Their weighted average algorithm
computes the resulting color of transparent scene in a following manner

Cf =
∑︁n

i=1 Ci · αi∑︁n
i=1 αi

(︄
1−

[︄
1
n

n∑︂
i=1

αi

]︄n)︄
+ C0 ·

[︄
1
n

n∑︂
i=1

αi

]︄n

(2.2)

Individual members of the equation have the same meaning as in the section 2.2.
Weighted average renders the transparent geometry in 2 passes and uses 2

render targets for the first pass. In the first pass it accumulates the color and
alpha values of transparent layers into one render target and uses the second
render target as an integral counter for the number of transparent layers per pixel.

The second pass is a full screen pass during which the accumulated colors
and alpha values are averaged and blended with the solid background rendered
previously. We effectively sum up the color and alpha of all consecutive transparent
pixels and therefore a higher precision color buffer type is required (one that is
not clamped, so usually F16 or F32).

The ideal condition for this algorithm is a fully transparent scene with mid
to low range alpha values. In such a case the weighted average produces images
that are believable to a human eye, yet not always quite realistic as can be seen
in figure 2.2.
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Figure 2.3 Overbleeding of transparent plants from behind the smoke particles in
weighted average algorithm(left). Depth peeling(right)

Figure 2.2 Weighted average(left) produces less colorful, yet still believable result in
the Sponza scene with 25% transparency. Depth peeling(right)

The averaging of consecutive surfaces might cause visible artefacts in the final
image if the transparent objects of multiple colors are present (semi-transparent
bushes in Sponza scene for example). The closest transparent pixels have the
same importance in the final result as the ones behind them covered by multiple
layers of transparent geometry. This can produce artifacts visible to the human
eye as can be observed in figures 2.3 and 2.4.

In an environment where all alpha values αi are the same the background
coverage is computed exactly. However, this might not apply for scenes with
varying alpha values as can be seen in figure 2.5.

Other issue is that the number n might be composed of objects with trans-
parency αi = 0. This might cause artifacts in scenes where the opacity of objects
varies.
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Figure 2.4 Sponza scene with decreased transparency. Color of the leaves at the front
gets averaged with background in weighted average(left). Depth peeling(right)

Figure 2.5 Sponza scene with low resolution leaves textures)In weighted average(left),
parts of the leaves geometry are fully transparent, however, these will still count into the
number of consecutive surfaces and will introduce slight artifacts. Depth peeling(right)

We implemented weighted average method using framebuffer components of
both 32bit floating colors (R32F and RGBA32F) and 16bit colors (R16F and
RGBA16F). Instead of attaching a depth buffer we used a render buffer as we do
not need to read the depth during the runtime of the algorithm.

For weighted sum, we will describe the calculations of some shaders it uses,
because these are not as trivial as in the previous algorithms.

We will use shader Soit : A × N → C, where A is the accumulated RGBA
color, N is a floating point number greater than 0 and C is the resulting RGBA
color. The shader calculates the resulting color in the following way.

Soit(A, N) = (A.rgb

A.a
,
[︃
A.a

N

]︃N

) (2.3)

It will be used for blending of accumulated colors into the final image.
We will also need a shader Saccum : C → A×N , which receives a color of the
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pixel C and outputs RGBA color A and a float value N in a following way

Saccum(C) = (C.rgb · C.a, C.a)× (1) (2.4)

This one will be used for accumulating the color values into multiple render targets.
The implementation of weighted average can be seen in algorithm 3.

Algorithm 3 Weighted Average pseudo code
Require: 2 framebuffers F1 = (C1, D1) and F2 = (C2s, C2q, D2), where D1 and
D2 are render buffers and C1 is color component of type RGBA8. C2s and C2a

are color components of types either R32F and RGBA32F or R16F and
RGBA16F . F1 is used as a storage of the opaque background and F2 as an
accumulator of color and alpha values.
Output: Final scene rendered in F1 framebuffer

1: C1 ←background color
2: D1 ←1
3: Render all solid geometry into C1 and D1
4: C2q ←(0, 0, 0, 0)
5: C2s ←0

// Use the solid depth so that we only render transparent geometry that is not
occluded by the solid one

6: D2 ←D1
7: Enable blending with blend operator Cf = Cd · 1 + Cs · 1
8: Turn off depth writing

// Using blending, we store the number of consecutive surfaces into C2s and
accumulate their colors into C2q for each pixel on the screen

9: Render all transparent geometry into C2. During rendering, write 1 into C2s

for each rendered pixel and write it’s color and alpha into C2q. We do this
using an Saccum shader

10: Change blending operator to Cf = Cs · (1− αs) + Cd · αs

11: Do a full screen pass into F1 during which we sample values from C2s and
C2q and blend them with color which is already in C1 using the Soit(C2q, C2s)
shader

2.4 Weighted Blended Order Independent Trans-
parency

In 2013 McGuire and Bavoil introduced new blending algorithm[18] in their
paper weighted blended order independent transparency (we use WBOIT for
brevity). The WBOIT calculates the following color

Cf =
∑︁n

i=1 Ci · αi · w(zi, αi)∑︁n
i=1 ai · w(zi, αi)

(︄
1−

n∏︂
i=1

(1− αi)
)︄

+ C0 ·
n∏︂

i=1
(1− αi) (2.5)

Individual members of the equation have the same meaning as in section 2.2. In
addition, z1...zn are depths of the individual transparent pixels and the w(zi, αi)
is a weight function, which we describe later.

20



Figure 2.6 WBOIT(left) assigns more importance to closer surfaces in the Sponza
scene with 25% transparency. Weighted average(right)

We should note that this equation differs from the one stated in the original
paper by the member αi on the left side in numerator. Bavoil and McGuire assumed
an alpha-premultiplied color in their paper, which we do not and therefore we
explicitly state the αi member in the equation.

During the transparent geometry pass the colors and alphas of all transparent
objects are summed up into two render targets. Later, during the full screen
pass these colors are averaged out and blended with solid background. Weight
function assigns weights to individual pixels of transparent geometry based on
their distance and alpha. This way, the objects closer to the camera should have
greater weight in the average than the objects further from it. This improves upon
the problem of averaging multiple surfaces which weighted average algorithm has
as can be seen in figure 2.6.

To compute a coverage of the background WBOIT uses a clever trick during
the blending stage, thanks to which the individual alpha channels (1 - αi) of the
transparent objects are multiplied (instead of summed up). Note that this product∏︁n

i=1(1−αi) is the actual coverage of the background. Unlike the previous method,
this one computes the correct coverage in all circumstances.

One possible implementation of the weight function is to use none at all, e.g.
w(zi, αi) = 1, which simply averages all transparent objects and blends them with
solid background. This version of the algorithm inherits some weaknesses of the
weighted average algorithm, but calculates the coverage of solid background more
accurately than it’s predecessor. The difference between some weight function
and no weight function might be observed in figure 2.7

Notice that for w(zi, αi) = 1 and ai = aj for all pairs i and j the WBOIT
equation produces the same result as weighted average equation. This means that
the WBOIT algorithm without a weight function calculates the same color as
weighted average in environments where all alpha values of transparent objects
are the same.

As the source paper states, one disadvantage of the weight functions is that
simply rescaling all scene geometry around the camera moves it into different
depth range (distance from all objects changes) and will result in different image.

Our implementation of WBOIT uses an accumulation shader Saccum : C×Z →
A× T , where C is an RGBA color, Z is a depth of a pixel in [0, 1] interval and T
and A are two render targets with float and RGBA types. The shader calculates
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Figure 2.7 WBOIT with weight function w = 1/z5 · α on the left. WBOIT with no
weight function on the right. Notice the overbleeding of transparent vegetation and
yellow smoke from behind the red one

output color in the following way

Saccum(C, Z) = (C.rgb · C.a ·W (Z, C.a), C.a ·W (Z, C.a))× (C.a) (2.6)

This shader requires a weight function W (Z, A), which assigns an importance to
individual samples based on their alpha value A and distance from camera Z.

We implemented the following weight functions

W1(Z, α) = 1 W2(Z, α) = 1
Z3 W3(Z, α) = 1

Z5

W4(Z, α) = 1
Z3 · α W5(Z, α) = 1

Z5 · α

Each of the weight function can be made adaptive by dividing the distance Z by
Zs before feeding it into the W function. Here, Zs is the distance to the closest
opaque surface (we can read it from the depth buffer). No transparent surface
will be further from the camera than Zs and therefore Z/Zs ∈ [0, 1].

Another shader we need is a merging shader Soit : A×T → C, where A and T are
accumulated RGBA colors and multiplied alphas. It renders color in the following
way

Soit(A, T ) =
(︄

A.rgb

A.a
, T

)︄
(2.7)

An implementation of WBOIT might look like the algorithm 4.
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Algorithm 4 WBOIT Algorithm pseudocode
Require: Framebuffers F1 = (C1, D1) and F2 = (C2s, C2q, D2). C1 is of type
RGBA8, C2s is of type R32F and C2q has type RGBA32F . F1 stores the color
and depth of the opaque geometry and F2 accumulates colors and coverage of the
background.
Output: Final scene rendered in F1

// Cleanup after the previous frame
1: C1 ←background color
2: D1 ←1
3: Render all solid geometry into C1 and it’s depth into D1 with depth testing

and writing on and blending off
4: D2 ←D1

// This value is the background coverage. We start with 1 and then we lower
it by multiplying it with (1-α) of each transparent surface

5: C2s ←1
// These is the color accumulator. We start with no colors and then add some
during the rendering

6: C2q ←(0, 0, 0, 0)
7: Disable depth writing, but keep depth testing on
8: Use 2 render targets C2s and C2q

9: Enable blending
10: Set the blending operator of C2s to Cf = Cs · 0 + Cd · (1− αs)
11: Set the blending operator of C2q to Cf = Cs · 1 + Cd · 1
12: Render all transparent geometry into C2s and C2q. The final color is calculated

as C2q, C2s = Saccum(C), where C is an RGBA color of the currently rendered
transparent pixel

13: Use blend operator Cf = Cs · (1− αs) + Cd · αs

14: Do a full screen pass into F1. C1 already contained color of opaque geometry
and in this step we only add transparent objects

2.5 Moment Transparency
The last OIT approach we implemented is the moment transparency. For

the sake of brevity we will use name ”MBOIT”. MBOIT is quite similar to its
predecessor 2.4. The main difference is the modified weight function

w(z, α) = exp(−Hamburger4MSM(d

d̂
, z)) (2.8)

The definition of Hamburger4MSM can be seen in algorithm 5. The rest of the
equation remains the same

Cf =
∑︁n

i=1 Ci · αi · w(zi, αi)∑︁n
i=1 ai · w(zi, αi)

(︄
1−

n∏︂
i=1

(1− αi)
)︄

+ C0 ·
n∏︂

i=1
(1− αi) (2.9)

Instead of leaving a decision to choose a weight function upon a programmer,
MBOIT calculates it by itself in one extra render pass. During this additional
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Figure 2.8 Sponza scene with 25% transparency.MBOIT(top left) produces almost
the same result as depth peeling(top right). WBOIT with weight functions w = 1/z5 · α
and w = 1/z3 · α on bottom left and bottom right respectively produce both slightly
brighter image.

render pass moments of transparent surfaces are collected and summed up. In later
render pass these moments are retrieved and used to calculate the appropriate
weights.

As the source paper states, the new weight function calculates the coverage
of transparent pixels correctly only for 2 or less surfaces covered by each other.
If there are more than 2 surfaces overlapping then the resulting coverage is only
approximated, but usually quite precisely as can be seen in figure 2.8.

The source papers suggest multiple versions of this algorithm. Either by using
more moment passes, using trigenometric or quantitized moments instead of power
moments or storing 8 moments in 2 color buffers.

We implemented the basic version of MBOIT algorithm with one transparency
render pass for collecting 4 power moments and one render pass for accumulating
the transparency.

A description of the Hamburger4MSM algorithm from the moment shadow
mapping paper[21] can be seen in algorithm 5. We will need this later in the
Sweight shader.
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Algorithm 5 Hamburger4MSM Algorithm
Input: b ∈ IR4, fragment depth zf ∈ IR, bias α
Output: Coverage amount

1: b′ := (1− α) · b + α · (0.5, 0.5, 0.5, 0.5)T

2: Use a Cholesky decomposition to solve for c ∈ IR3:⎛⎜⎝ 1 b′
1 b′

2
b′

1 b′
2 b′

3
b′

2 b′
3 b′

4

⎞⎟⎠ · c =

⎛⎜⎝ 1
zf

z2
f

⎞⎟⎠
3: Solve c3 · z2 + c2 · z + c1 = 0 for z using quadratic formula and let z2, z3 ∈ IR

denote the solutions
4: If zf ≤ z2: Return 0
5: Else if zf ≤ z3: Return zf ·z3−b′

1·(zf +z3)+b′
2

(z3−z2)·(zf −z2)

6: Else: Return 1− z2·z3−b′
1·(z2+z3)+b′

2
(zf −z2)·(zf −z3)

We will use additional shader Smoment : Z × α→M × S, which receives depth
Z of the pixel, its transparency α and outputs 4 moments in M in RGBA form
and their sum S as a float.

Smoment(z, α) = ((z, z2, z3, z4) · −log(1− α))× (−log(1− α)) (2.10)

Later, we use the shader Sweight : M × S × Z → T , which receives previously
calculated moments M in RGBA form, their sum S as a float and the depth of a
pixel Z. This shader approximates the coverage of a pixel in depth Z.

Sweight(M, S, Z) = exp(−Hamburger4MSM(M/S, Z, 0) · S) (2.11)

MBOIT can be implemented in a similar way to the pseudocode 6.
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Algorithm 6 MBOIT Algorithm pseudocode
Require: The same resources as WBOIT algorithm with addition of framebuffer
FM = (CMs, CMq, DM) where CMs and CMq have types R32F and RGBA32F
respectively
Output: Final scene rendered in F1

// We are essentially doing the same algorithm, just with one additional
render pass and different weight function

1: Do steps 1-7 of the WBOIT algorithm
2: DM ←D1
3: CMs ←0
4: CMq ←(0, 0, 0, 0)
5: Enable blending and set blending operator to Cf = Cs · 1 + Cd · 1

// Capture moments of transparent geometry for each pixel on the screen
6: Render all transparent geometry into FM and capture moments z, z2, z3, z4

into CMq and their sum into CMs as CMq, CMs = Smoment(Z) where Z is the
depth of the rendered transparent pixel

7: Do steps 8-11 of the WBOIT algorithm
8: Do step 12 of WBOIT, but calculate the weight function by Sweight shader

instead of W (z, α). The resulting weight is Sweight(CMq, CMs, Z), where Z is
the depth of the currently rendered transparent pixel

9: Do rest of the steps just like WBOIT
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3 Results
In this chapter, we discuss both the visual results and performance of im-

plemented algorithms. We decided to compare all algorithms across multiple
categories of rating to show their weaknesses and strengths in several situations.
We will compare the results of all algorithms to the depth peeling algorithm with
32 passes (or sometimes 48 passes in cases of a complex scene), because it produces
the same result as if all surfaces were rendered from back to front.

3.1 Final color
Let’s discuss first the accuracy of the final color calculation and and how it

differs from the result we could have achieved if individual triangles of the scene
were rendered from back to front (or rendered by depth peeling).

We compared the visual look of algorithms across 2 different scenes with slight
variations (for instance, placing smoke clouds around the scene). The scenes used
were

• sponza scene - a famous architectural building used for testing of rendering
algorithms

• ball park - our own scene composed of multiple balls with varying colors
and opacities

We should note that we rendered leaves in the sponza scene as if they were
partially transparent object, which is not that common in practical cases where
the vegetation is drawn by different techniques. We did this to show artifacts
produced by the algorithms if several contrasting transparent objects would be
occluded by each other. If the vegetation was rendered properly, the problem
would still remain present for objects like pieces of glass for example.

The most notable weakness of the weighted sum algorithm is the underflow-
ing of colors. This happens mostly in environments where multiple transparent
surfaces with higher alpha values are covered with each other as can be seen in
figure3.1. The resulting image looks overburned as the weighted average subtracts
the color of background from the sum of transparent surfaces instead of properly
blending them using alpha values. The greater the alpha of the transparent
surfaces, the more will weighted sum subtract. This might in some cases even
result in black colors.
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Figure 3.1 If multiple transparent surfaces overlap each other, the weighted sum(left)
algorithm produces burned or even black colors. Sorted-like image result achieved using
depth peeling(right).

A certain divergence from the final color can be also spotted in images produced
by the weighted average algorithm. It is not so apparent in cases when transparent
surfaces have low alpha, because the average is weighted towards pixels with
greater opacity. This still produces a small error, however, it is not usually that
apparent as can be seen in figure 3.2.

Figure 3.2 Sponza scene with two low opacity smoke clouds rendered by weighted
average(left) and depth peeling(right). The difference is not very notable.

However, due to averaging of alpha and color values of all overlapped surfaces
instead of blending them from back to front the algorithm produces incorrect
results in cases where multiple surfaces with similar alphas cover each other as can
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be observed in figure 3.3. This is most notable in form of overbleeding artifacts
which we discuss more in the section 3.2.

Figure 3.3 The color of the background red smoke is clearly visible even though it
should be fully occluded by the gray smoke in foreground. This is a common case of
overbleeding. Weighted average on left, depth peeling with 32 passes on right

The averaging of transparent surfaces happens to be a problem for the WBOIT
algorithm as well. Nevertheless, it is not so visible in most cases as WBOIT tries
to combat this by utilizing a weight function which assigns more importance to
closer surfaces. A notable improvement from weighted average can be observed in
figure 3.4.

In ideal conditions this completely solves the problem, although the weight
function might in some cases overestimate or underestimate the coverage, resulting
in an image that is slightly off. Most notable case of this is when the weight
function assigns too much weight to close surface, resulting in poor visibility of
background surfaces as can be seen in figure 3.7.

Figure 3.4 WBOIT gives much more weight on the smoke in foreground, yet, the
result is still not perfect and overbleeding of vegetation can be spotted(left). Depth
peeling(right)

Even though the weight function is quite helpful, it is sometimes difficult to
control. Tweaking it to work well for a certain environments might cause it to
underperform in different conditions as can be seen in figures 3.6 and 3.5. It
might also take an non-trivial time to find a fitting weight function for a given
environment.
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Figure 3.5 In the right side of the image, both the hanging vines and leaves in the
pot are not properly occluded by the transparent blue smoke. This is due to them
getting assigned a small importance from the used weight function (W = 1/z5 · α) -
WBOIT(left). Depth peeling (right).

The weight function might in some cases underperform, but overall it is better
having a slightly underperforming weight function that having none at all.

Figure 3.6 WBOIT with 2 different weight functions, each one producing different
results. W = 1/z3 · α on the left, W = 1/z5 · α on the right. Note the visible difference
in the almost completely transparent white ball on the right side of the images.

MBOIT solves the problem of carefully choosing a weight function for a certain
scene by computing it itself. This results in a very believable images in a lots of
situations as can be seen in figure 3.8. On average its results are closest to the
depth peeling as can be seen in figure 3.7.

Having said that, the MBOIT has it’s limits as well. It estimates the weight
function correctly only in cases where 2 or less transparent surfaces overlap each
other (as stated in the source paper[19]). For greater number of surfaces the
weight function is only approximated and might sometimes perform even worse
than WBOIT as can be seen in figure 3.9.
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Figure 3.7 Ball Park scene. Notice how WBOIT(left) (with W = 1/z3 · α) almost
completely covers the balls behind the red one on the left. MBOIT(middle) computes
coverage more accurately and covered balls have almost the same visibility as in case of
depth peeling(right)

Figure 3.8 MBOIT(left) produces pretty convincing result even in environments with
multiple transparent objects. Note the imperfection in form of vegetation overbleeding
to the foreground from behind the yellow smoke. Depth peeling(right)

Figure 3.9 Sponza scene with smokes of multiple colors. A slight overbleeding of
background vegetation can be seen. MBOIT on left, WBOIT with a weight function
1/z5 · α on the right

In it’s best with weight function precisely chosen for a given scene, the WBOIT
will outperform MBOIT. In spite of that, the MBOIT will usually come on top in
a common scene with varying alpha values, colors and distances between objects
without a need to do any preparation or precalculation of it’s weight function.
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Figure 3.10 Overbleeding of vegetation and a yellow smoke from behind the red one
inweighted average(left). Weighted sum overbleeds much more and reveals even the solid
background.

3.2 Overbleeding and Image Stability
Overbleeding is a rendering artifact produced by some of the transparency

algorithms. It is caused by blending the transparent foreground differently with
transparent background then the solid background.

Since overbleeding is a frequent occurrence in all of the blended OIT algorithms
and is usually the source of the most notable rendering artifacts we decided to
dedicate an entire subsection to it.

By image stability we mean how much the resulting image changes for individual
methods if we move the camera around or rescale the objects in the scene.

We decided to include this metric in our results because an algorithm might
perform very well in a very specific conditions, but moving the camera or objects
around might reveal significant rendering artifacts. This case might be the most
notable in video games where the player might move around quickly.

Overbleeding usually comes hand in hand with image instability, therefore we
decided to discuss these two phenomenon together in one subsection.

Both weighted sum and weighted average algorithms are not very resistant against
overbleeding since they do not allocate more importance to surfaces closer to the
camera. This might cause significant overbleeding artifacts as seen in figure 3.10.
Both of them are, however, very stable and produce similar results when moving
around the scene.

On the other hand, a lack of a weight function also results in almost 100%
image stability. No matter the distance from the object, it’s scale or rendering
order, the result remains the same.

WBOIT does not suffer that much from overbleeding as previous 2 algorithms.
Thanks to the weight function, it is able to produce an image without any
overbleeding in ideal conditions. However, conditions might not always be ideal.

One problem of the WBOIT algorithm is its instability with moving around
the scene or simply rescaling it. The weight function is usually quite sensitive to
changing distances between objects or their scale as can be seen in figure 3.11.
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Figure 3.11 Moving just a few meters back from the smoke reveals overbleading on
distant plants on the right.

For this reason we experimented with adaptive distance in some of our weight
functions. In certain scenarios, this improves the quality of the resulting image as
seen in figure 3.12.

On the other hand, adaptive distance causes problems in other scenarios. Most
notably in low alpha environments. Removing the weight function is also an
option how to make the algorithm more stable. Moving around the scene will
no longer cause drastic changes in result, although the overbleeding will become
much more visible.

MBOIT algorithm outperforms WBOIT in most cases with both stability
and a lack of overbleeding as seen in figure 3.13. Both of these problems are still
present, but in much less cases as the MBOIT calculates the weight function on
the runtime and adapts it to the current environment.

Our statement from the previous subsection applies here as well. For a given
scene, there always exists a perfect weight function using which the WBOIT will
outperform the MBOIT. However, searching for such a function might be difficult
or straight up impossible in dynamic scenes where the environment changes from
frame to frame (moving particle systems for example).

3.3 Performance
Performance of individual algorithms is important for real time rendering.

In certain cases, we might prefer algorithm with inferior image quality but a
better runtime performance. For this reason, we also discuss how each algorithm
performs in certain scenarios.

For benchmarking, we picked 3 different scenes

• transparent sponza: a fully transparent sponza scene. No objects in this
scene are opaque

• sponza with smokes: default opaque sponza scene with multiple transparent
smoke clouds

• ball park: scene with several balls of different colors and alphas and one
particle cloud
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Figure 3.12 Adaptive Z improves the algorithm in the short distance without making
it worse for further distances. Adaptive weight function w = 1/adapt(z)5 · α on the left
and a default weight function w = 1/z5 · α on the right. Notice the overbleeding of
vegetation on short distances with the default weight function

Figure 3.13 MBOIT(left) produces much less visible overbleeding on the plants in
the right part of the image. WBOIT(right)
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Performance Measure
Scene

OIT Algorithm Sponza Transparent Sponza Smokes Ball Park
Everything Opaque 1.07ms 1.05ms 0.51ms
Weighted Sum 1.85ms 1.22ms 0.65ms
Weighted Avg. 3.03ms 1.53ms 0.83ms
WBOIT 16F 3.49ms 1.56ms 0.90ms
WBOIT 32F 9.34ms 2.6ms 1.75ms
MBOIT 18.18ms 4.21ms 3.25ms
Depth Peeling (32) 31.25ms 14.92ms 9.43ms

Table 3.1 Benchmarked Performance of Transparency Rendering Algorithms

Figure 3.14 Benchmarked scenes. Transparent sponza, sponza with smokes and
ballpark from left to right

We also measured performance for rendering the given scene as fully solid and
opaque with no transparency and rendering it with depth peeling algorithm, both
for comparison reasons.

All benchmarks were executed on Acer Nitro AN515-54 laptop with 16GB RAM,
Intel Core i5-9300H CPU @ 2.4GHz and NVIDIA RTX 2060 GPU with Windows
10 operating system and 1920x1080 screen.

From the benchmarks 3.1 we can infer that the weighted sum algorithm out-
performs all other. It renders the scene somewhat slower compared to rendering
it fully opaque, which makes sense because the geometry for the whole scene has
to be rendered and blended instead of only rendering the pixels closest to the
camera.

Notice WBOIT 16F and WBOIT 32F, which are 2 versions of the WBOIT
algorithm. The first one uses no weight function and is therefore able to use
16bit floating point color buffer instead of the 32bit one. Run times of both
weighted average and WBOIT 16F closely match each other as their number of
rendering passes is essentially the same and both of them use the same number of
framebuffers and have color components of the same size.

MBOIT algorithm introduces a significant drop in the performance due to in-
creased amount of render passes required and more complex calculations. We
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Memory Consumption
Algorithm Per 1920x1080 Per Pixel
Depth peeling 49,766MB 24B
Weighted sum 58,06MB 28B
Weighted avg. 16F 62,208MB 30B
WBOIT 16F 62,208MB 30B
WBOIT 32F 82,944MB 40B
MBOIT 32F 116,121MB 56B

Table 3.2 Memory Consumption of Individual Transparency Algorithms

should note that the source papers[19][20] are aware of the performance drops
and offer solutions in the form of decreased resolution or quantized moments.
These optimizations increase the performance of the algorithm, but on the other
hand decreases the image quality. We have not experimented with any of these
optimizations.

The depth peeling algorithm comes out as the slowest one, which is expected
as it has to render the transparent geometry in 32 passes. As we mentioned
before, there are multiple proposals [11][12] that increase the performance of this
algorithm, but we have not implemented any of these as it is outside bounds of
this thesis.

3.4 Memory Consumption
We decided to compare memory footprint of all implemented algorithms as can

be seen in table 3.2. We only state the amount of consumed GPU video memory
as the RAM memory consumption is small and might depend on the software
architecture of the rendering program.

We state the amount of memory our implementations of the algorithms con-
sume. It might be possible to implement each algorithm using smaller amounts
of memory. We simply did not attempt to optimize for the smallest possible
memory consumption as the amount of memory on video cards is usually quite
large compared to the amount required by individual implementations.

We should also note that the default framebuffer of a window usually consumes
24-32bits per pixel (depending on the presence of the alpha channel). Our numbers
include the size of the default framebuffer as well (we assume the size of default
framebuffer to be 32bits per pixel).

Notice that for certain algorithms in table we also stated the precision of
floating point numbers we used - 16F for 16bit floating point precision and 32F
for 32bit colors.

The weighted average algorithm uses floating point color component. We experi-
mented both with using both 16bit and 32bit floating point colors and observed
no difference in the result.

Converting MBOIT to lower precision format is not so straightforward, because
the number precision might cause rounding of numbers close to 0 down, resulting
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in possible division by 0. Source papers for MBOIT [19][20] offer certain solutions
to decreasing a memory footprint, which are however out of bounds of this thesis
and were not implemented.
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Conclusion
After presenting the results we arrive at the conclusion chapter. We imple-

mented a demo application capable of loading and modifying various scenes and
rendering them with 5 different transparency rendering algorithms. The applica-
tion is capable of switching the OIT algorithms at runtime, rendering of a simple
interface and manipulation of the objects in the scene. We provided multiple
examples of images rendered using various OIT algorithms, compared their quality
and analyzed performance in different scenarios and their memory consumption.

Now, we will sum up the results and try to provide recommendation which of
the tested order independent transparency algorithms to use and when.

We will begin with weighted average and WBOIT algorithms.
The performance of both algorithms is almost the same(if both of them use

the same type of color format), yet WBOIT excels in the quality of the result
as it does not produce as much overbleeding as weighted average. Even if we
use WBOIT with no weight function (e.g. weight function W (z, α) = 1) it still
calculates the background coverage more precisely.

In section 3.2 we have shown that the weighted average is much more stable.
However, using WBOIT without any weight function will give it the same stability
as weighted sum has. This applies to the memory footprint as well - the version
of WBOIT with no weight function can be implemented using the same amount
of memory as the weighted average.

From a programmer’s viewpoint, the implementation of both of these algo-
rithms is practically the same - both require the same amount of transparency
passes from the rendering engine, same amount of framebuffers and the same
amount of render targets. Therefore, we arrive at conclusion that WBOIT should
be preferred over weighted average as it is better in all aspects.

The weighted sum produces the worst image results from all of the blended
OIT algorithms we tested. The exception to this are environments with low
amount of overlapping transparent surfaces which have low alpha values. Nonethe-
less, it beats all of the remaining algorithms in the runtime speed and also has
quite low memory requirements. It is very simple to implement and is the only
blended OIT algorithm that does not require support for multiple render targets
and can be therefore implemented on an older hardware.

We, therefore, recommend using weighted sum algorithm only in cases where
the performance is critical, the amount transparent surfaces is limited and their
alpha is low and sorting the transparent geometry or using any other blended
OIT algorithm is not an option. In other cases we recommend using some other
algorithm with results of higher quality.

On the other hand, the MBOIT algorithm is the exact opposite of the weighted
sum. In most cases it produces results of high quality that are often unrecognizable
from the sorted rendering by a human eye, although for a cost of a lower perfor-
mance. It is more stable than WBOIT and produces less overbleeding artifacts in
most scenarios. Its implementation is slightly more difficult, because it requires
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one extra render pass for the transparent geometry than some other algorithms.
For this reason, implementing it into an already established rendering pipeline
might not be the most trivial task.

We recommend using MBOIT for applications where performance is not critical
(on a current generation hardware for example), the rendered scene is not purely
static and there is enough free space in the video memory. For a practical use it
is recommended to implement some of the proposed optimizations[19][20] that
increase performance.

Future Work
Investigate Optimizations Of MBOIT Algorithm

The source papers [19] and [20] offer a few optimizations that claim to increase
the performance of the MBOIT algorithm. One of the proposed optimizations
is downscaling the moment framebuffer to 1/4 of the original size. One possible
area of investigation would be to analyze how much impact on the visual result
does this one optimization have and if it is worth it.
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A User Documentation
In this attachment we briefly describe how to use the demonstration application

used in this thesis.

How To Run

The demo application can be started by running the OIT.exe executable
included as an electronic attachment to this thesis, see attachment ?? for a
description of its contents.

Recommended Requirements

The application can be run on a Windows 10 operating system with a GPU
supporting OpenGL 4.3.

Usage

In the following subsection we describe briefly how to use the demo application.

• Use W/S/A/D keys for horizontal movement

• Use E/Q/C/Space keys for vertical movement

• Hold right mouse button simultaneously with moving mouse to rotate the
camera around

Notice a menu in the top of the screen with a Windows button. Clicking on the
button will reveal a popup menu consisting of 3 items just as the one in figure A.1.

Figure A.1 Window Popup Menu and Performance window

Clicking on any of the popups will create a separate window somewhere on
the screen. Each window can be closed by clicking on the popup item again or on
the cross on the top right side of the window.
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Performance window as seen in figure A.1 shows the FPS averaged over the
last second and a current frametime in milliseconds rounded up. It can be used
for benchmarking.

Camera Window Settings allows the user to tweak the camera sensitivity,
movement speed and field of view. See it in figure A.2.

Figure A.2 Camera Window

Scene Window shown in figure A.3, is the most complicated UI window we
offer. It enables the user to change between implemented transparency rendering
algorithms using dropdown menu Transparency rendering method. These can
be also changed between using F1 to F6 keys, where

• F1 selects solid only rendering, which renders all objects as fully opaque

• F2 selects depth peeling algorithm

• F3 selects weighted sum algorithm

• F4 selects weighted average algorithm

• F5 selects WBOIT algorithm

• F6 selects MBOIT algorithm
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Figure A.4 Changing background color (left) and adding object to the scene (right)

Figure A.3 Scene Window

It is also possible to change background color of the scene by tinkering with
Background color color picker or directly editing RGB values with sliders next
to it.

Face culling of the geometry in the scene can be turned on/off with checkbox
Face culling under which a few UI items might be available depending on the
type of selected rendering algorithm. Each algorithm offers various UI elements
that offer a certain control over the rendering. For instance, the depth peeling
algorithm gives user a slider through which the number of passes of the algorithm
can be specified.

In the bottom part of the Scene window, a scene tree menu can be seen.
The menu consists of 3 buttons - add, save to file and load from file.

Clicking on the first button gives the user an option to add a certain object
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to the scene. It can be either a model saved on the disc or a particle system of
a certain size. We support .fbx model format. The textures for the given model
should be stored next to it in the same directory.

Next two buttons give the user option to either save the current scene to a
.json file or load it from one. This way a certain scene consisting of multiple
objects can be prepared in advance, saved into a file and loaded during the next
runtime of the application.

If user decides to load a scene during runtime, the current scene is discarded
and instead replaced by a new one. The application loads a scene named ”de-
fault_scene.json” on each startup.

Below the three buttons, a list of objects in the scene is drawn. After click-
ing on a triangle of an appropriate object a set of UI elements giving control over
the specified object is shown as seen in image A.5. Here, the user might change
the position or scale of the object. The color or alpha of the object can be changed
as well. This way objects that are opaque by default can be made transparent.
Clicking on a delete button will destroy the given object.

Figure A.5 Each object can be modified or even deleted
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B Developer Documentation
In this section we will explain the structure of our code, point out the most

interesting files and how is the whole codebase structured.
This section assumes basic knowledge of programming in C++ and under-

standing of how realtime rendering works.

How To Compile And Run

The code was compiled using C++20 version of the language and MSVC
compiler.

To compile and run use the attached Visual Studio 2022 Solution /OIT.sln.

Dependencies and Libraries

For development of the demo application we used the following C++ libraries

• SDL for creation of the window and OpenGL context

• OpenGL rendering API for rendering on GPU

• GLAD for OpenGL function bindings

• ImGui for creating a simple user interface

• Nlohmann Json for parsing JSON files used for scenes

• STB image for loading .png files used as textures

• GLM for 3D linear algebra

• Assimp for loading 3D models in various file formats

• Tiny File Dialogs for cross platform implementations of open/save file
popups

Source code for all of the above mentioned libraries is included in the /depen-
dencies directory. No additional dependencies have to be installed in order to
compile the project on Windows using Visual Studio.

Most Notable Files

All header files are located in directory /source/include/ and their imple-
mentation can be found inside /source/source/.

List of the most interesting files follows. All files are relative to the directory
/source/.

• /source/main.cpp contains the entry point of the program

• /source/demo_app.cpp and /include/demo_app.h contain source code of
the demo application

46



• /include/common.h contains definitions for macros and types used across
the whole program

• /include/camera.h and /source/camera.cpp contain functionality for the
3D world camera

• /include/shaders.h and /source/shaders.cpp contain helper functions
for compiling and linking GPU programs used for rendering

• /include/geometry.h and /source/geometry.cpp contain helper func-
tions for loading of 3D scenes from files

• /include/render_object.h and /source/render_object.cpp contain fu-
nctionality for representing the objects inside the world

Implementation Of Transparency Rendering Algorithms

Source code for individual algorithms is located inside /Source/Include/-
Algorithms/ and /Source/Source/Algorithms/. Each of the implemented al-
gorithms is located inside of it’s own file.

/Source/Include/Algorithms/ and /Source/Source/Algorithms/ contain the
following files:

• common.h and common.cpp contain the implementations of functionality
shared across all algorithms

• depth_peeling.h and depth_peeling.cpp implement the depth peeling
algorithm

• meshkin.h and meshkin.cpp contain implementation of weighted sum algo-
rithm

• moment.h and moment.cpp contain implementation of the MBOIT algorithm

• solid_only.h and solid_only.cpp do not contain any transparency ren-
dering algorithm. Instead, functions inside these files are used for rendering
of the opaque only geometry in the scene

• wboit.h and wboit.cpp contain implementation of WBOIT algorithm

• and weighted_average.h with weighted_average.cpp contain implemen-
tation of the weighted average algorithm

All algorithms are wrapped inside the namespace oit::algorithms and each
one has an individual namespace reserved for itself. For example, the whole
functionality of depth peeling algorithm can be found inside the namespace
oit::algorithms::depth_peeling.

Even though each algorithm works in a slightly different manner, they all share
a similar interface. Each of our algorithms implements the following functions,
which are then called from the main application in a certain circumstances.
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• init is called during the intialization of the application. This function
should initialize all data required for the runtime of the algorithm and
return them to the application

• terminate is a function that should cleanup all resources of the given
algorithm and prepare for application shutdown. It is called just before the
application turns off

• on_screen_resize is called if the size of the application window changes.
Each algorithm should resize it’s framebuffers (if it uses any) to match the
size of the main window

• render_world is called when the given algorithm is requested to render one
frame of a scene

• draw_interface is called during drawing of ImGUI interface. This function
allows each algorithm to define a set of adjustable parameters that can be
visible inside the UI

Scene Representation

For rendering, we use a structure of data named render object which re-
sides inside /source/include/render_object.h and /source/source/render_-
object.cpp. It consists of OpenGL handles for vertex buffer, index buffer and
texture and size, position and rotation.

Since each render object can have only one texture, for rendering of a scene
with multiple textures we have render scenes, which are each a set of render
objects with additional position, rotation and scaling. The rendered world then
consists of multiple render scenes.

We group objects into render scenes so that positioning a part of a scene or
removing it is not difficult for the user. For instance, if the user wants to remove a
particle cloud they created before then it is not necessary to remove each particle
individually. Instead, only the render scene which contains all the particles is
removed.

Render scenes are defined inside the same files as render objects.

Shaders

Shaders written in the GLSL language are located inside the /shaders/ folder.
Each of the transparency rendering algorithms defines which shaders it uses

inside of its header file.
For instance, the depth peeling algorithm requires following shaders (/source/-

include/depth_peeling.h):

Listing B.1 Example of shaders used by algorithm
constexpr cstr SOLID_SHADERS[] = {"shaders/solid.vert", "shaders/solid.frag"};
constexpr cstr PEEL_SHADERS [] = {"shaders/solid.vert", "shaders/peel.frag"};
constexpr cstr MERGE_SHADERS[] = {"shaders/full_screen_quad.vert",

"shaders/peel_merge.frag"};
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A helper functionality for compiling and linking shaders can be found inside
the /source/include/shaders.h and /source/source/shaders.h.

Serialization

Some premade scenes are serialized to .json format in directory /scenes/.
(De)serialized scenes have the following json structure. The comments following

after ”//” are not a valid JSON and serve only as a description of the format.

Listing B.2 Deserialized scene example
{

"back": [
0.002739322604611516, // color of the background (R, G, B), normalized
0.019094884395599365, // in interval [0, 1]
0.5588235259056091

],
// list of objects in the scene
"objects": [

{
// color of the object
"color_override": [

0.0,
1.0,
0.0,
1.0

],
"file_path": "models/sponza/Sponza.fbx", // source file
// position of the object
"position": [

0.0,
0.0,
0.0

],
// rotation of the object
"rotation": [

0.0,
-0.0,
0.0

],
// scale of the object
"scale": 0.009999999776482582,
// mesh is an object loaded from file
"type": "mesh"

},
{

"color_override": [
0.9177013039588928,
0.9411764740943909,
0.14302192628383636,
1.0

],
// number of particles
"count": 16,
"position": [

0.0,
0.0,
0.0
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],
"rotation": [

0.0,
-0.0,
0.0

],
"scale": 1.0,
// particle is a type of an object that is not loaded,
// but instead generated
"type": "particle"

}
]

}
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