
BACHELOR THESIS

Jakub David

Energy optimization in a family house

Department of Theoretical Computer Science and Mathematical Logic

Supervisor of the bachelor thesis: RNDr. Jiří Fink, Ph.D.
Study programme: Computer Science

Prague 2024

I declare that I carried out this bachelor thesis on my own, and only with the
cited sources, literature and other professional sources. I understand that my
work relates to the rights and obligations under the Act No. 121/2000 Sb., the
Copyright Act, as amended, in particular the fact that the Charles University has
the right to conclude a license agreement on the use of this work as a school work
pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

I would like to thank my supervisor RNDr. Jiří Fink, Ph.D. for his guidance and
for patiently answering all of my questions.

Title: Energy optimization in a family house

Author: Jakub David

Department: Department of Theoretical Computer Science and Mathematical
Logic

Supervisor: RNDr. Jiří Fink, Ph.D., Department of Theoretical Computer Science
and Mathematical Logic

Abstract: The goal of this thesis is to compare various optimization algorithms
for optimizing energy usage in residential households. We consider a model of a
household with heat and power cogeneration, fixed electricity and domestic hot
water consumption and devices with controllable start of their operation. For this
problem, we use a mixed-integer linear programming solver, and we implemented
local search, evolutionary algorithm and particle swarm optimization. We compare
these algorithms on data measured from multiple different households.

Keywords: energy optimization, MILP, local search, nature inspired algorithms

Název práce: Optimalizace energie v rodinném domě

Autor: Jakub David

Katedra: Katedra teoretické informatiky a matematické logiky

Vedoucí bakalářské práce: RNDr. Jiří Fink, Ph.D., Katedra teoretické informatiky
a matematické logiky

Abstrakt: Cílem této práce je porovnat různé optimalizační algoritmy pro op-
timalizaci spotřeby energie v domácnostech. Uvažujeme model domácnosti s
kogenerací tepla a elektřiny, fixní spotřebou elektřiny a horké vody a se zařízenímy
s ovladatelným začátkem provozu. K řešení tohoto problému používáme řešič
smíšeně celočíselných lineárních úloh a implementovali jsme lokální prohledávání,
evoluční algoritmus a optimalizaci hejnem částic. Tyto algoritmy provnáváme na
datech naměřených v různých domácnostech.

Klíčová slova: optimalizace energie, MILP, lokální prohledávání, přírodou in-
spirované algoritmy

Contents

Introduction 7

1 Problem statement 8
1.1 Mathematical model . 8

2 Input Data 11
2.1 Description of used data . 11
2.2 Data preprocessing . 11
2.3 Input data structure . 12
2.4 Data Split . 14
2.5 Overview of the Data . 14

3 Mixed-integer linear programming 17
3.1 MILP Model . 17

4 Solution Representation and Fitness 18
4.1 Solution Representation . 18

4.1.1 Complete Representation 18
4.1.2 Partial Representation . 19

4.2 Fitness . 19
4.2.1 Penalty . 19
4.2.2 Complete Representation 20
4.2.3 Partial Representation . 20

4.3 Correction of infeasible solutions 21

5 Local Search 23
5.1 Implementation . 23

5.1.1 Operators . 23
5.1.2 Initialization . 24

6 Evolutionary Algorithm 25
6.1 Initialization . 25
6.2 Parental Selection . 25
6.3 Crossover . 26
6.4 Mutations . 26
6.5 Environmental Selection . 26

7 Particle Swarm Optimization 27
7.1 Representation . 27
7.2 Fitness . 28
7.3 Initialization . 28

8 Hyperparameter Selection 29
8.1 Local Search . 29
8.2 Evolutionary Algorithm . 31
8.3 PSO . 34

5

9 Comparison of Algorithms 36

Conclusion 39

Bibliography 40

List of Figures 42

List of Tables 43

List of Abbreviations 44

A Attachments 45
A.1 Attached Files . 45
A.2 User Documentation . 45
A.3 Programmer Documentation . 46

6

Introduction
Energy consumption in residential households makes a significant part of

carbon dioxide emission [1]. In this thesis, we compare different algorithms for
optimizing the energy usage in households. The objective of these algorithms is
to minimize the cost of energies. Minimizing the cost is easier than minimizing
peaks in the usage of energies [2]. Furthermore, a local heating problem can be
solved using a greedy algorithm [3], but we consider a more complex model of a
household.

We made a model of a household that we optimize the energy usage in. A
house, in our model, is connected to the grid and is equipped with a Combined
Heat and Power unit (mCHP). Furthermore, it has fixed electricity and hot water
usage. In addition to the fixed electricity usage, there are electrical appliances such
as a dishwasher or a washing machine. The start of operation of these appliances
is set by the algorithms. The model is described in detail in Chapter 1.

In Chapter 2 we discuss data used to test the algorithms. We describe how we
obtained the data, and how we processed it to the form used by the algorithms.

One of the approaches we use to solve the problem is mixed integer linear
programming (MILP), described in Chapter 3. We reformulated the model of
a household to a form appropriate for MILP and employed a MILP solver to
optimize the model.

Next, we implemented various optimization algorithms ourselves. These
algorithms use two different representations of a solution defined in Chapter 4.
The first representation is quite straightforward modification of the model from
Chapter 1. However, in the second representation, only a part of the solution is
optimized by these algorithms. When these solutions need to be evaluated, we
find the rest of the solution with a linear programming solver. The algorithms
we implemented are local search (Chapter 5), evolutionary algorithm (Chapter 6)
and particle swarm optimization (Chapter 7). First, we describe these algorithms.
Then follows Chapter 8, where we evaluate different hyperparameters for these
algorithms, and select the best ones. Finally, we evaluate these optimization
approaches and present their comparison in Chapter 9.

In Attachments is a description of attached files (Attachment A.1), how to
run the experiments conducted in this thesis (Attachment A.2) and details about
the implementation of algorithms are described in Attachment A.3.

7

1 Problem statement
We consider a household equipped with a mCHP connected to a buffer for hot

water and a battery. The mCHP consumes natural gas to simultaneously heat
water and generate electricity. Furthermore, the household is connected to the
grid to buy electricity.

Water heated by mCHP is for domestic hot water (DHW) consumption. This
DHW consumption is uncontrollable, and we have a prediction of it for the whole
planning period. We call this fixed hot water demand. Similarly, we have fixed
electricity demand. It is electricity used by devices where we can not control when
they are turned on.

However, in addition to that, we have time-shiftable devices. These devices
represent electronic household appliances such as a washing machine or a dish-
washer. Their start can be scheduled and every device has its own operation
period. The operation period is a time window when the device can be started.

All the devices have to run exactly once during the planning period. In order
to start one device multiple times, it has to be added as multiple devices with
different, not overlapping, operation periods.

1.1 Mathematical model
We are using a discrete time model, so the planning period is split into T

discrete time intervals of the same length. This gives us a set of time intervals
T = {1, . . . , T}. We use 5 minute long time intervals.

In every time interval t ∈ T is fixed electricity demand De
t and fixed hot water

demand Dh
t . Also, we have a set of time-shiftable devices D. Each of these devices

d ∈ D has an electricity consumption profile Dd
i for i ∈ {1, . . . , ld}, where ld is the

length of the profile. Moreover, it has a start of its operation period Od
s and an

end of its operation period Od
e . Note that Od

e can not be greater than T − ld + 1.
If the mCHP is running, the amount of natural gas used in one time interval

is G, H denotes the produced heat and E is the generated electricity. Otherwise,
it uses and produces nothing. The buffer connected to the mCHP has a state of
charge sh

t for every time interval t ∈ T . This is the amount of heat stored in the
buffer. Additionally, the buffer has an upper bound for the state of charge Uh

and the lower bound is naturally 0. At the start of the planning period, the state
of charge of the buffer has initial value Ih.

The battery serves as a buffer for electricity. For every time interval t ∈ T , se
t

is the state of charge of the battery at the beginning of the interval. The state
of charge has an initial value Ie and the capacity of the battery is limited by an
upper bound U e and the lower bound is 0. How much we can charge the battery
in one time interval is also limited by an upper bound M e

c and discharging is
limited by an upper bound M e

d . Both of the lower bounds are 0.
The price of electricity can change throughout the day, so we have different

price P e
t for each time interval t ∈ T . For natural gas, on the other hand, we have

only one price P g.
Next, we have variables to control our model. Let x−

t be a variable denoting the
amount of electricity used to charge the battery in time interval t ∈ T . Similarly,

8

we declare a variable x+
t to denote the electricity provided by the battery in time

interval t ∈ T . Let xg
t be a variable denoting the amount of electricity used from

the grid in time interval t ∈ T . Let yt be a binary variable that is true, if the
mCHP is turned on in time interval t ∈ T , and false otherwise. Let zd be a
variable that denotes in which time interval time-shiftable device d ∈ D starts. To
simplify notation later on, we denote the electricity demand of all time-shiftable
devices as

ds
t =

∑︂
d∈D
zd≤t

t<zd+ld

Dd
t−zd+1.

We also consider losses in this model. Storing electricity in the battery has loss
Le

s. In every time interval t ∈ T the amount of stored energy lost is Le
ss

e
t . The

heat buffer also has storage loss Lh
s , which works in the same way. Charging and

discharging the battery have losses Le
c and Le

d respectively. Le
cx

− is the amount of
electricity lost during charging and when discharging additional Le

dx
+ is subtracted

from the state of charge of the battery.
The variables and the states of the buffers are constrained by the following

equations.

xg
t + ytE + x+

t = De
t + ds

t + x−
t for t ∈ T (1.1)

se
t+1 = (1 − Le

s)se
t + x−

t (1 − Le
c) − x+

t (1 + Le
d) for t ∈ T (1.2)

sh
t+1 = (1 − Lh

s)sh
t −Dh

t + ytH for t ∈ T (1.3)
se

1 = Ie (1.4)
sh

1 = Ih (1.5)
0 ≤ se

t ≤ U e for t ∈ T (1.6)
0 ≤ sh

t ≤ Uh for t ∈ T (1.7)
0 ≤ x+

t ≤ M e
d for t ∈ T (1.8)

0 ≤ x−
t ≤ M e

c for t ∈ T (1.9)
0 ≤ xg

t for t ∈ T (1.10)
yt ∈ {0, 1} for t ∈ T (1.11)

zd ∈ {Od
s , . . . , O

d
e} for d ∈ D (1.12)

Equation (1.1) ensures that electricity production equals electricity consump-
tion. On the left-hand side of the equation are all the sources of electricity: the
electricity used from the grid, electricity produced by the mCHP and electricity
provided by the battery. On the right-hand side is the consumption of electricity:
fixed electricity demand, the electricity demand of all the time-shiftable devices
and the electricity used to charge the battery.

Equation (1.2) is the update of the state of charge of the battery. The term
(1 − Le

s)se
t is the state of charge from the previous time interval after the energy

storage loss is accounted for and terms x−
t (1−Le

c) and x+
t (1+Le

d) are the charging
and discharging of the battery respectively.

The update of the state of charge of the heat buffer is (1.3). It has the term
to account for the heat storage loss as well. However, the rest of the equation is
different because we directly use hot water stored in the buffer to cover the hot

9

water demand, and we directly transfer the heated water from the mCHP to the
buffer.

To initialize the states of charge of the buffers we have (1.4) and (1.5). The
remaining equations (1.6) through (1.12) set the domains of our variables.

As the objective, we minimize the price of purchased natural gas and electricity.
This can be calculated as the sum

∑︂
t∈T

(xg
tP

e
t + ytGP

g) . (1.13)

10

2 Input Data
In this chapter we describe the sources of our data in Section 2.1 and their

preprocessing in Section 2.2. Then, in Section 2.3 we explain how the data is
stored in JSON file format. In Section 2.4 is described how we use the data in
this thesis, and in Section 2.5 is a visualization of the data.

2.1 Description of used data
For electricity demand, we use a dataset containing a measured time series from

several small businesses and residential households [4]. The data in this dataset
was originally collected from a trial site in Konstanz (Germany) from October 2013
to December 2016 during a project called CoSSMic. The records for residential
buildings include electricity imported from a grid, electricity consumption of
various devices and photovoltaic energy generation (only for some households).
These measurements were done in 1 minute long intervals.

Domestic hot water consumption comes from a dataset with profiles for different
types of consumers [5]. This data is based on measurements from households
in Québec (Canada) that were conducted between November 2006 and April
2007. From this raw data 12 different DHW draw profiles were created. There
are profiles for average, median, sparing and profligate consumers, and each of
these types further differs in temporal usage patterns. All of these profiles have
measurements in 5 minute long time intervals.

We use day-ahead market prices for electricity and intra-day market prices
for natural gas, both from the Czech Republic [6]. Electricity prices are available
as an average cost of one MWh in Euros within a one-hour long period. Prices
of natural gas, on the other hand, are only available as an average price of all
transactions during one day, measured in Eur/MWh. All the prices used are from
2023

For the parameters of mCHP, we used a specification sheet for reference [7].
We also use a specification sheet for the heat buffer [8]. This specification sheet
belongs to electric water heaters; however, we only need to know what sizes of
hot water buffers are used in households and their losses.

Similarly, we used multiple specification sheets of battery systems for residential
use [9, 10, 11, 12]. Although these batteries are designed to be used in conjunction
with solar panels, it suffices as a reference to obtain the necessary values. Self-
discharge of these batteries is 0.1–0.3% per day [13].

2.2 Data preprocessing
Here is how we process the data.
From the dataset for electricity demand, we use the data from four different

residential buildings. Unfortunately, many measurements in this dataset are
linearly interpolated, because these measurements were not recorded due to
connection issues. Therefore, we discarded all days containing those records.
Furthermore, the data was recorded as measurements from an electricity meter, so

11

we changed it to electricity used during the individual time intervals. Finally, we
resampled the data from 1 min intervals to 5 min intervals used in our algorithms.

As electricity demand, we use a field called grid import and fields containing
dishwasher and washing machine power consumption for device profiles. The
power consumption of these devices has to be subtracted from the electricity
demand to have the profiles of time-shiftable devices and electricity demand
separate. Because of measuring errors, this causes the electricity demand to be
negative in some time intervals, so we set the electricity demand to 0 in those
time intervals. Then the power consumption of the devices is split into continuous
segments to create multiple profiles for each device.

To create the operation periods for the time-shiftable devices, we use time
intervals corresponding to the beginnings of the profiles in the original dataset.
Based on these time intervals, the operation periods are generated randomly, and
are at most 6 hours long. Also, the operation periods are shortened if necessary to
prevent operation of a device outside the planning period and overlap of profiles
belonging to one device in the original dataset.

The data for DHW consumption only requires to be converted from liters to
kWh. In this conversion, we assume that the water is heated from 15 °C to 65 °C.

Electricity prices also only need to be converted from MWh to kWh, and all
time intervals in each hour have assigned the same price.

The particular mCHP in the specification sheet has modulating output; how-
ever, our model does not support that. Consequently, we randomly assign each
instance of the input data one fixed mode. Moreover, its maximum output is
quite high for one household, so we limited thermal output to 5 kW, and natural
gas consumption and electrical output proportionally to it.

From the specification sheets of the batteries, we obtained capacity and
maximum charge and discharge power. For battery charging and discharging loss,
we took roundtrip efficiency and split it evenly between the two.

The parameters of batteries and heat buffers are randomized too. Each
instance of input data gets randomly assigned parameters from one battery
(capacity, maximum charge and discharge power, charging and discharging loss)
and parameters of one hot water buffer (capacity and storage loss). From the
specification sheet of electric heaters, we only use the 200 and 300 liter variants.

The initial state of the battery is a random value from the interval 0 to one
fifth of its capacity. The initial state of the heat buffer is also random. However,
its minimum value is Dh

1 +Dh
2 +Dh

3 . Otherwise, the mCHP might not be able
to generate enough heat in the beginning to cover the hot water demand. The
maximum value of the initial state is likewise one fifth of its capacity.

2.3 Input data structure
We store each instance of input data in a separate JSON file. These JSON

files have the following properties:

• time_interval_count: integer, number of time intervals in the planning
period

• electricity_prices: array of floats, prices of electricity in Eur/kWh for
each time interval

12

• gas_price: float, price of natural gas in Eur/kWh for the whole planning
period

• electricity_demand: array of floats, electricity demand in kWh for every
time interval

• water_demand: array of floats, DHW consumption in kWh corresponding
to all time intervals

• mCHP: object, parameters of the mCHP:

– gas_consumption: float, natural gas required to run the mCHP for a
time interval in kWh

– electricity_production: float, electricity produced by the mCHP
during one time interval in kWh

– heat_production: float, heat produced by the mCHP during one time
interval in kWh

• electricity_buffer: object, parameters of the battery:

– capacity: float, maximum capacity of the battery in kWh
– initial_state: float, initial capacity of the battery in kWh
– max_input: float, maximum amount of power in kWh, that can be

used to charge the battery during one time interval
– max_output: float, maximum amount of power in kWh discharged

during one time interval
– input_loss: float, energy lost during charging
– output_loss: float, energy lost during discharging
– storage_loss: float, energy lost during one time interval

• heat_buffer: object, parameters of the hot water buffer:

– capacity: float, maximum capacity in kWh
– initial_state: float, initial capacity in kWh
– storage_loss: float, energy lost during one time interval

• devices: array of objects, time-shiftable devices, each device has the fol-
lowing properties:

– name: string, this property is not used by the algorithms; however, it
is useful for identifying the device profiles

– profile: array of floats, power consumption profile of the device in
kWh

– operation_period_start: integer, first time interval when the device
can be started

– operation_period_end: integer, last time interval when the device
can be started

13

Note that the length of arrays electricity_prices, electricity_demand
and water_demand has to be equal to time_interval_count. The number of
devices is unlimited, and it can be zero.

2.4 Data Split
Our input data are divided into a development set and a test set. The

development set is used to select hyperparameters for our algorithms and the test
set is used for the final comparison of the algorithms. The difference between these
sets is that they have electricity consumption and DHW demand from different
households, and use prices from different days.

Each of these sets contains 40 files in total. We have files with 1 day, 2 days, 5
days and 10 days long operations and there are 10 files of each length.

2.5 Overview of the Data
To get an idea of what the data looks like, we have an example in this section.

The following figures are graphs of electricity demand (Figure 2.1) and DHW
demand (Figure 2.2), electricity prices (Figure 2.3) and profiles of time-shiftable
devices from one data file in the development set. Figure 2.4 shows power
consumption profile of a dishwasher and Figure 2.5 shows a profile of a washing
machine.

Figure 2.1 Electricity demand

14

Figure 2.2 DHW demand

Figure 2.3 Electricity prices

15

Figure 2.4 Electricity consumption profile of a dishwasher

Figure 2.5 Electricity consumption profile of a washing machine

16

3 Mixed-integer linear
programming

Linear programming (LP) is an approach for solving optimization problems.
A problem in linear programming is called linear program. A linear program is
composed of real variables, an objective function and constraints. Since this is
linear programming, the objective function has to be linear and the constraints are
linear equalities and inequalities. To solve a linear program means to find values
of the variables that satisfy the given constraints and maximize or, depending on
the problem, minimize the objective function.

In what we call linear programming, we use real variables. The method that
uses integer variables is called integer programming. We have real variables and
integer variables, so we need to use a method that allows both types of variables.
This method is called mixed-integer linear programming (MILP).

Linear programs can be solved in polynomial time. However, integer program-
ming is an NP-hard problem, and so is MILP [14].

3.1 MILP Model
To use MILP to solve our problem, we need to make a few changes to the

model defined in Section 1.1. Instead of one variable zd for time-shiftable device
d ∈ D, we define variables zd,t where t ∈ {Od

s , . . . , O
d
e}. Variable zd,t is 1, if device

d starts in time interval t, and 0 otherwise. This definition requires that for every
device d ∈ D exactly one variable zd,t has to be 1, and the rest of them have to
be 0, so (1.12) is replaced by the following two equations:

zd,t ∈ {0, 1} for d ∈ D, t ∈ {Od
s , . . . , O

d
e} (3.1)

Od
e∑︂

t=Od
s

zd,t = 1 for d ∈ D (3.2)

Equation (3.1) is the domain of the variables and (3.2) ensures that the device
starts in exactly one time interval.

We can keep all the constraints (1.1) through (1.11). However, the definition of
term ds

t in equation (1.1) has to be changed because its value depends on variables
zd. The new definition is

ds
t =

∑︂
d∈D

δd
s,t

where δd
s,t is a profile of device d at time interval t, if the device starts in time

interval s:

δd
s,t =

⎧⎨⎩Dd
t−s+1 if t ≥ s ∧ t < s+ ld

0 otherwise

17

4 Solution Representation and
Fitness

In this chapter, we discuss the representation of a solution used in local search,
evolutionary algorithm and particle swarm optimization. In Section 4.1 we define
two different representations, and in Section 4.2 is definition of their fitness
functions. Finally, in section 4.3 we describe correction of infeasible solutions.

4.1 Solution Representation
A solution for our algorithms could be represented as it is defined in Section

1.1. However, to help the algorithms to find a better solution we propose two
different representations.

In Subsection 4.1.1 we describe the first representation, which we named
complete representation. The second representation is in Subsection 4.1.2, and
we call it partial representation. Solution in complete representation is called
complete solution and solution in partial representation is called partial solution.

4.1.1 Complete Representation
A complete solution uses only variables xt, yt and zd. We explain variable xt

and how it changes calculations in our model.
Instead of variables x−

t and x+
t , we define variables xt for each time interval

t ∈ T . If the battery is being charged in time interval t, then xt = x−
t ; otherwise

xt = −x+
t .

This representation requires us to change (1.1) and (1.2), and add a constraint
for the variable domain. First, let’s define a function to apply charging or
discharging loss on variable xt:

Loss(x) =
⎧⎨⎩x(1 + Le

d) if x < 0
x(1 − Le

c) otherwise

Now we can define the constraints as follows:

xg
t + ytE = De

t + ds
t + xt for t ∈ T (4.1)

se
t+1 = (1 − Le

s)se
t + Loss(xt) for t ∈ T (4.2)

−M e
d ≤ xt ≤ M e

c for t ∈ T (4.3)

The rest of the equations remain unchanged; however, equations (1.8) and
(1.9) are no longer necessary.

Furthermore, the variables xg
t are not a part of our solution. They can be

simply calculated using (4.1) from the rest of the variables:

xg
t = De

t + ds
t + xt − ytE (4.4)

18

4.1.2 Partial Representation
This representation is inspired by incomplete solution representation in [15].
A partial solution only stores values of variables controlling the mCHP and

time-shiftable device starts. Since the variables for charging and discharging the
battery are continuous, we use linear programming to find their optimal values
given the values of variables for mCHP and time-shiftable devices.

The linear program has variables x−
t , x+

t and xg
t for t ∈ T . The objective

function and constraints do not change from the definition in Section 1.1. However,
we only need to keep (1.1), (1.2), (1.4), (1.6), (1.8), (1.9) and (1.10). Moreover,
yt and ds

t in (1.1) are considered as constants.

4.2 Fitness
The objective function defined in Section 1.1 is not enough for evaluating

solutions because it works only on valid solutions. However, our algorithms also
work with invalid solutions, so we need to define a fitness function that also
calculates how close an infeasible solution is to being feasible.

In Subsection 4.2.1 we describe a penalty for infeasible solutions, and we define
the fitness function for complete and partial solutions in Subsection 4.2.2 and
Subsection 4.2.3 respectively.

4.2.1 Penalty
The algorithms produce solutions with variables that have values inside their

valid ranges. Therefore, we only need penalty for states se
t , sh

t and variables xg
t ,

because they are not included in the solutions.
To calculate the penalties we have the following functions:

ψs(x, u) =

⎧⎪⎪⎨⎪⎪⎩
|x| if x < 0
x− u if x > u

0 otherwise

ψg(x) =
⎧⎨⎩|x| if x < 0

0 otherwise

The function ψs(x, u) is a penalty for state x with upper bound u, and ψg(x) is
used for variables xg

t .
Furthermore, we define penalties for all variables in a solution:

Ψe =
∑︂
t∈T

ψs(se
t , U

e)

Ψh =
∑︂
t∈T

ψs(sh
t , U

h)

Ψg =
∑︂
t∈T

ψg(xg
t)

Ψe is a penalty for all the battery states, Ψh is a penalty for all the heat buffer
states and Ψg is a penalty for all variables xg

t .

19

If variables xt, yt and zd of a solution have valid values and penalties Ψh, Ψe

and Ψg are 0, then the solution is valid, because (1.1) is satisfied by assigning
values to variables xg

t by (4.4).

4.2.2 Complete Representation
The fitness function of a complete solution written in pseudocode can be seen

in Program 1.
We first calculate the penalty for the solution. If the penalty is greater

than tolerance, it is multiplied by a large constant to ensure its fitness is higher
than fitness of a valid solution. The tolerance is there because of floating point
arithmetic errors and because measurements in reality are not accurate anyway.

Otherwise, we return the objective calculated by (1.13).

Program 1 Fitness function of a complete solution
function fitness(solution):

penalty = Ψh + Ψe + Ψg

if penalty > 10−4:
return penalty · 107

return Objective(solution)

4.2.3 Partial Representation
The fitness function of a partial solution written in pseudocode can be seen in

Program 2.
Fitness for partial solutions is similar to complete solutions. Except there is

only penalty for states sh
t , and the objective is calculated by linear programming.

If an optimal solution for the linear program cannot be found, the fitness function
is ∞.

Program 2 Fitness function of a partial solution
function fitness(solution):

penalty = Ψh

if penalty > 10−4:
return penalty · 107

result = SolveLP(solution)

if result is optimal:
return Objective(result)

return ∞

20

4.3 Correction of infeasible solutions
If we have an infeasible solution, it either has overflowing or underflowing

buffers or negative usage of electricity from the grid.
The correction algorithm for hot water buffer is in Program 3. Overflow is

simple to fix, but more than one mCHP variable might need to be changed to fix
underflow.

The correction of battery and grid variables is done simultaneously, as it can
be seen in Program 4. In this case, it is more complicated because of the battery
input and output losses, so we do the correction only approximately. Because of
this, the correction does not guarantee to make the solution feasible.

Program 3 Correction of hot water buffer
s = Ih

for t = 1, . . . , T:
s = update_state(s)
if s < −10−4:

s += cover_water_demand(t, -s)

if s > Uh + 10−4:
yt = 0
s -= H

function cover_water_demand(t, amount):
heat_generated = 0
for i = t, . . . , 1:

if heat_generated >= amount:
return heat_generated

if yi == 0:
yi = 1
heat_generated += H(1 - Lh

s)t − i

return heat_generated

21

Program 4 Correction of battery
s = Ie

previous_s = s
for t = 1, . . . , T:

s = update_state(s)

if s < 0:
xt -= s
xg

t -= s
s = 0

if xg
t < 0:
xt -= xg

t

xg
t = 0

s = update_state(previous_s)

if s > U e:
amount = (s - U e)(1 + Le

d)
fix_battery(t, amount)
s = U e

previous_s = s

function fix_battery(t, amount):
for i = t, . . . , 1:

if amount <= 0:
return

a = min(xg
t , amount)

xt -= a
xg

t -= a
amount -= a

amount = amount(1 - Le
s)

22

5 Local Search
Local search algorithms are characterized by the fact that they only remember

the current state they are in, and they consider only their neighboring states to
improve the solution. For optimization problems, these algorithms use objective
function to evaluate how good a state is.

We use local search algorithm called hill-climbing. It is a greedy algorithm,
that is iteratively improving a solution while the objective function is increasing
(for maximization problems) or decreasing (for minimization problems).

More about local search can be found in [16].

5.1 Implementation
In this section, we discuss our implementation of the hill-climbing algorithm.
To give a high-level overview how we implemented the hill-climbing algorithm,

we first initialize the solution. The initialization is described in Subsection
5.1.2. Then until a termination condition is met, we apply operators described
in Subsection 5.1.1. We terminate the algorithm after a specified time. These
operators try to improve the solution. A list of operators is passed to the algorithm
as an argument, and in every iteration all the operators are applied in the given
order.

We use both complete solutions and partial solutions defined in Section 4.1.
For evaluating solutions we use fitness function from Section 4.2.

5.1.1 Operators
To make improvements to the solution, we apply various operations on it.

Every operator can make multiple changes to a solution in one call, so some of our
operators have a boolean parameter only_best. If this parameter is set to true,
only the best change made by the operator is applied to the solution; otherwise,
we apply the changes that improve the solution immediately, and the following
changes are made to the altered solution. If none of the changes improves the
solution, it remains unchanged.

We have the following operators:
• ImproveBattery(n,only_best) This operator randomly selects two time

intervals i and j. For interval i it selects value a = xi ·r, where r is a random
number from uniform distribution U(0, 1). For interval j it uses b = a · l,
where l are losses for charging the battery in interval i, storing the electricity
in the battery until interval j and then discharging it; or vice-versa if j < i.
Finally, two variables are changed by formulas xi := xi + a and xj := xj − b.
This is repeated n times.

• ImproveMchpToggle(only_best) This operator tries the opposite value for
every variable of the mCHP yt.

• ImproveMchpSwap(only_best) If any two mCHP variables yt belonging to
time intervals t and t+ 1 have opposite values, this operator swaps values
of those variables.

23

• ImproveMchpExtend(only_best) It tries to extend every consecutive se-
quence of time intervals, in which the mCHP is turned on.

• ImproveMchpShorten(only_best) It tries to shorten every consecutive se-
quence of time intervals, in which the mCHP is turned on.

• ImproveDeviceStartsAll This operator chooses the best starting time for
every time-shiftable device. All the time intervals in the device’s operation
period are considered. The values are tried separately for each time-shiftable
device.

• ImproveDeviceStartsShift This operator shifts the starting time of every
time-shiftable device by one time interval forward or backward, or leaves
it set to the original value; whichever is the best. The values are tried
separately for each time-shiftable device.

Some of these operators actually do a subset of operations of other operators.
For example, every value tried by ImproveDeviceStartsShift is also tried by
ImproveDeviceStartsAll. However, ImproveDeviceStartsShift requires fewer
evaluations of the fitness function, which could be an advantage.

5.1.2 Initialization
To initialize the solution, we set the variables of time-shiftable devices to the

middle of their operation periods. The mCHP is turned on only immediately
before the hot water is needed. The electricity produced by mCHP, which is not
consumed by fixed electricity demand, is used to charge the battery. The electricity
from the battery is used in the earliest time intervals, when the mCHP does not
cover the fixed electricity demand. The power consumption of time-shiftable
devices is for battery initialization ignored for higher flexibility of the solution.
We call this the greedy initialization.

An improved variant of initialization for complete solutions, which we also use,
is initializing a partial solution and then making a complete solution from it. This
essentially initializes the battery with linear programming.

24

6 Evolutionary Algorithm
Evolutionary algorithms are inspired by nature, and how organisms evolve and

adapt to their environment. An evolutionary algorithm imitates natural selection.
Only the individuals adapted to the environment survive and have offsprings,
propagating better genetic information to the next generations.

To solve an optimization problem, evolutionary algorithm simulates a popula-
tion of individuals. These individuals are initialized randomly (Section 6.1), and
a fitness function is used to evaluate how good these individuals are. It selects
individuals from the population for reproduction based on their fitness. This is
parental selection (Section 6.2).

Then, these individuals are used to create their offsprings. Two parents are
merged to create one or two offsprings, so each offspring has genetic information
from both of his parents. This part is called recombination or crossover (Section
6.3).

Next, the offsprings are mutated (Section 6.4). Each information contained in
the individual has a chance to change to a different value.

Finally, individuals are selected for the next generation (Section 6.5). It is
called the environmental selection, and it can also use fitness to select better
individuals.

This is repeated from parental selection to environment selection, until a
termination condition is met. We terminate the algorithm after a specified time.

Both complete solutions and partial solutions defined in Section 4.1 are used
to represent an individual. To evaluate an individual, we use the fitness functions
defined in Section 4.2.

The theory in this chapter is written according to [17].

6.1 Initialization
The initialization of individuals is random. Generating values for battery

variables is done by the continuous uniform probability distribution. The lower
and upper bounds are −M e

d and M e
c respectively, multiplied by coefficients clb

battery
and cub

battery given as parameters. The variables for mCHP are set to 1 with a
probability also given as a parameter, and 0 otherwise. The starts of time-shiftable
devices are initialized by the discrete uniform probability distribution with time
intervals from their operation periods.

To initialize a partial solution, only the initialization for mCHP variables and
time-shiftable device start variables are used.

We also use the greedy initialization from local search defined in Subsection
5.1.2.

6.2 Parental Selection
For the parental selection, we use tournament selection. In tournament selec-

tion, every time we are selecting an individual, n individuals from the population

25

are randomly chosen, and the individual with the highest fitness among the chosen
individuals is selected. We use tournament selection with n = 2.

6.3 Crossover
We use one point crossover for an array containing variables xt and yt. One

point crossover randomly selects a point i from discrete uniform distribution
U(1, T). Then, it creates two offsprings. One receives variables xt and yt with t
from 1 to i from the first parent, and variables xt and yt with t from i+ 1 to T
from the second parent. The other one receives the complement of those variables.

We choose to use the same point for both xt and yt in complete solutions
because two different points would probably break the solutions more often. Partial
solutions do the one point crossover only for variables yt.

Every individual variable zd is chosen separately at random from the parents
and given to one offspring. The other offspring receives the other variable.

Finally, we do the correction of variables xt and yt described in Section 4.3 to
help the algorithm find feasible solutions.

This crossover is applied to two parents with probability Pcross. If it is not
applied, two offsprings are created by copying the parents.

6.4 Mutations
To mutate an individual, we add to variables xt a random value from normal

distribution N (0, σbattery) and clip the variable, if its value is outside its domain.
Every variable yt is changed to the opposite value with probability cmCHP/T .
Variables zd are also mutated by adding value from N (0, σdevices). However, they
need to be rounded to their nearest valid value. Variables σbattery, σdevices and
cmCHP are parameters of the mutation.

Every epoch each individual is mutated with probability Pmut.

6.5 Environmental Selection
In environmental selection we use elitism. Elitism selects k best parents for

the next generation. The rest of the new generation are new offsprings. This
ensures that we do not lose our best solutions found so far.

26

7 Particle Swarm Optimization
Particle swarm optimization (PSO) was introduced by Kennedy and Eberhart

in 1995 [18], and the description in this chapter is according to [17].
PSO is a variation of an evolutionary algorithm. In this case, a population

of individuals is a swarm of particles. A particle is a pair of real vectors (p,v),
where p is a position of the particle and v is a velocity of the particle. Every
particle also remembers their personal best location pbest, a location where their
fitness has been so far the best. The global best position gbest is also recorded.
This is the position with the best fitness among all the particles.

The process of PSO can be imagined as particles moving about a space, each
with its own velocity, gravitating towards their pbest and gbest. The particles
start at random positions with random velocities. In every iteration of the PSO
algorithm the positions and velocities of all the particles are updated by the
following equations:

v = ωv + ϕ1r1 ⊙ (pbest − p) + ϕ2r2 ⊙ (gbest − p) (7.1)
p = p + v (7.2)

Equation (7.1) is the update of velocity. The symbol ⊙ in this equation is
element-wise multiplication of vectors. Vectors r1 and r2 have values drawn from
uniform distribution U(0, 1), ϕ1 and ϕ2 are learning rates controlling how big
the updates are, and ω is a parameter called inertia. The terms pbest − p and
gbest − p give directions toward the personal and global bests respectively. The
position is updated by adding the velocity to it in (7.2).

After a specified time, we terminate the algorithm. The PSO algorithm in
pseudocode is in Program 5.

7.1 Representation
To represent particles, we use complete solutions and partial solutions described

in Section 4.1. However, PSO only uses real variables, so a particle, instead of
variables yt and zd, has real variables ŷt and ẑd with the following domains:

0 ≤ ŷt ≤ 1 for t ∈ T (7.3)
Od

s ≤ ẑd ≤ Od
e for d ∈ D (7.4)

Because the domains of variables are limited, the values of variables are clipped
after adding the velocity. We call a particle corresponding to a complete solution
a complete particle, and a partial particle corresponds to a partial solution.

Velocities are represented as particles, but their variables have no lower and
upper bound.

To get a solution to our problem from a particle, we round the variables. After
converting a particle to a solution, we do the correction of variables xt and yt

described in Section 4.3.

27

Program 5 PSO algorithm
function pso(n):

particles = randomly initialize n particles
velocities = randomly initialize n velocities
personal_bests = copy(particles)
global_best = particle with the lowest fitness
while termination condition is not met:

for i = 1, . . . , n:
p, v = particles[i], velocities[i]
pbest = personal_bests[i]
r1, r2 = UniformVector(0, 1), UniformVector(0, 1)

v = ωv + ϕ1r1 ⊙ (pbest − p) + ϕ2r2 ⊙ (gbest − p)
p = p + v

particles[i], velocities[i] = p, v

if fitness(p) < fitness(pbest):
pbest = p
if fitness(p) < fitness(global_best):

global_best = p

return global_best

7.2 Fitness
Fitness of a particle is evaluated by converting it to a solution, as described in

Section 7.1. Then, a fitness function defined in Section 4.2 is used.

7.3 Initialization
The initialization of particles is identical to the initialization of individuals in

the evolutionary algorithm described in Section 6.1. However, in PSO we also need
to initialize velocities. For velocities, variables xt are drawn from U(−M e

dcv,M
e
c cv),

ŷt from U(−cv, cv) and ẑd from U(−ldcv, ldcv). Variable cv is a parameter of the
initialization.

28

8 Hyperparameter Selection
In this chapter, we select the best hyperparameters for local search, evolutionary

algorithm and PSO. To choose the hyperparameters, we only use the development
set.

To select values for parameters in this chapter, we use grid search. Simply put,
we select values for parameters we want to try and try every possible combination.
The grid search is done on four data files of different lengths from the development
set. To evaluate a combination of values we average the best fitness achieved on
those four data files.

The results displayed in the following graphs are measured on the whole devel-
opment set. We used MILP to get the optimum for every data file. These optima
are at most 1.3% from the real optimum (gap parameter for the solver). In these
graphs, we use percent error calculated as 100%·(fitness - optimum) / optimum,
and display its mean calculated over the whole development set. Furthermore, if
a solution was infeasible in the beginning, we removed the corresponding points
in that graph, because it would be unreadable otherwise.

All the scripts that run these experiments are in subfolder hyperparameters
of Attachment A.1.

8.1 Local Search
To determine the best combination of operators, we tried multiple combinations

that make sense to us. For battery operators we consider

• ImproveBattery(1,false),

• ImproveBattery(100,false) or

• ImproveBattery(100,true).

For mCHP operators we have variants

• ImproveMchpToggle(m);

• ImproveMchpSwap(m);

• ImproveMchpExtend(m), ImproveMchpShorten(m) and

• ImproveMchpSwap(s), ImproveMchpExtend(m), ImproveMchpShorten(m).

Here variables m and s can be true or false, and extending and shortening operators
always have the same value.

To determine the best combination of operators, we combined every above-
mentioned battery operator variant with every listed mCHP operator combination
and every time-shiftable device operator. The combinations of mCHP operators
also differed in assignment of those parameter variables m and s. The operators
are applied in order as they are mentioned and are tested for complete and partial
representation separately.

29

The best operator combination for complete representation and partial repre-
sentation is in Table 8.1.

Representation Operators

Complete ImproveBattery(100,false) ImproveMchpExtend(true)
ImproveMchpShorten(true) ImproveDeviceStartsShift

Partial ImproveMchpToggle(true) ImproveDeviceStartsAll

Table 8.1 The best operator combinations

Because the best parameters of the battery operator have n = 100, we tried
values 10, 50, 100, and 200 for this parameter. Their comparison is in Figure 8.1.

Figure 8.1 Influence of parameter n of the battery operator in local search

In Figure 8.2 is a comparison of complete and partial representation. Addi-
tionally, there is a complete solution initialized from a partial solution. Although
the partial representation achieved better results, it did not improve the solution
after greedy initialization very much. But it is already quite close to the optimum.
The complete solution initialized from partial, on the other hand, did not improve
at all. Note that one iteration in local search with partial representation took
quite a long time, and the termination condition is checked only at the beginning
of an iteration, so local search ran for longer than the complete representation.
However, it can be seen in the graph that it did not improve any further.

30

Figure 8.2 Comparison of hill climbing algorithm variants

8.2 Evolutionary Algorithm
Because there are a lot of parameters for the evolutionary algorithm, we divided

the selection of parameters into three stages.
In the first stage, we used average values calculated from solutions initialized

by the greedy algorithm to get initial values for the parameters of initialization.
The mCHP is turned on 9% of the time, and charging and discharging of the
battery is on average approximately 2% of their maxima M e

c and M e
d . Therefore,

we used coefficients 0.04 for the battery initialization.
Parameters of mutation we just set to σbattery = 0.01, cmCHP = 1 and σdevices =

0.5.
For the remaining parameters, we selected values {100, 500} for parameter

population size, {1, 5, 10} for elite size, {0.1, 0.2} for Pmut and {0.1, 0.2} for Pcross.
Then we tried every combination of these parameters.

The best combination can be seen in Table 8.2.

Representation Population Size Elite Size Pmut Pcross

Complete 100 5 0.2 0.8
Partial 100 10 0.1 0.8

Table 8.2 Best parameters for evolutionary algorithm

In the second stage, we ran a grid search for parameters of initialization with
values clb

battery = {0.04, 0.1, 0.25, 0.5, 1.0} and cub
battery = {0.04, 0.1, 0.25, 0.5, 1.0}.

We kept the value of the parameter for initializing variables yt, because the average

31

from greedy initialization is probably good. Results from this stage are in Table
8.3.

Representation clb
battery cub

battery

Complete 0.04 0.25

Table 8.3 Best initialization parameters for evolutionary algorithm

In Table 8.4 is the result of the third stage, where we ran a grid search for
parameters of mutation with values σbattery = {0.005, 0.01, 0.02, 0.05}, cmCHP =
{0.5, 1.0, 2.0} and σdevices = {0.3, 0.5, 1.0}.

Representation σbattery cmCHP σdevices

Complete 0.05 1.0 0.5
Partial 2.0 0.3

Table 8.4 Best mutation parameters for evolutionary algorithm

As can be seen in Table 8.5 and Figure 8.3, the correction of infeasible solutions
plays a significant role.

Representation Correction Feasible solution found
Complete On 100%
Complete Off 17.5%

Table 8.5 Influence of correction for complete representation in the evolutionary
algorithm

32

Figure 8.3 Influence of correction for partial representation in the evolutionary
algorithm

Finally, in Figure 8.4 is a comparison of complete and partial representation.
We also included solutions initialized by the greedy algorithm. The partial
representation is better than the complete representation, but it only managed to
get to fitness achieved just by using the greedy initialization.

Figure 8.4 Comparison of evolutionary algorithm variants

33

8.3 PSO
For PSO we did the same process as for the evolutionary algorithm. We used

the same values for initialization. However, PSO also has a parameter velocity
coefficient, so we set it to 0.1. With these initial values, we ran a grid search for
ω = {0.3, 0.7}, ϕ1 = {1.3, 1.7}, ϕ2 = {1.3, 1.7} and {100, 500} for population size.
The best combinations of these parameters are in table 8.6.

Representation ω ϕ1 ϕ2 Population Size
Complete 0.3 1.7 1.7 500
Partial 0.3 1.3 1.3 100

Table 8.6 Best parameters for PSO

Then we used grid search with values {0.1, 0.2, 0.5} for the velocity coefficient
cv, clb

battery = {0.04, 0.1, 0.3, 1.0} and cub
battery = {0.04, 0.1, 0.3, 1.0}. For partial

representation, we tried here only values {0.05, 0.1, 0.2, 0.3, 0.4, 0.5} for cv. The
result is in Table 8.7.

Representation clb
battery cub

battery cv

Complete 1.0 0.04 0.2
Partial 0.1

Table 8.7 Best initialization parameters for PSO

Finally, we refined the parameter values selected in the beginning. For complete
representation, we did this using a grid search with ω = {0.2, 0.3, 0.4}, ϕ1 =
{1.5, 1.7, 1.9}, ϕ2 = {1.5, 1.7, 1.9} and {300, 500, 700} for population size. For
partial representation we used ω = {0.2, 0.3, 0.4}, ϕ1 = {1.2, 1.3, 1.4}, ϕ2 =
{1.2, 1.3, 1.4} and {75, 100, 200} for population size. The final combination of
parameters is in Table 8.8.

Representation ω ϕ1 ϕ2 Population Size
Complete 0.3 1.9 1.5 700
Partial 0.2 1.4 1.2 100

Table 8.8 Best parameters for PSO run 2

Table 8.9 shows that the correction of infeasible solutions is also very important
for PSO. In fact, for the partial representation, it is even more important.

We did the same comparison of complete and partial representation, as we
did for the evolutionary algorithm. It can be seen in Figure 8.5. The results are
similar to the evolutionary algorithm, but the complete representation did slightly
better in this case.

34

Representation Correction Feasible solution found
Complete On 100%
Complete Off 45%
Partial On 100%
Partial Off 45%

Table 8.9 Influence of correction in PSO

Figure 8.5 Comparison of PSO variants

35

9 Comparison of Algorithms
The graphs in this chapter are created the same way as in Chapter 8.
We decided to use the partial representation for local search, evolutionary

algorithm and PSO, and random initialization for evolutionary algorithm and
PSO in the comparison.

Figure 9.1 Comparison of algorithms

Figure 9.1 is the comparison of algorithms on the test dataset. We can see that
MILP found the optimal solution. The rest of the algorithms also have percent
error mean below 1%. However, local search started with a solution initialized by
the greedy initialization, and it almost did not improve at all. This shows that
greedily setting the heat buffer gives a good result, and further optimizing it only
gives marginal improvements. Furthermore, PSO did not even manage to surpass
the greedy initialization. On the other hand, evolutionary algorithm achieved
percent error mean below 0.5%. It has the best results out of the approaches we
implemented ourselves.

In Figure 9.2 are pie charts showing a breakdown of the sources of energy and
the usage of energy, averaged over solution found by MILP for the test dataset.
Notable is that time-shiftable devices account only for 1.1% of used energy. This
is because opposed to a whole day of electricity usage in a household, there are
not that many of them and they run only for a few hours.

To test how scalable it is, we took every 10 day long data file from the test set
and copied every time-shiftable device 100 times. For reference, every new data
file has 600–1900 time-shiftable devices. A comparison of the algorithms on this
modified dataset is in Figure 9.3.

Again, MILP found the optimal solution, but note that construction of the
MILP model took every time over a minute, and this time is not included in

36

Figure 9.2 Sources of energy (left) and usage of energy (right)

the graph. However, we did not implement the construction of a model with
performance in mind, so it probably could be improved. PSO, this time, also
performed the worst, getting stuck in local optima. It achieved percent error
mean of 5%. At least it managed to surpass the greedy initialization here. The
evolutionary algorithm did worse with more devices, but it still achieved percent
error mean below 3%.

The local search is very close to the optimum. However, one iteration took a
long time. That is why it ran longer than the other algorithms since we check the
termination condition only before every iteration. It managed to make only 4–9
iterations.

We have the breakdown of energy sources and energy usage for the modified
test dataset in Figure 9.4. In this case, time-shiftable devices make 46.7% of used
energy. The electricity used from the grid is higher than before and the battery
losses are lower, so the time-shiftable devices use a lot of electricity directly from
the grid. Thus, finding a good start time for every device can be done, in this case,
by simply checking every start time for each device separately. That is probably
why local search did so well.

37

Figure 9.3 Comparison of algorithms, every time-shiftable device copied 100 times

Figure 9.4 Sources of energy (left) and usage of energy (right), every time-shiftable
device copied 100 times

38

Conclusion
The approach that performed the best is MILP. It achieves good results even

if there are over 1000 time-shiftable devices. From the algorithms we implemented
ourselves evolutionary algorithm generally performs the best. If there are a lot of
time-shiftable devices, local search outperforms the evolutionary algorithm.

However, on the test dataset, we achieved very good results just by using the
greedy initialization. So this problem is not so hard.

39

Bibliography
1. Goldstein, Benjamin; Gounaridis, Dimitrios; Newell, Joshua P. The

carbon footprint of household energy use in the United States. Proceedings
of the National Academy of Sciences. 2020, vol. 117, no. 32, pp. 19122–19130.
Available from doi: 10.1073/pnas.1922205117.

2. Fink, Jiří; Hurink, Johann L. Minimizing costs is easier than minimizing
peaks when supplying the heat demand of a group of houses. European
Journal of Operational Research. 2015, vol. 242, no. 2, pp. 644–650. issn
0377-2217. Available from doi: 10.1016/j.ejor.2014.10.040.

3. Fink, Jiří; Hurink, Johann L. Greedy algorithm for local heating problem.
Discrete Optimization. 2021, vol. 39, p. 100627. issn 1572-5286. Available
from doi: 10.1016/j.disopt.2021.100627.

4. Data, Open Power System. Data Package Household Data [https://data.
open-power-system-data.org/household_data/2020-04-15/]. 2020.
Version 2020-04-15.

5. Edwards, Skai; Beausoleil-Morrison, Ian; Laperrière, André. Repre-
sentative hot water draw profiles at high temporal resolution for simulating
the performance of solar thermal systems. Solar Energy. 2015, vol. 111, pp. 43–
52. issn 0038-092X. Available from doi: 10.1016/j.solener.2014.10.026.

6. Czech electricity, OTE, a.s. the; operator, gas market [https://www.
ote-cr.cz/en]. [N.d.]. Accessed March 12, 2024.

7. Group, Axiom Energy. MicroCHP Spec Sheet [https : / / www . axiom -
energy.com/_files/ugd/7a0ad4_a74da8efef054a6e9030649827b90169.
pdf?index=true]. [N.d.]. Accessed March 11, 2024.

8. STIEBEL ELTRON spol. s r. o. Technical data of an electric water
heater [
https://www.stiebel-eltron.cz/cs/produkty-a-reseni/ohrev_vody/
zasobnikove _ ohrivacevody / stacionarni _ ohrivacevodyod200l / shw -
s/shw-200-s/technicka-data.product.pdf]. [N.d.]. Accessed March 22,
2024.

9. Panasonic. EVERVOLT® Home Battery System Data Sheet [https://
ftp.panasonic.com/solar/brochure/home_battery_sheet.pdf]. [N.d.].
Accessed March 12, 2024.

10. Tesla. Tesla Powerwall 2 Datasheet [https://www.tesla.com/sites/
default/files/pdfs/powerwall/Powerwall_2_AC_Datasheet_EN_NA.
pdf]. [N.d.]. Accessed March 12, 2024.

11. Solution, LG Energy. 16H Prime data sheet [https://www.lgessbattery.
com/ImageServlet?imgPath=20230802154044964[20230802154044964]
.pdf&imageType=PRODUCT]. [N.d.]. Accessed March 12, 2024.

12. Solution, LG Energy. 10H Prime data sheet [https://www.lgessbattery.
com/ImageServlet?imgPath=20230802154016813[20230802154016813]
.pdf&imageType=PRODUCT]. [N.d.]. Accessed March 12, 2024.

40

https://doi.org/10.1073/pnas.1922205117
https://doi.org/10.1016/j.ejor.2014.10.040
https://doi.org/10.1016/j.disopt.2021.100627
https://data.open-power-system-data.org/household_data/2020-04-15/
https://data.open-power-system-data.org/household_data/2020-04-15/
https://doi.org/10.1016/j.solener.2014.10.026
https://www.ote-cr.cz/en
https://www.ote-cr.cz/en
https://www.axiom-energy.com/_files/ugd/7a0ad4_a74da8efef054a6e9030649827b90169.pdf?index=true
https://www.axiom-energy.com/_files/ugd/7a0ad4_a74da8efef054a6e9030649827b90169.pdf?index=true
https://www.axiom-energy.com/_files/ugd/7a0ad4_a74da8efef054a6e9030649827b90169.pdf?index=true
https://www.stiebel-eltron.cz/cs/produkty-a-reseni/ohrev_vody/zasobnikove_ohrivacevody/stacionarni_ohrivacevodyod200l/shw-s/shw-200-s/technicka-data.product.pdf
https://www.stiebel-eltron.cz/cs/produkty-a-reseni/ohrev_vody/zasobnikove_ohrivacevody/stacionarni_ohrivacevodyod200l/shw-s/shw-200-s/technicka-data.product.pdf
https://www.stiebel-eltron.cz/cs/produkty-a-reseni/ohrev_vody/zasobnikove_ohrivacevody/stacionarni_ohrivacevodyod200l/shw-s/shw-200-s/technicka-data.product.pdf
https://ftp.panasonic.com/solar/brochure/home_battery_sheet.pdf
https://ftp.panasonic.com/solar/brochure/home_battery_sheet.pdf
https://www.tesla.com/sites/default/files/pdfs/powerwall/Powerwall_2_AC_Datasheet_EN_NA.pdf
https://www.tesla.com/sites/default/files/pdfs/powerwall/Powerwall_2_AC_Datasheet_EN_NA.pdf
https://www.tesla.com/sites/default/files/pdfs/powerwall/Powerwall_2_AC_Datasheet_EN_NA.pdf
https://www.lgessbattery.com/ImageServlet?imgPath=20230802154044964[20230802154044964].pdf&imageType=PRODUCT
https://www.lgessbattery.com/ImageServlet?imgPath=20230802154044964[20230802154044964].pdf&imageType=PRODUCT
https://www.lgessbattery.com/ImageServlet?imgPath=20230802154044964[20230802154044964].pdf&imageType=PRODUCT
https://www.lgessbattery.com/ImageServlet?imgPath=20230802154016813[20230802154016813].pdf&imageType=PRODUCT
https://www.lgessbattery.com/ImageServlet?imgPath=20230802154016813[20230802154016813].pdf&imageType=PRODUCT
https://www.lgessbattery.com/ImageServlet?imgPath=20230802154016813[20230802154016813].pdf&imageType=PRODUCT

13. Chen, Haisheng; Cong, Thang Ngoc; Yang, Wei; Tan, Chunqing; Li,
Yongliang; Ding, Yulong. Progress in electrical energy storage system: A
critical review. Progress in Natural Science. 2009, vol. 19, no. 3, pp. 291–312.
issn 1002-0071. Available from doi: 10.1016/j.pnsc.2008.07.014.

14. Matoušek, Jiří; Gärtner, Bernd. Understanding and using linear pro-
gramming. Understanding and using linear programming. Berlin: Springer,
2007. Universitext. isbn 3-540-30697-8.

15. Blum, Christian; Raidl, Günther R. Hybrid Metaheuristics: Powerful Tools
for Optimization. Springer International Publishing, 2016. Artificial Intel-
ligence: Foundations, Theory, and Algorithms. isbn 9783319308838. issn
2365-306X. Available from doi: 10.1007/978-3-319-30883-8.

16. Russell, Stuart; Norvig, Peter. Artificial Intelligence: A modern approach,
global edition. Third. Pearson Education, Limited, 2016. isbn 9781292153971.

17. Eiben, A.E.; Smith, J.E. Introduction to Evolutionary Computing. Sec-
ond. Springer Berlin, Heidelberg, 2015. Natural Computing Series. isbn
9783662448748. issn 1619-7127. Available from doi: 10.1007/978-3-662-
44874-8.

18. Kennedy, J.; Eberhart, R. Particle swarm optimization. In: Proceedings
of ICNN’95 - International Conference on Neural Networks. 1995, vol. 4,
pp. 1942–1948. Available from doi: 10.1109/ICNN.1995.488968.

19. Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual. 2024.
Available also from: https://www.gurobi.com.

41

https://doi.org/10.1016/j.pnsc.2008.07.014
https://doi.org/10.1007/978-3-319-30883-8
https://doi.org/10.1007/978-3-662-44874-8
https://doi.org/10.1007/978-3-662-44874-8
https://doi.org/10.1109/ICNN.1995.488968
https://www.gurobi.com

List of Figures

2.1 Electricity demand . 14
2.2 DHW demand . 15
2.3 Electricity prices . 15
2.4 Electricity consumption profile of a dishwasher 16
2.5 Electricity consumption profile of a washing machine 16

8.1 Influence of parameter n of the battery operator in local search . 30
8.2 Comparison of hill climbing algorithm variants 31
8.3 Influence of correction for partial representation in the evolutionary

algorithm . 33
8.4 Comparison of evolutionary algorithm variants 33
8.5 Comparison of PSO variants . 35

9.1 Comparison of algorithms . 36
9.2 Sources of energy (left) and usage of energy (right) 37
9.3 Comparison of algorithms, every time-shiftable device copied 100

times . 38
9.4 Sources of energy (left) and usage of energy (right), every time-

shiftable device copied 100 times 38

42

List of Tables

8.1 The best operator combinations 30
8.2 Best parameters for evolutionary algorithm 31
8.3 Best initialization parameters for evolutionary algorithm 32
8.4 Best mutation parameters for evolutionary algorithm 32
8.5 Influence of correction for complete representation in the evolution-

ary algorithm . 32
8.6 Best parameters for PSO . 34
8.7 Best initialization parameters for PSO 34
8.8 Best parameters for PSO run 2 34
8.9 Influence of correction in PSO . 35

43

List of Abbreviations
DHW domestic hot water
LP linear programming
mCHP combined heat and power unit
MILP mixed-integer linear programming
cv velocity initialization coefficient in PSO
clb

battery battery lower bound initialization coefficient
cub

battery battery upper bound initialization coefficient
cmCHP coefficient in probability of mutating variable yt calculated as cmCHP/T
D set of time-shiftable devices
Dd

i profile of time-shiftable device d
De

t electricity demand in time interval t
Dh

t DHW demand in time interval t
ds

t electricity used by all time-shiftable devices in interval t, depends on zd

E electricity produced by mCHP in one time interval
G natural gas consumed by mCHP in one time interval
H heat produced by mCHP in one time interval
Ie initial state of battery
Ih initial state of hot water buffer
Le

c battery charging loss
ld profile length of time-shiftable device d
Le

d battery discharging loss
Le

s battery storage loss
Lh

s hot water buffer storage loss
M e

c battery maximum input power, upper bound for x−
t

M e
d battery maximum output power, upper bound for x+

t

Od
e end of operation period for time-shiftable device d

Od
s start of operation period for time-shiftable device d

P g price of natural gas
Pcross probability of crossover
Pmut probability of mutation
P e

t price of electricity in time interval t
se

t state of battery in time interval t
sh

t state of hot water buffer in time interval t
T set of time intervals
T number of time intervals
U e battery capacity
Uh capacity of hot water buffer
xt battery variable used in complete representation
x−

t variable, charging of battery in time interval t
xg

t variable, electricity used from the grid in time interval t
x+

t variable, discharging of battery in time interval t
yt variable, state of mCHP in time interval t
zd variable, start of device d
σbattery standard deviation for mutation of variables xt

σdevices standard deviation for mutation of variables zd

44

A Attachments

A.1 Attached Files
Structure of the attachment:

Path Description

data data processing scripts, input data and data
JSON schema

experiments scripts for comparing algorithms and their
results

hyperparameters scripts for selection of hyperparameters and
their results

milp implementation of MILP and baselines used
to compare algorithms

solver implementation of local search, evolutionary
algorithm and PSO

install_requirements.jl dependencies for Julia
requirements.txt dependencies for Python

A.2 User Documentation
To run the code in the Attachment A.1, installations of Julia program-

ming language and Python are necessary. Required packages for Python are
in requirements.txt and for julia in install_requirements.jl. They can be
installed by running:

pip install -r requirements.txt
julia install_requirements.jl

Furthermore, GUROBI solver needs to be installed [19]. We ran the code on Linux
with Python 3.11.8, Julia 1.10.2 and GUROBI 11.0.1.

Note that all the scripts in the attachment are expected to be launched from
the root directory of the attachment. For example, script create_datasets.py
in directory data should be launched as

python data/create_datasets.py

The datasets are created by Python script data/create_datasets.py, and
data/create_test2.py crates the modified test dataset with every device copied
100 times. Because some data are downloaded from the internet, we included the
datasets generated by these scripts in subdirectories dev, test test2 of directory
data, in case they are no longer accessible.

The optima for creating graphs in Chapter 8 and Chapter 9 are found by script
milp/baselines.py.

Results from scripts in directory hyperparameters are used in Chapter 8. The
following table shows what each script is used for.

45

File Name Used For
evolution_init.jl Table 8.3
evolution_mutation.jl Table 8.4
evolution_no_correction.jl Table 8.5 and Figure 8.3
evolution_parameters.jl Table 8.2
evolution_variants.jl Figure 8.4 and Figure 8.3
hc_battery.jl Figure 8.1
hc_operators.jl Table 8.1
hc_variants.jl Figure 8.2

init_params.jl initial parameters for random
initialization

pso_init.jl Table 8.7
pso_no_correction.jl Table 8.9
pso_parameters.jl Table 8.6
pso_parameters2.jl Table 8.8
pso_variants.jl Figure 8.5

Note that all of these scripts except init_params.jl need Julia to be run
with argument -p n. This runs Julia with n worker processes. For example:

julia -p 6 hyperparameters/evolution_init.jl

Results from scripts run_experiments.jl and run_milp.py in directory
experiments are used in Chapter 9, and run_experiments.jl also requires
the argument -p.

Results of all of these scripts are included in the attachment.

A.3 Programmer Documentation
The implementation of MILP is in milp/solve.py. It contains a function that

creates MILP model defined in Chapter 3 for a data instance. It is programmed
in Python and uses solver GUROBI [19].

Data processing from Section 2.2 is implemented in files data/preprocess.py
and data/parameters.py. These two files are then used to create datasets from
Section 2.4 in data/create_datasets.py.

Implementation of local search, evolutionary algorithm and PSO is done in Ju-
lia. It is all inside one module Solver defined in file solver/solver.jl, and the
implementation itself is separated into multiple files. File solver/data.jl con-
tains loading of data instances and their representation. The function load_data
has argument schema_file, which is a path to the JSON schema file. It can be
found in data/data.schema.json. In solver/solution.jl is the representation
of solutions, fitness and correction of infeasible solutions from Chapter 4. It also
contains the initialization of solutions described in Subsection 5.1.2 and Section
6.1. Hill climbing (Chapter 5) is in solver/hill_climbing.jl. Evolutionary
algorithm (Chapter 6) is in solver/evolution.jl, and solver/pso.jl contains
PSO (Chapter 7).

This implementation uses the following abstract types:

• Solution: representation of a solution (Section 4.1)

46

• Init: initialization of a solution (Subsection 5.1.2 and Section 6.1)

• Operator: operator for the hill-climbing algorithm (Subsection 5.1.1)

• Mutation: mutation for the evolutionary algorithm (Section 6.4)

• Particle: representation of a particle in PSO (Section 7.1)

• ParticleInit: initialization of a particle (Section 7.3)

The Julia scripts that run the experiments run the algorithms for a short while
before the actual experiments to ensure that the compilation time is not included
in the results.

47

	Introduction
	Problem statement
	Mathematical model

	Input Data
	Description of used data
	Data preprocessing
	Input data structure
	Data Split
	Overview of the Data

	Mixed-integer linear programming
	MILP Model

	Solution Representation and Fitness
	Solution Representation
	Complete Representation
	Partial Representation

	Fitness
	Penalty
	Complete Representation
	Partial Representation

	Correction of infeasible solutions

	Local Search
	Implementation
	Operators
	Initialization

	Evolutionary Algorithm
	Initialization
	Parental Selection
	Crossover
	Mutations
	Environmental Selection

	Particle Swarm Optimization
	Representation
	Fitness
	Initialization

	Hyperparameter Selection
	Local Search
	Evolutionary Algorithm
	PSO

	Comparison of Algorithms
	Conclusion
	Bibliography
	List of Figures
	List of Tables
	List of Abbreviations
	Attachments
	Attached Files
	User Documentation
	Programmer Documentation

