
BACHELOR THESIS

Lukáš Nedbálek

Bottleneck identification for constraint
relaxation in resource-constrained

project scheduling

Department of Theoretical Computer Science and Mathematical Logic

Supervisor of the bachelor thesis: RNDr. Jiří Švancara, Ph.D.
Study programme: Computer Science (B0613A140006)

Prague 2024

I declare that I carried out this bachelor thesis on my own, and only with the
cited sources, literature and other professional sources. I understand that my
work relates to the rights and obligations under the Act No. 121/2000 Sb., the
Copyright Act, as amended, in particular the fact that the Charles University has
the right to conclude a license agreement on the use of this work as a school work
pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

I would like to express my gratitude to my supervisor, RNDr. Jiří Švancara, Ph.D.,
for his kind guidance, and to Ing. Antonín Novák, Ph.D., for the numerous
invaluable consultations on the subject.

I would also like to thank my family for their continuous support throughout
my studies.

Finally, I wish to acknowledge my debugging ducks for their supportive presence
during the writing process.

Title: Bottleneck identification for constraint relaxation in resource-constrained project
scheduling

Author: Lukáš Nedbálek

Department: Department of Theoretical Computer Science and Mathematical Logic

Supervisor: RNDr. Jiří Švancara, Ph.D., Department of Theoretical Computer Science
and Mathematical Logic

Abstract: In modern manufacturing systems, production planners create schedules
by iteratively obtaining proposed schedules and adjusting input parameters to satisfy
multiple, often competing, optimization goals. The goal of this thesis is to address the
problem of reducing the tardiness of a particular manufacturing order in an obtained
schedule, which is a practical problem commonly arising in production scheduling. We do
this by identifying bottlenecks in the schedule and proposing relaxations to constraints
related to the identified bottlenecks. We develop two methods for this purpose, both
utilizing constraint programming. The first baseline method adapts existing approaches
from the literature and proposes general relaxations. The second method identifies
potential improvements in relaxed versions of the problem and proposes relaxations
targeting the specific manufacturing order. Numerical experiments show that the
baseline method achieves great improvements for small costs. while the second method
is more reliable in achieving improvements across various problem instances.

Keywords: scheduling, RCPSP, bottlenecks, constraint relaxation

Název práce: Identifikace úzkých hrdel pro relaxaci podmínek v rozvrhování projektů

Autor: Lukáš Nedbálek

Katedra: Katedra teoretické informatiky a matematické logiky

Vedoucí bakalářské práce: RNDr. Jiří Švancara, Ph.D., Katedra teoretické informatiky
a matematické logiky

Abstrakt: Plánovači výroby často sestavují rozvrh výroby tak, že iterovavaně získávájí
návrhy na rozvrh a upravují vstupní parametry za účelem vyhovět mnohým, často
protichůdným, optimalizačním cílům. Cílem této práce je zaměřit se na problém
snižování zpoždění, tzv. tardiness, vybrané zakázky v obdrženém rozvrhu, jakožto běžně
řešený problém při plánování výroby. Zaměříme se na identifikaci tzv. úzkých hrdel
daných rozvrhů za účelem relaxace omezujících podmínek souvisejících s těmito úzkými
hrdly. Pro tento účel představíme dvě metody. První adaptuje existující přístupy
z literatury v kombinaci s návrhy obecných relaxací podmínek. Druhá identifikuje
potenciální zlepšení v relaxovaných verzích problému a navrhuje relaxace zaměřující se
na konkrétní zpožděnou zakázku. Numerické experimenty ukazují, že zatímco první
metoda nachází dobrá zlepšující řešení za nízké ceny, druhá metoda je v nacházení
zlepšujících řešení více konzistentní.

Klíčová slova: plánování výroby, RCPSP, úzká hrdla, relaxování omezujících podmínek

Contents

Introduction 7

1 Problem statement 9
1.1 Scheduling . 9
1.2 Constraint programming model 11
1.3 Bottlenecks . 12

1.3.1 Definition . 12
1.3.2 Constraints relaxation . 12
1.3.3 Resource capacity modifications 13

1.4 Relaxed schedule . 15

2 Related works 16
2.1 RCPSP scheduling . 16

2.1.1 Time-variable resource capacity constraints 16
2.1.2 Solution approaches . 16

2.2 Bottlenecks in scheduling . 17
2.2.1 Various definitions . 17
2.2.2 Bottleneck classification 18
2.2.3 Identification indicators 19
2.2.4 Bottlenecks in the RCPSP 20
2.2.5 Relaxing the identified bottlenecks 21

2.3 Contribution . 21

3 Solution approach 22
3.1 Baseline solution . 22

3.1.1 Adapted identification indicators 22
3.1.2 Identification Indicator-based Relaxing Algorithm 25

3.2 Extended solution . 29
3.2.1 Preliminaries . 29
3.2.2 Schedule Suffix Interval Relaxing Algorithm 31

4 Numerical experiments 36
4.1 Setup . 36

4.1.1 Problem instances . 36
4.1.2 Solving the constraint programming model 38
4.1.3 Algorithm parameters . 38
4.1.4 Methods of evaluation . 41

4.2 Comparative results . 42
4.2.1 Observations . 42

4.3 Discussion . 46

Conclusion 52
Contribution . 52
Further work . 52

Bibliography 53

5

Notation 57

A Attachments 59
A.1 Algorithms, Functions, and Procedures 59
A.2 Documentation . 61

A.2.1 Requirements . 61
A.2.2 Running scripts . 61
A.2.3 Project overview . 62

A.3 Full instance plots . 63

6

Introduction
Motivation

In modern manufacturing systems, Advanced Planning and Scheduling (APS)
software is used to schedule production, manage resources, and analyze complex
production data. This software helps manufacturing planners to schedule produc-
tion plans and make important decisions regarding the manufacturing systems.
Production needs to meet demand while performing optimally with respect to
multiple, often competing, optimization goals. For humans — even knowledge-
able professionals — the set of constraints and conflicting priorities becomes too
complex to gain full insight and consequently decisions can be made without
full understanding of their impact. Conversely, the APS software is capable of
processing extensive data, however, not all information can be specified in advance,
nor can all information about the real-world be exactly modeled for the software
to consider. Moreover, the software lacks the intuition of a human production
planner, which undoubtedly plays an important role in making decisions. This
leads to users of the APS software to plan production by iteratively scheduling
and fine-tuning settings to obtain an acceptable schedule.

In this thesis, we address a problem which arises frequently in manufacturing
— the problem of reducing the tardiness of a selected manufacturing order in an
existing production schedule. Upon obtaining a schedule constructed to meet all
the extensive production demands, we observe that a particular manufacturing
order is overly tardy with respect to its deadline. We would like to obtain a
modified schedule which reduces the tardiness of that manufacturing order while
not differing from the original schedule much. This corresponds to a scenario where,
for example, after a discussion with the intended customer, we need to prioritize
the production of the manufacturing order considered. However, production has
already been scheduled and re-planning it entirely is not acceptable. Our goal
is to find modifications to the schedule, potentially locally adjusting the settings
of the system, to decrease the tardiness of the target manufacturing order with
minimal impact on the remaining production.

We achieve this by considering manufacturing bottlenecks in the schedule,
related to specific manufacturing constraints. Our aim is to identify these limiting
constraints and relax them to improve the tardiness of a selected manufacturing
order. Following the relaxation, we obtain a modified schedule and compare the
improvements. An example of such a modification is illustrated in Figure 1.

To model the problem at hand, we use an extension of the Resource-Constrained
Project Scheduling Problem (RCPSP) that introduces time-variant resource ca-
pacities. We develop two different methods to address the problem. The first
method adapts existing approaches from the literature, which, however, address
the problem in simplified scheduling models. We first need to adapt the approaches
to our problem. The seconds method is developed specifically to address the
problem. This method utilizes relaxations which focus specifically on the target
manufacturing order. Lastly, we present a set of problem instances designed to
model the addressed scheduling problem and we evaluate the two methods using
the presented problem instance set.

7

O
ri
gi
na

l
sc
he

du
le

M
od

ifi
ed

sc
he

du
le

M
od

ifi
ed

re
so
ur
ce

av
ai
la
bi
lit
y

O
ri
gi
na

l
re
so
ur
ce

av
ai
la
bi
lit
y

Figure 1 Schedule modification example. The green highlighted job is overly tardy
with respect to its deadline (indicated by the vertical dotted line). It could not have
been scheduled earlier due to the lack of remaining capacity on the resource. The
resource capacity is increased within the minimal required time interval for the tardy
job to be scheduled earlier. By temporarily increasing the resource capacity, we achieved
improvement in the tardiness of the highlighted job, as it was possible to schedule it
earlier.

Thesis outline
In Chapter 1, we introduce the problem addressed in this thesis, followed by a

survey of the scheduling literature in Chapter 2 aimed to explore various existing
approaches to the problem. In Chapter 3, we present our solution approach, where
we design two methods for identifying bottlenecks and relaxing corresponding
constraints. In Chapter 4, we conduct numerical experiments to evaluate the
performance of our proposed methods and discuss achieved results. In the last
chapter, we conclude the thesis by summarizing achieved results and proposing
directions for future work.

8

1 Problem statement
In this chapter, we first state an extension of the RCPSP that we will use to

model our studied problem. Following this, we describe a constraint programming
method used to find solutions to the problem. Lastly, we present a formal
framework for identifying bottlenecks, relaxing related constraints, and obtaining
improved solutions.

1.1 Scheduling
We use the PSm | intree | ∑︁

j wjTj variant1 of the RCPSP to model the
targeted real-world scheduling problem. We extend the problem by introducing
several new definitions to better model the addressed problem. Furthermore, we
introduce the notion of problem instances to help us distinguish between the
original problem and its modifications, as described in Section 1.4. All following
definitions and values are assumed to be in the integer domain.

Definition 1 (Problem instance). A problem instance I is defined as a 4-tuple
(J ,P ,R, T), where

• J = {1, . . . , n} is the set of jobs,

• P is the set of all precedences constraints,

• R = {1, . . . , m} is the set of resources,

• T is the time horizon of the problem instance.

Each job j ∈ J has a duration pj, describing the amount of time needed to
process the job j. Preemption of jobs is not allowed in any form — the execution
of a job cannot be interrupted after its start, not even at the ends of working shifts
(see variable resource capacities below). Each job j also has a due date dj , stating
a time horizon in which the job should be completed; otherwise, it is considered
tardy. Subsequently, each job j also has a tardiness weight wj which defines a
penalty accumulated for each unit of time the job is tardy.

Execution order of jobs is constrained with precedence constraints P. A
precedence constraint between jobs i and j, denoted as i→j or (i, j) ∈ P , states
that the processing of job j can start only after the processing of job i was
completed.

Interpreting jobs J as vertices and precedences P as edges between the jobs,
we define the precedence graph G = (J ,P). We assume the precedence graph
to be an inforest, in other words, the precedences constrain the execution order
of jobs in such a way that the resulting precedence graph is always an inforest.
An inforest is a directed acyclic graph where each vertex has at most one successor.
A connected subgraph of an inforest is an intree. See Figure 1.1 for a precedence
graph example.

Jobs are executed on resources R — machines with time-variant renewable
capacities. The capacity of a resource k during a time period t ∈ {1, . . . , T } is

1α|β|γ three-field notation defined by Brucker et al. (1999).

9

Figure 1.1 Example of a precedence graph. The inforest structure of the graph is
demonstrated. Additionally, orders as the roots of the intrees are highlighted.

Time

C
ap

ac
ity

 &
 L

oa
d

Re
so

ur
ce

 2
Re

so
ur

ce
 1

C
ap

ac
ity

 &
 L

oa
d

S
ch

ed
ul

ed
Jo

bs

1 2

3 54

6

7 8 9

3

1

2

2

7

7 4

8
9

9

5

6

6

Figure 1.2 Example of a scheduled RCPSP with time-variable resource capacities.
The jobs with corresponding precedences from Figure 1.1 are scheduled on two machines
with partially overlapping working shifts. Job durations and capacity consumptions
were chosen to illustrate the variability in resource utilization.

10

denoted as R
(t)
k . During their execution, jobs consume the capacities of resources.

For a job j, the per-period consumption of a resource k is denoted as rjk. This
describes how much of the resource’s capacity is consumed each period during
the job’s execution. Capacities are renewable, meaning that each time period the
specified amount of capacity is available, regardless of prior capacity consumptions.
The resource capacity functions R

(t)
k are assumed periodic with the same period

of 24. Moreover, the resource capacity function of the resource k only takes the
values 0 and R

(−)
k >0. This assumption, however, is only for the initial problem

instance — resource capacity functions of modified instances, as described in
Section 1.4, can be non-periodical and take arbitrary non-negative integer values.

The set of orders O = {j ∈ J | ∄i : j→i} is the set of roots of the precedence
intrees, i.e. the set of all jobs for which no precedence successor exists. A job
j ∈ O is called an order.

We make a simple observation; due to the intree-structure, each (weakly)
connected component in the precedence graph contains exactly one order. From
this, we can say that each job is either an order or is associated with a unique
order within the same intree component. This is demonstrated in Figure 1.1.

Having introduced orders, we can now specify the ranges of job deadlines and
tardiness weights based on whether a job belongs to the orders set O:

dj =

⎧⎨⎩a ∈ N0 . . . if j ∈ O
+∞ . . . otherwise

wj =

⎧⎨⎩a ≥ 0 . . . if j ∈ O
0 . . . otherwise

1.2 Constraint programming model
We formulate the above problem using a constraint programming model. This

provides us with a well-functioning framework and allows us to use existing solvers
for finding optimal solutions. The model can be stated as:

given J = (1, . . . , n), R = (1, . . . , m), P ,

p1, . . . , pn ∈ N0, d1, . . . , dn ∈ {1, . . . , T }, w1, . . . , wn ∈ N0,

r11, . . . , rnm ∈ N0, R1, . . . , Rm : {1, . . . , T } → N0

find S = (S1, . . . , Sn) ∈ Nn

minimizing
∑︂
j∈J

wjTj (1.1)

subject to Ci ≤ Sj ∀i→j ∈ P (1.2)∑︂
j∈J

c(t)
jk ≤ R

(t)
k ∀t ∈ {1, . . . , T } ∀k ∈ R (1.3)

where C = (S1 + p1, . . . , Sn + pn), Tj = max(0, Cj − dj),

c(t)
jk

def=

⎧⎨⎩rjk if Sj ≤ t < Cj

0 otherwise

Inequalities (1.2) formulate the precedence constraints — start and finish
times of jobs are according to all the precedences. Inequalities (1.3) formulate the
resource capacity constraints — in every time period the combined consumption

11

of jobs scheduled during the period cannot exceed any of the resource’s capacities.
Expression (1.1) is the optimization minimization objective — the weighted
tardiness of jobs.

We assume we have a solver capable of solving (1.1)–(1.3) in reasonable time
through the use of constraint programming.

In the following sections, we will consider the stated constraints as potential
bottlenecks and how to relax specific constraints identified as bottlenecks.

1.3 Bottlenecks

1.3.1 Definition
Our goal will be to find bottlenecks in the problem, specifically in the obtained

schedule — the solution to the constraint programming model defined in Section 1.2.
First, we state a general definition of an execution-level bottleneck:

Definition 2 (Execution Bottleneck Machine (EBM) (Wang et al., 2016)). EBM
is a machine that dominates the scheduling performance in the strongest manner
at the execution level of production systems.

The execution level of a production system stated here refers to finding
bottlenecks specific to the given problem instance and the obtained solution to that
instance. This is consistent with our goal of finding bottlenecks in the particular
problem instances and their solutions, and improving the system performance
only with respect to the currently presented problem. In contrast, we will not
be interested in bottlenecks of the whole system nor in generally improving the
performance of the system regardless of the problem instance. Having made the
distinction, we will now discuss our interpretation of the definition suited to our
problem.

Instead of identifying just a single machine as a bottleneck or listing all the
machines in the order of their scheduling impact, we will focus on identifying
specific time periods on specific machines as schedule bottlenecks. This allows
us to relax only the specific constraints related to the identified time periods,
resulting in localized modifications with minimal costs.

1.3.2 Constraints relaxation
When deciding which constraints to relax, we have two constraints to consider:

precedence constraints (1.2) and resource capacity constraints (1.3). We will
discuss individual segments that form the constraints, considering their possible
relaxation.

(i) Job precedences Job precedence constraints are inherent to the problem —
— jobs cannot start until all their predecessors have finished executing. We
cannot remove individual precedences as a relaxation, as precedences model
the technological requirements of the production system. We could imagine
that scheduling jobs might require preparations, which do not necessarily
require the presence of the product about to be processed. Those prepara-
tions could therefore be allowed to start even before the predecessor jobs

12

finish executing, which would introduce slack in the constraints2. However,
we can assume that those preparations are completed before the start, or
we can assume no preparation time at all.

(ii) Cumulative consumption The cumulative consumption is dependent on the
constructed schedule and the given problem instance. Each job contributes
to the cumulative consumption during the time periods it is scheduled.
As part of the problem definition, we cannot omit this contribution, nor
can it be shortened, as job durations pj are fixed. Equally, job resource
consumptions rjk influence the cumulative value, but again, due to the
nature of our problem, we cannot modify resource consumptions as those
are inherent to the problem and the corresponding real-life execution and
operation requirements.

(iii) Resource capacities Available capacities of resources can be modified with
reasonable correspondence to modifications of the real-life problem. More
specifically, the capacity of a resource during a time period can be increased
or decreased. Increasing the capacity of a resource during specific time
periods could correspond to increasing the number of workers operating the
resource machine, assuming that increasing the number of operating workers
increases the total processing capacity. While sole reduction of capacities
would not relax the constraints, decreasing the capacity of one resource
by a specific amount while increasing the capacity of another resource by
the same amount could tighten the constraints on the former resource but
relax the constraints on the latter. This decreasing of the capacity of one
resource while increasing the capacity of another by the same amount could
correspond to migrating workers between the resource machines, assuming
that migrations of operating workers are possible.

We can conclude that the precedence constraints (1.2) cannot be relaxed. On
the other hand, the resource capacity constraints (1.3) can be relaxed by modifying
the capacities of resources. As discussed, these modifications can be achieved
through capacity additions or migrations, both of which have corresponding
realizations in real-world production systems.

1.3.3 Resource capacity modifications
We will consider capacity additions and capacity migrations as the possible

relaxations of scheduling constraints, namely of the constraints (1.3). Additions
are executed by increasing the capacity of a selected resource by a specified amount
over a specified time interval. Migrations are executed by decreasing the capacity
of a selected source resource by a specified amount over a specified time interval
and increasing the capacity of a selected target resource by the specified amount
over the same time interval. An illustrative example of a capacity addition and a
capacity migration is shown in Figure 1.3.

2Scheduling with so-called setup times is a broadly studied subject in the literature. See the
survey of Hartmann and Briskorn (2010) where the extension of setup times is described and
various examples of approaches to the problem are given.

13

Figure 1.3 Diagram of possible capacity changes

We consider migrations only between resources, limited to the same time
interval. We do not allow migrations in time — reducing the capacity of the
source resource during a time interval and then increasing the capacity of a
target resource during a different interval. Such migrations could correspond to
migrating resource materials between resources. In such cases, the change in time
would correspond to the migrated material being processed at a different time
on a different machine. However, we consider production systems with workers
and machine operators as main resource capacities. Considering this, migrating
capacities in time would not have practical realizations, as the workers migrated
from one resource during one time period would likely still be assigned to that
resource during a different time period.

We associate a capacity addition with the 4-tuple (k, s, e, c), where k is the
resource whose capacity is increased, s and e form the time interval {s, . . . , e− 1}
over which the addition is executed, and c is the added capacity. Analogously, we
associate a capacity migration with the 5-tuple (kfrom, kto, s, e, c), where kfrom is
the source resource whose capacity is lowered, kto is the target resource whose
capacity is increased, s and e form the time interval {s, . . . , e− 1} over which the
migration is executed, and c is the migrated capacity. For a modified instance I∗,
the sets of all migrations and additions are denoted asMI∗ and AI∗ , respectively.

In a real-world production system, migrating capacities is generally more
cost-effective than adding new capacities. For example, reassigning workers from
an underutilized machine to a bottleneck machine is typically less expensive
than extending workers’ shifts into overtime or planning an entirely new and
irregular shift. Therefore, capacity migrations are usually preferred. However, if
the required capacity changes cannot be achieved through capacity migrations,
capacity additions can be utilized.

14

1.4 Relaxed schedule
In the rest of this chapter, we define a general procedure for solving the

presented problem, identifying bottlenecks and relaxing corresponding constraints
by modifying the initial problem, solving the modified problem, and evaluating
whether the modified solution reached a desired improvement. More precisely:

1. Suppose we obtained an optimal solution S to the problem instance I.

2. We select the target order o ∈ O for which we want to improve the tardiness.
We consider improvement to be any non-zero decrease in the objective
function with respect to the selected order o and its tardiness To.

3. We identify bottlenecks in the solution S of the instance I.

4. Based on the identified bottlenecks, corresponding constraints are relaxed
via capacity additions and capacity migrations. Those capacity changes are
captured by modified resource capacity functions R∗

1, . . . , R∗
m corresponding

to a modified problem instance I∗.

5. We obtain a solution S∗ to the modified problem instance I∗.

6. Finally, any desired evaluations can be made on the modified solution S∗,
alongside comparisons to the original solution S.

15

2 Related works
2.1 RCPSP scheduling

To model our studied problem we chose the PSm | intree | ∑︁
j wjTj version

of the RCPSP. The standard RCPSP is proven to be NP-hard (Blazewicz et al.,
1983). A comprehensive overview of complexity results was done by Ganian et al.
(2021).

2.1.1 Time-variable resource capacity constraints
Under the general PSm (Project Scheduling) characteristic we allow arbitrary

resource capacity functions. However, as stated in Sections 1.1, 1.3 and 1.4, the
resource functions are mostly periodical with only a few local modifications.

Hartmann and Briskorn (2010) and Hartmann and Briskorn (2022) surveyed
the variants of the RCPSP studied in the literature and alongside other variants
also discussed time-variable resource capacity constraints. As in our modeled real-
world problem, the surveyed literature used the time-varying capacities to model
worker shifts, resource machine maintenance, or other manufacturing processes
resulting in variable availabilities.

Time-variable resource availabilities are often studied with allowed preemption.
Recall from Section 1.1 that when job preemption is allowed, execution of a job
can be interrupted and resumed at a later period. Usually, only a specific form of
preemption is allowed — interrupting the execution of a job at the end of a working
shift and resuming it at the start of the following working shift. Preemption in
this context can be a reasonable assumption as it can, in some manufacturing
systems, correspond to a simple interruption in executed work. On the other hand,
job preemption, even in the specific form mentioned, might not be available due
to technical reasons.

To state a few examples of scheduling under time-variable resource capacity
constraints, see the work of Klein (2000) or Nonobe and Ibaraki (2002). For an
example of calendar-based availability scheduling with job preemption, see the
work of Franck et al. (2001).

2.1.2 Solution approaches
Solving the RCPSP is done using exact methods, heuristics, or metaheuristics.

Exact solution methods aim to solve scheduling problems systematically. They
guarantee to find the optimal solution by exhaustively exploring all possible solu-
tions within a problem’s feasible solution space. However, this exhaustive search
can become computationally expensive and impractical for large-scale or complex
problem instances. The most prominent exact approach is the branch-and-bound
method, used in many variations and with problem-specific heuristics. First
branch-and-bound solution method was proposed by Demeulemeester and Herroe-
len (1992), another example is the work of Vanhoucke et al. (2001). An approach
using a modified constraint programming and SAT solver with generalized prece-
dence relations can be found in the work of Schnell and Hartl (2015).

16

In contrast, heuristics aim to quickly find good solutions but do not guarantee
optimality. Heuristic approaches are simple, easy to implement, and computation-
ally inexpensive compared to exact methods. Heuristics use priority scheduling
rules, schedule-generating schemes, and approximations, but also relaxations of ex-
act methods, such as truncated branch-and-bound or relaxed integer programming.
Simple heuristics were popular as alternatives to exact methods. See the survey
of Kolisch and Hartmann (1999) for an extensive survey of heuristic approaches
used at the time.

Metaheuristics are higher-level problem-solving frameworks that search for good
solutions in the solution space using a combination of exploration and exploitation
strategies. Like simple heuristics, metaheuristics do not guarantee finding the
optimal solution but offer a trade-off of computational performance. They are
often more complex than simple heuristics and, as a result computationally more
expensive, but they can handle larger and more complex problem instances.
Metaheuristics include genetic algorithms, simulated annealing, tabu search, and
particle swarm optimization. A recent survey on metaheuristics by Pellerin et al.
(2020) compares a wide range of metaheuristics on PSPLIB instances.

We chose an exact solution approach by utilizing a constraint programming
solver. Our problem contains many constraints, most of which model time-variable
capacities of resources. We frequently modify those constraints and, therefore,
need to make adjustments to the model. Constraint programming models and
solvers are ideal for such use cases. The constraints can be expressed in a
declarative way without having to handle specifics. This makes the process of
adjusting the declared constraints and obtaining modified models straightforward.
In comparison, modeling these problems for heuristics or metaheuristics requires
significantly more effort, and adjusting the modeled constraints might prove even
more difficult.

2.2 Bottlenecks in scheduling
Bottlenecks are broadly studied in the scheduling literature. The notion of

a bottleneck is recognized to have an important role in scheduling when system
performance is considered.

2.2.1 Various definitions
In Definition 2 we defined the Execution Bottleneck Machine (EBM). We

chose this definition as it best corresponds to our studied problem. Namely,
it emphasizes the execution phase of production within which the bottleneck is
considered and doesn’t specify any particular metric or measure of the bottleneck’s
impact on the system.

Betterton and Silver (2012) surveyed the literature on scheduling bottlenecks
and found at least 11 different definitions of the term bottleneck resource. The first
attempts at defining the term were very specific in the way the bottleneck resource
is identified. Usually, the definition corresponded closely with the identification
method proposed in the same work. See for example the work of Lawrence
and Buss (1994), Kuo et al. (1996), or Roser et al. (2001). Throughout the years,
however, the aim shifted towards defining a bottleneck as generally as possible to

17

cover as many specific interpretations of the term but to also best capture the
important nature of a bottleneck resource in production systems. For attempts at
this approach see the work of Chiang et al. (2001) or Biller et al. (2010).

Based on the definitions presented up to that point, Betterton and Silver
(2012) stated the following definition.

Definition 3 (Bottleneck resource (Betterton; Silver, 2012)). The bottleneck is
the resource that affects the performance of a system in the strongest manner, that
is, the resource that, for a given differential increment of change, has the largest
influence on system performance.

This definition provides a neat generalization of the term bottleneck resource. It
also provides insight that focusing on such resources and making small adjustments
can significantly influence the system’s performance. Note, that the definition does
not specify the influence of mentioned adjustments has to be beneficial towards
the performance. Correctly identifying the bottleneck resource, but incorrectly
adjusting the related settings can impact the performance negatively.

2.2.2 Bottleneck classification
Bottlenecks can be identified at different stages of production. We use the

bottleneck classification proposed by Wang et al. (2016). This classification
distinguishes between structural, planning, and execution bottlenecks based on
the time frame at which the bottlenecks are identified.

Structural bottleneck machines frequently affect the performance of the pro-
duction system, regardless of the specific problem setting. Such machines are
usually identifiable by human operators, as their high impact on performance can
be observed across different problem settings and schedules. In contrast to their
identifiability by humans, structural bottlenecks might not be easily solvable or
relaxed. It may be caused by a hard limitation of the system, for example, an
inefficient production line layout or machines running at full capacity without the
possibility of increasing the capacity.

Structural bottlenecks can be identified with the use of historical production
data. Modern production systems collect large volumes of data concerning the
production, performance of individual components, utilization of resources, etc.
This data is then processed by techniques from data science or machine learning
to capture various patterns in production, anomalies, or correlations among
the data indicating a potential bottleneck. Such techniques can better react
and adapt to dynamic changes in the production system, given that enough
data regarding similar dynamic changes has been collected. A recent survey
by Mukund Subramaniyan et al. (2021) provides an overview of data-driven
bottleneck identification methods. To state a few examples, see the work of M.
Subramaniyan et al. (2016), Roh et al. (2018) or Li (2009).

When historical data is not available, a simulation of the system might provide
a sufficient approximation of the real production. Such an approach was studied
by Roser et al. (2001) where the study focused on a serial production line and
the bottleneck machine was identified through the average active duration on
machines. Zhang and Wu (2008b) and Zhang and Wu (2012) first model an
alternative relaxed optimization model for the system, identify the bottleneck

18

machines during the scheduling of this model, and then schedule the original
problem with a designed genetic algorithm, which utilizes the obtained bottleneck
information by allocating more resources to the identified machines.

Planning bottleneck machines are considered during the construction of a
schedule. Identifying such machines during the scheduling process can help guide
the scheduling procedure — whether exact, heuristic, or metaheuristic. The
scheduling procedure can choose to allocate more resources to the identified
bottleneck machine, spend more time and computational resources on scheduling
jobs on such machines, etc. A notable example of such an approach is the shifting
bottleneck procedure proposed by Adams et al. (1988). They construct the
schedule by sequentially scheduling on singular machines, each time choosing an
unscheduled machine identified as the current bottleneck, then locally reoptimizing
the already scheduled machines. In their study, Mönch and Zimmermann (2010)
argue that the shifting bottleneck procedure in its various versions remains a
superior method for scheduling semiconductor wafer production systems. They
argue that this is due to several difficulties present in scheduling such systems,
challenges that the shifting bottleneck procedure can easily address. In a Job-
Shop scheduling problem, Zhang and Wu (2008a) identify bottleneck machines
by their sensitivity to changes to their scheduling policies. They incorporate this
identification in a proposed genetic algorithm to guide its search for improved
solutions.

Execution bottleneck machines are the focus of study in this thesis. These
bottlenecks are considered in the constructed schedule for a given problem in-
stance and restrain us from achieving a better schedule in terms of the given
optimization goal, such as average throughput, schedule makespan, weighted
tardiness, etc. While identifying structural bottlenecks primarily aims to enhance
the overall system performance, identifying execution bottlenecks aims to improve
performance for specific problem instances. It’s worth noting that for a specific
problem instance and its constructed schedule, we may identify one machine
as its execution bottleneck, but for a different problem instance with different
settings, the execution bottleneck may vary. Consequently, relaxing constraints
related to an identified execution bottleneck aims to enhance performance for
the specific problem instance; however, applying such relaxation to a different
problem instance might not provide any improvement.

Limited studies have focused on this type of bottleneck. Wang et al. (2016)
proposed a multi-indicator approach for identifying execution bottlenecks. Their
study investigated how identified execution bottlenecks differ from identified plan-
ning bottlenecks. Computational results demonstrate that, for many problems,
the identified planning bottlenecks differ from the execution bottlenecks identi-
fied in specific schedules for those problems. This highlights the importance of
distinguishing between planning bottlenecks and execution bottlenecks.

2.2.3 Identification indicators
Various techniques are used for the identification of bottleneck machines.

Such techniques typically involve the usage of identification indicators, either
individually or in combination. An identification indicator refers to a value
computed for each machine, allowing us to rank the machines and then select the

19

bottleneck machine based on this rank. We will state a few examples proposed in
the literature:

• Machine Utilization Rate (MUR) (Lawrence; Buss, 1994):

MURk =
∑︁

j∈Jk
pj

maxj∈Jk
Cj −minj∈Jk

Sj

.

• Queue Length (QL) (Lawrence; Buss, 1994). In manufacturing systems
consisting of machines with workload queues, this indicator considers the
number of items in the machine’s queue as the bottleneck measure.

• Average Uninterrupted Active Duration (AUAD) (Roser et al., 2001):

AUADk =
∑︁Ak

i=1 aki

Ak

,

where ak1, . . . , akAk
are the lengths of uninterrupted active durations of

resource k, Ak is the number of those individual durations.

• Resource Strength (RS) (Cooper, 1976) and Resource Constrainedness (RC)
(Patterson, 1976):

RSk = Rk

avgj∈J rjk

= Rk · n∑︁
j∈J rjk

,

RCk =
avgj∈Jk

rjk

Rk

=
∑︁

j∈Jk
rjk

Rk · |Jk|
,

where Rk is the per-period capacity of a resource k — these indicators do
not account for variable resource capacities. Those indicators are usually
considered when describing problem instances, specifically, the properties of
resources. However, Luo et al. (2023) chose them as bottleneck identifiers
and compared their effectiveness when used to guide a genetic programming
algorithm.

In the formulae for MURk and RCk, Jk
def= {j ∈ J : rjk > 0} is the set of jobs

with nonzero consumption of the resource k, i.e. the jobs which are executed on
the resource k.

Identification indicators have the advantage of being simple, making their
implementation straightforward and their computation efficient. More complex
identification methods may provide better insight into the bottleneck identification
process, however, such methods are usually tailored specifically to a specific version
of the problem or their implementation can be too complicated for practical use.

2.2.4 Bottlenecks in the RCPSP
To the best of our knowledge, only little research focuses on identifying

bottlenecks in the RCPSP. The closest research is on bottlenecks in the Job-Shop
problem, i.e. scheduling on unit-capacity resources.

20

Luo et al. (2023) studied how identifying bottleneck machines can guide the
scheduling process of a genetic algorithm. Arkhipov et al. (2017) conducted a
case study on a large-scale resource-constrained scheduling problem with over 3
thousand operations and over 50 machines. They proposed a heuristic approach
for estimating project makespan and resource load profiles. Those estimations
are in turn used to identify bottleneck resources for the problem. However, the
identified bottleneck resources were not addressed further.

Concerning bottleneck identification indicators discussed above, we were unable
to find any for the RCPSP with time-variable resource capacities. Moreover, we
were unable to find any identification identifiers for the standard RCPSP which
would account for time-variable consumption profiles in a schedule. Although
the indicators mentioned in Section 2.2.3 can in theory be used in the RCPSP,
they were originally designed for the Job-Shop problem. Identification indicators
in the RCPSP could incorporate information about variable resource loads and
even variable capacity functions in the time-variant capacities extension. However,
the indicators designed for the Job-Shop problem do not consider this additional
dimension of information. We address this further in Section 3.1.

2.2.5 Relaxing the identified bottlenecks
In their study, Zhang and Wu (2012) addressed the Job-Shop problem by

relaxing its capacity constraints and then solving the modified relaxed problem
to identify bottlenecks based on the solution. The obtained information was
used to guide a proposed simulated annealing algorithm to find a solution to the
original problem. Thus, the relaxation served only as an intermediate step toward
obtaining a solution, rather than being the desired result.

Lawrence and Buss (1994) studied how identified bottlenecks shift between
machines in response to introducing relaxations to the original problem. They
employed a proposed ”bottleneck chasing” policy for relaxing short-run bottle-
necks, wherein the capacity of the identified bottleneck resource is increased, e.g.,
by extending its working shifts, or assigning additional employees. Then, the
bottleneck identification process is run again to examine whether the bottlenecks
shift to a different resource. The authors observed that while the chasing policy is
effective at relaxing local bottlenecks, it also increases the “bottleneck shiftiness,”
resulting in a more change-sensitive system. They also studied the shiftiness of
long-run bottleneck resources having the highest utilization over time. Results
show that increasing the capacity of long-run bottleneck resources also increases
the bottleneck shiftiness, but this shiftiness can be reduced by simultaneously
increasing the capacity of non-bottleneck resources.

2.3 Contribution
As discussed in Sections 2.2.3 and 2.2.4, the scheduling literature primarily

focuses on bottlenecks in the Job-Shop problem. We aim to extend the standard
Job-Shop approaches to the RCPSP. Our second goal is to design an approach
for identifying bottlenecks in the RCPSP extended with time-variant resource
capacities with the focus on relaxing the identified bottlenecks to improve a
proposed schedule.

21

3 Solution approach
In this chapter, we present two algorithms designed for identifying and relaxing

bottlenecks in the RCPSP. Both algorithms aim to improve the tardiness of a
selected order by introducing relaxations to the capacity constraints in the problem
instance and finding a solution to the modified problem instance.

First, we propose an algorithm called Identification Indicator-based Relaxing
Algorithm (IIRA). The IIRA combines an adaptation of existing bottleneck
identification approaches from the literature with a new method for relaxing the
capacity constraints. The algorithm utilizes bottleneck identification indicators to
find bottleneck resources, selects periods with high improvement potential, and
increases the capacities of the bottleneck resources during the selected periods.

The second algorithm we propose is the Schedule Suffix Interval Relaxing
Algorithm (SSIRA). The SSIRA employs a novel approach to relaxing capacity
constraints based on finding improvement intervals in partially relaxed versions of
the problem. SSIRA iteratively relaxes the capacity constraints in suffixes of an
obtained schedule and selects jobs that could start earlier following the relaxation.
The resource capacity constraints are then relaxed with respect to a small subset
of the selected jobs with improvement potential.

To help explain how the algorithms work, we illustrate1 key moments on the
schedule given in Figure 3.1. In the illustrated schedule, job 9 is scheduled past its
due date and is considered tardy. This job is the target order for improvements in
the examples provided for the algorithms.

3.1 Baseline solution
In this section, we propose adaptations of existing bottleneck identification

indicators from the literature. Utilizing the adapted indicators, we propose the
IIRA for relaxing capacity constraints of a given problem instance based on its
solution.

3.1.1 Adapted identification indicators
We adapt existing identification indicators to detect bottlenecks, specifically

the Machine Utilization Rate (MUR) and Average Uninterrupted Active Duration
(AUAD) indicators. For precise definitions, see Section 2.2.3.

The MUR, first utilized as a bottleneck identification indicator by Lawrence
and Buss (1994), considers the ratio of executed work on a resource to the total
time the resource was used. In their study, Lawrence and Buss (1994) demonstrate,
that despite its simplicity, the MUR indicator is effective at identifying long-run
bottlenecks2.

The AUAD, initially proposed by Roser et al. (2001), is more complex but
remains a comprehensive indicator for identifying bottleneck resources. For the

1The figures used to illustrate the specifics of the algorithms were created in Python using
the plotting library Matplotlib. See online at https://matplotlib.org/.

2Long-run bottlenecks could be viewed as structural bottlenecks — see Section 2.2.2 for
bottleneck classification.

22

https://matplotlib.org/

0 6 14 22 30 38 46

In
te

rv
al

s 1 2
3 4 5

6

7 8 9

0

2

4

6

8

R1

0 6 14 22 30 38 46
0

2

4

6

8

R2

Figure 3.1 Computed example schedule. Job 9 is considered tardy as it is scheduled
past its due date (time period 22). The figure consists of three panels: scheduled job
intervals panel and two resource panels, each corresponding to a specific resource in
the project. All panels share a common x-axis denoting time in time periods. The job
interval panel illustrates the arrangement of jobs in the schedule, where their y-positions
were chosen arbitrarily. In each resource panel, the availability of the corresponding
resource is illustrated by a gray step function and the consuming load is illustrated by
a green step function.

specified resource, the sequence of all uninterrupted execution periods is computed
and the average length of those periods is considered the indicator value. An
uninterrupted period is a sequence of jobs scheduled consecutively with no idle
times between them. If there is an idle time period between two subsequent jobs,
they belong to different uninterrupted periods.

Both identification indicators consider the relationship between the total
duration of job executions on a resource and the duration for which the resource is
idle. In a Job-Shop scheduling problem, this represents all the available information.
This concept remains applicable in the RCPSP. However, due to the variability of
machine load over time in the RCPSP, a binary “processing–idle” differentiation
between machine states does not provide a sufficient machine-load indication. In
the RCPSP, we have additional information available. By incorporating resource
capacities and resource consumptions into the calculation, we can achieve a more
precise result that better corresponds to the actual machine load. Figure 3.2
illustrates the difference in variability of the load between a Job-Shop machine
(Figure 3.2a) and a RCPSP machine (Figure 3.2b).

We propose Machine Resource Utilization Rate (MRUR) as the adaptation of

23

Time

1 2 3

R
es
o
u
rc
e

C
ap
ac
it
y

S
ch
ed
u
le
d

Jo
b
s

(a) Job-Shop scheduling problem

Time

S
ch
ed
u
le
d

1

2

3

4

5 6

R
es
o
u
rc
e

C
ap
ac
it
y

Jo
b
s

(b) RCPSP

Figure 3.2 Examples of machine-load functions of the Job-Shop problem and the
RCPSP problem. The variability in the possible machine loads during job execution
between the Job-Shop problem and the RCPSP and the variability in machine loads
during different periods in the RCPSP are demonstrated.

MUR and Average Uninterrupted Active Utilization (AUAU) as the adaptation of
AUAD. For a resource k, the MRUR is defined as:

MRURk
def=

∑︁
j∈J (pj · rjk)∑︁Cmax

t=1 R
(t)
k

,

where Cmax
def= maxj∈J Cj

3. For a resource k, the AUAU is defined as:

AUAUk
def=

∑︁Ak
i=1 PRU(i)

k

Ak

,

where the Period Resource Utilization (PRU) of resource k during the uninter-
3In the scheduling literature, Cmax is referred to as the makespan of the project. Minimizing

project makespan is a common optimization goal in scheduling, and it is a simpler alternative
to the total weighted tardiness we use.

24

rupted active period i is defined as

PRU(i)
k

def=
∑︁

j∈J UAP (i)
k

pj · rjk∑︁aE
ki

t=aS
ki

R
(t)
k

.

For a resource k, (aS
k1, aE

k1), . . . , (aS
kAk

, aE
kAk

) is the the sequence of uninterrupted
active periods, where aS

ki ∈ {1, . . . , T − 1} denotes the start of the period i and
aE

ki ∈ {aS
ki + 1, . . . , T } denotes the end of the period i. Similar to the definition

of AUAD but with differences induced by non-unit capacities, an uninterrupted
active period is a maximal set (maximal in terms of inclusion) of jobs scheduled
consecutively or in parallel with no idle time occurring on the considered resource
during the period. Two jobs are in the same uninterrupted active period, if and
only if the execution intervals of the jobs overlap or the considered resource is not
idle between the execution intervals of the jobs. The sequence of uninterrupted
active periods of a resource is the transitive closure of this relation on jobs
executed on the resource. Here, as opposed to the AUAD, we do not consider
the duration of the periods, but the individual jobs executed during each of the
periods, specifically their durations and consumptions of the evaluated resource.

In the formula for PRU(i)
k , J UAP (i)

k
def= {j ∈ Jk : aS

ki ≤ Sj ≤ aE
ki} is the set of

jobs executed on resource k during the uninterrupted active period i. Recall from
Section 2.2.3 that Jk = {j ∈ J : rjk > 0}.

Having proposed bottleneck identification indicators for our RCPSP variant,
we will formulate an algorithm utilizing those indicators in the following section.

3.1.2 Identification Indicator-based Relaxing Algorithm
In this section, we formulate the Identification Indicator-based Relaxing Al-

gorithm (IIRA). IIRA employs a specified bottleneck identification indicator to
identify bottleneck resources. It calculates the granular resource load function
and uses its convolution with a suitably chosen kernel function to determine the
improvement potential for granular periods. Finally, it relaxes capacity constraints
in granular periods with the greatest improvement potential. Following this, a
solution is obtained for the relaxed problem instance, and the proposed capacity
relaxations are reduced to only include those utilized by the new solution. The
Identification Indicator-based Relaxing Algorithm (IIRA) is given in Algorithm 1.

The algorithm consists of a main loop (lines 3–14), the input of which is a
problem instance and its solution, the output of which is a modified problem
instance and its solution. We describe the individual steps performed by the
algorithm in the following outline.

1. First, the solution is evaluated using the given identification indicator and
the bottleneck resource is identified by its maximal value of the identification
indicator (lines 4 and 5).

2. The granular load of the bottleneck resource is computed and the improve-
ment potentials for granular periods are computed using convolution (lines 6
and 7). The granular load of a resource indicates how is the resource being
utilized during granular periods. High utilization could indicate a potential
bottleneck. However, it is uncertain whether the bottleneck occurs in the

25

0 6 14 22 30 38 46

In
te

rv
al

s 1 2
3 4 5

6

7 8 9

0

2

4

6

8
R1

0 6 14 22 30 38 46
0

2

4

6

8

R2

Figure 3.3 Computed example of an intermediate schedule obtained by the IIRA
(I = AUAU, G = 8, C = faround, Imax = 1, Pmax = 1, ∆ = 8). The capacity of resource
2 is increased during the granular period spanning over time periods {24, . . . , 31}.
Subsequently, job 9 can be scheduled earlier. The newly introduced capacity utilized by
the job 9 is highlighted.

0 6 14 22 30 38 46

In
te

rv
al

s 1 2
3 4 5

6

7 8 9

0

2

4

6

8

R1

0 6 14 22 30 38 46
0

2

4

6

8

R2

Figure 3.4 Computed example of a schedule with reduced resource capacity functions
obtained by the IIRA (I = AUAU, G = 8, C = faround, Imax = 1, Pmax = 1, ∆ = 8). The
capacity of resource 2 is reduced during the granular period spanning over time periods
{24, . . . , 31} to exclude unused capacity additions. The only additional capacity left is
exactly the highlighted capacity consumed by the job 9.

26

Algorithm 1 Identification Indicator-based Relaxing Algorithm (IIRA)
Parameters: Identification indicator I, granularity G, convolution mask C,

iterations limit Imax, improvement periods limit Pmax,
capacity improvement ∆

Input: Solution S to a problem instance I
1: PC ← ⌈T /G⌉ ▷ The number of granular periods
2: I∗ ← I, S∗ ← S ▷ Modified instance and its solution, initially

copies of the original instance and solution
3: repeat:
4: Evaluate S∗ using I, obtaining: Ik ∀k ∈ R
5: Identify bottleneck resource: k∗ ← argmaxk Ik

6: Compute granular resource load for k∗:
Lk∗ ← GranularResourceLoad(k∗, I∗, S∗, PC)

7: Compute improvement potential of periods: Ψ← Lk∗ ∗ C
8: Find improvement periods:

p1, . . . , pPmax ← periods with the highest potential Ψ(i)
9: for i ∈ {p1, . . . , pPmax} :

10: R∗
k∗ ← IncreaseGranularPeriodCapacity(i, R∗

k∗ , G, ∆)
11: Find solution S∗ to the modified instance I∗

12: R∗
1, . . . , R∗

m ← ReduceCapacityChanges(I∗, S∗, R1, …, Rm)
13: AI∗

,MI∗ ← FindAdditionsAndMigrations(I∗, S∗)
14: for Imax iterations
Output: Modified instance I∗ and its solution S∗,

additions AI∗ , migrationsMI∗

Note: In the call to ReduceCapacityChanges (statement 12), Rk∗ from the original instance
is given as the original capacity function of the resource k∗.

highly-utilized granular period, or whether the high utilization is a conse-
quence of a bottleneck in a preceding or a following granular period. This is
why the granular load is convolved with a kernel function of choice, which
propagates the information about high resource utilization to consecutive
granular periods. The result of the convolution is trimmed to only contain
”valid” values, i.e. values computed directly on the interval {1, . . . , PC}.

3. A small subset of granular periods is selected for the increase in capacity.
The granular periods with the highest improvement potentials are chosen
(line 8). The capacity of the bottleneck resource is increased during the
selected granular periods by a specified amount (line 10). The modified
resource capacity function of the bottleneck resources forms, together with
the unchanged capacity functions of other resources, a new modified problem
instance. Note that the algorithm does not consider the target order o in
any way when identifying bottlenecks (step 2.) nor when selecting granular
periods for capacity constraints relaxation.

4. Finally, a new solution to the modified problem instance is found (line 11).
An example of a modified solution is given in Figure 3.3. Based on this
solution, reduced capacity functions are computed to exclude capacity

27

relaxations not utilized in the solution (line 12). An example of a schedule
with reduced resource capacity functions is given in Figure 3.4. The reduction
involves the capacity functions of all the resources, not only of the bottleneck
resource. This is because, in subsequent iterations of the algorithm, the
introduction of new relaxations often leads to changes in the solution schedule.
Such changes might cause previous relaxations to no longer be necessary, so
in turn, every resource capacity function is reduced. Note that the function
ReduceCapacityChanges takes the original resource capacity functions
as input and the reductions are made with respect to them. As a final step,
capacity migrations are computed in the reduced capacity functions to best
utilize the existing unused capacities (line 13). Any remaining capacity
requirements are then fulfilled with capacity additions.

The algorithm utilizes multiple additional procedures and functions. For
brevity, we exclude the detailed specifics of the procedures and instead offer
short overviews of each procedure. Complete pseudocodes of the procedures are
available in Appendix A.1.

• GranularResourceLoad computes a granular resource load for a given
resource. The granular load is a function mapping granular periods to the
cumulative sum of the load of the resource over the specified granular period.
Example of a computed granular load can is illustrated in Figure 3.5.

Re
so

ur
ce

lo
ad

0 4 8 12 16 20 24

0

2

4
3

1

0

4

8

12

16

Re
so

ur
ce

gr
an

ul
ar

 lo
ad

Time

Figure 3.5 Resource granular load example. The first panel illustrates the resource
load representing the consumption of jobs. The second panel illustrates the computed
granular load with the granularity of 4 time periods.

• IncreaseGranularPeriodCapacity increases the values of the given
capacity function during the specified granular period. The capacity is
increased in each time period covered by the granular period, determined
by the specified granularity.

28

• ReduceCapacityChanges constructs reduced capacity functions for the
given problem instance based on the original resource functions and the
actual load of the instance resources (computed from the given solution).
This function reduces redundant capacity additions introduced by former
relaxations so that the resource capacity functions do not contain capacity
additions not utilized by the solution.

• FindAdditionsAndMigrations finds capacity additions and migrations,
as defined in Section 1.3.3, for the resources of the given problem instance.
In the same section, we discussed that in real-world production systems
capacity migrations are preferred over capacity additions due to their com-
paratively small execution cost. Thus, we first find all possible migrations
to utilize existing capacities. Then, when no other migrations are possible,
the remaining capacity requirements are fulfilled by introducing capacity
additions.

3.2 Extended solution
In this section, we present a novel method for detecting bottlenecks and relaxing

related constraints in the RCPSP. The method is based on finding improvement
intervals in partially relaxed versions of the given problem. A small subset of the
improvement intervals is then selected and capacity constraints corresponding to
the selected improvement intervals are relaxed. The primary goal is to identify
relaxations that focus specifically on the target order. By doing so, we hope to
achieve great improvements in the tardiness of the target order while maintaining
low capacity modification costs and induced schedule differences.

3.2.1 Preliminaries
Before we formulate the Schedule Suffix Interval Relaxing Algorithm, we need

to state a few definitions and ideas upon which the algorithm is designed. First,
we define the suffix-relaxed schedule as a modification of an obtained schedule
solution where the algorithm finds improvement intervals. We then define the
left-shift closure as a tool for focusing the search for improvement intervals towards
improving the tardiness of the target order.

Definition 4 (Suffix-relaxed schedule). Let S = (S1, . . . , Sn) be a schedule to
a problem instance I. Given a time period t ∈ {1, . . . , T }, the suffix-relaxed
schedule for the time period t is given by S⃗

(t)
= (S⃗

(t)
1 , . . . , S⃗

(t)
n), where

S⃗
(t)
j

def=

⎧⎪⎨⎪⎩
Sj if Sj ≤ t;
max

{︃
S⃗

(t)
i + pi : i→j ∈ P

}︃
otherwise.

For a given job j, the value of S⃗
(t)
j depends only on the values S⃗

(t)
i of its

precedence predecessors i, given by precedences i→j. Since the precedence graph
is directed and acyclic, all values of S⃗

(t)
are well-defined and the definition is

correct.

29

The suffix-relaxed schedule for a time period t is a modification of the original
schedule where the start times of jobs starting in time periods up to t remain
unchanged, and the start times of jobs scheduled to start later can be shifted to
earlier time periods, constrained only by precedence constraints. This essentially
relaxes resource capacity constraints for all jobs that, in the original schedule,
start after the time period t.

The idea is that a job scheduled during the later time periods could not be
scheduled earlier due to the lack of remaining capacity on the required resources,
assuming sufficient slack in precedence constraints. By fully relaxing the resource
capacity constraints in the suffix of a schedule, we can compute potential starting
times for jobs scheduled in that suffix, had they not been constrained by the
resource capacity constraints. Following this, we can observe the potential im-
provements in the starting times and the consequent required resource capacity
relaxations.

Definition 5 (Left-shift closure). Let S = (S1, . . . , Sn) be a schedule to a problem
instance I. A left-shift closure of a job j ∈ J is the set L(j) ⊆ J , where:

i) j ∈ L(j)

ii) All precedence predecessors directly preceding in the schedule are included.

(∀i→j ∈ P) : Ci = Sj =⇒ L(i) ⊂ L(j)

iii) All jobs consuming a common resource directly preceding in the schedule are
included.

(∀k ∈ R, rjk > 0)(∀i ∈ Jk) : Ci = Sj =⇒ L(i) ⊂ L(j)

iv) If j is scheduled exactly at the start of a working shift, all jobs scheduled at
the end of the previous working shift are included.

(∀k ∈ R, rjk > 0, R
(Sj−1)
k = 0)(∀i ∈ Jk) :

psk(Sj)− pj ≤ Ci ≤ psk(Sj) =⇒ L(i) ⊂ L(j)

where psk(t) def= max{t′ ∈ {1, . . . , t− 1} : R
(t′)
k > 0}.

The left-shift closure of a job j defines the set of all jobs preventing the job j
from starting in an earlier time period. The only exception to this interpretation
is the condition i), which simplifies the inductive definition.

Condition ii) states that a direct predecessor i of the job j, indicated by
the precedence constraint i→ j, is included in L(j) if the jobs are scheduled
consecutively. Jobs i and j are scheduled consecutively if the execution of the
job i ends at the exact same time period where the execution of the job j starts,
i.e. Ci = Sj.

Condition iii) involves all jobs scheduled consecutively with the job j, which
share at least one required resource. Jobs can be executed on multiple resources,
but sharing just one resource is sufficient for the jobs to influence each other. This
resource requirement overlap can delay the job j if its predecessor job i’s resource
consumption prevents the job j from being scheduled earlier.

30

Algorithm 2 Schedule Suffix Interval Relaxing Algorithm (SSIRA)
Parameters: Iterations limit Imax, improvement intervals limit ITmax,

interval sort key K
Input: Solution S to a problem instance I, target order o

1: I∗ ← I, S∗ ← S ▷ Modified instance and its solution, initially
copies of the original instance and solution

2: repeat:
3: χ1, . . . , χITmax ← FindIntervalsToRelax(I∗, S∗, ITmax, K, o)
4: R∗

1, . . . , R∗
m ← ModifyResourceCapacities(I∗, χ1, . . . , χITmax)

5: Find solution S∗ to the modified instance I∗

6: R∗
1, . . . , R∗

m ← ReduceCapacityChanges(I∗, S∗, R1, …, Rm)
7: AI∗

,MI∗ ← FindAdditionsAndMigrations(I∗, S∗)
8: for Imax iterations

Output: Modified instance I∗ and its solution S∗,
additions AI∗ , migrationsMI∗

Algorithm 3 FindIntervalsToRelax
Input: Problem instance I, its solution S, improvement intervals limit ITmax,

interval sort key K, target order o

1: for t ∈ {1, . . . , T } : S⃗
(t)
← ComputeSuffixRelaxedSchedule(I, S, t)

2: L(o)← ComputeLeftShiftClosure(I, S, o)
3: X ← ∅
4: for j ∈ L(o) :
5: s← mint

{︃
S⃗

(t)
j : S⃗

(t)
j < Sj

}︃
▷ Find the earliest improvement

6: X ← X ∪ {(j, s, s + pj)}
7: χ1, . . . , χITmax ← first ITmax intervals from X ordered by K

Output: Improvement intervals χ1, . . . , χITmax ,
a set of 3-tuples (j, s, e) ∈ J × {1, . . . , T }2

Lastly, condition iv) involves jobs at the end of previous working shifts. As-
suming sufficient slack in precedence constraints, the job j starts exactly at the
start of a working shift because it could not have been scheduled at the end of
the previous working shift due to the lack of remaining capacities on its required
resources. Jobs scheduled at the end of the previous working shift consume the
required resources and thus prevent the job j from being scheduled there.

3.2.2 Schedule Suffix Interval Relaxing Algorithm
Having presented the main concepts in the previous section, we now formulate

the Schedule Suffix Interval Relaxing Algorithm (SSIRA) in Algorithm 2. The for-
mulation of the algorithm itself is quite simple. The core procedure is encapsulated
in the FindIntervalsToRelax function, formulated in Algorithm 3.

The SSIRA consists of a main loop (lines 2–8), the input of which is a problem
instance and its solution, the output of which is a modified problem instance
and its solution. In each iteration of the main loop, the algorithm first finds

31

1 2

3 4

7 8

Time

C
ap

ac
ity

 &
 L

oa
d

Re
so

ur
ce

 2
Re

so
ur

ce
 1

C
ap

ac
ity

 &
 L

oa
d

S
ch

ed
ul

ed
Jo

bs
1

2

2

7

7 4

8
9

5

6

9

5

6

9

99

6

5

9

9

9

6

9

66

3 5 65 65 6

Figure 3.6 Example of a suffix-relaxed schedule based on the schedule given in
Figure 1.2. The red vertical line represents the time period for which the suffix-relaxed
schedule was computed. The resource capacity constraints were relaxed for jobs 5, 6,
and 9 as they were scheduled later than the specified time period. We observe that
in the relaxed schedule, job 9 would require only small capacity additions on both
resources, should it be scheduled on them. Moreover, most of the requirements could
be satisfied by migrating unused capacities between the resources.

3

1

2

2

7

7 4

8
9

9

5

6

6

Time

C
ap

ac
ity

 &
 L

oa
d

Re
so

ur
ce

 2
Re

so
ur

ce
 1

C
ap

ac
ity

 &
 L

oa
d

S
ch

ed
ul

ed
Jo

bs

1 2

3 54

6

7 8 9

Figure 3.7 Example of a left-shift closure computed for the job 9 in the schedule given
in Figure 1.2. Here, the left-shift closure of the job 9 is the set L(9) = {2, 8, 9}. The
included jobs are highlighted; jobs not included are dimmed. Job 9 is trivially included
by condition i). Job 8 is included by condition iv) — pauses in resource working shifts.
Job 2 is included by condition iii) — resource predecessor of the job 8 on resource 2.
Conversely, job 3 ends at the same time period job 2 starts, however, they are not
precedence predecessors and thus job 3 is not included.

32

0 6 14 22 30 38 46

In
te

rv
al

s 1 2
3 4 5

6

7 8 9

0

2

4

6

8
R1

0 6 14 22 30 38 46
0

5

10

R2

Figure 3.8 Computed example of an intermediate schedule obtained by the SSIRA
(Imax = 1, ITmax = 1,K = Kt). The capacity of resource 2 is increased over the
improvement interval spanning the time periods {22, . . . , 27}. Subsequently, job 9 can
be scheduled earlier. The newly introduced capacity utilized by the job 9 is highlighted.
Note that the job 9 is scheduled earlier than anticipated by the improvement interval.

0 6 14 22 30 38 46

In
te

rv
al

s 1 2
3 4 5

6

7 8 9

0

2

4

6

8

R1

0 6 14 22 30 38 46
0

2

4

6

8

R2

Figure 3.9 Computed example of a schedule with reduced resource capacity functions
obtained by the SSIRA (Imax = 1, ITmax = 1,K = Kt). The capacity of resource 2 is
reduced, removing unused capacities introduced in Figure 3.8. The only additional
capacity left is the highlighted capacity consumed by the job 9 migrated from resource 1.
Note that this schedule is identical to the schedule obtained by the IIRA in Figure 3.4.

33

improvement intervals (line 3). Then, resource capacity functions are modified
based on these intervals (line 4). The subsequent steps (lines 5–7) mirror those
of the IIRA, as stated in detail in Section 3.1.2. A new solution to the modified
problem instance is found, the modified resource capacity functions are reduced
based on that solution, and capacity migrations and additions are computed in the
reduced capacity functions. An example of a schedule obtained in the modified
instance is given in Figure 3.8 and that schedule with reduced capacity functions
is given in Figure 3.9. Note that in this example, both the IIRA and the SSIRA
obtained the same solution, given in Figure 3.4 and Figure 3.9 respectively.

The FindIntervalsToRelax function consists of initializations, the search
for improvement intervals, and a preference-selection of intervals. We describe the
individual steps performed in the function in the following outline.

1. Suffix-relaxed schedules are computed for each time period within the
scheduling horizon (line 1). These schedules represent all possible job-interval
relaxations, from which potential improvement intervals are subsequently
identified and selected. Following this, the left-shift closure of the target
order is computed (line 2). This closure represents the set of jobs considered
for improvement.

2. Potential improvement intervals are identified iteratively for jobs within the
left-shift closure of the target order (lines 3–6). For each job in the closure,
the start of the potential improvement interval is determined as the earliest
improving time for that job across all suffix-relaxed schedules (line 5). The
start time of a job in a suffix-relaxed schedule is considered improving if it
is earlier than the start time in the original schedule. Then, the potential
improvement interval for the job is constructed (line 6), incorporating the
identified earliest improving time and the job’s execution duration. The
constructed potential improvement interval is added to the set of potential
improvement intervals for the subsequent selection of preferred improvement
intervals.

3. Predefined number of improvement intervals is selected based on a specified
sort key (line 7). The potential improvement intervals are ordered according
to the sort key, and the first intervals from this ordering are selected as the
proposed improvement intervals.

The SSIRA and the FindIntervalsToRelax function both utilize multiple
additional procedures and functions. The ReduceCapacityChanges and
FindAdditionsAndMigrations functions used by the SSIRA are the same
functions as those used by the IIRA. Their overview was given in Section 3.1.2. For
brevity, we exclude the detailed specifics of the remaining functions and instead
offer their short overviews. Complete pseudocodes of the functions are available
in Appendix A.1.

• ModifyResourceCapacities modifies the resource capacity functions of
a given problem instance by increasing their capacities within the specified
improvement intervals. Each improvement interval is associated with a
particular job. For every resource required by that job, its resource capacity
function is increased by the job’s required resource consumption of that
resource over the duration of the improvement interval.

34

• ComputeSuffixRelaxedSchedule computes the suffix-relaxed schedule
for a specified time period, as defined in Definition 4. Initially, the topological
order of the jobs in the instance is computed. Then, for each job considered
in the topological order, its start time in the suffix-relaxed schedule is
determined: if the job was scheduled up to the specified time period, its
original start time is used; otherwise, the latest end time of its precedence
predecessors is computed in the suffix-relaxed schedule, and this value is
used. This maximum is well-defined due to the jobs being processed in
topological ordering and thus, all values have been determined by the time
they are first considered in the maxima.

• ComputeLeftShiftClosure computes the left-shift closure of a specified
job, as defined in Definition 5. The precedence graph is traversed in a
breadth-first manner, starting from the specified job. The traversal considers
only the jobs that correspond to the defining conditions ii) to iv).

35

4 Numerical experiments
In this chapter, we evaluate the performances of the Identification Indicator-

based Relaxing Algorithm and the Schedule Suffix Interval Relaxing Algorithm
proposed in the previous chapter. We first design benchmark instances that
model the addressed problem and choose ranges of parameters for each algorithm,
creating evaluation parameter sets. Then, we conduct the experiments, make
several observations about the outcomes, and discuss the achieved results.

4.1 Setup
In this section, we present benchmark instances used for evaluating the pro-

posed methods and algorithms, we describe the modification process for creating
problem instances suited to our studied problem, explain how we obtain (near)
optimal solutions to the modeled problem using a constraint programming solver,
and discuss the algorithms’ parameters used in the following experiments.

All processing, including manipulating with problem instances, solving con-
straint programming models, and conducting experiments, all described in the
following sections, was done in Python using a library developed specifically for
the purposes of this thesis. More about this library and running the experiments
can be found in Appendix A.2.

4.1.1 Problem instances
Kolisch and Sprecher (1997) created the PSPLIB1 — set of benchmark instances

for the RCPSP. This set has since been used to evaluate and compare many results
in the literature, for example, see some recent papers from Bianco and Caramia
(2011), Cheng et al. (2015), or Elsayed et al. (2017).

We use and modify specific instances from the PSPLIB single-mode instance
set. Instances from this set model the standard RCPSP. They consist of 30, 60,
90, or 120 jobs, and 4 renewable resources with fixed capacities. Each job has an
execution duration and consumption requirements for each of the resources defined.
Precedences between jobs are stated, forming a single-component precedence graph.
The goal when scheduling such problem instances is usually minimizing the project
makespan, or minimizing the project tardiness with respect to a specified project
due date. The PSPLIB instances were generated using diverse parameter settings.
For each setting, 10 random seeds were used to create a 10-instance batch.

To accurately model our studied problem, we introduce several modifications to
the original instances. Namely, we split the precedence graph to create individual
order components, introduce job due dates, and introduce time-variable resource
capacities. Additionally, to ensure feasibility when modeling specific production
systems, we scale down job durations and resource consumptions. Following are
the modification steps in more details.

Initially, to model a system with fewer than the original four resources, we
remove the unwanted resources from the problem instance and optionally adjust

1Available online at https://www.om-db.wi.tum.de/psplib/

36

https://www.om-db.wi.tum.de/psplib/

the resource consumptions of jobs. If removing all resources consumed by a
job results in that job having no consumption requirements, the total removed
consumption of that job is distributed among the remaining resources. We then
proceed with modifications common for all instances.

First, we split the single-component precedence graph into disconnected com-
ponents, creating an inforest. We do this by ordering the jobs topologically and
selecting one of the last topological generations as seed jobs2. Incrementally,
starting with the preceding generation and continuing in the reverse order of topo-
logical generations, each job from preceding generations selects a single successor
precedence to connect to a successor job. Analogously, each job from succeeding
generations selects a single predecessor precedence to connect to a predecessor
job. After splitting the graph into an inforest, the sink-roots of the intrees are
selected as orders O.

Second, we limit the resource availabilities to simulate working shifts. We
model three-shift production systems, i.e. with three possible 8-hours working
shifts: the morning shift starting from 8 to 14, the afternoon shift starting from 14
to 22, and the night shift starting from 22 to 6 of the next day. We use periodical
availability intervals, sub-intervals of {1, . . . , 24}, to denote that a resource is
available each day during the specified working shift. During those shifts, the
resource capacity is set to its defined shift capacity R

(−)
k ; outside those working

shifts, the capacity is set to 0.
Third, we introduce job due dates. As stated in Sections 1.1 and 1.2, it is

sufficient to set due dates for order jobs j ∈ O only. Those were set manually to
simulate a continuous distribution of orders in time as they would appear in a
real order-based manufacturing system.

Finally, if needed, the durations of jobs are scaled down appropriately. Previous
modifications might have caused the problem instance to be infeasible — a solution
to the problem instance could no longer be found. Such infeasibility can be
introduced by limiting resource availabilities to shifts where the shifts of two
resources consumed by a job do not overlap, or overlap for a time duration smaller
than the required execution duration of the job. In such cases, the durations of
jobs are scaled down appropriately. Given that preemption is not allowed and
job resource consumptions have to be concurrent, the maximal duration pmax of
a job in a problem instance is set to be the length of maximal overlap of all the
resources’ availabilities in the problem instance. Then, the durations of all jobs
are scaled down as follows:

pj ←
pj · pmax

max{pj : j ∈ J }
.

We propose 8 problem instance groups, each consisting of 5 individual instances.
The premise is that instances within each group will share similar properties and
that we will be able to analyze aggregated results of evaluations on each group and
draw reasonable conclusions from those results. Table 4.1 contains an overview of
the problem instance groups. Each of our instance groups is based on 5 instances
from some PSPLIB 10-instance batch, where every instance in the batch has
similar resource and precedence properties, as mentioned earlier. The 5 specific

2The depth of the selected generation influences the number of created components and the
overall structure of the created intree forest.

37

instances were chosen based on similar precedence graphs that were formed by
the precedence graph-splitting process described above.

4.1.2 Solving the constraint programming model
We use the IBM Decision Optimization CPLEX (DOcplex)3 Python API for

modeling the problems via constraint programming. We then utilize the IBM
ILOG Constraint-Programming Optimizer (CP Optimizer)4 for finding optimal
solutions to the modeled problems.

Solver time limit was set to 10 seconds. Upon reaching the time limit without
optimality verification, the best solution found so far was used. This follows
from the argument that for the proposed methods to be applicable in real-world
manufacturing systems, they need to be reasonably fast — not much time can be
spent finding optimal solutions to the problem instances5.

We use solver warm-starting to speed up consecutive solution finding of
modified problem instances. Models of modified instances usually differ only
slightly from the models of the original problem instance. This means, that an
(optimal) solution to the original problem instance might remain a feasible (if not
directly an optimal) solution to the modified version of the problem instance. If
not, it is still probable that the desired feasible solution to the modified problem
instance does not differ much from the initial solution to the original problem
instance.

Warm-starting of the constraint programming solver utilizes this by starting
the search not from a random initial solution, but from a particular given solution.
With high probability, a feasible solution will be found shortly which consequently
speeds up the process of finding an optimal one. In summary, consecutively finding
solutions to modified problem instances will usually be faster than finding the
initial solution to the original problem instance.

4.1.3 Algorithm parameters
For both evaluated algorithms, we choose multiple different combinations

of parameters. Then, on each problem instance, the algorithms are evaluated
using every parameter combination. As a result, for each instance and for each
algorithm we will have a set of evaluations, each evaluation corresponding to
a specific parameter combination. The parameters of the algorithms will be
constructed from all possible combinations of the following parameter values,
separate for each algorithm.

(i) Identification Indicator-based Relaxing Algorithm

• Bottleneck identification indicator I ∈ {MRUR, AUAU}
3See online at https://ibmdecisionoptimization.github.io/docplex-doc/cp/index.

html.
4See online at https://www.ibm.com/products/ilog-cplex-optimization-studio/

cplex-cp-optimizer. (IBM, 2024)
5Such an argument could lead to the preference of heuristic approaches for finding problem

instance solutions. However, as discussed in Section 2.1.2, the benefits of utilizing an exact
constraint programming solver outweigh the herein-mentioned drawbacks.

38

https://ibmdecisionoptimization.github.io/docplex-doc/cp/index.html
https://ibmdecisionoptimization.github.io/docplex-doc/cp/index.html
https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-cp-optimizer
https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-cp-optimizer

Instances Basefiles |J | |R| Resource shifts
instance01* j3011_4.sm, j3011_2.sm,

j3011_5.sm, j3011_6.sm,
j3011_9.sm

30 4 R1: M | A |
R2: M | A |
R3: M | A |
R4: M | A |

instance02* j3010_2.sm, j3010_4.sm,
j3010_5.sm, j3010_7.sm,
j3010_8.sm

30 2 R1: M | A | N
R2: M | A |

instance03* j6010_7.sm, j6010_8.sm,
j6010_9.sm, j6010_6.sm,
j6010_2.sm

60 1 R1: M | A |

instance04* j6010_7.sm, j6010_8.sm,
j6010_9.sm, j6010_6.sm,
j6010_2.sm

60 1 R1: M | A |

instance05* j6011_10.sm,
j6011_2.sm, j6011_3.sm,
j6011_6.sm, j6011_7.sm

60 4 R1: M | A |
R2: M | A |
R3: | A | N
R4: M | A | N

instance06* j6013_6.sm, j6013_2.sm,
j6013_3.sm, j6013_5.sm,
j6013_10.sm

60 4 R1: | A |
R2: | A |
R3: | A |
R4: | A |

instance07* j1201_1.sm, j1201_3.sm,
j1201_6.sm, j1201_7.sm,
j1201_10.sm

120 4 R1: M | A |
R2: M | A |
R3: M | A |
R4: M | A |

instance08* j1205_1.sm, j1205_5.sm,
j1205_6.sm, j1205_7.sm,
j1205_9.sm

120 2 R1: M | A |
R2: M | A |

Table 4.1 Overview of the experiment instances used. For each instance group, the
”Basefiles” column contains names of the PSPLIB instances used to create the five
instances from the group. Following are columns describing the instance properties of
the instance group — the number of jobs, the number of resources, and the resource
availability profiles. The resource availability profiles consist of three possible shifts —
morning (M), afternoon (A), and night (N) — representing that the resource is available
each day (period of 24 time periods) during the corresponding multiples of the time
periods {7, . . . , 14}, {15, . . . , 22}, and {1, . . . , 6} ∪ {23, 24} respectively.

39

• Granular period granularity G ∈ {4, 8}
• Improvement potential convolution kernel C ∈ {fpre, faround, fpost}
• Number of iterations Imax ∈ {1, 2, 3}
• Number of improvement periods Pmax ∈ {1, 2, 3, 4}
• Capacity improvement ∆ ∈ {4, 10}

(ii) Schedule Suffix Interval Relaxing Algorithm

• Interval sort key K ∈ {Kt,K∆S}
• Number of iterations Imax ∈ {1, 2, 3}
• Number of improvement intervals ITmax ∈ {1, 2, 3, 4, 5, 6}

Regarding the possible improvement potential convolution kernels of the IIRA,
see diagrams of the kernels in Figure 4.1. Regarding the SSIRA and its possible
interval sort keys, the Kt is a sort key which orders the improvement intervals by
the time periods during which the intervals are proposed in a descending order.
Using this key, improvement intervals identified later in the schedule precede
improvement intervals identified earlier in the schedule. The K∆S orders the
improvement intervals by the improvement in job start times they represent.
Using this key, improvement intervals proposing large improvements of job start
times precede improvement intervals which propose smaller improvements of job
start times.

0
1
2
3

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

4
5

0
1
2
3
4
5

0
1
2
3
4
5

Figure 4.1 Improvement convolution kernels used in the IIRA algorithm.

The parameter value ranges were set based on prior testing of the algorithms.
We do not rule out the possibility that a promising combination of parameters
with great performance potential was not included in the constructed set of
combinations, nor do we claim those ranges are exhaustive in terms of acceptable
values. The value ranges were set to create a broad spectrum of algorithms with
comparable performances.

When considering the number of iterations for example, the maximum value
was set reasonably low as both algorithms tend to propose impractical relaxations
after several iterations. For example, the algorithms would propose to disregard
any planned resource working shift pauses or double the resource capacities
throughout most of the scheduling horizon. While such proposals would certainly

40

achieve the desired improvement, they are not realistic within the context of
real-world manufacturing systems.

The combinations of all algorithm parameters for the IIRA form a total of
288 different parameter combinations and for the SSIRA a total of 36 different
parameter combinations. We justify this apparent difference in the parameter
combinations totals simply by the fact that the IIRA is an algorithm with more
parameters by design. To sufficiently evaluate the IIRA, we provide several values
for each parameter. Reducing the choices would leave out interesting combinations
of parameters. Conversely, additional value options for the parameters of the
SSIRA would not introduce any more interesting combinations. We did not come
up with other improvement interval sorting keys which would seem practical and
we already discussed the impracticality of a larger number of algorithm iterations.

4.1.4 Methods of evaluation
To evaluate an algorithm, we follow the procedure stated in Section 1.4. We

start with a given problem instance I for which we obtain a solution S. Then, we
run the algorithm with specified parameters, the output of which is the modified
instance I∗ and its solution S∗. Finally, we compute the following metrics:

• Tardiness improvement
∆To

def= To − T ∗
o .

This metric is arguably the most important, as it tells us how much the
algorithm was able to reduce the tardiness of the target order o.

• Solution difference
∆S

def=
∑︂
j∈J

⃓⃓⃓
Cj − C∗

j

⃓⃓⃓
.

This metric shows how much the modified solution differs from the original
solution. It hints about how challenging it would be to realize the proposed
modifications. For instance, in manufacturing setups that employ human
workers, working shifts may be planned weeks in advance. Therefore,
significant changes to the work plan for the upcoming days may not be
feasible.

• Instance modification cost

cost def= CA

⎛⎝ ∑︂
(k,s,e,c)∈AI∗

(e− c)c
⎞⎠ + CM

⎛⎝ ∑︂
(kf,kt,s,e,c)∈MI∗

(e− c)c
⎞⎠ ,

where CA is a given capacity addition cost and CM is a given capacity
migration cost.

• We also measure the algorithm computation time, denoted as time, which is
the total run-time of the evaluated algorithm in seconds. This computation
time will mostly consist of finding solutions to modified problems — the
computation time of the CP Optimizer.

41

4.2 Comparative results
In this section, we present the experiment results. All experiments were

conducted on a personal desktop computer equipped with an Intel® Core™ i5-
8400 CPU and 16 GB of RAM.

The total evaluation time was 43 hours, 5 minutes, and 40 seconds. This time
is the sum of the individual durations of each algorithm evaluation. As described
in Section 4.1.4, the measured time does not include the experiment running
overhead nor aggregate data manipulation, but such overheads are negligible in
comparison to the experiment evaluation times.

Plots in this section, namely Figures 4.2 to 4.4, present the evaluation results
split into 4 sets. We choose the arguably most important parameters for each
of the algorithms, the bottleneck identification indicator for the IIRA and the
improvement interval sort key for the SSIRA, for splitting the sets of evaluations
to present how performances of the algorithms differ based on the choice of those
parameters. For the IIRA, we split the evaluations by the bottleneck resource
identification indicator parameter I, yielding two sets of evaluations for each of
the two employed adapted identification indicators MRUR and AUAU. For the
SSIRA, we split the evaluations by the sort key parameter K, yielding two sets of
evaluations for each of the two choices of the sort key parameter Kt and K∆S .

We could further split the larger parameter sets for the IIRA by the im-
provement potential convolution kernel parameter as this parameter also has a
considerable influence on the algorithm functioning. However, such split would
create 6 evaluation sets for the IIRA. Plotting results for this many different
evaluation sets would negate the advantages of splitting the evaluations.

4.2.1 Observations
Table 4.2 provides a summary of achieved improvements on the individual

instance groups. The IIRA found improvements for 72.5% of the instances, while
the SSIRA found improvements for 87.5% of the instances. The IIRA found a
better improvement than the SSIRA on 10 instances. Conversely, the SSIRA
found a better improvement than the IIRA on 13 instances, and on 6 of these, the
SSIRA was the only algorithm to find an improvement. There were no instances
where the IIRA found an improvement and the SSIRA did not. Where it found
an improvement, the IIRA found a solution with the overall best improvement for
75.8% of the instances, while the SSIRA did so for 71.4% of the instances.

Table 4.3 contains results concerning the achieved tardiness improvements.
Instances for which no algorithm found any improvements were omitted. For each
instance, the table lists the average cost per unit tardiness improvement (per time
period) and the average tardiness improvement achieved per unit of evaluation
time (per second). Out of the 29 instances where both algorithms found improving
solutions, the IIRA had a lower average cost per unit tardiness improvement on
15 of them. The IIRA algorithm achieved a better average on all the instances
within the instance group instance08*, except for instance08_4, where the only
improvement was found by the SSIRA. No clear trend is observed in the average
cost per unit tardiness improvement apart from this group.

Regarding the average improvement achieved per unit of evaluation time, the

42

IIRA SSIRA
Instances Improved Unique Best Improved Unique Best

instance01* 0/5 3/5 3/3 3/3
instance02* 4/5 1/4 4/5 3/4
instance03* 5/5 5/5 5/5 5/5
instance04* 5/5 4/5 5/5 4/5
instance05* 5/5 4/5 5/5 2/5
instance06* 1/5 0/1 3/5 2/3 3/3
instance07* 5/5 5/5 5/5 1/5
instance08* 4/5 3/4 5/5 1/5 4/5

Total 29/40 0/29 22/29 35/40 6/29 25/35

Table 4.2 Number of improved solutions found in the instance groups. For each
algorithm, the first column contains the number of instances within the specified instance
group for which an improved solution was found. The second column contains the
number of instances for which an improved solution was found and for which the other
algorithm did not find an improvement. The third column contains the number of
instances for which the solution with best improvement was found by this algorithm.

IIRA algorithm performed slightly better than the SSIRA algorithm. Out of the
29 instances improved by both, the IIRA achieved a greater improvement per unit
time on 18 instances. This pattern is particularly evident on the instance groups
instance03*, instance05*, and instance07*.

Table 4.4 contains results concerning induced schedule difference. Instances
for which no algorithm found any improvements were omitted. For each instance,
the table lists the average schedule difference induced in individual evaluations
and the average difference across jobs within that instance. On smaller instances,
such as in instance groups instance02*, instance03*, and instance04*, the
IIRA proposes better solutions that differ from the original schedule less than
those proposed by the SSIRA. Conversely, on larger instances, such as in instance
groups instance07* or instance08*, the IIRA proposes solutions with a larger
schedule impact than the SSIRA. We observe, that in terms of schedule difference
the IIRA proposes better solutions on smaller instances while the SSIRA is more
effective on larger instances. Exceptions exist, for example on the instances
instance03_4 or instance05_2, where the SSIRA proposes significantly less
disruptive solutions. In the evaluations of the SSIRA algorithm on the instance
group instance07*, we observe that while the IIRA has comparable results
across all five instances, the SSIRA performs significantly better on instances
instance07_2 and instance07_3. A similar anomaly can be observed on the
instance instance05_2 within the instance group instance05*. Conversely,
within the instance group instance04*, all evaluations of the SSIRA are consistent
across the individual instances, but the performance of the IIRA on instance
instance04_2 is notably worse.

In Figure 4.2 we present the results concerning capacity changes cost related to
tardiness improvement, aggregated over the individual instance groups. Note that
the capacity changes costs (x-axis) are plotted on a logarithmic scale. We observe
a consistent trend for the SSIRA with the Kt sort key: better improvements can

43

IIRA SSIRA
Instance cost /∆To ∆To/ time cost /∆To ∆To/ time
instance01 33.29 15.29
instance01_1 9.19 111.23
instance01_4 12.68 88.23
instance02 25.36 5.51 35.27 10.29
instance02_1 2.50 27.52 6.74 34.52
instance02_3 2.55 43.98 10.40 28.78
instance02_4 87.75 4.10 78.49 7.78
instance03 5.34 326.54 4.85 264.55
instance03_1 7.47 246.88 5.03 177.59
instance03_2 5.01 131.22 5.20 80.98
instance03_3 12.00 9.64 11.29 18.15
instance03_4 5.04 510.35 3.26 303.34
instance04 6.64 307.15 6.46 118.71
instance04_1 15.48 4.44 5.89 5.19
instance04_2 5.27 5.34 7.59 3.65
instance04_3 21.10 2.03 15.78 2.10
instance04_4 6.79 244.79 2.64 315.92
instance05 0.69 333.11 0.87 140.57
instance05_1 0.39 120.89 0.80 97.22
instance05_2 1.17 109.79 0.65 91.95
instance05_3 0.66 119.20 0.56 163.56
instance05_4 1.47 75.03 1.78 65.27
instance06 11.49 2.45
instance06_1 0.53 3.48 14.65 3.20
instance06_2 27.25 1.78
instance07 6.60 4.97 9.44 3.67
instance07_1 6.01 1.62 4.74 0.47
instance07_2 2.77 1.77 2.54 1.07
instance07_3 14.19 0.89 8.20 0.52
instance07_4 7.28 0.93 11.32 0.53
instance08 16.01 0.85 20.45 0.85
instance08_1 11.44 1.19 21.61 0.73
instance08_2 10.43 0.87 15.69 1.11
instance08_3 27.83 0.39 76.92 0.40
instance08_4 14.94 1.19

Table 4.3 Results concerning the achieved improvement. For each algorithm, the first
column represents the average cost per unit of improvement, the second column represents
the average improvement per unit of computation time. Instances for which no algorithm
found any improvements were omitted.

44

IIRA SSIRA
Instance ∆S ∆S/n ∆S/∆To ∆S ∆S/n ∆S/∆To

instance01 295.50 9.23 1.11
instance01_1 357.94 11.19 1.11
instance01_4 281.93 8.81 1.57
instance02 184.96 5.78 0.58 187.88 5.87 0.95
instance02_1 316.48 9.89 1.01 412.35 12.89 1.61
instance02_3 188.19 5.88 1.65 268.50 8.39 3.28
instance02_4 326.41 10.20 0.57 442.77 13.84 1.28
instance03 423.85 6.84 1.06 423.29 6.83 1.66
instance03_1 326.67 5.27 1.29 446.78 7.21 4.64
instance03_2 541.73 8.74 1.31 677.58 10.93 1.18
instance03_3 314.54 5.07 1.35 602.22 9.71 6.41
instance03_4 514.60 8.30 1.21 233.61 3.77 1.20
instance04 678.00 10.94 1.99 765.14 12.34 2.51
instance04_1 783.50 12.64 1.22 730.15 11.78 0.25
instance04_2 1,220.55 19.69 1.03 974.38 15.72 1.11
instance04_3 705.52 11.38 0.66 645.53 10.41 1.72
instance04_4 651.43 10.51 1.15 432.61 6.98 1.08
instance05 575.40 9.28 0.94 312.78 5.04 1.01
instance05_1 699.94 11.29 1.01 318.81 5.14 0.99
instance05_2 446.49 7.20 1.07 64.19 1.04 1.11
instance05_3 585.67 9.45 1.03 197.36 3.18 0.97
instance05_4 653.69 10.54 0.94 288.33 4.65 1.06
instance06 1,754.09 28.29 1.22
instance06_1 2,791.00 45.02 1.58 1,512.48 24.39 1.62
instance06_2 1,892.41 30.52 1.71
instance07 2,243.23 18.39 1.31 1,926.06 15.79 0.45
instance07_1 2,956.84 24.24 1.81 2,996.11 24.56 1.00
instance07_2 2,343.17 19.21 1.02 701.47 5.75 1.00
instance07_3 2,243.60 18.39 1.19 869.78 7.13 2.55
instance07_4 2,965.11 24.30 0.96 2,550.06 20.90 1.00
instance08 1,538.20 12.61 1.44 1,437.97 11.79 1.77
instance08_1 1,601.69 13.13 1.09 1,165.19 9.55 1.29
instance08_2 1,614.05 13.23 0.75 1,715.33 14.06 1.65
instance08_3 1,319.86 10.82 1.40 1,174.39 9.63 1.31
instance08_4 1,262.40 10.35 0.45

Table 4.4 Results concerning the induced schedule difference. For each algorithm, the
first column represents the average schedule difference found for the instance, the second
column represents the average difference in start times per job in the instance, the third
column represents the average schedule difference per unit of tardiness improvement.
Instances for which no algorithm found any improvements were omitted.

45

be achieved with increasing costs. Smaller improvements require smaller costs,
while seeking further improvements requires an increase in costs. A similar pattern
is observed for the SSIRA with the K∆S sort key; however, on certain smaller
instance groups such as instance01* or instance04*, the improvement achieved
for the same cost can vary significantly. An interesting observation is that on
smaller instances, such as in instance groups instance02*, instance03*, and
instance04*, the IIRA finds solutions with the same improvement to cost ratio
using both bottleneck identification indicators. This is not the case on larger
instances, where the evaluations employing the AUAU and MRUR indicators differ
substantially. An important observation is that, particularly on larger instances,
the IIRA is capable of finding significant improvements with relatively lows costs.
This is apparent on instance groups instance07* and instance08*, where the
best improvements for given costs are almost exclusively found by the IIRA,
whereas the SSIRA only finds minor improvements.

In Figure 4.3 we present the results concerning tardiness improvement related
to induced schedule difference, aggregated over the individual instance groups. We
observe a consistent trend for the SSIRA with the Kt sort key: greater tardiness
improvement corresponds with an increased schedule difference. This trend is also
observable for other evaluations. Evaluations of the SSIRA with the K∆S sort
key are the most inconsistent, particularly on smaller instances. In general, the
SSIRA utilizing the K∆S sort key tends to propose the least favorable solutions in
terms of the induced schedule difference. On larger instances, most evaluations
follow the linear increasing trend. Notably, in instance groups instance01*,
instance04*, or instance06*, the SSIRA utilizing the Kt finds solutions with
improvement comparable to those proposed by the SSIRA utilizing the K∆S sort
key and the IIRA, but with a lower schedule difference. On larger instances, the
SSIRA utilizing the Kt appears to be unable to find solutions with the overall
best improvements. For the solutions with the highest improvement, the IIRA
proposes marginally better solutions than the SSIRA, if any are found by the
SSIRA.

In Figure 4.4 we present the results concerning evaluation computation time
related to tardiness improvement, aggregated over the individual instance groups.
These results are notably inconsistent. We observe that evaluation times of the
SSIRA are more varied than those of the IIRA. This is particularly apparent on
the instance groups instance04*, instance07*, and instance08*. Additionally,
we observe that in some cases, most notably on instances from the instance groups
instance06* and instance08*, the evaluations form linear clusters with identical
evaluation times.

4.3 Discussion
The SSIRA found improvements for all instances for which the IIRA found

improvements. Furthermore, the SSIRA found improvements for some instances
where the IIRA did not. We can conclude that the SSIRA has a higher probability
of finding an improvement than the IIRA. We believe this is because, when seeking
improvements, the IIRA does not consider the target order. Instead, it identifies
bottleneck resources with respect to the whole problem instance and its schedule.
Our hypothesis is that this approach limits the IIRA in cases where the target

46

102 103

Cost (log)

0

20

40

60

80

100

Im
pr

ov
em

en
t

instance01

100 101 102 103

Cost (log)

0
10
20
30
40
50

Im
pr

ov
em

en
t

instance02

102

Cost (log)

0

25

50

75

100

Im
pr

ov
em

en
t

instance03

102 103

Cost (log)

0

30

60

90

120

150

Im
pr

ov
em

en
t

instance04

101 102

Cost (log)

0

25

50

75

100

125

Im
pr

ov
em

en
t

instance05

102 103

Cost (log)

0

40

80

120

160

200

Im
pr

ov
em

en
t

instance06

101 102 103

Cost (log)

0
20
40
60
80

100

Im
pr

ov
em

en
t

instance07

101 102 103

Cost (log)

0
15
30
45
60
75

Im
pr

ov
em

en
t

instance08

SSIRA (improvement sort)
SSIRA (time sort)
IIRA (AUAU)
IIRA (MRUR)

Figure 4.2 Aggregated plots of capacity changes costs (x-axis) to achieved improve-
ment (y-axis). In each plot, every algorithm evaluation comprises of five Pareto fronts
of evaluations on the five individual instances from the represented instance group. Full
non-aggregated results for each individual instance can be found in Figure A.1.

47

0 15 30 45 60 75 90
Improvement

0
80

160
240
320
400

Sc
he

du
le

 d
iff

er
en

ce
instance01

0 10 20 30 40 50
Improvement

0

100

200

300

400

500

Sc
he

du
le

 d
iff

er
en

ce

instance02

0 20 40 60 80 100 120
Improvement

0

150

300

450

600

Sc
he

du
le

 d
iff

er
en

ce

instance03

0 25 50 75 100 125 150
Improvement

0

300

600

900

1200

Sc
he

du
le

 d
iff

er
en

ce

instance04

0 20 40 60 80 100 120
Improvement

0

300

600

900

1200

Sc
he

du
le

 d
iff

er
en

ce

instance05

0 40 80 120 160 200
Improvement

0
600

1200
1800
2400
3000

Sc
he

du
le

 d
iff

er
en

ce

instance06

0 20 40 60 80 100
Improvement

0

1000

2000

3000

4000

Sc
he

du
le

 d
iff

er
en

ce

instance07

0 15 30 45 60 75
Improvement

0

600

1200

1800

2400

3000

Sc
he

du
le

 d
iff

er
en

ce

instance08

SSIRA (improvement sort)
SSIRA (time sort)
IIRA (AUAU)
IIRA (MRUR)

Figure 4.3 Aggregated plots of achieved improvement (x-axis) to induced schedule
difference (y-axis). In each plot, every algorithm evaluation comprises of five Pareto
fronts of evaluations on the five individual instances from the represented instance group.
Full non-aggregated results for each individual instance can be found in Figure A.2.

48

0 1
Duration

0

20

40

60

80

100

Im
pr

ov
em

en
t

instance01

1 2
Duration

0
10
20
30
40
50

Im
pr

ov
em

en
t

instance02

0 1
Duration

0

25

50

75

100

Im
pr

ov
em

en
t

instance03

0 6 12 18 24 30
Duration

0

30

60

90

120

150

Im
pr

ov
em

en
t

instance04

0 1 2 3 4
Duration

0

25

50

75

100

125

Im
pr

ov
em

en
t

instance05

20 24 28 32 36 40
Duration

0

40

80

120

160

200

Im
pr

ov
em

en
t

instance06

6 12 18 24 30 36 42
Duration

0
20
40
60
80

100

Im
pr

ov
em

en
t

instance07

6 12 18 24 30 36 42
Duration

0
15
30
45
60
75

Im
pr

ov
em

en
t

instance08

SSIRA (improvement sort)
SSIRA (time sort)
IIRA (AUAU)
IIRA (MRUR)

Figure 4.4 Aggregated plots of computation time (x-axis) to achieved improvement
(y-axis). In each plot, every algorithm evaluation comprises of five Pareto fronts of
evaluations on the five individual instances from the represented instance group. Full
non-aggregated results for each individual instance can be found in Figure A.3.

49

order is not directly affected by execution bottlenecks but is instead only partially
constrained by the impact of the execution bottlenecks on the schedule. In such
cases, relaxations focused on the bottlenecks of the whole instance do not directly
improve the schedule with respect to the target order. This is where the SSIRA
benefits from its focused relaxations, as all of its relaxations focus specifically on
the target order.

As stated, the IIRA does not consider the target order when finding im-
provements. Nonetheless, it is able to find improvements at relatively low costs
compared to the solutions achieving the same improvements found by the SSIRA.
Furthermore, on larger instances, the IIRA finds solutions with greater improve-
ments and overall better quality than the SSIRA. This is an unexpected result, as
the initial assumption was that relaxations focusing specifically on the target order
would achieve better improvements than general relaxations. We speculate that
targeted relaxations of the SSIRA might be too specific, not providing sufficient
slack in the modified constraints and thus making the model too sensitive to
minor variations when finding modified solutions. Another possibility is that
the SSIRA often executes multiple relaxations simultaneously, assuming their
independence. This assumption is inherent to the algorithm through the process it
identifies potential relaxations. When the presumed independent relaxations are
implemented and the solver seeks a modified solution, the combined relaxations
might direct the solver towards a solution that differs from what the algorithm
intended.

Regarding the schedule difference induced by the proposed modifications, the
IIRA is able to find better solutions that the SSIRA on smaller instances. On
larger instances, the SSIRA typically surpasses the IIRA in performance. This is
likely because the IIRA proposes general relaxations whereas the SSIRA proposes
relaxations focusing on the target order. On smaller instances, general relaxations
usually affect most of the schedule, but on larger instances, the impact of these
relaxations becomes more local. On larger instances, the systematic approach of
the SSIRA utilizing the focused relaxations is able to find specific relaxations that
are necessary to improve the target order. Moreover, even on smaller instances,
the SSIRA is sometimes able to find solutions with smaller impact on the schedule
difference than the solutions of the IIRA. However, the general relaxing approach
of the IIRA is still viable on most instances.

We observed that on several instances, distinct linear clusters of evaluations
with identical evaluation times are formed. In those clusters, the evaluations
achieve varying improvements in the same amount of computation time. Our
theory is that the formation of those clusters is due to the set solver time limit,
which interrupts an evaluation if a solution has not been found in the specified
time limit. We can conclude that on such instances, extending the solver time
limit might result in better achieved improvements. The introduction of the solver
time limit represents a trade-off between solution quality and computation time,
particularly for more difficult instances. Nonetheless, since the evaluations on
most instances were not affected by the set time limit, we conclude that the time
limit was set appropriately in accordance with the difficulty of our problem.

We summarize the results in the following key points:

• The SSIRA tends to find improvements more consistently than the IIRA,
possibly because the SSIRA proposes relaxations focused specifically on the

50

target order, while the IIRA proposes only general relaxations.

• Despite not directly considering the target order, the IIRA tends to find
improvements at lower costs and achieves solutions with greater improve-
ments on larger instances compared to the SSIRA. We theorize that this
may be due to the SSIRA’s specific relaxations being overly restrictive and
that its execution of multiple relaxations simultaneously sometimes leads to
unintended solutions.

• Regarding induced schedule difference, the IIRA proposes better solutions
on smaller instances, while the SSIRA outperforms the IIRA on larger
instances. The SSIRA sometimes achieves significantly better solutions
than the IIRA even on smaller instances, suggesting its viability across
various problem sizes. However, the IIRA proposes adequate solutions with
acceptable solution differences more consistently.

51

Conclusion
In this thesis, we addressed the problem of reducing the tardiness of a selected

manufacturing order. First, we formulated an extension of the standard RCPSP
to model the problem. We then focused on manufacturing bottlenecks, specifically
execution-level bottlenecks in obtained schedules. Following the identification of
such bottlenecks, we proposed relaxations for related resource capacity constraints.

Contribution
The subject of identifying execution bottlenecks and subsequently relaxing

related constraints has not been studied on the variant of the RCPSP used in this
thesis to model the problem at hand. We proposed two methods to address this
problem; the IIRA, utilizing adaptations of methods that address this problem
in the Job-Shop scheduling problem, and the SSIRA, designed specifically for
this problem. We conducted numerical experiments to analyze the capabilities
of the proposed methods. For that purpose, we designed a wide variety of
problem instances modeling the extension of the RCPSP used in this thesis.
The performances of the two methods were studied on the presented problem
instances. We observed that the SSIRA is more consistent in finding improving
solutions than the IIRA. However, on many instances, the IIRA is able to find
great improvements with low modification costs where the SSIRA finds the same
improvements with greater costs.

Further work
The SSIRA algorithm selects improvement intervals and proposes relaxations of

related resource capacity constraints. However, it currently assumes independence
among relaxations, which does not correspond to the actual complex dependencies
in the solved models. The relaxations could alternatively be modeled as an
optimization problem, which would better capture the dependencies.

Additionally, the SSIRA finds improvement intervals only for jobs included in
the left-shift closure of the target manufacturing order. This approach has proven
effective at limiting the number of jobs considered for improvement. However,
different heuristics could be used to focus the search on the targeted manufacturing
order. Alternatively, useful information could be extracted from the constraint
programming solvers used to solve the problem instance models, as the solvers
usually provide details about the solving process, such as statistics about variable
and constraint conflicts.

In the conducted experiments, we measure the schedule difference between the
original schedule and the proposed modified schedule as the total sum off job-start
differences between the schedules. This simple metric was sufficient to compare
the two presented algorithms, however, the proposed changes could be studied
further to evaluate their impact on the system. For example, by following the
work of Lawrence and Buss (1994), the bottleneck “shiftiness” could be studied to
evaluate how the proposed changes affect the bottleneck identification.

52

Bibliography
Adams, Joseph; Balas, Egon; Zawack, Daniel, 1988. The Shifting Bottleneck

Procedure for job shop scheduling. Manage. Sci. Vol. 34, no. 3, pp. 391–401.
Arkhipov, Dmitry I.; Battaïa, Olga; Lazarev, Alexander A., 2017. Long-term

production planning problem: scheduling, makespan estimation and bottleneck
analysis. IFAC-PapersOnLine. Vol. 50, no. 1, pp. 7970–7974. issn 2405-8963.
Available from doi: https://doi.org/10.1016/j.ifacol.2017.08.991.
20th IFAC World Congress.

Betterton, C.E.; Silver, S.J., 2012. Detecting bottlenecks in serial production
lines – a focus on interdeparture time variance. International Journal of
Production Research. Vol. 50, no. 15, pp. 4158–4174. Available from doi:
10.1080/00207543.2011.596847.

Bianco, Lucio; Caramia, Massimiliano, 2011. A new formulation for the project
scheduling problem under limited resources. Flexible Services and Manufactur-
ing Journal. Vol. 25, no. 1–2, pp. 6–24. issn 1936-6590. Available from doi:
10.1007/s10696-011-9127-y.

Biller, Stephan; Li, Jingshan; Marin, Samuel P.; Meerkov, Semyon M.;
Zhang, Liang, 2010. Bottlenecks in Bernoulli Serial Lines With Rework. IEEE
Transactions on Automation Science and Engineering. Vol. 7, no. 2, pp. 208–
217. Available from doi: 10.1109/TASE.2009.2023463.

Blazewicz, J.; Lenstra, J.K.; Kan, A.H.G.Rinnooy, 1983. Scheduling sub-
ject to resource constraints: classification and complexity. Discrete Applied
Mathematics. Vol. 5, no. 1, pp. 11–24. issn 0166-218X. Available from doi:
10.1016/0166-218x(83)90012-4.

Brucker, Peter; Drexl, Andreas; Möhring, Rolf; Neumann, Klaus; Pesch,
Erwin, 1999. Resource-constrained project scheduling: Notation, classification,
models, and methods. European Journal of Operational Research. Vol. 112, no.
1, pp. 3–41. issn 0377-2217. Available from doi: https://doi.org/10.1016/
S0377-2217(98)00204-5.

Cheng, Junzilan; Fowler, John; Kempf, Karl; Mason, Scott, 2015. Multi-
mode resource-constrained project scheduling problems with non-preemptive
activity splitting. Computers & Operations Research. Vol. 53, pp. 275–287.
issn 0305-0548. Available from doi: 10.1016/j.cor.2014.04.018.

Chiang, S.-Y.; Kuo, C.-T.; Meerkov, S.M., 2001. c-bottlenecks in serial pro-
duction lines: identification and application. In: Proceedings of the 38th IEEE
Conference on Decision and Control (Cat. No.99CH36304). IEEE. CDC-99.
Available from doi: 10.1109/cdc.1999.832820.

Cooper, Dale F., 1976. Heuristics for Scheduling Resource-Constrained Projects:
An Experimental Investigation. Management Science. Vol. 22, no. 11, pp. 1186–
1194. Available from doi: 10.1287/mnsc.22.11.1186.

Demeulemeester, Erik; Herroelen, Willy, 1992. A Branch-and-Bound Pro-
cedure for the Multiple Resource-Constrained Project Scheduling Problem.
Management Science. Vol. 38, no. 12, pp. 1803–1818. issn 1526-5501. Available
from doi: 10.1287/mnsc.38.12.1803.

53

https://doi.org/https://doi.org/10.1016/j.ifacol.2017.08.991
https://doi.org/10.1080/00207543.2011.596847
https://doi.org/10.1007/s10696-011-9127-y
https://doi.org/10.1109/TASE.2009.2023463
https://doi.org/10.1016/0166-218x(83)90012-4
https://doi.org/https://doi.org/10.1016/S0377-2217(98)00204-5
https://doi.org/https://doi.org/10.1016/S0377-2217(98)00204-5
https://doi.org/10.1016/j.cor.2014.04.018
https://doi.org/10.1109/cdc.1999.832820
https://doi.org/10.1287/mnsc.22.11.1186
https://doi.org/10.1287/mnsc.38.12.1803

Elsayed, Saber; Sarker, Ruhul; Ray, Tapabrata; Coello, Carlos Coello,
2017. Consolidated optimization algorithm for resource-constrained project
scheduling problems. Information Sciences. Vol. 418–419, pp. 346–362. issn
0020-0255. Available from doi: 10.1016/j.ins.2017.08.023.

Franck, Birger; Neumann, Klaus; Schwindt, Christoph, 2001. Project schedul-
ing with calendars. OR-Spektrum. Vol. 23, no. 3, pp. 325–334. issn 1436-6304.
Available from doi: 10.1007/pl00013355.

Ganian, Robert; Hamm, Thekla; Mescoff, Guillaume, 2021. The complexity
landscape of resource-constrained scheduling. In: Proceedings of the Twenty-
Ninth International Joint Conference on Artificial Intelligence. Yokohama,
Yokohama, Japan. IJCAI’20. isbn 9780999241165.

Hartmann, Sönke; Briskorn, Dirk, 2010. A survey of variants and extensions
of the resource-constrained project scheduling problem. European Journal of
Operational Research. Vol. 207, no. 1, pp. 1–14. issn 0377-2217. Available from
doi: 10.1016/j.ejor.2009.11.005.

Hartmann, Sönke; Briskorn, Dirk, 2022. An updated survey of variants and
extensions of the resource-constrained project scheduling problem. European
Journal of Operational Research. Vol. 297, no. 1, pp. 1–14. issn 0377-2217.
Available from doi: 10.1016/j.ejor.2021.05.004.

IBM, 2024. Constraint program solvers [online]. [visited on 2024-02-10]. Available
from: https://www.ibm.com/products/ilog-cplex-optimization-studi
o/cplex-cp-optimizer.

Klein, Robert, 2000. Project scheduling with time-varying resource constraints.
International Journal of Production Research. Vol. 38, no. 16, pp. 3937–3952.
issn 1366-588X. Available from doi: 10.1080/00207540050176094.

Kolisch, Rainer; Hartmann, Sönke, 1999. Heuristic Algorithms for the Resource-
Constrained Project Scheduling Problem: Classification and Computational
Analysis. In: Project Scheduling. Springer US, pp. 147–178. isbn 9781461555339.
issn 0884-8289. Available from doi: 10.1007/978-1-4615-5533-9_7.

Kolisch, Rainer; Sprecher, Arno, 1997. PSPLIB - A project scheduling problem
library: OR Software - ORSEP Operations Research Software Exchange Pro-
gram. European Journal of Operational Research. Vol. 96, no. 1, pp. 205–216.
issn 0377-2217. Available from doi: https://doi.org/10.1016/S0377-
2217(96)00170-1.

Kuo, C.-T.; Lim, J.-T.; Meerkov, S. M., 1996. Bottlenecks in serial production
lines: A system-theoretic approach. Mathematical Problems in Engineering.
Vol. 2, no. 3, pp. 233–276. issn 1563-5147. Available from doi: 10.1155/
s1024123x96000348.

Lawrence, Stephen R.; Buss, Arnold H., 1994. Shifting production bottlenecks:
causes, cures, and conundrums. Production and Operations Management. Vol. 3,
no. 1, pp. 21–37. Available from doi: 10.1111/j.1937-5956.1994.tb00107.x.

Li, Lin, 2009. Bottleneck detection of complex manufacturing systems using a
data-driven method. International Journal of Production Research. Vol. 47,
no. 24, pp. 6929–6940. issn 1366-588X. Available from doi: 10.1080/002075
40802427894.

54

https://doi.org/10.1016/j.ins.2017.08.023
https://doi.org/10.1007/pl00013355
https://doi.org/10.1016/j.ejor.2009.11.005
https://doi.org/10.1016/j.ejor.2021.05.004
https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-cp-optimizer
https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-cp-optimizer
https://doi.org/10.1080/00207540050176094
https://doi.org/10.1007/978-1-4615-5533-9_7
https://doi.org/https://doi.org/10.1016/S0377-2217(96)00170-1
https://doi.org/https://doi.org/10.1016/S0377-2217(96)00170-1
https://doi.org/10.1155/s1024123x96000348
https://doi.org/10.1155/s1024123x96000348
https://doi.org/10.1111/j.1937-5956.1994.tb00107.x
https://doi.org/10.1080/00207540802427894
https://doi.org/10.1080/00207540802427894

Luo, Jingyu; Vanhoucke, Mario; Coelho, José, 2023. Automated design of pri-
ority rules for resource-constrained project scheduling problem using surrogate-
assisted genetic programming. Swarm and Evolutionary Computation. Vol. 81,
p. 101339. issn 2210-6502. Available from doi: https://doi.org/10.1016/j.
swevo.2023.101339.

Mönch, Lars; Zimmermann, Jens, 2010. A computational study of a shifting
bottleneck heuristic for multi-product complex job shops. Production Planning
& Control. Vol. 22, no. 1, pp. 25–40. issn 1366-5871. Available from doi:
10.1080/09537287.2010.490015.

Nonobe, Koji; Ibaraki, Toshihide, 2002. Formulation and Tabu Search Algorithm
for the Resource Constrained Project Scheduling Problem. In: Essays and
Surveys in Metaheuristics. Springer US, pp. 557–588. isbn 9781461515074.
issn 1387-666X. Available from doi: 10.1007/978-1-4615-1507-4_25.

Patterson, James H., 1976. Project scheduling: The effects of problem structure
on heuristic performance. Naval Research Logistics Quarterly. Vol. 23, no. 1,
pp. 95–123. Available from doi: https://doi.org/10.1002/nav.380023011
0.

Pellerin, Robert; Perrier, Nathalie; Berthaut, François, 2020. A survey of
hybrid metaheuristics for the resource-constrained project scheduling problem.
European Journal of Operational Research. Vol. 280, no. 2, pp. 395–416. issn
0377-2217. Available from doi: 10.1016/j.ejor.2019.01.063.

Roh, P.; Kunz, A.; Netland, T., 2018. Data-driven detection of moving bottle-
necks in multi-variant production lines. IFAC-PapersOnLine. Vol. 51, no. 11,
pp. 158–163. issn 2405-8963. Available from doi: 10.1016/j.ifacol.2018.
08.251.

Roser, C.; Nakano, M.; Tanaka, M., 2001. A practical bottleneck detec-
tion method. In: Proceeding of the 2001 Winter Simulation Conference (Cat.
No.01CH37304). IEEE. WSC-01. Available from doi: 10.1109/wsc.2001.
977398.

Schnell, Alexander; Hartl, Richard F., 2015. On the efficient modeling and
solution of the multi-mode resource-constrained project scheduling problem
with generalized precedence relations. OR Spectrum. Vol. 38, no. 2, pp. 283–303.
issn 1436-6304. Available from doi: 10.1007/s00291-015-0419-6.

Subramaniyan, M.; Skoogh, A.; Gopalakrishnan, M.; Hanna, A., 2016.
Real-time data-driven average active period method for bottleneck detection.
International Journal of Design & Nature and Ecodynamics. Vol. 11, no. 3,
pp. 428–437. issn 1755-7445. Available from doi: 10.2495/dne-v11-n3-428-
437.

Subramaniyan, Mukund; Skoogh, Anders; Bokrantz, Jon; Sheikh, Muham-
mad Azam; Thürer, Matthias; Chang, Qing, 2021. Artificial intelligence for
throughput bottleneck analysis – State-of-the-art and future directions. Jour-
nal of Manufacturing Systems. Vol. 60, pp. 734–751. issn 0278-6125. Available
from doi: 10.1016/j.jmsy.2021.07.021.

55

https://doi.org/https://doi.org/10.1016/j.swevo.2023.101339
https://doi.org/https://doi.org/10.1016/j.swevo.2023.101339
https://doi.org/10.1080/09537287.2010.490015
https://doi.org/10.1007/978-1-4615-1507-4_25
https://doi.org/https://doi.org/10.1002/nav.3800230110
https://doi.org/https://doi.org/10.1002/nav.3800230110
https://doi.org/10.1016/j.ejor.2019.01.063
https://doi.org/10.1016/j.ifacol.2018.08.251
https://doi.org/10.1016/j.ifacol.2018.08.251
https://doi.org/10.1109/wsc.2001.977398
https://doi.org/10.1109/wsc.2001.977398
https://doi.org/10.1007/s00291-015-0419-6
https://doi.org/10.2495/dne-v11-n3-428-437
https://doi.org/10.2495/dne-v11-n3-428-437
https://doi.org/10.1016/j.jmsy.2021.07.021

Vanhoucke, Mario; Demeulemeester, Erik; Herroelen, Willy, 2001. An
Exact Procedure for the Resource-Constrained Weighted Earliness–Tardiness
Project Scheduling Problem. Annals of Operations Research. Vol. 102, no. 1/4,
pp. 179–196. issn 0254-5330. Available from doi: 10.1023/a:1010958200070.

Wang, Jun-Qiang; Chen, Jian; Zhang, Yingqian; Huang, George Q., 2016.
Schedule-based execution bottleneck identification in a job shop. Computers
& Industrial Engineering. Vol. 98, pp. 308–322. issn 0360-8352. Available from
doi: https://doi.org/10.1016/j.cie.2016.05.039.

Zhang, Rui; Wu, Cheng, 2008a. Bottleneck identification procedures for the
job shop scheduling problem with applications to genetic algorithms. The
International Journal of Advanced Manufacturing Technology. Vol. 42, no.
11–12, pp. 1153–1164. issn 1433-3015. Available from doi: 10.1007/s00170-
008-1664-5.

Zhang, Rui; Wu, Cheng, 2008b. Bottleneck machine identification based on
optimization for the job shop scheduling problem. ICIC Express Letters. Vol. 2.
Available also from: https://www.researchgate.net/publication/2289
18308_Bottleneck_machine_identification_based_on_optimization_
for_the_job_shop_scheduling_problem.

Zhang, Rui; Wu, Cheng, 2012. Bottleneck machine identification method based
on constraint transformation for job shop scheduling with genetic algorithm.
Information Sciences. Vol. 188, pp. 236–252. issn 0020-0255. Available from
doi: 10.1016/j.ins.2011.11.013.

56

https://doi.org/10.1023/a:1010958200070
https://doi.org/https://doi.org/10.1016/j.cie.2016.05.039
https://doi.org/10.1007/s00170-008-1664-5
https://doi.org/10.1007/s00170-008-1664-5
https://www.researchgate.net/publication/228918308_Bottleneck_machine_identification_based_on_optimization_for_the_job_shop_scheduling_problem
https://www.researchgate.net/publication/228918308_Bottleneck_machine_identification_based_on_optimization_for_the_job_shop_scheduling_problem
https://www.researchgate.net/publication/228918308_Bottleneck_machine_identification_based_on_optimization_for_the_job_shop_scheduling_problem
https://doi.org/10.1016/j.ins.2011.11.013

Notation

Symbol Definition

Problem instances
I = (J ,P ,R, T) Problem instance
J = {1, . . . , n} Set of jobs
pj Processing time of job j
dj Deadline for a job j
wj Tardiness weight for a job j
i→j or (i, j) Precedence between jobs i and j
P Set of precedences
G = (J ,P) Precedence graph
R = {1, . . . , m} Set of resources
Rk Capacity function of resource k

R
(t)
k Capacity of resource k in time period t

R
(−)
k Shift capacity of a resource k

rjk Per-period consumption of a resource k by a job j
T Time horizon
1, . . . , T Time periods
Jk The set of jobs executed on the resource k

J (t)
k The set of jobs executed on the resource k during

the time period t

J UAP (i)
k The set of jobs executed on the resource k during

the uninterrupted active period i

Schedules, solutions
Sj Start time of job j
S = (S1, . . . , Sn) Schedule
Cj = Sj + pj Completion time of job j
C = (C1, . . . , Cn) All completion times of jobs

Identification indicators
MURk Machine Utilization Rate
AUADk Average Uninterrupted Active Duration
RSk, RCk Resource Strength, Resource Constrainedness
MRURk Machine Resource Utilization Rate
AUAUk Average Uninterrupted Active Utilization
PRU(i)

k Period Resource Utilization

Note: supper-scripting a value with a schedule symbol — for example CS
j — relates that

value to the specified schedule.

57

Symbol Definition

IIRA parameters
I Identification indicator
G Granular period granularity
C Improvement potential convolution kernel
fpre, faround, fpost Various improvement potential convolution ker-

nels
Imax Iterations limit
Pmax Improvement periods limit
∆ Capacity improvement

SSIRA parameters
Imax Iterations limit
ITmax Improvement intervals limit
K Interval sort key
Kt Interval sort key sorting by interval time periods
K∆S Interval sort key sorting by interval proposed

improvement

58

A Attachments
A.1 Algorithms, Functions, and Procedures

Function GranularResourceLoad(k, I, S, PC)
1: L : {1, . . . , PC} → N0 ▷ Period load function
2: for j ∈ Jk :
3: il ← ⌊Sj/G⌋, ▷ First overlapping period
4: ih ← ⌊Cj/G⌋ ▷ Last overlapping period
5: if il = ih : ▷ If the job overlaps with a single period...
6: L(il)← L(il) + pjrjk

7: else: ▷ ...the job overlaps with multiple periods
8: L(il)← L(il) + (G(il + 1)− Sj) · rjk

9: for i ∈ {il + 1, . . . , ih − 1} :
10: L(i)← L(i) + G · rjk

11: L(ih)← L(ih) + (Cj −G(ih − 1)) · c
12: return L

Function IncreaseGranularPeriodCapacity(i, Rk, G, ∆)
1: tl ← 1 + (i− 1)G ▷ First time period covered
2: th ← iG ▷ Last time period covered
3: for t ∈ {tl, . . . , th} :
4: R

(t)
k ← R

(t)
k + ∆

5: return R
(t)
k

Function ReduceCapacityChanges(I, S, Rorig
1 , …, Rorig

m)
1: R′

1, . . . , R′
m : {1, . . . , T } → N0 ▷ Reduced capacity functions

2: for k ∈ R :
3: L← ResourceLoad(k, I, S)
4: for t ∈ {1, . . . , T } :
5: R

′(t)
k ← max(Rorig(t)

k , L(t))
6: return R′

1, . . . , R′
m

Function ResourceLoad(k, I, S)
1: L : {1, . . . , T } → N0
2: for t ∈ {1, . . . , T } :
3: L(t)← ∑︁

j∈J (t)
k

rjk ▷ J (t)
k with respect to given schedule S

4: return L

59

Function FindAdditionsAndMigrations(I, S)
1: M← ∅
2: for (∀k ∈ R) : Lk ← ResourceLoad(k, I, S)
3: for (∀k ∈ R) : R⊕

k ← Rk − Lk ▷ Capacity surpluses
4: REQ ← set of all additional non-shift capacities
5: for (k, s, e, c) ∈ REQ :
6: while c > 0 :
7: c1, . . . , cm ← maximal continuous surpluses overlapping {s, . . . , e}
8: kfrom ← argmaxk ck

9: if ckfrom = 0 : ▷ If no further migrations are possible
10: break ▷ Remaining c will be fulfilled by capacity additions
11: cmig ← min(c, ckfrom)
12: Reduce surplus R⊕

kfrom
by cmig during time periods {s, . . . , e− 1}

13: M←M∪ {(kfrom, k, s, e, cmig)}
14: A ← {(k, s, e, c) ∈ REQ : c > 0}
15: return A,M

Function ModifyResourceCapacities(I, χ1, …, χc)
1: R∗

1, . . . , R∗
m ← R1, . . . , Rm ▷ Copy the original capacity functions

2: for (j, s, e) ∈ {χ1, . . . , χc} :
3: for k ∈ R : rjk > 0 :
4: for t ∈ {s, . . . , e− 1} :
5: R

∗(t)
k ← R

∗(t)
k + rjk

6: return R∗
1, . . . , R∗

m

Function ComputeSuffixRelaxedSchedule(I, S, t)
1: T ← Topological ordering of J on the precedence graph G
2: for j ∈ T :
3: if Sj ≤ t :
4: S⃗

(t)
j ← Sj

5: else:
6: S⃗

(t)
j ← max

{︃
S⃗

(t)
i + pi : i→j ∈ P

}︃
7: return S⃗

(t)

60

Function ComputeLeftShiftClosure(I, S, j)
1: L(j)← ∅
2: Q← {j} ▷ Queue of jobs to process
3: while Q not empty :
4: i← pop Q
5: L(j)← L(j) ∪ {i}
6: Q← Q ∪ {p : p→i, Cp = Si} ▷ Precedence predecessors
7: Q← Q ∪ ⋃︁

k:rik>0{p ∈ Jk : Cp = Si} ▷ Resource predecessors
8: for k ∈ R, rik > 0, R

(Si−1)
k = 0 : ▷ Resource-pause predecessors

9: psk(Si)← max{t′ ∈ {1, . . . , Si − 1} : R
(t′)
k > 0}

10: Q← Q ∪ {p ∈ Jk : psk(Si)− pi ≤ Cp ≤ psk(Si)}
11: return L(j)

Note: We assume, that when the value of psk(Si) is undefined, the following set of predecessors
is trivially empty and we continue with a different resource.

A.2 Documentation
This section contains the description of the project implementing the algorithms

and running the experiments presented in this thesis. The full project is attached
in the RCPSPSandbox.zip file. The repository of the project can be found online
at https://github.com/Krtiiik/RCPSPSandbox.

A.2.1 Requirements
All implementations are written in Python, utilizing several external libraries.

To run scripts, the following is required:

• Python 3.11 with installed packages listed in the requirements.txt file.

• Configured IBM ILOG Constraint-Programming Optimizer. IBM ILOG
Constraint-Programming Optimizer is part of the IBM ILOG CPLEX Opti-
mization Studio commercial software package. Community and academic
editions are available. See online at https://www.ibm.com/products/
ilog-cplex-optimization-studio/cplex-cp-optimizer.

Python version at least 3.11 is required as we utilize several functionalities
introduced in that version. However, note that the docplex library does not fully
support this version. We had no issues with this partial incompatibility.

A.2.2 Running scripts
A simple example demonstrating the two algorithms presented in this thesis

is contained in the rcpsp_sandbox/example.py script file. Input and resulting
data of this example is located in the example directory.

All experiments are run using the experiments.py Python script file, located
in the rcpsp_sandbox source directory. Following is the invocation help:

61

https://github.com/Krtiiik/RCPSPSandbox
https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-cp-optimizer
https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-cp-optimizer

usage: experiments.py [-h] [--save_plots] [--addition ADDITION]
[--migration MIGRATION]

options:
-h, --help show this help message and exit
--save_plots Determines whether to save plots to files
--addition ADDITION Cost of capacity addition (default is 5)
--migration MIGRATION Cost of capacity migration (default is 1)

Running this script computes the experiments. The script evaluates the
algorithms (or loads computed evaluations from data files), computes statistics,
which are then saved to data files, and finally creates plots of the results.

We provide the computed results in the data directory. In this directory, base
instances, modified instances, and computed evaluations and evaluation KPIs
are stored in directories named accordingly. Before running the experiments,
the modified_instances directory has to be extracted from a zip file named
modified_instances.zip.

A.2.3 Project overview
The project is divided into the following sub-packages, each containing several

modules:

• rcpsp_sandbox.instances — modules for manipulating problem instances.

• rcpsp_sandbox.solver — modules for solving the problem instances.

• rcpsp_sandbox.bottlenecks — modules implementing the presented al-
gorithms and hosting experiment evaluations.

The rcpsp_sandbox.instances sub-package contains several modules for
manipulating with problem instances. Those modules are used in the rest of the
project, forming a core data infrastructure. In the problem_instance module
contains the definition of the ProblemInstance class, representing the problem
instance defined in Definition 1. The io module is used for parsing and serializing
problem instance object, be it in the original PSPLIB file format, or in JSON.
The problem_modified module provides the modify_instance function, which
for a given problem instance returns a ProblemModifier object. The interface of
the object allows the user to modify all aspects of the problem instance. Most
important, it implements the modifications described in Section 1.1, namely,
splitting the precedence graph, introducing time-variable resource capacities,
assigning job due dates. The algorithms module implements several algorithms
regarding problem instances, mostly various precedence graph traversals.

The rcpsp_sandbox.solver sub-package contains, among others, the solver
module. This module facilitates the solving of problem instances via the Solver
class. The Solver class contains a single solve method, which takes in either a
problem instance, of a built model to solve. The function utilizes the docplex
library to call the IBM ILOG Constraint-Programming Optimizer solver, which
finds (optimal) solutions to given models. If a problem instance is given to the
Solver.solve method, the solver builds a standard model described in Section 1.2.

62

For a finer control over the model, the model_builder module provides the
build_model function. This function, for a given problem instance, return an
initialized ModelBuilder object. The interface of this object allows for the creation
of specific models, introducing only selected constraints, restraining job intervals,
or choosing alternate optimization goals. The solution module contains the
definition of the Solution abstract class, along with several implementing derived
classes and utility functions concerning solutions to the problem instance models.

The rcpsp_sandbox.bottlenecks sub-package contains the implementations
of the Identification Indicator-based Relaxing Algorithm and Schedule Suffix
Interval Relaxing Algorithm, and a framework for evaluating the algorithms
on problem instances. The improvements module contains the algorithms’
implementations together with implementations of helper functions from Ap-
pendix A.1. The evaluations module contains the evaluate_algorithms and
the compute_evaluation_kpis functions. Those are central for the experiments:
the former runs the algorithms with specified parameters on a given problem
instance and return the sets of computed evaluations, the latter computes the
experiment KPIs of the evaluations.

Following is a minimal working example of evaluating both algorithms utiliz-
ing the evaluate_algorithms function on a problem instance parsed from the
instance.json file. The set of all algorithm parameters is the exact same set
used for the experiments conducted in Chapter 4.
import rcpsp_sandbox.instances.io as iio
from rcpsp_sandbox.bottlenecks.evaluations \

import evaluate_algorithms

instance = iio.parse_json("instance.json", is_extended=True)
evaluations = evaluate_algorithms(instance , [

(ScheduleSuffixIntervalRelaxingAlgorithm(), {
"max_iterations": [1, 2, 3],
"relax_granularity": [1],
"max_improvement_intervals": [1, 2, 3, 4, 5, 6],
"interval_sort": ["improvement", "time"]}),

(IdentificationIndicatorRelaxingAlgorithm(), {
"metric": ["auau", "mrur"],
"granularity": [4, 8],
"convolution_mask": ["pre1", "around", "post"],
"max_iterations": [1, 2, 3],
"max_improvement_intervals": [1, 2, 3, 4],
"capacity_addition": [4, 10]}),

])

The rcpsp_sandbox.manager module contains the ExperimentManager class,
which manages loading and saving of experiment evaluations, KPIs, and problem
instances. It can be passed to the evaluate_algorithms function to attempt
loading existing evaluations from files before computing them anew.

A.3 Full instance plots

63

10
2

Cost (log)

0 8 16 24 32 40 48 56

Improvement

instance01

10
1

10
2

Cost (log)

0 4 8 12 16 20 24 28

Improvement

instance02

10
2

Cost (log)

0 8 16 24 32 40 48 56

Improvement

instance03

10
2

Cost (log)

0 15 30 45 60 75 90

105

120

Improvement

instance04

10
2

Cost (log)

0 10 20 30 40 50 60 70

Improvement

instance05

10
2

10
3

Cost (log)

0 20 40 60 80

100

120

140

Improvement

instance06

10
2

10
3

Cost (log)

0 5 10 15 20 25 30 35 40

Improvement

instance07

10
2

10
3

Cost (log)

0 10 20 30 40 50 60 70 80

Improvement

instance08

10
2

10
3

Cost (log)

0 15 30 45 60 75 90

Improvement

instance01_1

10
0

10
1

10
2

Cost (log)

0 8 16 24 32 40 48 56

Improvement

instance02_1

10
2

Cost (log)

0 8 16 24 32 40 48 56

Improvement

instance03_1

10
2

10
3

Cost (log)

0 15 30 45 60 75 90

Improvement

instance04_1

10
1

Cost (log)

0 20 40 60 80

100

120

Improvement

instance05_1

10
2

10
3

Cost (log)

0 30 60 90

120

150

180

210

Improvement

instance06_1

10
2

Cost (log)

0 15 30 45 60 75 90

105

Improvement

instance07_1

10
1

10
2

Cost (log)

0 8 16 24 32 40 48 56

Improvement

instance08_1

10
0

10
1

Cost (log)

0

Improvement

instance01_2

10
0

10
1

Cost (log)

0

Improvement

instance02_2

10
2

Cost (log)

0 6 12 18 24 30 36 42 48
Improvement

instance03_2

10
2

10
3

Cost (log)

0 20 40 60 80

100

120

140

Improvement

instance04_2

10
1

10
2

Cost (log)

0 6 12 18 24 30 36 42 48

Improvement

instance05_2

10
3

Cost (log)

0 8 16 24 32 40 48 56

Improvement

instance06_2

10
1

10
2

Cost (log)

0 10 20 30 40 50 60 70 80

Improvement

instance07_2

10
2

10
3

Cost (log)

0 6 12 18 24 30 36 42 48

Improvement

instance08_2

10
0

10
1

Cost (log)

0

Improvement

instance01_3

10
0

10
1

10
2

Cost (log)

0 5 10 15 20 25 30 35 40

Improvement

instance02_3

10
2

Cost (log)

0 8 16 24 32 40 48 56 64 72

Improvement

instance03_3

10
2

4×
10

1
6×

10
1

Cost (log)

0 8 16 24 32 40 48 56
Improvement

instance04_3

10
1

10
2

Cost (log)

0 15 30 45 60 75 90

Improvement

instance05_3

10
0

10
1

Cost (log)

0

Improvement

instance06_3

10
2

Cost (log)

0 5 10 15 20 25 30 35 40

Improvement

instance07_3

10
2

10
3

Cost (log)

0 6 12 18 24 30 36 42

Improvement

instance08_3

2×
10

2
3×

10
2

4×
10

2

Cost (log)

0 6 12 18 24 30 36 42 48

Improvement

instance01_4

10
2

10
3

Cost (log)

0 3 6 9 12 15 18 21

Improvement

instance02_4

10
2

Cost (log)

0 15 30 45 60 75 90

105

120

Improvement

instance03_4

10
2

Cost (log)

0 20 40 60 80

100

120

Improvement

instance04_4

10
1

2×
10

1
3×

10
14×

10
1

Cost (log)

0 6 12 18 24 30 36 42 48
Improvement

instance05_4

10
0

10
1

Cost (log)

0

Improvement

instance06_4

10
1

10
2

Cost (log)

0 8 16 24 32 40 48 56

Improvement

instance07_4

10
2

Cost (log)

0 4 8 12 16 20 24 28 32

Improvement

instance08_4

SSIRA (im
provem

ent sort)
SSIRA (tim

e sort)
IIRA (AUAU)
IIRA (M

RUR)

Figure A.1 Capacity changes cost (x-axis) to achieved improvement (y-axis) for every
experiment instance.

64

0
10

20
30

40
50

Im
provem

ent

0 60

120

180

240

300

360

420

Schedule difference

instance01

0
5

10
15

20
25

Im
provem

ent

0 80

160

240

320

400

480

Schedule difference

instance02

0
10

20
30

40
50

Im
provem

ent

0 80

160

240

320

400

480

560

640

Schedule difference

instance03

0
20

40
60

80
100

120
Im

provem
ent

0

150

300

450

600

750

900

Schedule difference

instance04

0
15

30
45

60
75

Im
provem

ent

0 80

160

240

320

400

480

560

Schedule difference

instance05

0
25

50
75

100
125

Im
provem

ent

0

400

800

1200

1600

2000

2400

2800

Schedule difference

instance06

0
8

16
24

32
40

Im
provem

ent

0

400

800

1200

1600

2000

2400

2800

Schedule difference

instance07

0
15

30
45

60
75

Im
provem

ent

0

400

800

1200

1600

2000

2400

2800

Schedule difference

instance08

0
15

30
45

60
75

90
Im

provem
ent

0 60

120

180

240

300

360

420

Schedule difference

instance01_1

0
10

20
30

40
50

Im
provem

ent

0 80

160

240

320

400

480

Schedule difference

instance02_1

0
10

20
30

40
50

Im
provem

ent

0 60

120

180

240

300

360

420

480

Schedule difference

instance03_1

0
15

30
45

60
75

90
Im

provem
ent

0

150

300

450

600

750

900

1050

Schedule difference

instance04_1

0
20

40
60

80
100

120
Im

provem
ent

0

150

300

450

600

750

900

1050

1200

Schedule difference

instance05_1

0
40

80
120

160
200

Im
provem

ent

0

400

800

1200

1600

2000

2400

2800

3200

Schedule difference

instance06_1

0
20

40
60

80
100

Im
provem

ent

2250

2500

2750

3000

3250

3500

3750

4000

Schedule difference

instance07_1

0
10

20
30

40
50

60
Im

provem
ent

0

400

800

1200

1600

2000

2400

2800

Schedule difference

instance08_1

0
Im

provem
ent

0

Schedule difference

instance01_2

0
Im

provem
ent

0

Schedule difference

instance02_2

0
8

16
24

32
40

48
Im

provem
ent

0 80

160

240

320

400

480

560
Schedule difference

instance03_2

0
25

50
75

100
125

150
Im

provem
ent

0

200

400

600

800

1000

1200

1400

Schedule difference

instance04_2

0
8

16
24

32
40

48
Im

provem
ent

0

150

300

450

600

750

900

Schedule difference

instance05_2

0
10

20
30

40
50

Im
provem

ent

0

250

500

750

1000

1250

1500

1750

Schedule difference

instance06_2

0
15

30
45

60
75

Im
provem

ent

0

400

800

1200

1600

2000

2400

2800

Schedule difference

instance07_2

0
8

16
24

32
40

48
Im

provem
ent

900

1200

1500

1800

2100

2400

2700

3000

Schedule difference

instance08_2

0
Im

provem
ent

0

Schedule difference

instance01_3

0
8

16
24

32
40

Im
provem

ent

120

160

200

240

280

320

360

400

Schedule difference

instance02_3

0
15

30
45

60
Im

provem
ent

100

200

300

400

500

600

700

Schedule difference

instance03_3

0
10

20
30

40
50

60
Im

provem
ent

0 80

160

240

320

400

480

560
Schedule difference

instance04_3

0
15

30
45

60
75

90
Im

provem
ent

0

200

400

600

800

1000

1200

1400

Schedule difference

instance05_3

0
Im

provem
ent

0

Schedule difference

instance06_3

0
8

16
24

32
40

Im
provem

ent

0

400

800

1200

1600

2000

2400

Schedule difference

instance07_3

0
8

16
24

32
40

Im
provem

ent

0

250

500

750

1000

1250

1500

1750

Schedule difference

instance08_3

0
8

16
24

32
40

48
Im

provem
ent

0 40 80

120

160

200

240

280

Schedule difference

instance01_4

0
3

6
9

12
15

18
21

Im
provem

ent

0 80

160

240

320

400

480

Schedule difference

instance02_4

0
20

40
60

80
100

120
Im

provem
ent

0 60

120

180

240

300

360

420

480

Schedule difference

instance03_4

0
20

40
60

80
100

120
Im

provem
ent

0

100

200

300

400

500

600

700

800

Schedule difference

instance04_4

0
8

16
24

32
40

48
Im

provem
ent

0

150

300

450

600

750

900
Schedule difference

instance05_4

0
Im

provem
ent

0

Schedule difference

instance06_4

0
10

20
30

40
50

Im
provem

ent

0

600

1200

1800

2400

3000

3600

4200

4800

Schedule difference

instance07_4

0
5

10
15

20
25

30
Im

provem
ent

0

250

500

750

1000

1250

1500

1750

Schedule difference

instance08_4

SSIRA (im
provem

ent sort)
SSIRA (tim

e sort)
IIRA (AUAU)
IIRA (M

RUR)

Figure A.2 Achieved improvement (x-axis) to schedule difference (y-axis) for every
experiment instance.

65

1.08
1.14

1.20
1.26

1.32
1.38

1.44
Duration

0 8 16 24 32 40 48 56

Improvement

instance01

1
2

Duration

0 4 8 12 16 20 24 28

Improvement

instance02

0.072
0.080

0.088
0.096

0.104
Duration

0 8 16 24 32 40 48 56

Improvement

instance03

0
1

2
Duration

0 15 30 45 60 75 90

105

120

Improvement

instance04

0.12
0.18

0.24
0.30

0.36
0.42

Duration

0 10 20 30 40 50 60 70

Improvement

instance05

20
24

28
32

36
40

Duration

0 20 40 60 80

100

120

140

Improvement

instance06

4
5

6
7

8
9

Duration

0 5 10 15 20 25 30 35 40

Improvement

instance07

20
24

28
32

36
40

Duration

0 10 20 30 40 50 60 70 80

Improvement

instance08

0.16
0.24

0.32
0.40

0.48
0.56

Duration

0 15 30 45 60 75 90

Improvement

instance01_1

1
Duration

0 8 16 24 32 40 48 56

Improvement

instance02_1

0.08
0.12

0.16
0.20

0.24
Duration

0 8 16 24 32 40 48 56

Improvement

instance03_1

4
8

12
16

20
24

28
Duration

0 15 30 45 60 75 90

Improvement

instance04_1

0
1

2
3

Duration

0 20 40 60 80

100

120

Improvement

instance05_1

20
24

28
32

36
40

Duration

0 30 60 90

120

150

180

210

Improvement

instance06_1

18
21

24
27

30
Duration

0 15 30 45 60 75 90

105

Improvement

instance07_1

21
24

27
30

33
36

Duration

0 8 16 24 32 40 48 56

Improvement

instance08_1

1.44
1.52

1.60
1.68

1.76
Duration

0

Improvement

instance01_2

1Duration

0

Improvement

instance02_2

0.16
0.20

0.24
0.28

0.32
0.36

0.40
Duration

0 6 12 18 24 30 36 42 48
Improvement

instance03_2

5
10

15
20

25
30

Duration

0 20 40 60 80

100

120

140

Improvement

instance04_2

0.06
0.12

0.18
0.24

0.30
0.36

0.42
Duration

0 6 12 18 24 30 36 42 48

Improvement

instance05_2

20
22

24
26

28
30

Duration

0 8 16 24 32 40 48 56

Improvement

instance06_2

15
18

21
24

27
30

Duration

0 10 20 30 40 50 60 70 80

Improvement

instance07_2

15
20

25
30

35
40

Duration

0 6 12 18 24 30 36 42 48

Improvement

instance08_2

0.07
0.08

0.09
0.10

0.11
0.12

Duration

0

Improvement

instance01_3

1
Duration

0 5 10 15 20 25 30 35 40

Improvement

instance02_3

1.52
1.56

1.60
1.64

1.68
1.72

1.76
Duration

0 8 16 24 32 40 48 56 64 72

Improvement

instance03_3

11
12

13
Duration

0 8 16 24 32 40 48 56
Improvement

instance04_3

0
1

2
3

4
Duration

0 15 30 45 60 75 90

Improvement

instance05_3

0.00260.00200.00140.00080.00020.00040.0010
Duration

+2.01e1

0

Improvement

instance06_3

20
24

28
32

36
40

Duration

0 5 10 15 20 25 30 35 40

Improvement

instance07_3

20
24

28
32

36
40

Duration

0 6 12 18 24 30 36 42

Improvement

instance08_3

0.15
0.20

0.25
0.30

0.35
0.40

Duration

0 6 12 18 24 30 36 42 48

Improvement

instance01_4

1
2

Duration

0 3 6 9 12 15 18 21

Improvement

instance02_4

0.10
0.15

0.20
0.25

0.30
0.35

Duration

0 15 30 45 60 75 90

105

120

Improvement

instance03_4

0
2

4
6

8
10

Duration

0 20 40 60 80

100

120

Improvement

instance04_4

1
Duration

0 6 12 18 24 30 36 42 48
Improvement

instance05_4

20.14
20.15

20.16
20.17

20.18
20.19

20.20
Duration

0

Improvement

instance06_4

12
16

20
24

28
32

Duration

0 8 16 24 32 40 48 56

Improvement

instance07_4

5
10

15
20

25
30

35
Duration

0 4 8 12 16 20 24 28 32

Improvement

instance08_4

SSIRA (im
provem

ent sort)
SSIRA (tim

e sort)
IIRA (AUAU)
IIRA (M

RUR)

Figure A.3 Evaluation duration (x-axis) to achieved improvement (y-axis) for every
experiment instance.

66

	Introduction
	Problem statement
	Scheduling
	Constraint programming model
	Bottlenecks
	Definition
	Constraints relaxation
	Resource capacity modifications

	Relaxed schedule

	Related works
	RCPSP scheduling
	Time-variable resource capacity constraints
	Solution approaches

	Bottlenecks in scheduling
	Various definitions
	Bottleneck classification
	Identification indicators
	Bottlenecks in the RCPSP
	Relaxing the identified bottlenecks

	Contribution

	Solution approach
	Baseline solution
	Adapted identification indicators
	Identification Indicator-based Relaxing Algorithm

	Extended solution
	Preliminaries
	Schedule Suffix Interval Relaxing Algorithm

	Numerical experiments
	Setup
	Problem instances
	Solving the constraint programming model
	Algorithm parameters
	Methods of evaluation

	Comparative results
	Observations

	Discussion

	Conclusion
	Contribution
	Further work

	Bibliography
	Notation
	Attachments
	Algorithms, Functions, and Procedures
	Documentation
	Requirements
	Running scripts
	Project overview

	Full instance plots

