
BACHELOR THESIS

František Mrkus

Processing of time tables

Department of Theoretical Computer Science and Mathematical Logic

Supervisor of the bachelor thesis: RNDr. Jiří Fink, Ph.D.

Study programme: Computer Science

Study branch: Programming and software
development

Prague 2024

I declare that I carried out this bachelor thesis on my own, and only with the
cited sources, literature and other professional sources. I understand that my
work relates to the rights and obligations under the Act No. 121/2000 Sb., the
Copyright Act, as amended, in particular the fact that the Charles University has
the right to conclude a license agreement on the use of this work as a school work
pursuant to Section 60 subsection 1 of the Copyright Act.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

ii

To my family, my supervisor, and public transport fans. Thanks for everyone
who I could ask for help and motivation.

iii

iv

Title: Processing of time tables

Author: František Mrkus

Department: Department of Theoretical Computer Science and Mathematical
Logic

Supervisor: RNDr. Jiří Fink, Ph.D., Department of Theoretical Computer Science
and Mathematical Logic

Abstract: A goal of this thesis is to create an open-source application which
could serve as foundation for public bus transport analysis and organizing, while
directly operating with timetables in a JDF format for a comfortable workflow.
The application is centered aroud bus scheduling for public transport organizers
and agencies,including related functions such as displaying timetable sheets and
departure/arrival lists, map visualization of the planned routes, and creation of
custom timetables. All of these features were sucesfully implemented and tested
on real-world data.

Keywords: bus scheduling, public transport, optimization, spreadsheet timetable

Název práce: Zpracování jízdních řádů

Autor: František Mrkus

Katedra: Katedra teoretické informatiky a matematické logiky

Vedoucí bakalářské práce: RNDr. Jiří Fink, Ph.D., Katedra teoretické informatiky
a matematické logiky

Abstrakt: Cílem této práce je vytvořit open-source aplikaci, která by mohla sloužit
jako základ pro analýzu a organizaci veřejné autobusové dopravy, přičemž přímo
pracuje s jízdními řády ve formátu JDF, pro zajištění pohodlného pracovního
postupu. Aplikace je zaměřena na plánování autobusových spojů pro organizá-
tory a dopravce veřejné dopravy, včetně souvisejících funkcí, jako je zobrazení
jízdních řádů a seznamů odjezdů/příjezdů, vizualizace plánovaných tras na mapě
a vytváření vlastních jízdních řádů. Všechny tyto funkce byly úspěšně implemen-
továny a otestovány na reálných datech.

Klíčová slova: rozvrhování autobusů, veřejná doprava, optimalizace, vývěsný
jízdní řád

v

vi

Contents

1 Introduction 7
1.1 Motivation . 7
1.2 Bus transport . 8

1.2.1 Trip planning . 8
1.2.2 Bus scheduling . 9

1.3 Bus timetable software . 10
1.4 Data formats for timetables . 11
1.5 Software using public data . 11
1.6 Chapters overview . 11

2 Used data sources 13
2.1 Programming tools used in TTP 13
2.2 Definitions of timetable terms 13
2.3 Timetables in JDF . 14

2.3.1 Description of the JDF format 14
2.3.2 Stop name standardization 15

2.4 Human-readable timetable format 16
2.4.1 Export of timetable as XLSX 16
2.4.2 Upload of timetable in XLSX format 18

2.5 OpenStreetMap . 19
2.6 Merging of JDF timetables . 19
2.7 Stop editing . 19
2.8 Scheduling calculation . 20

3 Alternative solutions and software 21
3.1 Timetable formats for public data exchange 21
3.2 Timetable editors for organizing public transport 21
3.3 Public transport trip planning software 22
3.4 Optimization software . 23

1

4 Functional and non-functional requirements 25
4.1 Functional Requirements . 25

4.1.1 Parsing of timetable in JDF 25
4.1.2 Handling of road network data and stops in OpenStreetMap 26
4.1.3 Trip and stop editing . 26
4.1.4 Deadhead distance calculation between stops 27
4.1.5 Trip filtering . 27
4.1.6 Scheduling calculation 28
4.1.7 Visualizing trips on map 28

4.2 Non-Functional Requirements 29
4.2.1 Page architecture . 29
4.2.2 Performance . 29
4.2.3 Reliability . 29
4.2.4 Internet connection requirement 30
4.2.5 Scalability . 30
4.2.6 Security . 30
4.2.7 Usability . 31
4.2.8 Maintainability . 31
4.2.9 Interoperability . 32

5 Scheduling calculation 33
5.1 Statement of the problem . 33
5.2 Minimizing amount of buses . 34
5.3 Counting with deadheads . 35
5.4 Adding pull-out and pull-in . 37
5.5 Multiple depots . 38
5.6 No depots, circular scheduling 38

5.6.1 Local search for circular scheduling 38
5.6.2 Circular scheduling parameters 39

5.7 Summary . 40
5.7.1 Expected scheduling comparison results 40
5.7.2 Time complexity . 40

6 Map visualization 43
6.1 Introduction . 43
6.2 Our goal of visualization . 43
6.3 Data preparation . 45
6.4 Data rendering . 45

6.4.1 Overlapping routes . 45
6.4.2 Navigation data . 46

2

7 Performance testing results 47
7.1 Introduction . 47
7.2 Testing environment . 47
7.3 Trip querying . 48
7.4 Distance calculation . 51
7.5 Single depot scheduling . 53

7.5.1 Scheduling efficiency . 56
7.6 Circular scheduling with local search 57
7.7 Visualization . 60
7.8 Summary . 60

8 User documentation 63
8.1 Main page . 63
8.2 General notes . 64
8.3 Upload of timetable in JDF . 64
8.4 Trip querying . 66

8.4.1 Errors . 68
8.5 Scheduling calculation . 69

8.5.1 Date and time . 69
8.5.2 Deadhead matrix . 69
8.5.3 Scheduling goal . 70
8.5.4 Invalidate cache . 71
8.5.5 Precalculation . 71
8.5.6 Schedule results . 72

8.6 Stop editing . 73
8.6.1 Stop map . 75
8.6.2 Adding and removing stops 75
8.6.3 Importing stops . 75

8.7 Export of timetable as XLSX . 75
8.7.1 Export settings . 76
8.7.2 Schema of the exported file 77

8.8 Upload of timetable in XLSX format 77
8.9 Visualizing trips and schedules on map 79

8.9.1 Output files . 79
8.9.2 Data interpretation . 79
8.9.3 Overlapping lines . 80

8.10 File structure of the saved data 80

3

9 Installation and launching 83
9.1 Prerequisites . 83
9.2 Source codes and installation . 83
9.3 Data retrieval . 84
9.4 Pre-loaded data . 84
9.5 Remote server . 84

10 Programmer documentation 85
10.1 Timetable processing . 85

10.1.1 JDF classes . 86
10.1.2 JDF data initialization 86
10.1.3 JDF merging . 87
10.1.4 JDF serialization . 88
10.1.5 Timetable algorithms . 88
10.1.6 Excel timetable export 89

10.2 Bus scheduling . 89
10.2.1 Data representation . 89
10.2.2 Precalculations . 90
10.2.3 Scheduling algorithm - entry point 90
10.2.4 Scheduling algorithm - default 91
10.2.5 Scheduling algorithm - single depot 91
10.2.6 Scheduling algorithm - linear programming 91
10.2.7 Scheduling algorithm - circular, approximate 92
10.2.8 Schedule formatting on console 93
10.2.9 Schedule format as JSON 94

10.3 Map visualization . 95
10.3.1 Line plotting - utility functions 95
10.3.2 Route plotting overview 95
10.3.3 Route plotting algorithm 96
10.3.4 Leaflet map rendering 96
10.3.5 Using OSM navigation 97
10.3.6 Finding stops on map . 97

10.4 Stop searching by OSM query 98
10.5 User interface . 99

10.5.1 General structure . 99
10.5.2 Template format . 100
10.5.3 Main Flask file . 100
10.5.4 JDF processing . 100
10.5.5 Trip, departure, arrival querying 100
10.5.6 JDF upload and merge 101
10.5.7 Management of stops . 102

4

10.5.8 Bus scheduling . 103
10.5.9 Timetable export . 104
10.5.10 Map visualization . 104
10.5.11 File downloading . 104

11 Conclusion 107
11.1 Result . 107
11.2 Difficulties . 107
11.3 Future work . 108
11.4 Final words . 108

Bibliography 109

A External scripts 111
A.1 JDF merging . 111
A.2 Stop name standardization . 111
A.3 Stop location finding and map visualization 112

5

6

Chapter 1

Introduction

1.1 Motivation
We intend to handle the bus scheduling problem, starting in the Czech Republic.
The applications used for scheduling usually are either commercial or require
simpler format than timetables, which are provided in the form of open data.

An initial scheduling problem was provided to us by a transport agency for a
relatively large region - Pilsen, Czech Republic, which we settled on as a limit for
the data our application should be able to handle. The data were provided in the
JDF 1.11 format 1, so naturally a conversion tool was needed.

Since the problem turned out to be more complex than expected, we decided to
integrate the helper functionalities into one application - Bus timetable processor
(TTP).

We also needed to provide a way to create new timetables, as while editing
the JDF files directly is possible, it still appeared to be user-unfriendly.

We decided to delegate this task to publicly available spreadsheet software,
supporting the import of spreadsheet files into TTP, which would also handle the
scheduling in this format by converting it to JDF.

Ultimately, the bus scheduling was kept only in its simplest form, and the
focus was made on making the software more accessible to the public, as while
the scheduling is well-researched, the tools for working with JDF data are less
common.

As a potential end goal, the software is expected to be usable by transport orga-
nizers or agencies as a proposal of a new timetable, or to optimize the scheduling
of the buses in the existing timetable.

In the following sections, we elaborate on the bus transport system and the

1The “F“ stands for Format, so forgive us for the RAS syndrome in this thesis. The format is
more explained in 1.4

7

software tools used in this field.

1.2 Bus transport
A bus transport system is the most widespread (by area) form of subsidized public
transport in Europe.

Usually the system of regional transport is ordered by the regional government
(organizer, in further sections) who signs a contract with a transport agency. The
amount of money paid to the transport agency is usually fixed - based on the
amount of kilometers driven, while the distribution of fare revenue (based on the
amount of passengers) transported can be received either by the organizer or the
agency ([1]).

The former offers more economic stability to the transport system, the latter
motivates the agency to provide better service on its own.

A shorthand distinction of these modes is calling them “brutto“ and “netto“
contracts, respectively [2].

An agency serving urban transport can be either contracted by the city using
the same system as regional transport, or the city can also own the transport
agency, which can offer better control of the transport service.

Regardless of the contract type, there will be always an interest to minimize
the operational costs.

In this thesis, we focus mostly on software capable of handling regional
transport in the Czech Republic, and present a software tool, further named as
TTP (timetable processor), which can be used to process the timetables of the
buses in openly available data format JDF 1.11 and provide relevant functions for
the organizer.

1.2.1 Trip planning
The most common routes for bus transport are usually based on the directions of
the car travelling. However, while cars can use highways to travel to the desired
distance in the shortest time, regional transport is based on efficiency of how
many passengers it can transport, therefore the routes are usually aimed through
cities and use more stops. An exact mathematical models on network planning
are analyzed for example in [3].

Its goal is to allow most people to get onto bus stop in reasonable distance
from their home and get off at reasonable distance from their destination. This
destination, in the case of regional transport, is usually a bigger city which
contains many workplaces, schools and other facilities. The route planning is
therefore based on providing reasonably short route while also visiting as many

8

cities as possible. As some of the facilities have fixed working hours, the transport
system is first designed to allow people to get to these destination at given time.

As a second priority, the organizer should provide transportation to higher
modes of transport, such as train stations or airports. Again, usually the bus
transport must adhere to fixed schedules of these.

Finally, many trips are not based on any fixed time; they are spread around
the day in such a way to avoid long gaps, allowing people to use public transport
for their daily activities.

How often the bus actually come to given location is usually based on the
amount of potential passengers, as more passengers also means more revenue for
the organizer. Usually the system is not profitable, but some trips can actually be
profitable, which can be used to subsidy the lower populated areas.

In general, we assume the system as a whole is aperiodic during the whole
day, but the trips usually repeat every workday (most systems have two main
schedules - one for workdays and one for weekends).

The easiest way of cutting costs, which we also discuss in our work, is to use
as least buses as possible, which means that the buses must be used for as many
trips as possible.

Furthermore, it is also necessary to minimize the distance and time without
passengers (deadhead trips). Notably this is usually what also the organizers are
already taking into account. For example, if a bus from a stop 𝐴 to a stop 𝐵 ends
its trip at 10:50 2 and stop 𝐵 is not served by many trips during this time, then a
trip from 𝐵 to 𝐴 should not be scheduled to start earlier. This can be generally
called “integration of timetable planning and bus scheduling“, mathematically
analyzed in publications such as [4].

However, the proposed scheduling might not always be feasible or optimal,
and generally the agency is responsible for both adherence to timetable and
following the local laws regarding bus transport (not the organizer).

In our TTP, we do not suggest any change to the timetables, and focus only
on optimal bus scheduling with timetables which cannot easily be changed.

1.2.2 Bus scheduling

The bus scheduling is a complex task, as it must take into account many factors.
In the thesis and TTP, we only consider the simple tasks of scheduling buses
themselves (without regards to the regulations of the drivers). The buses also are
considered to be of single type, meaning all buses have uniform operational costs
and can be assigned to any trip.

2we use 24-hour format

9

We generally consider two cases. Both of these have in common to minimize
the time spent on deadheads and the amount of buses. What differ is how the buses
get to their respective first and last trips (called pull-out and pull-in, respectively.).
In the first case, we assume that the buses are already in the depot at the beginning
of the day and return to the depot at the end of the day. An agency would have
only one depot, which would be the starting and ending point for all buses. This
leads to single depot bus scheduling problem (SDBS3 for short), which can be
calculated in polynomial time [5].

Having multiple depots - creating multiple depot bus scheduling problem
(MDBS) - increases the difficulty significantly - proven to be NP hard by a reduction
to multicommodity flow problem [5]. An extreme case of MDBS might be that
we do not consider depots at all, where we must assume the buses are supposed
to return on their starting space.

This is a practical problem which was stated as an actual requirement of a
transport agency during the initial research (personal communication). The buses
can be used for multiple days without returning to the depot, while the timetables
are also scheduled in a way to make first trips of a day from suburban areas to
bigger cities and last trip from bigger cities to suburban areas.

Removing the depot requirement can be seen as a way to save on pull-out and
pull-in costs, as the buses would be nearby the place of their first and last trips.
However, this appears to simply be an extreme version of MDBS, as we need to
consider every initial stop (of all trips) as potential depot with infinite capacity.
The problem stated this way was not found in literature, so we have decided
to solve such problem in a heuristic way which scales well with the amount of
possible terminal stops (starting and ending) instead of solutions which would
get more complex with the amount of depots, such as in [6].

1.3 Bus timetable software
The transport agencies usually use their own software to create the actual timeta-
bles 4, where the machine-processable format is usually not shared with the
public. Such timetables are published as human-readable PDF, in current Czech
legislature they have to be on all stops the timetable relates to (=where at least
one stop event from given timetable takes place, except for get off only stops [7]
§ 18,1f 111/1994 Sb.)

These timetable data in machine processable format are obviously necessary
for scheduling of their buses and drivers, as well as for the internal bus systems

3More generally SDVS, with V standing generally for vehicle. Do not confuse with vehicle
routing problem.

4A commercial example: https://www.tvorbajizdnichradu.cz/

10

(selling tickets, announcing stops).

1.4 Data formats for timetables
As of 2023, the most common format for timetables is GTFS[8]. It is an open
source format developed by Google, which is used by Google Maps to show public
transport connections.

In the Czech Republic, another format has been standardized, namely JDF
(Jednotný datový formát, in English: Unified data format). The transport agencies
are obliged to provide their timetables to centralized agency (CHAPS), which
allows the public to view all the timetables on web 5 as well as allow downloading
of the raw data in the JDF format 6. As for 2023, the specification of the JDF is in
format 1.11.

1.5 Software using public data
There are many software solutions which use the public data to provide the
passengers with information about public transport. The most useful are the
connection planners, such as the one available on Google Maps7 which allow the
user to find the best connection between two places. Another very common usage
is showing all departures from a given stop, which is an advantage for waiting
passengers especially in urban transport (where both intervals and distances are
lower).

1.6 Chapters overview
In chapter 2, we show data sources we use for our application and tools for
working with them. Following the chapter 3, we briefly mention other software
solutions tied to the functionalities we use. In chapter 4, we show the functional
requirements for TTP. In 5, we elaborate on how the SDBS and MDBS solutions
are implemented. The chapter 6, shows how is TTP integrated with map data. The
chapter 7, analyzes TTP’s performance on some real-life networks. In chapter 8,
we show the general design of TTP, serving also as user manual. A chapter 9
shows how to install the application for user’s own experiments. In chapter 10,
we show the programmer documentation for TTP. Finally, we present conclusion
in 11

5https://portal.cisjr.cz
6ftp://ftp.cisjr.cz/JDF
7https://www.google.com/maps

11

https://www.mdcr.cz/getattachment/Dokumenty/Verejna-doprava/Jizdni-rady,-kalendare-pro-jizdni-rady,-metodi-(1)/Jizdni-rady-verejne-dopravy/metodicky-pokyn-cis-5.pdf.aspx
https:portal.cisjr.cz

12

Chapter 2

Used data sources

This chapter describes both external an internal data sources used in TTP.

2.1 Programming tools used in TTP
The main programming language used in TTP is Python 3.10 [9]. It is a high-level
language with a wide range of libraries available, which makes it a good choice
for data processing and visualization.

For front-end, we use Flask [10] as a web framework, which utilizes HTML5
for the user interface. Other libraries are mentioned in the text where they are
relevant.

2.2 Definitions of timetable terms
Let us define some terms used in the timetable context.

1. Stop: A place for embarking and disembarking of passengers. Identified by
name (in TTP, all stops are considered to have one location only).

2. Route: An ordered collection of stops around which a bus passes by.

3. Serving a stop: Bus passing by a stop while allowing passengers to embark
and disembark.

4. Trip: A description of a route with given times during which each stop
must be served. A trip is identified by its number and a line (see later) it
belongs to.

5. Stop event: A function of trip and stop, the “time“ displayed on a timetable,
commonly meant as “departure“ and “arrival“.

13

6. Transport agency: A company responsible for driving the buses on specified
trips.

7. Line: A collection of trips. Usually, most trips following the same line also
have similar route, but this is not always the case.

8. Timetable: A textual representation of a line (in our cases, one timetable
always contain only one line) containing stops, trips, departure/arrival
times and other data relevant to passengers.

9. Chaining of trips: Two trips served one after another by a bus.

10. Deadhead: The act of a bus driving between chained trips (from last stop
of an earlier trip to a first stop of later trip). We also include zero length
deadheads (turnarounds).

11. Bus block: A collection of trips served by one bus.

2.3 Timetables in JDF
The format for persistent data storage is JDF 1.11 (Jednotný datový formát (Unified
Data Format)) as described by Czech Ministry of Transport [11] . All public bus
lines currently operating in the Czech Republic have to be published in this format.
They can be accessed freely at [12]. This gives us a good source for testing data,
and also somewhat standardized format at national level.

2.3.1 Description of the JDF format
The full description is available at [11]. This paragraph only describes the essential
things and things which might not be obvious at the first glance.

1. One JDF “batch“ is a folder containing .txt files at the top level. the name of
folder is irrelevant (the public data source, after unzipping, uses one folder
per line, and the folders use integer names, starting with 1.).

2. The files have .txt extension, but are in fact CSV files (no headers, cp-1252
encoding, semicolon delimiter, mandatory quotes)

3. There is no file (neither mandatory nor optional) which would describe
the location of the stops. This is due to the fact that these data have to
only be equivalent to paper timetables (shown at bus stops) where this info
is not necessary either. In contrary, the alternative GTFS format requires
these [13].

14

4. Despite the specification stating that number of a stop must be taken from
CIS JŘ registry (basically a nation-wide database of stops), this is not true
for actually published JDF batches (where the number must be only unique
within the batch, i.e. a primary key).

2.3.2 Stop name standardization

The most common issue while working with the JDF input data was the standard-
ization of stop names.

A standard stop name, as displayed on timetable, should have 3 parts: city
(mandatory), city part, and location. This means the stop name on timetable can
be in the format “[city],[city part],[location]“ with trailing commas removed.

Since city names can also be ambiguous (mostly occurs in case of small towns
like “Lhota“), the actual stop name also contains field “BlizkaObec“ (nearby city),
which we represent in TTP in brackets after the stop name.

Finally, a stop can be also identified by a country it belongs to, which we do
not display in our output data, due to simplicity.

Some published JDF data save on the stop names by omitting the city name.
This is mostly done for the convenience of users who do not need to see repeated
city name in case of urban transport. On the other hand, this can make data
processing harder if these stops are also used by regional transport which would
often use the full name.

More technically evolved systems simply solve this by storing the stop names
by their full name (in official JDF data), but having a specific mapping of the stop
names when displaying them to the users, on custom timetables, and bus informa-
tion systems. An easy example is Prague, where all stops are named “Praha„[stop
name]“ , but in all data for users and inside bus information system, only “[stop
name]“ is used. Adding a city part makes this even harder, as non-locals might not
differentiate between sovereign city and city part. Finally, information systems
rarely display double commas in stop names.

We implement a solution to this (as pre-processing step) in the script
fix_stop_names.py, which requires some external knowledge of the region
and municipalities from the user.

This script attempts to fix all of these:

• Fixing commas within names - e.g.“Ostrava,Poruba“ as city becomes “Os-
trava“ as city and “Poruba“ as city part.

• Central city name - e.g. “Zlín“: this is appended to a stop name if it is not
already present.

15

• Independent city names - e.g. “Želechovice“; “Otrokovice“: central city
name is not appended to these.

• Option for moving location to the third part of the name - e.g. “Praha,Černý
Most“ becomes “Praha„Černý Most.“ This can generate false positives if
the actual city name contains of two parts and location is not present, which
are best to fix manually (e.g. “Uherský Brod,Újezdec“).

2.4 Human-readable timetable format
In the Czech Republic, the timetables are available at www.portal.cisjr.cz in PDF.
The public transport agencies use similar format for printed timetables at the bus
stops with some changes like separating workdays and weekends or inserting
more rows for transfer options. We can see the comparison on image 2.1.

This format is easy to read, but harder to edit or parse by machines. This is
why we decided to use another format, XLSX ([14]) which is easy to edit with
spreadsheet editors such as LibreOfficeCalc1 or Apache OpenOffice2. and there
also exist open tools for programmatic editing of XLSX files, such as openpyxl3.

Such conversion application was already made by Papež in [15], using the of-
ficial data as a source and providing richer user interface. An example can be
seen on image 2.2.

Our method for converting JDF to XLSX was written from scratch, giving
similar output, but focusing on the ability to re-import the data back to TTP.

2.4.1 Export of timetable as XLSX
The advantages of exporting the timetables as XLSX are as following: First,
the data, when opened in a spreadsheet editor such as Microsoft Excel, look
similar way to the official PDF renderings. Second, the data can be directly
manipulated. As spreadsheet editors support operations of inserting rows or
columns, adding additional trips or stops becomes easier.

The editing part and the whole format is described in the user documentation
(8.7). The export itself is not meant only for editing purposes, but also to verify
the data on timetable. It must be noted that the exported data do not encompass
all information available in the original JDF batch.

We can call this format TT-XLSX in the rest of the text.

1https://www.libreoffice.org/discover/calc/
2https://www.openoffice.org/
3https://openpyxl.readthedocs.io/en/stable/

16

www.portal.cisjr.cz

Figure 2.2 A part of timetable of line 728934, as seen on web portal by Radek Papež.
Source: portal.radekpapez.cz

Unlike JDF, where data are split into individual files by their type (line,trip…),
the TT-XLSX splits the worksheets by line and direction, as can be seen on official
timetables.

2.4.2 Upload of timetable in XLSX format

Due to the tabular nature of timetable, XLSX format (or any spreadsheet format in
general) is a good way to present timetable proposal to authorities. The disadvan-
tage is that there is apparently no specialized tool to convert XLSX data into JDF,
so it was created using the same principles as the JDF to TT-XLSX conversion.

The TT-XLSX is designed in such a way the timetable can be exported in such
a way the user can immediately re-import it to our TTP.

This causes some data losses, as not all information would properly fit on
the XLSX sheet, and general parsing would be hard enough, so we decided to
properly convert only the basic data - stops, trips and lines, which are the most
important for the scheduling calculation.

The only thing which was omitted and which changes our scheduling cal-
culation result are time codes - signs listing specific dates when a trip operates
or not. However, periodic signs (whether trip operates on workdays, weekends,
Mondays) are still parsed.

18

https://portal.radekpapez.cz/

2.5 OpenStreetMap
The OpenStreetMap is our choice for analyzing travel times and drawing trips.
Its public specification is supported by many programming libraries. As the
program is written in Python, the libraries which we use are osmnx4, leaflet5, and
a modified version of mplleaflet6. Its disadvantage is the incompleteness of data,
making some lines be drawn poorly or to miscalculate driving times.

2.6 Merging of JDF timetables
The publicly available JDF batches are saved in the format “one batch - one
line“. However, most public transport systems are organized by multiple lines,
where one bus can serve multiple trips belonging to different lines. Therefore,
TTP is designed to merge multiple timetables into one JDF batch with unique
identifier. This procedure is rather easy, as most data (e.g. trip metadata) are
disjoint. The major exceptions are the code map and the names of stops, which are
handled specifically. It is assumed that the merged timetables belong to the same
transit agency (or at least organizer) who follows the same conventions such as
stop naming in all their timetables. In fact, the only observed discrepancy were
equal “global stop attributes“, such as whether a stop follows barrier-free access,
which is irrelevant for our problem.

As the stops are contained in only two files (Zastavky.txt and Zaslinky.txt),
if the merging is not perfect (such as if the user failed to standardize the stop
names), rewriting respective record in Zaslinky.txt (and deleting record from
Zastavky.txt, whose identifier is renamed) is enough.

2.7 Stop editing
The knowledge of stop locations is crucial for any transport planning, with vi-
sualization of the routes being the main motivation. The issue is, JDF does not
require nor allow this. One of the reasons might be, that a timetable row (in
the file ”Zaslinky.txt”) can represent stop on multiple routes, which can use dif-
ferent platforms. The most common example are reverse routes, which increases
the amount of needed platforms to two. We decide on a solution that to one stop,
one location is assigned, for example an average of all its platforms’ locations -
this is how Mapy.cz [16] displays stops at far zoom. The list of stops with known

4https://osmnx.readthedocs.io/en/stable/
5https://leafletjs.com/
6https://github.com/jwass/mplleaflet

19

locations is maintained in TTP, outside the uploaded JDF batches. As we know,
JDF does not enforce global stop identifiers by number, therefore each stop is
identified by its name. And the final issue is, how to get the actual data - how to
assign a stop name to a location? This get mentioned later, for short we can just
say that TTP does not use any automated methods - the data have to be uploaded
from external source, or the stops can be added manually with graphical user
interface (with the help of a map background).

2.8 Scheduling calculation
Knowing which bus to assign to each individual trip is the core of organizing any
public transport. TTP takes a very simplistic take on the problematic; it tries to
satisfy the assignment objective on two levels:

1. minimizing the bus count

2. minimizing the deadhead (including pull-in and pull-out) times

This is rather an expected objective, whichminimizesmost of the operational costs.
More is explained in chapter 5. What is not considered, are the drivers operating
the buses and their breaks - required (by law), which would make the scheduling
illegal if ignored, and also involuntary breaks (too long downtime serving only
morning and afternoon trips), which also incurs rather high operational costs.

Therefore, the simple calculation serves only as a demonstrative example, but
adding more complicated calculation should be reasonably easy within the source
code.

20

Chapter 3

Alternative solutions and software

3.1 Timetable formats for public data exchange
In Czech Republic, the JDF 1.11 can be considered as a standard for bus transport
timetables. It should be mentioned that transport agencies themselves (and
the organizers) might use other formats, if they fit their internal systems.

But if we take look at international solutions, like searching the most ap-
propriate public transport connection in Google Maps, the most frequent one
is GTFS - general transit feed specification, which was already mentioned in
the introduction (section 1.4)

As it turns out, the main advantage (and difference) of GTFS is that it is able
to specify the stop locations without relying on external data source, such as
national database of stops, which does not exist in the Czech Republic yet. 1

The TTP therefore has to keep its internal database of bus stops, which can
be further edited by the user, with the advantage of being able to add currently
non-existing stops.

In the future, it might be useful to implement the GTFS format as well without
affecting the non-timetable parts of the TTP.

3.2 Timetable editors for organizing public trans-
port

An example of very simple timetable editor which we were able to try out was
BEZDĚZ 2, not available online anymore.

1https://openstreetmap.cz/talkcz/c3372/
2https://www.k-report.net/presmerovani/?prispevek=1886740

21

https://openstreetmap.cz/talkcz/c3372/

As it is mainly focused on train transport (while allowing to add bus lines
as well), one of the interesting things is that the user inputs individual trips as
already to blocks, so the bus scheduling is practically done before being able to
print the timetables.

Since we have not been able to find and try out any simple enough timetable
editor to generate data as JDF, we opted for already owned MS Excel to see create
timetables in similar format they can be seen online.

Although considered a commercial software as well, the XLSX format is open
and can be read by other software, including open-source ones, as mentioned in
the introduction (section 1.4).

3.3 Public transport trip planning software
For users of public transport, there are two main use cases for processing of
timetables. First of them is finding optimal connection between two points, that
is series of trips (including walking) whose optimization can be classified in at
least three ways:

• Arriving to the target destination as soon as possible (from current point
in time)

• Minimizing the travelling time (if planning to use given connection in
the future, or the passenger does not mind waiting)

• Minimizing the walking distance (for passengers with reduced mobility)

This does not include factors like barrier-free access, minimizing the time of
transfers or even reliability of the connection, and the list of results might not
be always fully satisfactory, so we can see this is another hard discipline and
therefore not implemented in TTP, especially if we restricted ourselves to using
only bus transport.

The other use case is displaying trips from a given stop, which tells the users
how long they have to wait until the given bus (or other vehicle) comes. Such
tools usually do not show the lines separately (as they would on timetables) they
simply show the trips ordered by the departure time at a given stop. The amount
of shown trips is usually limited by the panel size.

In the TTP, this use case is implemented in trip querying as to show all trips
which are to come in the next 24 hours, from a stop selected by the user.

Such feature is already available on IDOS3, which gives a fixed list of 20 trips
incoming (and 10 more for each expansion of the list).

3https://idos.idnes.cz/en/vlakyautobusymhdvse/odjezdy/

22

In our TTP, we can consider this as an integration of the feature, while serving
as an alternative test of correctness whether our input data are parsed correctly.

3.4 Optimization software
There are multiple instances of optimization software, such as Optibus4, men-
tioned at pages 232–234 in [17], for vehicle and crew scheduling optimization.

A very recently updated and open-source software is Lintim5, which allows
integration of whole timetable organization from line planning to vehicle schedul-
ing, as mentioned in [4].

4https://www.optibus.com/
5https://lintim.net/home

23

24

Chapter 4

Functional and non-functional
requirements

Here we describe how are the functional and non-functional requirements of the
application defined and met.

4.1 Functional Requirements
The functional requirements were defined directly in the thesis assignment.

4.1.1 Parsing of timetable in JDF
TTP shall be able to parse a timetable in JDF format and store it in memory in a
structured way.

This function is necessary for many use cases (the following functional re-
quirements).

The functionality is implemented in the JDF_Conversion package. It was
tested only visually in debugger during the initial development, and then also by
exporting the parsed data back to JDF format and comparing the files.

During the further usage of the application, the functionality was tested
indirectly by the output provided by the other TTP modules.

A focus was given on the correct parsing of line and trip data which would
be relevant for bus scheduling, and which are required in any kind of JDF batch.

The TTP should be also able to accept a valid input and reject an invalid one.
In its current state, it determines the JDF validity based on the format of data:

• file names

• file format

25

• correct amount of columns

• correct field value type

but there are no guaranteed validations on relationship between data (such as
non-descending stop times).

Since the validation is done by trying to parse and load the JDF data into
memory, if the file passes upload validation, it is guaranteed to be validated in
subsequent TTP usage, as the algorithm for parsing and validation is deterministic.

The parsing and validation is also guaranteed to work JDF 1.10 format as well,
as some of the data on CIS JŘ were found still in this format. Fields present from
JDF 1.11 which are missing in 1.10 are simply considered as empty, on the server
the data are stored in already 1.11 version.

4.1.2 Handling of road network data and stops in Open-
StreetMap

The TTP shall be able to load road network data from OSM with bus stops.
In TTP, the loading of road network and stops is done in separate steps. In

order to know what part of road network is relevant for our problem, the TTP first
needs to determine the area, which is in turn determined by the stop locations.

The automation of this procedure was developed during the schedule visual-
ization, where the user was able to provide districts to search for stops in (using
OSM API) so the stop locations were determined before the road network was
loaded.

However, this search was still unreliable (not all stops might have the standard,
or they might not even exist), so we kept the stop-searching part of the script
only as an external script to handle most stops.

In the TTP itself, we assume the stop locations are input manually, with OSM
only as a visual helper.

4.1.3 Trip and stop editing
The TTP shall be able to support editing trips and stops in the loaded timetable.

The user can add or remove stops from the internal database of stops in a
separate module. There is no special support for editing stop names or locations,
as adding a new one and removing the old one is sufficient (plus both actions can
be done within one request).

For trip editing, the direct JDF manipulation via the interface is not supported.
Neither is supported the editing of the trip data for scheduling (or importing
them).

26

This feature is however partially supported by the export of the timetable to
XLSX format, which can be then edited in a spreadsheet editor and re-imported
back to TTP (as a new JDF batch, or overwriting the old one), allowing for a more
user-friendly editing of the timetables than the direct JDF, although with some
limitations.

4.1.4 Deadhead distance calculation between stops
The TTP shall be able to calculate the distance between two stops in the road
network.

The functionality is directly implemented as a subpart of the scheduling
calculation in two ways.

From the loaded JDF data, the TTP iterates through all trips and create an
undirected graph network of stops, where each vertex corresponds to each stop,
an edge exists whether there is a trip between two stops. The edge weight is a
smallest departure/arrival difference between the two stops across all trips serving
these stops.

The TTP then uses the Dijkstra algorithm to calculate the shortest path
between all pairs of terminal stops.

The second way is to use the OpenStreetMap data to calculate the distance
between two stops. We do not utilize loading the actual stop nodes in OSM, only
the road network is enough.

From the stop locations supplied by the user, we can determine which area of
the road network to download as a bounding box with extra kilometres added to
the sides, to account for the fact that a path between two stops might lead outside
the non-expanded bounding box.

Then we can calculate the distance between two stops as the shortest path
in the road network, again using the Dijkstra algorithm, with the road speeds
accustomed to the bus speeds (multiplied by the factor of 0.9 on slower roads and0.8 on faster roads to account for worse bus acceleration).

4.1.5 Trip filtering
The TTP shall be able to filter trips in given time range or passing through given
stops.

The filtering is directly accessible to the user (generally called Trip querying
in the program) once the given JDF batch is loaded. The user can select the date
range of trips to be shown. The result list of trips is then rendered by datatable1

library, allowing for further filtering and sorting.

1https://datatables.net/

27

For filtering trips passing through given stops, the TTP supports departure or
arrival from one selected stop within 24 hour interval.

4.1.6 Scheduling calculation

The TTP shall be able to calculate the lowest amount of buses needed to serve all
trips within given time range. The scheduling shall also minimize the deadhead
time and pull-out and pull-in times from single depot.

The scheduling prerequisites (calculation of deadhead times and trip filtering
from time range) are related to the functionalities described in 4.1.4 and 4.1.5.

Both functions are used in the scheduling calculation, which uses algorithms
described in chapter 5.

The user can then download the result as JSON and also see it directly in the
browser, with the help of datatables to see how are trips distributed between the
buses (=bus blocks).

4.1.7 Visualizing trips on map

The TTP shall be able to visualize the trips on an OSM background.
The visualization is done on the on a schedule-level, where one schedule file

(in JSON) is sent to the TTP and the servers sends multiple files to the client (all
in one zipped archive).

The OSM background requires internet connection, so two files (per bus
block) are sent to the client: one contains an HTML file with renders colored
lines connecting the trips on the OSM background, the other contains the output
of pyplot plot saved as PDF which contains the identical lines without any
background.

More detailed description of the visualization is in chapter 6.
The schedule-level processing is done as it supports the intended workflow of

the TTP, to download the schedule and immediately upload it to the visualization
module.

To visualize only one specific trip, the schedule file must be edited manually.
The functionality to accept only trips directly would not be hard to implement,
but would require more time and testing.

Generally this requirement is satisfied only minimally, as the schedule visu-
alization has no labels (despite them existing in matplotlib library, they are not
available in mplleaflet) or allowing to show/hide specific trips.

This was abandoned due to time constraints and high complexity of the task.

28

4.2 Non-Functional Requirements
We can also discuss some quality attributes of the application.

4.2.1 Page architecture
The TTP is a multi-page application, where each data exchange is done by a
separate page load, so no AJAX requests are used.

Each module has a common prefix in the URL.
Whenever suitable, the request is created as a GET method, which has the

advantage of showing query string in the URL, so skilled users can change the
data directly in the browser instead of filling the form again.

This is also a main way to handle redirection in the application, which occurs
after most form submissions.

The disadvantage can be that while GET signals idempotent request, it can
sometimes take a long time to load the page due to the request complexity.

Whenever a file can be uploaded, the POST method is used.

4.2.2 Performance
The speed of the application is discussed in chapter 7. The main concern was for
the scheduling calculation, which is the most demanding part of the application.

We can say that as the single-depot scheduling was completed in 40 seconds
on the largest dataset, we can be satisfied with the result.

The most time-consuming part has sadly been the schedule visualization on
map using OSM data, where downloading the road network data took the most
time.

Regarding multiple requests at once, we discuss it in 4.2.5.
We should also warn against accidental clicks. Submitting two requests at

once is not an issue for simple page loading, but if two scheduling requests are
sent at once, there is no benefit in parallel processing,

4.2.3 Reliability
The TTP shall be reliable in the sense that it should not crash or produce incorrect
results.

During the testing, the only suspicious results observed were related to scaling
performance, where smaller dataset required more time to process than the larger
one in one case (see section 7).

Handling of errors is done in multiple ways, sorted from user-friendliest:

29

• For expected errors to be thrown during the processing, the TTP catches
them and displays them to the user with reasonable message.

• For other caught errors, the TTP catches them and displays them to the
user with a Python-specific message.

• For uncaught errors, the application returns a 500 error.

Most of the crashes are prevented directly by the Flask framework, which catches
them and returns a 500 error.

The user can easily restart the server in case of a crash or too many concurrent
requests, following by refreshing the browser page.

4.2.4 Internet connection requirement
In the TTP, styling tools such as datatables are downloaded locally, so the appli-
cation can run without internet connection, but require manual update in case
the user wants to use a newer version of the library.

Once data are sent from the server to the client, the client can work offline.
An internet connection is however needed for any kind of OSM usage. The

map visualization can be done without internet connection (drawing only direct
lines), but to see the actual map on the renderedHTML, the usermust be connected
to the internet.

4.2.5 Scalability
Generally the application was initially meant to be single-user. Using the browser
allows for some scalability, but the server-side processing is not optimized for
multiple users.

We initially did not worry about that, as allowing multiple users would also
be a matter of security (see 4.2.6).

The Flask framework is designed to support multitasking by using e.g.
celery2, so we assume a possible extension of the application to support
multiple requests at once in a reasonable time.

4.2.6 Security
The application uses browser features for uploading and downloading files, so
the server does no directly read or write data outside its directory without the
user’s consent.

2https://flask.palletsprojects.com/en/2.3.x/patterns/celery/

30

The names of schedules, trips and maps generated at the server are sanitized
to prevent directory traversal attacks.

Accidental sending of nonsense data is prevented by the validation of the JDF
format. A possible risk might occur during the JDF batch selection (e.g. for trip
querying), where the user is offered a dropdown list of JDF batches. We must
consider security in two ways: the security of the server data and security of the
user data.

The server data are stored persistently on a filesystem, which can be directly
accessed by the user. By being designed as a single-user application, we did not
care about preventing this.

We should however consider the security of a normal application usage. We
might use the scheduling calculation as an example. The first issue is concurrent
writing to the files, in case of accidental double-request submission. Based on the
operating system, the file might be locked during writing, so only one request
would fully succeed and the other would immediately throw an error once the
server tries to open the file.

We therefore rely on the operating system to handle the file locking.
Another issue might be a directory traversal attack, where the user would

try to access files outside the designated directory by adding ../ to the file path.
The place where such input could be is in all forms where name of a JDF batch is
selected (including the upload form).

Finally, for a truly online application, managing of user accounts would be
necessary to implement and to make a separate folder for each user.

4.2.7 Usability
The application uses standard HTML forms and datatables for the user in-
terface, allowing for well-documented and user-friendly approach. No special
optimizations were made for mobile application, as it is expected to run on a
desktop.

4.2.8 Maintainability
The application is separated into 4 packages:3

1. JDF_Conversion

2. Map_Visualization

3. Bus_Scheduling
3by the history of development, from oldest to newest

31

4. Browser_Interface

A programmer documentation is available in the chapter 10.
On multiple places, type hints in Python are used to help when using IDE.
A bit untraditional is the usage of camel casing for most of the original code

(author’s personal style), Line breaks for longer expressions do not have any
general style, it is a balance between readability and line length.

The application allows replacing most of the parts with new ones, as the
interface of functions is well-defined.

Unfortunately, most changes require direct code editing, as the application
does not support any kind of plugin system.

4.2.9 Interoperability
The application runs on Python 3.10, which is a common version of Python
and available on most systems. The user interface is only a browser one. This
theoretically allows for sending any HTTP request to the server, but the actual
structure of the responses is not documented (no direct data access via API).

32

Chapter 5

Scheduling calculation

The process of scheduling is the computationally hardest and also the most inter-
esting part of the program. We reiterate what was mentioned in the introduction,
and how three models are implemented:

• Default scheduling (DS) the simplest model, where the only constraint is
the feasibility of chaining trips.

• Single depot scheduling (SS) the model where each bus has to return to
the same depot.

• Circular scheduling (CS) the model where the buses do not have to return
to the depot, but can stay near the first stop of their first trip.

5.1 Statement of the problem
Given a list of trips, we are supposed to assign one bus to each trip. Using notation
from Bunte and Kliewer [18], we denote following:

• 𝑖, 𝑗 : trip indices

• 𝑢, 𝑣 : stop indices

• 𝑠𝑖 : start station of trip 𝑖
• 𝑒𝑖 : end station of trip 𝑖
• 𝑑𝑖 : departure (beginning) time of trip 𝑖
• 𝑎𝑖 : arrival (final) time of trip 𝑖
• 𝑡𝑢𝑣: travel time from station 𝑢 to station 𝑣

33

These variables represent our input data - data provided to this section of
TTP.

Furthermore, we use in the following sections:

• 𝐵 - a set of bus blocks (collection of ordered collections of trips),

• 𝑛 - amount of trips

• 𝑚 - amount of buses

The most important relation, which can be derived from our input variables,
is compatibility relation - denoted as 𝑖𝛼𝑗 which is satisfied if trips 𝑖 and 𝑗 can be
served after each other (chained). It can be easily seen that this means 𝑎𝑖+𝑡𝑒𝑖𝑠𝑗 ≤ 𝑑𝑗.
Having the trips ordered by departure time, as we assume further, also implies
that 𝑖 < 𝑗 is a necessary condition.

This relation can be manually constrained further by the scheduler, if for
practical reasons some trips should always or never be chained. In TTP, we
however simply assume that all pairs of trips satisfying the aforementioned
inequality can be chained.

This allows us to state a simple two-phase optimization problem. Since there
exist multiple models which are equivalent - such as maximum matching being
convertible to maximum flow algorithm, or minimum weight perfect matching
to linear sum assignment problem, we will use a model that might not have 1:1
correspondence to any of the cited sources, but fits the implementation in TTP,
which calls algorithms from the NetworkX library on bipartite graphs.

5.2 Minimizing amount of buses
We start by representing our set of trips as bipartite graph 𝐺, where one trip is
represented by two vertices.

• There exists a set of depots 𝐷. For SDBS, 𝐷 = {𝑑} as our only chosen depot.
For MDBS, we would have 𝐷 = 𝑆.

• Each trip 𝑖 is represented by a pair of vertices 𝑥𝑖 and 𝑦𝑖.
• For a pair of trips 𝑖, 𝑗, there exists an arc (𝑥𝑖, 𝑦𝑗) iff 𝑖 𝛼 𝑗.
We plan to represent schedules by making “arrows“ (arcs) through the trips.

A block for one bus is an ordered list of trips, therefore the arcs should represent
disjoint paths. With no arc selected, we have achieved a trivial schedule - assign
one bus to one trip. This is almost never optimal, so we want to reduce the amount

34

of buses used. This means that we want to select maximum amount of arcs, where
each vertex has maximally one outgoing and one incoming arc.

This selection yield us a subgraph, where amount of weakly connected com-
ponents is equal to amount of vertices with no incoming arc. Each component is
therefore an ordered path, representing a schedule of an individual bus.

(show example)
An 𝑖-th trip is represented by two vertices. The vertex 𝑥𝑖 represents an arrival

to 𝑒𝑖 and the vertex 𝑦𝑖 represents a departure from 𝑠𝑖.
Since each trip must be completed (served), we could assume an arc (𝑦𝑖, 𝑥𝑖)

would be always present. This can already represent a feasible solution, where
each bus serves one trip.

Yet we aim for a solution where each bus serves as many trips as possible. A
chaining of trips would therefore mean selecting as many arcs (𝑥𝑖, 𝑦𝑗) as possible,
then the solution could be easily read as a set of ordered paths, each representing
a bus block.

By ignoring the naturally completed edges (𝑦𝑖, 𝑥𝑖), we have created a bipartite
graph 𝐺1.

The amount of edges in the graph is asymptotically quadratic to the amount
of trips. The upper bound is given by 𝑛 arrival vertices and 𝑛 departure vertices,
which at the best case2 can be matched each 𝑥𝑖 with 𝑦𝑗 if 𝑖 ≤ 𝑗.

Having the graph as bipartite allows to specify our objective as finding maxi-
mum cardinality matching (further shortened to maximum matching) of 𝐺. This
can be easily calculated by Hopcroft-Karp algorithm in O(𝑛2.5) time [19],
which is implemented in Python library networkx. The matching will be denoted
as 𝑀(𝐺).

An example of the scheduling graph can be shown on the figure 5.1. (green
table is a list of trips, blue table is a list of deadhead times):

The solution from created matching can be read as:

5.3 Counting with deadheads
If the only requirement for chaining trips is the mentioned feasibility relation,
we can consider the amount of minimizing bus amount as solved.

In Peřina [20], it is shown that more buses would be required to use if we
wanted to avoid aggressive driver switching with respect to the mandatory breaks.

We focus on if our trip chaining is optional under other aspect: the deadhead
time. This is a time needed for the bus to travel from a final stop of its trip to a first
stop of its next trip. To minimize time spent driving between trips, the bus would

1Note the graph is always disconnected, 𝑦1 and 𝑥𝑛 have no incident arcs.
2Best case for potential optimization, worst case for complexity

35

ideally end its trip at a stop where the next trip starts. Given our relaxed definition
of stop (a point on road, not a given platform), we specify our turnaround time as
zero (𝑡𝑢,𝑢 = 0). In general, the deadhead time is considered a measure.

As mentioned in the basic example, all trips have to be served. This means
that to reduce total driving time, we can only reduce it by reducing deadhead
time. If we used our bipartite graph example and assigned deadhead time to
arcs (𝑤(𝑦𝑖, 𝑥𝑗) = 𝑡𝑎𝑗𝑑𝑖), we would be searching for minimum weight maximum
cardinality matching. Using further helper vertices, we can convert this problem
to minimum weight perfect matching, which is even easier to solve.

We define graph 𝐺′ as:
• For each trip 𝑖, we have vertex 𝑥𝑖 and 𝑦𝑖.
• For a pair of trips 𝑖, 𝑗 there exists an arc (𝑦𝑖, 𝑥𝑗) iff 𝑖 𝛼 𝑗with weight 𝑤(𝑦𝑖, 𝑥𝑗) =𝑡𝑎𝑗𝑑𝑖 .
• Given an amount of 𝑚 required buses, we create vertices 𝑏𝑘 for each 𝑘 ∈{1…𝑚}.
• For each bus 𝑘 and trip 𝑖,there exists an arc (𝑏𝑘, 𝑥𝑖) and an arc (𝑦𝑖, 𝑏𝑘), both
with zero weight.

We can easily see this graph always has a perfect matching, this means 𝑀(𝐺′) =𝑛+𝑚: As we have calculated that 𝑚 = 𝑛− |𝑀(𝐺)|, each pair of unmatched vertices
in 𝐺 is responsible for adding two more vertices into 𝐺′, one in each partition. If
we construct the matching in 𝐺′ based on the matching of the original vertices in𝐺, our extra vertices can be always matched with the originally unmatched ones.

Our implementation also allows to adjust the edge weight based on waiting
time. In the actual experiments, a small waiting time coefficient (of 0.001 extra cost
per minute of waiting) was added to each edge, to prioritize minimum downtime
as a tertiary objective in case of equivalent solutions.

5.4 Adding pull-out and pull-in
So far have we assumed that the buses start their first trips anywhere. But usually,
at the end of their shift they have to visit their depot (garage). This depot can be
considered a regular stop in our distance function (deadhead matrix). For this,
we can simply set our weights ín graph 𝐺′ as 𝑤(𝑏𝑘, 𝑥𝑖) = 𝑤(𝑦𝑖, 𝑏𝑘) = 𝑡𝐷𝑥𝑖 . We can
be sure all depot vertices (representing pull-in and pull-out) be covered, as their
amount is identical to the amount of uncovered vertices of the original solution,
therefore allowing for a perfect matching.

37

5.5 Multiple depots
When introducing multiple depots, the conditions introduced to our problem
make it hard to solve the problem quickly. Each bus would need to return to
the same depot it started in, which is not a condition that is easily introduceable
to our previous models. Various models can be found in literature, such as Bunte
and Kliewer [18], to tackle this NP-hard problem (the NP hardness is proven in
Bertossi, Carraresi, and Gallo [5]).

A solution (neither interface nor algorithm) for multiple arbitrary depots
is not implemented in TTP . However, in the following section we show an
alternative real-life problem whose solution could be used to solve the multiple
depot problem.

5.6 No depots, circular scheduling
In regional transport, it might not be efficient to return the buses to the depots
each day, especially if the region has a major central city (first morning trips lead
to this city from the outer areas of the region while last evening trips lead out of
this city). Therefore, we might assume the buses stay near the locations where
first trip takes place. This might allow for efficient allocation of drivers, who
can be hired from the respective outer towns and do not need to use individual
transport vehicles (cars) to get to the place. Yet this requires a constraint that a
vehicle block must have its final trip end at the place the first trip started, or at
least incur a penalty equivalent to the deadhead time between last and first stop.

This formulation can be converted to multi-depot model, where each starting
stop of each trip can be considered a depot. Since vehicle scheduling literature
does not mention this specific case, we might assume no exact solution would be
significantly faster. But due to its usefulness, this method of scheduling is kept in
the TTP, using local search.

5.6.1 Local search for circular scheduling
As for initialization, we calculate the SDBS scheduling twice. First without a
depot, then we pick a terminal stop which would be an optimal depot for the
current solution, and finally recalculate the solution with the depot.

The local search then creates new solutions as following: We assume the bus
can be scheduled to travel the whole area without returning to the starting stop,
and that two buses might be scheduled to travel in the opposite direction. We
therefore aim to find a solution to switch parts of their vehicle blocks so that their
ending trips are exchanged, while also ensuring the swap is valid:

38

Let us have two vehicle blocks 𝐴 and 𝐵 with starting stops 𝑠𝐴 and 𝑠𝐵, and
ending stops 𝑒𝐴 and 𝑒𝐵, respectively. The cost 𝑐(𝐴) is the sum of deadhead times
during the whole block, so including the return times, the total cost for the whole
solution is 𝑐(𝐴) + 𝑑(𝑒𝐴, 𝑠𝐴) + 𝑐(𝐵) + 𝑑(𝑒𝐵, 𝑠𝐵) (where 𝑑 is the return time). Each
block can then be split into two parts, creating 4 vehicle blocks 𝐴1 , 𝐴2 , 𝐵1 , 𝐵2,
which can be recombined as 𝐴′ = 𝐴1 + 𝐵2 and 𝐵′ = 𝐵1 + 𝐴2.

We can denote as last trip of 𝐴1 to be 𝑡𝑖, first trip of 𝐴2 to be 𝑡𝑗, last trip of𝐵1 to be 𝑡𝑘 and first trip of 𝐵2 to be 𝑡𝑙. For our swap to be valid, the feasibility
relation must hold between 𝑖 𝛼 𝑙 and 𝑘 𝛼 𝑗, therefore the intervals [𝑖, 𝑗] and [𝑘, 𝑙]
must overlap.

As 𝑗 and 𝑙 strictly depend on chosen 𝑖 and 𝑘 respectively, each swap can be
defined by a pair of trips, yet we can assume the amount of available swaps will
be significantly lower than amount of all edges, as seen on real-data in 7.6.

We have therefore changed two deadhead costs and two return costs. As the
deadhead times were optimal, the initial swap will never improve them, but we
can improve the return times.

Searching for a valid swap might be computationally hard and is done ran-
domly, however if they are precalculated, all swaps related to non-swapped pairs
of vehicle blocks can be carried to the next iteration.

We can also define the swap operation for cases where one of the four vehicle
blocks is empty. The case analysis (impact on the total deadhead time) here is
skipped for brevity, but is fully implemented in the code.

Having multiple empty vehicle blocks is not considered, as it would mean
one of the buses would have completely empty blocks (which we have proven
as impossible in our previous models), or the bus blocks would be completely
switched.

Note that this approach would work also for unbounded multiple-depot
scheduling, if instead of the return time we select the optimal depot, based on the
first and last trip of the block (this can be precalculated).

5.6.2 Circular scheduling parameters

We use three simple parameters for the local search: Amount of iterations, number
of new solutions branching from one solution, and amount of surviving solutions
for the next iteration.

To determine the survivors, the best solution is always kept, the rest are
chosen using tournament selection. The fitness is the same as in the default
scheduling model - total deadhead times plus the return times.

39

5.7 Summary
The TTP supports the simplest cases of scheduling, where the only constraint
on chaining trips is the feasibility of chaining trips. We are not comparing
claiming one algorithm is better than another, as the constraints (or more precisely,
expressions to be optimized) regarding pull-in and pull-out are different.

A simple thought experiment can bemade, which effectively places the bounds
on the circular scheduling.

5.7.1 Expected scheduling comparison results
By finding an optimal solution for single depot scheduling, we can use the identi-
cal bus blocks for both default scheduling and circular scheduling. For default
scheduling, the pull-in and pull-out times are simply not considered for the dead-
head times. For circular scheduling, the returning from last stop of the block to
the first stop of the block is considered as a deadhead time, which will be more
effective than pull-in and pull-out due to the triangular inequality. Finally, a
default scheduling will have lower deadhead times than circular scheduling, as
we can simply ignore the return times.

In the chapter 7, we will compare our scheduling efficiency on urban and
regional transport datasets by default scheduling and single-depot scheduling,
then show howmuch time can be saved by using circular scheduling, as compared
to the single depot scheduling, and how incomparably low is the default scheduling
as lower bound.

5.7.2 Time complexity
For the concept of single-depot scheduling, the time complexities are well known.
The amount of trips is labeled as 𝑛, the amount of buses is labeled as 𝑚.

The bipartite graphs we create during the scheduling are dense (worst-case,
each trip can be chained with all other trips that follow), so the amount of edges
is 𝑂(𝑛2).

The maximum weight matching to determine the amount of buses takes𝑂(𝑛2.5) time with the Hopcroft-Karp algorithm. 3.
With added pull-out and pull-in edges and vertices, the minimum weight

perfect matching can be calculated in 𝑂((𝑛 + 𝑚)3) time using Jonker-Volgenant
algorithm. 4

3used function is on https://networkx.org/documentation/stable/reference/algorithms/gener-
ated/networkx.algorithms.bipartite.matching.maximum_matching.html

4https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algo-
rithms.bipartite.matching.minimum_weight_full_matching.html

40

These complexities also apply to the circular scheduling, with the added
complexity of the local search.

For all solutions together, we keep 𝑂(𝑛2) external memory to quickly calculate
the returning edge weights for the circular scheduling, although we no longer
use the graph for matching.

Each solution takes 𝑂(𝑛 + 𝑚) memory to store the bus blocks, a constant
amount for the fitness, and at most 𝑂(𝑛2)memory for the swaps (lower in practice,
as hinted in the subsection 5.6.1). Based on the distribution of trips between bus
blocks, we could make an exact amount as such:|𝑆(𝐵)| = ∑𝑚𝑖=1∑𝑚𝑗=𝑖+1((|𝐵𝑖| − 1) ⋅ (|𝐵𝑗| − 1) + 2 ∗ |𝐵𝑗| + 2 ∗ |𝐵𝑖|)

where 𝑆(𝐵) is the set of all swaps, 𝐵 is the set of bus blocks, and |𝐵𝑖| is the
amount of trips in block 𝑖. The final addition of 2 ∗ |𝐵𝑗| + 2 ∗ |𝐵𝑖| is to account for
the possibility of one empty sub-block, either before the first trip or after the last
trip. This is also why we subtract 1 from the amount of trips in the multiplication,
as selecting the last trip would mean the rest of the block is empty.

If we assume the lookup time of deadhead times (or turn-around time) to be
constant, the time complexity of calculating the fitness of a solution is constant
as well.

For passing the solution to the next iteration, we need to update the set of
viable swaps. This is done by excluding all trips that are part of the swapped
blocks - this unfortunately is linear to the amount of previous swaps, although
we no longer need to calculate the feasibility relation for each swap.

The addition of new swaps would require feasibility checks would only to the
two swapped blocks, which is again based on the trip distribution.

41

42

Chapter 6

Map visualization

In this chapter, we show the implementation of map visualization and presented
difficulties.

6.1 Introduction
With the context of public transport, we can find some usages of map visualization.
First of them is visualization of most optimal route between two objects, which
can be seen for example on figure 6.1.

Another use case is displaying a routing of a public transport line, as seen on
the figure 6.2.

6.2 Our goal of visualization
In our TTP, we have decided to explore these use cases with a goal of visualizing
bus schedules as trips on the map, which can be useful to introduce drivers to a
new route, and to estimate where a bus would be at a given time.

We have decided for simple and readable solution, where we simply draw
lines between stops and color them based on the time such trip is served. This
way, we can easily see the progress of the bus on the route.

This was estimated to be quickly done with the help of pyplot module in
matplotlib Python library, and these lines would then be projected on Open-
StreetMap background using mplleaflet library.

Complications arise when a bus uses the same route multiple times in the
schedule, as the lines would overlap. This is a rather common case, so we have
chosen three solution so the amount of trips taken and the respective times can
be still easily inferred from the visualization.

43

Figure 6.1 Google Maps route visualization of connection route. Source: Google Maps

Figure 6.2 OpenStreetMap route visualization of a bus line. Source: OpenStreetMap

44

https://www.google.com/maps
https://www.openstreetmap.org

Issues can also arise with undefined stops. As the bus scheduling (distance
matrix) has either a reasonable fallback on either using timetable data, plus we
only need the location of terminals (whose count is less than total amount of
stops), we could have simply rejected the request and asked the user to provide
the missing data.

In the map visualization, the amount of missing stops might be higher, so we
have decided to simply ignore the stops and treat them as if they were not there,
to get at least default solution.

6.3 Data preparation
To keep it simple, we use the output from bus scheduling (see 5) as input for the
map visualization.

Each bus block from the schedule is then treated separately (to be rendered
on separate map data), and each trip from the bus block is treated as a sequence
of trips between two stops. If two consequent trips need a deadhead, it is also
automatically inserted.

6.4 Data rendering
We decided to render the trip as a line segment between two stops with these
parameters:

• width based on the average speed of the trip (max 80 km/h, min 0 km/h)

• color based on the time when the trip is served (rainbow color map, red at
00:00)

• solid line for regular trip, dashed line for deadhead

• points: by default, starting and ending stop (with respective x and y param-
eters as latitude and longitude)

Unfortunately, mplleaflet does not support labels which could show the number
of respective trips, so this was abandoned due to time constraints.

6.4.1 Overlapping routes
We have decided for 3 solutions on how to display the overlapping routes, each
available for the user. As overlapping route, we simply define a trip which starts
and ends at the same stops as another trip, or such trip goes in the opposite
direction. As mentioned before, each trip is considered to only contain two stops.

45

1. The trips are condensed into line segment, which is marked with multiple
colors (each color corresponds to different subtrip, same as the solutions
below)

2. The trips are drawn as parallel - this has the disadvantage of the starting
and ending location of the line segment not being directly on the stop
location

3. overlapping routes between stops share the same start and end point, but
are represented as curves (arc with different radii).

The options preserve the other parameters (line width, color, style) as de-
scribed in the previous section, but change the location of first and start endpoint.
Since the third option also requires curve rendering, it was simplified to be ren-
dered as jagged line segments (with enough segments to make it look like a
curve).

6.4.2 Navigation data
Instead of straight lines between stops, it can sometimes feel more natural to make
the trips follow the actual road network. Given we already use OpenStreetMap
for different use cases(shortest route calculation), it would also make sense to
actually render this shortest route.

It was done by finding the nearest point of the road network to the stop, and
then using the networkx library to find the shortest path between these points,
and render the trips as passing through these points (as if they were stops). This
can be combined with the rendering options for overlapping routes (see 6.4.1).

The result was not satisfactory, as the road network is not always accurate,
and the shortest path can sometimes lead to a different road than the bus would
actually take, but is kept in the code for possible future improvements.

As can be seen in chapter 7, the rendering of the trips can be quite slow, even
if we download the whole map for all bus blocks at once.

Without exact testing, there could be three approaches to downloading the
OSM data for the map visualization:

1. Download the whole map data for the whole schedule at once

2. Download the whole map data for each bus block separately

3. Download the whole map data for each trip separately

As our scheduling algorithm does not place any restrictions on how distant
stops each bus can serve, the expected benefit of serving small areas would be
outweighed by the need to redownload the data.

46

Chapter 7

Performance testing results

7.1 Introduction
We were checking the bus scheduling application performance with respect to
some chosen bus transportation systems. The systems are chosen by real data as
following:

• Small town urban transport: Uherské Hradiště (2023) (further as U1),
366 trips

• Larger urban transport: Havířov (2023) (further as U2), 1438 trips

• Small district transport: Uherské Hradiště (2023) (further as R1), 1880
trips

• Large regional transport: Plzeňský kraj (2020) (further as R2), 3495 trips

The data are taken from official CIS JŘ data.
The point of this thesis is not to design an optimization of the existing systems,

therefore details are kept away. The reasoning for choosing U1 is author’s
familiarity with the system (for easy testing purposes).

The R2 was obtained as an older dataset for testing purposes from the trans-
port agency Arriva in the Pilsen region.

As U1,U2, and R1 have their timetables valid for the same year, the relevant
tested processes will use the same dates in the further sections. ForR2, equivalent
dates were chosen (to maintain the same day-of-week status and school holidays).

7.2 Testing environment
For performance testing, a lab computer was used as as a server:

47

• Operating system: Linux 5.15.146 Gentoo

• Processor: Intel(R) Core(TM) i5-4570S CPU @ 2.90GHz

• RAM: 8 GB

• Cores: 4

• Python version: 3.10.8

• Flask version: 2.3.2

As a client, a laptop was used:

• Operating system: Windows 10 Pro

• Processor: Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz

• RAM: 8 GB

• Cores: 4

• Browser: MS Edge 124.0.2478.80 64-bit

The server calculations were measured as performance-time by the Python
time module directly within the server code. The client time was measured using
the browser extension Page load time 1 on MS Edge browser.

For shorter calculations (below 1minute), the timewasmeasured as an average
of 5 runs.

7.3 Trip querying
The trip querying gives us an approximate view on the overall JDF batch data
and the efficiency of the software.

To do this, we query all trips, arrivals, and departures both all at once and
separately.

For accurate trip count, a January week (fromMonday to Sunday) was queried,
where fewest exceptions can be expected (school holidays, etc.).

The departures and arrivals were counted for 24 hours from Friday to Saturday,
to cover both workday and weekend on average.

1Version 3.0.0 https://microsoftedge.microsoft.com/addons/detail/page-load-
time/llcdjocbfkdndmjbgpaibfkdjkjogeho

48

Dataset U1 U2
Trip records a 366 1438
Trips from 2023-01-09 2023-01-09
Trips to 2023-01-15 2023-01-15
Arrival stop Uherské Hradiště„aut.nádr. Havířov,Podlesí,aut.nádr.
Arrival date/time 2023-07-07 13:30 2023-07-07 13:30
Departure stop Uherské Hradiště„Studentské nám. Havířov,Město,Nemocnice
Departure date/time 2023-06-01 13:00 2020-01-17 13:00

Dataset R1 R2
Trip records 1880 3495
Trips from 2023-01-09 2020-01-13
Trips to 2023-01-15 2020-01-19
Arrival stop Uherské Hradiště„aut.nádr. Plzeň„Terminál Hlavní nádr.
Arrival date/time 2023-07-07 13:30 2020-07-17 13:30
Departure stop Kunovice„Na Rynku Klatovy„Tylovo nábřeží
Departure date/time 2023-06-01 13:00 2020-01-17 13:00

Table 7.1 Querying data for trips, departures, and arrivals

aThe amount of Trip records is the number of lines in the file Spoje.txt in the JDF data.

For more variance, different stop and date was chosen for departure and
arrival. The departure stop is a frequented stop, while the arrival stop is always
an important terminal. Since most trips arriving at the terminal end there, the
arrival count is usually lower than on pass-through stops, if we assume equal
frequency (as on pass-through stops, the departure/arrival would be considered
twice, once in each direction).

The exact data are shown in Table 7.1.
First, we show the time needed to query and retrieve all trips, departures, and

arrivals, to give an idea of the approximate size of the whole dataset, and to show
the performance bottleneck.

We can see that even though trip count gets higher, the correlation between
trip amount and server time does not correlate between U2 and R1.

This might be due to U2 having more weekend trips (which are usually less
frequent in regional transport) which do get counted less times, but are iterated
over more often.

On the other hand, the significantly higher client time is mostly dependent
on the trip count, as the datatables library needs to render the data.

Further, we see how much faster we get when querying all data at once.
Obviously, querying arrivals and departures separately as well would lead to

49

Dataset U1 U2 R1 R2
Departure+Arrival count 168 467 366 216
D+A server time 544 3 121 1 258 2 325
D+A total time 1 822 4 700 3 125 3 696
Trips count 1 063 4 916 7 159 14 265
Trip count (avg 1 day) 151 702 1 023 2 424
Trips server time 616 3 911 2 313 5 289
Trips total time 2 739 10 848 13 137 16 796

Table 7.2 Querying result of trips, departures and arrivals

Dataset U1 U2 R1 R2
Trip count (1 week) 1 063 4 916 7 159 16 966
Trip count (avg 1 day) 151 702 1023 2424
Arrival count 87 192 241 95
Departure count 81 275 125 121
Server time (ms) 538 4 485 2 593 5 485
Server time separately 1 160 7 032 3 571 7 614
Total time (ms) 2 802 10 977 7 312 16 968
Total time separately 4 561 15 548 16 262 20 492

Table 7.3 Querying result of trips, departures, and arrivals

50

Dataset U1 U2 R1 R2
Trip data 366 1 438 1 880 3 495
Terminal stops 11 38 120 405
TT time (ms) 26 354 254 674
OSM time (ms) 5 931 18 610 65 723 837 264

Table 7.4 Distance matrix calculation results

even higher total time.
This confirms that the actual overhead lies in the code loading the JDF data, a

disadvantage that was to be expected when designing the application.

7.4 Distance calculation
The distance calculation is already directly relevant to the scheduling optimization.

In short, we calculated 2 types of distance matrix - either from timetable
data further shortened as TT matrix, and from map data, further as OSM ma-
trix, as mentioned in the functional requirements (see 4.1.4). Without surprises,
calculating the TT matrices (directly using JDF data) is faster.

In the table 7.4 we show the time needed to calculate the distance matrix for
each dataset. only the time spent directly on the map calculation is shown.

A slightly unfair thing in the comparison is that we have removed the overhead
for unpacking the JDF data, whereas OSM would only need to load the list of
trips and stop locations. but that would not reduce the whole overhead caused by
the need to download the OSM data.

The average and maximum distances are shown in the figure 7.1.
Regarding the distance matrix calculation based on timetable data, we again

see an anomaly between U2 and R1, that the regional dataset is calculated faster
than the urban one.

For matrix calculation, the distance does not matter on the actual trip data,
but on how large the target area is, which is easily illustrated again on the U2
and R1 datasets - despite the similar trip count, the largest distance between two
terminals is almost 4 times larger in R1, which also leads to a larger calculation
time. 2

This raises a question if the distance calculation via OSM was worth it. Good
news is that the distance matrix is cached on the server and can be also manually

2Since the longest travel time (using the best path) would be probably between two points near
opposite corners, the amount of nodes and edges in the road network would scale quadratically
with the travel time.

51

U1 U2 R1 R2

0
1
2
3
4

0:24
0:38

1:45

3:58

0:15
0:23

1:22

3:17

0:08
0:16

0:33

1:29

0:06 0:10

0:29

2:31

Ti
m
e
(h
ou

rs
)

Max TT Max OSM Avg TT Avg OSM

Figure 7.1 Comparison of Maximum and Average Distances in Timetable and OSM

52

input, so this was not necessary to do every time new schedule calculation was
made.

As suggested in the introduction (1.2.1), the buses might not always take the
shortest route, so the distance matrix actually leads to better result than using
the timetable in the sense of the actual distance between stops being lower. This
is confirmed in our table, as each dataset has lower maximum distance between
two terminals when calculated via OSM .

It should be noted that for the R2 dataset, the stops Letiny„u kostela[PJ],
Plasy[PJ], and Skašov[PJ] were disconnected, so the distance between either of
the stops and any other was undefined (=very high value). In the results, their
respective distance for the TT matrix was manually replaced by the OSM matrix
distance.

The average distance via OSM is also lower for the first three datasets. Despite
being higher for the R2 dataset, the OSM calculation will be shown to be more
effective with regards to the actual scheduling.

7.5 Single depot scheduling
For a single depot scheduling, we have chosen a single day of trips and to properly
exclude night hours. The table 7.5 shows the overall trip count in each dataset
and their total duration.

The chosen depots are:

• U1: Uherské Hradiště„garáže ČSAD

• U2: Havířov,Podlesí,aut.nádr.

• R1: Uherské Hradiště„garáže ČSAD

• R2: Plzeň„Slovany
For U2, the arrivals are cut off at 00:30 to avoid continuous night trips (for

other data, the default 24 hours was enough).
Following the dataset introduction, in the table 7.6 we show the actual time

taken by the scheduling calculation (only OSM matrix):
As we estimated in chapter 5.7.2, the amount of chainable pairs scales indeed

quadratically with the number of trips (figure 7.2), and the time needed for
calculation scales cubically (figure 7.3).

This however does not tell us how useful were the additional amount of edges
we gained by using the OSM matrix.

Regarding the client performance, the rendering overhead is not as significant
as in the trip querying, since the datatable only renders the table of bus blocks,
while the trips are displayed only upon expansion.

53

Dataset U1 U2 R1 R2
Input day 2023-09-01 2023-09-01 2023-09-01 2020-01-13
Input time range 00:00-00:00 04:00-00:30 00:00-00:00 01:00-01:00
Actual first departure 04:48 04:00 03:43 04:43
Actual last arrival 22:55 00:14 23:24 00:10
Trip count 191 801 1294 2701
Total trip time (h:mm) 64:15 380:13 617:45 1372:18
Avg trip time (h:mm) 0:20 0:28 0:29 0:30

Table 7.5 Scheduling input data

Dataset U1 U2 R1 R2
Trip count (nodes) 191 801 1294 2701
Chainable pairs (edges) 17 413 299 612 748 902 2 869 854
Bus count 10 41 91 204
Scheduling time (ms) - no depot 239 2 652 10 928 34 858
Scheduling time (ms) - one depot 236 2 907 11 649 36 822
Server time (ms) - no depot 781 3 590 11 996 36 414
Server time (ms) - one depot 620 3 299 12 888 37 950
Total time (ms) - no depot 2 040 4 981 14 785 38 900
Total time (ms) - one depot 1 868 4 920 14 983 39 842

Table 7.6 Scheduling calculation time

0 500 1,000 1,500 2,000 2,500 3,0000
1
2
3 ⋅106

Trip Count (nodes)

Ed
ge

C
ou

nt
(c
ha

in
ab

le
pa

ir
s)

TT OSM

Figure 7.2 Edge count based on trip count

54

0 500 1,000 1,500 2,000 2,500 3,000
0
1
2
3
4
5

Trip count

Ti
m
e
(s
)

DS SS

Figure 7.3 Scheduling calculation time based on trip count

55

Dataset U1 U2 R1 R2
Trip count (nodes) 191 801 1294 2701
Chainable pairs (edges) - TT 17 356 296 391 744 132 2 779 709
Chainable pairs (edges) - OSM 17 413 299 612 748 902 2 869 854
Total trip time (h:mm) 64:15 380:13 617:45 1372:18
Bus count - TT/OSM 10 41 91 206/204
Deadhead time - TT 0:06 1:42 2:01 20:52
Deadhead time - OSM 0:04 1:11 1:03 17:25
Waiting time- TT 48:29 155:17 564:08 1409:05
Waiting time - OSM 48:31 165:39 567:27 1384:33
Productivity - TT 57 % 71 % 52 % 49 %
Productivity - OSM 57 % 70 % 52 % 50 %
Minimum driving time - TT 1:36 0:33 0:58 1:39
Minimum driving time - OSM 1:38 0:33 0:57 3:01
Maximum driving time - TT 12:42 15:02 13:30 15:33
Maximum driving time - OSM 12:45 15:02 13:31 15:17
Average driving time - TT 6:26 9:18 6:48 6:45
Average driving time - OSM 6:25 9:18 6:48 6:48

Table 7.7 Scheduling efficiency without a depot

7.5.1 Scheduling efficiency
We now present the overall scheduling results, which were calculated both using
the OSM and TT distance matrices.

First, let us show the results of scheduling without a depot, on the figure 7.7.
Avoiding pull-in and pull-out cost gives us lowest bound on the scheduling as a
whole - if we consider driving times as accurate, the scheduling is constrained
only by the laws of physics.

The difference between optimization using the TT and OSM matrix is clear.
The U1 did not offer much deadhead savings, as the time was very low in the
first place, but all the other datasets reduced the deadhead time significantly. In
the case of R2, even less buses could be used.

Solving the scheduling problem also tells us the overall productivity of the
system, which is here calculated as the time spent serving trips compared to the
total time (we do not count the waiting time between end of a bus block and the
start in the next day).

We can think of the productivity as being relevant term, as we minimized the
amount of buses needed - otherwise we could reach 100% productivity by simply
adding more buses.

But since the waiting time is rather an issue of the driver than the bus itself (the

56

Dataset U1 U2 R1 R2
Chainable pairs (edges) - TT 17 356 296 391 744 132 2 779 709
Chainable pairs (edges) - OSM 17 413 299 612 748 902 2 869 854
Bus count - TT/OSM 10 41 91 206/204
Deadhead time - TT 0:54 10:12 66:31 497:27
Deadhead time - OSM 1:11 6:35 65:04 384:07
Waiting time - TT 48:29 139:06 497:52 1339:41
Waiting time - OSM 48:31 156:41 549:56 1374:05
Productivity - TT 57 % 72 % 52 % 43 %
Productivity - OSM 56 % 70 % 50 % 44 %
Minimum driving time - TT 1:36 0:33 0:58 1:39
Minimum driving time - OSM 1:38 0:33 0:57 3:01
Maximum driving time - TT 12:42 15:02 13:30 15:33
Maximum driving time - OSM 12:45 15:02 13:31 15:17
Average driving time - TT 6:30 9:31 7:31 9:04
Average driving time - OSM 6:32 9:26 7:30 8:36

Table 7.8 Scheduling efficiency with single depot

driver still needs to be paid), we can set a reasonable upper bound on productivity
as 8-hour shift with 30 minutes mandatory break after 4 hours of driving (as in a
Czech safety break law [21]), which would make the upper bound 94 %.

Moving on to scheduling with depot, the table 7.8 shows the results, where
we can see that the pull-out and pull-in time will add significant deadhead time
to the scheduling.

On the other hand, the waiting time is not significantly affected by the depot
existence, as can be seen in the figure 7.4.

Unfortunately, the application does not directly show how much does the ex-
istence of the depot affect the total deadhead times, to show how much deadheads
is done during the day to reduce the pull-out and pull-in time.

We preferred to make the scheduling methods to have common output format,
so also the user interface would require some change. To calculate the result,
subtract the pull-in and pull-out time from the total deadhead time per each bus.

7.6 Circular scheduling with local search
For the circular scheduling, we use the same data as in the previous section.

We have kept the random seed, multiplications and survivors constant, only
thing changing is the amount of iterations (generations).

The results can be seen in the table 7.9 and the relative improvement from

57

0 50 100 150 200 25050150
500

1,000
1,500

Bus Count

To
ta
lW

ai
tin

g
Ti
m
e
(h
ou

rs
)

TT DS OSM DS TT SS OSM SS

Figure 7.4 Waiting time based on bus count

the first iteration in the figure 7.5.
For more explanation:

• the amount of multiplications is 5

• the amount of survivors is 30

• the random seed is 1

• Available swaps is the amount of possible swaps in the initial solution,
each iteration changes the solution by 1 swap at most.

• Time per iteration is the time needed to calculate the whole generation
(was measured on 300 iterations).

• Single depot and Default (no depot) refer to the results calculated
before (as upper and lower bound).

As we can see, the deadhead time still keeps improving with more iterations, at
an insignificant expense of waiting time.

As mentioned in 5.6.1, the initialized solution is a single-depot scheduling
with probably best starting depot (out of all terminals), so we have here the single
depot scheduling (calculated in 7.8) as a reference.

We can also see the number of possible swaps is rather low (even lower than
amount of buses multiplied by the amount of trips), compared to the amount of
possible trip chains.

58

Dataset U1 U2 R1 R2
Buses 10 41 91 204
Available swaps 967 11666 41951 90521
Time per iteration (ms) 133 842 1506 3465

Deadhead time (h:mm)
Single depot 1:11 6:35 65:04 384:07
1 iteration 0:16 6:04 51:51 193:00
100 its. 0:09 4:57 39:21 177:43
200 its. 0:09 4:25 35:28 171:21
300 its. 0:09 4:20 33:05 161:29
Default (no depot) 0:04 1:11 1:03 17:25

Waiting time (h:mm)
Single depot 48:31 156:41 549:56 1374:05
1 iteration 43:36 156:41 508:00 1371:29
100 its. 44:12 212:29 645:36 1382:52
200 its. 44:11 223:12 625:05 1396:37
300 its. 44:06 221:06 613:35 1398:49
Default (no depot) 48:31 156:41 549:56 1374:05

Table 7.9 Improvement of deadhead times by using circular scheduling

0 50 100 150 200 250 30000.2
0.40.6
0.81

Number of iterations

Re
la
tiv

e
de

ad
he

ad
tim

e

U1 U2 R1 R2

Figure 7.5 Local search improvement on circular scheduling

59

Dataset U1 U2 R1 R2
Buses 10 41 91 204
Overlap - total time (ms) 5 203 29 764 42 331 78 075
Parallel - total time (ms) 5 193 28 646 41 917 78 479
Curves - total time (ms) 5 654 30 753 43 773 81 412
Overlap - size (KiB) 513 3 523 4 147 7 187
Parallel - size (KiB) 563 3 838 4 440 7 659
Curves - size (KiB) 2 155 15 103 14 051 23 152

Table 7.10 Time taken for rendering schedule on maps using direct lines, and size of
the output file

7.7 Visualization
For visualization, we simply measured the amount of time taken to complete
the whole request of rendering the map for the whole request, excluding the
download, and also the size of the output file.

We can see the time taken for rendering is rather linear in the amount of
buses, as each bus block is rendered separately, so the bigger distance of regional
transport does not seem to play a big role here.

The increased size of the curves is due to the fact that the curves are not
rendered as a single line, but as a series of small lines, giving the curvature
illusion, as a chosen way of bypassing the limitation of the mplleaflet library.

This is in contrast to the time needed for rendering, as it is also higher than
two other methods, but only by a small margin (10 % at most).

The next table shows the general trouble with using OSM navigation data for
rendering, as something which theoretically works but is rather slow, similar to
the distance matrix calculation.

We can see that the generic approach of downloading the whole map into
memory and then finding shortest paths through our stop points is rather slow,
although still viable for smaller maps (below 10 minutes for large urban dataset).

7.8 Summary
We can see that the TTP behaves consistently on different datasets and provides
meaningful results, even though the time complexity is rather high.

As expected, the trip querying would be the fastest, followed by the scheduling
and finally OSM integration. The application is not intended to be speed-critical,
so the time taken, where reading the actual data by human takes longer than the
calculation, is acceptable.

60

Dataset U1 U2 R1 R2
Buses 10 41 91 3 a

Overlap - total time (ms) 32 222 442 982 3 831 049 557 714
Parallel - total time (ms) 32 330 413 116 - -
Curves - total time (ms) 34 353 432 907 - -
Overlap - size (KiB) 2 676 21 407 41 568 2 972
Parallel - size (KiB) 2 912 23 340 - -
Curves - size (KiB) 12 444 99 586 - -

Table 7.11 Time taken for rendering schedule on maps using OSM road network, and
size of the output file

aDownloading the map took the most time, for 204 buses the time would not be 68 times
higher.

61

62

Chapter 8

User documentation

TTP supports most actions to be done independently. These are:

1. Upload of timetable in JDF

2. Merging of JDF timetables

3. Export of timetable as XLSX

4. Upload of timetable in XLSX format

5. Stop editing

6. Scheduling calculation

7. Visualizing trips and schedules on map

Here are shown the main features of the application, which are available via
the user interface. For the installation and launching instructions, see the chapter9.
The directory and file structure of the data saved by the server application is
described at the end of this chapter (section 8.10). More advanced users can edit
the data directly.

8.1 Main page
The main page (at Home) is the starting point of the application. It contains
a small introduction of the application. Every module can be reached from the
navigation at the top.

63

8.2 General notes
The data shown on in tables (on trip querying and schedules) use DataTables
library, which allows sorting, filtering, and pagination. For this, JavaScript must
be enabled in the browser. It is also required for the correct processing of the
stop editing and visualization.

8.3 Upload of timetable in JDF
This module is reachable on the navigation by the title Upload JDF. Te main
purpose is to offer a way to upload JDF timetables on the server.

Aswasmentioned in the introduction, they are officially available at ftp:ftp.cisjr.cz.
For extensive searching, the website hrefwww.portal.radekpapez.czwww.por-
tal.radekpapez.cz is recommended, as it allows to search for specific lines in order
to be downloaded as JDF and also previewing of the timetables.

The JDF batches are uploaded as folders. Clicking on the Upload button
opens a file dialog, where the user can select a folder. For more folders, click the
+ button.

They can also be uploaded as nested (pack more JDF batches into one folder
and submit the parent folder).

The figure 8.1 shows the form for uploading JDF batches.
Once the form is submitted, each folder is checked independently and the

message of success or failure is displayed. The TTP does not warn when uploading
a batch with the same name as an existing one, it is simply overwritten - the user
gets informed about this in the final message. An example result in shown in the
figure 8.2. Trying to upload two identically named folders will show a client-side
warning.

In order to create a merged JDF batch (which would contain all trips from
all uploaded batches), select a suitable option from the dropdown menu Merge
options and fill up the name of the new batch. The option Merge the contents
into one JDF will merge all uploaded batches into one and not keep the original
ones on the server. In order to preserve both, select the option Merge and keep.
For a successful merge, all uploaded batches must be valid.

The uploaded batches can be then used in modules:

• Export of timetable as XLSX (8.7)

• Trip querying (8.4)

• Scheduling calculation (8.5)

64

ftp:ftp.cisjr.cz

Figure 8.1 Form for uploading JDF batches. The folder “Corrupted“ is supposed to
represent invalid JDF.

Figure 8.2 Results of uploading JDF batches

65

8.4 Trip querying
This module is reachable on the navigation by the title Query trips. It allows to
show all trips inside one of the uploaded JDF batch to the user within specified
date range. The form on the page contains three sections. First is selection of JDF
(the dropdown is based on the uploaded JDF batches), which needs no further
explanation.

Second part allows for global trip querying. To confirm you want to use this
function, tick the box Show all trips and then fill the range From - To with the
desired values. Note the date range is inclusive.

The third part allows for an independent querying from the second part. The
user can query trips which serve a given stop during a 24-hour time window.

The name of the stop does not need to match exactly, closest result is selected
after submission. However, if such stop is already present in the 8.6 module, it will
show an autocomplete help (list of stops matching the part name). This feature
uses the datalist HTML element, which might not be supported in all browsers.

The date and time are in the format YYYY-MM-DD HH:MM:SS.
In the figure 8.3 we can see the user is about to submit a query on 2 days of

all trips in the JDF batch Havirov_MHD and also all trips which departing from
the stop Albrechtice„Sídliště. The arrivals part is being currently filled in (notice
the datalist).

Submitting the form redirects the user to the page with the results. The page
layout is always identical regardless of which things were actually queried (all
trips, departures, arrivals).

Each of the results has separate tab, as seen on the figure 8.4. The example
currently shows the arrivals on a stop, whose name can be seen in the header.
The data (columns are) as following:

1. Day of the operation

2. Time of arrival (or departure) on the stop supplied by the user

3. Line number

4. Trip number

5. Departure time (of the first stop of a given trip)

6. Initial stop of the trip

7. Arrival time (of the last stop of a given trip)

8. Final stop of the trip

66

Figure 8.4 Table with arrivals on a given stop

The table allows sorting, filtering, pagination, and to view the amount of results
(at the bottom of page).

If the user fills in the stop name, but not date, an error will be shown (see
figure 8.5), without affecting the other results:

8.4.1 Errors

Common errors are:

1. Wrong date range: Timetables in JDF have limited date range (usually one
year), so the query must be within this range.

2. No trips found even if date range is given: Do not forget to tick the checkbox
Show trips if you want to see the trips.

3. Could not find stop for a name <name>:
The stop name was not found in the JDF batch. The accuracy of the stop
name is rather tolerant. Make sure you have selected the correct JDF batch.

4. Could not find stop for a name <name from datalist>:
The stop name was not found in the JDF batch. As mentioned before, the
datalist is constructed from the stops in the 8.6 module. The JDF batch
might simply not contain the stop.

68

Figure 8.5 Error message when date is missing but arrival stop is filled in

8.5 Scheduling calculation
The scheduling calculation is available in the navigation under the title Schedule
buses. The only pre-requisite for this is to have the correct JDF batch uploaded,
which can be selected for the dropdown menu.

8.5.1 Date and time
The user can also select the date and time range for which the scheduling should
be calculated. The maximum range is 1 day to ensure easy calculation and to
prevent the user from waiting too long. For example, selecting the starting time
as 2024-01-01 02:00 and the ending time as 01:00 will include trips, whose starting
time (departure from the first stop) is after 02:00 of 1st January 2024, and their
ending time (arrival in the last stop) before 01:00 of 2nd January 2024.

8.5.2 Deadhead matrix
The section Method of calculating travel time between terminals allows to specify
how should the deadhead times be calculated, which the scheduling algorithm
depends on. The method Use timetable data is the default one and requires no
external tools, since everything is calculated from the saved JDF, as if bus speed
between two stops was based on the quickest trip found in the timetable data.

Unlike shortest route algorithm used for searching passenger routes, the

69

algorithm assumes the distance between two stops is based on the fastest trip
between them (across the whole timetable data), and then further optimizes the
distance between the terminals using Dijkstra’s algorithm.

If the data need to be suppliedmore accurately, themethodUse uploadedmatrix
can be selected. The format of the matrix is 2D CSV (actually tab separated values)
with both row and column headers being a stop name, and the values being the
travel time in minutes. The easiest way is to simply have the matrix generated by
using the option Use timetable data, then edit it and resubmit.

Finally, if the timetable data might be too inaccurate (e.g. no route uses
shortcuts, the route network is too radial) and manual work too tedious, an
option is to select Use OSM navigation which tries to calculate the distance based
on real road network data. For this, the actual stop locations need to be supplied
(see 8.6). Be aware that retrieving the actual network for the first time (with
disabled caching) might be too slow.

8.5.3 Scheduling goal
The section Scheduling method allows to select the method and goal of schedul-
ing. The common objective for all is to minimize the bus and deadhead count
(with respect to the queried trips). The difference is to reduce the pull-in and
pull-out times:

• Default,exact - pull-in and pull-out not considered, always a consistent
solution.

• Depot,exact - select a depot all buses have to start at and return to (times for
these get included towards the total deadhead time). The depot is treated as
a regular stop, therefore it must be included in the distance matrix (based
on the method used in 8.5.2).

• Circular,approximate - each bus is scheduled to return to the place where
it started the first trip of its block. The returning time is counted towards
the total deadhead time. The solution is only approximate and uses local
search, its parameters can be customized:

– Number of iterations - determines the depth of the search, the higher
the better solution, but also slower.

– Number of multiplications of each solution - broadens the search space.
One multiplication is one improvement - partially swapping two bus
blocks. More to be seen in 5.

70

– Number of solutions kept - how many solutions are stored in-memory
per iteration. The best one is always kept, the others are randomly
selected.

The search always starts with the default solution.

8.5.4 Invalidate cache
The server caches one distance matrix per JDF and a method. In order to force
re-calculation (e.g. the JDF was overwritten), the checkbox Invalidate cached
distance matrix can be ticked. This is not necessary if custom matrix is supplied,
or different trips (terminals) are used.

The checkbox Invalidate cached schedule will also force the server to re-
calculate the schedule. A schedule is cached by the parameters of the scheduling
calculation (JDF, date range, method, goal), so it will be recalculated on its own
often, a common use case could be however the approximate (heuristic,random)
scheduling with identical parameters.

8.5.5 Precalculation
Before the actual scheduling is made, the server queries the necessary trips,
calculates the deadhead matrix and a feasibility matrix (which trips can be served
consequently by one bus). These are then stored in the cache and displayed to
the user:

• Trips - the amount of trips in the selected date range

• Edges - the amount of edges in the deadhead matrix (affects the total
scheduling time)

• First trip - the departure and arrival time of the first trip in the selected
date range. Note that the departure time is referred to in the scheduling
parameters, not the value input by user. E.g. if there is no trip between
00:15 and 00:30, then this value will be identical regardless of which time
between 00:15 and 00:30 is selected.

• Last trip - the departure and arrival time of the last trip in the selected date
range. The same note applies for the arrival time.

• Deadhead matrix - a download link to the calculated deadhead matrix. The
downloaded matrix can be then directly uploaded in the next scheduling
calculation, see 8.5.2.

71

Figure 8.6 Schedule result page

• Scheduling method - the method of scheduling with additional parameters.

To continue with the scheduling, simply click the Submit button.

8.5.6 Schedule results
The schedule result page contains three sections: download link, summary, and
schedule table.

In the summary on the figure 8.6, we can see the “facts“ as input data (number
of trips and total driving time), then the “task“ (how to schedule, and what was
used for calculating the deadhead times), and finally the results (amount of buses,
and total deadhead time).

The total waiting time is a time taken between two trips the bus is expected
to not be driven.

The total deadhead time will differ based on the assignment. In case of
scheduling with a depot, the pull-in and pull-out times are included, and in the
case of circular scheduling, the returning times are included.

All times are displayed in the format hh:mm, while in the JSON data they are
given as minutes only.

The schedule table is a nested table, which shows schedules for each bus. The
outer table shows:

1. Bus number - the buses are ordered by their trip count, so the first bus is
the one with the most trips.

72

2. Day of the first trip

3. Total driving/deadhead/waiting time - using the same definitions as in the
summary

4. First trip - the departure time and first stop of the first trip

5. Last trip - the arrival time and last stop of the last trip

6. Day of the last trip - useful to prevent confusion when the last trip is on
the next day (or multiday scheduling in general)

When expanding the bus block, there can be seen pull-in and pull-out times (if
applicable), otherwise return time is shown. These times are included into the
deadhead times as summary, unless using only the default scheduling without
depot.

Under these, there is nested table with trips for given bus block.
Each trip is displayed with the same data as in the query results in 8.4 with

three additional columns:

1. Trip time

2. Deadhead time (for reaching the first stop of the next trip)

3. Waiting time (for the next trip)

The trips in last row will always have the deadhead and waiting time 0, as there
is no next trip.

Finally, each trip can be also expanded to show the list of stop it serves on the
way (with the departure times 1).

8.6 Stop editing
The stop editing is available in the navigation under the title List of stops. It is
not necessary for basic JDF and scheduling function, however it is required for
rendering schedules on map (see 8.9) and to calculate deadhead distance matrix
using OSM data (see 8.5.2).

Note that a single stop in the TTP is assumed to have unified location (no
specific platforms).

The whole page consists of 4 parts: the stop list, the stop editing map, the stop
editing form, and the stop import form. The individual parts are easily seen from
the image 8.8, the following documentation will rather focus on how they work
together.

1Arrival time for the last stop

73

Figure 8.7 Expanded bus block and one trip on a schedule result

Figure 8.8 Stop editing page

74

8.6.1 Stop map
The stop editing map connects to the OpenStreetMap API and displays the stops
locations uploaded on the TTP server (the very same stops which are visible in
the list on the left side).

Stops, which are currently saved on the server have blue markers. If a stop is
set for deletion (by ticking the checkbox in the list), its marker turns purple.

You can zoom in and out, move the map, and hover on the markers to see the
stop name. Clicking directly on the stop marker will center the map on it and
also scroll to the stop in the list. Note: if the scrolling does not work, scroll with
the right scrollbar. In order to find a stop not in the current view, use the button
Center map in the stop list.

Clicking on an empty space will create a new stop (green). To discard it, click
on the Remove button in the stop editing form.

8.6.2 Adding and removing stops
Clicking on an empty space in the map creates a green stop marker and also adds
a new row to the stop editing form with pre-filled coordinates. These can be
further modified in case of a missclick. In order to correctly submit the stop on
the server, fill out its name (at least the city name). A comma will be interpreted
as a separator, so the whole name can be without issue written just in the City
name field.

In order to remove already uploaded stops, simply tick the Delete checkbox in
the stop list. The stop will appear as purple on the map.

The button Replace stops will then send the request to server to both add and
remove the stops. Direct editing of stop location or name is not possible, simply
remove the stop and add it again.

8.6.3 Importing stops
The Import stops area is used for importing stops from the external script of stop
finding (see A.3). The checkbox Overwrite old stops will remove stops with the
same name as the imported ones.

8.7 Export of timetable as XLSX
The export of JDF is available in the navigation under the title Export XLSX.
Exporting of the JDF allows to see the timetables for individual lines in human-
readable way. For a default behavior, simply select the JDF batch name from the

75

Figure 8.9 Timetable exporting page

dropdown menu
and click the Download timetables button.

The interface is shown in the figure 8.9.

8.7.1 Export settings
By default, each timetable (one line and one direction) is created into an individual
worksheet (of XLSX file) and then sent as a zip archive with name identical to the
JDF batch. The name of the file and worksheet is
<Line number>_<Line version>_<Direction>.xlsx. The direction is either
F or B.

The settings allow for these changes, when checked on:

• All timetables in one workbook - all timetables aremerged into oneworkbook.

76

However, it is also sent as zipped for consistency.

• Both directions within one file - the timetables for both directions are merged
into one worksheet. The name of the worksheet will not then contain the
direction.

• Split workdays and weekends - this does not change the file structure, but
the trips in the timetables will be listed first for working days, then for
weekends.

After the timetables are made, the zipped file is immediately sent to the user
(download).

8.7.2 Schema of the exported file
The output format is XLSX, which can be opened in multiple spreadsheet applica-
tions, such as LibreOfficeCalc2 or Apache OpenOffice3.

The actual file schema is described visually on the image 8.10.

8.8 Upload of timetable in XLSX format
This module, available under the title Upload XLSX, allows to upload timetables
on the server in XLSX format to be automatically parsed and converted to JDF, in
the same way as the JDF batch would be uploaded directly (see 8.3).

It is meant to only support the files in similar format as exported from the
TTP application, which also means only some data is preserved.

The input form accepts only one XLSX file without any additional settings.
In order to import multiple lines, simply include them in the same file. This
corresponds to the option All timetables in one workbook in the export settings
(see 8.7).

Uploading the exported timetables will preserve the trip data, but strip away
time codes (trips (not) operating on specific dates). However, the periodic days
of operation (1-7,X,+) in the trip metadata are preserved, which makes the trip
querying and scheduling calculation behave rationally for common days. 4

2https://www.libreoffice.org/discover/calc/
3https://www.openoffice.org/
4Tip: to calculate scheduling for specific days, simply delete the trips not operating on these

days before upload. On the other hand, to guarantee operation on any date, remove the periodic
sign.

77

8.9 Visualizing trips and schedules on map
The visualization of trips and schedules is available in the navigation under
the title Visualize trips and schedules on map.

In order to use this, two prerequisites need to be satisfied:

1. A schedule needs to be prepared (see 8.5)

2. The stops used in the schedule must be uploaded and their locations set
(see 8.6)

The form takes three input fields. The first input field is for the schedule
upload to be selected from the file system (presumably created by the Schedule
buses module).

The second input field is a dropdown for how to visualize connection between
two stops: either via a direct line, or by more accurately drawn route (using the
OSM navigation data).

The third input field is a dropdown how to visualize multiple trips with
overlapping routes.

8.9.1 Output files
When submitted, the server will create two maps per each bus block contained in
the schedule. They are all saved as zip file and sent to the user. One of the maps
(with extension.html) is meant to be viewed in the browser showing the route on
OSM background (requires internet connection), the other (with extension.pdf)
is a PDF image of a created plot, where the coordinates correspond to latitude
and longitude.

8.9.2 Data interpretation
For each bus block, only data which refer to stops visited by the bus are relevant.
If a trip goes through multiple stops (common occasion), it will be considered as
several trips in this section.

In this section, the word line is also meant as a literal line on the map, not
with the timetable context.

The stops are connected by a line, which is colored based on the time of the
trip. The colors follow rainbow, with trip starting at 00:00 being red and trip
starting at 23:59 being violet.

If there is only one trip which connects two stops and an option Direct line
between two stops is chosen, such trip will be displayed as a straight line between
two stops. However, if an option Use OSM navigation is chosen, the line will

79

attempt to follow the actual road network (as if more nodes were added between
the stops).

If some stops in the schedule are missing on the map, they are left out and a
line is simply drawn between the previous and next stop.

The line thickness can vary, based on the speed of the trip (simply calculated
as time between two stops divided by the distance), thicker line means higher
speed.

8.9.3 Overlapping lines
If multiple trips share the same route (in either direction), the resolution depends
on how the option Draw trips going through the same stops as is set. This also
applies for the road network nodes if the option Use OSM navigation is chosen.

For the most concise option, select Overlapping lines. The overlapping routes
will be drawn as a multi-colored line segment (along its length), keeping its
original width. The more colors are used, the more trips share the same route.

To show the trip density better, select the option Parallel lines. Each trip
will be drawn as offset from the previous one, the central line will be directly
connecting the stops (assuming odd number of trips).

An alternative is to select Curves, which renders the trip between two stops
as arcs with varying radius, but ensuring the arcs always start and end at the stop
locations.

In general, multiple trips between two stops in one direction are rendered
ascending by their time, with trips in the opposite direction following, as can be
seen on the figure 8.11.

Trips going from west to east (increasing longitude) are considered as the
forward direction, and trips going from east to west as the backward direction.

8.10 File structure of the saved data
The temporary data saved by the server application is stored in the online_files
directory. This is the root directory for the data.

The directory upload contains the uploaded JDF batches. The stops locations
are saved in the file stops_locations.csv in the root.

The directory distances contains the distance matrix files, which are
further divided into subdirectories based on the method used for calculation
(map,timetable,upload).

Other files, which can be directly re-generated from the requests, are saved in
the temp directory. These are again divided into subdirectories. Note the data do
not get automatically deleted, only overwritten.

80

Figure 8.11 The difference in visualization. Left top - direct lines with overlapping
trips as changing colors. Right top - parallel lines (relevant stops highlighted by red circle,
not shown on the actual output). Right bottom - curved lines. Left bottom - using OSM
navigation data (overlapping trips as changing colors). From the color change between
3rd and 4th line, we can see there are 3 trips in west-east direction and 4 in the opposite.

All of these files have .json extension.

• departures - departures from one stop (name based on stop name)

• arrivals - arrivals from one stop (name based on stop name)

• trips - trips in given JDF, generated during the scheduling preparation.
These data are read again when the schedule is actually generated. 5 The
name is based on the JDF batch name and the date of operation.

• schedules - the calculated schedules. The name is based on the JDF batch
name, date range, distance matrix method, and scheduling method (goal).

5This allows for rather hacky modification by replacing the file with custom trips, right before
the schedule is submitted.

81

82

Chapter 9

Installation and launching

For local server, follow these instructions as for standard Python program:

9.1 Prerequisites
The TTP was tested on Linux andWindows. A Python 3.10 interpreter is required.

9.2 Source codes and installation
1. Extract the source codes from the attached ZIP file

TTP.zip and extract them.

2. Go to the folder TimetableBusScheduling (where the extracted files are
located).

3. Set up Python environment and install the required packages by running:

python3.10 -m venv venv && . venv/bin/activate
python3.10 -m pip install -r requirements.txt

4. Launch the server by interpreting file Flask_Main.py from the folder
TimetableBusScheduling. As for the port, select a number such as (5000)
that is not already in use.

python3.10 Browser_Interface/Flask_Main.py -p <port>

5. You can also use flag -d to run the server in developer mode.

6. Launch your browser and go to 127.0.0.1:<port> to use the app.

7. If needed, the server can be stopped by pressing Ctrl+C in the terminal.

83

9.3 Data retrieval
The datasets used in this thesis are available in the attached ZIP file Datasets.zip.
After extracting, they can be uploaded to the server by using the Upload JDF
module in the TTP.

The locations of most stops relevant to those datasets are already included in
the server filesystem. To add more, follow the user documentation (Section 8.6).

9.4 Pre-loaded data
The data created by the server will be stored in the online_files folder. This
folder is also provided separately in another ZIP file online_files.zip where
the data generated during the testing run is already included. You can compare
the results of your run with the provided data.

9.5 Remote server
To use the server on remote PC, use port forwarding, e.g.

ssh -L 5000:localhost:5000 user@remote_server

and install everything on the remote server as described above. You can then
access the server from your local browser.

84

Chapter 10

Programmer documentation

The whole TTP is written in Python and is separated into four packages. One
module is responsible for browser interface (frontend) to the TTP, the other three
are internal logic packages: JDF conversion, Bus scheduling andMap visualization.

The user interface uses Flask framework for working on browser. Each
submodule is a Flask blueprint responsible for handling a small amount of pages
(1-2). In order to be correctly displayed in browser, all data are displayed to
the user as HTML (with Jinja templating).

It is assumed that the users are patient enough for the application to load
the data, therefore asynchronous communication is not used.

Originally, the TTPwas developed as a console application, where themodules
worked independently, outputting text files, which were then processed by the
next module. The interconnection, which is done via the browser in the final
version, therefore also mixes business logic with the presentation layer.

10.1 Timetable processing
The module Timetable_Calculations
in the package JDF_Conversion is responsible for loading all JDF data into
individual in-memory objects and performing calculations which can be inferred
from them. The data are loaded directly from filesystem, without any database
engine.

For the TTP application, the main purposes of this module are:

1. Loading the JDF data into memory.

2. Calculating the shortest path between two stops.

3. Determining operation days of trips.

85

4. Merging multiple JDF data into one.

5. Loading and exporting Excel files representing timetables.

6. Extracting trips to be passed to bus scheduling.

10.1.1 JDF classes
The whole timetable processing module is designed to load the whole JDF batch
into memory and use it as a source for further calculations (as opposed to a rela-
tional database). This approach has an advantage of easily visible data structure
when debugging, a major disadvantage is a memory consumption and also speed.

Each class starting with Jdf in the file JDF_Classes.py represents data in
JDF batch. For example, an instance of JdfDopravce objects corresponds to one
row in the file Dopravci.txt.

In case of the classes and its fields, it can be justified by the fact the JDF 1.11
(whose data are used) uses the Czech names for the fields, so the names in TTP
are chosen in the same way to correspond.

Apart from the JDF 1.11 standard fields, there are also some additional fields
to simplify calculations. The constructors of each class simply takes the values
from the CSV file and assigns them to the fields. A method Serialize then does
the opposite - it takes the object and returns a list (corresponding to one CSV
row).

More can be seen in section 10.1.4. Themethod Bind is responsible to create in-
memory references to other objects. For example, JdfSpoj (trip) has a reference
to JdfLinka (line) - this is a N:1 relationship. These references are made by the
corresponding JDF fields (each trip has a line number in the CSV). However, the
application also allows for 1:N references, here it would be multiple trips assigned
to one line. For these, the variable ending on Coll (as collection) is used in the
Bind method.

Not all JDF objects are fully completed in the code. This is mostly due to focus
scope of the TTP, also some data are not widely used in the publicly available
JDF batches (e.g. “Oznacnik“ field in JdfCasSpojLinkaZastavka).

Some values can contain only enums. In case of 0/1 values,they are converted
to booleans during initialization. If there are more values (like in JdfCasKod),
the ranges of values are stored in the module Timetable_Enums.

10.1.2 JDF data initialization
The class representing a JDF batch is in the module Timetable_Calculations.
Its method LoadJDF (with folder name passed as parameter) loads individual JDF

86

data using the module csv. The internal method _loadSingleJdf is modified to
handle JDF 1.10 files as well (the parameter objType is used to determine the class
to be used, and if it fits the JDF 1.10 standard, additional empty fields are added to
the row). Ultimately, this batch is held in an instance of the class JdfProcessor,
where also additional fields are included for easier processing.

The module is designed to allow for loading multiple JDF batches at once,
which is necessary as the initial data contain one line per batch, which would not
allow for good optimization and data aggregation.

For this, a class JdfMergerwas created, whichmerges individual JdfProcessors,
and the final data binding (creating in-memory references across trips and stops)
is done in the method FinishMerge. The merging process is described in the
section 10.1.3.

The method ParseSingleFolder serves as an entry point for initializing a
JDF processor from a single batch. It takes a name of folder containing the JDF
batch (text files as described in the JDF documentation), and returns an instance
of JDF processor, or None in case of failure.

For multiple folders, an analogous method ParseMultipleFolders is used.
It is not supposed to crash if an invalid batch is passed, it gets simply skipped
(error is printed on console, see method JdfMerger.AddNew).

10.1.3 JDF merging
The goal of JDF merging is to have one batch for more lines. Since the original
data contain one line version per batch, the TTP assumes the lines in input data
will be different.

If given batches are completely disjoint - the trips take place in different cities,
the merging is straightforward.

The main issues for correct merging are stops and lines. While stops might
have different identifiers, they can be considered the same if they have the same
name. This requires to change the field ‘CisloZastavky‘ on a given stop so both
processors use the same number. That transitively causes the change of identifier
in other objects which refer to this stop number. The second merging issue arises
when multiple versions of one line appear in different batches. This is simply
resolved by incrementing the line discriminator field (RozliseniLinky), but
this requires update of all references to this line, which are mostly contained in
trips (JdfSpoj) and stop events(JdfCasSpojLinkaZastavka), see the method
ChangeKeywhich is written to handle both stops and lines (although in completely
different way).

After all potential JDF processors are merged, the function FinishMerge
returns an instance of JdfProcessor with all the data merged and expanded (all
references created).

87

Using serialization as can be seen in 10.1.4 then can save the JDF into a file,
so the next time they can be loaded all at once.

10.1.4 JDF serialization
The module JDF_Serialization contains function for JDF data serialization.
The most relevant function for TTP is SerializeJdfCollection, which is
parametrized by the collection (of stop objects, trip objects, etc) and output
file. For collections sent from JDF processor created from single JDF batch, the
output is identical as in the original files. The serialization is done by calling the
Serialize method on each object in the collection (as the JDF objects should
have it defined).

The functions PackDeparture, PackArrival and PackTrip are used for
dictionary representation of trips (etc.) as an alternative for string representation
(these representations are then passed to the frontend, see 10.5.5).

10.1.5 Timetable algorithms
With purely JDF data loaded, two algorithms are implemented in the module
Timetable_Calculations:

• Approximate distance between two stops

• Listing of trips operating on a given day

To calculate an approximate distance between all stops, amethod GetAllStopMatrixByTT
(of the class JdfProcessor) is used. It first builds a graph in-memory (edge
lengths represented by numpy array) with the CalculateTimeMatrix method,
which checks all trips and determines the stop distances on given trips (direct con-
nections). Since one route is shared by multiple trips, the shortest time difference
is always picked (regardless of day time). After such matrix is built, Dijkstra’s
algorithm implemented in the scipy library is used to find the actual closest
distances between stops in the graph. Due to time zone issues, as a hotfix, the
graph is be disconnected regarding trips across state borders (this is in timetable
represented by the CLO sign). It is assumed the TTP will be used for regional
transport, therefore the timezone issue is basically ignored (and might need
fixing). In regard to the bus scheduling, a method GetDeadheadMatrixByTT is
used for returning only distance matrix between terminal stops. The function
therefore returns a list of stops (list of names) and a distance matrix (as numpy
array).

For listing trips operating on a given day, a method CheckTripsInDay is used.
Each trip is checked in the function IsTripOperated. The function directly
writes the trips into a provided text stream.

88

10.1.6 Excel timetable export
The module Table_Export is responsible for exporting the timetable data to
XLSX format. First, the timetable is loaded into a 2D list of strings using three
functions:

1. MakeTimetable - creates a 2D list of trips from the JDF data (trips, stops,
stop times).

2. CompleteTimetableMetadata - adds line number, line operator, to the
table

3. AddTimetableKilometrage - adds kilometre columns to the table

The function WriteAsExcel then writes this table to an Excel file using the
xlsxwriter library. The function ExcelTimetables is responsible for calling
all these functions in a succession. It takes JdfProcessor as input and cre-
ates the Excel file, where each line in the processor is represented as a pair of
two sheets in a workbook. The line name is in format: <Line number>_<Line
version>_<Direction>. Direction is T for forward and Z for backward. orien-
tation (depending on the tariff numbers).

On the other hand, a function ZipTimetables creates one workbook per
each line (and version) which contains two sheets - one for each direction. All
workbooks are then zipped into one file using zipfile library.

10.2 Bus scheduling
Here we actually calculate the bus schedules from provided data, which have
already gone through the timetable processing. The module therefore supplies
all needed functions for the optimizing problem itself and also allows visual
rendering on console.

All source files for this module are saved in the folder Bus_Scheduling.

10.2.1 Data representation
The classes are saved in a file Scheduling_Classes.py. An object representing
a trip is described in the class Trip. It consists of line and trip number, then
starting and ending stop (as strings), and starting and ending time (as strings).
The field “Via“ optionally allows for more representation, as dictionary of stops
on the way (including starting and ending) with respective stop times. Only stops
actually served in the trip are considered.

89

For easier processing, the starting and ending time are first loaded from JSON
as strings, while converting the strings to minutes (relative to midnight) is done
in the method RecalcMinutes, which also allows to add relative starting day (so
the starting and ending time will be for example offset by 1440 if we plan to start
scheduling from 1.1.2023 but the trip starts at 2.1.2023).

As to represent pull-outs, pull-ins and deadheads, for this is used class
Deadhead, which also uses starting and ending stop. Unlike trip times for depar-
ture and arrival, here we use Duration (in minutes) and earliest time of arrival on
the stop. It is used only to simplify the data representation when writing out the
schedule.

The scheduling also uses a distance matrix to show deadhead times. In file
system, it is represented as tab-separated file with headers (they are processed
by the csv library), while in the code, it is represented as numpy 2D array regard-
ing the distances (always integer) and stops are as simple list; index of a stop
corresponds to the row in array.

In order for quicker stop index retrieval, also a stops map is created, which
simply maps the stop name (string) to its index.

10.2.2 Precalculations
In the bus scheduling, we assume the deadhead times are already calculated
externally. The method CreateFeasibilityGraph allows us to retrieve the
feasibility (compatibility) relation between trips, represented by tuples (indices of
respective trips). It checks if there suffices enough time to get from the last stop
on LHS trip to the first stop of RHS trip (see 5). A custom attribute maxWaitHours
can be used to prune edges which would cause too long waiting time between
two trips. This might not yield an optimal solution in the sense of bus amount,
but this is not researched (todo: let’s try).

The method EstimateTripsNoDepot could be used for estimating the time
needed for calculations, but this would require more research, so currently it
returns only trips and edges count as a simple dictionary.

The edges are also assigned weights in the function CreateDeadheadMap.
For parametrization, we can use waitingPenalty (scaling with waiting time
between trips, deadhead time not included in the waiting).

10.2.3 Scheduling algorithm - entry point
The bus scheduling from othermodules is called from the function CalculateGeneral,
which takes all the input data (trips,stops,distance matrix) plus arguments for how
should the scheduling be optimized (parameter schedulingMethod as string

90

enum and optionally scheduleArgs). The schedules are then simply returned as
jagged array of trips (represented by the class Trip).

10.2.4 Scheduling algorithm - default

The algorithms are saved in file Bus_Scheduling.py. For a simple optimization,
a library networkx is used, as the default solutions can be obtained by a help of
graph algorithms.

A function OptimizeTripsOptionalDepot takes a list of trips, matrix of
distances, and dictionary of stops to their indices.

The algorithm is briefly described in 5: two vertices are created per trip
(departure vertices have the same number as respective trip index, arrival vertices
have their number as trip index increased by length of the trips). The vertices
are not added explicitly, if a trip is not on either side of the feasibility relation
(=among the edges), it will not be added to the graph.

After a matching is calculated, the function convertEdgesToBuses creates
feasible bus schedules based on the matching. Unmatched trips are considered as
well by adding an extra bus which covers only them. This includes trips which
were not in the compatibility graph at all (e.g. very late trip with high restriction
on waiting time).

If it is set to false, the optimization continues with respecting the deadheads.
Two vertices are added per each bus and these are connected with other ver-
tices (first vertex per bus is connected to all departure vertices, second vertex is
connected to all arrival vertices) by edges representing zero length pull-out and
pull-in. This allows us to always find minimum weight full matching (as the full
matching will always exist).

10.2.5 Scheduling algorithm - single depot

A graph scheduling algorithm with single depot uses the same function as default
algorithm, but this time the edges representing pull-out and pull in have also
specified weight. To get an exact depot name, the function get_close_matches
from difflib library is used - we allow to only specify depot as an existing stop.
This allows to use the same distance table as we use for deadheads.

10.2.6 Scheduling algorithm - linear programming

The scheduling algorithm with single depot also has its linear programming ver-
sion OptimizeTripsSingleDepotLP, which uses mip package with CBC solver.

91

10.2.7 Scheduling algorithm - circular, approximate
The approximate scheduling uses the default scheduling as base algorithm (ac-
cepting the same parameters) optimized by minimizing deadheads. Additional
parameters (all integers) refer to local search parameters:

1. iterations - how many times do we eliminate unfit solutions

2. kept - how many solutions will remain after each elimination (max)

3. multiplications - amount of times each solution is improved upon

The function EvaluateLength evaluates the total deadhead time of a given
solution (including returning times) as a “fitness“ function.

The local search (see 5.6) uses a Swap operation, which is described by 4
parameters:

1. Bus1I - index of first bus block

2. trip1I - index of last trip of first bus before splitting

3. index of second bus block

4. index of last trip of second bus before splitting

An index -1 for the trip means the first part of the bus block will be empty
(the whole block will be moved to the other bus block).

The swap operation is then applied as in this Python code:
buses[bus1I] = buses[bus1I][:trip1I+1] + buses[bus2I][trip2I+1:]
buses[bus2I] = buses[bus2I][:trip2I+1] + buses[bus1I][trip1I+1:]

Each of the feasible solutions is then described using these fields:

1. swap - operation (see above) to be done on the solution (or None)

2. buses - list of bus blocks

3. length - fitness of the solution (minimize)

4. swappable - list of all feasible swaps

New solutions are created in two phases: We first choose multiplications
random swaps per each solution, then we evaluate the fitness
using EvaluateSwapDiff without actually swapping the trips,
creating a new copy with updated length and swap field.

After we generate all new solutions, we eliminate the unfit ones and then use
the method ApplySwap for remaining solutions, where a deep copy of the buses

92

list and swappable is created and the swap is applied (updating the list of bus
blocks and the new valid swaps).

This allows us to save memory by applying the swap only after the solution
is actually picked for the next iteration. The set of all valid swaps does not need
to be recalculated fully, only the swaps which apply to one of the previously
swapped bus blocks.

An index -1 refers to an empty first part of the bus block, so all original trips
are moved to the other bus block.

Creating a new solution picks a random bus and for each bus it tries to find
all pairs of edges which can be swapped: For example, if a bus 𝐴 has consecutive
trips (1, 3, 5) in its block, and bus 𝐵 has consecutive trips (2, 4, 6) in its block, then
the algorithm might check swapping on edges (3, 5) and (2, 4), leading to block(1, 3, 4, 6) for bus 𝐴 and a block (2, 5) for bus 𝐵 - for this, it needs to be considered
if edges (3, 4) and (2, 5) are feasible.

The rescheduling always swaps the full right hand side of the respective bus
blocks (right side of the swap list area), which alters only the deadhead at the
swapping place and the final turnaround time.

For this, the function EvaluateSwapDiff is used, which shows how much
would the total time changed without having to recalculate both blocks.

For eliminating unfit solutions, first only random solutions are selected, then
the best remaining solutions are selected based on their fitness. The currently
optimal solution is always kept.

A function SelectRandomWeightedIdx, which is unused in the current im-
plementation, could be used for selecting random solutions as a roulette wheel
selection.

10.2.8 Schedule formatting on console
For printing on console, the schedules are rendered using prettytable and the
sources are in Schedule_Rendering.py.

The function FormatSchedule takes the schedule and adds pull-outs,pull-ins
and deadheads. The scheduled trips are passed as a jagged array (list), where each
subarray represents a block of a bus. It also requires using distance matrix and
list of stops, which are used for adding deadheads. Deadhead is not inserted if its
length is zero (consecutive ending and starting stop are the same). The parameter
addFinalDeadhead causes the function to add a deadhead from the last stop to
the first stop of the block. If a depot is included, its pull-out and pull-in times are
included as well.

It returns two lists: first are bus blocks with included deadheads, second are
total deadhead times per bus.

93

The function TableSchedules converts each schedule to actual table with
respective headers (times as integers are now converted to hh:mm string format).
The function PrintTabularSchedules then takes these tables and prints them
to console using pretty-printing.

10.2.9 Schedule format as JSON
The methods mentioned below are always working with Python dictionaries,
which are then converted to JSON using json library.

The schedule contains all bus blocks with also some metadata about how the
scheduling was created (arguments passed).

The methods of creating schedules are defined in Schedule_Rendering.py
as well. The function SchedulesToJsonDict converts the schedule to JSON
format. Arguments related to bus scheduling are at the top level (most importantly
themethod used, e.g. "method":"default"). The function currently also ignores
the field "cached", this is a taken dependency from the frontend, where the
schedule can be cached from already existing file if user requests it multiple times.

The bus blocks are saved under the key Bus blocks,containing bus number
and then trips.

The formatting of a trip object to dictionary is done
in the method ToDictForJson for a Trip object. It contains of these fields (if
not specified, format is mandatory string):

• Day - day of operation (format “YYYY-MM-DD“)

• Line - line number (integer)

• Trip - trip number (integer)

• Start stop - starting stop

• End stop - ending stop

• Start time - departure time from first stop

• End time - arrival time to last stop

• Stops - dictionary (string:string) of stops on the way with respective times
(optional)

The reverse parsing (from file to schedule) is done
in the function SchedulesFromJsonDict, which returns the blocks and schedule
arguments.

94

10.3 Map visualization
This module connects the TTP to OpenStreetMap related modules which allows
to see the rendition of trips on the map. In this section, the word “line“ is used in a
geometric sense (more precisely, as a line segment). Be sure to pay attention to the
coordinate naming. While alphabetically they are ordered as 𝑥, 𝑦, the coordinate𝑦 corresponds to latitude and 𝑥 to longitude.

10.3.1 Line plotting - utility functions
For correct line plotting, some simple utility functions like GetLineLength or
PerpendicularBisector are used, utilizing common formulas from analytic
geometry. If the parameter is a tuple, then the first element is always the x
coordinate and the second element is the y coordinate.

10.3.2 Route plotting overview
In a file OSM_Distances.py a function PlotSchedules is responsible for whole
generation and saving of whole schedules (all bus blocks at once). The parameter
trackComplexity shows if the stops for respective trips should be connected
with a direct (or curved) line, or if the plot should directly follow the road (more
granularity). The “following the road“ is based on OpenStreetMap data (accessed
by osmnx) library, where the granularity is obviously not perfect - generally the
accuracy of data depends on the accuracy of OSM . The whole usage of OSM
library is discussed in other section.

For visualization, all stops per each trip should be displayed on the map. A
function ExpandTrips takes one bus block (as list of dictionary, described in the
section of Bus scheduling) and all the stops on the way as to create list of separate
trips, so instead of e.g. 2 trips with 10 stops each, a bus now will have 20 trips
with 2 stops.

When the trips are expanded, each bus block is processed sequentially. Each
trip within the block has a pair of stops, creating a sequence of x and y coordinates.
These coordinates are taken from the dictionary stopLocations, which maps stop
names to coordinates as tuple.

If a departure stop from a trip does not match the arrival stop of the last
trip, a deadhead is created. This gets represented by changing the line style to
dashed. Note that the lines are not created yet, the function only creates four lists
- xs,ys,times,styles,tripNos.

If the track is supposed to be represented realistically (not only direct con-
nection of stops), a function InterpolateRoutes is called , which will add extra
points between the stops, while keeping the same style.

95

Once all the coordinate and time data are ready, the route is plotted. A figure
using module matplotlib is created, then filled using the function PlotRoutes,
which is described in the next section. and after rendering, the map is saved using
module mplleaflet, leading to a HTML file to be saved which allows to see the
plot (routes) on OSM background.

10.3.3 Route plotting algorithm
The main function for plotting routes is PlotRoutes. It uses pyplot module and
plots the route on axes. The function takes the following parameters:

1. figure,axes - axes to plot on (from pyplot)

2. xs,ys - coordinates of stops on route (as lists of floats)

3. times - times of arrival to stops (as list of minute integers)

4. styles - styles of lines between stops (as list of two values)

5. sameRoutes - how to plot identical routes so they can be visualized when
overlapping (string enum)

6. thicknessMin,thicknessMax - thickness of line based on speed between
two stops

It tries to check which routes are identical (very small difference between x and y
coordinates) and plot them in a way that they can be distinguished. The exact
explanation for used algorithms is written as comments in the code, no external
functions for determining the additional location of points is used. After the
points are adjusted, the method plot_axes is called until all routes get processed.
(It does not return anything, only modifies the plot.)

A module cm is used for color distinction of trips based on times they com-
mence.

10.3.4 Leaflet map rendering
The package mplleaflet is used for converting the pyplot plots for rendering on
a OSM background. As a newer version of matplotlib is used, the mplleaflet
package was not directly compatible with it. This required a small change of
the code in the mplleaflet package itself, as can be seen on a [GitHub issue].
Therefore, the TTP carries this modified version of the package in the folder
mpllf_remake.

96

https://github.com/jwass/mplleaflet/issues/80

10.3.5 Using OSM navigation
The file OSM_Distances.py heavily uses modules osmnx and networkx to re-
trieve data from OpenStreetMap and then apply functions allowing us to cal-
culate correct driving times or to correctly render navigation data for visualiz-
ing routes. First of all, out module (OSM_Distancescontains many utility func-
tions used to retrieve correct coordinates from bounding box. The function
ChooseDownloadArea takes a list of points and then returns the 4 bounding coor-
dinates based on the points (northernmost,southernmost, etc.). These values then
can be passed to function ExpandBoundingBox, which can expand this area by
given amount of kilometers, and finally to DownloadOSMDataBox, which returns
the OSM data for the given area.

The OSM data are returned as a graph, allowing to directly apply networkx
library functions. In order to find routes between stops, sometimes not the exact
point corresponding to a stop could be found - we must find a point on a road.
For this, the graph is projected and corresponding point on a road is found by
naive algorithm.

10.3.6 Finding stops on map
For correct visualization, it is also needed to find the stops on the map.This
feature is not integrated into the app, but used as independent script. as they are
supplied by the config file (which was created with help of this module). Although
these data are directly supplied by configuration file, it was used for quick initial
searching.

This script is used for finding the coordinates of stops on the map. It uses
the Overpass API to query the OpenStreetMap database. The query is mostly
fixed with user providing the queried areas and their administrative values. All
stops within the specified areas are then queried and mapped on user-provided
stops with approximate names. If these names do not fit, a city centre is chosen
instead.

In the file Stops.py, the class StopWithLocation
is used to represent a stop as a union of its name and location. The fields
Obec,CastObce,BlizsiMisto,BlizkaObec (to correspond with Czech names)
are used to represent the stop name, stringified as format “1,2,3[4]“ (trailing com-
mas removed). The method parseName is used to create the 4 parts from the
stringified name, whereas the method getName is used to create the stringified
name from the 4 parts. There can be multiple formats based on the parameter
blizkaObecMode (see comments).

A function SanitizeStopName is used to standardize the stop name, by
removing spaces and treating extra commas as separators. This functionality

97

should not be needed if the stops are correctly named
or fixed from the external script fix_stop_names.py.

To save stop locations from OSM persistently,
a function GenerateStopLocationFile is used. The parameter jsonFiles is a
list of files of the json dumps, and the output (into outPath) is written as CSV
data. The function can have 4 modes, each mode defines what happens in the old
stops for the output file. In all cases, the new and (potentially) old data are sorted.

10.4 Stop searching by OSM query

A file StopsSearcher.py contains functions for searching stops directly on a
map.

The function FindStopsInArea calls a Overpass query to find all bus stops
in given area name with administrative level derived from supplied area type.
The argument areaType is based on Czech area classification to derive area type.
The queried data are represented as nodes (from OSM) and then converted to
dictionary with these keys:

• id - identifier of the stop (integer)

• lat - latitude (float)

• lon - longitude (float)

• tags - tags of the stop (dictionary, including name - see documentation for
OSM)

If they are to be output to file, they are naturally saved as JSON.
The function FindRespectiveStopsInfo is its wrapper for assigning stop

data to stops by their names. Both stop names and area names are list of strings.
Running an overpass query is done by copying area names (no sanitization for
SQL injection is done, responsibility of the user).

While it might happen that sometimes stop names are not accurate, the library
difflib is used for finding the closest stop names as they are in the OSM. As
a fallback mechanism, the location of the municipality centre is used. Totally, 2
queries are therefore ran.

The output is then a dictionary mapping a stop name to its relevant OSM
information as described in 10.4.

98

10.5 User interface
The user interface is written in HTML and uses Flask framework for routing and
rendering. It provides access to the other submodule functions and allows to see
the results of the calculations.

A default routing use case is as such:

1. A selected page is requested - GET request

2. User submits a form from given page - POST request, redirecting to an
‘api/‘ endpoint

3. The ‘api/‘ endpoint calls the appropriate function and redirects to the GET
request of a new page.

Some alternative data are kept in session variable, if they were unwieldy to pass
as GET parameters.

10.5.1 General structure
The entry point of the interface (and basically the whole TTP) is at the
Flask_Main.py file (see 10.5.3). This file includes all other submodules us-
ing Flask blueprint system.

Each other file (starting with Flask_) then registers its blueprint with the
suffix _Api. The blueprint is then used to define the routing of the submodule.
The methods within a submodule are first ordered as routing with GET requests,
then POST requests, then other helper functions alphabetically.

For displaying HTML content, Jinja templates are used. They are stored
in the folder templates and are rendered by the Flask engine (calling function
render_template). That method takes the name of the template file and optional
variables to be passed to the template, and returns string. Returning string from
the decorated function then automatically returns a HTML response to the user’s
page.

The pages (as result of rendering the templates) are in standard HTML5 (with
CSS - mostly inline - and Javascript where appropriate).

The extensions datatables and fontello are saved locally in the static
folder.

Error handling within the application is mostly delegated to helper functions,
which return True/False as their first argument, and then the response/error as
the second argument.

In case of failure, the TTP usually redirects to the relevant module (directly
reachable from main menu) with error messages included in a template (see file
inline_errors.html).

99

Functions which require some arguments usually do not have separate func-
tion for argument validation, everything is mostly done at a beginning of respec-
tive function.

The root variable serves within the application as global variable for the root
directory of the application.

When referring to a specific location, we will use the format /module/page
as in the code, the full location would be e.g. 127.0.0.1:5050/module/page

10.5.2 Template format
All templates are saved in the templates folder. Other included files are saved
in the static folder.

Some templates are included in multiple other templates; the typical beginning
of templates served to the user looks like this:

{%include 'header.html'%} //HTML header with js/css imports
<body>
{% set title='Title' %} //Page title to highlight
{% include 'navigation.html' %} //Navigation bar
{% include 'inline_errors.html' %} //Error message

10.5.3 Main Flask file
Here gets initialized configuration of the application and session. A method
app.register_blueprint is used for including other submodules related to the
interface. The only functions defined in the main file are for the index page and for
calculating total request time (which is printed only on console for measurements).

10.5.4 JDF processing
The original JDF processor assumed the JDF data to be kept in local memory.
Since this is harder to do for browser based applications, the JDF processor object
is recreated every time a request for processing JDF batch data is sent.

10.5.5 Trip, departure, arrival querying
In the Query_Api submodule, the default page (at ‘/query/main‘) shows the
form the user can use for quering trips, departures, or arrivals during speicfic date.
The form is then submitted to the ‘/query/result‘ endpoint as a GET request.
A JDF folder specified by the argument is unpacked, then other arguments are
validated and then passed to the functions queryTrips,queryArrivals and

100

queryDepartures. Since for more effectivity the user can query 3 categories
(trips, departures, arrivals) at once, in case of a failure an error only for relevant
category is added, while other categories continue being processed.

As the JDF processing API returns the trips (or departures, arrivals - we will
not repeat this later) in non-table format, the function unpackTrips converts the
data, so they can be passed to the template query_result.html as simple list of
lists.

For example, in case of list querying, the initial format could be expressed in
type hint syntax as List[Tuple[Day,List[Trip]]] (Day is a string, Trip is a
dictionary), and the converted format would then add the Day field to each of the
trip, so the resulting format is then List[List[Trip]].

Currently, the fields of the Trip object (dictionary) are as following:

1. Day - (queried) day of operation (format “YYYY-MM-DD“)

2. LineNo - line number (integer)

3. TripNo - trip number (integer)

4. StopFrom - starting stop

5. StopTo - ending stop

6. TimeFrom - departure time from first stop (format “hh:mm“)

7. TimeTo - arrival time to last stop (format “hh:mm“)

When extending these, they should also be extended in the related template.
A local constant maxAmount is used to limit the amount of returned results

within each category (the limit is checked after all trips for particular day are
queried, so more than this limit can actually be returned).

10.5.6 JDF upload and merge
The blueprint Upload_Api is used for serving request related to adding more JDF
batches to the server by user. TThe route /upload/main simply shows the form
uploading_form.html for uploading the JDF folders. The option for uploading
more folders at once is handled by JavaScript.

The form is then submitted as POST request to route /upload/main/submit.
The function submitFolder then takes all these folders as list of files and tries
to reassign them the tree structure (we can take an assumption when the user
uploadsmultiple folders, theywill have different name, so the files will have names
such as F1/Zastavky.txt,F2/Zastavky.txt, etc.), if a user uploads multiple
folders under same name, the earlier files will be overwritten.

101

Each folder is then processed individually under the assumption it contains
a JDF batch and then also merged, as described in the documentation for JDF
processing.

The whole result on which folders (batches) got succesfully uploaded, which
were corrupted, overwritten, etc. is saved as session variable (under the key
request_dict):

1. doCopy - if the folders should be uploaded, not only merged (bool string)

2. goodNew - list of folders which were succesfully uploaded and were not yet
on the server

3. badNew - list of corrupted folders

4. goodOverwrite - list of uploaded folders which replaced the existing ones

5. badOverwrite - list of corrupted folders, old folders under this name still
exist on server

6. doMerge - if the folders should be merged (bool string)

7. mergeName - name of the JDF batch to be created by merging

8. mergeOverwrite - if the merge did overwrite existing JDF batch (bool
string)

9. mergeOk - if the merge was successful (bool string)

There is no checking for the event if the user wants to do a merge of only one
batch - this should be prevented on client side, and is well-defined on server side.

After the upload, the user is redirected to the site /upload_result, where the
respective information about uploaded folders is extracted from the session vari-
able and displayed in the template upload_result.html. A class UploadReport
is used to bundle the information about the upload (only simply with information
text, names of batches, and the color based on the success).

The colors are standard CSS colors, so they can be used directly in the template
upload_result.html.

10.5.7 Management of stops
The blueprint Stops_Api is used for adding location of the stops on the server.
The file location of stops themselves is described in the variable stopsFile.

The file is a CSV representation of the stop objects described in the section
10.3.6.

102

The display of stops is available on the route /stops, which uses the template
stops_list.html. This template includes a Leaflet library (as JavaScript) for
showing a map background.

The rendered page also contains two forms (POST method) for editing stops:
Importing new stops directly fromOSM is available on the route /stops/import,

which uses the function GenerateStopLocationFile as described in the sub-
section 10.3.6.

Clicking on the map to create new stops, or checking the mark for deleting
stops is tied to a form which is handled on a route /stops/edit. Regarding the
deletion of stops, a client sends list of numbers to the server. They represent the
index of stop in the displayed list.

Both handling routines then update the stop list file and redirect again to
/stops.

10.5.8 Bus scheduling

In the blueprint Scheduling_Api,
the route /schedules/form is used for displaying the form for scheduling. The
rendered form is
in the template schedule_form.html, sending a POST request
on /schedules/prepare.

A submission of the form itself does not create schedules yet, only causes the
TTP to calculate trips relevant for given scheduling range and a distance matrix
which are then cached as files - the exact names are based on the JDF name and
date, as seen in the documentation. Based on the distance matrix and requested
trips, an estimate from Bus_Scheduling module is made. It has been reduced
to simply showing amount of vertices (trips) and edges (feasibility relations) in
the graph. The location of these files, as well as other scheduling parameters are
stored in session variable.

This causes the redirection to location /schedules/preview where the data
are again taken from the session variable, so upon user’s submission, they are
again sent as GET parameters
on the route /schedules/submit ,since the data are now easily put into a query
string.

The whole validation is done in the function handleScheduling, and after
the scheduling is done, the user is redirected
to the route /schedules/result, where the results are displayed in the template
schedules/result.html. Similar to the trip querying, the scheduling API re-
turns schedules as list of lists, so the function unpackSchedules is used to flatten
them.

103

The schedules are also cached (as JSON) in a file, whose name is created in
the function createScheduleFileName.

The datatables used for schedules allow expansion. It should be noted that the
datatables library does not allow a convenient way to load data into it without
using AJAX, so as a work-around, the trip data are saved in the JavaScript variable
tripsData, and then loaded into a table using format_trips function when
expanding the row.

This causes lots of ballast in the HTML file, but all together, it is not larger
than one of the JSON files with trips for one day, as the maximum schedule date
range is 24 hours.

10.5.9 Timetable export
The blueprint Timetable_Api allows the user to download timetables from up-
loaded JDF batches. The route /timetables/export/main displays the form for
selecting JDF batch and download options as described in Timetable calculations
module. The XLSX timetables are always created from JDF data, they are never
cached, and therefore immediately sent to the client.

10.5.10 Map visualization
The blueprint Visualization_Api is used for visualizing bus schedules on the
map, as described in chapter 6. The route /visualize displays the form for
selecting schedule file, using the template visualize/form.html. The form is
submitted to the route /visualize/submit as POST request (as file upload is
needed), which then redirects the user to route /visualize/result. The plots
are temporarily saved in directory whose name is based on the schedule file, but
at the end of processing, they are all zipped and the temporary folder is removed.

For possible future multiprocessing, the folder created for the map visualiza-
tion has appended random id at its name, as the processing of files might take too
long time, as to prevent overwriting (unlike e.g. schedules, where there is only
one file created per request).

The plots are displayed in two variants - one is HTML (with Leaflet back-
ground), the other is PDF as default Python plot with labels.

10.5.11 File downloading
The blueprint Download_Api is used for downloading files from the server. Here
get redirected all requests for downloading files from appropriate modules (the
path always starts with /download):

104

1. /download/schedules - for downloading optimized bus schedules (mod-
uleScheduling_Api).

2. /download/distance_matrix - for downloading distance matrix between
terminals in given JDF batch (module Scheduling_Api).

3. /download/visualization - for downloading schedules visualized on
map (module Visualization_Api).

The functions usemethod resolve for getting the actual location of a file (absolute
path), as there were some issues with paths relative to the root.

105

106

Chapter 11

Conclusion

11.1 Result
Wehavemanaged to write a software that should be able to help with the workflow
of public transport analysis:

• Loading JDF data or importing them from XLSX.

• Exporting the data to human-readable timetable format.

• Showing the departures and arrivals from given stops.

• An approximate algorithm for finding bus assignment to respective trips.

• Displaying the data about bus scheduling.

• Visualising the routes on a map.

We have shown that the software works correctly on reasonably large datasets
with replicable results.

11.2 Difficulties
We can also list the main difficulties that we have encountered:

• The capabilities of converting the XLSX data to the JDF data are gener-
ally limited, due to the lack of standardization and therefore the need to
implement our own validity checks.

• Another issue with JDF format is that stop locations are not supported, so
they need to be supplied externally.

107

• The algorithm for handling OSM data requires a lot of memory and time,
making the TTP struggle with larger regional transports.

• Theweb interface implementationmightmake this software hostable online,
but it would need to have many safeguards against denial of service caused
by the slow “business logic“.

11.3 Future work
The future work could be focused on the following areas:

• More comfortable direct data exchange between the user and the server
(e.g. scheduling for arbitrary trips via user interface)

• More advanced bus scheduling algorithm

• Faster and richer map visualisation

• More advanced timetable import/export without the loss of comfortability

• Driving time warnings for unrealistic timetables (based on navigation data)

• Using GTFS format for timetable data

11.4 Final words
The TTP aims to cover multiple areas in the field of public transport analysis. It
probably cannot measure up to the commercial software in terms of performance
and comfortability, but is able to handle the default task and offers many features
available for further development.

108

Bibliography

[1] Czech Republic. Zákon č. 194/2010 Sb. o veřejných službách v dopravě. url:
https://www.zakonyprolidi.cz/cs/2010-194.

[2] Barbora Berečková. Alternativní přístupy k výběrovým řízením na zajištění
dopravní obslužnosti. Jan. 2019. url: https://dspace.cvut.cz/handle/
10467/80659.

[3] Avishai Ceder and Nigel H.M. Wilson. “Bus network design”. In: Trans-
portation Research Part B: Methodological 20.4 (1986), pp. 331–344. issn:
0191-2615. doi: https://doi.org/10.1016/0191-2615(86)90047-0.
url: https://www.sciencedirect.com/science/article/pii/
0191261586900470.

[4] Philine Schiewe. Integrated Optimization in Public Transport Planning. Jan.
2020. isbn: 978-3-030-46269-7. doi: 10.1007/978-3-030-46270-3.

[5] A A Bertossi, P Carraresi, and G Gallo. “On somematching problems arising
in vehicle scheduling models”. In: Networks 17.3 (1987-01). issn: 0028-3045.
doi: https://doi.org/10.1002/net.3230170303.

[6] Vitali Gintner, Natalia Kliewer, and Leena Suhl. “Solving large multiple-
depot multiple-vehicle-type bus scheduling problems in practice”. In: OR
Spectrum 27 (2005), pp. 507–523. doi: https://doi.org/10.1007/
s00291-005-0207-9.

[7] Czech Republic. Zákon č. 111/1994 Sb. Zákon o silniční dopravě. url: https:
//www.zakonyprolidi.cz/cs/1994-111.

[8] MobilityData. General Transit Feed Specification. 2024. url: https://gtfs.
org/ (visited on 05/04/2024).

[9] Python Software Foundation. Python. Version 3.10.13. url: https://www.
python.org/ (visited on 05/04/2024).

[10] Armin Ronacher. Flask. Version 2.3.2. url: https://flask.palletsprojects.
com/ (visited on 05/04/2024).

109

https://www.zakonyprolidi.cz/cs/2010-194
https://dspace.cvut.cz/handle/10467/80659
https://dspace.cvut.cz/handle/10467/80659
https://doi.org/https://doi.org/10.1016/0191-2615(86)90047-0
https://www.sciencedirect.com/science/article/pii/0191261586900470
https://www.sciencedirect.com/science/article/pii/0191261586900470
https://doi.org/10.1007/978-3-030-46270-3
https://doi.org/https://doi.org/10.1002/net.3230170303
https://doi.org/https://doi.org/10.1007/s00291-005-0207-9
https://doi.org/https://doi.org/10.1007/s00291-005-0207-9
https://www.zakonyprolidi.cz/cs/1994-111
https://www.zakonyprolidi.cz/cs/1994-111
https://gtfs.org/
https://gtfs.org/
https://www.python.org/
https://www.python.org/
https://flask.palletsprojects.com/
https://flask.palletsprojects.com/

[11] Czech Ministry of Transport. Metodický pokyn k organizaci CIS JŘ. 2014.
url: https://www.mdcr.cz/getattachment/Dokumenty/Verejna-
doprava/Jizdni-rady,-kalendare-pro-jizdni-rady,-metodi-
(1)/Jizdni-rady-verejne-dopravy/metodicky-pokyn-cis-5.pdf.
aspx.

[12] CHAPS spol. s.r.o. Portál jízdních řádů. 2023. url: ftp://ftp.cisjr.cz/
JDF.

[13] Jan Masopust. Automatické zpracování českých jízdních řádů autobusů.
Tech. rep. 2020. url: https://www.researchgate.net/publication/
348752371 _ Automaticke _ zpracovani _ ceskych _ jizdnich _ radu _
autobusu.

[14] Microsoft Corporation. MS-XLSX: Excel (.xlsx) Extensions to the Office Open
XML SpreadsheetML File Format. 2024. url: https://learn.microsoft.
com/en-us/openspecs/office_standards/ms-xlsx/2c5dee00-
eff2-4b22-92b6-0738acd4475e (visited on 05/04/2024).

[15] Radek Papež. Aplikace strojového čtení souborů JDF. 2023. url: https :
//portal.radekpapez.cz.

[16] Seznam.cz a.s. Mapy.cz. 2023. url: https://mapy.cz/.
[17] Avishai Ceder. Public transit planning and operation: Modeling, practice and

behavior. CRC press, 2016. isbn: 978-1-138-31307-6.

[18] Stefan Bunte and Natalia Kliewer. “An overview on vehicle scheduling
models”. In: Public Transport 1.4 (Nov. 2009), pp. 299–317. doi: 10.1007/
s12469-010-0018-5. url: https://doi.org/10.1007/s12469-010-
0018-5.

[19] John E. Hopcroft and Richard M. Karp. “An 𝑛5/2 Algorithm for Maximum
Matchings in Bipartite Graphs”. In: SIAM Journal on Computing 2.4 (1973),
pp. 225–231. doi: 10.1137/0202019. url: https://doi.org/10.1137/
0202019.

[20] Marek Peřina. Problematika bezpečnostních přestávek řidičů při optimalizaci
oběhů vozidel. June 2019. url: https://dspace.cvut.cz/handle/
10467/83242.

[21] Czech Republic. Nařízení vlády č. 589/2006 Sb. url: https : / / www .
zakonyprolidi.cz/cs/2006-589.

110

https://www.mdcr.cz/getattachment/Dokumenty/Verejna-doprava/Jizdni-rady,-kalendare-pro-jizdni-rady,-metodi-(1)/Jizdni-rady-verejne-dopravy/metodicky-pokyn-cis-5.pdf.aspx
https://www.mdcr.cz/getattachment/Dokumenty/Verejna-doprava/Jizdni-rady,-kalendare-pro-jizdni-rady,-metodi-(1)/Jizdni-rady-verejne-dopravy/metodicky-pokyn-cis-5.pdf.aspx
https://www.mdcr.cz/getattachment/Dokumenty/Verejna-doprava/Jizdni-rady,-kalendare-pro-jizdni-rady,-metodi-(1)/Jizdni-rady-verejne-dopravy/metodicky-pokyn-cis-5.pdf.aspx
https://www.mdcr.cz/getattachment/Dokumenty/Verejna-doprava/Jizdni-rady,-kalendare-pro-jizdni-rady,-metodi-(1)/Jizdni-rady-verejne-dopravy/metodicky-pokyn-cis-5.pdf.aspx
ftp://ftp.cisjr.cz/JDF
ftp://ftp.cisjr.cz/JDF
https://www.researchgate.net/publication/348752371_Automaticke_zpracovani_ceskych_jizdnich_radu_autobusu
https://www.researchgate.net/publication/348752371_Automaticke_zpracovani_ceskych_jizdnich_radu_autobusu
https://www.researchgate.net/publication/348752371_Automaticke_zpracovani_ceskych_jizdnich_radu_autobusu
https://learn.microsoft.com/en-us/openspecs/office_standards/ms-xlsx/2c5dee00-eff2-4b22-92b6-0738acd4475e
https://learn.microsoft.com/en-us/openspecs/office_standards/ms-xlsx/2c5dee00-eff2-4b22-92b6-0738acd4475e
https://learn.microsoft.com/en-us/openspecs/office_standards/ms-xlsx/2c5dee00-eff2-4b22-92b6-0738acd4475e
https://portal.radekpapez.cz
https://portal.radekpapez.cz
https://mapy.cz/
https://doi.org/10.1007/s12469-010-0018-5
https://doi.org/10.1007/s12469-010-0018-5
https://doi.org/10.1007/s12469-010-0018-5
https://doi.org/10.1007/s12469-010-0018-5
https://doi.org/10.1137/0202019
https://doi.org/10.1137/0202019
https://doi.org/10.1137/0202019
https://dspace.cvut.cz/handle/10467/83242
https://dspace.cvut.cz/handle/10467/83242
https://www.zakonyprolidi.cz/cs/2006-589
https://www.zakonyprolidi.cz/cs/2006-589

Appendix A

External scripts

This is just a brief documentation of using helper scripts to handle JDF data and
stop locations. The scripts are written in Python and are attached to the package
with TTP source code.

A.1 JDF merging
The script merge_jdf.py is used to merge multiple JDF batches into one.

The functionality is equivalent to the merging option in 8.3.
The script takes the following arguments:

1. variable number of unnamed arguments — paths to the folders with JDF
batches to merge.

2. last argument — path to the folder where the merged JDF batch will be
saved.

An example of usage:
$ venv/Scripts/python.exe merge_jdf.py \

../Datasets/Havirov_Split/havirov_*

../Datasets/Havirov_MHD

A.2 Stop name standardization
The script fix_stop_names.py allows to standardize stop names, especially for
a case of urban transport.

As in the case of the JDF merging script, (A.1), the initial arguments are lists
of JDF folders, while the script expects only the Zastavky.txt file in each of them
(this option was chosen for more comfortable processing).

111

The script directly overwrites the Zastavky.txt files in the input folders.
The default behavior only resolves commas inside the quoted text fields (if

the field for city name contains a comma, the rest of the field after the comma is
resolved as a city part).

Other arguments (added after the folder names) are:

• -c or --city — adds a city name to the stop name, if it is not already there.
Useful for urban transport which leaves the city name out of the stop name.

• -e or --exclude — used with the previous option, to not add city name
to stops starting with this city name. Useful when the urban transport
includes other cities than its central one.

• -d or --district — adds a name of nearby city (=district - fourth part of
the stop name) to the stop name, if it is empty.

• -p or --place — for stops with 2-field names, moves the second field (city
part) to the third field (location) Make sure to fix false hits after using this
option - for stops which are supposed to contain city name and city part,
but not place.

An example of usage:

$ venv/Scripts/python.exe fix_stop_names.py \
../Datasets/Havirov_MHD \
-c "řHavíov" -d "KA" \
-e "Šenov" "Horní Suchá"

A.3 Stop location finding and map visualization
The file Map_Visualization/OSM_Distances.py can be ran directly to find the
location of stops using Overpass API, and to visualize the schedule on a map.

In case of import errors, a path might be needed to exported properly, such as
(on Windows bash shell):

$ PYTHONPATH=. venv/Scripts/python.exe \
Map_Visualization/OSM_Distances.py <args>

As a pre-requisite, a bus schedule file in JSON format is needed. It can be
obtained from running the scheduling module in TTP (see section 8.5) using the
timetable data in order to calculate the schedule.

The first two arguments are positional:

1. path to the JSON file with the bus schedule

112

2. path to the file with stop location data, can already exist

Other mandatory arguments:

• -r or --regions — select named areas (regions) where to find the stops.

• -a or --admin — administrative level1 of the searched region. In case of the
Czech Republic, a suitable area type is “Kraj“, which has an administrative
level of 6 (this is also a default).

Optional arguments:

• -l or --load — load the stop location data from the file instead of querying
the API, if such stop data already exists.

• -s or --stops-only — do not visualize the schedule, only find the stop
locations.

• -m or --map-dir — directory to save the map files (if -s is not used).

The output file with location data can be directly imported in the TTP (see
section 8.6).

An example of usage:

$ PYTHONPATH=. venv/Scripts/python.exe \
Map_Visualization/OSM_Distances.py \
"C:\Downloads\Havirov_timetable_default.json" \
"StopsInfoArriva.json" \
-s -d "Moravskoslezský kraj" -a 6

1https://wiki.openstreetmap.org/wiki/Key:admin_level

113

114

	Introduction
	Motivation
	Bus transport
	Trip planning
	Bus scheduling

	Bus timetable software
	Data formats for timetables
	Software using public data
	Chapters overview

	Used data sources
	Programming tools used in TTP
	Definitions of timetable terms
	Timetables in JDF
	Description of the JDF format
	Stop name standardization

	Human-readable timetable format
	Export of timetable as XLSX
	Upload of timetable in XLSX format

	OpenStreetMap
	Merging of JDF timetables
	Stop editing
	Scheduling calculation

	Alternative solutions and software
	Timetable formats for public data exchange
	Timetable editors for organizing public transport
	Public transport trip planning software
	Optimization software

	Functional and non-functional requirements
	Functional Requirements
	Parsing of timetable in JDF
	Handling of road network data and stops in OpenStreetMap
	Trip and stop editing
	Deadhead distance calculation between stops
	Trip filtering
	Scheduling calculation
	Visualizing trips on map

	Non-Functional Requirements
	Page architecture
	Performance
	Reliability
	Internet connection requirement
	Scalability
	Security
	Usability
	Maintainability
	Interoperability

	Scheduling calculation
	Statement of the problem
	Minimizing amount of buses
	Counting with deadheads
	Adding pull-out and pull-in
	Multiple depots
	No depots, circular scheduling
	Local search for circular scheduling
	Circular scheduling parameters

	Summary
	Expected scheduling comparison results
	Time complexity

	Map visualization
	Introduction
	Our goal of visualization
	Data preparation
	Data rendering
	Overlapping routes
	Navigation data

	Performance testing results
	Introduction
	Testing environment
	Trip querying
	Distance calculation
	Single depot scheduling
	Scheduling efficiency

	Circular scheduling with local search
	Visualization
	Summary

	User documentation
	Main page
	General notes
	Upload of timetable in JDF
	Trip querying
	Errors

	Scheduling calculation
	Date and time
	Deadhead matrix
	Scheduling goal
	Invalidate cache
	Precalculation
	Schedule results

	Stop editing
	Stop map
	Adding and removing stops
	Importing stops

	Export of timetable as XLSX
	Export settings
	Schema of the exported file

	Upload of timetable in XLSX format
	Visualizing trips and schedules on map
	Output files
	Data interpretation
	Overlapping lines

	File structure of the saved data

	Installation and launching
	Prerequisites
	Source codes and installation
	Data retrieval
	Pre-loaded data
	Remote server

	Programmer documentation
	Timetable processing
	JDF classes
	JDF data initialization
	JDF merging
	JDF serialization
	Timetable algorithms
	Excel timetable export

	Bus scheduling
	Data representation
	Precalculations
	Scheduling algorithm - entry point
	Scheduling algorithm - default
	Scheduling algorithm - single depot
	Scheduling algorithm - linear programming
	Scheduling algorithm - circular, approximate
	Schedule formatting on console
	Schedule format as JSON

	Map visualization
	Line plotting - utility functions
	Route plotting overview
	Route plotting algorithm
	Leaflet map rendering
	Using OSM navigation
	Finding stops on map

	Stop searching by OSM query
	User interface
	General structure
	Template format
	Main Flask file
	JDF processing
	Trip, departure, arrival querying
	JDF upload and merge
	Management of stops
	Bus scheduling
	Timetable export
	Map visualization
	File downloading

	Conclusion
	Result
	Difficulties
	Future work
	Final words

	Bibliography
	External scripts
	JDF merging
	Stop name standardization
	Stop location finding and map visualization

