
BACHELOR THESIS

Jakub Kubík

Loop Analysis for LLVM IR Translation
Validation Framework

Department of Distributed and Dependable Systems

Supervisor of the bachelor thesis: doc. RNDr. Jan Kofroň, Ph.D.

Study programme: Computer Science

Study branch: General Computer Science

Prague 2024

I declare that I carried out this bachelor thesis on my own, and only with the cited
sources, literature and other professional sources. I understand that my work
relates to the rights and obligations under the Act No. 121/2000 Sb., the Copyright
Act, as amended, in particular the fact that the Charles University has the right to
conclude a license agreement on the use of this work as a school work pursuant
to Section 60 subsection 1 of the Copyright Act.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

ii

I would like to thank my advisor doc. RNDr. Jan Kofroň, Ph.D. and my consultant
Mgr. Martin Blicha, Ph.D. for their valuable advice and patience. My thanks also
goes to Nuno P. Lopes, the creator of Alive2, for being extremely helpful in the
process and for creating such an amazing tool. Last but not least, I would like to
thank my parents for being my parents.

iii

iv

Title: Loop Analysis for LLVM IR Translation Validation Framework

Author: Jakub Kubík

Department: Department of Distributed and Dependable Systems

Supervisor: doc. RNDr. Jan Kofroň, Ph.D., Department of Distributed and De-
pendable Systems

Abstract: Bugs in compilers can have severe consequences. Apart from traditional
methods like testing, one of the ways of keeping compilers correct that gained
traction only in recent years is translation validation, a technique ensuring the
semantic correctness of optimizations in compilers. Alive2 is an open-source
translation validation framework for LLVM that is currently widely used by
LLVM developers. In order to make any static analysis tool usable, the frequency
of false alarms must be kept to a minimum. Alive2 was designed to have zero
false alarms and has been very successful in this endeavor except in the case of
certain loops. Our aim in this thesis is to analyze Alive2’s loop algorithms in an
attempt to find the cause of these false alarms. This was motivated by personal
communication with authors of Alive2 who presented the false alarm issue in
loops as one of the more challenging and pressing issues in Alive2. We were
successful in pinpointing the cause of false alarms and even providing a fix for
the issue. Our solution is now a part of the Alive2 framework. Furthermore, we
have identified other potential issues in Alive2 which we discuss in the thesis as
well.

Keywords: compilers LLVM translation validation formal verification

v

vi

Contents

Introduction 3

1 Theoretical background 7
1.1 Preliminaries . 7

1.1.1 Depth-first search . 7
1.2 Compiler theory . 9

1.2.1 Control-flow graphs and dominators 9
1.2.2 Loops . 11

1.3 Compiler correctness . 14
1.3.1 Translation validation 16
1.3.2 Summary . 16

2 Overview of LLVM and Alive2 17
2.1 LLVM . 17

2.1.1 LLVM IR . 17
2.1.2 LLVM Passes . 21

2.2 Alive2 . 21
2.2.1 Encoding LLVM IR semantics 22
2.2.2 Showcase . 23

3 Analysis of the problem 27
3.1 Loop algorithms in Alive2 . 27

3.1.1 Loop identification . 28
3.1.2 Loop unrolling . 32

3.2 Conclusions from the analysis 36

4 Problem in the unrolling algorithm 39
4.1 Root cause of false alarms with nested loops 39

4.1.1 Failing example in LLVM test suite 39
4.2 Summary . 47

1

5 Implementation and evaluation 49
5.1 Our solution and implementation in Alive2 49

5.1.1 Take exit blocks into account 49
5.2 Evaluation . 51

5.2.1 Environment . 52
5.2.2 Results . 52

5.3 Summary . 53

6 Further results and future work 55
6.1 Correct ordering of basic blocks 55

6.1.1 Reverse postorder and dominators 55
6.1.2 Reverse post-dominators 56

6.2 Failure to identify nested loops with shared headers 57
6.2.1 Possible fixes . 59

6.3 Future work . 60
6.3.1 SSA reconstruction . 60

6.4 Other minor fixes in Alive2 . 62

Conclusion 63

Bibliography 65

A Compiling Alive2 69
A.1 Building Alive2 . 69
A.2 Running translation validation 70

2

Introduction

Software engineers rely on the correctness of their compilers. In a typical sce-
nario, a compiler transforms a program many times over in order to make it as
efficient as possible. Hence, it is not obvious that the final program is equivalent
to the original one. In 2015, a bug in LLVM was exploited (for academic purposes)
to create a backdoor in Linux sudo [1]. A slightly amusing (but nonetheless
serious) example is a compiler miscompiling itself which resulted in miscompila-
tion of another program1. Many other such examples that motivate researchers
and compiler engineers to take compiler correctness seriously can be found in
literature [2] [3] [4].

With the advent of large language models (LLMs), verifying software is now
more crucial than ever [5]. Consider the classical prompt “make my program
faster”. We may get a program that is more efficient but how do we know it
is equivalent to the input program? This example aptly illustrates the task of
translation validation. Translation validation is a technique that tries to determine
whether a given input program is equivalent to the transformed program.

Alive2 [6] is a highly successful translation validation framework for LLVM
as witnessed by the number of bugs it has found in LLVM [7]. It has also been
selected for the Distinguished Paper Award at PLDI’212 and it is now even a part
of a recent guide for new contributors to LLVM [8].

One of the most important factors that makes a static analysis tool such as
Alive2 practically usable is the absence of false alarms which means avoiding
reporting an incorrect transformation when the transformation was actually
correct. Reporting false alarms is one of the factors preventing verification tools
from being widely adopted among developers [9]. Thus, Alive2 was designed
with this goal in mind from its inception. However, it was not always successful
in this endeavor in the presence of loops. Loops are notoriously difficult to deal
with in the area of software verification but loop optimizations are crucial for
modern compilers so it is necessary to handle them. The aim of this thesis is to
analyze Alive2’s loop algorithms and attempt to pinpoint and fix the cause of

1https://lists.llvm.org/pipermail/llvm-dev/2017-July/115497.html
2https://pldi21.sigplan.org/track/pldi-2021-papers

3

https://lists.llvm.org/pipermail/llvm-dev/2017-July/115497.html
https://pldi21.sigplan.org/track/pldi-2021-papers

these false alarms.

Our goals and thesis structure
Despite its aim to be free of false alarms, Alive2 reported them in the case of
certain nested loops. Finding the root cause of these alarms is a difficult task
as witnessed by the long-standing unsolved issues in Alive2 codebase related to
false alarms3,4. Our work was motivated by personal communication with Nuno
P. Lopes, the author of Alive2, who mentioned false alarms in loops as one of the
more pressing and difficult problems in Alive2 at the time. Tackling this problem
required deep understanding of Alive2’s loop algorithms and the difficulty was
exacerbated by the fact that false alarms manifested seemingly arbitrarily.

The aim of this thesis is to study loop analysis algorithms in Alive2, try to find
and possibly fix the cause of false alarms with nested loops present in Alive2. Not
only have we achieved these goals, but through our analysis we discovered that
the issue was present in an even broader class of programs, namely all programs
containing nested loops. Nevertheless, in most programs this issue lay dormant
which could have posed even greater problems in the future. Furthermore, we
provided a fix for this problem and our solution is now a part of the Alive2
framework. We have also encountered other issues in Alive2 which we briefly
discuss at the end and thus providing solid ground for future work in this area.

The thesis is divided into six parts:

• Chapter 1 provides the theoretical background necessary to understand the
problem.

• Chapter 2 gives an overview of LLVM and Alive2 and provides a detailed
description of how the concepts discussed in the previous chapter are
implemented in Alive2.

• Chapter 3 provides detailed analysis of loop algorithms in Alive2 and ex-
plains the core of the issue causing false alarms in Alive2.

• Chapter 4 describes why the issue described in Chapter 3 caused false
alarms and demonstrates the problem on a real example from the LLVM
test suite.

• Chapter 5 presents our solution to the problem and the implementation as
well as concrete results demonstrating how our fix helped eliminate false
alarms in LLVM.

3https://github.com/AliveToolkit/alive2/issues/748
4https://github.com/AliveToolkit/alive2/issues/762

4

https://github.com/AliveToolkit/alive2/issues/748
https://github.com/AliveToolkit/alive2/issues/762

• Chapter 6 describes further results we obtained from our work and and
mentions possible future work in this area.

5

6

Chapter 1

Theoretical background

In this chapter, we present the theoretical background necessary to understand
this thesis. Our topic is at the intersection of compilers and verification of software,
thus firstly we need some mathematical preliminaries and then we provide an
introduction to the area of compilers and compiler correctness.

1.1 Preliminaries
We assume the reader is familiar with set notation, basic set operations, functions
and relations. We will denote the set {1, … , 𝑛} as [𝑛]. (𝑋𝑘) denotes the set of
all 𝑘-element subsets of 𝑋. We assume all our sets are finite unless otherwise
specified.

One of themost important structures in our work is that of a graph. The area of
graph theory is one of the most established parts of mathematics within computer
science. We expect the reader to be familiar with the foundations of graph theory,
so we will just quickly go through the definitions and our assumptions. A directed
graph is a pair 𝐺 = (𝑁 , 𝐸), where 𝑁 is a set of nodes1 and 𝐸 ⊆ 𝑁 × 𝑁 is the set of
edges. For ease of notation, we denote the directed edge (𝑢, 𝑣) simply as 𝑢𝑣. An
undirected graph is an analogical concept, except its edges are members of the set
(𝑁2). Our graphs will be strictly directed unless stated otherwise.

1.1.1 Depth-first search
Depth-first search (DFS) is one of the most basic graph traversal algorithms. The
basic idea of DFS is that we visit a node’s neighbor, recursively perform DFS on
this neighbor and then do the same for other neighbors, starting from a given

1In most parts of graph theory, these are referred to as vertices but in compiler theory it is
more common to call them nodes

7

root node. The edges that DFS uses to visit yet unvisited nodes are called tree
edges because they form a spanning tree of graph which is called the DFS tree.
The root of the DFS tree is the starting node of DFS. We say that a node 𝑢 is an
ancestor of a node 𝑣 if 𝑢 is on some path from the root to 𝑣. An edge 𝑢𝑣 is called a
backedge if 𝑣 is an ancestor of 𝑢 in the DFS tree.

Preorder numbering

Preorder traversal of a tree is a type of tree traversal where we visit the root node
first and then recursively traverse all its subtrees from the left.

Definition 1 (Preorder numbering). Preorder numbering of a graph is the num-
bering of its nodes by preorder traversal of its DFS tree.

We can obtain a preorder numbering directly from the definition, that is by a
simple modification of DFS [10]:

Algorithm 1 Preorder numbering of a directed graph

1: function PreOrder(𝐺: a directed graph)
2: currentPreorder ← 1
3: preorderNumber[∗] ← None
4: function Visit(𝑢: starting node)
5: preorderNumber[𝑢] ← currentPreorder
6: currentPreorder ← currentPreorder + 1
7: for each unvisited neighbor 𝑣 of 𝑢 do
8: Visit(𝑣)
9: end for

10: end function
11: Visit(𝑢0) .𝑢0 is a predetermined starting node
12: end function

Using preorder numbering, we can efficiently test ancestry in a DFS tree by
saving each node’s last descendant after the for-loop on line 7. Let 𝑚, 𝑛 be the
preorder numbers of nodes 𝑢, 𝑣 respectively and 𝑙 the preorder number of 𝑢’s last
descendant. Then 𝑢 is an ancestor of 𝑣 if and only if 𝑚 ≤ 𝑛 and 𝑛 ≤ 𝑙.

Topological sorting

A very important class of directed graphs is the class of directed acyclic graphs
(commonly abbreviated as DAGs) which are directed graphs without directed
cycles. Their main feature is that they admit a total ordering on nodes commonly
called topological ordering.

8

Definition 2 (Topological ordering [11]). If 𝐺 is a DAG, then topological ordering
of the nodes of 𝐺 is a total order ≺ such that 𝑢𝑣 ∈ 𝐸 ⟹ 𝑢 ≺ 𝑣.

We can obtain a topological order of our DAG by using a topological sorting
algorithm. One of the most standard ones is due to Tarjan [12]:

Algorithm 2 Tarjan’s topological sorting algorithm

1: function TopSort(𝐺: a DAG)
2: 𝑆 ← an empty stack
3: function Visit(𝑢: node to be processed)
4: if 𝑢 is unvisited then
5: Mark 𝑢 as visited
6: for every 𝑢𝑣 ∈ 𝐸 do
7: Visit(𝑣)
8: end for
9: Push 𝑢 onto 𝑆

10: end if
11: end function
12: for every node 𝑢 ∈ 𝑉 do
13: Visit(𝑢)
14: end for
15: return 𝑆
16: end function

Upon termination, 𝑆 will contain all the nodes of 𝐺 in topological order. We
can see that this is just a version of DFS alternate to the one we used in preorder
numbering.

1.2 Compiler theory

1.2.1 Control-flow graphs and dominators
One of the most fundamental concepts in analysis of programs is that of a control-
flow graph (commonly abbreviated as CFG). In order to define it, we must first
introduce the notion of a basic block:

Definition 3 (Basic block [13]). A sequence of instructions in a program 𝑃 forms a
basic block if the instruction in each position always executes before all those in later
positions and no other instruction executes between two instructions in the sequence.

In particular, we can see that in order to guarantee sequential execution,
there can be no control flow jumps in the middle of the basic block. Sometimes

9

𝐸𝑛𝑡𝑟𝑦

𝐴

𝐵

𝐶

𝐷

𝐸𝑥𝑖𝑡

Figure 1.1 An example CFG

basic blocks are assumed to be maximal in the sense that an instruction starts
a new basic block only if it is involved in branching of some kind, but this is
not necessarily always true in practice. This is best seen in the context of a
control-flow graph:

Definition 4 (Control-flow graph [13]). A control-flow graph for a program 𝑃 is
a directed graph 𝐺 = (𝑁 , 𝐸), where:

• 𝑁 is the set of all basic blocks of 𝑃, including two special basic blocks called
𝐸𝑛𝑡𝑟𝑦 and 𝐸𝑥𝑖𝑡,

• 𝐸 represents the control flow jumps between basic blocks.

In Figure 1.1 we can see an example of a control-flow graph.
It is useful to ask if some basic block is guaranteed to have been reached prior

to some other basic block in a given CFG. For example in our CFG, the basic block
𝐵 is definitely always reached before 𝐶 as there is no path from 𝐸𝑛𝑡𝑟𝑦 to 𝐶 which
does not include 𝐵. This gives rise to the concept of dominance:

Definition 5 (Dominance [13]). We say that basic block 𝐴 dominates basic block
𝐵 if 𝐴 is on every path from 𝐸𝑛𝑡𝑟𝑦 to 𝐵. We denote this as 𝐴 dom 𝐵. If 𝐴 ≠ 𝐵,
then we say that 𝐴 strictly dominates 𝐵, denoted as 𝐴 sdom 𝐵. 𝐴 is an immediate
dominator of 𝐵 if 𝐴 strictly dominates 𝐵 and does not strictly dominate any other
basic block that strictly dominates 𝐵.

10

Figure 1.2 An example CFG and its corresponding dominator tree [10]

We can see that 𝐸𝑛𝑡𝑟𝑦 always dominates all basic blocks and every basic block
dominates itself. It can also be easily seen that dominance is a partial order. Hence,
we can obtain a dominator tree by making the immediate dominator of every basic
block its parent. The dominator tree can be built in almost linear time [14].

1.2.2 Loops

A loop is a very common programming construct that allows the execution of
a sequence of code multiple times. Using the control-flow graph, we can define
a loop independent of the programming language, though looping structures in
a CFG can be defined with varying levels of generality. We will firstly define
something called a natural loop (Definition 7) and then in Definition 8, we provide
a fully fledged definition of a loop that we shall use throughout the text. Before
providing the definitions, we need to distinguish between two types of backedges:

Definition 6 (Reducible and irreducible backedge [10]). We call 𝑢𝑣 a reducible
backedge if 𝑣 dominates 𝑢. If 𝑢𝑣 is a backedge with respect to a given DFS tree and it
is not a reducible backedge, we call 𝑢𝑣 an irreducible backedge.

Notice that reducible backedges do not depend on the choice of the DFS tree
as opposed to irreducible backedges. We can now provide the definition of a
natural loop:

11

Figure 1.3 Illustration of loop terminology [17]

Definition 7 (Natural loop). Let 𝑣ℎ ∈ 𝐸 be a reducible backedge in a control-flow
graph 𝐺 = (𝑁 , 𝐸). A natural loop is a triple ℓ = (ℎ, 𝐵, 𝑋)2 such that 𝐵 = {𝑏 ∈ 𝑁 ∣
ℎ sdom 𝑏 ∧ 𝑣 is reachable from 𝑏 without passing through ℎ} and 𝑋 ⊆ 𝑁 ∖ 𝐵 is the
set of exit blocks where 𝑥 ∈ 𝑁 is an exit block if 𝑥 ∉ ℓ but there is a 𝑦 ∈ ℓ such that
𝑦𝑥 ∈ 𝐸. We call ℎ the header of ℓ and 𝐵 the body of ℓ. The node 𝑣 in backedge 𝑣ℎ is
called a latch.

This definition is adapted from Muchnick’s definition [15], but the formaliza-
tion is inspired by de Vos [16]. Nevertheless, while de Vos also defines a loop as a
triple ℓ = (ℎ, 𝐵, 𝑋), in his formalism 𝑋 is the set of exiting blocks. A basic block
𝑢 is an exiting block if there is an edge 𝑢𝑣 ∈ 𝐸 such that 𝑣 is an exit block. See
Figure 1.3 for an illustration of the loop terminology.

Natural loop is the looping structure that occurs most often in real-world
programs andmost of the loops in this text are natural loops. Nevertheless, we will
need a more general definition for some purposes. The most general definitions
of looping structure in a CFG rely on the concept of strong connectivity [15]:

2For ease of notation, we will also denote the set {ℎ} ∪ 𝐵 as ℓ.

12

Definition 8 (Loop [10]). A loop in a control-flow graph 𝐺 = (𝑁 , 𝐸) is a triple
ℓ = (ℎ, 𝐵, 𝑋) such that 𝐺[ℓ] is a maximal strongly connected subgraph3 of 𝐺 with at
least one edge. For a given DFS traversal of 𝐺, ℎ is the first node in ℓ encountered by
DFS and it is called the header of loop ℓ. 𝐵 is called the body of ℓ and 𝑋 is the set of
exit blocks as defined in Definition 7. If ℓ = (ℎ, 𝐵, 𝑋) is a loop in 𝐺, then any loop ℓ′
in 𝐺[𝐵] is also a loop in 𝐺 and we say ℓ′ is nested in ℓ. If a loop is not nested in any
other loop, we call it the outermost loop and if no loop is nested inside a loop, we
call it the innermost loop.

The definition is a little involved, but the general idea is quite simple. We
can see that a loop must also have a backedge (and thus also a latch), though
it need not be reducible as is the case with natural loops. Also note that the
definition is recursive; we repeatedly remove the header of a loop until we get to
the innermost loop.

In Figure 1.1, we have two loops:

• ℓ1 = (ℎ1, 𝐵1, 𝑋1), where ℎ1 = 𝐴, 𝐵1 = {𝐵, 𝐶, 𝐷}, 𝑋1 = {𝑒𝑥𝑖𝑡}, and 𝐷 is the
latch,

• ℓ2 = (ℎ2, 𝐵2, 𝑋2), where ℎ2 = 𝐵, 𝐵2 = {𝐶}, 𝑋2 = {𝐷}, and 𝐶 is the latch.

The main difference between our definitions of a loop and a natural loop lies
in the concept of reducibility:

Definition 9 (Reducibility [10]). A basic block in a loop ℓ is an entry of ℓ if it can
be reached from 𝐸𝑛𝑡𝑟𝑦 without passing through any other blocks in ℓ. We say that
a loop is reducible if it has a single point of entry, otherwise it is irreducible. A
control-flow graph is irreducible if it contains at least one irreducible loop, otherwise
it is reducible.

Reducibility is a very significant property in compiler optimization because
irreducible control-flow graphs are hard to analyze. Fortunately, irreducible
loops are rare as they require unstructured control flow, such as using goto-like
constructs.

The provided definition of a natural loop corresponds to a reducible loop as we
have just defined it. As we have mentioned already, most of the loops in our text
are natural loops and thus reducible, so the reader is free to refer to Definition 7, we
will explicitly mention whenever we are dealing with irreducibility. Nevertheless,
the algorithms we analyze in Chapter 3 work with this general definition and in
Chapter 6, we discuss some repercussions of irreducibility.

3Maximal in this sense means that no more nodes can be added such that the subgraph will
still remain strongly connected

13

𝐴

𝐵

𝐶

𝐷 leaf node

header node

Figure 1.4 The loop-nesting tree of Figure 1.1

If ℎ is the header of only one loop, we also denote this unique loop as ℓ(ℎ) for
ease of notation. In our example in Figure 1.1 with loops ℓ1 and ℓ2 we can see that
ℓ2 is immediately nested in ℓ1. The nesting relation can be represented by a forest
(a collection of trees):

Definition 10 (Loop-nesting forest). A loop-nesting forest for a CFG 𝐺 = (𝑁 , 𝐸) is
a forestℱ = (ℒ, 𝐹),ℒ ⊆ 𝑁, consisting of rooted trees such that for every outermost
loop ℓ = (ℎ, 𝐵, 𝑋) we have a tree 𝑇 which we define inductively:

• ℎ is the root of 𝑇

• If 𝑢 is a loop header, then 𝑣 is a direct descendant of a node 𝑢 if and only if:

– 𝑣 is a loop header and ℓ(𝑣) is nested in ℓ(𝑢) (we call those nodes header
nodes), or

– 𝑣 is contained in the body of ℓ(𝑢) and it is not inside any other loop (we
call those leaf nodes).

• If 𝑢 is not a loop header, it can only be a leaf node

The loop-nesting forest of our running example consists of only a single tree
as seen in Figure 1.4.

1.3 Compiler correctness
Optimizing compilers put a lot of work into transforming code such that the
resulting program runs as fast as possible. Nevertheless, these optimizations
must also preserve the semantics of the original program. Consider these two
programs [18]:

Original
int a = x << c;
int b = a / d;
return b;

Optimized
int t = d / (1 << c);
int b = x / t;
return b;

14

It may not be immediately clear why this would be an optimization but it can
be quickly shown why the two programs are algebraically equivalent:

𝑏Optimized = 𝑥/𝑡 = 𝑥/(𝑑/2𝑐) = 𝑥 ⋅ 2
𝑐

𝑑
= 𝑏Original

Nevertheless, in the optimized program there is an additional division by
1 << c, that is, by 2𝑐 mathematically speaking. Though in mathematics 2𝑐 can
never be equal to 0 for any value of 𝑐 ∈ ℤ, in C or C++ the integer value can
overflow and become 0 and thus the optimized program introduces undefined
behavior that was not present in the original program. C and C++ are standardized
languages and anything that is not defined by the standard is called undefined
behavior which means compilers are free to transform the code in any way
they desire4. This example is often mentioned because it illustrates how easy
it is to get an optimization wrong. While the transformation does indeed seem
semantics-preserving, it was actually a bug in LLVM5.

There are several approaches to catching bugs in software including testing
and static analysis. An alternative approach that has become practical only in
recent years is formal verification. Formal verification is a field of computer
science that studies techniques for proving programs formally correct. One of the
things that make verification of software challenging is loops (other things include
recursion, thread creation and dynamic memory allocation). It can be quite easily
proved by reduction to the halting problem that the problem of equivalence of
two functions is undecidable. There is a sub-area of formal verification that
focuses solely on compiler correctness which studies whether or not is the input
program equivalent to the program after compilation. Compiler verification is
especially hard because a compiler is typically a very complex piece of software
and verifying an industrial-strength compiler is currently all but impossible. One
approach is to build a compiler from scratch with some form of verification that is
integrated from the very beginning. The most famous (and quite recent) example
of this is CompCert [19], a formally verified optimizing C compiler. CompCert
utilizes machine-assisted mathematical proofs using Coq theorem prover [20],
it has been experimentally tested to demonstrate it can generate efficient and
compact code. The authors of CompCert, led by Xavier Leroy of Collège de France,
even received the ACM Software System Award for “development of the first
industrial-strength optimizing compiler that has been the subject of a complete,
mechanically checked proof of correctness”6. Nonetheless, even such a successful
project as CompCert has several deficiencies. First of all, it does not support the

4https://raphlinus.github.io/programming/rust/2018/08/17/
undefined-behavior.html

5https://bugs.llvm.org/show_bug.cgi?id=21245
6https://awards.acm.org/award-recipients/leroy_4273298

15

https://raphlinus.github.io/programming/rust/2018/08/17/undefined-behavior.html
https://raphlinus.github.io/programming/rust/2018/08/17/undefined-behavior.html
https://bugs.llvm.org/show_bug.cgi?id=21245
https://awards.acm.org/award-recipients/leroy_4273298

entire language specification of C, so for example writing system-level code may
not always be possible. Secondly, CompCert does not provide many optimizations,
definitely not enough to compete with LLVM or GCC. And third of all, the theory
behind CompCert is not complete yet so CompCert does not guarantee what
happens when the program runs out of memory, for example. These concerns
show that it is still uncertain how to create a bulletproof specification for a
formally correct compiler.

1.3.1 Translation validation
An alternative approach to constructing formally verified compilers is to relax
the requirements. It is not strictly necessary to have a fully-verified compiler, it is
sufficient to automatically verify every transformation the compiler makes when
provided with an input program. This gives rise to the concept of translation
validation, a technique fully developed by Pnueli et al. [21] but first proposed by
Samet [22]. Formal verification requires the program to be correct for all inputs,
translation validation on the other hand only requires the program to be correct
for the provided input. This immensely expands the area of applicability since
it is tenable to retrofit soundness even to industrial-strength compilers. We will
describe how this is achieved in Alive2 in the following chapter.

1.3.2 Summary
To summarize, we have two main approaches of formally ensuring compiler
correctness:

1. Formal verification

Formal verification strives to prove the compiler correct for all input pro-
grams, primarily with the use of theorem provers. A prominent example of
this is CompCert.

2. Translation validation

With translation validation, every transformation the compiler makes (trans-
lation) is followed by a verification step (validation) which says whether
or not this particular transformation on the given input was correct. As
opposed to formal verification, we do not require the compiler to be com-
pletely correct and so translation validation applies to a wider range of
practical problems.

16

Chapter 2

Overview of LLVM and Alive2

In this chapter, we provide a technical and theoretical introduction to LLVM as
well as Alive2.

2.1 LLVM
LLVM1 [23] is an open-source framework for compiler and toolchain technologies.
It is built around LLVM IR (Section 2.1.1), an intermediate language for LLVM-
based compilers. All middle-end optimizations within LLVM are performed on
LLVM IR.

2.1.1 LLVM IR
Some form of intermediate representation (IR) is a necessary part of any modern
compiler. In order to understand the importance of IR, it is instructive to see it
in the broader context of the compiler. On a high level, a compiler comprises of
three parts:

1. Front-end: analyzes the source code written in a concrete programming
language and builds the IR

2. Middle-end: expects IR from front-end and performs optimizations on it

3. Back-end: generates platform-specific machine code and performs CPU-
specific optimizations

An intermediate representation strives to achieve the “perfect balance” be-
tween the programming language and computer code. This means that IR needs

1LLVM previously stood for Low-Level Virtual Machine but it is no longer used as an acronym

17

Figure 2.1 A high-level view of a LLVM’s design [24]

void test(int n) {
for (int i = 0; i < n; i ++)

// Loop body
}

Figure 2.2 An empty for-loop in C

to be designed to make the transformation from the high-level language to the IR,
as well as the transformation from IR to the machine code, reasonably easy to
perform.

LLVM Intermediate Representation (LLVM IR) [25] is the crux of LLVM’s de-
sign [24]. It was designed to support lightweight runtime optimizations as well
as aggressive restructuring transformations and interprocedural optimizations.
But a particularly important aspect of LLVM IR is that it is itself a language with
well-defined semantics. It supports simple instructions like add (add), subtract
(sub), compare (cmp), and branch (br). These instructions are in three-address
form, which means that they take some number of inputs and produce a result in
a different register. In contrast to most real instruction sets, LLVM IR is strongly
typed (e.g. i32 is a 32-bit integer) and somemachine-specific details are abstracted
away (e.g. calling convention). [24]

To give an example, let us consider an empty for-loop in C in Figure 2.2. This
would correspond to the LLVM IR code in Figure 2.3.

Every label defines a basic block, in particular, entry and exit are exactly
𝐸𝑛𝑡𝑟𝑦 and 𝐸𝑥𝑖𝑡 basic blocks in the definition of the control-flow graph (Definition
4). Let us describe every basic block in more detail:

1. for.header exactly corresponds to the int i = 0; i < n; part of the
for statement

• the phi instruction corresponds to the 𝜙 function in SSA (see Sec-
tion 2.1.1), thus it returns 0 if the preceding block was entry or

18

define void @test(i32 %n) {
entry:

br label %for.header

for.header:
%i = phi i32 [0, %entry], [%i.next, %latch]
%cond = icmp slt i32 %i, %n
br i1 %cond, label %body, label %exit

body:
; Loop body
br label %latch

latch:
%i.next = add nsw i32 %i, 1
br label %for.header

exit:
ret void

}

Figure 2.3 An empty for-loop in LLVM IR [17]

i.next if the preceding block was latch

• icmp slt i32 is a comparison instruction on two, signed 32-bit in-
tegers %i and %n

• br takes the condition checked above and if indeed %i is less than %n,
it jumps to body, otherwise it goes to exit

2. body represents the body of the loop but it is empty so it only jumps to the
following basic block

3. latch simply increments the %i variable, saves it to %i.next and jumps
back to for.header

We can see the CFG of the LLVM IR code in Figure 2.4.
The textual representation in Figure 2.3 is not the only format of LLVM IR, it

is actually defined in three different forms:

1. textual format (an .ll file in Figure 2.3)

2. in-memory data structure (used by the optimizer)

3. binary bitcode format (a .bc file readable by tools like hex)

19

entry

for.header

bodylatch exit

Figure 2.4 CFG of empty loop in LLVM IR

if (foo)
X = 42;

else
X = 101010;

return X;

Figure 2.5 Conditional branching

Static single-assignment form

Like most intermediate representations of today, LLVM IR is written in the so-
called static single-assignment form, which we shall now define:

Definition 11 (Static single-assignment form). We say that a program is in static
single-assignment form (commonly abbreviated as SSA form) if every variable is
defined before it is used and assigned exactly once.

SSA form guarantees for instance that the definition of a variable dominates
all its uses, which is necessary for many optimizations based on SSA. Nevertheless,
real-world programs are rarely in SSA form. Consider the program in Listing 2.5.
This program is not in SSA form because the variable X is assigned twice (once to
42 in the true branch and to 101010 in the false branch). To convert this program
to SSA form, we need to distinguish the uses of X by renaming it (so-called SSA
names), but we also need to know which of the values to return. This is typically
achieved by introducing the so-called 𝜙-function. The 𝜙-function takes SSA names
as arguments and returns the value depending on which branch the variable came
from. The resulting program in SSA is shown in Listing 2.6.

SSA is commonly viewed as a property of intermediate representation and
even though it can be applied to any program2 (and thus can even be inter-

2In this sense, it is very akin to functional programming [26]

20

if (foo)
X1 = 42;

else
X2 = 101010;

X3 = phi (X1, X2)
return X3;

Figure 2.6 Conditional branching after introducing 𝜙 nodes

preted [27]) it is not designed for direct execution. The message of SSA is that
“having distinct names for distinct entities reduces uncertainty and impreci-
sion” [28].

The majority of current commercial and open-source compilers use SSA-based
IR, including GCC [29], LLVM [25], the HotSpot Java virtual machine [30], and
the V8 JavaScript engine [31].

2.1.2 LLVM Passes
In LLVM, optimizations are implemented as so-called passes that traverse a portion
of the program to either collect information about the program or transform it in
some way. There are three categories of passes in LLVM [32]:

1. Analysis passes compute information that other passes can use or for de-
bugging or program visualization purposes,

2. Transform passes mutate the program in some way, they can also use or
invalidate the analysis passes,

3. Utility passes provides some utility but do not otherwise fit categorization

2.2 Alive2
Alive2 [6] is a translation validation framework for LLVM. It is a successor of
a tool called Alive3, which was a verifier for peephole optimizations4 in LLVM.
Alive was a very novel project in its time and it proved to be very useful for LLVM
developers. Nonetheless, it had its limitations, particularly performance (it was
written in Python), but also it was restricted to only one sort of transformation
within LLVM called InstCombine which combines instructions to form fewer,

3https://github.com/nunoplopes/alive
4A peephole optimization transforms a small set of instructions to an equivalent set which has

better performance

21

https://github.com/nunoplopes/alive

Figure 2.7 High-level illustration of Alive2 [18]

simple instructions but does not modify the control-flow graph. Moreover, Alive’s
own DSL had to be used to verify the optimizations.

Alive2 is a full re-implementation of Alive in C++, but not only that. Alive2 is
a much more sophisticated framework than Alive, it includes a plugin for LLVM’s
opt and clang as well as a standalone tool called alive-tv. Alive2 checks pairs
of functions in LLVM IR for refinement :

Definition 12 (Refinement [6]). We say that a target function is a refinement of a
source function if the target displays a subset of the behaviors of the source for every
possible input.

In the absence of undefined behavior, we could simply check for equivalence.
Refinement allows a transformation to remove non-determinism, but not to add it.
Alive2 cannot simply check for equivalence because LLVM’s optimizations often
take advantage of undefined behavior, so any verification tool targeting LLVM
(or any modern compiler of a language with undefined behavior) must support it.

2.2.1 Encoding LLVM IR semantics
Alive2 encodes LLVM IR semantics in SMT expressions which it then provides
to a tool called an SMT solver. Satisfiability Modulo Theories (SMT) is a field in
computer science that involves checking the satisfiability of a logical formula over
one or more theories containing more complex structures such as real numbers,
integers, and various data structures. It is an extension of the Boolean satisfiability
problem (SAT) that only deals with the satisfiability of formulas in propositional
logic. An SMT solver is a tool that aims to solve the SMT problem for a formula
over a given theory [33]. It is a well-known fact that SAT is NP-complete [34],

22

thus SMT problems are typically NP-hard (and sometimes even undecidable)
but current SMT solvers can solve practical problems very efficiently. One such
solver is the Z3 Theorem Prover [35], a state-of-the-art SMT solver developed by
Microsoft Research, and it is also the one used by Alive2.

Internally, Alive2 uses its own IR (called Alive IR) to stay independent from
LLVM. Syntactically, it is nearly identical to LLVM IR with only minor differences.
Alive2 encodes the state of a program into an SMT formula. Program state consists
of a register file, memory, and a flag stating whether the program has executed
undefined behavior. We will not go into much detail regarding encoding into
SMT as it is not relevant to our work, for details we refer the reader to the Alive2
paper [6].

Z3 Theorem Prover does not have a notion of programming constructs such
as loops because its input language is in first-order logic. Thus, Alive2 needs to
eliminate cycles in our CFG. There are many methods that deal with cycles in
the CFG, for example invariants. Alive2 uses a technique called loop unrolling,
which is a program transformation method that involves replacing the loop with
several copies of its body5. Thus, Alive2 will find any failure of refinement that
is manifested within the specified number of iterations, but miss those that are
triggered beyond that.

Alive2 unrolls loops “inside-out” by traversing each loop tree in postorder.
Traversing the loop trees in postorder means that the number of unrolls is linear
in the number of loops and unroll factor instead of being exponential if done in
the reverse order [6]. We will describe the unrolling algorithm in detail in the
following chapter.

2.2.2 Showcase
We will now demonstrate how Alive2 works, specifically the tool alive-tv (tv
is short for translation validation) which takes two LLVM IR files as arguments
(source and target) and checks if target is a refinement of the source (i.e. if
the transformation is correct). The two programs in Figure 2.8 are obviously
equivalent since for the given parameter 𝑎, src.ll returns 𝑎 + 1 and tgt.ll
returns 1 + 𝑎, and Alive2 correctly recognizes that the transformation is correct.

If we have a source-target pair where the target is not a refinement of the
source, Alive2 provides a counterexample as seen in Figure 2.9. Alive2 reports
that the transformation does not verify and moreover, it provides us with a
counterexample for the variable %a. Specifically, it correctly says that setting
%a = 0 will produce the value of -1 in the source program and 1 in the target.

5It is also used in compiler optimization for different purposes.

23

src.ll
define i32 @test(i32 %a) {

%b = add i32 %a, 1
ret i32 %b

}

tgt.ll
define i32 @test(i32 %a) {

%b = add i32 1, %a
ret i32 %b

}

$ alive-tv src.ll tgt.ll
--
define i32 @test(i32 %a) {
#0:

%b = add i32 %a, 1
ret i32 %b

}
=>
define i32 @test(i32 %a) {
#0:

%b = add i32 1, %a
ret i32 %b

}
Transformation seems to be correct!

Figure 2.8 Alive2 output for equivalent source and target

24

src.ll
define i32 @test(i32 %a) {

%b = sub i32 %a, 1
ret i32 %b

}

tgt.ll
define i32 @test(i32 %a) {

%b = sub i32 1, %a
ret i32 %b

}

$ alive-tv src.ll tgt.ll
--
define i32 @src(i32 %a) {
#0:

%b = sub i32 %a, 1
ret i32 %b

}
=>
define i32 @tgt(i32 %a) {
#0:

%b = sub i32 1, %a
ret i32 %b

}
Transformation doesn't verify!

ERROR: Value mismatch

Example:
i32 %a = #x00000000 (0)

Source:
i32 %b = #xffffffff (4294967295, -1)

Target:
i32 %b = #x00000001 (1)
Source value: #xffffffff (4294967295, -1)
Target value: #x00000001 (1)

Figure 2.9 Alive2 output for non-equivalent source and target

25

26

Chapter 3

Analysis of the problem

In this chapter, we aim to provide a concise but thorough description of Alive2’s
loop handling algorithms. Analyzing the presented loop algorithms was an
important part of our work in order to expose the problem that caused Alive2 to
produce false alarms. The resulting pseudocode is our work and it was synthesized
from the original source code in Alive2, specifically from ir/function.cpp1

which includes most of Alive2 loop handling code.
Let us first briefly recall the setting of our problem. We are working with

Alive2, a translation validation framework that accepts a source-target pair of
LLVM IR source codes and attempts to prove or disprove that the target is a
refinement (see Definition 12) of the source. In order to achieve this, Alive2
translates the given LLVM IR code to an SMT formula which is then passed to the
Z3 SMT solver. In loopless code, this translation can be done immediately, but
in code that involves loops, the situation is much more complex. Z3 SMT solver
accepts formulas in first-order logic which has no notion of loops, so they must
somehow be removed from the code. There are several techniques on how to deal
with this issue as we describe in the previous chapter. Alive2 uses technique called
loop unrolling which involves removing the loop’s backedge and duplicating the
loop a given number of times (known as unroll factor). We call Alive2’s output a
false alarm if the target program is a refinement of the source program but the
output says it is not.

3.1 Loop algorithms in Alive2
Recall that a loop in a control-flow graph 𝐺 = (𝑁 , 𝐸) must contain a backedge.
As we have already described, Alive2 deals with loops by unrolling them. Before
the unrolling itself is performed, we must be able to identify loops and their

1https://github.com/AliveToolkit/alive2/blob/master/ir/function.cpp

27

https://github.com/AliveToolkit/alive2/blob/master/ir/function.cpp

𝐸𝑛𝑡𝑟𝑦

𝐴

𝐵

𝐶

𝐷

𝐸𝑥𝑖𝑡

Figure 3.1 Running example

nesting relation so that we are able to unroll in the correct order. We describe
this in Section 3.1.1. After the loops are identified, we can unroll them while also
patching the instructions that were broken by unrolling (Section 3.1.2). Recall
the motivating example from Chapter 1 shown in Figure 3.1.

We will us this as our running example throughout the chapter. We already
know that the CFG contains the following two loops:

• ℓ1 = (ℎ1, 𝐵1, 𝑋1), where ℎ1 = 𝐴, 𝐵1 = {𝐵, 𝐶, 𝐷}, 𝑋1 = {𝑒𝑥𝑖𝑡}, and 𝐷 is the
latch,

• ℓ2 = (ℎ2, 𝐵2, 𝑋2), where ℎ2 = 𝐵, 𝐵2 = {𝐶}, 𝑋2 = {𝐷}, and 𝐶 is the latch,

and that ℓ2 is nested in ℓ1.

3.1.1 Loop identification
Recall that 𝑢𝑣 ∈ 𝐸 is a backedge with respect to a given DFS tree if 𝑣 is an ancestor
of 𝑢 in the DFS tree. Moreover, 𝑢𝑣 is a reducible backedge if 𝑣 dominates 𝑢. We
can observe that any reducible backedge 𝑢𝑣 found by DFS in a reducible CFG
determines a loop. An analogical statement can be made for irreducible loops
but it will get a little more complicated as we shall see in the algorithm. But we
can see that in order to identify loops, we need to detect backedges. To be able
to unroll nested loops correctly, we also need to classify loops according to their
nesting relation which means building a loop forest (Definition 10). To identify
loops, we also need to decide three things for every node 𝑣 in the CFG [36]:

28

1. Is 𝑣 a loop header?

2. Is 𝑣 inside a loop body? If yes, what is the header of the innermost loop 𝑣 is
contained in?

3. If 𝑣 is inside a loop ℓ, is there a 𝑢 ∉ ℓ such that 𝑢𝑣 ∈ 𝐸? That is, is ℓ
irreducible?

In order to build a loop body, we will need a structure to efficiently decide
whether or not two basic blocks belong to the same loop, and if yes, then merge
them. With the Union-Find data structure such operations can be very fast, shown
to be almost linear by Tarjan [37]. The Union and Find operations are applied
on disjoint sets from a given universe 𝒰. We will not go into details about how
to implement the operations, we will only describe how we shall use them. Let
us index the elements of 𝒰 as 𝑚1, … , 𝑚𝑛 and initially set 𝑠𝑖 ∶= {𝑚𝑖} for all 𝑖 ∈ [𝑛].

• Union(𝑖, 𝑗): assigns 𝑠𝑗 ∶= 𝑠𝑖 ∪ 𝑠𝑗 and 𝑠𝑖 ∶= ∅

• Find(𝑘): returns 𝑖 such that 𝑚𝑘 ∈ 𝑠𝑖

Following the identification, we need to decide the nesting relations between
the identified loops which involves building a loop forest.

Havlak’s algorithm

Alive2 identifies loops and build the loop forest using Havlak’s algorithm [10]
(sometimes referred to as the Havlak-Tarjan algorithm). Havlak’s algorithm
is based on Tarjan’s method for testing reducibility [38], but additionally, it
can detect irreducible loops while Tarjan’s algorithm simply terminates upon
encountering an irreducible loop. Havlak’s algorithm traverses the CFG twice:
first using DFS from 𝐸𝑛𝑡𝑟𝑦 to detect backedges and forward edges, then in the
reverse order based on Union-Find to build the loop body for each header and
construct the loop tree.

Let us follow the pseudocode in Algorithm 3. Backedges and forward edges
are maintained as sets of predecessors that we call 𝑏𝑎𝑐𝑘𝑃𝑟𝑒𝑑𝑠 and 𝑛𝑜𝑛𝐵𝑎𝑐𝑘𝑃𝑟𝑒𝑑𝑠
respectively. They are defined as such for a node 𝑤 ∈ 𝑁: 𝑏𝑎𝑐𝑘𝑃𝑟𝑒𝑑𝑠[𝑤] ∶= {𝑣 ∣
𝑣𝑤 is a backedge}, 𝑛𝑜𝑛𝐵𝑎𝑐𝑘𝑃𝑟𝑒𝑑𝑠[𝑤] ∶= {𝑣 ∣ 𝑣𝑤 ∈ 𝐸 ∧ 𝑣 ∉ 𝑏𝑎𝑐𝑘𝑃𝑟𝑒𝑑𝑠[𝑤]}. Both of
those structures can be populated using the information we got from DFS as we
already know from Section 1.1.1 that ancestry in a DFS tree can be tested very
quickly by saving every node’s last descendant. And anytime we encounter an
edge 𝑢𝑣 such that 𝑣 is an ancestor of 𝑢, we know that 𝑢𝑣 is a backedge (lines 5–11).

We also maintain the Union-Find data structure where the representative of
each node is either (1) the node itself if it is not inside any loop body, or (2) the

29

header of the inner-most loop that the node is contained in. This is built during the
second traversal of the CFG where we go through the nodes in reverse preorder
(lines 14–40). By using reverse preorder, we ensure each inner loop will be
processed before the loops it is nested in. Let’s say we are processing a node 𝑤. If
𝑏𝑎𝑐𝑘𝑃𝑟𝑒𝑑𝑠[𝑤] = ∅, that is 𝑤 is not a destination of any backedge and consequently
not a loop header, we simply move on to the next node. Otherwise, we start
constructing the loop body 𝑃 for header 𝑤 by first adding the latches, that is by
going through each 𝑣 ∈ 𝑏𝑎𝑐𝑘𝑃𝑟𝑒𝑑𝑠[𝑤] and adding 𝐹 𝐼𝑁𝐷(𝑣) (the representative
of node 𝑣) to 𝑃. Then we complete the construction of 𝑃 in worklist fashion by
adding nodes that point to some node in 𝑃 but are not yet in 𝑃 themselves. If
during this we encounter a node 𝑣 that is not a descendant of the header 𝑤, it
means it is another entry to the currently processed loop and thus the loop is
irreducible (and in such a case, we don’t add 𝑣 to the body 𝑃). Finally, we merge
every node 𝑣 ∈ 𝑃with the header 𝑤 for the Union-Find structure while also setting
ℎ𝑒𝑎𝑑𝑒𝑟[𝑣] ∶= 𝑤. Constructing the loop forest is simple, for each node 𝑣 we only
have to set ℎ𝑒𝑎𝑑𝑒𝑟[𝑣] as the parent of 𝑣. Finally, we construct the loop forest by
iterating over the nodes in preorder and for every node 𝑣, we decide:

• If 𝑣 is not inside any loop and it is a loop header, we create a new tree in
the forest with 𝑣 as its root

• If 𝑣 is inside a loop, we attach it under its header in the loop tree

In our running example from Figure 3.1, all nodes have their 𝑏𝑎𝑐𝑘𝑃𝑟𝑒𝑑𝑠
set empty, except for 𝐴 and 𝐵 which contain 𝐷 and 𝐶 respectively. For every
node 𝑣, 𝑛𝑜𝑛𝐵𝑎𝑐𝑘𝑃𝑟𝑒𝑑𝑠[𝑣] contains its direct ancestor in our example, for example
𝑛𝑜𝑛𝐵𝑎𝑐𝑘𝑃𝑟𝑒𝑑𝑠[𝐶] = {𝐵}. If our CFG had a node 𝑣 with multiple entry points, the
set 𝑛𝑜𝑛𝐵𝑎𝑐𝑘𝑃𝑟𝑒𝑑𝑠[𝑣] would contain those respective entry points.

Then we go through the nodes in reverse preorder, which in our case is
𝐷, 𝐶, 𝐵, 𝐴. Let us for example consider the iteration with node 𝐵. In this case,
𝑃 = {𝐶}, so 𝑊 = {𝐶} and we will only go through one iteration of the while-loop
beginning at line 24. This is because 𝐶 has only one immediate ancestor 𝐵 and
neither condition on lines 28 and 31 will be satisfied. In the union-find step, 𝐵
becomes the representative of itself and 𝐶.

Constructing the loop tree (line 43) will be straightforward; 𝐸𝑛𝑡𝑟𝑦 (and 𝐸𝑥𝑖𝑡)
will not trigger any of the conditions inside the loop, 𝐴 is the only basic block
that will satisfy the first one and thus we set it as the root of our loop tree, 𝐵 is a
header of a loop but is is also inside the loop headed by 𝐴 and hence we add it as
a child of 𝐴 into the loop tree, 𝐶 is inside 𝐵’s loop so likewise, we add it as a child
of 𝐵, and finally 𝐷 is inside the loop headed by 𝐴 and so we add it as a child of 𝐴.
We can see the resulting loop tree in Figure 3.2.

30

Algorithm 3 This algorithm identifies loop headers and builds a loop-nesting forest
while also recording the types of the loops

1: function LoopAnalysis(𝐺: control-flow graph)
2: 𝑣1, … , 𝑣𝑛 ← preorder numbering of the basic blocks starting from 𝐸𝑛𝑡𝑟𝑦
3: backPreds ← an empty map 𝑁 → 𝒫 (𝑁)
4: nonBackPreds ← an empty map 𝑁 → 𝒫 (𝑁)
5: for every edge 𝑢𝑣 ∈ 𝐸 do
6: if 𝑣 is an ancestor of 𝑢 then
7: Add 𝑢 to backPreds[𝑣]
8: else
9: Add 𝑢 to nonBackPreds[𝑣]

10: end if
11: end for
12: type(∗) = nonheader
13: header(∗) = None
14: for 𝑣 ∈ 𝑁 in reverse preorder do
15: 𝑃 ← {FIND(𝑢) ∣ 𝑢 ∈ backPreds[𝑣], 𝑢 ≠ 𝑣} 𝑃 is the loop body
16: if 𝑣 is a self-loop then
17: type(𝑣) ← self
18: end if
19: if 𝑃 ≠ ∅ then If the body is empty, then 𝑣 not a header
20: If it is not, we first assume 𝑣 is the header of a reducible loop
21: type(𝑣) ← reducible
22: end if
23: 𝑊 ← 𝑃 .𝑊 is the worklist
24: while 𝑊 ≠ ∅ do
25: 𝑥 ← pick an arbitrary node from 𝑊 and remove it
26: for every 𝑦 ∈ nonBackPreds[𝑥] do
27: 𝑧 ← FIND(𝑦)
28: if 𝑣 is not an ancestor of 𝑧 then
29: type(𝑣) ← irreducible
30: Add 𝑧 to nonBackPreds[𝑣]
31: else if 𝑧 ∉ 𝑃 and 𝑧 ≠ 𝑣 then
32: Add 𝑧 to 𝑃 and 𝑊
33: end if
34: end for
35: end while

31

36: for every basic block 𝑏 ∈ 𝐵 do
37: header(𝑏) ← 𝑣
38: UNION(𝑣 , 𝑏) . 𝑏 will be the representative
39: end for
40: end for
41: . Now we construct the loop forest
42: 𝑓 𝑜𝑟𝑒𝑠𝑡 ← empty forest
43: for every 𝑣 ∈ 𝑉 in preorder do
44: if header(𝑣) = None and type(𝑣) ≠ nonheader then
45: Add new root 𝑣 to 𝑓 𝑜𝑟𝑒𝑠𝑡
46: else if header(𝑣) ≠ None or type(𝑣) ≠ nonheader then
47: Add 𝑣 as a child of header(𝑣) to 𝑓 𝑜𝑟𝑒𝑠𝑡
48: end if
49: end for
50: return 𝑓 𝑜𝑟𝑒𝑠𝑡
51: end function

𝐴

𝐵

𝐶

𝐷 leaf node

header node

Figure 3.2 Loop tree of the running example

As we can see, Havlak’s algorithm has successfully identified all the loops
in our CFG. With irreducible CFGs, the situation can get more complicated and
which loops are identified depends on the choice of the depth-first spanning
tree [10]. We shall not elaborate on this further here as it is not relevant to our
problem but we will briefly discuss it in Chapter 6.

3.1.2 Loop unrolling

In the previous chapter, we explained why unrolling loops is necessary in Alive2.
Let us now focus on the unrolling algorithm itself. Alive2 unrolls a loop nest
“inside-out”, which means the inner-most loop is always unrolled first. We shall
explain the algorithm with the help of pseudocode in Algorithm 4.

We first need to obtain the loop forest from the LoopAnalysis algorithm and

32

then traverse each loop tree in postorder. Let’s say we are now unrolling a loop
ℓ = (ℎ, 𝐵, 𝑋). We first need to determine which basic blocks need to be dupli-
cated. For this we maintain a map 𝑙𝑜𝑜𝑝𝑁 𝑜𝑑𝑒𝑠 for each header such that eventually
𝑙𝑜𝑜𝑝𝑁 𝑜𝑑𝑒𝑠[ℎ] = {ℎ} ∪ 𝐵 once constructed. Because we traverse the loop tree in
postorder, all the inner loops of ℓ already have 𝑙𝑜𝑜𝑝𝑁 𝑜𝑑𝑒𝑠 constructed and thus we
can build 𝑙𝑜𝑜𝑝𝑁 𝑜𝑑𝑒𝑠[ℎ] inductively: 𝑙𝑜𝑜𝑝𝑁 𝑜𝑑𝑒𝑠[ℎ] = ⋃ℓ′ nested in ℓ 𝑙𝑜𝑜𝑝𝑁 𝑜𝑑𝑒𝑠[ℎ′]∪
{𝑏𝑏 ∈ 𝑁 ∣ 𝑏𝑏 is a leaf node with ℎ as the parent}. We construct 𝑙𝑜𝑜𝑝𝑁 𝑜𝑑𝑒𝑠 by iter-
ating over the loop tree in topological order and either adding the node itself if it
is a leaf node, or the whole loop if the node is a loop header (lines 10–17).

We then clone the blocks in the order 𝑙𝑜𝑜𝑝𝑁 𝑜𝑑𝑒𝑠was constructed (lines 19–33).
While cloning a basic block, we also duplicate its instructions by essentially giving
them new SSA names. This may seem simple enough, but we also need to update
the instruction’s operands since they might also have been previously duplicated.
For this, we maintain a map 𝑣𝑚𝑎𝑝 which has the original instructions as keys
and as values an array of pairs (𝑏𝑏, 𝑜𝑝), where 𝑏𝑏 is always the cloned basic block
and 𝑜𝑝 is the duplicated operand belonging to the basic block 𝑏𝑏. Thus, when
duplicating an instruction, we simply take the latest duplicate of its operands to
create the new duplicated instruction (line 28). Recall that since we duplicate in
topological order according to the loop tree, “latest duplicate” means the greatest
with respect to topological order of the loop tree. Besides operands, there are two
more things that need to be patched after unrolling [6]:

1. Targets of jump instructions: Jump targets are naturally patched by replac-
ing each target with its next duplicate. If there is no such duplicate, this
means we are dealing with a backedge in the last unroll and these jumps are
redirected to a special basic block called sink (see our unrolled example 3.5)

2. Introduce/patch 𝜙 instructions: Some instructions inside a loop may have
their result used outside the loop. There are three cases Alive2 needs to
deal with in regard to 𝜙 instructions:

(a) Existing 𝜙 instructions → add more predecessors

(b) The loop has a single exit to a basic block that dominates the user’s
basic block → introduce a new 𝜙 node. A user is an instruction using
the value.

(c) Otherwise → introduce a new stack variable to avoid maintaining
SSA altogether.

The task of fixing SSA after loop transformations is commonly called SSA
reconstruction [28].

Let us go through the algorithm with the help of our running example and
we will unroll with the factor of 𝑘 = 1. There is only one loop tree in 𝑓 𝑜𝑟𝑒𝑠𝑡, we

33

Algorithm 4 This algorithm unrolls all loops in the program with the unrolling factor
of 𝑘
1: function Unroll(𝐺 = (𝑁 , 𝐸): control-flow graph, 𝑘 ≥ 0: unroll factor)
2: if 𝑘 = 0 then return
3: end if
4: 𝑓 𝑜𝑟𝑒𝑠𝑡 ← LoopAnalysis(𝐺)
5: loopNodes ← empty map 𝑁 → 𝒫 (𝑁)
6: for every loop tree 𝑇 in 𝑓 𝑜𝑟𝑒𝑠𝑡 do
7: for every header ℎ ∈ 𝑇 in postorder do
8: 𝑙𝑜𝑜𝑝𝑁 𝑜𝑑𝑒𝑠[ℎ] ← {ℎ} The basic blocks we will duplicate
9: 𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑎𝑛𝑡𝑠 ← descendants of ℎ in 𝑓 𝑜𝑟𝑒𝑠𝑡

10: for every basic block 𝑏𝑏 ∈ TopSort(𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑎𝑛𝑡𝑠) do
11: if 𝑏𝑏 is a header of some loop then
12: . .We need to include the nested loop’s BBs for duplication
13: Append 𝑙𝑜𝑜𝑝𝑁 𝑜𝑑𝑒𝑠[𝑏𝑏] to 𝑙𝑜𝑜𝑝𝑁 𝑜𝑑𝑒𝑠[ℎ]
14: else
15: Append 𝑏𝑏 to 𝑙𝑜𝑜𝑝𝑁 𝑜𝑑𝑒𝑠[ℎ]
16: end if
17: end for
18: for 𝑖 = 1, … , 𝑘 do
19: for 𝑏𝑏 in 𝑙𝑜𝑜𝑝𝑁 𝑜𝑑𝑒𝑠[ℎ] do
20: .Now we clone the basic block 𝑏𝑏
21: 𝑐𝑙𝑜𝑛𝑒𝑑𝐵𝐵 ← a new empty basic block
22: 𝑝ℎ𝑖𝑠 ← ∅
23: for every instruction 𝑖 in 𝑏𝑏 do
24: if 𝑖 is a 𝜙 instruction then
25: Add 𝑖 to 𝑝ℎ𝑖𝑠
26: end if
27: 𝑑 ← a copy of 𝑖
28: Replace all operands of 𝑑 with their latest duplicates in

𝑣𝑚𝑎𝑝
29: Add 𝑑 to 𝑣𝑚𝑎𝑝[𝑖] if 𝑖 is a non-void instruction
30: Add 𝑑 to 𝑐𝑙𝑜𝑛𝑒𝑑𝐵𝐵
31: Patch 𝜙 predecessors
32: end for
33: end for
34: end for
35: Patch jump targets, users and 𝜙 instructions
36: end for
37: end for
38: end function

34

can see it with postorder numbering in Figure 3.3. There are two headers in the
loop tree, so we will go through two iterations.

In the first iteration, the header ℎ will be 𝐵 since it is first in postorder. The
variable 𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑎𝑛𝑡𝑠 will be a singleton set {𝐶} as 𝐶 is the only descendant of 𝐵
in the loop tree. Thus, construction of 𝑙𝑜𝑜𝑝𝑁 𝑜𝑑𝑒𝑠[𝐵] will be simple since there is
only one possible topological order of one element and 𝐶 is not a header of any
loop so 𝑙𝑜𝑜𝑝𝑁 𝑜𝑑𝑒𝑠[𝐵] will contain 𝐵 itself and 𝐶, in this order.

For clarity, we will only go through the basic block duplication during this
iteration. To illustrate basic block duplication, let us say that 𝐶 contains the
instruction %i.inc = add i32 %i, 1, that is we add 1 to the instruction %i
and store it in %i.inc. Let us assume that the instruction %i comes from the basic
block 𝐵which has already been cloned and thus contains the duplicate %i#1 of %i.
When duplicating %i.inc = add i32 %i, 1, we will query the last element of
vmap[%i] which will be %i#1 and we will use it as the pertinent operand. The
resulting duplicated instruction will be %i.inc#1 = add i32 %i#1, 1.

In the second iteration, we are duplicating the basic blocks of the loop with
header𝐴. The variable 𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑎𝑛𝑡𝑠 is now {𝐵, 𝐶, 𝐷}, we can see the subtree induced
by those nodes in Figure 3.4. To construct 𝑙𝑜𝑜𝑝𝑁 𝑜𝑑𝑒𝑠[𝐵], we need to topologically
sort this subgraph. There are actually three possible topological orders of this
graph: 𝐵 ≺ 𝐶 ≺ 𝐷, 𝐵 ≺ 𝐷 ≺ 𝐶, and 𝐷 ≺ 𝐵 ≺ 𝐶. Which of those orders is
chosen is dependent on the internal implementation of topological sorting. It may
not appear significant, but this uncertainty might be problematic during basic
block duplication since patching of operands depends on topological order. With
incorrect ordering, wrong values can be observed which can cause a different
output in source and target programs. This is quite subtle since it does not affect
the structure of the unrolled CFG (which we can see in Figure 3.5) but it can cause
problems and even false alarms as we shall learn in Chapter 4, though it may not
be obvious at the moment.

𝐴
4

𝐵
2

𝐶

1

𝐷

3

leaf node

header node

Figure 3.3 Postorder numbering of the loop tree

35

𝐵

𝐶
𝐷

Figure 3.4 Descendants of 𝐴 in the loop tree

𝐸𝑛𝑡𝑟𝑦

𝐴

𝐵

𝐶

𝐵′ 𝐷

𝐴′

𝑠𝑖𝑛𝑘

𝐸𝑥𝑖𝑡

Figure 3.5 Running example unrolled with a factor of 1

3.2 Conclusions from the analysis

We identified several problems in Alive2’s loop algorithms some of which we
describe in Chapter 6. Nevertheless, the one most likely to cause false alarms in
nested loops is constructing the order in which basic blocks should be cloned
(line 10). Let us consider the situation in our running example. Recall its looptree
in Figure 3.2. Now, if we want to unroll the loop headed by the node 𝐴, we need
to sort its descendants topologically. The descendants form the disconnected
graph in Figure 3.4

And thus, there are three possible topological orders: 𝐵 ≺ 𝐶 ≺ 𝐷, 𝐵 ≺ 𝐷 ≺ 𝐶,
and 𝐷 ≺ 𝐵 ≺ 𝐶. Nevertheless, in the original graph, there exists a path from 𝐵
to 𝐷 as well as from 𝐶 to 𝐷, so only the first one should be correct. It may not
appear that this poses a problem at first but recall that during the unroll, we
patch instruction operands by replacing them with its latest duplicate and so an
operand may be patched incorrectly.

This is definitely a bug in the algorithm but it does not mean that it can

36

manifest in practice nor that it could cause false alarms. In the next chapter, we
will demonstrate that it can actually happen with a real-world example from
LLVM test suite and produce a false alarm.

37

38

Chapter 4

Problem in the unrolling algorithm

In the previous chapter, we analyzed Alive2’s loop algorithms and identified a
problem in the unrolling algorithm that may cause false alarms. In this chapter,
we look at the problem in more detail, and in particular, we demonstrate that it
can manifest in a real-world LLVM test. We also discuss what the correct behavior
should be in that particular case.

4.1 Root cause of false alarms with nested loops
Recall that when Alive2 wants to unroll a loop, it needs to obtain the correct basic
blocks to duplicate. If we are unrolling a loop with header ℎ, Alive2 topologically
sorts all descendants of ℎ in the loop tree and duplicates them in this order. Since
the loop tree does not include all edges that were present in the original graph,
this might produce several possible orders that may not be valid in the original
graph. Recall the situation in our running example shown in Figure 4.1. We
claim that this might produce false alarms because if a basic block is cloned too
early, its instructions could observe the wrong values and so the source and
target programs can produce different outputs. To demonstrate this explicitly, we
examine an LLVM example with this behavior in the following section.

4.1.1 Failing example in LLVM test suite

We will now demonstrate the issue on a real failing example from LLVM test
suite. This example failed with the so-called LCSSA pass, so let us first explain
what LCSSA is. For some loop optimizations, it is desirable to maintain a more
restrictive type of SSA which is called the loop-closed SSA (LCSSA) form. This
type of SSA simplifies updating the SSA form after loop optimizations. It was
invented by Zdeněk Dvořák while working on GCC’s loop optimizer [39] and

39

𝐸𝑛𝑡𝑟𝑦

𝐴

𝐵

𝐶

𝐷

𝐸𝑥𝑖𝑡

Figure 4.1 Running example

c = ...;
for (...) {

if (c)
X1 = ...

else
X2 = ...

X3 = phi(X1, X2); // X3 defined
}
... = X3 + 4; // X3 used outside the loop

Figure 4.2 A program in SSA but not in LCSSA

it has apparently been present in LLVM’s own loop optimizer since the very
beginning [40].

Definition 13 (Loop-closed SSA form). A program is in LCSSA form if it is in
SSA form and all values defined in a loop are only used within that loop.

In practice, this means adding an extra single-parameter 𝜙 function in the
loop’s exit block. We can see an example1 of a program in SSA but not in LCSSA
(Figure 4.2) and an equivalent program in LCSSA (Figure 4.3).

We can see the code is still valid, the extra 𝜙 node is redundant. In LLVM,
this form is ensured by the lcssa pass and is added automatically by the Loop-
PassManager, all loop passes are required to preserve LCSSA. After the loop

1https://llvm.org/docs/LoopTerminology.html#loop-terminology-lcssa

40

https://llvm.org/docs/LoopTerminology.html#loop-terminology-lcssa

c = ...;
for (...) {

if (c)
X1 = ...

else
X2 = ...

X3 = phi(X1, X2);
}
X4 = phi(X3); // redundant phi for LCSSA

... = X4 + 4;

Figure 4.3 An equivalent program in LCSSA

optimizations are done, these extra phi nodes will be deleted by the InstCombine
pass2.

By running Alive2 with unroll factor of two over the LLVM test suite, a failing
example which demonstrates this issue was found3 (see Figure 4.4). The LLVM IR
code in Figure 4.4 corresponds to the CFG in Figure 4.6. As we can see from the
CFG, it is a simple nested loop with header being the header of the inner loop,
and outer_header the header of the outer loop, more formally we have:

• ℓ′: ℎ′ ∶= header, 𝐵′ ∶= {backedge}, 𝑋 ′ ∶= {outer_backedge}

• ℓ: ℎ ∶= outer_header, 𝐵 ∶= ℓ′ ∪ {preheader, outer_backedge}, 𝑋 ∶=
{exit}

Moreover, ℓ′ is nested inside ℓ. The pertinent loop tree is shown in Figure 4.7.
When topologically sorting this tree, outer_header must always be first, but

there is a tiebreak between preheader and outer_backedge. Alive2 chooses
outer_backedge to come first and thus produces the following order:

1. outer_header

2. outer_backedge

3. preheader

4. header

5. backedge

2https://llvm.org/docs/Passes.html#instcombine-combine-redundant-instructions
3https://github.com/llvm/llvm-project/blob/main/llvm/test/Transforms/

LoopSimplifyCFG/constant-fold-branch.ll#L819

41

https://llvm.org/docs/Passes.html#instcombine-combine-redundant-instructions
https://github.com/llvm/llvm-project/blob/main/llvm/test/Transforms/LoopSimplifyCFG/constant-fold-branch.ll#L819
https://github.com/llvm/llvm-project/blob/main/llvm/test/Transforms/LoopSimplifyCFG/constant-fold-branch.ll#L819

define i32 @partial_sub_loop_test_branch_loop(i32 %end) {
entry:

br label %outer_header

outer_header:
%j = phi i32 [0, %entry], [%j.inc, %outer_backedge]
br label %preheader

preheader:
br label %header

header:
%i = phi i32 [0, %preheader], [%i.inc, %backedge]
br label %backedge

backedge:
%i.inc = add i32 %i, 1
%cmp = icmp slt i32 %i.inc, %end
br i1 %cmp, label %header, label %outer_backedge

outer_backedge:
%j.inc = add i32 %j, 1
%cmp.j = icmp slt i32 %j.inc, %end
br i1 %cmp.j, label %outer_header , label %exit

exit:
ret i32 %i.inc

}

Figure 4.4 A reduced example from LLVM test suite

42

define i32 @partial_sub_loop_test_branch_loop(i32 %end) {
entry:

br label %outer_header

outer_header:
%j = phi i32 [0, %entry], [%j.inc, %outer_backedge]
br label %preheader

preheader:
br label %header

header:
%i = phi i32 [0, %preheader], [%i.inc, %backedge]
br label %backedge

backedge:
%i.inc = add i32 %i, 1
%cmp = icmp slt i32 %i.inc, %end
br i1 %cmp, label %header, label %outer_backedge

outer_backedge:
%i.inc.lcssa = phi i32 [%i.inc, %backedge]
%j.inc = add i32 %j, 1
%cmp.j = icmp slt i32 %j.inc, %end
br i1 %cmp.j, label %outer_header , label %exit

exit:
%i.inc.lcssa.lcssa = phi i32 [%i.inc.lcssa, %outer_backedge]
ret i32 %i.inc.lcssa.lcssa

}

Figure 4.5 The example from Figure 4.4 after LCSSA transformation

43

entry

outer_header

preheader

header

backedge

outer_backedge

for.end7

Figure 4.6 A failing example CFG

outer_header

preheader

header

backedge

outer_backedge

Figure 4.7 Loop tree of failing example

44

Thus, the 𝜙 nodes of outer_backedge may contain wrong predecessors be-
cause it is cloned too early.

The failing transformation is in the lcssa pass which simply converts the
program into LCSSA form. If we try to verify this with alive-tv with unroll
of two, that is running alive-tv bug.ll -src-unroll=2 -tgt-unroll=2 -
p=lcssa, Alive2 says the transformation does not verify. We include the whole
output in the following chapter but let us now demonstrate that there are indeed
wrong 𝜙 predecessors present in the output:

Listing 4.1 Wrong predecessors in Alive2 output
%outer_backedge#2:

%i.inc.lcssa#2 = phi i32 [%i.inc, %backedge], [%i.inc#1#2,
%backedge#1#2]

The unrolled CFG in Figure 4.8 also clearly shows that the 𝜙 predecessors are
wrong. %outer_backedge#2 contains neither %backedge nor %backedge#1#2
as direct predecessors and thus the 𝜙 may be observing the wrong values. The
right predecessors would be %backedge#2 and %backedge#1#2#2 and thus the
correct instruction should look like the following:
%i.inc.lcssa#2 = phi i32 [%i.inc#2, %backedge#2], [%i.inc

#1#2#2, %backedge#1#2#2]

Alive2 also provides us with a counterexample of the %end parameter with
a value of 2. It plugs the value of 2 to the unrolled program and produces the
following walkthrough of the CFG for the source function:

Source:
ptr %i.inc#ptr#2 = pointer(local, block_id=0, offset=0)

>> Jump to %outer_header
i32 %j = #x00000000 (0)

>> Jump to %preheader
>> Jump to %header

i32 %i = #x00000000 (0)
>> Jump to %backedge

i32 %i.inc = #x00000001 (1)
i1 %cmp = #x1 (1)

>> Jump to %header#1#2
i32 %i#1#2 = #x00000001 (1)

>> Jump to %backedge#1#2
i32 %i.inc#1#2 = #x00000002 (2)
i1 %cmp#1#2 = #x0 (0)

>> Jump to %outer_backedge
i32 %i.inc#phi#0 = #x00000002 (2)
i32 %j.inc = #x00000001 (1)
i1 %cmp.j = #x1 (1)

>> Jump to %outer_header#2

45

i32 %j#2 = #x00000001 (1)
>> Jump to %preheader#2
>> Jump to %header#2

i32 %i#2 = #x00000000 (0)
>> Jump to %backedge#2

i32 %i.inc#2 = #x00000001 (1)
i1 %cmp#2 = #x1 (1)

>> Jump to %header#1#2#2
i32 %i#1#2#2 = #x00000001 (1)

>> Jump to %backedge#1#2#2
i32 %i.inc#1#2#2 = #x00000002 (2)
i1 %cmp#1#2#2 = #x0 (0)

>> Jump to %outer_backedge#2
i32 %i.inc#phi#0#2 = poison
i32 %j.inc#2 = #x00000002 (2)
i1 %cmp.j#2 = #x0 (0)

>> Jump to %exit
i32 %i.inc#phi#1 = #x00000001 (1)
i32 %i.inc#ptr#2#load = #x00000001 (1)

And this is the same walkthrough for the target function:

Target:
>> Jump to %outer_header

i32 %j = #x00000000 (0)
>> Jump to %preheader
>> Jump to %header

i32 %i = #x00000000 (0)
>> Jump to %backedge

i32 %i.inc = #x00000001 (1)
i1 %cmp = #x1 (1)

>> Jump to %header#1#2
i32 %i#1#2 = #x00000001 (1)

>> Jump to %backedge#1#2
i32 %i.inc#1#2 = #x00000002 (2)
i1 %cmp#1#2 = #x0 (0)

>> Jump to %outer_backedge
i32 %i.inc.lcssa = #x00000002 (2)
i32 %j.inc = #x00000001 (1)
i1 %cmp.j = #x1 (1)

>> Jump to %outer_header#2
i32 %j#2 = #x00000001 (1)

>> Jump to %preheader#2
>> Jump to %header#2

i32 %i#2 = #x00000000 (0)
>> Jump to %backedge#2

i32 %i.inc#2 = #x00000001 (1)
i1 %cmp#2 = #x1 (1)

46

>> Jump to %header#1#2#2
i32 %i#1#2#2 = #x00000001 (1)

>> Jump to %backedge#1#2#2
i32 %i.inc#1#2#2 = #x00000002 (2)
i1 %cmp#1#2#2 = #x0 (0)

>> Jump to %outer_backedge#2
i32 %i.inc.lcssa#2 = poison
i32 %j.inc#2 = #x00000002 (2)
i1 %cmp.j#2 = #x0 (0)

>> Jump to %exit
i32 %i.inc.lcssa.lcssa = poison
Source value: #x00000002 (2)
Target value: poison

We can see that because of the wrong predecessors, Alive2 jumps to the wrong
basic blocks and the source and target programs produce a different value which
leads to a false alarm. Specifically, the output value of the source program is 2
while the value of the target program is poison. Poison is a type of value in LLVM
IR representing the result of undefined behavior, the other one being undef [25].

4.2 Summary
In this chapter, we have demonstrated on a real-world LLVM example that the
bug we identified in Chapter 3 produces false alarms in Alive2. We have explained
why the false alarm occurs and how to reproduce the issue. In the next chapter,
we will look more closely on how to prevent this issue and the solution we have
submitted and integrated to Alive2.

47

Figure 4.8 Failing example from Figure 4.6 unrolled with a factor of two.

48

Chapter 5

Implementation and evaluation

In this chapter, we describe our approach to fixing the problem. In the final
section, we also present concrete results of our contributions to Alive2.

5.1 Our solution and implementation in Alive2
The essence of the problem is in the order of cloning basic blocks. Specifically, it is
the failure to take into account some edges that were present in the original graph
but are not present in the loop tree. So to fix this problem, we must take these
edges into account which is actually the approach we ended up implementing
and we describe it in Section 5.1.1. The reason we decided on this approach is
that it added virtually no overhead in terms of performance to Alive2 unrolling
algorithm and fixed the problems that needed to be fixed.

5.1.1 Take exit blocks into account

As we have explained in Chapter 4, the current Alive2’s unrolling algorithm does
not take exit blocks into account when topologically sorting the descendants of
a loop header in the loop tree. We have fixed this by adding exit blocks to each
loop header before it is unrolled. Here is the relevant part of the unroll function1:

1 for (auto &dst : bb->targets()) {
2 if (!bbmap.count(&dst)) {
3 exit_edges.emplace(bb, const_cast <BasicBlock*>(&dst));
4 header->addExitBlock(const_cast <BasicBlock*>(&dst));
5 }
6 }

1https://github.com/AliveToolkit/alive2/blob/8bf86254e2c799526e0f1dc99eefb9c7da646c1d/
ir/function.cpp#L566

49

https://github.com/AliveToolkit/alive2/blob/8bf86254e2c799526e0f1dc99eefb9c7da646c1d/ir/function.cpp#L566
https://github.com/AliveToolkit/alive2/blob/8bf86254e2c799526e0f1dc99eefb9c7da646c1d/ir/function.cpp#L566

Here, Alive2 already had code to collect exit edges, so we could use it to get
the exit blocks on line 4, thus adding very little overhead. Afterward, we had to
communicate this information to top-sort:

1 static vector<BasicBlock*> top_sort(const vector<BasicBlock*> &
bbs) {

2 edgesTy edges(bbs.size());
3 unordered_map <const BasicBlock*, unsigned > bb_map;
4
5 unsigned i = 0;
6 for (auto bb : bbs) {
7 bb_map.emplace(bb, i++);
8 }
9

10 i = 0;
11 for (auto bb : bbs) {
12 for (auto &dst : bb->targets()) {
13 auto dst_I = bb_map.find(&dst);
14 if (dst_I != bb_map.end())
15 edges[i].emplace(dst_I->second);
16 }
17
18 // If `bb` is a loop header, we need to go through its

exit block
19 // in order to account for some transitive dependencies

we may have
20 // missed due to compression of its inner loops.
21 // If there are no inner loops, this is redundant and if

`bb` is not
22 // a loop header, the set of its exit blocks is empty.
23 for (auto &dst : bb->getExitBlocks()) {
24 auto dst_I = bb_map.find(dst);
25 if (dst_I != bb_map.end())
26 edges[i].emplace(dst_I->second);
27 }
28 ++i;
29 }
30
31 vector<BasicBlock*> sorted_bbs;
32 sorted_bbs.reserve(bbs.size());
33 for (auto v : util::top_sort(edges)) {
34 sorted_bbs.emplace_back(bbs[v]);
35 }
36
37 assert(sorted_bbs.size() == bbs.size());
38 return sorted_bbs;
39 }

Our added lines 23-27 build the edges that were previously missing and thus

50

enforcing the correct order of basic blocks. We decided for this solution because
it was as minimal as possible while also fixing the underlying issue. Thus it also
has no detrimental effect on performance or readability. Our solution works
even if there are several basic blocks in an outer loop reachable from the exit
block because of the way Alive2 pre-orders the basic blocks but such cases are
extremely rare anyway.

Let us look at the output of partial_sub_loop_test_branch_loop, one of
the tests in Transforms/LoopSimplifyCFG/constant-fold-branch.ll that
we have already seen in the previous chapter. We include the whole output in
the attachment, now let us just verify that the 𝜙 predecessors are indeed correct.
Recall the instruction with wrong predecessors from before:

Listing 5.1 Wrong predecessors in Alive2 output
%outer_backedge#2:

%i.inc.lcssa#2 = phi i32 [%i.inc, %backedge], [%i.inc
#1#2, %backedge#1#2]

With our fix, this instruction becomes:

Listing 5.2 Correct predecessors after our fix
%i.inc.lcssa#2 = phi i32 [%i.inc#2, %backedge#2], [%i.inc

#1#2#2, %backedge#1#2#2]

We can see that the previously wrong predecessors are now correct and thus
the 𝜙 function observes the right values.

We submitted our solution as a pull request to Alive2 and it was almost
immediately accepted with only minor comments2. Our solution is now thus a
part of the Alive2 framework.

5.2 Evaluation
To demonstrate that our solution worked, we ran it over the relevant tests in LLVM
test suite with unroll factor of two. Specifically, there were six false positives in
Transforms/LoopSimplifyCFG/constant-fold-branch.ll which we used
as our benchmark test set. Furthermore, we wanted to verify that the performance
overhead was in fact negligible.

2https://github.com/AliveToolkit/alive2/pull/908/

51

https://github.com/AliveToolkit/alive2/pull/908/

5.2.1 Environment

The benchmarks were run on a PC running Linux Mint 20 (Ulyana) with Intel(R)
Core(TM) i5-8265U CPU @ 1.60GHz and 8GB of RAM. We used LLVM 15.0.5 and
Alive2 was compiled against this version of LLVM as well.

5.2.2 Results

To verify that our solution fixed false alarms present in constant-fold-
branch.ll, we ran Alive2 translation validation over all the tests in the test file
with the LCSSA pass and unroll factor of two. This can be accomplished with the
script opt-alive.sh which is included in the build of Alive2. In our case, the
invocation would look like this:

~/alive2/build/opt-alive-test.sh ~/llvm-project/llvm/test/
Transforms/LoopSimplifyCFG/constant -fold-branch.ll --passes=
lcssa -tv-src-unroll=2 -tv-tgt-unroll=2

We include the output of the run in the attachment. Note that the -tv-exit-on-
error flag must be removed from the script if we do not want to abort the run
after the first failure. We can see from Table 5.1 that the running time is virtually
unaffected which we expected. To demonstrate this further, we ran several more
passes in the LLVM test suite before3 (see Table 5.2) and after4 our commit in
Alive2 (Table 5.3) with unroll factors of one, two and four. To accomplish this, we
ran llvm-lit with Alive2’s plugin as follows:

./llvm/build/bin/llvm-lit -s -Dopt=~/alive2/build/opt-alive.sh <
LLVM test>

opt-alive.sh is a wrapper script for opt (LLVM’s optimizing tool) and the
unroll factor must be specified inside this script at the moment.

We ran the benchmarks a little over a hundred times each, discarding a few
warm-up runs. We include the population standard deviation 𝜎 in the tables as
well.

Correct Incorrect Avg. running time 𝜎

Before patch 39 6 1.82s 0.052
After patch 45 0 1.81s 0.064

Table 5.1 Running translation validation on Transforms/LoopSimplifyCFG/constant-
fold-branch.ll with source and target programs unrolled with a factor of two.

3https://github.com/AliveToolkit/alive2/commit/fae975049342fb81940d427d8575e291595733f6
4https://github.com/AliveToolkit/alive2/commit/8bf86254e2c799526e0f1dc99eefb9c7da646c1d

52

https://github.com/AliveToolkit/alive2/commit/fae975049342fb81940d427d8575e291595733f6
https://github.com/AliveToolkit/alive2/commit/8bf86254e2c799526e0f1dc99eefb9c7da646c1d

LLVM pass 𝑘 = 1 𝜎 𝑘 = 2 𝜎 𝑘 = 4 𝜎

Transforms/LoopSimplifyCFG 1.82s 0.11 3.36s 0.09 11.27s 0.17
Transforms/LoopUnrollAndJam 0.74s 0.03 0.76s 0.03 0.84s 0.03

Transforms/LoopRotate 27.74s 0.62 23.79s 0.36 87.79s 0.91
Transforms/LoopDeletion 1.41s 0.04 1.70s 0.18 1.75s 0.13

Table 5.2 Running llvm-lit over LLVM’s test suite with the unroll factor of 𝑘 before the
patch.

LLVM pass 𝑘 = 1 𝜎 𝑘 = 2 𝜎 𝑘 = 4 𝜎

Transforms/LoopSimplifyCFG 1.89s 0.24 3.51s 0.27 11.18s 0.48
Transforms/LoopUnrollAndJam 0.80s 0.03 0.81s 0.10 0.90s 0.04

Transforms/LoopRotate 30.17s 0.10 23.62s 0.09 92.94s 0.89
Transforms/LoopDeletion 1.41s 0.03 1.54s 0.07 1.73s 0.05

Table 5.3 Running llvm-lit over LLVM’s test suite with the unroll factor of 𝑘 after the
patch.

It is clear that our solution did not slow down Alive2 on these benchmarks
even with higher unroll factors.

5.3 Summary
Our solution was able to fix at least six false positives in the LLVM test suite, there
may be others that could have been left unexposed. Furthermore, we accomplished
this with near-zero overhead in terms of performance and very little added code
to Alive2.

While our solution was successful in solving the problem of false alarms in
Alive2, we have discovered some deeper issues related to basic block ordering
in Alive2 that we discuss in Chapter 6. Although there was insufficient time to
address them as ourwork ismainly of theoretical character, we believe our analysis
provides a solid ground for future work in this area and overall improvement of
Alive2’s loop algorithms.

53

54

Chapter 6

Further results and future work

In this chapter, we present further results we have obtained from our analysis.
They were mostly orthogonal to the main line of our work, but some might prove
to be promising future directions.

6.1 Correct ordering of basic blocks
Recall that the problem that caused false alarms in Alive2 was an incorrect
ordering of basic blocks for duplication in the unrolling algorithm. Hence it is
natural to ask whether we can somehow generalize the ordering of the CFG so
that basic blocks are already in the correct order. This is still a subject of debate
with the authors of Alive2 but through discussions with them, we came up with
a few methods. Nevertheless, we eventually found a counterexample for each of
them, but we believe it is a good idea to mention them here as they provide solid
ground for future research in this area.

6.1.1 Reverse postorder and dominators
A standard ordering for solving dataflow problems in compilers is reverse postorder
(RPO). But with loops involved, there are usually a few possible RPOs. Nuno Lopes
of Alive2 suggested1 that we could take inspiration from NewGVN in LLVM2

where they solve this problem by ordering the dominator tree nodes by RPO
which is supposed to break the ties. But consider the example in Figure 6.1.

1Personal communication with Nuno Lopes
2https://github.com/llvm/llvm-project/blob/main/llvm/lib/Transforms/

Scalar/NewGVN.cpp#L3445-L3467

55

https://github.com/llvm/llvm-project/blob/main/llvm/lib/Transforms/Scalar/NewGVN.cpp#L3445-L3467
https://github.com/llvm/llvm-project/blob/main/llvm/lib/Transforms/Scalar/NewGVN.cpp#L3445-L3467

𝐸𝑛𝑡𝑟𝑦

𝐴

𝐵

𝐶 𝐷

𝐸

𝐸𝑥𝑖𝑡

Figure 6.1 Counterexample for RPO with dominators

The nodes 𝐸 and 𝐷 are incomparable according to RPO and are independent
in the dominator tree as well, but we would like 𝐸 to come before 𝐷. This may
also suggest there is a bug in LLVM’s NewGVN but we did not have the time to
investigate it further.

6.1.2 Reverse post-dominators
Post-dominance in a CFG is a concept closely related to dominance that we defined
in the first chapter (Definition 5):

Definition 14 (Post-dominance [15]). We say that basic block 𝐵 post-dominates
basic block 𝐴 if 𝐵 is on every path from 𝐴 to 𝐸𝑥𝑖𝑡. We denote this as 𝐵 postdom 𝐴.
If 𝐴 ≠ 𝐵, then we say that 𝐵 strictly post-dominates 𝐴. 𝐵 is an immediate post-
dominator of 𝐴 if 𝐵 strictly dominates 𝐴 and does not strictly post-dominate any
other basic block that strictly post-dominates 𝐴.

We can see that post-dominance has many of the same properties that domi-
nance has, for example, that immediate post-dominators form a tree. We can also
immediately observe that post-dominance on a CFG 𝐺 is essentially dominance
with the edges reversed and 𝐸𝑛𝑡𝑟𝑦 and 𝐸𝑥𝑖𝑡 swapped. And thus, if we have an
algorithm that computes dominators, we can also easily change it to compute
post-dominators as we can see in Algorithm 5.

56

𝐷

𝐶

𝐵

𝐴

Figure 6.2 Post-dominator tree

Algorithm 5 Algorithm for computing the post-dominator tree
1: function ComputePostDominatorTree(𝐺: a DAG)
2: 𝐺′ ← 𝐺 with reversed edges
3: 𝑇 ←ComputeDominatorTree(𝐺′)
4: return 𝑇
5: end function

The post-dominator tree of our running example is very simple because it
produces a linear order as shown in Figure 6.2.

From the tree, we can construct the post-dominator order. For example in
this case, it would be 𝐷 postdom 𝐶 postdom 𝐵 postdom 𝐴 and to obtain the reverse
post-dominator ordering we simply reverse this order.

Postdominators are almost by definition very well suited for capturing a
certain kind of dependency which is not broken by loops. Nevertheless, the
requirement that a node that postdominates a node 𝐴 must be on all paths from
𝐴 to 𝐸𝑥𝑖𝑡 is too strict for our uses. Consider the example in Figure 6.3. Neither 𝐸
nor 𝐹 postdominate 𝐴 but we would like them to come only after 𝐴. Thus reverse
postdominators by themselves cannot be our answer but they may be a stepping
stone.

6.2 Failure to identify nested loops with shared
headers

Some optimizations can cause the headers of an inner loop and its outer loop to
be merged when performed on nested loops. Our running example in Chapter 1
Figure 1.1 might look like the CFG in Figure 6.4 with merged headers. One such

57

𝐸𝑛𝑡𝑟𝑦

𝐴

𝐵

𝐶

𝐷

𝐸 𝐹

𝐺

𝐸𝑥𝑖𝑡

Figure 6.3 Counterexample for reverse post-dominator ordering

58

𝐸𝑛𝑡𝑟𝑦

𝐴𝐵

𝐶 𝐷

𝐸𝑥𝑖𝑡

Figure 6.4 Running example with merged headers

Listing 6.1 Before jump
threading
void foo(int a, int b,

int c) {
if (a && b)

foo ();
if (b || c)

bar ();
}

Listing 6.2 After jump thread-
ing
void foo(int a, int b,

int c) {
if (a && b) {

foo ();
goto skip;

}
if (b || c) {

skip:
bar ();

}
}

Figure 6.5 A program before and after jump-threading

optimization that can cause this is called jump threading. Jump threading is a
compiler optimization that turns conditional branches into unconditional ones
thus speeding up execution but at the price of increased code size. A canonical
example where jump threading can be used is two overlapping conditions (i.e.
𝑎&&𝑏 implies 𝑏||𝑐) as shown in Figure 6.5.

6.2.1 Possible fixes
1. Havlak presents another algorithm in his paper [10] which is designed to

overcome the issue of shared headers by preprocessing the loops as seen
in 6.6.

59

Figure 6.6 FixLoops algorithm by Havlak [10]

In brief, it inserts a new intermediate node when an irreducible loop is
found which is followed by updating both the forward and backward edge
sets as well as preorder numbering of the new CFG. The new intermediate
nodes give more choices for headers of irreducible loops and so more loops
can be identified in this way.

It is also one of the suggestions by de Vos [16] on how to deal with this
problem though he mentions implementing the procedure would require a
significant amount of time.

2. Another way to separate shared headers is to implement an algorithm
similar to nested loop separation algorithm in LLVM3.

Initially, we tried to make Alive2 fail by constructing source-target pairs
where the source would be a nested loop and the target would contain the same
nested loop only with the headers merged. Nonetheless, we were not successful
in making Alive2 fail to identify loops with merged headers even after a multitude
of attempts either with jump threading or artificially constructed examples, so
this issue might not occur in practice.

6.3 Future work

6.3.1 SSA reconstruction
As we describe in Section 3.1.2, Alive2 does not properly reconstruct the SSA
form after unrolling, instead opting for introducing a new stack variable. This

3https://llvm.org/doxygen/LoopSimplify_8cpp_source.html#l00220

60

https://llvm.org/doxygen/LoopSimplify_8cpp_source.html#l00220

might result in a wrong 𝜙 node placement. There is a failing example in Alive2
that demonstrates this issue4:

Listing 6.3 Bug in 𝜙 node placement
; Transforms/LoopFusion/cannot_fuse.ll

define float @test(float* nocapture %a, i32 %n) {
entry:

%conv = zext i32 %n to i64
%cmp32 = icmp eq i32 %n, 0
br i1 %cmp32, label %for.cond.cleanup7 , label %for.body

for.body: ; preds = %for
.body, %entry

%i.034 = phi i64 [%inc, %for.body], [0, %entry]
%sum1.033 = phi float [%add, %for.body], [0.000000e+00, %

entry]
%idxprom = trunc i64 %i.034 to i32
%arrayidx = getelementptr inbounds float, float* %a, i32 %

idxprom
%0 = load float, float* %arrayidx , align 4
%add = fadd float %sum1.033, %0
%inc = add nuw nsw i64 %i.034, 1
%cmp = icmp ult i64 %inc, %conv
br i1 %cmp, label %for.body, label %for.body8

for.body8: ; preds = %for
.body, %for.body8

%i2.031 = phi i64 [%inc14, %for.body8], [0, %for.body]
%idxprom9 = trunc i64 %i2.031 to i32
%arrayidx10 = getelementptr inbounds float, float* %a, i32 %

idxprom9
%1 = load float, float* %arrayidx10 , align 4
%div = fdiv float %1, %add
store float %div, float* %arrayidx10 , align 4
%inc14 = add nuw nsw i64 %i2.031, 1
%cmp5 = icmp ult i64 %inc14, %conv
br i1 %cmp5, label %for.body8, label %for.cond.cleanup7

for.cond.cleanup7: ; preds = %for
.body8, %entry

%sum1.0.lcssa36 = phi float [0.000000e+00, %entry], [%add,
%for.body8]

ret float %sum1.0.lcssa36
}

4https://github.com/AliveToolkit/alive2/issues/796

61

https://github.com/AliveToolkit/alive2/issues/796

After unrolling inAlive2, we have awrong phi argument in for.cond.cleanup7:

Listing 6.4 Wrong 𝜙 after unroll
%for.cond.cleanup7:

%sum1.0.lcssa36 = phi float [0.000000, %entry], [%add#phi
#0, %for.body8], [%add, %for.body8#2]

But even %for.body8#2 should point to the 𝜙 of %add, like %for.body8.
In the end, this issue seemed to be orthogonal to our work because it does

not involve nested loops and we could not replicate a similar issue that would be
specific only to nested loops (barring artificially nesting the loop). Nevertheless,
this might prove to be an interesting future direction.

The issue of 𝜙 placement might be solved by implementing a better SSA
formation algorithm, e.g. the one by Braun et al. [41]. This would require non-
trivial additional effort, it was only recently submitted as a patch to GCC as the
result of Filip Kastl’s bachelor thesis [42].

6.4 Other minor fixes in Alive2
Alive2 has the ability to generate the CFG of the source and target after unroll by
specifying the -dot-cfg option. Nevertheless, some examples we were initially
testing were crashing in a very non-deterministic way with -dot-cfg. We even-
tually discovered that Alive2 does not allocate enough space for the sink basic
block5, and hence eventually the program wants to access uninitialized memory
(which is undefined behavior). We reported this problem and it was fixed6.

5Recall that Alive2 removes backedges by redirecting them to a special basic block called sink.
6https://github.com/AliveToolkit/alive2/commit/c4e4159addc86c9a38b48ad6c79f43cd59410f40

62

https://github.com/AliveToolkit/alive2/commit/c4e4159addc86c9a38b48ad6c79f43cd59410f40

Conclusion

The goal of this thesis was to analyze loop algorithms in Alive2 with the aim
of identifying the root cause of false alarms in Alive2 occurring in the presence
of certain types of loops. We have succeeded by pinpointing the concrete bug
in Alive2 loop analysis algorithm and moreover, we submitted a pull request
which was merged into Alive2 and is currently a part of the framework. While
the fix itself may have been simple, it solved a large class of problems in Alive2.
Moreover, the issues did not occur deterministically hence many of those may
have stayed dormant for a long time. To be specific, our code fixed at least six
failing tests in Alive2.

Through our analysis, we discovered how important basic block ordering is
in preventing false alarms and we believe that our theoretical work provides a
good grounding for future work on problems in this area.

Our work has helped Alive2 move closer to its goal of zero false alarms, which
makes it a lot more usable for LLVM developers around the world.

63

64

Bibliography

[1] Scott Bauer, Pascal Cuoq, and John Regehr. “Deniable backdoors using
compiler bugs”. In: International Journal of PoC|| GTFO, 0x08 (2015), pp. 7–9.

[2] Xuejun Yang et al. “Finding and understanding bugs in C compilers”. In:
Proceedings of the 32nd ACM SIGPLAN conference on Programming language
design and implementation. 2011, pp. 283–294.

[3] Eric Eide and John Regehr. “Volatiles are miscompiled, and what to do about
it”. In: Proceedings of the 8th ACM international conference on Embedded
software. 2008, pp. 255–264.

[4] Chengnian Sun, Vu Le, and Zhendong Su. “Finding compiler bugs via live
code mutation”. In: Proceedings of the 2016 ACM SIGPLAN international con-
ference on object-oriented programming, systems, languages, and applications.
2016, pp. 849–863.

[5] Jiawei Liu et al. “Is your code generated by ChatGPT really correct? Rigor-
ous evaluation of large language models for code generation”. In: Advances
in Neural Information Processing Systems 36 (2024).

[6] Nuno P Lopes et al. “Alive2: bounded translation validation for LLVM”. In:
Proceedings of the 42nd ACM SIGPLAN International Conference on Program-
ming Language Design and Implementation. 2021, pp. 65–79.

[7] Bugs Found by Alive2. https://github.com/AliveToolkit/alive2/
blob/master/BugList.md. [Accessed 10-12-2023].

[8] How to contribute to LLVM: Proving the transform correct. https : / /
developers.redhat.com/articles/2022/12/20/how-contribute-
llvm. [Accessed 10-12-2023].

[9] Erik Seligman, Tom Schubert, and MV Achutha Kiran Kumar. Formal veri-
fication: an essential toolkit for modern VLSI design. Elsevier, 2023.

[10] Paul Havlak. “Nesting of reducible and irreducible loops”. In: ACM Transac-
tions on Programming Languages and Systems (TOPLAS) 19.4 (1997), pp. 557–
567.

65

https://github.com/AliveToolkit/alive2/blob/master/BugList.md
https://github.com/AliveToolkit/alive2/blob/master/BugList.md
https://developers.redhat.com/articles/2022/12/20/how-contribute-llvm
https://developers.redhat.com/articles/2022/12/20/how-contribute-llvm
https://developers.redhat.com/articles/2022/12/20/how-contribute-llvm

[11] Jeff Erickson. Algorithms. 2023.

[12] Robert Endre Tarjan. “Edge-disjoint spanning trees and depth-first search”.
In: Acta Informatica 6 (1976), pp. 171–185.

[13] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: principles,
techniques, and tools. eng. Reading: Addison-Wesley, 1986. isbn: 0-201-
10088-6.

[14] Thomas Lengauer and Robert Endre Tarjan. “A fast algorithm for find-
ing dominators in a flowgraph”. In: ACM Transactions on Programming
Languages and Systems (TOPLAS) 1.1 (1979), pp. 121–141.

[15] Steven Muchnick. Advanced compiler design implementation. Morgan kauf-
mann, 1997.

[16] Kevin Jacobus de Vos. “Translation Validation for the LLVM Compiler”.
Master’s Thesis. Instituto Superior Técnico, Universidade de Lisboa, 2020.

[17] LLVM Loop Terminology (and Canonical Forms). https://llvm.org/
docs/LoopTerminology.html. [Accessed 10-12-2023].

[18] Nuno P Lopes. A Decade Verifying LLVM, or How to Retrofit Soundness in
Industrial Software, Workshop on Dependable and Secure Software Systems’22.
https://web.ist.utl.pt/nuno.lopes/pres/a-decade-verifying-
llvm.pdf. [Accessed 10-12-2023]. 2022.

[19] Xavier Leroy et al. “CompCert-a formally verified optimizing compiler”.
In: ERTS 2016: Embedded Real Time Software and Systems, 8th European
Congress. 2016.

[20] The Coq Proof Assistant: Welcome! https://coq.inria.fr/. [Accessed
10-12-2023].

[21] M Siegel, A Pnueli, and E Singerman. “Translation validation”. In: TACAS.
1998, pp. 151–166.

[22] Hanan Samet. Automatically proving the correctness of translations involving
optimized code. Vol. 259. Citeseer, 1975.

[23] Chris Lattner and Vikram Adve. “LLVM: A compilation framework for
lifelong program analysis & transformation”. In: International symposium
on code generation and optimization, 2004. CGO 2004. IEEE. 2004, pp. 75–86.

[24] Chris Lattner. The Architecture of Open Source Applications (Volume 1): LLVM.
https://aosabook.org/en/v1/llvm.html. [Accessed 10-12-2023].

[25] LLVM Language Reference Manual. https://llvm.org/docs/LangRef.
html. [Accessed 10-12-2023].

66

https://llvm.org/docs/LoopTerminology.html
https://llvm.org/docs/LoopTerminology.html
https://web.ist.utl.pt/nuno.lopes/pres/a-decade-verifying-llvm.pdf
https://web.ist.utl.pt/nuno.lopes/pres/a-decade-verifying-llvm.pdf
https://coq.inria.fr/
https://aosabook.org/en/v1/llvm.html
https://llvm.org/docs/LangRef.html
https://llvm.org/docs/LangRef.html

[26] AndrewWAppel. “SSA is functional programming”. In:Acm Sigplan Notices
33.4 (1998), pp. 17–20.

[27] Jeffery von Ronne, Ning Wang, and Michael Franz. “Interpreting programs
in static single assignment form”. In: Proceedings of the 2004 workshop on
Interpreters, virtual machines and emulators. 2004, pp. 23–30.

[28] Fabrice Rastello and Florent Bouchez Tichadou. SSA-based Compiler Design.
Springer Nature, 2022.

[29] Gimple. https://gcc.gnu.org/onlinedocs/gccint/GIMPLE.html.
[Accessed 10-12-2023].

[30] The Java HotSpot Performance Engine Architecture. https://www.oracle.
com/java/technologies/whitepaper.html. [Accessed 10-12-2023].

[31] V8 JavaScript Engine. https://v8.dev/. [Accessed 10-12-2023].

[32] LLVM’s Analysis and Transform Passes. https://llvm.org/docs/Passes.
html. [Accessed 10-12-2023].

[33] Leonardo De Moura and Nikolaj Bjørner. “Satisfiability modulo theories:
An appetizer”. In: Brazilian Symposium on Formal Methods. Springer. 2009,
pp. 23–36.

[34] Stephen A Cook. “The complexity of theorem-proving procedures”. In:
Proceedings of the third annual ACM symposium on Theory of computing.
1971, pp. 151–158.

[35] Leonardo de Moura and Nikolaj Bjørner. “Z3: An Efficient SMT Solver”. In:
Tools and Algorithms for the Construction and Analysis of Systems. Ed. by
C. R. Ramakrishnan and Jakob Rehof. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2008, pp. 337–340. isbn: 978-3-540-78800-3.

[36] Tao Wei et al. “A new algorithm for identifying loops in decompilation”. In:
International Static Analysis Symposium. Springer. 2007, pp. 170–183.

[37] Robert Endre Tarjan. Data structures and network algorithms. SIAM, 1983.

[38] Robert Tarjan. “Testing flow graph reducibility”. In: Proceedings of the fifth
annual ACM symposium on Theory of computing. 1973, pp. 96–107.

[39] Zdeněk Dvořák. [lno] Enable unrolling/peeling/unswitching of arbitrary
loops. https://gcc.gnu.org/legacy-ml/gcc-patches/2004-03/
msg02212.html. [Accessed 10-12-2023]. 2004.

[40] Chris Lattner. Loop Optimizer Notes. https : / / nondot . org / sabre /
LLVMNotes/LoopOptimizerNotes.txt. [Accessed 10-12-2023]. 2004.

67

https://gcc.gnu.org/onlinedocs/gccint/GIMPLE.html
https://www.oracle.com/java/technologies/whitepaper.html
https://www.oracle.com/java/technologies/whitepaper.html
https://v8.dev/
https://llvm.org/docs/Passes.html
https://llvm.org/docs/Passes.html
https://gcc.gnu.org/legacy-ml/gcc-patches/2004-03/msg02212.html
https://gcc.gnu.org/legacy-ml/gcc-patches/2004-03/msg02212.html
https://nondot.org/sabre/LLVMNotes/LoopOptimizerNotes.txt
https://nondot.org/sabre/LLVMNotes/LoopOptimizerNotes.txt

[41] Matthias Braun et al. “Simple and efficient construction of static single
assignment form”. In: Compiler Construction: 22nd International Conference,
CC 2013, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings
22. Springer. 2013, pp. 102–122.

[42] Filip Kastl. “An alternative SSA construction algorithm for GCC”. Bache-
lor’s Thesis. Univerzita Karlova, Matematicko-fyzikální fakulta, Katedra
aplikované matematiky, 2023.

[43] Alive2 README. https://github.com/AliveToolkit/alive2/blob/
master/README.md. [Accessed 10-12-2023].

68

https://github.com/AliveToolkit/alive2/blob/master/README.md
https://github.com/AliveToolkit/alive2/blob/master/README.md

Appendix A

Compiling Alive2

Here, we provide instructions on how to compile Alive2. More thorough instruc-
tions are available in Alive2 readme [43] on which this chapter is based. Let us also
mention that it is not necessary to compile Alive2 in order to run translation valida-
tion, there is an Alive2 instance hosted here: https://alive2.llvm.org/ce/.

A.1 Building Alive2
In order to build Alive2, you need to have the following prerequisites:

• cmake (https://cmake.org)

• gcc (https://gcc.gnu.org) or clang (https://clang.llvm.org)

• re2c (https://re2c.org/)

• Z3 (https://github.com/Z3Prover/z3)

• LLVM (https://github.com/llvm/llvm-project)

• hiredis (https://github.com/redis/hiredis)

Afterward, we can clone and build Alive2:

git clone git@github.com:AliveToolkit/alive2.git
cd alive2
mkdir build
cd build
cmake -GNinja -DCMAKE_BUILD_TYPE=Release ..
ninja

If you wish, you may checkout our commit specifically after cloning Alive2:
git checkout 8bf8625.

69

https://alive2.llvm.org/ce/
https://cmake.org
https://gcc.gnu.org
https://clang.llvm.org
https://re2c.org/
https://github.com/Z3Prover/z3
https://github.com/llvm/llvm-project
https://github.com/redis/hiredis

A.2 Running translation validation
Alive2’s opt and clang translation validation requires a build of LLVMwith RTTI
and exceptions turned on. LLVM can be built targeting X86 in the following way:

cd ~/llvm-project/llvm/
mkdir build
cd build
cmake -GNinja -DLLVM_ENABLE_RTTI=ON -DLLVM_ENABLE_EH=ON -

DBUILD_SHARED_LIBS=ON -DCMAKE_BUILD_TYPE=Release -
DLLVM_TARGETS_TO_BUILD=X86 -DLLVM_ENABLE_ASSERTIONS=ON -
DLLVM_ENABLE_PROJECTS="llvm;clang" ../llvm

ninja

Alive2 should then be configured and built as follows:

cd ~/alive2/build
cmake -GNinja -DCMAKE_PREFIX_PATH=~/llvm-project/llvm/build -

DBUILD_TV=1 -DCMAKE_BUILD_TYPE=Release ..
ninja

In Chapter 2, we described how to use alive-tv for a source-target pair of
programs and in Chapter 5, wementioned Alive2 plugin for LLVM lit. For instance,
if we want to test a single LLVM testcase using lit, we can do the following:

./llvm-project/build/bin/llvm-lit -s -vv -Dopt=~/alive2/build/opt-alive
.sh llvm-project/llvm/test/Transforms/LoopUnrollAndJam/multiple_exit_blocks
.ll

The output should be very simple:

Testing Time: 0.17s
Passed: 1

If we want to perform translation validation on a whole pass, we can do the
following:

./llvm-project/build/bin/llvm-lit -s -vv -Dopt=~/alive2/build/opt-alive
.sh llvm-project/llvm/test/Transforms/LoopUnrollAndJam.

70

	Introduction
	Theoretical background
	Preliminaries
	Depth-first search

	Compiler theory
	Control-flow graphs and dominators
	Loops

	Compiler correctness
	Translation validation
	Summary

	Overview of LLVM and Alive2
	LLVM
	LLVM IR
	LLVM Passes

	Alive2
	Encoding LLVM IR semantics
	Showcase

	Analysis of the problem
	Loop algorithms in Alive2
	Loop identification
	Loop unrolling

	Conclusions from the analysis

	Problem in the unrolling algorithm
	Root cause of false alarms with nested loops
	Failing example in LLVM test suite

	Summary

	Implementation and evaluation
	Our solution and implementation in Alive2
	Take exit blocks into account

	Evaluation
	Environment
	Results

	Summary

	Further results and future work
	Correct ordering of basic blocks
	Reverse postorder and dominators
	Reverse post-dominators

	Failure to identify nested loops with shared headers
	Possible fixes

	Future work
	SSA reconstruction

	Other minor fixes in Alive2

	Conclusion
	Bibliography
	Compiling Alive2
	Building Alive2
	Running translation validation

