Bugs in compilers can have severe consequences. Apart from traditional
methods like testing, one of the ways of keeping compilers correct that gained
traction only in recent years is translation validation, a technique ensuring the
semantic correctness of optimizations in compilers. Alive2 is an open-source
translation validation framework for LLVM that is currently widely used by
LLVM developers. In order to make any static analysis tool usable, the
frequency of false alarms must be kept to a minimum. Alive2 was designed
to have zero false alarms and has been very successful in this endeavor except
in the case of certain loops. Our aim in this thesis is to analyze Alive2’s loop
algorithms in an attempt to find the cause of these false alarms. This was
motivated by personal communication with authors of Alive2 who presented
the false alarm issue in loops as one of the more challenging and pressing
issues in Alive2. We were successful in pinpointing the cause of false alarms
and even providing a fix for the issue. Our solution is now a part of the
Alive2 framework. Furthermore, we have identified other potential issues in
Alive2 which we discuss in the thesis as well.



