
BACHELOR THESIS

Přemysl Šťastný

Command-line tool lsql-csv for CSV
files processing

Department of Applied Mathematics

Supervisor of the bachelor thesis: doc. Mgr. Jan Hubička, Ph.D.
Study programme: Computer Science

Study branch: General Computer Science

Prague 2024

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

I dedicate my work to my longtime friend Pavla.

ii

I would like to thank the people who helped me create this thesis. Jan Hubička for
professional guidance and remarks, my mother, Stanislava Šťastná, for the lan-
guage proofreading of the text, and Pavla Odehnalová for the persistent support
and energy she gave me all the time.

iii

Title: Command-line tool lsql-csv for CSV files processing

Author: Přemysl Šťastný

Department: Department of Applied Mathematics

Supervisor: doc. Mgr. Jan Hubička, Ph.D., Department of Applied Mathematics

Abstract: lsql-csv is a tool for small CSV file data querying from a shell with
short queries. It makes it possible to work with small CSV files like with a read-
only relational databases. The tool implements a new language LSQL similar to
SQL, specifically designed for working with CSV files in a shell. LSQL aims to
be a more lapidary language than SQL. Its design purpose is to enable its user
to quickly write simple queries directly to the terminal.

Keywords: relational database, CSV, SQL, Haskell, query language, Unix philos-
ophy, lsql-csv, LSQL

iv

Contents

Introduction 2

1 User documentation 3
1.1 Installation . 3

1.1.1 Running the unit tests . 3
1.2 lsql-csv—quick introduction . 4

1.2.1 Examples . 4
1.3 Usage . 10

1.3.1 Options . 10
1.3.2 Datatypes . 11
1.3.3 Joins . 11
1.3.4 Documentation of language 11

2 Developer documentation 21
2.1 Project building and testing . 21
2.2 String vs Data.Text . 21
2.3 Project layout . 22
2.4 Modules . 22
2.5 Evaluation entry point . 23
2.6 Unit tests . 23

3 Analysis 25
3.1 Why SQL in the first place? . 25
3.2 Why not implement just another SQL for CSV files? 25
3.3 Why number references? . 26
3.4 Why rename standard SQL keywords? 26
3.5 Why some features like descending sort are missing? 26
3.6 Why blocks are delimited by commas? 27
3.7 Why there are two types of expression? 27
3.8 Why there is support only for cross-join and not other types of join? 27
3.9 Why there is no package used for CSV parsing and generating? . 27
3.10 Why String is used as primary text representation? 27
3.11 Why joins have O(nm) complexity? 27
3.12 Why are all operators right-to-left associative? 28

4 Alternative Solutions 29
4.1 Using SQL database . 29
4.2 Using standard Unix tools . 29
4.3 By using SQL implementation for CSV files 30
4.4 By using general-purpose programming language 30

Conclusion 31

Bibliography 32

1

Introduction
Database refers to a set of related data accessed through the use of a database
management system [1]. CSV files (Comma Separated Value files) are a common
way of exchanging and converting data between various spreadsheet programs [2].
Through this definition, we can see even a simple collection of CSV files accessed
through some programs may be seen as a database itself.

SQL (Structured Query Language) is a language used to manage data, espe-
cially in a relational database management system [3]. It was first introduced in
the 1970s [3] and is one of the most used query languages. Despite being stan-
dardized in 1986 by the American National Standards Institute [4] and in 1987
by the International Organization for Standardization [5], there are virtually no
implementations that adhere to it fully [3]. Standard SQL is a typed language
(every data value belongs to some data type) [6] and the language design is there-
fore not very suitable for type-less databases like a collection of CSV files. Despite
that, there are some implementations of SQL (e.g. q [7], CSV SQL [8], trdsql [9],
or csvq [10]), which tries to implement SQL on CSV files.

SQL itself requires a large amount of text to be written for running even
simple queries and the Unix ecosystem misses a tool1, that would allow running
short enough queries over CSV files with similar semantics to SQL. And this is
the reason, why lsql-csv was created.

lsql-csv is a tool for small CSV file data querying from a shell with short
queries. It makes it possible to work with small CSV files like with a read-only
relational databases. The tool implements a new language LSQL similar to SQL,
specifically designed for working with CSV files in a shell.

Haskell is a language with great features for working with the text [11] and
therefore it was selected for the task of implementation of lsql-csv.

1Or author does not know about it.

2

1. User documentation
lsql-csv is a tool for CSV file data querying from a shell with short queries. It
makes it possible to work with small CSV files like with a read-only relational
database.

The tool implements a new language LSQL similar to SQL, specifically de-
signed for working with CSV files in a shell. LSQL aims to be a more lapidary
language than SQL. Its design purpose is to enable its user to quickly write sim-
ple queries directly to the terminal—its design purpose is therefore different from
SQL, where the readability of queries is more taken into account than in LSQL.

1.1 Installation
It is necessary, you had GHC (≥ 8 < 9.29) and Haskell packages Parsec (≥ 3.1
< 3.2), Glob (≥ 0.10 < 0.11), base (≥ 4.9 < 4.20), text (≥ 1.2 < 2.2) and
containers (≥ 0.5 < 0.8) installed. (The package boundaries given are identical
to the boundaries in Cabal package file.) For a build and an installation run:

make
sudo make install

Now the lsql-csv is installed in /usr/local/bin. If you want, you can
specify INSTALL_DIR like:

sudo make INSTALL_DIR=/custom/install-folder install

This will install the package into INSTALL_DIR.
If you have installed cabal, you can alternatively run:

cabal install

It will also install the Haskell package dependencies for you.
The package is also published at https://hackage.haskell.org/package/

lsql-csv in the Hackage public repository. You can therefore also install it
directly without the repository cloned with:

cabal install lsql-csv

1.1.1 Running the unit tests
If you want to verify, that the package has been compiled correctly, it is possible
to test it by running:

make test

This will run all tests for you.

3

https://hackage.haskell.org/package/lsql-csv
https://hackage.haskell.org/package/lsql-csv

1.2 lsql-csv—quick introduction
1.2.1 Examples
One way to learn a new programming language is by understanding concrete
examples of its usage. The following examples are written explicitly for the
purpose of teaching a reader, how to use the tool lsql-csv by showing him
many examples of its usage.

The following examples might not be enough for readers, who don’t know
enough Unix/Linux scripting. If this is the case, please consider learning Unix/
Linux scripting first before LSQL.

It is also advantageous to know SQL.
The following examples will be mainly about parsing of /etc/passwd and

parsing of /etc/group. To make example reading more comfortable, we have
added /etc/passwd and /etc/group column descriptions from man pages to the
text.

File /etc/passwd has the following columns [12]:

1. login name;

2. optional encrypted password;

3. numerical user ID;

4. numerical group ID;

5. user name or comment field;

6. user home directory;

7. optional user command interpreter.

File /etc/group has the following columns [13]:

1. group name;

2. password;

3. numerical group ID;

4. user list separated by commas.

Hello World

lsql-csv '-, &1.2 &1.1'

This will print the second (&1.2) and the first column (&1.1) of a CSV file on
the standard input. If you know SQL, you can read it like SELECT S.second,
S.first FROM stdio S;.

Commands are split by commas into blocks. The first block is (and always
is) the from block. There are file names or - (the standard input) separated by
whitespaces. The second block in the example is the select block, also separated
by whitespaces.

For example:

4

lsql-csv '-, &1.2 &1.1' <<- EOF
World,Hello
EOF

It returns:

Hello,World

Simple filtering

lsql-csv -d: '-, &1.*, if &1.3 >= 1000' </etc/passwd

This will print lines of users whose UID ≥ 1000. It can also be written as:

lsql-csv -d: 'p=/etc/passwd, p.*, if p.3 >= 1000'

lsql-csv -d: 'p=/etc/passwd, &1.*, if &1.3 >= 1000'

lsql-csv -d: '/etc/passwd, &1.*, if &1.3 >= 1000'

The -d: optional argument means the primary delimiter is :. In the few examples
we used overnaming, which allows us to give a data source file /etc/passwd a
name p.

If you know SQL, you can read it as SELECT * FROM /etc/passwd P WHERE
P.UID >= 1000;. As you can see, the LSQL style is more compressed than
standard SQL.

The output might be:

nobody:x:65534:65534:nobody:/var/empty:/bin/false
me:x:1000:1000::/home/me:/bin/bash

If you specify delimiter specifically for /etc/passwd, the output will be a
comma delimited.

lsql-csv '/etc/passwd -d:, &1.*, if &1.3 >= 1000'

It might return:

nobody,x,65534,65534,nobody,/var/empty,/bin/false
me,x,1000,1000,,/home/me,/bin/bash

This happens because the default global delimiter, which is used for the output
generation, is a comma. The global delimiter changes by usage of the command-
line optional argument, but remains unchanged by the usage of the attribute
inside the from block.

Named columns

Let’s suppose we have a file people.csv:

name,age
Adam,21
Petra,23
Karel,25

5

Now, let’s get all the names of people in people.csv using the -n named
optional argument:

lsql-csv -n 'people.csv, &1.name'

The output will be:

Adam
Petra
Karel

As you can see, we can reference named columns by the name. The named
optional argument -n enables first-line headers. If first-line headers are enabled
by the argument, each column has two names under &X—the number name &X.Y
and the actual name &X.NAME.

Now, we can select all columns with a wildcard &1.*:

lsql-csv -n 'people.csv, &1.*'

As the output, we get:

Adam,21,21,Adam
Petra,23,23,Petra
Karel,25,25,Karel

The output contains each column twice because the wildcard &1.* was eval-
uated to &1.1, &1.2, &1.age, &1.name. How to fix it?

lsql-csv -n 'people.csv, &1.[1-9]*'

The output is now:

Adam,21
Petra,23
Karel,25

The command can also be written as

lsql-csv -n 'people.csv, &1.{1,2}'
lsql-csv -n 'people.csv, &1.{1..2}'
lsql-csv 'people.csv -n, &1.{1..2}'

The output will be in all cases still the same.

Simple join

Let’s say, I am interested in the default group names of users. We need to join
tables /etc/passwd and /etc/group. Let’s do it.

lsql-csv -d: '/etc/{passwd,group}, &1.1 &2.1, if &1.4 == &2.3'

What does /etc/{passwd,group} mean? Basically, there are three types of
expressions. The select, the from, and the arithmetic expression. In all select
and from expressions, you can use the curly expansion and wildcards just like in
bash [14].

Finally, the output can be something like this:

6

root:root
bin:bin
daemon:daemon
me:me

The first column is the name of a user and the second column is the name of its
default group.

Basic grouping

Let’s say, I want to count users using the same shell.

lsql-csv -d: 'p=/etc/passwd, p.7 count(p.3), by p.7'

And the output?

/bin/bash:7
/bin/false:7
/bin/sh:1
/bin/sync:1
/sbin/halt:1
/sbin/nologin:46
/sbin/shutdown:1

You can see here the first usage of the by block, which is equivalent to GROUP
BY in SQL.

Basic sorting

Let’s say, you want to sort your users by UID with UID greater than or equal to
1000 ascendingly.

lsql-csv -d: '/etc/passwd, &1.*, if &1.3 >= 1000, sort &1.3'

The output might look like:

me1:x:1000:1000::/home/me1:/bin/bash
me2:x:1001:1001::/home/me2:/bin/bash
me3:x:1002:1002::/home/me3:/bin/bash
nobody:x:65534:65534:nobody:/var/empty:/bin/false

The sort block is the equivalent of ORDER BY in SQL.
If we wanted descendingly sorted output, we might create a pipe to the tac

command—the tac command prints the lines in reverse order:

lsql-csv -d: '/etc/passwd, &1.*, if &1.3 >= 1000, sort &1.3' | tac

7

About nice outputs

There is a trick, how to concatenate two values in the select expression: Write
them without space.

But how will the interpreter know the ends of the values in a command? If the
interpreter sees a char, that can’t be part of the currently parsed value, it tries
to parse it as a new value concatenated to the current one. You can use quotes
for it—quotes themselves can’t be part of most value types like the column name
or numerical constant.

As an example, let’s try to format our basic grouping example.

lsql-csv -d: 'p=/etc/passwd,
"The number of users of "p.7" is "count(p.3)".", by p.7'

The output might be:

The number of users of /bin/bash is 7.
The number of users of /bin/false is 7.
The number of users of /bin/sh is 1.
The number of users of /bin/sync is 1.
The number of users of /sbin/halt is 1.
The number of users of /sbin/nologin is 46.
The number of users of /sbin/shutdown is 1.

As you can see, string formatting is sometimes very simple with LSQL.

Arithmetic expression

So far, we just met all kinds of blocks, and only the if block accepts the arithmetic
expression, and the other accepts the select expression. What if we needed to run
the arithmetic expression inside the select expression? There is a special syntax
$(…) for it.

For example:

lsql-csv -d: '/etc/passwd, $(sin(&1.3)^2 + cos(&1.3)^2)'

It returns something like:

1.0
1.0
1.0
0.9999999999999999
...
1.0

If we run:

lsql-csv -d: '/etc/passwd, $(&1.3 >= 1000), sort $(&1.3 >= 1000)'

We get something like:

8

false
false
...
false
true
true
...
true

More complicated join

Let’s see more complicated examples.

lsql-csv -d: 'p=/etc/passwd g=/etc/group, p.1 g.1, if p.1 in g.4'

This will print all pairs of users and its group excluding the default group. If
you know SQL, you can read it as SELECT P.1, G.1 FROM /etc/passwd P,
/etc/group G WHERE G.4 LIKE '%' + P.1 + '%'; with operator LIKE case-
sensitive and columns named by their column number.

How does in work? It’s one of the basic string level “consist”. If some string
A is a substring of B, then A in B is true. Otherwise, it is false.

And the output?

root:root
root:wheel
root:floppy
root:tape
lp:lp
halt:root
halt:wheel

The example will work under the condition, that there isn’t any username,
which is an infix of any other username.

More complicated…

The previous example doesn’t give a very readable output. We can use group
by to improve it (shortened as by).

lsql-csv -d: 'p=/etc/passwd g=/etc/group,
p.1 cat(g.1","), if p.1 in g.4, by p.1'

The output will be something like:

adm:adm,disk,sys,
bin:bin,daemon,sys,
daemon:adm,bin,daemon,
lp:lp,
mythtv:audio,cdrom,tty,video,
news:news,

9

It groups all non-default groups of a user to a one line and concatenates it delim-
ited by ,.

How can we add default groups too?
lsql-csv -d: 'p=/etc/passwd g=/etc/group,
p.1 cat(g.1","), if p.1 in g.4, by p.1' |

lsql-csv -d: '- /etc/passwd /etc/group,
&1.1 &1.2""&3.1, if &1.1 == &2.1 && &2.4 == &3.3'

This will output something like:
adm:adm,disk,sys,adm
bin:bin,daemon,sys,bin
daemon:adm,bin,daemon,daemon
lp:lp,lp
mythtv:audio,cdrom,tty,video,mythtv
news:news,news

The first part of the command is the same as in the previous example. The
second part inner joins the output of the first part with /etc/passwd on the
username and /etc/group on the default GID number and prints the output of
the first part with an added default group name.

The examples will also work under the condition, that there isn’t any user-
name, which is an infix of any other username.

1.3 Usage
Now, if you understand the examples, it is time to move forward to a more
abstract description of the language and tool usage.

1.3.1 Options
-h
--help

Shows a short command line help and exits before doing anything else.

-n
--named

Enables the first-line naming convention in CSV files. With this option, the first
lines of CSV files will be interpreted as a list of column names.

This works only on input files. Output is always without first-line column
names.

-dCHAR
--delimiter=CHAR

Changes the default primary delimiter. The default value is ,.

-sCHAR
--secondary-delimiter=CHAR

Changes the default quote char (secondary delimiter). The default value is ".

10

1.3.2 Datatypes
There are 4 datatypes considered: Bool, Int, Double, and String. Bool is either
true/false, Int is at least a 30-bit integer, Double is a double-precision floating
point number, and String is an ordinary char string.

During CSV data parsing, the following logic of datatype selection is used:

• Bool, if true or false;

• Int, if the POSIX ERE [0-9]+ fully matches;

• Double, if the POSIX ERE [0-9]+\.[0-9]+(e[0-9]+)? fully matches;

• String, if none of the above matches.

1.3.3 Joins
Join means, that you put multiple input files into the from block.

Joins always have the time complexity O(nm). There is no optimization made
based on if conditions when you put multiple files into the from block.

1.3.4 Documentation of language
lsql-csv [OPTIONS] COMMAND

Description of the grammar:

COMMAND -> FROM_BLOCK, REST

REST -> SELECT_BLOCK, REST
REST -> BY_BLOCK, REST
REST -> SORT_BLOCK, REST
REST -> IF_BLOCK, REST
REST -> LAST_BLOCK

LAST_BLOCK -> SELECT_BLOCK
LAST_BLOCK -> BY_BLOCK
LAST_BLOCK -> SORT_BLOCK
LAST_BLOCK -> IF_BLOCK

FROM_BLOCK -> FROM_EXPR

FROM_EXPR -> FROM_SELECTOR FROM_EXPR
FROM_EXPR -> FROM_SELECTOR

// Wildcard and brace expansion
FROM_SELECTOR ~~> FROM ... FROM

11

// Standard input
FROM -> ASSIGN_NAME=- OPTIONS
FROM -> - OPTIONS

FROM -> ASSIGN_NAME=FILE_PATH OPTIONS
FROM -> FILE_PATH OPTIONS

OPTIONS -> -dCHAR OPTIONS
OPTIONS -> --delimiter=CHAR OPTIONS

OPTIONS -> -sCHAR OPTIONS
OPTIONS -> --secondary-delimiter=CHAR OPTIONS

OPTIONS -> -n OPTIONS
OPTIONS -> --named OPTIONS

OPTIONS -> -N OPTIONS
OPTIONS -> --not-named OPTIONS

OPTIONS ->

SELECT_BLOCK -> SELECT_EXPR
BY_BLOCK -> by SELECT_EXPR
SORT_BLOCK -> sort SELECT_EXPR
IF_BLOCK -> if ARITHMETIC_EXPR

ARITHMETIC_EXPR -> ATOM

ARITHMETIC_EXPR -> ARITHMETIC_EXPR OPERATOR ARITHMETIC_EXPR
ARITHMETIC_EXPR -> (ARITHMETIC_EXPR)

// Logical negation
ARITHMETIC_EXPR -> ! ARITHMETIC_EXPR
// Number negation
ARITHMETIC_EXPR -> - ARITHMETIC_EXPR

SELECT_EXPR -> ATOM_SELECTOR SELECT_EXPR
SELECT_EXPR -> ATOM_SELECTOR

// Wildcard and brace expansion
ATOM_SELECTOR ~~> ATOM ... ATOM

12

ATOM -> pi
ATOM -> e
ATOM -> true
ATOM -> false

// e.g. 1.0, "text", 'text', 1
ATOM -> CONSTANT
// e.g. &1.1
ATOM -> SYMBOL_NAME

ATOM -> $(ARITHMETIC_EXPR)
ATOM -> AGGREGATE_FUNCTION(SELECT_EXPR)
ATOM -> ONEARG_FUNCTION(ARITHMETIC_EXPR)

// # is not a char:
// Two atoms can be written without whitespace
// and their values will be String appended
// if the right atom begins with a char,
// which can't be a part of the left atom.
//
// E.g. if the left atom is a number constant,
// and the right atom is a String constant
// beginning with a quote char,
// the left atom value will be converted to the String
// and prepended to the right atom value.
//
// This rule doesn't apply inside ARITHMETIC_EXPR
ATOM ~~> ATOM#ATOM

// Converts all values to the String type and appends them.
AGGREGATE_FUNCTION -> cat

// Returns the number of values.
AGGREGATE_FUNCTION -> count

AGGREGATE_FUNCTION -> min
AGGREGATE_FUNCTION -> max
AGGREGATE_FUNCTION -> sum
AGGREGATE_FUNCTION -> avg

// All trigonometric functions are in radians.
ONEARG_FUNCTION -> sin
ONEARG_FUNCTION -> cos
ONEARG_FUNCTION -> tan

13

ONEARG_FUNCTION -> asin
ONEARG_FUNCTION -> acos
ONEARG_FUNCTION -> atan

ONEARG_FUNCTION -> sinh
ONEARG_FUNCTION -> cosh
ONEARG_FUNCTION -> tanh

ONEARG_FUNCTION -> asinh
ONEARG_FUNCTION -> acosh
ONEARG_FUNCTION -> atanh

ONEARG_FUNCTION -> exp
ONEARG_FUNCTION -> sqrt

// Converts a value to the String type and returns its length.
ONEARG_FUNCTION -> size

ONEARG_FUNCTION -> to_string

ONEARG_FUNCTION -> negate
ONEARG_FUNCTION -> abs
ONEARG_FUNCTION -> signum

ONEARG_FUNCTION -> truncate
ONEARG_FUNCTION -> ceiling
ONEARG_FUNCTION -> floor

ONEARG_FUNCTION -> even
ONEARG_FUNCTION -> odd

// A in B means A is a substring of B.
OPERATOR -> in

OPERATOR -> *
OPERATOR -> /

// General power
OPERATOR -> **
// Natural power
OPERATOR -> ^

// Integer division truncated towards minus infinity
// (x div y)*y + (x mod y) == x
OPERATOR -> div
OPERATOR -> mod

14

// Integer division truncated towards 0
// (x quot y)*y + (x rem y) == x
OPERATOR -> quot
OPERATOR -> rem

// Greatest common divisor
OPERATOR -> gcd
// Least common multiple
OPERATOR -> lcm

// String append
OPERATOR -> ++

OPERATOR -> +
OPERATOR -> -

OPERATOR -> <=
OPERATOR -> >=
OPERATOR -> <
OPERATOR -> >
OPERATOR -> !=
OPERATOR -> ==

OPERATOR -> ||
OPERATOR -> &&

Each command is made from blocks separated by a comma. There are these
types of blocks.

• From block

• Select block

• If block

• By block

• Sort block

The first block is always the from block. If the block after the first block is
without a specifier (if, by, or sort), then it is the select block. Otherwise, it is
a block specified by the specifier.

The from block accepts a specific grammar (as specified in the grammar de-
scription), the select, the by, and the sort block accept the select expression
(SELECT_EXPR in the grammar), and the if block accepts the arithmetic expres-
sion (ARITHMETIC_EXPR in the grammar).

Every source data file has a reference number based on its position in the
from block and may have multiple names—the assign name, the name given to
the source data file by ASSIGN_NAME=FILE_PATH syntax in the from block, and
the default name, which is given by the path to the file or - in the case of the
standard input in the from block.

15

Each column of a source data file has a reference number based on its position
in it and may have a name (if the named option is enabled for the given source
file).

If a source data file with the reference number M (numbering input files from
1) has a name XXX, its columns can be addressed by &M.N or XXX.N, where N is
the reference number of a column (numbering columns from 1). If the named
option is enabled for the input file and a column has the name NAME, it can also
be addressed by &M.NAME or XXX.NAME.

We call the address a symbol name—SYMBOL_NAME in the grammar descrip-
tion.

If there is a collision in naming (some symbol name addresses more than one
column), then the behavior is undefined.

Exotic chars

Some chars cannot be in unquoted symbol names—exotic chars. For simplicity,
we can suppose, they are all non-alphanumerical chars excluding -, ., &, and _.
Also the first char of a symbol name must be non-numerical and must not be -
or . to not be considered as an exotic char.

It is possible to use a symbol name with exotic chars using ` quote—like
`EXOTIC SYMBOL NAME`.

Quote chars

There are 3 quote chars (`, " and ') used in LSQL. " and ' are always quoting
a String. The ` quote char is used for quoting symbol names.

These chars can be used for String appending. If two atoms inside SELECT_-
EXPR are written consecutively without whitespace and the left atom ends by a
quote char or the right begins by a quote char, they will be converted to the
String and will be String appended. For example, &1.1"abc" means: convert
the value of &1.1 to the String and append it to the String constant abc.

Constants

Constants are in the grammar description as CONSTANT. In the following section,
we speak only about these constants and not about built-in constant values like
pi or true.

There are 3 datatypes of constants. String, Double, and Int. Every string
quoted in " chars or ' chars in an LSQL command is always tokenized as a String
constant. Numbers fully matching the POSIX ERE [0-9]+ are considered Int
constants and numbers fully matching the POSIX ERE [0-9]+\.[0-9]+ Double
constants.

Operator associativity and precedence

All operators are right-to-left associative.
The following list outlines the precedence of the lsql-csv infix operators.

The lower the precedence number, the higher the priority.

16

Precedence number Operator
1 in, **, ̂
2 *, /, div, quot, rem, mod, gcd, lcm
3 ++, +, -
4 <=, >=, <, >, !=, ==
5 ||, &&

Select expression

Select expressions are in the grammar description as SELECT_EXPR. They are
similar to the bash expressions [14]. They are made by atom selector expressions
(ATOM_SELECTOR) separated by whitespaces. These expressions are wildcard and
brace expanded to atoms (ATOM) and are further processed as they were separated
by whitespace. (In bash brace expansion is a mechanism by which arbitrary
strings are generated. For example, a{b,c,d}e is expanded to abe ace ade, see
[14] for details.)

Wildcards and brace expansion expressions are only evaluated and expanded
in unquoted parts of the atom selector expression, which aren’t part of an inner
arithmetic expression.

For example, if we have an LSQL command with symbol names &1.1 and
&1.2, then

• the atom selector expression &1.{1,2} will be expanded to &1.1 and &1.2;

• the atom selector expression &1.* will be expanded to &1.1 and &1.2;

• the atom selector expression `&1.*` will be expanded to `&1.*`;

• the atom selector expression "&1.*" will be expanded to "&1.*";

• the atom selector expression $(&?.1) will be expanded to $(&?.1);

• the atom selector expression &*$(&1.1) will be expanded to &1.1$(&1.1)
and &1.2$(&1.1).

Every atom selector expression can consist:

• A wildcard (Each wildcard is expanded against the symbol name list. If no
symbol name matching the wildcard is found, the wildcard is expanded to
itself.);

• A bash brace expansion expression (e.g. {22..25} → 22 23 24 25) [14];

• An arithmetic expression in $(expr) format;

• A call of an aggregate function AGGREGATE_FUNCTION(SELECT_EXPR)—the-
re cannot be any space after FUNCTION;

• A call of a one-argument function ONEARG_FUNCTION(ARITHMETIC_EXPR)—
there cannot be any space after FUNCTION;

• A constant;

17

• A built-in constant value;

• A symbol name.

Please, keep in mind, that operators (OPERATOR) must be put inside arithmetic
expressions.

Arithmetic expression

Arithmetic expressions are in the grammar description as ARITHMETIC_EXPR.
The expressions use mainly the classical awk style of expressions [15]. You

can use here operators (OPERATOR) keywords >, <, <=, >=, ==, ||, &&, +, -, *, /…
Wildcards and brace expansion expressions are not evaluated inside the arith-

metic expression.

Select blocks

Select blocks are referred in the grammar description as SELECT_BLOCK. These
blocks determine the output. They accept the select expression.

There must be at least one select block in an LSQL command, which refers
to at least one symbol name, or the behavior is undefined.

Examples of select blocks:

&1.[3-6]

This will print the 3rd, 4th, 5th, and 6th columns from the first file if the first
file has at least 6 columns.

ax*.{6..4}

This will print the 6th, the 5th, and the 4th columns from all files whose name
begins with ax if the files have at least 6 columns.

From blocks

These blocks are in the grammar description as FROM_BLOCK. There must be
exactly one from block at the beginning of an LSQL command.

The from block contains input file paths (or - in the case of the standard
input), and optionally their assign name ASSIGN_NAME.

You can use the wildcards and the curly bracket expansion as you were in the
bash to refer input files [14]. If there is a wildcard with an assign name NAME
matching more than one input file, the input files will be given assign names NAME,
NAME1, NAME2… If there is a wildcard, that matches to no file, it is expanded to
itself.

If FILE_PATH is put inside ` quotes, no wildcard or expansion logic applies to
it.

You can also add custom attributes to input files in the format FILE_PATH
-aX --attribute=X -b. The attributes will be applied to all files which will be
matched against FILE_PATH. The custom attributes are referred to as OPTIONS in
the grammar description.

Examples:

18

/etc/{passwd,group}

This will select /etc/passwd and /etc/group files. They can be addressed
either as &1 or /etc/passwd, and &2 or /etc/group.

passwd=/etc/passwd

This will select /etc/passwd and set its assign name to passwd. It can be ad-
dressed as &1, passwd, or /etc/passwd.

Possible custom attributes

-n
--named

Enables the first-line naming convention for an input CSV file. With this option,
the first line of a CSV file will be interpreted as a list of column names.

-N
--not-named

You can also set the exact opposite to an input file. This can be useful if you
change the default behavior.

-dCHAR
--delimiter=CHAR

This changes the primary delimiter of an input file.

-sCHAR
--secondary-delimiter=CHAR

This changes the secondary delimiter of an input file.
Example:

/etc/passwd -d:

This will select /etc/passwd and set its delimiter to :.
Currently, commas and CHARs, which are also quotes in LSQL, are not sup-

ported as a delimiter or a secondary delimiter in FILE_PATH custom attributes.

If blocks

These blocks are in the grammar description as IF_BLOCK. They always begin with
the if keyword. They accept arithmetic expressions, which should be convertible
to Bool: either String false/true, Int (0 false, anything else true), or Bool.

Rows with the arithmetic expression converted to Bool true are printed or
aggregated, and rows with the arithmetic expression converted to Bool false are
skipped.

Filtering is done before the aggregation.
You can imagine the if block as the WHERE clause in SQL.

19

By blocks

By blocks are referred in the grammar description as BY_BLOCK. These blocks
always begin with the by keyword. They accept the select expression.

There can be only one by block in a whole LSQL command.
The by block is used to group the resulting set by the given atoms for the

evaluation by an aggregate function. The by block is similar to the GROUP BY
clause in SQL.

There must be at least one aggregate function in the select block if the by
block is present. Otherwise, the behavior is undefined.

If there is an aggregate function present without the by block present in an
LSQL command, the aggregate function runs over all rows at once.

Sort blocks

These blocks are in the grammar description as SORT_BLOCK. It begins with the
sort keyword. They accept the select expression.

The sort block determines the order of the final output—given atoms are
sorted in ascending order. If there is more than one atom in the sort block (A, B,
C…), the data is first sorted by A and in the case of ties, the atoms (B, C…) are
used to further refine the order of the final output.

You can imagine the sort block as the ORDER BY clause in SQL.
There can be only one sort block in the whole command.

20

2. Developer documentation
This chapter is for potential developers of the project.

2.1 Project building and testing
The project has two ways of building. The first way is through Makefile and
the second is through Cabal. By running the following command it generates the
build folder and the lsql-csv binary under it.

make

It is necessary to have all Haskell dependencies (Parsec (≥ 3.1 < 3.2), Glob
(≥ 0.10 < 0.11), base (≥ 4.9 < 4.20), text (≥ 1.2 < 2.2) and containers
(≥ 0.5 < 0.8)) installed. The package boundaries given are identical to the Cabal
boundaries. Also, it is necessary, that you have GHC (≥ 8 < 9.29) installed.

The second way of building is through Cabal, which handles all dependencies
for you.

cabal build

The project unit tests require building through Makefile and are called by:

make test

It should always succeed before any commit to the project repository is made.
It is possible to generate Haddock developer documentation by calling:

cabal haddock

The documentation contains comments on all exported functions. The docu-
mentation can be alternatively generated by running:

make docs

It generates HTML documentation under the build folder.
The package is also published at https://hackage.haskell.org/package/

lsql-csv in the Hackage public repository. The generated documentation is fully
browseable there.

2.2 String vs Data.Text
As there is a long-term discussion in the Haskell community about whether
String or Data.Text should be used as the primary representation of text, I
would like to emphasize that in this project, String is used as the primary rep-
resentation of text.

21

https://hackage.haskell.org/package/lsql-csv
https://hackage.haskell.org/package/lsql-csv

2.3 Project layout
The project is split into:

1. a library, which contains almost all the logic and is placed under src folder
of the project

2. the main, which contains one source file with Main, which is the entry point
for the lsql-csv binary. It parses the arguments, and checks, whether
the help optional argument was called and whether no argument at all
was given, and either displays the usage message or further call run from
Lsql.Csv.Main in the library—the evaluation entry point.

The library is split into 5 namespaces. Their usage is not strictly defined, but
this can be said:

• Lsql.Csv – This namespace contains the starting point for an lsql-csv
evaluation.

• Lsql.Csv.Core – This namespace contains the logic of the evaluation.

• Lsql.Csv.Lang – This namespace contains parsers for the blocks other than
the from block.

• Lsql.Csv.Lang.From – This namespace contains parsers for the from block
and for CSV files.

• Lsql.Csv.Utils – This namespace contains helper functions.

2.4 Modules
The following section is a summary of all modules of the library.

• Lsql.Csv.Core.BlockOps – This module contains the Block definition rep-
resenting an LSQL command block and functions for getting a specific type
of block from a list of Block.

• Lsql.Csv.Core.Evaluator – This module contains the evaluator of an
lsql-csv command.

• Lsql.Csv.Core.Functions – This module contains the syntactic tree def-
inition and helper functions for its evaluation.

• Lsql.Csv.Core.Symbols – This module contains the definition of Symbol,
SymbolMap, and helper functions for working with them. SymbolMap is one
of the representations of input data.

• Lsql.Csv.Core.Tables – This module contains the definition of Value,
Table, and Column, class instancies over them, functions for manipulation
of them, and Boolable class definition.

• Lsql.Csv.Lang.Args – A module for command-line argument parsing.

22

• Lsql.Csv.Lang.BlockChain – This module contains the main parser of the
blocks other than the from block.

• Lsql.Csv.Lang.BlockSeparator – This module contains the preprocessor
parser, which splits an LSQL command into a list of String—one String
per block.

• Lsql.Csv.Lang.Options – This module implements the common Option
type for the from block custom attributes representation and for the co-
mmand-line optional arguments representation, and its parsers.

• Lsql.Csv.Lang.Selector – This module implements the selector expres-
sion parser and the arithmetic expression parser.

• Lsql.Csv.Lang.From.Block – This module contains the from block parser.
It loads the initial SymbolMap with input data.

• Lsql.Csv.Lang.From.CsvParser – This module contains the CsvParser
called by the parseFile, which loads input CSV files.

• Lsql.Csv.Main – This module contains the starting point for an lsql-csv
evaluation.

• Lsql.Csv.Utils.BracketExpansion – This module contains the curly bra-
cket (braces) expansion implementation.

• Lsql.Csv.Utils.CsvGenerator – This module contains the CSV generator
for the output.

2.5 Evaluation entry point
The evaluation entry point is in the module Lsql.Csv.Main in the function run.
The function first calls the preprocessor in Lsql.Csv.Lang.BlockSeparator,
which splits the input command into a list of String—one String per block.
Then the SymbolMap with input data is loaded using Lsql.Csv.Lang.From.
Block and after that, the rest of the blocks are parsed using Lsql.Csv.Lang.
BlockChain.

The loaded data are then processed using the evaluator in Lsql.Csv.Core.
Evaluator according to the parsed command and finally, the output is generated
by Lsql.Csv.Utils.CsvGenerator.

2.6 Unit tests
There are many unit tests for testing the functionality of the lsql-csv binary.

All unit tests are shell scripts. Each test invokes the lsql-csv binary in the
build project folder with predefined input data, predefined optional arguments,
and a predefined LSQL command, and compares the output of the lsql-csv
invocation with a predefined expected output. If the expected output is the same
as the actual output, the test exits with code 0. If the expected output is different
from the actual output, the test exits with code 1.

23

All unit tests are split into subfolders of the project folder tests. There are
these subfolders:

1. basics – A basic functionality tests.

2. blocks – Tests of all block types and their combinations.

3. examples – Tests of a majority of examples in the user documentation.

4. options – Tests of the command-line optional arguments, and the from
block custom attributes.

5. operators – Tests of operators, their precedence, and associativity.

6. onearg-functions – Tests of one-argument functions.

7. aggregate-functions – Tests of all aggregate functions.

For each test subfolder FOLDER, there is a Makefile target test-FOLDER,
which indirectly invokes all the tests in the subfolder. The Makefile target test
indirectly invokes the tests in all subfolders.

24

3. Analysis
Why the language have been made the way it is? Why it is so inspired by SQL
and is it not just the next implementation of SQL? Why it is implemented the way
it is? This chapter is about key decisions we made while designing the language.

3.1 Why SQL in the first place?
Why do we talk so much about SQL in the first place? Since it was introduced
in the 1970s [3], it has become the de facto standard for many major databases.
Just for illustration, we name a few of them.

• Oracle DB has used it since 1979 as the first commercially available imple-
mentation [16].

• MySQL has used it since 1994, since its original development started [17].

• PostgreSQL has used it since 1996, since it was created [18].

• MSSQL has used it since 1989, since its initial release [19].

SQL is so much known, that there is a widely used term NoSQL databases as
databases opposed to SQL databases.

The main point of making language inspired by SQL is that it brings the ad-
vantage of getting a large user base which only needs to understand the difference
between SQL and the new language to start using the new language. This is the
starting point, from which we further argue about design decisions made.

3.2 Why not implement just another SQL for
CSV files?

As mentioned in the introduction, standard SQL is a typed language (every data
value belongs to some data type) [6], which implies many design choices.

Furthermore, SQL itself requires a large amount of text to be written, before
it can be executed.

One of the ambitions of lsql-csv is to allow a user to write shorter queries
to get the result. For the example, consider

SELECT dataX FROM data.txt WHERE dataX > 1000;

This simple SQL query shows dataX > 1000 from the table data.txt. Now,
if we have a CSV file data.txt, where we know, that dataX is a second column,
the same query can be written with lsql-csv as

data.txt, &1.2, if &1.2 > 1000

The length difference is about 35% off the original SQL query. It is simply said
one of the reasons, why we will not just implement another SQL implementation.

25

3.3 Why number references?
Where the 35% difference happened? One of the main reasons is, that we allowed
referencing dataX as .2. This is also possible due to the nature of the CSV
file, where columns have their index1. Normally, in a SQL database, indexes
of columns are not considered as something, which should decide about query
meaning. This is because the SQL database itself may change, and new columns
may be added or removed. Just because somebody removed a column, it is not
desirable to require developers to change some queries so they comply with the
new database layout.

On the other hand, CSV files are not usually altered as much as SQL databases
are. If a developer (or a user) is not sure about the columns present in a CSV
file, it is one of the first signs, that he or she should use rather a SQL database
than a simple CSV file.

Also, lsql-csv is a tool for daily life and simple scripts rather than a tool for
the development of medium-sized or large-sized projects, like SQL is. This adds
much more flexibility in what can language do without jeopardizing its design
goals—things like number references.

3.4 Why rename standard SQL keywords?
Why have we renamed WHERE for if, GROUP BY for by, and SORT BY for sort?
Simply said, because the renamed variants are shorter and still do not block a
user in understanding, what the query does.

3.5 Why some features like descending sort are
missing?

lsql-csv is a shell utility and as such, it tries to comply with UNIX philoso-
phy. The summarized version from Doug McIlroy is: “This is the Unix philoso-
phy: Write programs that do one thing and do it well. Write programs to work
together. Write programs to handle text streams, because that is a universal
interface.” [20]

The tool for reverting the order of output already exists: tac. Piped together
it creates the wanted output.

In a similar case, the function for the second filtering of the grouped by (in
SQL named HAVING) output has been not added, because the wanted output may
be received by piping the output with another instance of lsql-csv.

And why there is no support for creating output with first-line names of
columns? Because the wanted output may be simply made with the usage of
echo called before lsql-csv if needed.

1Do not confuse with the SQL database index for performance.

26

3.6 Why blocks are delimited by commas?
The author thinks it is more readable like this. Developers in SQL usually use
upper case chars and new line writing to delimiter “the blocks”—this is not so
much necessary in LSQL as in SQL due to comma delimiting. A comma is also
usually easier to write than switching on and off the caps lock, holding the shift
key, or making multiline input.

3.7 Why there are two types of expression?
Why there are the arithmetic and the select expressions with different grammars?
We think, that the addition of a specially designed select expression further allows
the user to write shorter queries. It allows us to introduce wildcards and curly
brackets expansion for a user.

3.8 Why there is support only for cross-join and
not other types of join?

The tool is supposed to be simple. We recommend a user to import CSV data to
a SQL database and use standard SQL if he needs more complicated joins.

The other reason is, that CSV has no standardized NULL value, which is needed
for the left or the right outer joins.

3.9 Why there is no package used for CSV pars-
ing and generating?

Very simply said, to limit the number of dependencies. The more dependencies
are used in a package, the harder is to compile it, maintain it, and add it to any
Linux distribution.

As CSV parsing is not a hard job, it was decided so.

3.10 Why String is used as primary text repre-
sentation?

As the performance gain from using Data.Text would not be significant and
String does not add any more complexity to the code like Data.Text does, it
was decided that String would be the primary text representation.

The tool is simpler and more easily maintainable with String than it would
be with Data.Text.

3.11 Why joins have O(nm) complexity?
lsql-csv is a simple tool for small dataset data querying. As such, it implements
only a simple algorithm for joining the tables—cross-join.

27

For larger dataset joins users are encouraged to use standard SQL databases
as lsql-csv is not designed for this use case.

3.12 Why are all operators right-to-left associa-
tive?

Many modern languages like C++ [21], Rust [22], and C# [23] use combined
left-to-right and right-to-left associativity for operators. Given the fact that it
might be hard to remember which operators are left-to-right and which operators
are right-to-left associative, some expressions in these languages might be hard
to interpret.

To comply with Unix philosophy, concretely with the KISS principle—Keep
it simple, stupid [24], and to solve the problem mentioned above, it was decided
all operators will have the same associativity. The choice of right-to-left instead
of left-to-right is just an arbitrary decision as there are arguments for both right-
to-left or left-to-right associativity of operators. By this decision, the problem of
hard expression interpretation might be solved.

28

4. Alternative Solutions
What other solutions are there for the given problem? What other approaches
can we use, when we are dealing with queries over CSV files? The following
chapter is about alternative approaches to the problem.

4.1 Using SQL database
The first obvious solution is importing the dataset to some standard SQL database
and doing the queries over it. This approach requires the definition of the schema
into which the data will be imported. This is an overhead, which isn’t always
advantageous to pay as we might need only a simple query to be run over it.
The data import might take also a much longer time than a simple lsql-csv
invocation.

But it might be a very favorable solution, if we need large dataset joins, need
a complex query execution or a large amount of simple queries run over it.

By using a standard SQL database you gain the advantage of better perfor-
mance, typed datasets, indexes, and a larger number of built-in functions.

4.2 Using standard Unix tools
It is possible to do a large amount of work just by using awk, join, sort… For
example:

lsql-csv -d: '-, &1.*, if &1.3 >= 1000' </etc/passwd

This query might be rewritten to awk:

awk -F: '{ if($3 >= 1000){ print $0 }}' </etc/passwd

The main advantage of lsql-csv is that it handles some more complex queries
more easily. For example:

lsql-csv -d: '/etc/{passwd,group}, &1.1 &2.1, if &1.4 == &2.3'

This is a simple join query. When written using standard Unix tools, it is:

sort -t: -k3,3 /etc/group >/tmp/group.sort
sort -t: -k4,4 /etc/passwd >/tmp/passwd.sort
join -t: -14 -23 /tmp/passwd.sort /tmp/group.sort | cut -d: -f2,8

As demonstrated, the lsql-csv variant is more readable and shorter1.
It should be also noted, that an lsql-csv join has O(nm) time complexity,

while standard Unix tools have for join written above O(n log n + m log m) time
complexity, so for larger datasets, it might be more beneficial to use them.

1It is possible, that it can be written in shorter and more readable form, but probably not
more than the lsql-csv variant.

29

4.3 By using SQL implementation for CSV files
There are many projects implementing SQL on CSV files. For example:

• q [7]

• CSV SQL [8]

• trdsql [9]

• csvq [10]

It is possible to use them to do the job directly with SQL.
The advantage of it is you do not have to learn a new language if you already

know standard SQL. The disadvantage is that the queries will be probably longer
than would be with lsql-csv.

4.4 By using general-purpose programming lan-
guage

It is not hard to parse and process CSV files with a general-purpose programming
language (for example Python).

The advantage of this solution is a much greater flexibility of what you can
do with the CSV files. The large disadvantage is, that it will take too much code
to be written for any query.

30

Conclusion
The goal of this thesis was to create a new tool for small CSV file data querying
from a shell with short queries. It ought to be simple, comply with Unix philos-
ophy, and use more lapidary language than SQL. It ought to enable its users to
quickly write simple queries directly to the terminal.

Our new tool lsql-csv implements a new language LSQL similar to SQL,
specifically designed for working with CSV files in a shell. It makes it possible to
work with small CSV files like with a read-only relational database.

In some of the use cases, the tool provides shorter and more readable com-
mands then you would get by using standard Unix tools and the language is more
lapidary than SQL.

The lsql-csv package has been uploaded to the Hackage public package
repository and therefore is easily installable. It provides automatic Haddock
documentation, which is browseable from there. It has also been published on
GitHub with the README.md file containing the full user documentation including
the tutorial and grammar description.

31

Bibliography
[1] Wikipedia contributors. Database—Wikipedia, The Free Encyclope-

dia. https://en.wikipedia.org/w/index.php?title=Database&oldid=
1200665358, 2024. [Online; accessed 16-February-2024].

[2] Yakov Shafranovich. Common Format and MIME Type for Comma-
Separated Values (CSV) Files. RFC 4180, October 2005. Available at https:
//www.rfc-editor.org/rfc/rfc4180.txt [Online; accessed 16-February-
2024].

[3] Wikipedia contributors. SQL—Wikipedia, the free encyclopedia. https:
//en.wikipedia.org/w/index.php?title=SQL&oldid=1205226098, 2024.
[Online; accessed 16-February-2024].

[4] ANSI, ANSI X3.135-1986, American National Standard for Information
Systems—Database Language SQL. Standard, American National Stan-
dards Institute, Washington, D.C., US, October 1986.

[5] ISO 9075:1987: Information technology – Database languages SQL – Part 1:
Framework (SQL/Framework). Standard, International Organization for
Standardization, Geneva, CH, June 1987.

[6] ISO 9075-1:2023: Information technology – Database languages SQL –
Part 1: Framework (SQL/Framework). Standard, International Organiza-
tion for Standardization, Geneva, CH, June 2023.

[7] q—Text as Data. https://github.com/harelba/q, January 2022. [Online;
accessed 18-February-2024].

[8] CSV SQL. https://github.com/alex/csv-sql, May 2021. [Online; ac-
cessed 29-February-2024].

[9] trdsql. https://github.com/noborus/trdsql, December 2023. [Online;
accessed 29-February-2024].

[10] csvq. https://github.com/mithrandie/csvq, February 2023. [Online; ac-
cessed 29-February-2024].

[11] Alejandro Serrano Mena. Practical Haskell: A real world guide to program-
ming. Second Edition. Apress, New York, 2019.

[12] passwd(5)–—Linux manual page. https://www.man7.org/linux/
man-pages/man5/passwd.5@@shadow-utils.html, December 2021. [On-
line; accessed 21-March-2024].

[13] group(5)—–Linux manual page. https://www.man7.org/linux/
man-pages/man5/group.5.html, October 2023. [Online; accessed 21-
March-2024].

[14] Bash Reference Manual. https://www.gnu.org/software/bash/manual/
bash.html, September 2022. [Online; accessed 25-March-2024].

32

https://en.wikipedia.org/w/index.php?title=Database&oldid=1200665358
https://en.wikipedia.org/w/index.php?title=Database&oldid=1200665358
https://www.rfc-editor.org/rfc/rfc4180.txt
https://www.rfc-editor.org/rfc/rfc4180.txt
https://en.wikipedia.org/w/index.php?title=SQL&oldid=1205226098
https://en.wikipedia.org/w/index.php?title=SQL&oldid=1205226098
https://github.com/harelba/q
https://github.com/alex/csv-sql
https://github.com/noborus/trdsql
https://github.com/mithrandie/csvq
https://www.man7.org/linux/man-pages/man5/passwd.5@@shadow-utils.html
https://www.man7.org/linux/man-pages/man5/passwd.5@@shadow-utils.html
https://www.man7.org/linux/man-pages/man5/group.5.html
https://www.man7.org/linux/man-pages/man5/group.5.html
https://www.gnu.org/software/bash/manual/bash.html
https://www.gnu.org/software/bash/manual/bash.html

[15] GAWK: Effective AWK Programming: A User’s Guide for GNU Awk.
https://www.gnu.org/software/gawk/manual/gawk.html, 2023. [Online;
accessed 25-March-2024].

[16] Usha Krishnamurthy et al. Oracle Database SQL Language Ref-
erence, 19c, E96310-23. Oracle, November 2023. Available at
https://docs.oracle.com/en/database/oracle/oracle-database/
19/sqlrf/sql-language-reference.pdf [Online; accessed 23-February-
2024].

[17] Wikipedia contributors. MySQL—Wikipedia, the free encyclope-
dia. https://en.wikipedia.org/w/index.php?title=MySQL&oldid=
1205045759, 2024. [Online; accessed 23-February-2024].

[18] Happy Birthday, PostgreSQL! https://www.postgresql.org/about/
news/happy-birthday-postgresql-978/, July 2008. [Online; accessed 23-
February-2024].

[19] Wikipedia contributors. Microsoft SQL Server—Wikipedia, the free encyclo-
pedia. https://en.wikipedia.org/w/index.php?title=Microsoft_SQL_
Server&oldid=1210428592, 2024. [Online; accessed 29-February-2024].

[20] Eric S. Raymond. Basics of the Unix Philosophy. http://www.catb.org/
~esr/writings/taoup/html/ch01s06.html, September 2003. [Online; ac-
cessed 24-February-2024].

[21] C++ Operator Precedence. https://en.cppreference.com/w/cpp/
language/operator_precedence, September 2023. [Online; accessed 08-
Apr-2024].

[22] The Rust Reference—Expressions. https://doc.rust-lang.org/
reference/expressions.html, July 2023. [Online; accessed 08-Apr-2024].

[23] C# specifications—Expressions. https://learn.microsoft.com/
en-US/dotnet/csharp/language-reference/language-specification/
expressions, July 2024. [Online; accessed 08-Apr-2024].

[24] Wikipedia contributors. KISS principle—Wikipedia, The Free Encyclope-
dia. https://en.wikipedia.org/w/index.php?title=KISS_principle&
oldid=1198063371, 2024. [Online; accessed 08-April-2024].

33

https://www.gnu.org/software/gawk/manual/gawk.html
https://docs.oracle.com/en/database/oracle/oracle-database/19/sqlrf/sql-language-reference.pdf
https://docs.oracle.com/en/database/oracle/oracle-database/19/sqlrf/sql-language-reference.pdf
https://en.wikipedia.org/w/index.php?title=MySQL&oldid=1205045759
https://en.wikipedia.org/w/index.php?title=MySQL&oldid=1205045759
https://www.postgresql.org/about/news/happy-birthday-postgresql-978/
https://www.postgresql.org/about/news/happy-birthday-postgresql-978/
https://en.wikipedia.org/w/index.php?title=Microsoft_SQL_Server&oldid=1210428592
https://en.wikipedia.org/w/index.php?title=Microsoft_SQL_Server&oldid=1210428592
http://www.catb.org/~esr/writings/taoup/html/ch01s06.html
http://www.catb.org/~esr/writings/taoup/html/ch01s06.html
https://en.cppreference.com/w/cpp/language/operator_precedence
https://en.cppreference.com/w/cpp/language/operator_precedence
https://doc.rust-lang.org/reference/expressions.html
https://doc.rust-lang.org/reference/expressions.html
https://learn.microsoft.com/en-US/dotnet/csharp/language-reference/language-specification/expressions
https://learn.microsoft.com/en-US/dotnet/csharp/language-reference/language-specification/expressions
https://learn.microsoft.com/en-US/dotnet/csharp/language-reference/language-specification/expressions
https://en.wikipedia.org/w/index.php?title=KISS_principle&oldid=1198063371
https://en.wikipedia.org/w/index.php?title=KISS_principle&oldid=1198063371

	Introduction
	User documentation
	Installation
	Running the unit tests

	lsql-csv—quick introduction
	Examples

	Usage
	Options
	Datatypes
	Joins
	Documentation of language

	Developer documentation
	Project building and testing
	String vs Data.Text
	Project layout
	Modules
	Evaluation entry point
	Unit tests

	Analysis
	Why SQL in the first place?
	Why not implement just another SQL for CSV files?
	Why number references?
	Why rename standard SQL keywords?
	Why some features like descending sort are missing?
	Why blocks are delimited by commas?
	Why there are two types of expression?
	Why there is support only for cross-join and not other types of join?
	Why there is no package used for CSV parsing and generating?
	Why String is used as primary text representation?
	Why joins have O(nm) complexity?
	Why are all operators right-to-left associative?

	Alternative Solutions
	Using SQL database
	Using standard Unix tools
	By using SQL implementation for CSV files
	By using general-purpose programming language

	Conclusion
	Bibliography

