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Introduction
Many real-world physical phenomena, such as the movement of viscous fluids or

heat transfer, are governed by (partial) differential equations. Understanding these
phenomena requires knowing the solutions to the (partial) differential equations.
However, finding exact solutions is often challenging or even impossible due to the
complexity of the governing equations. Therefore, numerical mathematics aims
to find approximate solutions that are sufficiently accurate, allowing us to better
understand the world around.

Multigrid methods are among the most effective iterative methods for the
numerical solution of partial differential equations (PDEs). In this thesis, we focus
on Poisson’s equation as a model problem and obtain its discretization by the
finite difference method. The discretization of PDEs usually yields large algebraic
systems of linear equations.

While solving these systems, various iterative methods can struggle to find
an accurate approximation efficiently. We examine the underlying cause of the
slow convergence observed in relaxation methods, such as Jacobi or Gauss-Seidel.
They effectively reduce oscillating parts of the error but are inefficient in reducing
smooth error components. This is called the smoothing property of the methods.
Smooth components of the error can be successfully represented on a coarse
grid (a grid with lower resolution, i.e., a grid with fewer degrees of freedom).
Solving the smaller system corresponding to the discretisation of the problem on
the coarser grid gives an error approximation, which may significantly improve
the approximate solution on the finer grid computed by the relaxation method.
Multigrid methods are based on combining relaxation methods with correction on
a coarser grid.

We establish the mathematical foundation of multigrid methods, employing
multiple grid levels of varying coarseness within the computational domain to
iteratively solve the system at different resolutions and refine the fine-grid ap-
proximate solution. This approach leverages coarse and fine-grid computations,
resulting in faster convergence rates.

The thesis is structured as follows. The chapter 1 explores Poisson’s equation,
a common partial differential equation (PDE) in physics and engineering. Through
the analytical view, we illustrate the necessity of numerical methods in solving
PDEs. The chapter is based on [1, Chapter 2.2.]. In chapter 2, we focus on
the finite difference method, which is our primary tool for discretising partial
differential equations into systems of algebraic equations. We present its derivation
and explore its implementation. Chapter two follows [2, Chapter 1]. The chapter 3
introduces iterative methods as a mean to approximate solutions for systems of
linear equations. We specifically delve into the Jacobi and Gauss-Seidel methods,
discussing their properties. These relaxation methods serve as a foundation for
Multigrid methods. The chapter draws primarily from [3, Chapter 4.1] and
[2, Chapter 2]. In chapter 4, the thesis presents the essential components of
multigrid methods, including smoothing processes, restriction, and interpolation
techniques for transferring between grids. Practical examples illustrate their roles
and interactions within the multigrid framework. The chapter 5 presents several
multigrid schemes, such as the V-cycle and W-cycle. Algorithmic details are
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discussed. Chapters 4 and 5 are based on [2, Chapters 1-3]. An introductory
theoretical analysis of multigrid methods is presented in chapter 6, discussing
their general formulation, convergence properties, and mathematical conditions for
convergence. This chapter serves as a bridge between practical implementation and
theoretical understanding. The chapter follows [4, Chapter 4]. Finally, chapter 7
consists of numerical experiments designed to empirically test the effectiveness
and convergence speed of multigrid methods in various settings.
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1 Poisson’s Equation
In this chapter, we formulate Poisson’s equation, a partial differential equation

used later to demonstrate the principles of multigrid methods.
Let Ω ⊆ Rd be an open and bounded set, d = {1, 2, 3} is the dimension of the

problem. For function u ∈ C2, u : Ω→ R, define the Laplace operator ∆ as

∆u = div grad u = ∂2u

∂x2
1

+ ∂2u

∂x2
2

+ · · ·+ ∂2u

∂x2
d

.

Given f : Ω→ R, the partial differential equation seeking for u : Ω→ R

−∆u = f, in Ω (1.1)

is called the Poisson’s equation. Laplace’s equation is a special case of (1.1) where
the right-hand side function, also called the source term, is zero, i.e.,

−∆u = 0. (1.2)

The problem is fully determined with proper boundary conditions. In the thesis,
we consider Dirichlet boundary conditions for simplicity. Given u0 : ∂Ω→ R we
require additionally to (1.1) that

u = u0 on ∂Ω. (1.3)

1.1 Poisson’s and Laplace’s Equation in Physics
Poisson’s equation or Laplace’s equation appear in a wide variety of physical

contexts. In a typical interpretation, u denotes the density of some quantity (e.g.
chemical concentration) in equilibrium.

Let us denote V any volume within Ω, ∂V the boundary of the volume V , n
the normal vector of the boundary and dS⃗ = ndS the surface element. If F is the
flux density, then assuming the equilibrium, which implies that the net flux of u
through ∂V equals zero, the Gauss-Ostrogradsky theorem [1, Section 2.2] yields

0 =
∫︂

∂V
F dS⃗ =

∫︂
V

divF dV.

Since V was arbitrary,
divF = 0

in Ω. If F is proportional to −grad(u), then

−div grad u = −∆u = 0.

In electromagnetism, F is the vector of the electric field, and u is the electro-
static potential, typically denoted by E, φ, respectively. Then, for an electric field
in a vacuum it holds

∆φ = − ρ

ε0
.
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Outside the electric charge, where ρ = 0, we have

∆φ = 0.

In hydrodynamics, aerodynamics or fluid mechanics, Laplace’s equation repre-
sents the irrotational fluid flow, where the unknown function u, usually denoted
by ϕ, is the scalar potential.

The behaviour of the gravitational field is given by

∆ϕ = 4πGρ,

where ϕ is the gravitational potential, G is gravitational constant and ρ is the
mass density.

The heat transfer is typically modelled by the time-dependent heat equation

∂u

∂t
−∆u = f. (1.4)

When the solution of (1.4) eventually reaches equilibrium, then

∂u

∂t
= 0,

and the heat transfer u satisfies Poisson’s equation.

1.2 Analytical Solution
Solution to (1.1) with Dirichlet boundary condition (1.3) can be sought ana-

lytically. This requires a fundamental solution to Laplace’s equation (1.2)

Φ(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− |x|

2 d = 1,

− 1
2π

ln(x) d = 2,
1

4π|x| d = 3,

which can be obtained using radial symmetry [1, Section 2.2]. The fundamental
solution is radially symmetric due to the rotational invariance of Laplace’s equation
(1.2) [1, Section 2.2]. Now denote shifted fundamental solution as Φx(y) = Φ(y−x)
and the correction function for a fixed x ∈ Ω satisfying

Φ∗
x(y) =

⎧⎨⎩∆Φ∗
x(y) = 0 in Ω,

Φ∗
x(y) = Φx(y) on ∂Ω.

Then define Green’s function as Gx = Φx(y)− Φ∗
x(y). Using Gx, we can express

the analytical solution of the Poisson’s equation in the integral form

u(x) = −
∫︂

Ω
Gx · f −

∫︂
∂Ω

u0 · ∇GxdS⃗, (1.5)

see, e.g., [5, Section 9.6].
In practice, the specific form for the source term f or the boundary condition

u0 simplifies finding the analytical solution [6, Chapter 7.2.2]. Although, for
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arbitrarily shaped domains, the conformal mappings are a potential solution
method, they may be difficult to describe mathematically [7, Chapter 4].

Therefore, in many real-world scenarios, in contrast to idealised scenarios,
analytic solutions are only sporadically found as the problems involve complex
geometries, boundary conditions [8, p.5] and right-hand side functions [9, p.1].
Therefore (1.5) in these conditions may be unsolvable and numerical methods
must be used to approximate the solution.
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2 Finite Difference Method
For practical computations, the infinite-dimensional problem (1.1) has to be

discretised, i.e. transformed into a finite-dimensional problem. The transformation
could be done by a finite difference method, where the second space derivatives
are approximated using a second-order central difference. Central difference is
derived from the Taylor polynomial using uniform discretisation of the domain Ω.

2.1 One Dimension
Divide the interval Ω = [0, 1] into n uniform subintervals in one dimension.

That means the division is 0 = x0 < x1 < · · · < xn = 1 where xk = k · h,
k = 0, . . . , n, leaving h = 1/n as the step size. A general interval Ω = [a, b] can be
then obtained by scaling x′

i = xi(b− a) + a. Denote the function values in interval
points as f(xk) = fk, k = 1, . . . , n− 1, an approximation of the exact solution in
these points as uk ≈ u(xk), k = 1, . . . , n−1, with u(x0) = u(a) = u(xn) = u(b) = 0,
representing the zero Dirichlet condition. Then the approximate solution can be
written as a vector u = (u1, . . . , un−1)T.

First show that the approximation of the second derivative in a one-dimensional
problem can be given by the formula

uxx(xj) ≈
uj−1 − 2uj + uj+1

h2 ,

which is derived from the Taylor polynomial.
Denote the derivative of the function u with respect to the variable x as ux.

Analogously, denote the second derivative as uxx. From the Taylor expansion at
xk + h and xk + h

u(xk + h) = u(xk) + ux(xk) · h + uxx(xk) · h
2

2 + O(h3)

u(xk − h) = u(xk)− ux(xk) · h + uxx(xk) · h
2

2 + O(h3)

by summing, we get

u(xk + h) + u(xk − h) = 2u(xk) + uxx(xk) · h2 + O(h3)

uxx(xk) = u(xk + h)− 2u(xk) + u(xk − h)
h2 + O(h)

hence

uxx(xk) ≈ uk−1 − 2 uk + uk+1

h2 .

The formulation of the approximation of the problem (1.1) with (1.3) in one
dimension

−uxx(xj) = f(xj), u(a) = u(b) = 0

is therefore
−uj−1 + 2uj − uj+1

h2 = fj, j = 1, 2, . . . , n,

u0 = un = 0.
(2.1)
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2.2 Two Dimensions
In two dimensions, discretize a rectangular domain Ω = (0, 1)×(0, 1) into a grid

m×n.Denote hx = 1/m, hy = 1/n and define grid points as (xi, yk) = (i ·hx, k ·hy),
i = 1, . . . , m− 1, k = 1, . . . , n− 1. Let ui,k ≈ u(xi, yk) represent the approximate
solution at the grid points. Using the same reasoning as in one dimension,

uxx(xi, yk) = u(xi − hx, yk)− 2 u(xi, yk) + u(xi + hx, yk) + O(h3
x)

h2
x

uyy(xi, yk) =
u(xi, yk − hy)− 2 u(xi, yk) + u(xi, yk + hy) + O(h3

y)
h2

y

.

Substituting the derivatives in Poisson’s equation (1.1) by second-order finite
differences leads to

−ui−1,k + 2 ui,k − ui+1,k

h2
x

+ −ui,k−1 + 2 ui,k − ui,k+1

h2
y

= f(xi, yk)

for i = 1, . . . , m− 1, k = 1, . . . , n− 1
(2.2)

and

u0,k = ui,0 = um,k = ui,n = 0 for 0 ≤ i ≤ m, 0 ≤ k ≤ n

as boundary conditions.

2.3 Three Dimensions
In three dimensions, for ease of presentation, we consider a cubic domain Ω =

(0, 1)× (0, 1)× (0, 1) discretized on a uniform grid, i.e. a grid of n×n×n.Denoting
the grid spacing as h = 1/n, the grid points are (xi, yk, zl) = (i · h, k · h, l · h),
where i, k, l = 1, . . . , n − 1. To represent the approximate solution at the grid
points, denote ui,k,l ≈ u(xi, yk, zl) and f(xi, yk, zl) = fikl. By following the same
reasoning as above, one can proceed with the numerical approximation of the
derivatives

uxx(xi, yk, zl) = u(xi − h, yk, zl)− 2 u(xi, yk, zl) + u(xi + h, yk, zl) + O(h3)
h2

uyy(xi, yk, zl) = u(xi, yk − h, zl)− 2 u(xi, yk, zl) + u(xi, yk + h, zl) + O(h3)
h2

uzz(xi, yk, zl) = u(xi, yk, zl − h)− 2 u(xi, yk, zl) + u(xi, yk, zl + h) + O(h3)
h2 .

Substituting the derivatives in Poisson’s equation (1.1) by second-order finite
differences and using (1.3) leads to

−ui−1,k,l − ui,k−1,l − ui,k,l−1 + 6 ui,k,l − ui+1,k,l − ui,k+1,l − ui,k,l+1

h2 = fikl

u0,k,l = ui,0,l = ui,k,0 = un,k,l = ui,n,l = ui,k,0 = 0 for i, k, l ∈ {0, . . . n}.
(2.3)
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2.4 Matrix Notation
We now present matrix representations of the linear algebraic systems (2.1),

(2.2) and (2.3).
In one dimension, the system looks as follows

1
h2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

u1
u2
...

un−2
un−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

f1
f2
...

fn−2
fn−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦ .

In two dimensions, we get the system with (m− 1)(n− 1) unknowns. Denote
the unknowns on the ith row of the grid as wj = (uj,1, uj,2, . . . , uj,n−1)T and the
values of the function f on the ith row of the grid as

Fj = (f(xj, y1), f(xj, y2), . . . , f(xj, yn−1))T.

The system of the equations in two dimensions is then given by block tridiagonal
matrix in the form⎡⎢⎢⎢⎢⎢⎣

B −A

−A B
. . .

. . . . . . −A
−A B

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

w1
w2
...

wm−1

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
F1
F2
...

Fm−1

⎤⎥⎥⎥⎥⎦ ,

where A is a (n− 1)× (n− 1) scaled identity matrix

A = 1
h2

x

In−1

and B is a (n− 1)× (n− 1) tridiagonal matrix

B = 1
h2

y

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2 · h2
x+h2

y

h2
x

−1

−1 2 · h2
x+h2

y

h2
x

. . .
. . . . . . −1

−1 2 · h2
x+h2

y

h2
x

⎤⎥⎥⎥⎥⎥⎥⎥⎦ .

In three dimensions, the system with (n− 1)3 unknowns. Denote by

wj = (uj,1,1, uj,1,2, . . . , uj,1,n−1, uj,2,1, uj,2,2, . . . , uj,2,n−1 . . . , uj,n−1,n−2, uj,n−1,n−1)T

the unknowns for a fixed x-coordinate and the values of the function f as

Fj = (fj,1,1, fj,1,2, . . . , fj,1,n−1, fj,2,1, fj,2,2, . . . , fj,2,n−1 . . . , fj,n−1,n−2, fj,n−1,n−1)T

where fi,j,k = f(xi, yj, zk). The problem (2.3) is then represented by

1
h2

⎡⎢⎢⎢⎢⎢⎣
D −I(n−1)2

−I(n−1)2 D
. . .

. . . . . . −I(n−1)2

−I(n−1)2 D

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

w1
w2
...

wn−1

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
F1
F2
...

Fn−1

⎤⎥⎥⎥⎥⎦ ,
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where D is a (n− 1)2 × (n− 1)2 block tridiagonal matrix

D =

⎡⎢⎢⎢⎢⎢⎣
E −In−1

−In−1 E
. . .

. . . . . . −In−1
−In−1 E

⎤⎥⎥⎥⎥⎥⎦ , E =

⎡⎢⎢⎢⎢⎢⎣
6 −1
−1 6 . . .

. . . . . . −1
−1 6

⎤⎥⎥⎥⎥⎥⎦ .

with E a (n− 1)× (n− 1) tridiagonal matrix.
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3 Iterative Methods
The solution of the system of linear equations Au = f cannot often be found

as the system is too large or the exact solution does not exist. Even if the exact
solution is obtainable, a less expensive approximation to the solution may be
sufficient in some cases.

Iterative methods aim to approximate the solution of a problem by improving
an initial guess u(0) through a sequence of iterations u(i) → u, i = 0, 1, . . . , k. The
method iterates until the error between the current approximation and the actual
solution reaches a predefined tolerance.

3.1 Error, Residual and Residual Equation
Let A ∈ Rn×n, f ∈ Rn, then

Au = f (3.1)

represents the system of n linear equations with the exact solution u ∈ Rn. Given
u(i), a computed approximation to u, there are two important measures of u(i) as
an approximation to u. The (algebraic) error is given by

e(i) = u− u(i).

The error is also a vector, and a proper vector norm can be used to measure
its magnitude. Commonly used norms for this purpose are the maximum and
Euclidean norms [2, Chapter 2].

The error is typically impossible to be computed. Another measure is necessary
to evaluate the quality of the approximate solution. A computable vector is the
residual given by

r(i) = f − Au(i).

It should be noted that a small residual does not necessarily indicate a small error.
An important equation that shows the relationship between the error and the

residual is the residual equation

Ae(i) = r(i),

which is obtained as follows

Ae(i) = A(u− u(i)) = f − Au(i) = r(i).

In other words, given an approximation u(i), we can search for the solution (or new
approximation) by solving the problem with the same matrix A and the residual
r(i) as the right-hand side. Then, if e(i) is the computed correction, we get the
solution as u = u(i) + e(i).
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3.2 Relaxation Methods
Relaxation methods provide a sequence of approximations u(i) → u, i =

0, 1, . . . , k through an iterative scheme in a general form

Mu(i+1) = Nu(i) + f. (3.2)

Matrices M, N ∈ Rn×n, where M is a regular matrix, are obtained by splitting
the matrix A as A = M −N . In such a case, we can also express the relationship
between the error in subsequent steps as

e(i+1) = M−1Ne(i).

This relationship follows from the definition of the error

−Mu(i+1) = −M(u− e(i+1)) = −Nu(i) − f = −N(u− e(i))− f

Me(i+1) = Mu−Nu + Ne(i) − f = Au− f + Ne(i) = Ne(i).

Consider the matrix decomposition

A = D − L− U,

where D is the diagonal part of A, −U is the strict upper triangular part of A,
and −L is the strict lower triangular part of A.

The choice M = D and N = (L + U) in (3.2) leads to the Jacobi method.
This method is of the form

u(i+1) = D−1(L + U)u(i) + D−1f. (3.3)

With the iteration matrix RJ = D−1(L + U), we can rewrite the iteration scheme
as

u(i+1) = RJu(i) + D−1f,

and for the error it holds

e(i+1) = RJe(i).

Weighted Jacobi method as a simple but important modification of the Jacobi
method. The approximation in the new iteration results from a combination of
the previous approximation and the new approximation (3.3) provided by the
Jacobi method. For a parameter ω ∈ R, this is expressed as

u(i+1) = (1− ω)u(i) + ω(D−1(L + U)u(i) + D−1f)
= u(i) − ω(I −D−1(L + U))u(i) + ωD−1f

= u(i) − ωD−1(D − L− U)u(i) + ωD−1f

= (I − ωD−1Au(i)) + ωD−1f.

Denote RJω = I − ωD−1A, then

u(i+1) = RJωu(i) + ωD−1f (3.4)
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and

e(i+1) = RJωe(i).

The optimal parameter for the weighted Jacobi method is ω = 4
5 [3, Chapter

13.2.2].
Another relaxation method is the Gauss-Seidel method corresponding to the

choice M = D − L and N = U . Then the iteration scheme is given by

u(i+1) = (D − L)−1Uu(i) + (D − L)−1f, (3.5)

and the relation

e(i+1) = (D − L)−1Ue(i)

holds for the error.
Jacobi, Gauss-Seidel, or relaxation methods in general can be effective in finding

approximate solutions to systems of linear equations. However, the convergence of
these methods can be slow, particularly for more complex systems, and alternative
techniques such as multigrid or preconditioning may be required to accelerate the
convergence [3, Chapter 9]
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4 Multigrid Components
The relaxation methods introduced in the previous previous chapter 3 have

some limitations for practical use. As we will illustrate in section 4.1, they tend to
reduce error oscillations while leaving smooth components relatively unchanged.
This is called a smoothing property and can slow down the convergence. In
multigrid methods, this deficiency is mitigated by solving problems on a hierarchy
of grids and transferring solutions between fine and coarse grids.

The transition between fine and coarse grids involves two operations: interpo-
lation and restriction, which will be introduced in section 4.2. Interpolation maps
vectors from a coarse to a fine grid, while restriction maps vectors from a fine to
a coarse grid. Let us explore their mathematical formulations and implications in
more detail.

4.1 Convergence and Smoothing Property
In order to examine the convergence of relaxation methods, it is convenient to

focus on the homogeneous linear system Au = 0 and start the iteration process
with a proper initial guess. For this system, the exact solution u = 0 is already
known. Therefore, the difference between the approximation u(i) and the exact
solution is known and equal to −u(i).

Consider a one-dimensional problem as stated in section 2.4 with f = 0 and
n = 500 and use Jacobi method with an initial guess consisting of the functions
in general form

vj = sin
(︄

jkπ

n

)︄
, 0 ≤ j ≤ n, 1 ≤ k ≤ n− 1, (4.1)

called the Fourier modes. The term k is the frequency. The Figure 4.1 shows that
low values of k result in smooth waves, while high values of k lead to oscillatory
waves.

Figure 4.1 Fourier modes for multiple frequencies k.

Now apply the relaxation scheme (3.3) with u(0) = vj and observe the magni-
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tude of error in maximum norm, i.e.
||e(i)||∞ = ||u(i)||∞ = max

j
|u(i)

j |.

As we can see in Figure 4.2 and Figure 4.3, more oscillatory initial guess converges
faster, whereas the smooth waves converge slowly, both in relative error norm
(that is accessible to us thanks to the choice of the right-hand side) and relative
residual norm. When we plot, how many iterations of the method are needed to
reduce the error by three orders of magnitude, see Figure 4.4, we get an analogous
information.

Figure 4.2 The relative maximum norm of the error in iterations of the Jacobi method.
The initial error e(0) is equal to Fourier modes v1, v2, v4 and v8 from (4.1) respectively.

Figure 4.3 The relative maximum norm of the residual in iterations of the Jacobi
method. The initial error e(0) is equal to Fourier modes v1, v2, v4 and v8.

This experiment illustrates that the iterative scheme effectively eliminates the
oscillatory components of the error while leaving the low-frequency or smooth
components relatively unchanged. This is called a smoothing property of a relax-
ation method, and many relaxation schemes possess this property. The smoothing
property is a limitation of standard relaxation methods. However, this limita-
tion can be overcome, and the remedy is one of the pathways to multigrid [2,
Chapter 2].
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Figure 4.4 Number of iterations necessary to reduce error by three orders of magnitude
for Jacobi (left) and Weighted Jacobi with ω = 4

5 (right) with initial guess u(0) equal to
Fourier modes v1, v2, v3, . . . , vn.

4.2 Fine and Coarse Grid
For large-scale system, obtaining the solution may be challenging and time

inefficient as iterative methods may eventually reach a point of stagnation. Denote
Ωh the discretization of the model problem, representing our fine grid, where the
approximate solution is sought, and introduce a coarse grid Ω2h with a double
step size (resulting in half the points in 1D, a quarter in 2D, and one-eighth in
3D). The model problem then can be discretised on Ω2h, where solution is cheaper
to compute. This coarse-grid solution can then be projected onto the fine grid
and used as a correction of the approximate solution obtained on the fine grid.
This process may demonstrate efficacy under certain conditions.

In this chapter, we describe the process of transitioning between grids. This
process is called interpolation when transitioning from a coarse grid to a fine grid
and restriction for transition from the fine and coarse grid. Finally, the correction
using the coarse-grid solution is being discussed.

4.2.1 Interpolation
There are several interpolation methods. For multigrid purposes, the simplest

one - linear interpolation is usually used ([10, p. 620]; [11, p. 15]; [12, p. 1]; [2,
Chapter 2]; [13, p. 19]). For describing the linear interpolation in one dimension,
let us denote the k-th component of the vector v2h on a coarse grid Ω2h as (v2h)k

and the j-th component of the vector vh on a fine grid Ωh as (vh)j. Then the
linear interpolation of vector v2h to vh is given by the relation

(vh)2j = (v2h)j,

(vh)2j+1 = 1
2
(︂
(v2h)j + (v2h)j+1

)︂
, 0 ≤ j ≤ n

2 − 1.
(4.2)

The components of the vector v2h become the even components of the vector vh,
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(v2h)0 = 0 (v2h)1 (v2h)2 (v2h)3 = 0
Ω2h

(vh)0 = 0 (vh)1 (vh)2 (vh)3 (vh)4 (vh)5 (vh)6 = 0
Ωh

1 1
2+ 1

2 1 1
2+ 1

2 1 1
2+ 1

2 1

Figure 4.5 The visual representation of interpolation relation (4.2).

and the odd components are obtained as their arithmetic averages. We can
also write this operation using the matrix operator I2h

h : Rn
2 −1 → Rn−1. This is

a (n− 1)×
(︂

n
2 − 1

)︂
matrix, for example for n = 6

I2h
h v2h = 1

2

⎡⎢⎢⎢⎢⎢⎢⎣
1 0
2 0
1 1
0 2
0 1

⎤⎥⎥⎥⎥⎥⎥⎦
[︄
(v2h)1
(v2h)2

]︄
=

⎡⎢⎢⎢⎢⎢⎢⎣
(vh)1
(vh)2
(vh)3
(vh)4
(vh)5

⎤⎥⎥⎥⎥⎥⎥⎦ = vh.

In two dimensions, the linear interpolation of vector

v2h = ((w2h)1, . . . , (w2h)m−1)
T =

= ((v2h)1,1, (v2h)1,2, . . . , (v2h)1,n−1, . . . , (v2h)m−1,1, . . . , (v2h)m−1,n−1)
T

from Ω2h to a vector vh from Ωh is given by the following relations

(vh)2i,2j = (v2h)i,j,

(vh)2i+1,2j = 1
2
(︂
(v2h)i,j + (v2h)i+1,j

)︂
,

(vh)2i,2j+1 = 1
2
(︂
(v2h)i,j + (v2h)i,j+1

)︂
,

(vh)2i+1,2j+1 = 1
4
(︂
(v2h)i,j + (v2h)i+1,j + (v2h)i,j+1 + (v2h)i+1,j+1

)︂
for 0 ≤ i ≤ m

2 − 1, 0 ≤ j ≤ n
2 − 1. This operation has the matrix form I2h

h :
R( m

2 −1)·( n
2 −1) → R(m−1)·(n−1), analogously to one dimension.
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In three dimensions, the linear interpolation is given by

(vh)2i,2j,2k = (v2h)i,j,k,

(vh)2i+1,2j,2k = 1
2
(︂
(v2h)i,j,k + (v2h)i+1,j,k

)︂
,

(vh)2i,2j+1,2k = 1
2
(︂
(v2h)i,j,k + (v2h)i,j+1,k

)︂
,

(vh)2i,2j,2k+1 = 1
2
(︂
(v2h)i,j,k + (v2h)i,j,k+1

)︂
,

(vh)2i+1,2j+1,2k = 1
4
(︂
(v2h)i,j,k + (v2h)i+1,j,k + (v2h)i,j+1,k + (v2h)i+1,j+1,k

)︂
,

(vh)2i+1,2j,2k+1 = 1
4
(︂
(v2h)i,j,k + (v2h)i+1,j,k + (v2h)i,j,k+1 + (v2h)i+1,j,k+1

)︂
,

(vh)2i,2j+1,2k+1 = 1
4
(︂
(v2h)i,j,k + (v2h)i,j+1,k + (v2h)i,j,k+1 + (v2h)i,j+1,k+1

)︂
,

(vh)2i+1,2j+1,2k+1 = 1
8
(︂
(v2h)i,j,k + (v2h)i+1,j,k + (v2h)i,j+1,k + (v2h)i,j,k+1+

+ (v2h)i+1,j+1,k + (v2h)i+1,j,k+1 + (v2h)i,j+1,k+1 + (v2h)i+1,j+1,k+1

)︂
for 0 ≤ i, j, k ≤ n

2 − 1. In analogy to one and two dimensions, this operation has
the matrix form I2h

h : R( n
2 −1)·( n

2 −1)·( n
2 −1) → R(n−1)·(n−1)·(n−1).

4.2.2 Restriction
The restriction is used for the transition between Ωh and Ω2h. There are

multiple ways to restrict a vector vh to a vector v2h. The simplest one - injection
is defined through an operator Rh

2h : Rn−1 → Rn
2 −1, which satisfies the relation

(v2h)j = (vh)2j, 0 ≤ j ≤ n

2 − 1,

i.e., the coarse-grid vector values are obtained directly from the corresponding
fine-grid values.

Although injection is simple and fast to compute, a more common restriction
operator is the full weighting, see, e.g., [3, Chapter 13.3.2]. This is the operator
Rh

2h : Rn−1 → Rn
2 −1, where the coarse-grid vector values are weighted averages of

neighbouring fine-grid points.
In one dimension Rh

2h is defined as

(v2h)j = 1
4
(︂
(vh)2j−1 + 2(vh)2j + (vh)2j+1

)︂
, 1 ≤ j ≤ n

2 − 1, (4.3)

in two dimensions as

(v2h)i,j = 1
16
(︂
(vh)2i−1,2j−1 + (vh)2i−1,2j+1 + (vh)2i+1,2j−1 + (vh)2i+1,2j+1+

+ 2(vh)2i−1,2j + 2(vh)2i+1,2j + 2(vh)2i,2j−1 + 2(vh)2i,2j+1+

+ 4(vh)2i,2j

)︂
, 1 ≤ i ≤ m

2 − 1, 1 ≤ j ≤ n

2 − 1,
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and in three dimensions as

(v2h)i,j,k = 1
64
(︂
(vh)2i−1,2j−1,2k−1 + (vh)2i−1,2j−1,2k+1 + (vh)2i−1,2j+1,2k−1+

+ (vh)2i+1,2j−1,2k−1 + (vh)2i+1,2j+1,2k+1 + (vh)2i+1,2j+1,2k−1+
+ (vh)2i+1,2j−1,2k+1 + (vh)2i−1,2j+1,2k+1 + 2(vh)2i+1,2j+1,2k+
+ 2(vh)2i+1,2j,2k+1 + 2(vh)2i,2j+1,2k+1 + 2(vh)2i−1,2j−1,2k+
+ 2(vh)2i−1,2j,2k−1 + 2(vh)2i,2j−1,2k−1 + 2(vh)2i−1,2j+1,2k+
+ 2(vh)2i+1,2j−1,2k + 2(vh)2i−1,2j,2k+1 + 2(vh)2i+1,2j,2k−1+
+ 2(vh)2i,2j−1,2k+1 + 2(vh)2i,2j+1,2k−1 + 4(vh)2i,2j,2k−1+
+ 4(vh)2i,2j,2k+1 + 4(vh)2i,2j−1,2k + 4(vh)2i,2j+1,2k+
+ 4(vh)2i−1,2j,2k + 4(vh)2i+1,2j,2k + 8(vh)2i,2j,2k

)︂
for 1 ≤ i, j, k ≤ n

2 − 1.
For n = 6 the operator in one dimension is of the form

Rh
2hvh = 1

4

[︄
1 2 1 0 0
0 0 1 2 1

]︄
⎡⎢⎢⎢⎢⎢⎢⎣
(vh)1
(vh)2
(vh)3
(vh)4
(vh)5

⎤⎥⎥⎥⎥⎥⎥⎦ =
[︄
(v2h)1
(v2h)2

]︄
= v2h.

The reason for choosing the full weighting restriction is that

Rh
2h = 2d · (I2h

h )T , (4.4)

where d is the dimension [3, Chapter 13.3.2]. The relation (4.4) called variational
property and it is often used in the proofs of the convergence of the methods.

Figure 4.6 illustrates the interpolation (4.2) and restriction (4.3). Here the
vector is composed of four Fourier modes with frequencies k = 1, 2, 4, 6, i.e.,
v = 1

4

(︂
sin

(︂
jπ
12

)︂
+ sin

(︂
2jπ
12

)︂
+ sin

(︂
4jπ
12

)︂
+ sin

(︂
6jπ
12

)︂)︂
.

I2h
h

Rh
2h

Figure 4.6 Linear interpolation and full-weighting restriction of a vector.
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4.2.3 Coarse-grid correction
The suggested approach is to initially relax on the fine grid before stagnation

in convergence occurs. Then, the residual equation is used and is transformed
onto a coarse grid using the restriction the residual. On a coarse grid, the problem
for error is solved. Relaxation on the coarse grid is more cheaper due to fewer
unknowns requiring updates. Then, the obtained error is interpolated into a fine
grid and used as a correction to refine the approximation from relaxation on the
fine grid.

Let Ωh and Ω2h be the fine and coarse grids, respectively, with the discretized
model problem represented by the matrices Ah and A2h. Clearly, solving a sys-
tem with A2h cannot, in general, replace solving the residual equation with Ah.
Therefore, using coarse-grid to correct the error e

(i)
h associated with Ωh can only

work for some errors. In particular, coarse grids can represent smooth vectors but
are unsuitable for oscillatory ones. This complements the smoothing property of
relaxation methods that efficiently eliminate oscillating error components while
leaving smoother ones relatively unchanged. The correction scheme employs the
residual equation, restricting presumably smooth residual and error on the coarse
grid.

Let u
(i)
h , e

(i)
h , and r

(i)
h represent an approximation, the associated error and

residual, respectively. The correction on a coarse grid solves

A2he
(i)
2h = Rh

2hr
(i)
h ,

where Rh
2h is the restriction operator mapping Ωh to Ω2h. An approximation to e

(i)
h

is then given by interpolating e
(i)
2h onto Ωh by I2h

h , the interpolation operator from
Ω2h to Ωh. Altogether, the coarse-grid correction is given by

I2h
h e

(i)
2h = I2h

h A−1
2h Rh

2hr
(i)
h ≈ e

(i)
h .

Since Rh
2h has a non-trivial kernel, the first requirement for an efficient coarse-

space correction is that the residual mostly lies outside of the kernel Ker(Rh
2h).

From the construction of the restriction, the kernel contains the oscillatory vectors
and the restriction preserves smooth vectors. This is illustrated in Figure 4.7.

Figure 4.7 Restriction of smooth and oscillatory vectors.
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Similarly for the interpolation, in an efficient coarse-space correction I2h
h e

(i)
2h

is close to e
(i)
h . A necessary condition for that is that e

(i)
h is in the range of the

interpolation operator I2h
h . Given that the range of the interpolation operator

contains smooth vectors, a coarse-space correction can only work for a smooth
error e

(i)
h .

To illustrate the limitations of the coarse-grid correction, compare e
(i)
h with

I2h
h A−1

2h Rh
2hAhe

(i)
h for both smooth and oscillating vectors e

(i)
h . This is done in

Figure 4.8.

Figure 4.8 Function I2h
h A−1

2h Rh
2hAhe

(i)
h for smooth and oscillatory errors.

Another observation appears when Fourier modes are transformed between
grids, particularly from a fine grid Ωh to a coarse grid Ω2h. Consider a Fourier
mode in 1D on a fine grid (4.1), then its representation on a coarse grid becomes
vj = sin

(︂
jkπ

n
2

)︂
= sin

(︂
2jkπ

n

)︂
. Hence, the frequency doubles, as sin(2x) has twice

the frequency of sin(x). This is illustrated in Figure 4.9. Since Fourier modes form
a basis, it is possible to express the error in this basis. Suppose the relaxation
process starts to stagnate due to the smoothing property, where oscillatory parts
of the error have been smoothed out and smooth parts have prevailed. In that case,
the error components become more oscillatory when the problem is transferred to
a coarse grid. This plays no role if the coarse-grid problem on Ω2h is solved by
a direct method. However, if the coarse-grid correction is called recursively, which
is typically done when the coarse-grid problem is still large, the observation from
Figure 4.9 suggests that some iterations of a relaxation method should be done
before the coarse-grid correction on Ω4h.
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Figure 4.9 Fourier modes with k = 2 and k = 8 on a fine and coarse grid.
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5 Multigrid
In a previous chapter, we introduced the key elements of multigrid methods:

smoothing, a transfer between a fine and coarse grid and coarse grid solving. Now
combine the introduced components giving a basic multigrid schemes.

5.1 Two-Grid Scheme
The simplest scheme is a two-grid scheme. Therein we assume that the problem

on the fine grid is too large to be solved directly, while the problem on the coarse
grid can be solved using a direct method. Given matrices Ah, A2h, a vector fh,
a restriction operator Rh

2h and a interpolation operator I2h
h , the scheme is as

follows:

relax on Ahuh = fh on Ωh with initial guess u
(0)
h to obtain an approximation

u
(i)
h ,

compute the residual r
(i)
h = f − Ahu

(i)
h and restrict it to the coarse grid as

r
(i)
2h = Rh

2hr
(i)
h

solve directly the residual equation A2he2h = r
(i)
2h and obtain e2h,

interpolate e2h to Ωh as ẽh = I2h
h e2h and correct the approximation obtained

on Ωh as u
(i)
h ← u

(i)
h + ẽh,

relax on Ahuh = fh on Ωh with initial guess u
(i)
h .

5.2 Another Multigrid Schemes
The two-grid correction scheme relies on the assumption that the residual

equation on a coarse grid Ω2h can be solved directly. This cannot often be satisfied
and, therefore, other schemes must be considered. This is done by introducing
additional grid levels until the coarsest problem is of the size that allows an
efficient direct solution.

5.2.1 V-Cycle Scheme
The basic idea behind the V-cycle scheme is to extend Two-Grid Correction

Scheme by recursively applying it on finer grids. This gives the following algorithm:

relax on Ahuh = fh on Ωh with some initial guess u
(0)
h to obtain an approxi-

mation u
(i)
h , compute the residual r

(i)
h = f − Ahu

(i)
h ,

restrict to Ω2h, relax on A2he2h = r
(i)
2h with initial guess e

(0)
2h = 0, to

obtain approximation e
(j)
2h , compute the residual r

(j)
2h = r

(i)
2h − A2he

(j)
2h ,

restrict to Ω4h, relax on A4he4h = r
(j)
4h with initial guess e

(0)
4h = 0,

to obtain approximation e
(k)
4h , compute the residual r

(k)
4h = r

(j)
4h −

A4he
(k)
4h ,
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·
·
·

restrict to ΩLh (where L = 2p, p ∈ N and p + 1 is the number
of grids used), solve directly ALheLh = r

(l)
Lh and obtain exact

solution eLh

·
·
·

interpolate e8h to e4h and correct ẽ4h = e
(k)
4h + e4h,

relax on A4he4h = r
(j)
4h with initial guess e

(0)
4h = ẽ4h to obtain e4h

interpolate e4h to e2h and correct ẽ2h = e
(k)
2h + e2h,

relax on A2he2h = r
(i)
2h with initial guess e

(0)
2h = ẽ2h to obtain e2h,

interpolate e2h to eh and correct ũh = u
(i)
h + eh,

relax on Ahuh = fh with initial guess u
(0)
h = ũh.

The V-cycle algorithm is named due to the order in which the grids are visited,
as illustrated in the Figure 5.1.

r
(i)
2h = Rh

2hr
(i)
h

r
(j)
4h = R2h

4hr
(j)
2h

e2h = I4h
2h e4h

eh = I2h
h e

(k)
2h

Ahuh = fh

r
(i)
h = f − Ahu

(i)
h

A2he2h = r
(i)
2h

r
(j)
2h = r

(i)
2h − A2he

(j)
2h

A4he4h = r
(j)
4h

exact solution e4h

A2he2h = r
(i)
2h

ẽ2h = e
(j)
2h + e2h

Ahuh = fh

ũh = u
(i)
h + eh

Figure 5.1 The scheme representing a V-cycle.

5.2.2 Full Multigrid V-cycle and W cycle
Other commonly used multigrid schemes are W-cycle and Full Multigrid V-

cycle (FMG scheme). For simplicity, we only illustrate these schemes in Figure 5.2
as an analogy to Figure 5.1 corresponding to V-cycle scheme.

As we can see in the Figure 5.2, W-cycle is a modification of the V-cycle
scheme where two recursive calls of coarse-space correction are considered instead
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Ωh

Ω2h

Ω4h

Ω8h

(a)

Ωh

Ω2h

Ω4h

Ω8h

(b)

Figure 5.2 The scheme representing a (a) W-cycle and (b) FMG cycle.

of one as in V-cycle. This increases the computational cost of a single step. On
the other hand, more operations (intergrid transfers, smoothing) are done on
coarser levels where they are cheaper, with respect to the finest grid.

In contrast to V- and W-cycle, the full multigrid is not an iterative scheme,
it is performed only once going from bottom to top. It starts with the direct
solution of the problem on the coarsest grid. This solution is then interpolated to
the finer grid, where it is used as an initial guess for the relaxation scheme. Then
again the coarsest grid is used to correct the solution from the finer grid using
the residual equation. This process is repeated as illustrated in Figure 5.2 till the
solution on the finest grid is obtained.
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6 An Abstract Multigrid Setting
and Convergence

This chapter aims to develop an abstract generalisation of the multigrid
methods discussed in previous chapters. In the second part, we formulate the
algebraic convergence criteria of a symmetric multigrid method.

6.1 An Algebraic Multigrid Formulation
Consider any discretisation of the domain giving a sequence of finite-dimen-

sional spaces V0, V1, . . . , Vk, with inner products denoted by (·, ·)i, i = 0, . . . , k
respectively, satisfying dim(V0) < dim(V1) < · · · < dim(Vk). Consider the follow-
ing operators:

restriction operator

Ri
i−1 : Vi → Vi−1, i = 1, . . . , k,

interpolation operator

I i−1
i : Vi → Vi+1, i = 0, . . . , k − 1,

discrete operator

Ai : Vi → Vi, i = 0, . . . , k.

Then, the Multigrid method solves the problem

Akuk = fk, (6.1)

where uk, fk ∈ Vk. This method utilises auxiliary problems at lower levels,
represented as Aiui = fi for i = 0, . . . , k, with ui, fi ∈ Vi. Now, we describe the
the multigrid algorithm at level l > 0, denoted MGl(u(0)

l , fl) with initial guess
u

(0)
l to solve Alul = fl, as:

pre-smoothing

u
(i+1)
l = u

(i)
l −Dl,i+1(Alu

(i)
l − fl), i = 0, . . . , κ1 − 1, (6.2)

restriction

fl−1 = Rl
l−1(Alu

(κ1)
l − fl), (6.3)

coarse-grid correction

for l− 1 = 0 we directly solve the system and obtain an exact solution
ũ0 = MG0(u(0)

0 , fl−1) = A−1
0 f0, where initial guess u(0) is not used,
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for l − 1 > 0 we call recursively uj
l−1 = MGl−1(u(j−1)

l−1 , fl−1), j =
1, . . . , γ,
where u

(0)
l−1 ∈ Vl−1 and γ is the number of repetitions of the MGl−1

algorithm (specifically γ = 1 for V-cycle and γ = 2 for W-cycle),

correction

y
(0)
l = u

(κ1)
l + I l−1

l uγ
l−1, (6.4)

post-smoothing

y
(i+1)
l = y

(i)
l −Dl,i+κ1+1(Aly

(i)
l − fl), i = 0, . . . , κ2 − 1, (6.5)

denote this obtained approximation as a result of MGl algorithm

ũl = MGl(u(0)
l , fl) = y

(κ2)
l .

Dl,i, i = 1, . . . , κ1 + κ2 represents a linear operator denoting an iterative method.
The Multigrid algorithm is iterated until prescribed tolerance is achieved.

6.2 The Operator of Error Suppression
The operator of error suppression describes the evolution of the error in one

repetition of multigrid algorithm. The convergence of the algorithm can be proved
by studying and properly bounding the operator.

Consider a fixed value of i within the range from 1 to k. Given that ui

represents the exact solution to the problem Aiui = fi, we can denote the error of
the initial guess as e

(0)
i = ui − u

(0)
i . Then we can preform the MGi algorithm for

e
(0)
i to obtain corresponding error eĩ for the final approximation ũi. Now denote

the operator of error suppression Bi : e
(0)
i → eĩ [4, chapter 4.2.2].

Lemma 1. The operator of error suppression Bi is linear for any e
(0)
i , independent

of fi, u
(0)
i and has the form

Bi = J
(κ2)
i (I − I i−1

i (I −Bγ
i−1)A−1

i−1R
i
i−1Ai)J (κ1)

i , (6.6)

where

J
(κ1)
i = (I −Di,κ1Ai) . . . (I −Di,1Ai)

J
(κ2)
i = (I −Di,κ1+κ2Ai) . . . (I −Di,κ1+1Ai),

for I denoting the identity operator.

The matrices J
(κ1)
i and J

(κ2)
i represent the error smoothing through the chosen

smoother (typically Jacobi, weighted Jacobi, or Gauss-Seidel method) accom-
plished in κ1 or κ2 steps of the respective method in (6.2) and (6.5).
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Proof. Proof by induction with respect to i.
For i = 0 the problem A0u0 = f0 is solved directly giving the exact solution

u
(1)
0 = MG0(u(0)

0 , f0) with a corresponding error e0 = 0. Therefore, B0 is a null
operator satisfying all the conditions of the lemma.

For i > 0 assume that Bi−1 is an operator satisfying all the conditions. It is
linear for any e

(0)
i−1, independent of fi−1, u

(0)
i−1 and has the form Bi−1 = J

(κ2)
i−1 (I −

I i−2
i−1 (I −Bγ

i−2)A−1
i−2R

i−1
i−2Ai−1)J (κ1)

i−1 .
In the pre-smoothing phase, denote the error of iterative approximation as

e
(l)
i = ui − u

(l)
i . By using (6.2) and subtracting ui we get

u
(l+1)
i − ui = u

(l)
i − ui −Di,l+1(−Aie

(l)
i + Aiui − fi)

−e
(l+1)
i = −e

(l)
i +Di,l+1Aie

(l)
i

e
(l+1)
i = (I −Di,l+1Ai)e(l)

i .

Then for l = κ1 using the induction

e
(κ1)
i = (I −Di,l+1Ai)e(κ1−1)

i = · · · = (I −Di,κ1Ai) . . . (I −Di,1Ai)e(0)
i

e
(κ1)
i = J

(κ1)
i e

(0)
i .

In the restriction phase, using (6.3),

fi−1 = Ri
i−1Aie

(κ1)
i .

The problem Ai−1ui−1 = fi−1 has the exact solution ui−1, i. e.,

ui−1 = A−1
i−1R

i
i−1Aie

(κ1)
i . (6.7)

In the coarse-grid solution phase, the initial guess is zero, u
(0)
i−1 = 0. Therefore,

the initial error is equal to the exact solution e
(0)
i−1 = ui−1. In this stage the

MGi−1-algorithm is repeated γ times. After one repetition we get the result ũi−1
with an error ẽi−1, i. e.,

ẽi−1 = Bi−1e
(0)
i−1 = Bi−1ui−1.

After γ repetitions, the obtained approximation is uγ
i−1 and the error equals to

ẽγ
i−1 = Bi−1e

γ−1
i−1 = · · · = Bγ

i−1e
(0)
i−1 = Bγ

i−1ui−1.

Therefore

uγ
i−1 = ui−1 − ẽγ

i−1 = ui−1 −Bγ
i−1ui−1 = (I −Bγ

i−1)ui−1. (6.8)

In the correction and the post-smoothing phases, we get the approximation
y

(0)
i with the error ẽ

(0)
i = ui − y

(0)
i . By subtracting exact solution ui from both

side in equation (6.4)

−ẽ
(0)
i = −e

(κ1)
i + I i−1

i uγ
i−1.
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Using (6.7) and (6.8),

ẽ
(0)
i = e

(κ1)
i − I i−1

i (I −Bγ
i−1)A−1

i−1R
i
i−1Ai)e(κ1)

i =
= (I − I i−1

i (I −Bγ
i−1)A−1

i−1R
i
i−1Ai))e(κ1)

i

In the post-smoothing phase, proceed analogously to the first part

ẽ
(l+1)
i = (I −Di,l+κ1+1Ai)ẽ(l)

i .

Then for l = κ2 using the induction

ẽ
(κ2)
i = (I −Di,κ1+κ2Ai)ẽ(κ1+κ2−1)

i =
= (I −Di,κ1+κ2Ai) . . . (I −Di,κ1+1Ai)ẽ(0)

i =
= J

(κ2)
i ẽ

(0)
i .

As ẽi = ẽ
(κ2)
i

ẽi = J
(κ2)
i ẽ

(0)
i =

= J
(κ2)
i (I − I i−1

i (I −Bγ
i−1)A−1

i−1R
i
i−1Ai))e(κ1)

i =
= J

(κ2)
i (I − I i−1

i (I −Bγ
i−1)A−1

i−1R
i
i−1Ai))J (κ1)

i e
(0)
i .

therefore Bi : e
(0)
i → eĩ is in a form Bi = J

(κ2)
i (I−I i−1

i (I−Bγ
i−1)A−1

i−1R
i
i−1Ai)J (κ1)

i .
The operator Bi is linear for any e

(0)
i , independent of fi and u

(0)
i .

Given the form of the error suppression operator, a sufficient condition for
convergence of the multigrid method is that the spectral norm ϱ(Bi) is strictly less
than one [14, Theorem 1.3.4]. In general, this is hard to verify and this condition
is replaced by requiring that a proper norm of Bi is strictly less than one, [14,
Theorem 1.3.2].

6.3 Convergence of the Symmetric V-cycle
In this section, we explore the convergence and convergence criteria within

a specific case, the symmetric V-cycle. We expect that the symmetric V-cycle
with γ = 1 and κ1 = κ2 satisfies the following:

The operators Ai are self-adjoint and positive definite. (6.9)

The interpolation and restriction operators meet a variational property

I i−1
i = 1

c∗ · (R
i
i−1)∗, c∗ ∈ R > 0. (6.10)

J
(κ1)
i = J

(κ2)∗

i (6.11)

in terms of inner products (·, ·)i. Finally,

Ai−1 = Ri
i−1AiI

i−1
i , (6.12)

JiAi = AiJi (6.13)

where Ji = J
(κ1)
i .
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Lemma 2. V-cycle multigrid method from subsection 5.2.1 with Jacobi or weighted
Jacobi iteration meets the conditions (6.9) - (6.13).

Proof. All the matrices A from section 2.4 are real symmetric operators, therefore
they are self-adjoint.

(Ax, y)i = (Ax)T y = xT AT y = xT (Ay) = (x, Ay)i.

Matrices are also irreducibly diagonally dominant (∀k : |ak,k| ≥
∑︁

j ̸=k |ak,j| and
∃k : |ak,k| >

∑︁
j ̸=k |ak,j|) with real positive diagonal entries. Therefore they are

positive definite.

xT Ax =
n∑︂

k=1
ak,kx2

k +
n∑︂

k=1

n∑︂
j=1
j ̸=k

ak,jxjxk ≥
n∑︂

k=1

(︂
ak,kx2

k −
n∑︂

j=1
j ̸=k

|ak,j||xj||xk|
)︂

=

=
n∑︂

k=1

(︂
|ak,k|x2

k −
n∑︂

j=1
j ̸=k

|ak,j||xj||xk|
)︂

>
n∑︂

k=1

(︂ n∑︂
j=1
j ̸=k

|ak,j|x2
k −

n∑︂
j=1
j ̸=k

|ak,j||xk||xj|
)︂

=

=
n∑︂

k=1

n∑︂
j>k

(|ak,j|(x2
k + x2

j − 2|xk||xj|)) =
n∑︂

k=1

n∑︂
j>k

|ak,j|(xk − xj)2 ≥ 0

If we set interpolation and restriction operators as I i−1
i = I2h

h , Ri
i−1 = Rh

2h

as defined in section 4.2, then those operators satisfy variational property (6.10)
with c∗ = 2d as shown subsection 4.2.2 as well as (6.12) Ai−1 = Ri

i−1AiI
i−1
i , which

is defines the coarse grid operator.
To prove J

(κ1)
i = J

(κ2)∗

i we need to find a form of matrix Dl,i in (6.2) and
(6.5).

Weighted Jacobi iteration method is for ω ∈ R

u
(i+1)
l = (I − ωD−1

l A)u(i)
l + ωD−1

l fl = u
(i)
l − ωD−1

l (Alu
(i)
l − fl).

Therefore Dl,i = ωD−1
l , i = 0, . . . , κ, where κ = κ1 = κ2. Then

J
(κ)
i = (I − ωD−1

i Ai) . . . (I − ωD−1
i Ai)

J
(κ)
i

∗
= ((I − ωD−1

i Ai) . . . (I − ωD−1
i Ai))∗

= (I − ωD−1
i Ai)∗ . . . (I − ωD−1

i Ai)∗

= (I∗ − (ωD−1
i Ai)∗) . . . (I∗ − (ωD−1

i Ai)∗)
= (I − ωA∗

i D
−∗
i ) . . . (I − ωA∗

i D
−∗
i )

= (I − ωAiD
−1
i ) . . . (I − ωAiD

−1
i )

Since D−1
i is a diagonal matrix with the same elements along the diagonal (in

particular, h2

2 in one dimension, h2

4 in two dimensions and h2

6 in three dimensions),
then the commutativity property holds AiD

−1
i = D−1

i Ai, as the multiplication
by a multiple of identity matrix is analogous to scaling matrix Ai by a scalar.
Therefore

J
(κ)
i

∗
= (I − ωD−1

i Ai) . . . (I − ωD−1
i Ai) = J

(κ)
i

and (6.11) holds (even for Jacobi method with ω = 1).
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The last property (6.13), i.e. JiAi = AiJi, can be proved using the commuta-
tivity property used in a previous part as

JiAi = (I − ωD−1
i Ai) . . . (I − ωD−1

i Ai)Ai

= (I − ωD−1
i Ai) . . . (Ai − ωD−1

i AiAi) =
= (I − ωD−1

i Ai) . . . (Ai − ωD−1
i AiAi)

= (I − ωD−1
i Ai) . . . (Ai − AiωD−1

i Ai)
= (I − ωD−1

i Ai) . . . (I − ωD−1
i Ai)Ai(I − ωD−1

i Ai)
= · · · = Ai(I − ωD−1

i Ai) . . . (I − ωD−1
i Ai)

= AiJi.

Therefore, all the assumptions hold for a symmetric multigrid as defined
above.

If using a Gauss-Seidel iteration, the condition (6.13) is not satisfied. That is
the reason we limit our consideration to the Jacobi, or weighted Jacobi method
moving forward.

With the inner product (·, ·)i in Vi let us introduce Ai-inner product denoted
as [u, v]i = (Aiu, v)i, u, v ∈ Vi, with its corresponding norm JuKi =

√︂
[u, u]i and

a matrix norm

JMKi = sup
v∈Vi\{0}

JMvKi

JvKi

.

As mentioned in section 6.2, the multigrid method convergences when the
norm of the error suppression operator is less than one. This introduced norm is
used in the proof of convergence as it simplifies the proof.

To obtain convergence, however, we will have to add one more condition,
namely for the size of smoothing of the solution in the pre/post-smoothing phase.

Clearly, we require the error norm after the smoothing phase to be smaller
than the error norm before the smoothing phase (JvK2

i − JJivK2
i ≥ 0). That is so

that the error does not increase.
Furthermore, we expect the algorithm to satisfy the following. When the vector

is effectively smoothed out during the smoothing phase, indicated by a large
JvK2

i − JJivK2
i , the subsequent correction on a fine grid may not require as much

efficiency, JQiJivK2
i could be larger. But, if the vector is not smoothed enough

during the smoothing phase, JvK2
i − JJivK2

i being close to zero, a coarse grid
correction must be efficient, leaving JQiJivK2

i minimised.
We can express both of those conditions in one inequality

JvK2
i − JJivK2

i ≥ c J(I − I i−1
i A−1

i−1R
i
i−1Ai)JivK2

i (6.14)

where c > 0. Denote the operator Qi : u→ v ∈ Vi as Qi := I − I i−1
i A−1

i−1R
i
i−1Ai.

Then the convergence criterion is

JvK2
i − JJivK2

i ≥ c JQiJivK2
i . (6.15)

Theorem 3. Suppose the conditions (6.9) to (6.13) are valid for the symmetric
MGl algorithm with γ = 1 (V-cycle). Also, let the convergence criterion (6.15)
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hold for c > 0. Under these conditions, for the Ai-norm of the error suppression
applies

JBiKi ≤
1

1 + c
. (6.16)

Proof. In finite-dimensional Vi

JBiKi = sup
v∈Vi\{0}

JBivKi

JvKi

= sup
v∈Vi\{0}

[Biv, v]i
[v, v]i

.

Prove the inequality (6.16) by induction for ε > 0

0 ≤ [Biv, v]i
[v, v]i

≤ ε

2d
:= 1

1 + c
∀v ∈ Vi \ {0} (6.17)

For i = 0 B0 is a null operator JBiKi = 0 and (6.17) is valid for any c > 0.
For i > 0 suppose that Bi−1 is satisfies (6.17). Then using Lemma 1 and

property (6.11)
[Biv, v]i = [J∗

i (I − I i−1
i (I −Bi−1)A−1

i−1R
i
i−1Ai)Jiv, v]i =

= [J∗
i QiJiv, v]i + [J∗

i I i−1
i Bi−1A

−1
i−1R

i
i−1AiJiv, v]i =

= [QiJiv, Jiv]i + 1
c∗ [Bi−1A

−1
i−1R

i
i−1AiJiv, A−1

i−1R
i
i−1AiJiv]i−1,

because under assumptions (6.9), (6.10), (6.12) and (6.13)
[J∗

i I i−1
i Bi−1A

−1
i−1R

i
i−1AiJiv, v]i = (AiJ

∗
i I i−1

i Bi−1A
−1
i−1R

i
i−1AiJiv, v)i =

= (J∗
i AiI

i−1
i Bi−1A

−1
i−1R

i
i−1AiJiv, v)i = (AiI

i−1
i Bi−1A

−1
i−1R

i
i−1AiJiv, Jiv)i =

= (I i−1
i Bi−1A

−1
i−1R

i
i−1AiJiv, AiJiv)i =

= 1
2d

((Ri
i−1)∗Bi−1A

−1
i−1R

i
i−1AiJiv, AiJiv)i =

= 1
2d

(Bi−1A
−1
i−1R

i
i−1AiJiv, Ri

i−1AiJiv)i =

= 1
2d

(A−1
i−1Ai−1Bi−1A

−1
i−1R

i
i−1AiJiv, Ri

i−1AiJiv)i−1 =

= 1
2d

(Ai−1Bi−1A
−1
i−1R

i
i−1AiJiv, A−1

i−1R
i
i−1AiJiv)i−1 =

= 1
2d

[Bi−1A
−1
i−1R

i
i−1AiJiv, A−1

i−1R
i
i−1AiJiv]i−1.

From the induction assumption

0 ≤ [Biv, v]i ≤ [QiJiv, Jiv]i + ε

2d
[A−1

i−1R
i
i−1AiJiv, A−1

i−1R
i
i−1AiJiv]i−1 =

= [QiJiv, Jiv]i + ε

2d
(Ri

i−1AiJiv, A−1
i−1R

i
i−1AiJiv)i−1 =

= [QiJiv, Jiv]i + ε

2d
(AiI

i−1
i A−1

i−1R
i
i−1AiJiv, Jiv)i =

= [QiJiv, Jiv]i −
ε

2d
(Ai(−I + I − I i−1

i A−1
i−1R

i
i−1Ai)Jiv, Jiv)i =

= [QiJiv, Jiv]i −
ε

2d
(Ai(−I + Qi)Jiv, Jiv)i =

= (1− ε

2d
)[QiJiv, Jiv]i + ε

2d
[Jiv, Jiv]i =

= (1− ε

2d
)JQiJivKi + ε

2d
JJivKi.

36



Using convergence criterion (6.15) and c = 2d−ε
ε

0 ≤ [Biv, v]i ≤
ε

2d
JvKi.

Sufficient Conditions for the Convergence

Theorem 3 guarantees the convergence under the convergence criterion (6.15).
Now, we state some inequalities that may be more easily verified, directly imply
(6.15) and, therefore, convergence.

Lemma 4. Consider the “approximation” assumption

[Qiv, v]i ≤ c1
||Aiv||2i

λ
(1)
i

∀v ∈ Vi (6.18)

where c1 > 0 is a constant and λ
(1)
i is the largest eigenvalue of Ai and the

“smoothing” assumption

||AiJiv||2i
λ

(1)
i

≤ c2(JvK2
i − JJivK2

i ) ∀v ∈ Vi (6.19)

with c2 > 0.
Then these assumptions with conditions (6.9), (6.10) and (6.12) imply (6.15)

with constant c = 1
c1c2

.

Proof. Consider vector Jiv. Then using using assumptions (6.18) and (6.19)

JQiJivK2
i = [QiJiv, Jiv]i ≤ c1

||AiJiv||2i
λ

(1)
i

≤ c1c2(JvK2
i − JJivK2

i ).

This gives the convergence criterion with c = 1
c1c2

.

In contrast to (6.15), the criteria (6.18) and (6.19) separate assumptions on
the coarse grid correction (in (6.18)) and the smoother (in (6.19)). Approximation
assumption (6.18) is then met by a proper discretisation and construction of the
multilevel hierarchy. Its verification for particular finite element discretisation
is given, e.g., in [4, Section 4]; [15, Section 6]. The choice of the smoother and
number of smoothing iterations is then motivated to satisfy (6.19), respectively to
lead to a small value of c2 in (6.19). Verification of (6.19) for particular relaxation
methods (for example Jacobi, weighted Jacobi) and bounds or estimates on c2
can be found, e.g., in [4, Section 4]; [15, Section 6].

Now, focus on the smoothing criterion. In our case, the smoothing process
done by Jacobi or weighted Jacobi method involves κ identical steps defined by
a matrix Di = Di,j, j = 0, . . . , 2κ− 2 = 2κ1 − 2 = 2κ2 − 2.

Define the iterative operator as Ki = I − DiAi. Then Ji = Kκ
i and the

smoothing property can be expressed in an alternative form

||Aiv||2i
λ

(1)
i

≤ c3[(I −Ki)v, v]i ∀v ∈ Vi, c3 = const. > 0. (6.20)
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Lemma 5. Assume that (6.9) and (6.20) holds, and consider the operator Ki to
be non-negative in the Ai-inner product, symmetric and JKiKi ≤ 1. Under these
conditions, (6.19) is valid.

Proof. Thanks to the conditions, we can use inequality

[(I −Ki)K2κ
i v, v]i ≤

1
2κ

2κ−1∑︂
k=0

[(I −Ki)Kk
i v, v]i = 1

2κ
[(I −K2κ

i )v, v]i

from [16, Inequality (3.16)]. Using Ji = Kκ
i

[(I −Ki)J2
i v, v]i ≤

1
2κ

[(v − J2
i )v, v]i

[(I −Ki)Jiv, Jiv]i ≤
1

2κ
(JvK2

i − JJivK2
i ).

Choosing vector Jiv for v in assumption (6.20) we get

||AiJiv||2i
λ

(1)
i

≤ c3[(I −Ki)v, v]i ≤
c3

2κ
(JvK2

i − JJivK2
i ),

which is (6.19) with c2 = c3
2κ

.
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7 Numerical Experiments
In this chapter, we perform experiments illustrating certain concepts from

section 6.3. Specifically, we look into the assumption that was necessary for
proving the convergence, symmetry, and into the independence of the operator of
error suppression on the right-hand side vector.

As a test problem consider the 3D cube Ω = [0, 1]3 discretised with n = 128
points in each dimension (resulting in a matrix of size 2, 048, 383 × 2, 048, 383)
and a constant right-hand side f of ones. We repeat multigrid iterations until,

|f − A · usolution|
|f |

< 10−6. (7.1)

The relative residual is used as we do not have the access to the error; for the
system of this size, direct solve was not feasible on our computational resources.
We, therefore, rely on alternative measures like the relative residual to measure
the convergence, although a small residual alone does not necessarily imply a small
error.

All the experiments were performed in MATLAB, version R2024a, run on a
portable computer with 8.00 GB (7.82 GB usable) RAM memory. Run times
and numbers of repetitions of the multigrid algorithm were taken as an average
from 5 runs and measure only the running times of the multigrid algorithm
(in particular, matrix generation is not included in the time). The codes are
available in the GitHub repository https://github.com/AnnaMarieM/Basic_
Properties_of_Multigrid_Methods.git.

Combination of number of smoothing steps κ and number of levels L

In this experiment, we explore the symmetric variant of the V-cycle, where
parameter κ represents both the number of smoothing steps in pre-smoothing
κ1 and the number of smoothing steps in post-smoothing κ2, κ = κ1 = κ2. We
investigate whether different combinations of numbers of smoothing steps κ and
numbers of grid levels L have any determinable influence on convergence time. For
parameter L values 2, 3, 4, 5, 6 are used, that correspond to coarse-grid problems
of sizes 250047, 29791, 3375, 343, 27 respectively.

κ\L 2 3 4 5 6
1 182.5754, 11 6.5268, 13 3.3169, 14 3.3688, 15 3.4289, 15
2 139.8749, 7 4.4533, 7 2.7091, 8 2.6154, 8 2.8677, 9
3 106.6443, 5 3.8405, 5 2.8077, 6 2.4671, 6 2.9622, 7
4 88.8609, 4 7.4665, 5 2.6450, 5 2.8604, 6 3.3301, 6
5 88.5994, 4 4.2135, 4 2.8815, 5 2.8400, 5 3.5388, 6
6 89.4711, 4 4.2126, 4 3.2127, 5 3.1751, 5 4.4744, 5
7 72.0012, 3 4.2755, 4 2.9624, 4 3.5668, 5 4.3057, 5

Table 7.1 Time (in seconds) and multigrid repetitions needed for the V-cycle to
converge with different combinations of a number of levels and smoothing steps.
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From the table, an observation can be made, that, for all values of κ, there is
a trend of decreasing convergence time with an increase in the number of levels L
up to four or five levels. For L = 4 and L = 5, the convergence times are usually
similar. However, beyond five levels, the time starts to increase. This suggests
that for this particular problem size and the data, L = 4 or L = 5 may represent
optimal parameter settings.

The reason behind this optimum could be that for L = 4 and L = 5, the system
becomes sufficiently small on a coarse grid (a 16× 16× 16 grid corresponding to
SLE of size 3375 for L = 4 and a 8× 8× 8 grid corresponding to SLE of size 343
for L = 5 and), allowing for an efficient direct solution. Additionally, with fewer
levels, there are fewer interpolations and restrictions performed, which may be
the reason behind the inefficiency of 6 levels.

Another observation is that there is no clearly optimal value for the number
of smoothing steps κ. Therefore, we perform another experiment to identify the
optimal κ value for L = 4 and L = 5.

Symmetry and convergence

This section investigates the relationship between symmetry and convergence
in a computational experiment when setting the number of levels to L = 4 and
L = 5. Specifically, we explore the impact of varying the number of pre-smoothing
and post-smoothing steps, denoted by κ1 and κ2 respectively, on the convergence
behaviour and running time. The results are given in Table 7.2 for L = 4 and in
Table 7.3 for L = 5.

κ1\κ2 1 2 3 4 5 6 7
1 4.2365,

16
3.0217,

10
2.7837,

8
3.0761,

7
3.1479,

6
3.2267,

6
3.3406,

5
2 3.9072,

11
3.3874,

8
3.0830,

7
3.2019,

6
3.2784,

6
3.3745,

5
3.0574,

5
3 3.5218,

9
2.6565,

7
2.7391,

6
3.0398,

6
3.0600,

5
3.5622,

5
3.8318,

5
4 3.6071,

8
2.8082,

6
3.4077,

6
3.4250,

5
3.4138,

5
3.8014,

5
3.6700,

5
5 3.4900,

7
3.2919,

6
3.3998,

5
2.8609,

5
3.0522,

5
3.4871,

5
2.9777,

4
6 2.9011,

6
2.8658,

5
3.3848,

5
3.4366,

5
4.2014,

5
2.9484,

4
3.3397,

4
7 3.4104,

6
2.9671,

5
3.1263,

5
3.9830,

5
3.6716,

4
3.3317,

4
4.0306,

4

Table 7.2 Time (in seconds) and multigrid repetitions needed for the V-cycle with
parameter L = 4 to converge with a varying number of pre-smoothing and post-
smoothing steps.

Several observations can be made from Table 7.2 and Table 7.3. Convergence
times for the V-cycle with L = 4 have mean and variance 3.3230 and 0.1424
respectively. For L = 5 mean and variance are 3.5046 and 0.2075. Although the
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κ1\κ2 1 2 3 4 5 6 7
1 3.7369,

17
3.0715,

11
3.5876,

9
3.6237,

7
3.7819,

7
3.3353,

6
3.5383,

6
2 4.3950,

12
3.5781,

9
2.5292,

7
2.4788,

6
2.7535,

6
3.0307,

6
2.7746,

5
3 3.0721,

10
2.5587,

7
2.8734,

7
3.4416,

6
3.6556,

6
3.3479,

5
3.1389,

5
4 3.4885,

8
3.0954,

7
4.1173,

6
4.0931,

6
3.8055,

5
3.4323,

5
3.8953,

5
5 3.3445,

7
3.7980,

6
3.4883,

6
3.2699,

5
3.9079,

5
4.0216,

5
3.7519,

5
6 4.0769,

7
3.5778,

6
3.0739,

5
3.3902,

5
3.8551,

5
3.6510,

5
3.9741,

5
7 4.0357,

7
3.5615,

6
3.2163,

5
3.5657,

5
3.9710,

5
3.7993,

5
4.1626,

5

Table 7.3 Time (in seconds) and multigrid repetitions needed for the V-cycle with
parameter L = 5 to converge with a given number of pre-smoothing and post-smoothing
steps.

fastest convergence overall is observed for L = 5 with parameters κ1 = 2 and
κ2 = 4, convergence times have lower mean and variance for L = 4 compared
to L = 5. This observation indicates potential advantage of the choice L = 4,
as it generally yields lower convergence times and shows lower sensitivity to the
parameters κ1 and κ2, as indicated by the variance.

Second, with increasing the number of pre-smoothing steps κ1 and post-
smoothing steps κ2, convergence time tends to decrease until a certain threshold.
Then, on the contrary, the convergence time is increased. This suggests that
employing more smoothing steps for pre- and post-smoothing stages does not sig-
nificantly improve convergence time, although it reduces the number of repetitions
of the V-cycle.

Apart from few exceptions, the numbers of multigrid repetition are the same
along the antidiagonals. This means that it is the total number κ1 + κ2 of
smoothing steps that affects the convergence of the mutigrid. Despite a significant
effort to identify and correct the issue, the timings do not share this symmetry.
For the same number of multigrid repetitons and smoothing steps, the timings
should be much closer; the difference seems to be caused by a deficiency of our
implementation.

While it might be intuitively expected that symmetrical configurations with
equal numbers of pre-smoothing and post-smoothing steps κ1 = κ2 would yield
faster convergence, the results does not fully support this expectation. Thus,
while symmetry was, in our case, used as a condition for convergence, it may not
guarantee optimality in terms of convergence time.
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Independence of the operator of error suppression and the right-hand
side vector

The convergence proof presented in section 6.3 indicated that, theoretically,
convergence is independent of the right-hand side. Therefore, in this experiment,
we consider solutions of systems with different right-hand side vectors. We set the
number of levels L = 4 and use κ = 3 pre- and post-smoothing steps by Weighted
Jacobi (3.4) with the weighting parameter ω = 4

5 .
The right-hand side vectors used in the experiment are following:

• f1 is a vector filled with ones.

• f2 is a vector representing the values of a relatively smooth function
f(x, y, z) = sin(x) · cos(y) + sin(y) · cos(z) + sin(z) · cos(x) evaluated on
a cubic grid.

• f3 is a vector representing the values of a relatively smooth function
f(x, y, z) = sin

(︂
x
10

)︂
+ sin

(︂
y
10

)︂
+ sin

(︂
z
10

)︂
.

• f4 is a vector representing the values of a function on a cubic grid f(x, y, z) =
10 · exp

(︂
− (x−0.7)2+(y−0.3)2+(z−0.5)2

0.0001

)︂
with a spike at the point [0.7, 0.3, 0.5].

• f5 and f6 are vectors representing the values of a function with a spike
f(x, y, z) = 1√

(x−0.7)2+(y−0.3)2+(z−0.5)2+ε
, where ε = 10−3 for f5 and ε = 10−5

for f6, i.e. f5 is “smoother” than f6.

Right Side Time (s) Repetitions Relative Residual
f1 3.6316 10 1.9254 · 10−8

f2 3.5328 10 1.8500 · 10−8

f3 3.5556 10 1.9904 · 10−8

f4 3.5411 10 1.8279 · 10−8

f5 3.5428 10 1.3608 · 10−8

f6 3.5333 10 1.5556 · 10−8

Table 7.4 Time (s), repetitions of multigrid algorithm, and relative residual for each
right-hand side fi.

Table 7.4 gives the runtime and the number of multigrid repetitions until (7.1)
is satisfied for all right-hand side vectors, together with the final value of the
relative residual. The results confirm the theoretical findings on the independence
of the right-hand side vector to the convergence of multigrid methods. Additionally,
figures 7.1 and 7.2 depict the convergence of the relative residual and the relative
norm of the error 1 in the repetitions of the multigrid. The results demonstrate
asymptotic convergence independent of the right-hand side vector. The method
for certain right-hand side vectors yields slightly faster convergence initially, which
could be attributed to the more effective elimination of oscillatory error components
in the beginning. Later, all demonstrate the same asymptotic convergence.

1For the purpose of evaluating the norm of the error, the exact solution is approximated
using an excessive number (30) of multigrid repetitions.
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Figure 7.1 Convergence of relative residual norm for different right-hand side vectors.

Figure 7.2 Convergence of relative energy error norm
√︃

(u−u(i))T A(u−u(i))
(u−u(0))T A(u−u(0)) for different

right-hand side vectors.
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Conclusion
Multigrid methods are iterative numerical methods for solving large systems

of linear equations stemming from the discretization of a partial differential
equation. They are based on two complementary techniques: iterative methods
with a so-called smoothing property and coarse-grid correction.

Smoothing property possessed by, e.g., relaxation methods, means that the
methods can effectively reduce oscillating parts of the error but are less efficient
in reducing smooth error components. Smooth components of the error can be
successfully represented on a coarse grid. By solving a problem on a coarse-grid
and interpolating the approximation back to the finer grid, the smooth part of
the error can be removed. While the size of the coarse-grid system is smaller than
the one associated with the finer grid, a recursive call of coarse-grid correction is
typically done until the system on the coarsest grid is small enough to be efficiently
solved by a direct solver. A careful and elaborated combination of smoothing by
a proper relaxation method with a hierarchy of levels for coarse-grid corrections
gives a powerful and efficient multigrid solver (or a multigrid preconditioner).

The thesis presents the fundamental principles of multigrid methods and
illustrates them on simple examples. Numerical experiments are then performed
to study the choice of the parameters in a multigrid method and demonstrate the
ability of a multigrid to efficiently solve complex numerical problems. The codes
used in the thesis are available in the GitHub repository https://github.com/
AnnaMarieM/Basic_Properties_of_Multigrid_Methods.git.

Future work could extend the thesis, for example, by exploring discretization
by a finite element method or study an application of multigrid for different,
potentially non-symmetric problems. Algebraic multigrid methods, which do not
explicitly use the hierarchy of the grids, could also be of interest.
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