
MASTER THESIS

Michal Töpfer

Machine-learning-based self-adaptation
of component ensembles

Department of Distributed and Dependable Systems

Supervisor of the master thesis: prof. RNDr. Tomáš Bureš, Ph.D.
Study programme: Computer Science – Artificial

Intelligence
Study branch: IUIP

Prague 2022

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

I would like to thank Milad Ashqi Abdullah, MSc for all the effort he put into
the development of the simulation and the framework. I would also like to thank
the supervisor of this thesis – prof. RNDr. Tomáš Bureš, Ph.D. – and all of the
members of the SmartArch research group, namely doc. RNDr. Petr Hnětynka,
Ph.D., doc. RNDr. Martin Kruliš, Ph.D., and Mgr. Danylo Khalyeyev, for
consultations and advice during the development of the project. Finally, I would
like to express gratitude to my family and friends who supported me during my
studies.

ii

Title: Machine-learning-based self-adaptation of component ensembles

Author: Michal Töpfer

Department: Department of Distributed and Dependable Systems

Supervisor: prof. RNDr. Tomáš Bureš, Ph.D., Department of Distributed and
Dependable Systems

Abstract: In the area of distributed self-adaptive smart systems (such as applica-
tions of Internet of Things and Cyber-Physical Systems), machine learning has
been successfully used in several applications including the prediction of metrics
regarding the components in the system (e.g., battery consumption), and pruning
of the space of possible adaptations. It is clear that machine learning can be a
useful tool in self-adaptive systems. Most of the research works focus on using the
machine learning algorithms for a specific task, yet they are (at least partially)
lacking in providing a systematic approach to the introduction of machine learning
into the architecture of the system.

In this thesis, we propose ML-DEECo – a machine-learning-enabled compo-
nent model for adaptive component architectures. It is based on the concepts
of autonomous components and their ensembles (coalitions) from the DEECo
component model. We enrich DEECo with abstractions for specifying machine-
learning-based estimates directly in the architecture of the system. The architect
can thus focus on the business logic of the application while all the tasks necessary
to provide the estimates (such as collecting the data and training the model)
are provided by our runtime framework. We provide an implementation of the
ML-DEECo runtime in Python and evaluate it by constructing simulations of
self-adaptive systems from the areas of smart farming and Industry 4.0.

Keywords: self-adaptive, machine learning, components, ensembles

iii

Contents

1 Introduction 3
1.1 Problem statement . 3
1.2 Goals . 4
1.3 Structure of the text . 4

2 Background and running example 6
2.1 Running example . 6
2.2 Ensemble-Based Component Systems 7

2.2.1 Component . 7
2.2.2 Ensemble . 8
2.2.3 Ensemble formation . 9

2.3 Overview of machine learning concepts used in the thesis 10
2.3.1 Input data and features 11
2.3.2 Neural networks . 12

3 Modeling machine-learning-enabled ensembles 13
3.1 Examples of prediction tasks . 13
3.2 Taxonomy of prediction tasks . 14

3.2.1 Where . 14
3.2.2 What . 15

3.3 Estimators . 15
3.3.1 Training data collection 16
3.3.2 Neural networks architecture 18

4 ML-DEECo implementation 19
4.1 DEECo in Python . 19

4.1.1 Specifying components . 19
4.1.2 Specifying ensembles . 20
4.1.3 Running the simulation . 22

4.2 ML-DEECo . 23
4.2.1 Adding machine-learning-based estimates 23
4.2.2 Estimator . 24
4.2.3 Estimate assignment to components and ensembles 24
4.2.4 Configuring inputs, target and guards 26
4.2.5 Obtaining the estimated value 29
4.2.6 Running the simulation . 30

4.3 Examples of ML-DEECo usage 31
4.3.1 Drone component . 31
4.3.2 Charging ensemble . 33

4.4 Estimators . 34
4.4.1 Neural network architecture 34
4.4.2 Inference of the output layer of the neural network 35
4.4.3 Inference of the loss function for training 35
4.4.4 Caching of estimates . 36

1

5 Evaluation 37
5.1 Simulation of the running example 37

5.1.1 World configuration and agricultural fields 37
5.1.2 Flocks of birds . 37
5.1.3 Drone component . 38
5.1.4 Charger component . 38
5.1.5 Field protection ensemble 38
5.1.6 Drone charging ensembles 39

5.2 Results . 41
5.2.1 Evaluation metrics . 41
5.2.2 Baselines . 42
5.2.3 Using guards to collect appropriate data for the battery

estimate training . 42
5.2.4 Strategies for collecting training data 43
5.2.5 Summary of the results . 46

5.3 Security rules example . 47
5.3.1 Use case . 47
5.3.2 Modelling the scenario using components and ensembles . 47
5.3.3 Use of machine learning for adaptation 48
5.3.4 Results . 49

6 Related work 51
6.1 Ensemble-based component modeling 51

6.1.1 SCEL . 51
6.1.2 Helena . 51
6.1.3 Ensemble formation in DEECo 51

6.2 Machine learning in self-adaptive systems 52

7 Conclusion 54

Bibliography 55

List of Figures 58

List of Listings 59

2

1. Introduction
Smart systems such as the Internet of Things (IoT) and Cyber-Physical Systems
(CPS) are becoming more and more popular in recent years. The self-adaptive
smart systems are able to dynamically adapt and reconfigure based on the situation
in the environment to optimize their behavior and performance to fulfill their
goals. With the use of machine learning and the ability to construct predictions of
the future state of the system or its components, these systems are able to make
otherwise complicated decisions, and to deal with uncertainty.

The smart systems are often distributed, which has implications on the software
engineering of their design and architecture. To manage the complexity and
describe the dynamically evolving architecture of such systems, architectural
models featuring cooperating components have been introduced. One of the
approaches to engineering such systems is the concept of autonomic component
ensembles, which proved to be useful for modeling dynamic architectures of
cooperating autonomous components as demonstrated by several papers [1, 2,
3, 4, 5, 6]. We base our work in this thesis on the DEECo ensemble-based
component model [1], which is one of the approaches for describing and modelling
the architecture of a distributed smart system.

The DEECo component model features abstractions for defining components
with autonomous behavior. To allow communication among the individual com-
ponents, the concept of ensembles – implicit and dynamic groups of components
mutually cooperating to achieve a particular goal – is introduced. The ensembles
are formed and dismantled dynamically based on the changes in the attributes of
the components.

In this thesis, we focus on enriching the ensemble resolution process with
machine learning algorithms. In particular, we want to introduce machine-learning-
based estimates into the components and ensembles. The estimates can be used
to predict values (such as the future state of a component) that the self-adaptive
systems can base their adaptation decisions on.

1.1 Problem statement
Although many applications of machine learning in adaptive systems have been
shown (and examined in several literature reviews [7, 8]), most of the works focus
on applying machine learning to a specific task. They are (at least partially) lacking
in providing a systematic approach to the introduction of machine learning into
the architecture of the system. It is clear that machine learning can provide useful
insights for the adaptation of the system, but it is not clear how to systematically
introduce machine learning into the component models and thus to the architecture
of the system.

Our aim is to design an ensemble-based component model with machine
learning and adaptation as first-class concepts. We want the system architect
to be able to focus on the business logic of the application rather than the
intricacies of machine learning (such as data collection and training). We want
to provide the architect with abstractions for obtaining machine-learning-based
estimates of the values in the system (e.g., attributes of the components) simply

3

by declaratively marking those values in the architecture. Our implementation
does all the necessary work to obtain such estimates (data collection, model
training, inference, etc.) so that the architect can use them without having a deep
knowledge of machine learning.

1.2 Goals
In this thesis, we enrich the DEECo component model [1] with machine-learning-
based estimates which can be specified directly in the architecture of the system.
We call the resulting component model ML-DEECo.

The ML-DEECo component model should provide the necessary abstractions
for describing the architecture of a distributed smart system. That includes
specification of components of the system and their behaviors, as well as their
communication (via ensembles). It should also provide abstractions for an easy
inclusion of machine-learning-based estimates into the architecture of the system,
which can benefit the self-adaptability of the system.

Towards the design and implementation of ML-DEECo, we address several
goals:

Goal 1 Identify and analyze possible usages of machine learning in a compo-
nent-based architecture of an ensemble-based adaptive system.

Goal 2 Design the component model semantics such that the machine learning
can be realized without having to write data collection or machine
learning procedures.

Goal 3 Map these concepts to a widely-used programming language (Python
in our case).

1.3 Structure of the text
In Chapter 2, we first introduce the running example from the smart farming
domain (Section 2.1), then we provide an overview of the concepts of Ensemble-
Based Component Systems (EBCS) and specifically DEECo (Section 2.2) and
lastly we give an overview of the machine learning concepts used in this thesis
(Section 2.3).

Chapter 3 focuses on modeling machine-learning-enabled ensembles. We first
analyze the possible usages of machine learning in Ensemble-Based Component
Systems by providing examples of such tasks in Section 3.1 and classifying them
into a taxonomy in Section 3.2, thus addressing Goal 1. Section 3.3 addresses
Goal 2 and describes the design and semantics of the machine-learning-based
estimators used in ML-DEECo.

In Chapter 4, the documentation of the ML-DEECo framework implementation
in Python is provided and examples of its usage are given (Section 4.3). This
chapter addresses Goal 3.

We evaluate our work in Chapter 5 by providing an implementation of the
running example using the ML-DEECo framework to show that ML-DEECo can
be used to easily develop a simulation of a self-adaptive machine-learning-enabled

4

ensemble-based component system. An overview of the implementation is given
in Section 5.1 and the results of using machine-learning-based estimates in the
simulation to aid the adaptation are given in Section 5.2. Additionally, we show a
second example of usage of the ML-DEECo framework in Section 5.3.

We provide a survey of the related work in Chapter 6. Approaches to ensemble-
based component modeling are outlined in Section 6.1. Other works focused on
the usage of machine learning in adaptive systems are reviewed in Section 6.2.

5

2. Background and running
example
In this chapter, we first introduce the running example which will be used through-
out the thesis to illustrate the concepts. The running example comes from from
the smart farming domain and it is outlined in Section 2.1. Then, in Section 2.2,
we provide an overview of the concepts of Ensemble-Based Component Systems
(EBCS) which are an approach to architecting distributed software systems. We
focus specifically on the DEECo component model [1] as our work in this thesis
builds on it. Lastly, we give an overview of the main machine learning concepts
used in this thesis in Section 2.3.

2.1 Running example
The running example comes from the recently finished ECSEL JU project AFar-
Cloud1 that focused on smart farming. The scenario focuses on the protection of
fields of crops against flocks of birds using autonomic flying drones.

A visualization of the scenario developed within the project can be seen in
Figure 2.1. The yellow fields represent the crops that need protection. The flocks
of birds are represented by the bird icon in the figure. The circular arrows in the
middle of the figure are charger stations for charging the drones.

Figure 2.1: Running example visualization.

The drones are autonomous and work together on field protection. When a
1https://www.ecsel.eu/projects/afarcloud

6

https://www.ecsel.eu/projects/afarcloud

flock of birds is detected in a field, the drones fly there to scare them away (using
the noise from their propellers) to areas that do not need protection. Depending
on the size of the field, several drones might be required for its protection as
otherwise the birds will just fly to a different part of the field and eat or damage
the crop there.

The drones are battery-powered so they need to be recharged in order to keep
protecting. There can be several chargers in the scenario.

The autonomous drones need to cooperate in two key areas of the scenario.
The first is field protection. It does not make sense for all the drones to fly to a
field when it needs protection as only one or several drones are needed to scare
away the birds. Furthermore, as the drones can be scattered across the whole
farm, the decision of which drones will fly to the field can be also influenced by
the time needed for the drone to fly there.

The second area of drone cooperation is charging. The charger stations have
limited capacity, so only a subset of the drones can be charged simultaneously.
The battery of the drones is limited, so we want them to be able to plan the
charging and not run out of battery in the middle of a field. The drones should
also work together to optimize the utilization of the charger, otherwise, too many
drones might need charging at the same time resulting in some of them running
out of battery.

The scenario can be considered an adaptive system with the positions of
flocks of birds and the attributes of drones (i.e., position, battery level, state)
constituting the inputs to the adaptation and the assignment of drones to fields
and chargers constituting the adaptation actions.

2.2 Ensemble-Based Component Systems
The Ensemble-Based Component Systems (EBCS) are an approach to architecting
resilient distributed systems. In EBCS, the component composition is not explicit
and static. The components are autonomous and they are dynamically grouped
into ensembles – implicit and dynamic groups of components mutually cooperating
to achieve a particular goal.

The EBCS can be seen as “Distributed systems composed of components that
feature autonomic and (self-)adaptive behaviors and are organized into emergent
ensembles to achieve cooperation” [1].

In this thesis, we will use the concepts from the DEECo component model [1],
which are summarized in the following sections. We outline the related EBCS in
Section 6.1.

Distributed Emergent Ensembles of Components (DEECo), presented by Bureš
et al. in 2013 [1], is a component model based on the EBCS approach. There are
two first-class concepts in DEECo: component and ensemble.

2.2.1 Component
Components in DEECo are autonomous agents in the environment. They can
sense the environment and also obtain information about other components via the
ensembles. Based on the knowledge they have, the components can independently
operate in the environment.

7

There are often multiple instances of a component type in the system. When
we talk about components later in the text, we mean the component instances
unless “type” is explicitly mentioned.

An example of a component type in our running example is a Drone. All the
individual drones in the system, which are instances of the Drone component type,
use the same set of rules (program) to autonomously decide what to do. They
can sense the environment and use that information to alter their behavior.

2.2.2 Ensemble
An ensemble represents a group of components and their interaction. In DEECo,
ensembles are the only way for components to bind and communicate with one
another. The ensembles are used for knowledge exchange among a group of
components – the members of the ensemble. This way, the members can obtain
information about the other components in the ensemble.

The ensembles are formed and re-formed dynamically at runtime. One com-
ponent plays a role of a coordinator of the ensemble and initiates the formation.
Other member components are determined dynamically based on a membership
condition.

Similar to the components, there can be multiple instances of the same ensemble
type. Again, we mean the ensemble instances unless “type” is explicitly mentioned
later in the text.

The ensembles can be used for example to coordinate the protection of a field.
When the sensors report birds on a certain field, an ensemble of drones can be
assembled to coordinate the protection of the field. The number of members of
the ensemble can depend on the size of the field to fully cover the field to protect
it.

Ensembles example

An example of field protection ensemble instances can be seen in Figure 2.2.
We can see that there are birds in three of the five fields, so we instantiate
the ensembles for the three fields which need protection. Each of the ensemble
instances selects the closest drones and assigns them the task to protect the field
(the drone then starts flying towards the field to scare away the birds). As we can
see, the number of necessary drones can depend on the size of the field – for the
red and blue ensembles, we need two drones for protection, while for the cyan
ensemble, only one drone is necessary. The remaining two fields are not under
attack by birds, so we do not need to protect them. We can also see that one of
the drones is currently being charged (the greyed-out one in the middle), so we
cannot use the drone for protection. Lastly, we have one idle drone which is not
a member of any ensemble, as we already have enough drones to protect all the
fields.

To put this formally in the DEECo concepts, we can have component types
Drone and Field, where Field represents sensors for detecting birds present in a
given field. The FieldProtection ensemble type can be used to coordinate the
protection of the fields. When a Field detects birds, it will initiate the formation
of an FieldProtection ensemble instance (the Field component becomes the
coordinator of the ensemble). The members are selected from all the Drone

8

Figure 2.2: Example of three ensembles for field protection.

component instances which are available (not being charged). Based on the size of
the field, a certain number of drones are selected while selecting the closest drones
first. The ensemble formation can be executed for all the fields at the same time –
we can thus divide the drones among the fields in an optimal way (to prevent as
much damage as possible).

2.2.3 Ensemble formation
There are several approaches to the formation of ensembles. In the original
DEECo [1], the ensemble formation is initiated by the coordinator and only the
membership condition is used to determine the members – all the components
which satisfy it become members.

There are several other approaches to the ensemble formation in DEECo, some
of them described in more detail in Section 6.1.3. Most notable of the other
approaches are the COP-based [9] and the ML-based [10]. In the COP-based
approach, the ensemble formation is formulated as a constraint optimization
problem, and the ensembles are created to maximize a given utility function. The
ML-based approach represents ensemble formation as a classification problem and
uses machine learning to determine which ensembles should be formed.

In this work, we use a greedy approach to the ensemble formation described
in more detail in the following section.

9

Greedy ensemble formation

To allow for greedy ensemble formation, the ensemble definition must be expanded.
In the system, we will have a list of potential ensembles – all the ensembles which
can potentially be formed. In each time step of the system runtime, the ensemble
formation process is executed and some of the potential ensembles are selected to
become active in this time step – we call these the materialized ensembles.

Each potential ensemble will have a priority which determines the order in
which the ensembles are considered during the ensemble formation process.

To specify the members of the ensemble, we use a concept of a role. There can
be static roles, which are specified when the potential ensemble is instantiated
and cannot change, and dynamic roles, for which the member components are
dynamically selected by the ensemble formation process. The roles are resolved
separately in the order of their definition.

Each role has a select predicate, utility function and cardinality (both minimum
and maximum). During the ensemble formation process, all the components in
the system are considered possible members for a role. The components are first
filtered using the select predicate. Then, they are ordered by the utility function.
The maximum cardinality is used to pick the correct number of components with
the highest utility as the members of the ensemble in a given role. If there are not
enough components to satisfy the minimum cardinality requirement, the ensemble
cannot be materialized in this time step.

In the select predicate and the utility function, the information about already
materialized ensembles can be used. The member components are selected one
at a time and the select predicate is evaluated repeatedly, so the information
about already selected members is available when deciding whether the current
component should be selected to be a member of the ensemble.

To continue with the example of an ensemble for field protection, we can
define its select, utility, and cardinality functions. The select predicate can pick
only those drones which are idle, meaning that they do not currently work on
the protection of another field. The utility function can be the inverse of the
distance to the field to order the drones from the closest to the furthest. As
already suggested earlier, the cardinality can be set based on the size of the field,
because several drones are enough to fully cover the field and we do not need
more drones than that.

2.3 Overview of machine learning concepts used
in the thesis

Machine learning is a popular area of artificial intelligence. It focuses on con-
structing prediction models based on data. We usually use a dataset of training
examples to create the model, which can be then used to generate predictions
for new, previously unseen, data. The model is usually represented as a function
that takes an example (one item from the dataset) as an input and produces the
output.

A commonly accepted definition of machine learning was provided by Mitchell
in 1997 [11]:

10

A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P , if its performance
at tasks in T , as measured by P , improves with experience E.

Based on the structure of the experience E we have, the area is often divided
to supervised, unsupervised, and reinforcement learning.

In supervised learning, the examples in the dataset consist of features, which
can be used as inputs to the model, and also the desired outcomes (called targets).
The two most common tasks in supervised learning are regression and classification.
In regression, the targets are real numbers, the model thus predicts a numeric
quantity. For instance, we might want to construct a model to predict the price
of a house based on several attributes such as the number of bedrooms, size of
the house and the garden, etc. The targets for classification come from a fixed
finite set of categories (classes), the model is thus constructed to predict to which
category the example belongs, which can be represented either as only one class
or as a probability distribution over all the classes. An example of a common
classification task is image recognition. The model gets an image as its input and
the objective is to identify which objects (from a predefined set of options) are on
the image.

In unsupervised learning, the data come without annotations. Common tasks
include clustering and embeddings into a latent space. In clustering, we group the
data into several clusters of similar examples. Embeddings are a representation of
examples (e.g., words in a sentence) as fixed-length vectors of numbers.

Reinforcement learning is a special category of learning, which develops a
goal-seeking agent trained using rewards from the environment. The agent is
placed in an environment (simulation), which he can (partially) observe. Based
on the observations, the agent can make decisions and perform actions in the
environment. The agent can then learn from observing the results of the action and
also from an additional reward signal, which tells him whether he accomplished
the goal.

In this work, we will focus only on supervised learning.

2.3.1 Input data and features
The training data for supervised learning form a set of N examples. Each example
is a tuple (xi⃗ , yi), where xi⃗ ∈ RD is a vector of D input features and yt is the
target2. The examples usually correspond to the instances in the dataset, for
example, in the real estate price prediction, each house is one example and the
attributes of the house (such as the number of bedrooms) are used as input
features.

In practice, the data are usually considered a matrix X ∈ RN×D on N
examples, each with D dimensions. The targets are Y ∈ RN for regression and
Y ∈ {0, 1, . . . , K − 1}N for classification into K classes.

To obtain the real-valued features from the attributes of the instances in the
dataset, some transformation is often performed. The simplest transformation is
normalization, which scales the numeric attributes to a certain range in order to
prevent attributes with large values from having a too big influence on the result.

2We can also have multiple targets; then, the yi will also be a vector.

11

If all the attributes are scaled to the same range (e.g., to [0, 1]), the model can learn
which features are important for the prediction. For categorical attributes, one-hot
encoding can be performed to convert the K categories (initially represented as a
single scalar with K possible values) into K binary features, each corresponding
to one of the categories.

2.3.2 Neural networks
Artificial neural networks (NNs) are a popular class of models used in all areas of
machine learning. They were first introduced by McCulloch and Pitts in 1943 [12].
Since then, numerous architectures of NNs were created for various tasks.

The neural networks are usually a layered architecture with several neurons
in each layer. Each neuron performs a simple operation: a scalar product of the
inputs with a trainable vector of weights followed by a non-linear function. The
outputs of the neurons in one layer are considered inputs for the next layer. We
can also think about the scalar product as connections of the inputs to the neuron.
Each such connection has an associated weight. The training algorithm updates
the weights of the connections in order to find a mapping from the inputs to the
outputs.

In this thesis, we work with the simplest neural network architecture called
multilayer perceptron (MLP, also known as fully-connected or dense). The MPL
consists of an input layer, several hidden layers of neurons, and the output layer.
The neurons in successive layers are connected in a fully-connected manner,
meaning that each neuron in a layer is connected to all the outputs of neurons
in the previous layer. There are no connections between neurons in the same
layer, and there are also no connections between layers that are not immediately
successive. There can be one or multiple hidden layers, which determine the depth
of the network. Deeper networks have higher capacity and are able to learn more
complex tasks, but are also more prone to overfitting.

For the training of neural networks, the stochastic gradient descend algorithm
is often used. First, a loss function must be defined to assess the quality of the
predictions. The loss function indicates how far the predictions are from the
targets. Smaller loss means a better prediction. The gradient descend algorithm
computes the partial derivatives of the loss with respect to the parameters of the
model (weights in the neural network). The weights are then updated slightly
against the gradient to make the loss function smaller (to improve the prediction).
This process of computing the gradient of the loss and updating the weights is
repeated several times for all training data.

12

3. Modeling
machine-learning-enabled
ensembles
In this chapter, we aim to address Goals 1 and 2 of this thesis.

To address Goal 1 (Identify and analyze possible usages of machine learning in
a component-based architecture of an ensemble-based adaptive system.), we start by
providing several examples of possible usages of machine learning in a self-adaptive
system in Section 3.1. Based on the examples, we provide a taxonomy of the
prediction tasks in a self-adaptive system in Section 3.2.

We focus on Goal 2 (Design the component model semantics such that the
machine learning can be realized without having to write data collection or machine
learning procedures.) in Section 3.3. We design the estimators needed to solve
the tasks defined in Section 3.2 and deal with the problem of collecting data
for training of the estimators. The designed estimators provide the abstractions
needed in ML-DEECo to define the machine-learning-based estimates directly in
the architecture of the system.

3.1 Examples of prediction tasks
In our approach, we focus on the application of supervised machine learning in
the architecture of ensemble-based component systems. We want to be able to
describe the estimated quantities in the architecture of the system and use them
for decisions regarding the run and self-adaptation of the system.

In this section, we provide several examples of questions regarding the system,
which can be relevant to the self-adaptation of the system and can be answered
using supervised machine learning.

We can be interested in some pretty straightforward estimates:

• What will the battery level of the drone be after a given amount of time?

• How much energy (from the battery) does the drone need to fly to the
nearest charger?

• Will a particular field be attacked by birds in the near future?

But we can also reason about some quite complex questions regarding the system:

• How many drones will need charging in the near future, e.g., one minute
from now?

• How many drones will be waiting for a certain charger to become available
at some point in the future?

• How long will a drone have to wait before it is accepted to a charger (because
the charger is occupied by other drones)?

13

• At what time should the drone start flying towards the charger to get there
before its battery runs out while trying to keep protecting a field for as long
as possible?

• How long will a field stay safe (without birds)?

3.2 Taxonomy of prediction tasks
Based on the examples of prediction tasks shown in the previous section, we
have identified two important dimensions for classifying the prediction tasks
related to ensemble-based component systems – where and what. The taxonomy
is summarized in Figure 3.1 and the dimensions are described in the following
sections.

Prediction

what

time-to-condition

value
classification

regression

where
ensemble-component

ensemble
component

Figure 3.1: Taxonomy of prediction tasks.

3.2.1 Where
The where dimension represents where the estimate is needed and what features
can be used as inputs. As we have only two main concepts in the ensemble-based
component systems – components and ensembles, we have identified three spots
where to assign the machine-learning-based estimates:

1. to a component type;
2. to an ensemble type;
3. to an ensemble–component pair (i.e. to a dynamic role in our DEECo-based

approach).

For a component-assigned estimate, the attributes of the component can be
the input features. That includes both the internal state of the component as well
as its believed knowledge of the surrounding environment and other components.
For instance, the attribute position of a Drone component can be used as the
input to an estimator that predicts the energy needed to get to the closest charger.

For an ensemble-assigned estimate, the input features can be the attributes of
the members of the ensemble. In our work, the ensembles are stateless, so the
only attributes available are those of the members in static roles as these do not
change during the runtime of the system (only the members in dynamic roles are
assigned and re-assigned dynamically). In other approaches, the ensembles can
have a state which can also be transformed into input features. For example, the
ensemble-assigned estimate can be used to predict how many components will
become members of the ensemble in the next time step.

14

For estimates assigned to an ensemble-component pair, both the attributes of
the component and the attributes of the members of the ensemble can be used. If
we want to use the estimate during the member selection process, we can use the
attributes of the potential member and also the knowledge of the already selected
members for the role as well as members of the ensemble in other roles. For
instance, if we have an ensemble for management of the charging of the drones, we
can have an estimate for the waiting time before a drone is accepted for charging –
this estimate can be used by the ensembles to assess whether a potential member
will have to wait for a long time and thus should ask for charging soon to survive
the waiting without running out of battery.

3.2.2 What
The what dimension relates to the predicted quantity. We have identified two
important tasks relevant to self-adaptive systems – future-value estimate and
time-to-condition estimate.

Future-value estimate

The future-value estimate is a well-known task in supervised machine learning
applied to the self-adaptive systems area. We use the current available observations
to predict an unknown value, which will become known at some time in the future.
Once the value is known, we can observe it and use that to train the machine
learning model. An example of this would be a prediction of the battery level of a
drone after a set interval of time. That is exactly a value that is not known now
(as the battery drain can depend on the actions performed by the drone) but will
become known in the future.

There are two commonly known tasks for the value estimate – regression and
classification. In regression, the objective is to predict a numeric quantity, usually
a real number or a vector of real numbers. The predicted quantity in classification
comes from a fixed set of classes, the model thus often predicts a probability
distribution over the classes, which can be interpreted as the probability of an
input object (represented by the input features) belonging to each of the classes.

Time-to-condition estimate

In a time-to-condition estimate, the objective is to predict how long it will take
until a defined condition becomes true. This is especially handy for proactive
control in the self-adaptive system. The task is defined by specifying a condition
over future values of attributes of the components or ensembles. The predictor
can again use the current values of the attributes to compute the estimated time.

3.3 Estimators
In this section, we want to focus on describing the estimators that can be used
for the tasks defined in the what dimension in the previous section.

Obviously, as we want to use machine learning to solve the tasks, we need to
somehow define the inputs and outputs of the machine learning model. The inputs

15

are attributes of the components and ensembles, so we need to preprocess them
into features that can be processed by the model. We have already suggested the
most common methods of preprocessing, such as one-hot encoding for categorical
features, in Section 2.3.1.

The outputs in future-value estimate are also attributes of components and
ensembles, so they can be treated in the same way. For time-to-condition estimates,
the only output is the predicted time, so there is no need to define it again in the
architecture of the system.

The declarations of the inputs and outputs by the architect of the system can
be realized as getter functions for the attributes of the components and ensembles.
We use this approach in our implementation as we later show in Section 4.2.4.

3.3.1 Training data collection
The other key problem which needs to be solved is how to collect the data for
training the machine learning model. We assume that the system is run in discrete
time steps – in each time step, the ensembles are materialized and the components
perform their actions.

One thing to consider is that the inputs and outputs might not be valid at
all times of the simulation. For instance, the drone components might run out
of battery and become inactive. In such a situation, we do not want to collect
the training data as they might be misleading for the model and damage our
predictions. We solve this using guard predicates which determine the validity of
the inputs and outputs. These guards can use the attributes of the components
and ensembles the estimate is attached to.

Future-value estimate with fixed time difference

In a future-value estimate, we want to predict an unknown value, which will
become known at some time in the future. The specification of the target value
can be done similarly to the specification of the inputs. The only thing which
needs to be done is the matching of the inputs and the targets (true outputs).

In the simplest case, we know how long it will take before the value is known
and the time difference between the inputs and the targets is fixed. This is for
example the prediction of the battery level 50 time steps into the future – we
predict a value that will become known after 50 time steps.

We perform the following steps in every time step:

1. If the inputs guard predicate is true, we collect the input features and tag
them with the current time.

2. If the outputs guard predicate is true, we collect the target features. We
then associate the target features with the input features based on time –
as the difference between the inputs and the targets is fixed, we can easily
link the targets with the appropriate inputs. If the output guard predicate
is false, we discard the inputs which would correspond to the targets at the
current time.

16

Future-value estimate with a range of time differences

The situation is more complicated if the time difference between the observation of
the inputs and the outputs is not fixed. If we can at least define a range of possible
time differences, we can generalize the data collection from the previous section.
Note that the allowed range of differences only influences the training data, the
model can still be able to generalize and predict values for time differences outside
the range.

The steps are as follows:

1. If the inputs guard predicate is true, we collect the input features and tag
them with the current time.

2. If the outputs guard predicate is true, we collect the target features. We
then associate the target features with all the inputs from the allowed time
range. This can thus create as many training examples as there are allowed
time differences in the range (i.e. maximum_allowed_time_difference −
minimum_allowed_time_difference + 1). If the output guard predicate is
false, we discard the inputs which would correspond to the oldest inputs
still in the allowed range (these will not be in the allowed range of time
differences in the next time step).

We can illustrate this on an example. If we set the allowed range of differences
to the minimum of 1 and the maximum of 10 time steps, we will create 10 training
records in each time step. For example, at time 15, we will collect the outputs
and pair them with the inputs collected at times 15 − 1 = 14, 15 − 2 = 13, . . .,
15 − 10 = 5, assuming all the guard predicates are true.

Future-value estimate with custom inputs and targets matching

If the time interval between the prediction and the observation of the true value is
not known in advance, one has to link the inputs and the targets manually using
a unique identifier. Otherwise, the data collection process can be very similar (we
link the inputs and targets by the identifier).

Time-to-condition estimate

For a time-to-condition estimate, the objective is to predict how long it will
take before a given condition over the attributes of a component or an ensemble
becomes true. The predicted quantity is thus the time difference between making
the prediction and the condition becoming true. We propose using a buffer to
collect the data.

We perform the following steps in every time step:

1. If the inputs guard predicate is true, we add the input features with the
current time as a new record into the buffer.

2. If the condition is true, we associate all the records in the buffer with the
time difference between the current time and the time they were added to
the buffer. We clear the buffer.

This way, we use all the time differences between making a prediction and the
condition becoming true for the training. This ensures that we collect varying

17

time differences and we are thus able to predict reasonable values for both the
near and the far future.

3.3.2 Neural networks architecture
In this work, we use neural networks, namely the multilayer perceptron, for the
predictions. Different tasks can be realized by using a different output layer of
the network.

Future-value estimate

For a future-value regression task with one target – prediction of one real number,
we use a neural network with one output neuron. Depending on whether the
target values come from a bounded range of values, one can optionally limit the
values produced by the network. Our particular implementation is detailed in
Section 4.4.2. If we had more than one target, each of them would have its own
output neuron.

For a future-value classification task with one target – prediction of one value
from a fixed set of K classes, we create a neural network with K output neurons
and the softmax activation function. This is a common way of predicting a
probability distribution over the classes. We then predict the class with the
highest probability.

Time-to-condition estimate

The time-to-condition estimate task is a special case of regression. We again
construct a model with one output neuron predicting the time difference. This
time, we use the exponential function as activation in order to predict only positive
values (as we know that the time difference cannot be negative).

18

4. ML-DEECo implementation
In this chapter, we describe our implementation of the machine-learning-enabled
component model for adaptive component architectures called ML-DEECo. The
implementation addresses Goal 3 of the thesis and shows a mapping of the design
concepts and semantics defined in Chapter 3 to Python programming language1.

ML-DEECo is implemented as a Python package and provides DSL2 to allow
specifying the components and ensembles, and assigning machine-learning-based
estimates to them. The source code of the framework is available at GitHub [13].

We start with a description of our implementation of DEECo concepts in
Python in Section 4.1. Then, we extend it with machine learning in Section 4.2.
Section 4.3 shows two complete examples of ML-DEECo usage – a component
with a value estimate, and an ensemble with a time-to-condition estimate. In
Section 4.4, we provide details on the implementation of the neural networks used
in our framework.

4.1 DEECo in Python
The ML-DEECo framework is built on top of DEECo concepts (see Section 2.2
and [1]). In this section, we provide an overview of the implementation of
components and ensembles. Our Python implementation uses the greedy method
of ensemble formation described in Section 2.2.3.

4.1.1 Specifying components
The autonomous components are represented using classes derived from a base
class Component, which we provide in the ml_deeco.simulation module. Each
component has an actuate method, which is periodically called by our simulation
runtime (once per time step of the simulation).

Furthermore, we provide abstractions for simulations on a 2D map, namely
Point2D, StationaryComponent2D and MovingComponent2D. The Point2D class rep-
resents a point on the map. The StationaryComponent2D is a base class for
components which do not move during the simulation and have a fixed location
(specified as Point2D). For components which do move during the simulation, the
base class is MovingComponent2D. It adds a move method which can be used to
move the component towards a target (a Point2D).

Two examples of components can be found in Listings 4.1 and 4.2. The former
shows a definition of a stationary charging station and the latter show a definition
of a moving drone component.

1 from ml_deeco.simulation import StationaryComponent2D
2

3 class Charger(StationaryComponent2D):
4

5 def __init__(self, location):
6 super().__init__(location)
7 self.charging_drones = []

1https://www.python.org/.
2Domain specific language.

19

https://www.python.org/

8

9 # a drone at the location of the charger can start charging
10 def startCharging(self, drone):
11 if drone.location == self.location:
12 self.charging_drones.append(drone)
13

14 def actuate(self):
15 # we charge the drones
16 for drone in self.charging_drones:
17 drone.battery += 0.01
18 if drone.battery == 1:
19 # fully charged
20 drone.station = None

Listing 4.1: Example of definition of a stationary component.

1 from ml_deeco.simulation import MovingComponent2D
2

3 class Drone(MovingComponent2D):
4

5 def __init__(self, location, speed):
6 super().__init__(location, speed)
7 self.battery = 1
8 self.station = None # charging station
9

10 def actuate(self):
11 # if the drone has an assigned charger
12 if self.station:
13 # fly towards it
14 if self.move(self.station.location):
15 # drone arrived at the location of the charger
16 self.station.startCharging(self)

Listing 4.2: Example of definition of a moving component.

4.1.2 Specifying ensembles
Ensembles represent groups of components in the system. They are implemented
as classes derived from the Ensemble class defined in ml_deeco.simulation module.

As stated in the description of greedy ensemble formation in DEECo (Sec-
tion 2.2.3), we create all the instances for potential ensembles in the system at the
beginning of the simulation. In each time step, the framework will decide which
ensembles are formed in that time step and with which member components – we
call these the materialized ensembles.

Each potential ensemble has a priority method, which is used to order the
ensembles for materialization – the framework takes the ensembles in descending
priority and decides which of them are materialized. When the ensemble is
materialized, the actuate method is called.

The members of the ensembles are specified using static and dynamic roles.
The static roles are defined when the potential ensemble is initialized and are
represented as variables of the ensemble type class. The dynamic roles are assigned
by the framework in every time step. The dynamic roles are represented using
someOf (a list of components) and oneOf (single component) constructs assigned
as properties of the ensemble type class in our DSL. For each role, the component
type (class) must be set.

To select the members for a dynamic role, several conditions can be specified
using decorators:

20

• select annotates a predicate, which the components must pass to be picked
for the role;

• utility annotates a function, which is used to order the components (only
those which passed the select) – components with the highest utility come
first;

• cardinality annotates a function, which sets how many components can be
picked for the role. The cardinality can either be a single integer (for oneOf,
the cardinality is always 1) or a tuple of the minimum and the maximum
allowed number of components.

The member selection for a dynamic role works by first finding all components
of the correct type that pass the select predicate, then ordering them by the
utility (higher utility is better) and using the cardinality to limit the number of
selected members. If there are not enough components passing the selection, i.e.
the number of components is smaller than the minimum cardinality, the ensemble
cannot be materialized in this time step.

Note that the members are picked one at a time, which means that the select
predicate can depend on the previously picked members for the role.
The parameters of the select predicate are

• the ensemble instance (self),
• the component instance considered for membership (only components of

correct type are considered),
• list of already materialized ensembles.

It should return a Boolean.
The parameters of the utiliy function are

• the ensemble instance (self),
• the component instance considered for membership (only components passing

the select predicate are considered).
It should return a float.
The parameter of the cardinality function is

• the ensemble instance (self).
It should return an integer (maximum allowed number of members), or a tuple of
two integers (minimum and maximum, both inclusive).

The members of a dynamic role can be accessed by getting the property – it
will be either a list of components (for someOf) or a single component (for oneOf).

The ensemble can also define the situation method, which defines in what
situations the ensemble can be materialized. The method should return a boolean
indicating whether the ensemble instance can be materialized in this time step.
This method is called before the dynamic member selection process begins, so it
can only access the attributes of the static members.

Example of an ensemble definition

Listing 4.3 shows an example of an ensemble for drone charging. It groups drones
which are assigned to a particular charging station and need charging. The priority

21

of the ensemble (line 29) is set to the number of free charging slots so that the
emptier chargers will be filled sooner.

It has one static role for assigning a charging station (line 6), which is set in
the __init__ method (line 26).

It has one dynamic role for finding the drones (line 9). This role has a select
predicate for selecting drones in need of charging (line 12), a utility function for
ordering them by the missing battery (line 17), and a cardinality function for
limiting the number of drones in the ensemble to the number of free charging slots
(line 22).

When the ensemble is materialized (the actuate method on line 32 is called),
the station property of all the members is assigned to indicate to them that
they should fly towards the charging station and start charging. Notice that
self.drones is used as a list here.

1 from ml_deeco.simulation import Ensemble, someOf
2

3 class ChargingAssignment(Ensemble):
4

5 # static role
6 charger: Charger
7

8 # dynamic role
9 drones: List[Drone] = someOf(Drone)

10

11 # we select those drones which need charging
12 @drones.select
13 def need_charging(self, drone, otherEnsembles):
14 return drone.needs_charging
15

16 # order them by the missing battery (so the drones with less
battery are selected first)

17 @drones.utility
18 def missing_battery(self, drone):
19 return 1 - drone.battery
20

21 # and limit the cardinality to the number of free slots on the
charger

22 @drones.cardinality
23 def free_slots(self):
24 return 0, self.charger.free_slots
25

26 def __init__(self, charger):
27 self.charger = charger
28

29 def priority(self):
30 return self.charger.free_slots
31

32 def actuate(self):
33 # assign the charger to each drone -- it will start flying

towards it to charge
34 for drone in self.drones:
35 drone.station = self.charger

Listing 4.3: Example of a definition of an ensemble for drone charging.

4.1.3 Running the simulation
The ml_deeco.simulation module offers a function for running the simulation
called run_simulation. It has three mandatory parameters and one optional

22

parameter:
• components – a list of all components in the system;
• ensembles – a list of all potential ensembles in the system;
• steps – the number of steps to be simulated;
• stepCallback – a callback function which is called after each simulation step.

It can be used for example to log data from the simulation. The parameters
are:

– list of all components in the system;
– list of the materialized ensembles (in this time step);
– the current time step (integer).

For better control over the simulation, one can also run the simulation loop
manually. The functions materialize_ensembles and actuate_components from
ml_deeco.simulation module can be useful for that (they are used inside our
run_simulation).

4.2 ML-DEECo
In this section, we focus on the parts of the implementation of our DSL which allow
us to specify the machine learning models and connect them to the components,
ensembles, and ensemble roles.

There are two types of tasks our framework focuses on – value estimate and
time-to-condition estimate, both described in more detail in Section 3.2.2. The
value estimate uses the currently available observations (inputs) to predict some
value that can be observed only at some future point (after a fixed amount of
time steps). When we observe the true value (target), we can use it to train the
model. The time-to-condition estimate focuses on predicting how long it will take
until some condition will become true. This is done by specifying a condition over
some future values of component fields.

Obviously, we also need to specify the inputs of the machine learning model.
The current state of the component or the fields of the members of the ensemble
can be used as inputs. The inputs are specified using getter functions with
decorators to link them to the estimate.

Last but not least, the framework automatically collects data for the training
of the machine learning model. As we work with a dynamic system, some of
the components might not be active at all times. We use a concept of guards to
indicate whether the training data are valid in a particular time step.

4.2.1 Adding machine-learning-based estimates
The definition of each estimate is split into three parts:

1. The definition of the Estimator – a machine learning model and storage for
the collected data.

2. The declaration of the Estimate field in the component or ensemble or its
association with a role.

23

3. The definition of inputs, target, and guards. These are realized as decorators
with getter functions on the component or ensemble.

All of these steps are realized using the ml_deeco.estimators module.

4.2.2 Estimator
Estimator represents the underlying machine learning model used for computing
the estimates and also a storage for the collected data. The framework currently
features ConstantEstimator and NeuralNetworkEstimator.

All of the implemented estimators are derived from the Estimator class. They
all have the following common parameters for the constructor:

• outputFolder – folder for exporting the collected training data and results
and charts from the evaluation of the training. Set to None to disable export.

• name – String to identify the Estimator in the printed output of the frame-
work.

• accumulateData – If set to True, data from all previous iterations are used
for training. If set to False (default), only the data from the last iteration
are used for training. This is useful when we run the simulation and the
training several times.

The ConstantEstimator serves as a baseline in the experiments. It always
predicts the same constant value (set through the constructor) regardless of the
inputs.

The NeuralNetworkEstimator uses TensorFlow framework [14] to implement a
feedforward neural network. The number of neurons in hidden layers is specified
using the hidden_layers parameter of its constructor. The input and output
layers are constructed automatically based on the inputs and targets specified by
the Estimate. The loss function for training can also be automatically inferred,
more details are written later in Section 4.4.3.

An example of a neural-network-based estimator with two hidden layers, each
with 256 neurons, can be seen in Listing 4.4

1 from ml_deeco.estimators import NeuralNetworkEstimator
2

3 futureBatteryEstimator = NeuralNetworkEstimator(
4 hidden_layers=[256, 256], # two hidden layers
5 outputFolder="results/drone_battery", name="Drone Battery"
6)

Listing 4.4: Definition of a neural-network-based estimator.

4.2.3 Estimate assignment to components and ensembles
To a component

The estimates are declared as properties of the component class. For the estimate
of future value – both regression and classification – the ValueEstimate can be
instantiated. For the time-to-condition estimate, the TimeEstimate is used.

In the case of a value estimate, we use the inTimeSteps method to set a fixed
time difference between the inputs and targets, or the inTimeStepsRange method
to set a range of allowed time differences.

24

For both ValueEstimate and TimeEstimate, the Estimator (described in the
previous section) must be assigned. That is done by the using method.

Furthermore, the withBaseline method can be used to specify a custom
function to use instead of the estimate during the first iteration (i.e. before
the first training of the estimator). When no custom baseline is specified, the
estimator returns values close to 0 before it is trained.

Multiple estimates can be assigned to a component, each as a separate variable.
Listing 4.5 shows an example of a drone component class with an estimate

of battery level 50 time steps in the future. It uses the futureBatteryEstimator
defined in Listing 4.4.

1 from ml_deeco.estimators import ValueEstimate
2

3 class Drone(MovingComponent2D):
4

5 futureBatteryEstimate = ValueEstimate()\
6 .inTimeSteps(50)\
7 .using(futureBatteryEstimator) # defined earlier
8

9 # more code of the component
Listing 4.5: Definition of a neural-network-based estimator.

To an ensemble

The estimates can be added to ensembles in a same way as to components – as
properties.

To an ensemble role (ensemble-component pair)

To assign an estimate to a dynamic role of an ensemble, we work with the role
definition (someOf or oneOf). It provides methods withEstimate (for assigning a
value estimate) and withTimeEstimate (for assigning a time-to-condition estimate).
Only one estimate can be assigned to a role.

Again, the Estimator must be linked by the using method, and the baseline
can be optionally specified using the the withBaseline method. In the case of a
value estimate, the number of time steps we want to predict into the future is
again set using the inTimeSteps or inTimeStepsRange methods.

We show an example of a dynamic role with a time-to-condition estimate in
Listing 4.6. It is a stub of an ensemble for grouping drones in need of charging.
We want to estimate the waiting time before a drone is accepted for charging by
the charger station.

1 from ml_deeco.simulation import Ensemble, someOf
2 from ml_deeco.estimators import NeuralNetworkEstimator
3

4 waitingTimeEstimator = NeuralNetworkEstimator(
5 hidden_layers=[256, 256], # two hidden layers
6 outputFolder="results/waiting_time", name="Waiting time"
7)
8

9 class DroneChargingAssignment(Ensemble):
10

11 # dynamic role with time estimate
12 drones: List[Drone] = someOf(Drone)\
13 .withTimeEstimate()\

25

14 .using(waitingTimeEstimator)
15

16 # more code of the ensemble
Listing 4.6: Definition of a neural-network-based estimator.

4.2.4 Configuring inputs, target and guards
The definition of inputs and targets of the machine learning model, as well as
guards indicating the validity of the inputs, are realized as decorators and getter
functions. For estimates assigned to components and ensembles, the decorator
has a syntax @<estimateName>.<configuration>. For estimates assigned to roles,
the syntax is @<roleName>.estimate.<configuration>.

The decorators are applied to methods of the component or ensemble. For
estimates assigned to components and ensembles, these methods should only have
the self parameter. For estimates assigned to roles, these methods are expected
to have the self parameter (the ensemble instance) and a second parameter
representing a component (the potential role member). For examples of decorated
getter functions, see Listings 4.7 and 4.8.

Inputs

The inputs of the estimate are specified using the input() decorator, optionally
with a feature type as a parameter. We offer a NumericFeature(min, max) for
numeric inputs, a CategoricalFeature(enum|list) for categorical inputs, and a
BinaryFeature() to represent Boolean attributes. We elaborate on the available
feature types in Section 4.2.4.

Listing 4.7 shows an example of two inputs for an estimate in a component
(we continue the examples from earlier Listings 4.4 and 4.5).

1 from ml_deeco.estimators import ValueEstimate, NumericFeature,
CategoricalFeature

2 from ml_deeco.simulation import MovingComponent2D
3

4 class Drone(MovingComponent2D):
5

6 # create the estimate (as described earlier)
7 futureBatteryEstimate = ValueEstimate()\
8 .inTimeSteps(50)\
9 .using(futureBatteryEstimator)

10

11 def __init__(self, location):
12 self.battery = 1
13 self.state = DroneState.IDLE
14 # more code
15

16 # numeric feature
17 @futureBatteryEstimate.input(NumericFeature(0, 1))
18 def battery(self):
19 return self.battery
20

21 # categorical feature constructed from an enum
22 @futureBatteryEstimate.input(CategoricalFeature(DroneState))
23 def drone_state(self):
24 return self.state

Listing 4.7: Inputs of an estimate assigned to a component.

26

Listing 4.8 shows an example of an input for an estimate assigned to a role
(we again continue the example from earlier Listing 4.6).

1 class DroneChargingAssignment(Ensemble):
2

3 # dynamic role with time estimate (as described earlier)
4 drones: List[Drone] = someOf(Drone)\
5 .withTimeEstimate()\
6 .using(waitingTimeEstimator)
7

8 @drones.estimate.input(NumericFeature(0, 1))
9 def battery(self, drone):

10 return drone.battery
Listing 4.8: Inputs of an estimate assigned to a role.

Target for ValueEstimate

The target represents the true values which are then used for training the machine
learning model. The values are collected after the defined number of time steps
and associated with the corresponding inputs.

The target is specified similarly to the inputs using the target() decorator.
A Feature can again be given as a parameter – this is how classification and
regression tasks are distinguished. The feature is then used to set the appropriate
number of neurons and the activation function of the last layer of the neural
network, and the loss function used for training – see Sections 4.4.2 and 4.4.3 for
more details.

An example of the target specification is given in Listing 4.9.
1 class Drone(MovingComponent2D):
2

3 # create the estimate and inputs as described earlier
4 ...
5

6 # define the target -- regression task
7 @futureBatteryEstimate.target(NumericFeature(0, 1))
8 def battery(self):
9 return self.battery

Listing 4.9: Target of an estimate assigned to a component.

Condition for TimeEstimate

For the time-to-condition estimate, a condition must be specified instead of the
target value. The syntax is again similar – using the condition decorator. If
multiple conditions are provided, they are considered in conjunction (all of them
must be true).

An example of a condition is given in Listing 4.10.
1 class DroneChargingAssignment(Ensemble):
2

3 # create the estimate and inputs as described earlier
4 ...
5

6 # define the condition (drone is accepted for charging)
7 @drones.estimate.condition
8 def is_accepted(self, drone):

27

9 return drone in self.charger.acceptedDrones
Listing 4.10: Condition for an estimate assigned to a role.

Features

When assigning the inputs and the target for the estimate, a feature type can be
specified. Setting the feature type allows for preprocessing of the values before they
are passed to the machine learning model (neural network in our current implemen-
tation). The specification of the feature type is technically realized by passing an
instance of a Feature as an optional parameter of the input() or target() deco-
rator. We offer a NumericFeature(min, max), a CategoricalFeature(enum|list),
and a BinaryFeature() subclasses of Feature.

The NumericFeature(min, max) serves as a representation of a numeric value
with a known range (minimum and maximum). Before passing the value to the
neural network, it is normalized to the interval [0, 1]. This is a recommended
practice as it usually improves the performance of the network. We do not offer
a specific implementation of numeric features with unknown range, the default
implementation (not setting the feature parameter) works fine.

For categorical inputs (inputs with a known fixed set of possible values),
the CategoricalFeature(enum|list) should be used. The list of possible values
(categories) must be specified as either a list of values, or an instance of IntEnum3.
One-hot encoding is performed as preprocessing before passing the values to the
neural network. This means that the input will be represented by as many input
neurons as there are possible values. When used as a target, the last layer of the
neural network has as many outputs as there are categories and uses the softmax
activation function.

The binary (Boolean) inputs are represented by the BinaryFeature() class. It
converts the Boolean values to 0 and 1 as preprocessing for the neural network.
When used as a target, the neural network has one neuron with sigmoid activation
in the last layer and the predicted value is the result of a comparison of the
produced value with 0.5.

Internally, we also use a TimeFeature() to represent the time difference in the
TimeEstimate. As we know that the time difference is always non-negative, we
use the exponential function as the activation function of the last layer of the
neural network.

Validity of inputs – guards

Guard functions can be specified using inputsValid, targetsValid and condition-
Valid decorators to assess the validity of inputs and targets. The data for training
is collected only if the guard conditions are satisfied. This can be used for example
to prevent collecting data from components that are no longer active. If multiple
guards of the same type are defined, all of them must return true in order to
collect the data.

An example of guards is shown in Listing 4.11. The conditionValid decorator
is used similarly.

3From Python package enum.

28

https://docs.python.org/3/library/enum.html

1 class Drone(MovingComponent2D):
2

3 # create the estimate, inputs and targets as described earlier
4 ...
5

6 @futureBatteryEstimate.inputsValid
7 @futureBatteryEstimate.targetsValid
8 def not_terminated(self):
9 return self.state != DroneState.TERMINATED

Listing 4.11: Guards for an estimate assigned to a component.

We also provide a guard for assessing the validity of a pair of inputs and
targets. It can be used to resolve more complex situations which cannot be
dealt with using only the inputsValid and targetsValid decorators as we show
later in Section 5.2.3. The guard is specified using the recordValid decorator
on a function, which can have the inputs, targets and also extra information as
its parameters (all in form of Python dictionaries). The extra information are
collected at the same time as the inputs and can be specified using the extra
decorator.

An example of recordValid guard is shown in Listing 4.12. We use it here to
not collect the record if the drone was charged since collecting the inputs (more
on that in Section 5.2.3).

1 class Drone(MovingComponent2D):
2

3 # create the estimate, inputs and targets as described
earlier

4 ...
5

6 @futureBatteryEstimate.extra
7 def current_time(self):
8 """Returns the current time step of the simulation."""
9 return SIMULATION_GLOBALS.currentTimeStep

10

11 @futureBatteryEstimate.recordValid
12 def not_charging(self, inputs, targets, extra):
13 """Returns true if the drone was not charged in the time

between collecting the inputs and the targets."""
14 time_of_inputs = extra['current_time']
15 return time_of_inputs >= self.lastChargingTime

Listing 4.12: Guard for a record (a pair of inputs and targets).

4.2.5 Obtaining the estimated value
The Estimate object is callable, so the value of the estimate based on the current
inputs can be obtained by calling the estimate as a function. For estimate assigned
to a role, the estimate is available in the estimate property of the role, and a
component instance is expected as an argument of the call.

When using the ValueEstimate with inTimeStepsRange and additional param-
eter is required when obtaining the value to indicate how many time steps into
the future the estimate should predict.

When obtaining the estimate, the input getters are called to obtain the current
observations. These are then used as inputs to the machine learning model and
the value produced is returned as the estimate.

29

The Listings 4.13 and 4.14 show how to obtain the estimated value from
an estimate assigned to a component and to a role respectively. Furthermore,
Listing 4.15 shows how to obtain an ValueEstimate with variable range of time
differences.

1 class Drone(Agent):
2

3 # create the estimate, inputs and targets as described earlier
4 futureBatteryEstimate = ValueEstimate()\
5 .inTimeSteps(50)\
6 .using(futureBatteryEstimator)
7 ...
8

9 def actuate(self):
10 estimatedFutureBattery = self.futureBatteryEstimate()

Listing 4.13: Obtaining the estimated value in a component.

1 class DroneChargingAssignment(Ensemble):
2

3 # create the estimate and inputs as described earlier
4 drones: List[Drone] = someOf(Drone)\
5 .withTimeEstimate()\
6 .using(waitingTimeEstimator)
7 ...
8

9 @drones.select
10 def drones(self, drone, otherEnsembles):
11 # we obtain the estimated waiting time here
12 waitingTime = self.drones.estimate(drone)
13 # and use it to decide whether the drone should ask for a

charging slot
14 return drone.needsCharging(waitingTime)

Listing 4.14: Obtaining the estimated value from an estimate assigned to a role.

1 class Drone(Agent):
2

3 # create the estimate, inputs and targets as described earlier
4 futureBatteryEstimate = ValueEstimate()\
5 .inTimeStepsRange(50, 100)\
6 .using(futureBatteryEstimator)
7 ...
8

9 def actuate(self):
10 estimatedBatteryAfter80Steps =

self.futureBatteryEstimate(80)
Listing 4.15: Obtaining the estimated value with variable estimation time in a
component.

4.2.6 Running the simulation
To run the simulation in ML-DEECo, the run_simulation function described in
Section 4.1.3 can be used. The only thing that needs to be added when running
a simulation with estimates is to call the SIMULATION_GLOBALS.initEstimators()
method (SIMULATION_GLOBALS is in the module ml_deeco.simulation) to initialize
the estimators before running the simulation.

Furthermore, we provide the run_experiment function which is useful for
running the simulation several times with training of the machine learning models
in between. It is described in the following section.

30

Running an experiment

The run_experiment serves for running several runs of the simulation with the
training of the machine learning models between them. It has four mandatory
parameters:

• iterations – number of iterations to run;
• simulations – number of simulations in each iteration;
• steps – the number of steps to be simulated in each simulation;
• prepareSimulation – a function to prepare the components and potential

ensembles for one run of the simulation, it is called before each simulation;
and four optional parameters:

• prepareIteration – a function to be called at the beginning of each iteration;
• iterationCallback – a function to be called at the end of each iteration;
• simulationCallback – a function to be called at the end of each simulation;
• stepCallback – same as in run_simulation (Sect. 4.1.3).
The iterations parameter specifies the number of iterations. In each itera-

tion, there are several runs of the simulation (the number of runs is set by the
simulations parameter). After that, the data from all the simulations in the
current iteration are used to train the machine learning model (Estimator). The
next iteration will use the updated model.

The prepareSimulation function is used to obtain the components and en-
sembles for the simulation. It gets the number of the current iteration and the
number of the current simulation (its order within the iteration) as parameters.
It is expected to return two lists: all the components to be simulated, and all
the potential ensembles in the system. The simulation is then run using our
run_simulation function for steps steps.

The prepareIteration is an optional function to be run at the beginning
of each iteration. It can be used for example to initialize logs for logging data
during simulations. Apart from the stepCallback, which is the same as in
run_simulation (Sect. 4.1.3), we also allow specifying a simulationCallback (ran
after each simulation) and iterationCallback (ran at the end of iteration after
all the simulations in the iteration have been run and the training of the machine
learning model has finished).

In the run_experiment function, the initialization of the Estimators is done
automatically.

4.3 Examples of ML-DEECo usage
In this section, we provide two complete examples of specification of a machine-
learning-based estimate in an ensemble-based component system.

4.3.1 Drone component
The first example, shown in Listing 4.16, is a drone component with a prediction
of the battery level in the future. The estimate is assigned to the component on
lines 16–18, and we use neural network with two hidden layers to produce the
predictions (lines 4–7). There are two inputs to the estimate – current battery

31

level as an example of a numeric input (line 20), and the current operational
state as an example of a categorical input created from an IntEnum (line 24). The
target, which is the battery level, is defined on line 28. The target values are
collected 50 time steps later then the inputs (as specified on line 17) and together
with the corresponding inputs, they are used for training of the machine learning
model. We use guards (lines 32–35) to express that the inputs are only valid for
training if the drone is not terminated. Lastly, the estimated value is obtained on
line 39 and if the predicted future battery level is below zero, the drone decides
to fly towards its nearest charger (the find_closest_charger method is omitted
in the example).

1 from ml_deeco.simulation import MovingComponent2D
2 from ml_deeco.estimators import ValueEstimate, NumericFeature,

CategoricalFeature, NeuralNetworkEstimator
3

4 futureBatteryEstimator = NeuralNetworkEstimator(
5 hidden_layers=[32, 32],
6 name="Drone battery"
7)
8

9 class Drone(MovingComponent2D):
10

11 def __init__(self, location):
12 self.battery = 1
13 self.state = DroneState.IDLE
14 self.station = None # charging station
15

16 futureBatteryEstimate = ValueEstimate()\
17 .inTimeSteps(50)\
18 .using(futureBatteryEstimator)
19

20 @futureBatteryEstimate.input(NumericFeature(0, 1))
21 def battery(self):
22 return self.battery
23

24 @futureBatteryEstimate.input(CategoricalFeature(DroneState))
25 def drone_state(self):
26 return self.state
27

28 @futureBatteryEstimate.target(NumericFeature(0, 1))
29 def battery(self):
30 return self.battery
31

32 @futureBatteryEstimate.inputsValid
33 @futureBatteryEstimate.targetsValid
34 def not_terminated(self):
35 return self.state != DroneState.TERMINATED
36

37 def actuate(self):
38

39 estimatedFutureBattery = self.futureBatteryEstimate()
40 if estimatedFutureBattery <= 0:
41 self.station = self.find_closest_charger()
42

43 # if the drone has an assigned charger
44 if self.station:
45 # fly towards it
46 if self.move(self.station.location) and

self.station.has_free_slot():
47 # drone arrived at the location of the charger

32

48 self.station.start_charging(self)
Listing 4.16: Example of machine-learning-enabled component.

4.3.2 Charging ensemble
In Listing 4.17, we show an ensemble for selecting drones for charging. The
ensemble has one static role (line 11) to which a charger is assigned in the
__init__ method (line 48). The priority of the ensemble (line 51) is set to the
number of free charging slots of the charger.

The ensemble features one dynamic role (line 13) with an estimate of the
waiting time for a free charging slot (line 14) for finding the drones, which need
charging. Again, we use a neural-network-based estimator (lines 4–7) to compute
the predictions. The inputs of the estimate are defined on lines 32–38, and the
guards are on lines 40–42. When a drone becomes a member of the ensemble, it
means that there is a free slot for it at the charger. We thus want to use that event
as the end of the waiting time, which is realized in the condition on lines 44–46 –
the condition returns true for members of the ensemble.

The select predicate for the role (line 17) obtains the estimated waiting time
(line 21) and uses it to decide whether a drone needs charging4. The utility
function (line 24) orders the drones by their missing battery, and the cardinality
function (line 28) limits the number of ensemble members to the free charging
slots.

When the ensemble is materialized (line 54), the member drones are assigned
the station property to indicate to them that they should fly towards the charging
station and start charging. Notice that self.drones is used as a list here.

1 from ml_deeco.simulation import Ensemble, someOf
2 from ml_deeco.estimators import NeuralNetworkEstimator
3

4 waitingTimeEstimator = NeuralNetworkEstimator(
5 hidden_layers=[256, 256],
6 outputFolder="results/waiting_time", name="Waiting time"
7)
8

9 class ChargingAssignment(Ensemble):
10

11 charger: Charger
12

13 drones: List[Drone] = someOf(Drone)
14 .withTimeEstimate()\
15 .using(waitingTimeEstimator)
16

17 @drones.select
18 def need_charging(self, drone, otherEnsembles):
19 if drone.state == DroneState.TERMINATED:
20 return False
21 waitingTime = self.drones.estimate(drone)
22 return drone.needs_charging(waitingTime)
23

24 @drones.utility
25 def missing_battery(self, drone):

4The Drone.needs_charging method is not shown in the example, but we assume that it
determines whether the drone would need charging if it had to wait for the charging slot for a
given number of time steps.

33

26 return 1 - drone.battery
27

28 @drones.cardinality
29 def free_slots(self):
30 return 0, self.charger.free_slots
31

32 @drones.estimate.input(NumericFeature(0, 1))
33 def battery(self, drone):
34 return drone.battery
35

36 @drones.estimate.input(NumericFeature(0, ENVIRONMENT.size))
37 def charger_distance(self, drone):
38 return self.charger.location.distance(drone.location)
39

40 @drones.estimate.inputsValid
41 def not_terminated(self, drone)
42 return drone.state != DroneState.TERMINATED
43

44 @drones.estimate.condition
45 def is_accepted(self, drone):
46 return drone in self.drones
47

48 def __init__(self, charger):
49 self.charger = charger
50

51 def priority(self):
52 return self.charger.free_slots
53

54 def actuate(self):
55 for drone in self.drones:
56 drone.station = self.charger

Listing 4.17: Example of machine-learning-enabled ensemble.

4.4 Estimators
Our implementation focuses on using neural networks as the machine learning
algorithms to generate predictions. We provide the NeuralNetworkEstimator class
in ml_deeco.estimators module to the user. It uses the TensorFlow framework [14]
inside to implement the neural networks.

4.4.1 Neural network architecture
Currently, we only work with multilayer perceptron networks (also called fully-
connected or dense). The number of hidden layers and the number of neurons in
each layer is done by the user as already shown in Section 4.2.2. The input layer is
constructed automatically based on the number of specified inputs (for categorical
inputs, more than one input neuron is used due to the one-hot encoding). The
last layer is also constructed automatically based on the target. The process is
described in more detail in Section 4.4.2.

To train the networks, we use the data collected during the simulation. The
detail on how we perform the data collection are written in Section 3.3.1. The
loss function used for training is also inferred automatically based on the specified
target feature, details are in Section 4.4.3. The parameters for the training can
be specified using the fit_params parameter of NeuralNetworkEstimator. It is a
dictionary, which is then passed to the fit function of the constructed TensorFlow

34

https://www.tensorflow.org/api_docs/python/tf/keras/Model#fit

model. The default training parameters are: 50 training epochs, 0.2 validation
split, and early stopping5 with patience 10. Furthermore, the optimizer for
training can be used, the default one is Adam [15] (tf.optimizers.Adam).

4.4.2 Inference of the output layer of the neural network
We use the feature type specified to the target decorator to automatically infer
the number of neurons and the activation function for the last layer of the neural
network. If the user wants to use a different activation function, they can specify
it using the activation parameter of the NeuralNetworkEstimator constructor.

When no feature type is specified for the target, the default Feature imple-
mentation is used. The output of the last layer is not processed any further and
is returned as-is. Technically, this is done by using identity as the activation
function.

For numeric features, the sigmoid6 function is used as the last layer activation.
This is done to ensure that the predicted value will always fall into the interval
[0, 1]. The value is then scaled based on the provided range of the feature.

For categorical features, we use as many neurons as there are categories with
the softmax7 activation function. That produces a probability distribution over the
categories and the category with highest probability is returned as the prediction.

For binary features, we use one neuron with the sigmoid activation function.
The prediction is produced by comparing the output of the sigmoid with 0.5
(predicting True if the output of the network is bigger than 0.5).

Lastly, for TimeFeature (used internally by the TimeEstimate), we use the
exponential function (ex) as activation in order to produce non-negative prediction.

A summary of the used activations (together with losses) is provided in
Table 4.1.

Target feature Last layer activation Loss
Feature (default) identity Mean squared error
NumericFeature sigmoid (+ scaling to proper

range)
Mean squared error

CategoricalFeature softmax (1 neuron for each
category)

Categorical cross-entropy

BinaryFeature sigmoid (only 1 neuron) Binary cross-entropy
TimeFeature exponential Poisson

Table 4.1: Summary of activation functions of the last layer of the neural network
and the loss function used for training based on the target feature type.

4.4.3 Inference of the loss function for training
Similar to the last layer inference, we use the feature type specified to the target
decorator to automatically infer the loss function for the training of the neural

5If the loss computed on the validation data does not improve for a given number of epochs, the
training is stopped. This is realized by the tf.keras.callbacks.EarlyStopping callback.

6Sigmoid is defined as σ(x) = 1
1+e−x .

7The softmax of a vector (x1, . . . , xD) is a vector
(︁

ex1

z , . . . , exD

z

)︁
, where z =

∑︁D
i=1 exi .

35

https://www.tensorflow.org/api_docs/python/tf/optimizers/Adam
https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/EarlyStopping

network. If the user wants to use a different loss function, they can specify it
using the loss parameter of the NeuralNetworkEstimator constructor.

For both the NumericFeature and also the Feature which is default when no fea-
ture type is specified, the mean squared error loss (tf.keras.losses.MeanSquared-
Error) is used.

For categorical features, we use the categorical cross-entropy loss (tf.keras.
losses.CategoricalCrossentropy), which works well together with the softmax
activation function. For binary features, the binary cross-entropy loss (tf.keras.
losses.BinaryCrossentropy) is used.

Lastly, for TimeFeature, we use the Poisson loss (tf.keras.losses.Poisson).
A summary of the used loss functions (together with activations) is provided

in Table 4.1.

4.4.4 Caching of estimates
We employ a performance optimization for the role-assigned estimates with fixed
time difference. We compute the estimated values for all potential member
components at the same time and cache them. It saves time as the neural network
is capable of processing all the potential members in one batch. We thus only do
one call to the TensorFlow backend per time step for each Estimate instance.

This implies that the inputs of the model cannot use the information about the
already selected members for the role. To suppress this behavior, pass a keyword
argument ignoreCache=True to the call for obtaining the estimate, which forces
the prediction to be generated again from the current values of the inputs.

36

https://www.tensorflow.org/api_docs/python/tf/keras/losses/MeanSquaredError
https://www.tensorflow.org/api_docs/python/tf/keras/losses/MeanSquaredError
https://www.tensorflow.org/api_docs/python/tf/keras/losses/CategoricalCrossentropy
https://www.tensorflow.org/api_docs/python/tf/keras/losses/CategoricalCrossentropy
https://www.tensorflow.org/api_docs/python/tf/keras/losses/BinaryCrossentropy
https://www.tensorflow.org/api_docs/python/tf/keras/losses/BinaryCrossentropy
https://www.tensorflow.org/api_docs/python/tf/keras/losses/Poisson

5. Evaluation
To prove that ML-DEECo is useful for modeling smart systems, we implemented
a simulation of the running example in Python using our ML-DEECo runtime
framework implementation [13]. In this chapter, we first provide a description of
the simulation in Section 5.1 and then present results of using the machine-learning-
based estimates for self-adaptation of the simulated system in Section 5.2. We have
also included an additional example from the Industry 4.0 domain implemented
using ML-DEECo in Section 5.3.

5.1 Simulation of the running example
We implemented a simulation of the running example (described in Section 2.1)
using the ML-DEECo runtime framework. The source code of the simulation can
be found in the replication package [16].

We use the DEECo concepts of components and ensembles (for details, see
Section 2.2) to implement the simulation.

We have two types of autonomous components – drones, which protect the
crops, and chargers, which are used for charging the drones. The flocks of birds,
which damage the crop, are also modeled as components as it is convenient for
the simulation. Nevertheless, the system cannot control the behavior of the birds,
they thus belong among the “beyond control components”.

The components group together into ensembles formed at runtime by our
framework. We have one ensemble type for field protection (details in Section 5.1.5)
and three ensemble types for management of the charging of the drones (details
in Section 5.1.6). Furthermore, the charging of the drones is the place where we
use a machine-learning-based estimate to predict the waiting time before a drone
is accepted for charging.

5.1.1 World configuration and agricultural fields
The configuration of the simulation is loaded from a .yaml file1 and it is stored
in the ENVIRONMENT global variable. The simulation is then initialized and the
dynamic information, such as the lists of drones, chargers, and birds are saved in
the WORDL global variable.

The agricultural fields of crops which need protection are represented by the
Field class. We model the fields as having a rectangular shape. The number of
drones needed to protect the whole field from the birds depends on the size of the
field. The Field class also records the amount of crops damaged by the birds.

5.1.2 Flocks of birds
The birds are a threat to the crops on the fields. They seek undamaged crops
on the fields and eat them, which will damage that part of the field. The birds
are afraid of the drones, so when a drone is nearby, the flock of birds starts to

1The format of the configuration file is described in the replication package [16].

37

flee to a random place on the map. The behavior of the birds is randomized, the
randomness will thus influence the results of the simulation.

The flocks of birds are represented by the Bird class. Each bird is modeled
as having a state (the BirdState enum). Based on the state, the behavior of the
bird is executed in each time step. As we model the birds as components, the
periodical execution of the behavior is realized in the actuate function.

5.1.3 Drone component
The Drone class represents the autonomous drones used for field protection. The
drone can be assigned a position to protect and it will fly towards it to scare away
the birds. As the drones run on battery, they need to be charged. The drone can
detect when it needs charging and once accepted for charging by a charger, the
drone will fly towards the charger.

The behavior of the drones depends on the operational state which is modeled
by the DroneState enum.

Drone battery estimate

We employ the machine-learning-based estimate inside the Drone component
to predict the battery level in the future. We use the ValueEstimate with
inTimeStepsRange to be able to estimate the battery level at any time in the
near future.

We had to be careful about the data we collect as the charging of the drone
skews the estimate of the future battery. We discuss this further in Section 5.2.3.

5.1.4 Charger component
The Charger class represents the charger station for charging the drones. Each
charger station has a limited capacity so it can charge only several drones at the
same time. Furthermore, we assume that all the chargers are connected to the
same power supply which creates an upper limit for the total charging rate. That
means that when multiple drones are charged simultaneously, the charging rate
for each drone will be lower than if there was only one drone being charged.

5.1.5 Field protection ensemble
We use ensembles of drones and fields to communicate the assignment of places
that need protection. It is assumed that in a real-life scenario, the position of
the birds will be detected by additional sensors and communicated through the
ensembles.

We have one instance of the FieldProtection ensemble for each field on the
map (the field is thus a static member of the ensemble instance). The ensemble
also has a dynamic role for selecting a drone to protect the field. We select only
one drone for each field in each time step to distribute the drones evenly among
the fields. The member for the ensemble is selected from the idle drones with
utility based on the distance of the drone to the field. Once a drone becomes a
member of the ensemble, it is assigned the target field and its state is changed so
that it is not selected again in the next time step. The priority, which defines the

38

order in which the potential ensembles are materialized, depends on the number
of unprotected places in the field.

5.1.6 Drone charging ensembles
The most complex group behavior which we model in this example is the charging
of the drones. We use three ensemble types to achieve the desired outcome:

1. DroneChargingPreAssignment partitions the drones among the chargers so
that each drone is assigned to the closest charger;

2. DroneChargingAssignment selects the drones in need of charging;

3. AcceptedDronesAssignment groups the drones which were accepted by the
charger — those start moving to the charger and start charging when they
get there.

Once on the charger, the drone will charge until its battery is full, and then its
state changes to “idle”. We provide a more detailed description of each ensemble
type in the following sections.

Furthermore, drone charging is where we apply the machine-learning-based
approach to the self-adaptation of the system. We use a time-to-condition estimate
in the DroneChargingAssignment to predict the waiting time before a drone gets
accepted for charging.

DroneChargingPreAssignment

This ensemble has the highest priority among the drone-charging-related ensem-
bles which ensures it is executed before the other two ensembles. It is used
to divide the drones among the chargers – for each active drone, the closest
charger is located in each time step. Technically, we have an instance of the
DroneChargingPreAssignment for each charger, so its members are the drones for
which this charger is the closest. The cardinality of the ensemble is unlimited
(technically, it is set to the total number of drones in the simulation), so we do not
need any utility function. When materialized, the ensemble will save the found
drones to the potentialDrones list of the charger. As the ensembles are re-formed
in every time step, the potentialDrones list always contains the drones for which
the charger is the closest.

DroneChargingAssignment

The DroneChargingAssignment ensemble groups the drones which require charging.
The priority of the ensemble is set so that it is run after the DroneChargingPreAs-
signment. Again, we have an instance of the ensemble for each charger and these
instances are independent as each of them only works with the potentialDrones
for the charger.

We use a time-to-condition estimate in the select predicate of the ensemble
to predict the waiting time before a drone is accepted for charging. We sum the
estimated waiting time and the time needed to fly to the charger to get an estimate
of the time before the drone starts charging. Based on that, the drone computes

39

what battery level it will have at the time we estimate it to start charging. If
this battery level is below a certain threshold, the drone signalizes that it needs
charging.

We do not limit the cardinality of the role so all the drones in the system
can become members of the ensemble. The members are then assigned to the
waitingDrones list of the charger.

Waiting time estimate

The estimate is technically realized as a TimeEstimate assigned to the dynamic
role drones in the DroneChargingAssignment ensemble.

As a baseline, we assume that the drone will be accepted immediately and
there will be no waiting. The time before the drone starts charging is thus only
the time needed to fly towards the charger.

For our machine-learning-based estimate, we use a neural network to predict
the waiting time. The input features we use are:

• battery – the battery level of the drone;
• drone_state – the operational state of the drone (categorical with categories

from DroneState enum);
• charger_distance – the distance between the drone and the charger;
• charger_capacity – the number of total charging slots;
• charging_drones_count – the number of drones currently being charged by

the charger;
• charging_drones_missing_battery – the missing battery (i.e., 1 - battery)

of the drones currently being charged by the charger;
• accepted_drones_count – the number of drones already accepted for charg-

ing;
• accepted_drones_missing_battery – the missing battery (i.e., 1 - battery)

of the drones already accepted for charging;
• waiting_drones_count – the number of waiting drones (from the previous

time step);
• waiting_drones_with_lower_battery – the number of waiting drones (from

the previous time step) with a battery lower than the current battery of the
drone;

• potential_drones – the number of drones pre-assigned to the charger;
• potential_drones_with_lower_battery – the number of drones pre-assigned

to the charger with a battery lower than the current battery of the drone;
• neighbor_drones – the number of drones protecting the same field;
• neighbor_drones_average_battery – the average battery level of the drones

protecting the same field.
As we work with a time-to-condition estimate, we need a condition indicating

the end of the waiting time. For that, we check whether the drone is in the
acceptedDrones list of the charger (the list is set by the AcceptedDronesAssignment
ensemble).

We also have a guard for the validity of the inputs checking that the drone is
pre-assigned to the charger. We only want to collect the data for training from
the drones belonging to this charger and not those belonging to other chargers.

40

AcceptedDronesAssignment

The last ensemble used for charging drones is the AcceptedDronesAssignment.
This ensemble is used to select some of the waitingDrones and accept them for
charging. When a drone is accepted, its state is changed to “moving to charger”
and the drone starts flying towards the charger. The select function is constructed
in such a way that when the drone reaches the charger, there is a free slot for it
and it can immediately start charging. We also save the accepted drones in the
acceptedDrones list of the charger.

The select predicate selects the drones that either were already accepted in
the previous time step (and are still flying towards the charger), or are in the
waitingDrones list and their time to reach the charger is bigger than the time
needed to finish charging one of the currently charging drones and thus making
the charging slot free.

The utility of function orders the drones by the time they need to finish
charging. That is the sum of the time needed to fly to the charger and time to
fully charge, considering the energy used for the flight. The drones which will
finish charging the first become members of the ensemble first.

The cardinality is set to the number of charging slots the charger has. This
effectively means that we can have an accepted drone for each charging slot. Note
that the accepted drones are those which fly towards the charger and will start
charging when they get there, not the drones currently being charged.

5.2 Results
In this section, we focus on the results of using the machine-learning-based
estimates in the simulation. We use two estimates in our simulation:

• waiting time before a drone is accepted for charging (5.1.6),
• future battery level of a drone (5.1.3).

This section first describes the evaluation metrics in Section 5.2.1. Then,
we show the baselines we compare our machine-learning-based estimates to in
Section 5.2.2. Sections 5.2.3 and 5.2.4 discuss the specifics of training data
collection in our use-case. Lastly, we summarize the results in Section 5.2.5.

5.2.1 Evaluation metrics
We focus on two evaluation metrics – the survived drones and the damage rate.

The survived drones is the number of drones that are active at the end of the
simulation – these are the drones that were not terminated during the simulation
due to their battery running out. It is clear that when we have an optimized
schedule for charging the drones, more of the drones survive until the end of the
simulation. A better estimate of the waiting time should thus result in more
surviving drones.

The damage rate is the relative percentage of the crops eaten by the birds.
If birds are on a field and they are not scared away by the drones for a certain
amount of time, they damage the crop on the field. We accumulate the amount of
damaged crops throughout the simulation. To get the damage rate, we normalize

41

the damage amount by the damage amount done by the birds if no drones are
present in the simulation to scare them away (i.e., the maximum damage the birds
can do).

At first, it might seem that these two metrics are highly correlated as more
drones can protect a bigger area of the fields. However, this is not really true as it
does not take into account the time needed to charge the drones. If drones spend
most of their time at the charger (to charge their battery and therefore survive),
they cannot spend the time protecting the fields.

5.2.2 Baselines
When the simulation starts, we do not have a trained machine learning model
for computing the estimates. In the first several runs of the simulation, we thus
use the values predicted by the untrained neural network. The weights of the
neural network are initialized in a common way that results in producing 0 as
the output of the network. Using the uninitialized neural network is thus almost
equivalent to the baseline of predicting a constant 0 for the waiting time (we call
this approach Baseline 0).

To show the benefits of using a machine-learning-based approach over simply
increasing the threshold for indicating whether a drone needs charging (i.e.,
consider all or most of the drones as if they need charging), we construct another
baseline (Baseline 100) which predicts a constant 100 as the waiting time. As the
results show, using this baseline is exactly the case in which the number of survived
drones increases, but the damage rate is also bigger than for the Baseline 0.

5.2.3 Using guards to collect appropriate data for the
battery estimate training

As we want to use the estimate to decide whether the drone needs charging or not,
we want to be able to use the estimate to predict the future battery of the drone
assuming it is not charged in the meantime. However, the drone gets charged
during the simulation, so the data we collect from the simulation also contain
training examples with the battery level in the future higher than the battery
level now. These examples skew the estimate of the battery. If we just collect all
the training examples from the simulation, the trained estimate will predict the
future battery including the possible charging of the drone, which is not really
useful for the decision we want to make.

We use the record guards to address this issue and simply discard all training
examples in which the drone was charging in the time between collecting the
inputs and the targets. We show a comparison of using the guard and not using
the guard in Figure 5.1. The scatter plots show the correlation of the true values
and the predictions. The benefits of using the guard are clearly visible – the data
are much closer to the diagonal. When the guard is not used, the predictions are
very noisy and the estimator is basically useless.

42

(a) Using all data for training. (b) Using only data where the drone is not
charging between collecting the inputs and
the targets.

Figure 5.1: Comparison of results of the estimator with regard to what training
data are collected. Horizontal axis represents the predicted values, vertical axis
represents the true values.

5.2.4 Strategies for collecting training data
We use the run_experiment function from ML-DEECo (see Section 4.2.6) to run
our experiments. We set the number of iterations to 10 and the number of
simulations to 5. This means that the whole experiment consists of 10 iterations.
In each iteration, the simulation is run 5 times and then the training of the neural
network is performed. The training data are collected during each simulation run.

In each iteration, we concatenated the data from all the simulation runs.
Furthermore, we have experimented with several strategies for selecting the
training data from the already finished iterations:

• only the data from the current iteration,
• data from all previous iterations,
• data from the past three iterations.

Data from current iteration

The first strategy is to use only the data collected during the current iteration.
The data from an experiment with 16 drones can be seen in Figure 5.2. We can
see that even one training of the neural network is enough to save most of the
drones and to get similar results as with Baseline 100. However, the damage rate
also increases as the drones spend a lot of time at the charging stations.

With the second training of the neural network (which uses the training
data collected during the 5 runs in the second iteration), the system adapts and
improves again, this time saving approximately the same number of drones, but
reaching a significantly lower damage rate, even smaller than with the Baseline 0.

As the system adapts further, it seems that it is oscillating between two types

43

Figure 5.2: Survived drones and damage rate in a simulation with 16 drones while
using data from one iteration for estimator training.

of states – in one of the types, the system saves most of the drones, but the
damage rate is high because of the time spent charging; in the other type, the
system saves fewer drones, but the damage rate is lower because the drones spend
their time better. Clearly, the adaptation of the system changes the distribution
of the data which we use for training the neural network. As we only use the
data from the last iteration, the network adapts to the data from one type of
the states which causes the system to change its state to the other type and vice
versa, causing a feedback loop.

Data from all previous iterations

The feedback loop can be resolved by using the data from all the previous iterations
for training as we can observe in Figure 5.3. The decrease of the damage rate is
slower than in the previous case as the adaptation of the system is slower, because
we adapt it to different training data. On the other hand, the performance of the
system seems significantly more stable.

Data from previous three iterations

Using the data from all previous iterations has the disadvantage of the growing
number of training data we have to keep in the memory and the training of the
neural network taking longer. To remove this disadvantage while still breaking
the feedback loop, we experimented with using data from a subset of the previous

44

Figure 5.3: Survived drones and damage rate in a simulation with 16 drones while
using data from all iterations for estimator training.

Figure 5.4: Survived drones and damage rate in a simulation with 16 drones while
using data from previous three iteration for estimator training.

45

iterations. Specifically, we use the data from the previous three iterations to
obtain the results in Figure 5.4.

The behavior is quite similar to using all the previous iterations. We can see
that the adaptation is slower than when using only the last iteration, but the
results are almost as stable as when using the data from all the previous iterations.

5.2.5 Summary of the results
We observed similar results for running the simulation with a different number of
drones. When training only on data from one iteration at a time, the system falls
into a feedback loop. Using the data from all the previous iterations resolves this
issue, and using the data from the previous three iterations performs similarly.

Figure 5.5 shows the results of the simulation for a different number of initial
drones. For machine-learning-based approaches, the training on the previous three
iterations strategy was used and the results from the best iteration are shown (it
was the fifth iteration for 12 and 16 drones, and the sixth iteration for 20 drones).

12 16 20
Initial Drones

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Su
rv

iv
ed

 D
ro

ne
s (

hi
gh

er
 is

 b
et

te
r)

5.0
6.0

9.0

11.6
12.8

19.4

12.0
13.0

20.0Baseline 0
Baseline 100
ML-based

12 16 20
Initial Drones

0.0

0.1

0.2

0.3

0.4

Da
m

ag
e

Ra
te

 (s
m

al
le

r i
s b

et
te

r)

0.34 0.33

0.19

0.46 0.47

0.41

0.19 0.18

0.11

Baseline 0
Baseline 100
ML-based

Figure 5.5: Comparison of survived drones and damage rate for baseline and
ML-based approach.

Though the results are only indicative and have no generality beyond our use-
case, they still show that using machine-learning-based estimates can improve the
self-adaptive system. More importantly, the inclusion of machine-learning-based
estimates is relatively simple with ML-DEECo, so it can be easily experimented
with to see whether it is helpful in a particular use-case.

46

5.3 Security rules example
In this section, we provide an overview of another use case that uses the ML-
DEECo framework. The scenario builds on recent work by Al-Ali et al. [17] and
focuses on security rules in a smart factory. A replication package with the source
code is available online [18].

5.3.1 Use case
In this example, we model a simulation of a smart factory with security rules to
access doors, etc. The factory has multiple working places, each with a team of
workers. The teams of workers work on projects for several different customers.
The workers from one team are thus allowed only to enter their workplace and
cannot enter the other workplaces (to protect the intellectual property of the
customers).

In the morning, a shift of workers is assigned to each workplace. These workers
are granted permission to enter the factory 30 minutes before their shift starts.
Then they have to take a protective headgear from a dispenser inside the factory.
Only with the headgear, they are allowed to enter their workplace.

Apart from the workers assigned to the shift, there are also several standby
workers in case some of the assigned workers do not arrive in time. When a worker
does not arrive at the factory 16 minutes before their shift starts, they get canceled
for the day, and a standby worker is called to replace them. We assume that it
will take approximately 30 minutes before the standby arrives. The cancellation
of the worker includes revoking the permission to enter the factory and granting
that permission to the standby.

The scenario is dynamic as replacing the workers in the shift with standbys
requires changing the permissions to enter the factory and the workplaces.

5.3.2 Modelling the scenario using components and en-
sembles

The scenario can be easily modeled using components and ensembles. We consider
the following components: Door, Dispenser (of protective headgear), Factory,
WorkPlace, Shift and Worker. As we can see, the components can be used to
represent all entities in the system, including those which are not physical objects,
such as shifts of workers.

We then employ several ensembles to define the security rules. For each shift,
we create a ShiftTeam ensemble instance (the shift is a static role of the ensemble).
In this ensemble, we select all workers of the shift using a dynamic role – we can
easily express that we want to include all workers assigned to the shift except
those canceled and also include all called standbys. We then use AccessToFactory
and AccessToDispenser ensembles to grant the permission to enter the factory
and to obtain the headgear from the dispenser to the workers selected by the
ShiftTeam ensemble. The AccessToWorkPlace is similar, but it further requires
that the workers are wearing the protective headgear. The time during which
the permission should be granted is easily expressed using the situation of the
ensembles.

47

Figure 5.6 (from Al-Ali et al. [17]) shows an example of two ensembles in the sce-
nario. The grey ensemble represents the access to the main gate (AccessToFactory)
and the blue ensemble is AccessToWorkPlace (we can see that all the workers wear
the necessary protective headgear).

Figure 5.6: Ensembles in the Security rules example. From Al-Ali et al. [17].

5.3.3 Use of machine learning for adaptation
To show a possible usage of machine learning in this scenario, we decided to
replace the static rule of canceling a worker 16 minutes before the shift starts with
a dynamic threshold based on a machine-learning-based estimate.

We construct an ensemble for selecting the late workers and replacing them
with standbys. We start by deciding which workers are potentially late – those
who are not yet at the factory and belong to a shift that is about to start. We
use the estimate to predict whether the worker will arrive at the factory before
the shift start. If the estimate predicts that the worker will not arrive on time,
they get canceled and they are replaced by a standby.

To further emphasize the benefits of adaptive rules, we assume that the workers
behave differently on business days and during the weekend. We outline the process
of generating data for the simulation in the next section.

Generating data for the simulation

For the sake of simplicity, we assume that all the workers arrive by bus at a bus
stop a few minutes away from the main gate of the factory. During business days,
the bus arrives 24 minutes before the shift starts, and during the weekend, the
bus arrives 30 minutes before the shift. Furthermore, we assume that 10% of the
workers are late and arrive by a later bus – 18 minutes before the shift starts
on business days and 15 minutes before the shift starts during the weekend. To
simulate uncertainty in the scenario, we add a random delay to the arrival of each
worker with an exponential distribution.

48

5.3.4 Results
We ran the simulation with 100 workers in each shift for three iterations – in the
first iteration, the rigid rule of canceling workers 16 minutes before the shift starts
is used, and the two following iterations use the learned estimate. The results are
summarized in Figure 5.7. The lateness is computed as the square of the delay of
workers who arrive late at their workplace.

Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su
Day of week

0

2

4

6

8

10

12

14

St
an

db
ys

0

50

100

150

200

250

300

La
te

ne
ss

Standbys
Lateness

Training 1 Training 2
Number of standbys and lateness in the smart factory simulation

Figure 5.7: Results of the simulation with 100 workers.

We can clearly see that for this configuration, the rules based on learned
estimates perform significantly better than the rigid rule. For the rigid rule, we
have on average 13 standbys called, which is expected as we assume that 10% of
the workers arrive by the later bus and these will not arrive at the main gate on
time and thus are canceled. The learned estimate uses a later threshold (as we
discuss in the following section) and thus lower number of standbys is needed and
the overall lateness is smaller.

Outputs of the neural network

To inspect the decisions of the neural network, we have plotted its outputs in
Figure 5.8. The plot shows the output of the network based on its input values –
the day of the week and the time before the shift starts. Green values indicate
that the network predicts that the worker will arrive at the factory before the
shift starts while the red values indicate that the worker will not arrive on time
and should be canceled and replaced by a standby.

We can see that the network was able to learn the pattern of business days and
weekends and has a different threshold for them. For business days, the threshold
is slightly later than the original 16 minutes – it cancels the workers which are not
at the factory 12 minutes before the shift starts. This is a reasonable decision as
the workers who arrive by the late bus are canceled by the original threshold but
they are not canceled by the new threshold. They might come to the workplace
a few minutes late, but they still arrive earlier than the standby would. For the

49

Figure 5.8: Outputs of the neural network for predicting whether a worker will
arrive to the factory before their shift starts (green) or not (red).

weekends, we see similar behavior. The network still prefers the slightly late
workers instead of the standbys. This time, the late bus arrives later than on
business days, so the learned threshold is also later.

Threats to validity

We are aware that the data are constructed under our control. We still think
that they illustrate that the machine-learning-based estimates can be useful for
adaptation in specific situations as the neural network is able to learn the patterns
from the data and adapt the security rules accordingly.

50

6. Related work
6.1 Ensemble-based component modeling
As already stated in Chapter 2, we base our work on the DEECo [1] component
model. Here, we mention several other approaches to ensemble-based component
modeling, namely SCEL (Section 6.1.1) and Helena (Section 6.1.2). Then, we
provide more details on alternative approaches to ensemble formation in DEECo
in Section 6.1.3.

6.1.1 SCEL
SCEL (Service Component Ensemble Language) [19] is a language for rigorous
modeling and programming of autonomic components and their interaction. The
authors focus on defining programming abstractions to model the evolutions
and interactions of autonomic components and ensembles. Similar to DEECo,
components can be selected for the ensemble based on a predicate over their
attributes.

The authors focus on describing behaviors (modeled as processes executing ac-
tions), knowledge (information representation), aggregations (design of autonomic
components and the construction of the software architecture of ensembles), and
policies (control and adaptation of the actions of the components).

The abstractions have also been materialized in a Java-based runtime frame-
work [20].

6.1.2 Helena
Another approach is to ensemble-based component modeling is Helena [21]. It
also features autonomous components and their ensembles. Each ensemble has
a set of roles and the components can enter the ensemble in a particular role to
take responsibility for a certain part of the task realized by the ensemble. The
ensembles form a structure to represent the goals of the system. Similar to DEECo,
components can be members of several ensembles simultaneously.

One key difference between Helena and our work based on DEECo is that
Helena models a transition system, called ensemble automata, for the state of the
ensemble. The ensemble automaton describes the evolution of the ensemble over
time – which components represent which role. In our work, the ensembles are
state-less and formed anew in every time step of the simulation.

6.1.3 Ensemble formation in DEECo
We now return back to the DEECo [1] component model, which we base our work
on, and elaborate on the approaches to forming ensembles at runtime, that we
briefly mentioned in Section 2.2.3.

Bureš et al. [9] presented a language and framework for specifying dynamic
component ensembles in Scala1. In their work, the ensembles can overlap – a

1High-level programming language running on JVM. See https://www.scala-lang.org/.

51

https://www.scala-lang.org/

component can be a member of multiple ensembles at the same time – and they can
be nested – members of a child ensemble must be members of its parent ensemble
too. During the ensemble formation (or instantiation in the terms of the paper),
all potential member components are considered for the ensemble instances. Each
possible assignment of the members is evaluated using a utility function and the
whole ensemble formation is formulated as a constraint optimization problem.
The COP is solved and the ensembles are instantiated in an optimal way.

Another approach [10], presented by the same group, is based on machine
learning. They argue that solving the COP takes a lot of time and propose
formulating the problem as classification and using neural networks or decision
trees as trained classifiers. The inputs and the outputs of the machine learning
models are the same as for the CSP solver – the inputs comprise the component
knowledge and the outputs are Boolean variables that represent the membership
of a component instance to an ensemble instance. As the inputs and outputs
are the same, the data from the CSP solver can be used as training data for the
machine learning models. The authors show they were able to train the classifier
with high enough accuracy. Using the trained classifiers can produce a solution
that does not comply with the hard constraints, but the authors claim that if the
system is well designed, the approximate solutions still work.

6.2 Machine learning in self-adaptive systems
In a systematic literature review of applications of machine learning in self-adaptive
systems [8], the authors observe that there is a clear increasing trend of employing
machine learning techniques in the area over the recent years. Machine learning is
mostly used for directly updating the adaptation rules. Another important area
is the prediction and analysis of resource usage. The authors also use the insights
from the study to provide an outline of a design process for applying machine
learning in self-adaptive systems. Another systematic literature review [7] confirms
the same findings. Most of the surveyed works focus on the application of machine
learning methods in a specific task. Our goal, on the other hand, is to design a
component model with the ability to specify the machine-learning-based estimates
in the architecture of the system. We still list the most relevant applications of
machine learning in this section.

One of the possible applications of machine learning methods in self-adaptive
systems is to reduce a large space of possible adaptations. As the analysis of
all possible adaptations can be time-consuming, the authors of DLASeR (Deep
Learning for Adaptation Space Reduction) [22] propose an approach for reduction
of the adaptation space to consider only relevant adaptations. Their work can
handle both threshold and optimization goals. Another work [23] of a similar
group of authors combines the machine-learning-aided adaptation space reduction
with a cost-benefit analysis to assess the costs of performing the adaptation. The
machine-learning-based adaptation space reduction is further analyzed by Ghebi
et al. [24] to provide a theoretical bound on the impact of the machine learning
when analyzing the system by a formal verifier to provide guarantees for the
decision made by the system.

Muccini and Vaidhyanathan [25] show a rather straightforward use of time-
series forecasting using recurrent neural networks (namely LSTM) for the predic-

52

tion of quality of service (QoS) parameters such as the energy consumption of
the system. They use the predictions for a proactive adaptation of the system
rather than waiting for the QoS parameters to drop below a certain threshold
and adapting the system afterward. They further develop the method together
with Cámara [26] and employ formal quantitative verification (probabilistic model
checking) to check the feasibility of the adaptation decision and provide feedback
to the machine learning training for faster convergence towards optimal decisions.

The use of online reinforcement learning for self-adaptation and to address
design-time uncertainties is investigated by Palm et al. [27]. They present an
approach for automatic fine-tuning of the exploration rate of the reinforcement
learning algorithm and quantization of the environment states.

For continuous monitoring and resource demand estimation of self-adaptive
systems, Grohmann et. al present the SARDE framework [28]. SARDE dynami-
cally executes and tunes a set of resource demand estimation approaches to select
the most reliable approach for the current state of the environment and thus
minimize the estimation errors. They use machine learning for model selection.

For verification and quality assurance of the self-adaptive systems with machine
learning in mind, Gabor et. al. [29] present a formal framework. They use
the coevolution of the adaptive system and the tests to adapt the tests to the
adaptation of the system.

53

7. Conclusion
In this thesis, we have presented ML-DEECo, a machine-learning-enabled compo-
nent model for architecting distributed smart systems based on the autonomic
component ensembles from DEECo component model [1]. ML-DEECo provides
primitives for easily enriching the system with machine-learning-based estimates
and thus allows adaptivity of the system.

We started by identifying and analyzing possible usages of supervised machine
learning in a component-based architecture of an ensemble-based adaptive system.
We have identified two important dimensions in which the estimates can be
categorized – where the estimate is used and what is the estimated quantity. Based
on that, we have designed estimators for the two important tasks – future value
prediction (both regression and classification) and time-to-condition prediction.
We have described the semantics of the estimators including the process of data
collection for training the machine learning models.

Based on that, we have implemented the ML-DEECo runtime framework
in Python and made it available as open source [13]. The framework provides
abstractions for defining autonomous components and their ensembles as well
as machine-learning-based estimates of the attributes of the components and
ensemble members. The framework handles all the necessary tasks for providing
the estimates, such as the construction of the machine learning models (neural
networks in our case), collection of the training data, and training of the model.
We have accompanied the documentation of the ML-DEECo framework with
examples of declaration of components and ensembles with machine-learning-based
estimates.

To evaluate our approach, we have used the ML-DEECo framework to architect
a simulation of a use-case from the area of smart farming. The source code of
the simulation is available in the replication package [16]. The simulated system
consists of autonomous drones which protect fields with crops against birds. We
use a machine-learning-based estimate to optimize and adapt the charging of the
drones. The results of the simulation show that the addition of machine learning
was beneficial as the adapted charging allows the drones to save more crops.

In our future work, we would like to build on this approach and focus on other
machine learning approaches, most importantly on reinforcement learning.

54

Bibliography
[1] Tomas Bures, Ilias Gerostathopoulos, Petr Hnetynka, Jaroslav Keznikl,

Michal Kit, and Frantisek Plasil. DEECo: an ensemble-based component
system. In Proceedings of the 16th International ACM Sigsoft symposium
on Component-based software engineering - CBSE '13. ACM Press, 2013.
doi:10.1145/2465449.2465462.

[2] Tomas Bures, Ilias Gerostathopoulos, Petr Hnetynka, Jaroslav Keznikl,
Michal Kit, and Frantisek Plasil. Gossiping Components for Cyber-Physical
Systems. In Proceedings of ECSA 2014, Vienna, Austria, volume 8627 of
LNCS, pages 250–266. Springer, 2014. doi:10.1007/978-3-319-09970-5_23.

[3] Tomas Bures, Frantisek Plasil, Michal Kit, Petr Tuma, and Nicklas Hoch.
Software Abstractions for Component Interaction in the Internet of Things.
Computer, 49(12):50–59, 2016. ISSN 0018-9162.

[4] Tomas Bures, Petr Hnetynka, Jan Kofron, Rima Al Ali, and Dominik Skoda.
Statistical Approach to Architecture Modes in Smart Cyber Physical Systems.
In Proceedings of WICSA 2016, Venice, Italy, pages 168–177. IEEE, April
2016. doi:10.1109/WICSA.2016.33.

[5] Filip Krijt, Zbynek Jiracek, Tomas Bures, Petr Hnetynka, and Ilias
Gerostathopoulos. Intelligent Ensembles - A Declarative Group Descrip-
tion Language and Java Framework. In Proceedings of SEAMS 2017, Buenos
Aires, Argentina, pages 116–122. IEEE, 2017. doi:10.1109/SEAMS.2017.17.

[6] Petr Hnetynka, Tomas Bures, Ilias Gerostathopoulos, and Jan Pacovsky.
Using Component Ensembles for Modeling Autonomic Component Collabora-
tion in Smart Farming. In Proceedings of SEAMS 2020, Seoul, Korea, pages
156–162. ACM, 2020. doi:10.1145/3387939.3391599.

[7] Theresia Ratih Dewi Saputri and Seok-Won Lee. The Application of Machine
Learning in Self-Adaptive Systems: A Systematic Literature Review. IEEE
Access, 8:205948–205967, 2020. doi:10.1109/ACCESS.2020.3036037.

[8] Omid Gheibi, Danny Weyns, and Federico Quin. Applying Machine Learning
in Self-adaptive Systems: A Systematic Literature Review. ACM Transac-
tions on Autonomous and Adaptive Systems, 15(3):9:1–9:37, August 2021.
doi:10.1145/3469440.

[9] Tomas Bures, Ilias Gerostathopoulos, Petr Hnetynka, Frantisek Plasil, Filip
Krijt, Jiri Vinarek, and Jan Kofron. A language and framework for dynamic
component ensembles in smart systems. International Journal on Software
Tools for Technology Transfer, 22(4):497–509, feb 2020. doi:10.1007/s10009-
020-00558-z.

[10] Tomáš Bureš, Ilias Gerostathopoulos, Petr Hnětynka, and Jan Pacovský.
Forming ensembles at runtime: A machine learning approach. In Lever-
aging Applications of Formal Methods, Verification and Validation: Engi-

55

https://doi.org/10.1145/2465449.2465462
https://doi.org/10.1007/978-3-319-09970-5_23
https://doi.org/10.1109/WICSA.2016.33
https://doi.org/10.1109/SEAMS.2017.17
https://doi.org/10.1145/3387939.3391599
https://doi.org/10.1109/ACCESS.2020.3036037
https://doi.org/10.1145/3469440
https://doi.org/10.1007/s10009-020-00558-z
https://doi.org/10.1007/s10009-020-00558-z

neering Principles, pages 440–456. Springer International Publishing, 2020.
doi:10.1007/978-3-030-61470-6_26.

[11] Tom M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997. ISBN
978-0-07-042807-2.

[12] Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas
immanent in nervous activity. The Bulletin of Mathematical Biophysics, 5
(4):115–133, dec 1943. doi:10.1007/bf02478259.

[13] ML-DEECo, 2022. URL https://github.com/smartarch/ML-DEECo.

[14] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving,
Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek
Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya
Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan,
Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine
learning on heterogeneous systems, 2015. URL https://www.tensorflow.
org/. Software available from tensorflow.org.

[15] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic opti-
mization, December 2014.

[16] Replication package (smart farming), 2022. URL https://github.com/
Mnaukal/ML-DEECo-replication-package.

[17] Rima Al-Ali, Petr Hnetynka, Jiri Havlik, Vlastimil Krivka, Robert Heinrich,
Stephan Seifermann, Maximilian Walter, and Adrian Juan-Verdejo. Dynamic
security rules for legacy systems. In Proceedings of the 13th European Con-
ference on Software Architecture - ECSA '19 - volume 2. ACM Press, 2019.
doi:10.1145/3344948.3344974.

[18] Replication package (security rules), 2022. URL https://github.com/
Mnaukal/ml-deeco-security-isola.

[19] Rocco De Nicola, Diego Latella, Alberto Lluch Lafuente, Michele Loreti,
Andrea Margheri, Mieke Massink, Andrea Morichetta, Rosario Pugliese,
Francesco Tiezzi, and Andrea Vandin. The SCEL Language: Design, Imple-
mentation, Verification. In Software Engineering for Collective Autonomic
Systems, number 8998 in LNCS, pages 3–71. Springer, 2015. doi:10.1007/978-
3-319-16310-9_1.

[20] jRESP: Java Runtime Environment for SCEL Programs, 2013. URL http:
//jresp.sourceforge.net/. Accessed:2022/01/20.

[21] Rolf Hennicker and Annabelle Klarl. Foundations for Ensemble Modeling –
The Helena Approach. In Specification, Algebra, and Software, number 8373
in LNCS, pages 359–381. Springer, 2014. doi:10.1007/978-3-642-54624-2_1.

56

https://doi.org/10.1007/978-3-030-61470-6_26
https://doi.org/10.1007/bf02478259
https://github.com/smartarch/ML-DEECo
https://www.tensorflow.org/
https://www.tensorflow.org/
https://github.com/Mnaukal/ML-DEECo-replication-package
https://github.com/Mnaukal/ML-DEECo-replication-package
https://doi.org/10.1145/3344948.3344974
https://github.com/Mnaukal/ml-deeco-security-isola
https://github.com/Mnaukal/ml-deeco-security-isola
https://doi.org/10.1007/978-3-319-16310-9_1
https://doi.org/10.1007/978-3-319-16310-9_1
http://jresp.sourceforge.net/
http://jresp.sourceforge.net/
https://doi.org/10.1007/978-3-642-54624-2_1

[22] Jeroen Van Der Donckt, Danny Weyns, Federico Quin, Jonas Van Der Don-
ckt, and Sam Michiels. Applying deep learning to reduce large adapta-
tion spaces of self-adaptive systems with multiple types of goals. In Pro-
ceedings of SEAMS 2020, Seoul, South Korea, pages 20–30. ACM, 2020.
doi:10.1145/3387939.3391605.

[23] Jeroen Van Der Donckt, Danny Weyns, M. Usman Iftikhar, and
Sarpreet Singh Buttar. Effective Decision Making in Self-adaptive Systems
Using Cost-Benefit Analysis at Runtime and Online Learning of Adaptation
Spaces. In Evaluation of Novel Approaches to Software Engineering, volume
1023 of LNCS, pages 373–403. Springer, 2019. doi:10.1007/978-3-030-22559-
9_17.

[24] Omid Gheibi, Danny Weyns, and Federico Quin. On the Impact of Applying
Machine Learning in the Decision-Making of Self-Adaptive Systems. In
Proceedings of SEAMS 2021, Madrid, Spain, pages 104–110. IEEE, May 2021.
doi:10.1109/SEAMS51251.2021.00023.

[25] Henry Muccini and Karthik Vaidhyanathan. A machine learning-driven
approach for proactive decision making in adaptive architectures. In Com-
panion Proceedings of ICSA 2019, Hamburg, Germany, pages 242–245, 2019.
doi:10.1109/ICSA-C.2019.00050.

[26] Javier Cámara, Henry Muccini, and Karthik Vaidhyanathan. Quantitative
Verification-Aided Machine Learning: A Tandem Approach for Architecting
Self-Adaptive IoT Systems. In Proceedings of ICSA 2021, Salvador, Brazil,
pages 11–22. IEEE, March 2020. doi:10.1109/ICSA47634.2020.00010.

[27] Alexander Palm, Andreas Metzger, and Klaus Pohl. Online Reinforcement
Learning for Self-adaptive Information Systems. In Proceedings of CAiSE
2020, Grenoble, France, volume 12127 of LNCS, pages 169–184. Springer,
2020. doi:10.1007/978-3-030-49435-3_11.

[28] Johannes Grohmann, Simon Eismann, André Bauer, Simon Spinner, Jo-
hannes Blum, Nikolas Herbst, and Samuel Kounev. SARDE: A Framework
for Continuous and Self-Adaptive Resource Demand Estimation. ACM
Transactions on Autonomous and Adaptive Systems, 15(2):1–31, June 2021.
doi:10.1145/3463369.

[29] Thomas Gabor, Andreas Sedlmeier, Thomy Phan, Fabian Ritz, Marie Kier-
meier, Lenz Belzner, Bernhard Kempter, Cornel Klein, Horst Sauer, Reiner
Schmid, Jan Wieghardt, Marc Zeller, and Claudia Linnhoff-Popien. The
scenario coevolution paradigm: adaptive quality assurance for adaptive sys-
tems. International Journal on Software Tools for Technology Transfer, 22
(4):457–476, March 2020. doi:10.1007/s10009-020-00560-5.

57

https://doi.org/10.1145/3387939.3391605
https://doi.org/10.1007/978-3-030-22559-9_17
https://doi.org/10.1007/978-3-030-22559-9_17
https://doi.org/10.1109/SEAMS51251.2021.00023
https://doi.org/10.1109/ICSA-C.2019.00050
https://doi.org/10.1109/ICSA47634.2020.00010
https://doi.org/10.1007/978-3-030-49435-3_11
https://doi.org/10.1145/3463369
https://doi.org/10.1007/s10009-020-00560-5

List of Figures

2.1 Running example visualization. 6
2.2 Example of three ensembles for field protection. 9

3.1 Taxonomy of prediction tasks. 14

5.1 Comparison of results of the estimator with regard to what training
data are collected. Horizontal axis represents the predicted values,
vertical axis represents the true values. 43

5.2 Survived drones and damage rate in a simulation with 16 drones
while using data from one iteration for estimator training. 44

5.3 Survived drones and damage rate in a simulation with 16 drones
while using data from all iterations for estimator training. 45

5.4 Survived drones and damage rate in a simulation with 16 drones
while using data from previous three iteration for estimator training. 45

5.5 Comparison of survived drones and damage rate for baseline and
ML-based approach. 46

5.6 Ensembles in the Security rules example. From Al-Ali et al. [17]. . 48
5.7 Results of the simulation with 100 workers. 49
5.8 Outputs of the neural network for predicting whether a worker will

arrive to the factory before their shift starts (green) or not (red). . 50

58

List of Listings
4.1 Example of definition of a stationary component. 19
4.2 Example of definition of a moving component. 20
4.3 Example of a definition of an ensemble for drone charging. 22
4.4 Definition of a neural-network-based estimator. 24
4.5 Definition of a neural-network-based estimator. 25
4.6 Definition of a neural-network-based estimator. 25
4.7 Inputs of an estimate assigned to a component. 26
4.8 Inputs of an estimate assigned to a role. 27
4.9 Target of an estimate assigned to a component. 27
4.10 Condition for an estimate assigned to a role. 27
4.11 Guards for an estimate assigned to a component. 29
4.12 Guard for a record (a pair of inputs and targets). 29
4.13 Obtaining the estimated value in a component. 30
4.14 Obtaining the estimated value from an estimate assigned to a role. 30
4.15 Obtaining the estimated value with variable estimation time in a

component. 30
4.16 Example of machine-learning-enabled component. 32
4.17 Example of machine-learning-enabled ensemble. 33

59

	Introduction
	Problem statement
	Goals
	Structure of the text

	Background and running example
	Running example
	Ensemble-Based Component Systems
	Component
	Ensemble
	Ensemble formation

	Overview of machine learning concepts used in the thesis
	Input data and features
	Neural networks

	Modeling machine-learning-enabled ensembles
	Examples of prediction tasks
	Taxonomy of prediction tasks
	Where
	What

	Estimators
	Training data collection
	Neural networks architecture

	ML-DEECo implementation
	DEECo in Python
	Specifying components
	Specifying ensembles
	Running the simulation

	ML-DEECo
	Adding machine-learning-based estimates
	Estimator
	Estimate assignment to components and ensembles
	Configuring inputs, target and guards
	Obtaining the estimated value
	Running the simulation

	Examples of ML-DEECo usage
	Drone component
	Charging ensemble

	Estimators
	Neural network architecture
	Inference of the output layer of the neural network
	Inference of the loss function for training
	Caching of estimates

	Evaluation
	Simulation of the running example
	World configuration and agricultural fields
	Flocks of birds
	Drone component
	Charger component
	Field protection ensemble
	Drone charging ensembles

	Results
	Evaluation metrics
	Baselines
	Using guards to collect appropriate data for the battery estimate training
	Strategies for collecting training data
	Summary of the results

	Security rules example
	Use case
	Modelling the scenario using components and ensembles
	Use of machine learning for adaptation
	Results

	Related work
	Ensemble-based component modeling
	SCEL
	Helena
	Ensemble formation in DEECo

	Machine learning in self-adaptive systems

	Conclusion
	Bibliography
	List of Figures
	List of Listings

